当前位置: 仪器信息网 > 行业主题 > >

国家蛋白质科学基础设施建设启动

仪器信息网国家蛋白质科学基础设施建设启动专题为您整合国家蛋白质科学基础设施建设启动相关的最新文章,在国家蛋白质科学基础设施建设启动专题,您不仅可以免费浏览国家蛋白质科学基础设施建设启动的资讯, 同时您还可以浏览国家蛋白质科学基础设施建设启动的相关资料、解决方案,参与社区国家蛋白质科学基础设施建设启动话题讨论。

国家蛋白质科学基础设施建设启动相关的资讯

  • 投资12.22亿 国家蛋白质科学基础设施建设启动
    国家蛋白质科学基础设施北京基地(凤凰工程)建设正式启动  2012年11月30日上午,中关村生命科学园晴空万里,彩旗飘扬。国家蛋白质科学基础设施北京基地(凤凰工程)在园区正门9号地隆重举行奠基典礼。北京市副市长张工、总后卫生部副部长方国恩、国家教育部部长助理陈舜、国家发改委高技术产业司司长綦成元,中国科学院副院长张亚平院士、北京大学常务副校长王恩哥院士、清华大学副校长邱勇,军事医学科学院院长贺福初院士,副院长徐卸古、陈学如、张伟平、张为,科技部部长徐天昊、院务部部长王峰,国家生物医学分析中心主任张学敏院士以及国家有关部委、中国科学院、清华大学、北京大学、北京市中关村管委会、昌平区政府等相关部门领导出席。奠基典礼由军事医学科学院政委高福锁主持。奠基仪式  总后卫生部副部长方国恩在奠基典礼上作了重要讲话。方国恩指出,凤凰工程的奠基是我国、我军医学科技史上的又一件大事,有助于增强我军参与国际研究的合作和竞争能力,有助于完善国家和军队医学科技创新体系,大力提升国家和军队在蛋白质科学研究领域的原始创新能力,有力促进我国在国际蛋白质组学研究领域的主导地位。“凤凰工程”的建设是落实党中央、国务院、中央军委军民融合式发展的重大战略举措,是推进军民融合发展的一个重大的标志性成果。希望通过基地项目这个纽带,更好地聚焦国家战略、服务国家战略,在更广领域、更高层次上进一步深化合作,不断推进军民融合,结出更加丰硕的成果。  方国恩特别强调,总后首长非常重视基地建设工作,多次听取建设方案汇报,并提出明确要求。下一步,总后卫生部将会同有关部门,加强协调,密切配合,扎实推进各项建设工作。相信在大家的共同努力下,“凤凰工程”一定能够如期、圆满完成建设任务,一定能够实现国际先进,国内一流的建设目标,也一定能够为国家和军队医学科技事业做出新的更大的贡献!  北京市副市长张工代表北京市委、市政府对“凤凰工程”开工表示热烈祝贺!张工在讲话中指出,近年来,北京市生命科学研究和相关产业发展迅速,创新能力显著提升,在国内的领先地位日益增强,得到国家发改委、教育部、科技部、中国科学院等部委以及解放军四总部的充分肯定和密切关注。“凤凰工程”最终落户北京,就是国家部委、军队总部对首都建设大力支持的结果。“凤凰工程”是国家“十一五”期间重点建设的十二项重大科技基础设施项目之一,同时也是北京市政府和军事医学科学院战略合作共建“236工程”的重要组成部分。从“凤凰工程”的项目申请到落地建设,市委、市政府一直高度关注和积极支持,市区相关部门也密切配合,积极推进各项筹建工作。  张工表示,北京市将进一步深化与包括军事医学科学院、清华大学、北京大学、中国科学院等在内的驻京单位合作,一如既往地做好各项服务工作,同时继续发挥中关村引领创新和成果的产业化,加快建设中关村国家自主创新示范区,为建设创新型国家做出应有贡献。  国家发改委高技术产业司司长綦成元在讲话中指出,蛋白质科学研究设施(北京)命名为“凤凰工程”,寓意着科技工作者在生命科学领域不畏艰难、追求卓越,孜孜以求、不断创新。“凤凰工程”是我国在生命科学领域提高原始创新能力的重要战略部署,将从系统生物学角度分析和揭示蛋白质的功能、探索蛋白质结构与功能对个人生命过程的作用,在分子、细胞和生物体等多个层次上阐述生命活动规律和现象本质,并揭示疾病发生发展的分子机理。“凤凰工程”也是军民结合、协同创新的重要体现,承担项目的四家单位——军事医学科学院、清华大学、北京大学和中科院生物物理所,都是国内相关领域具有一流实力的科研单位,四家单位的强强联合,体现了我国集中力量办大事的优势。“凤凰工程”从申请立项到今天的正式奠基实施,凝聚了总后、教育部、中科院和北京市等各方的心血,在大家共同努力和支持下,“凤凰工程”必将建设成为我国蛋白质科学和技术的重要创新基地,蛋白质研究领域高端人才的培养平台,以及我国大规模蛋白质实物库、数据库和信息中心。“凤凰工程”必将展翅高飞、有力支撑我国乃至全世界蛋白质科学的发展和腾飞。  綦成元代表国家发改委对“凤凰工程”提出了两点希望:一是加强合作,精心组织。“凤凰工程”由4家单位联合建设,各自有相应的建设任务。军事医学科学院作为项目法人单位要进一步加强与项目共建单位的紧密联系与合作,切实牵头做好项目建设的统筹,精心组织、认真实施,共同完成好项目的建设任务。希望总后勤部加强与教育部、中科院、北京市的沟通、协调和配合,继续指导和支持项目的建设、运行和发展。二是探索机制,开放共享。“凤凰工程”在抓紧进行项目建设的同时,要在管理机制和使用机制方面进行探索和创新。要探索如何在建成后的各子系统进行统筹,促进其形成合力、协调运行。要前瞻部署研究设施运行管理的组织工作,将设施作为深化科技体制改革的重要抓手,在开放共享、协同创新方面发挥先行先试作用,为我国生命科学研究和生物医药产业发展提供重要支撑。  作为项目法人单位,贺福初院长代表院党委和全院同志对军地有关部门领导的大驾光临,表示热烈的欢迎!对国家发改委、教育部、北京市政府、总后勤部和中科院、清华大学、北京大学给予我院的大力支持表示衷心的感谢!  贺福初在致词中指出,2003年,基于成功领衔“国际人类肝脏蛋白质组计划”这一历史契机,我院萌发了建设蛋白质科学设施的战略构想。在中国传统文化里,龙生九子、凤引九雏等典故表明,“九”与龙凤的关系源远流长,代表着“神圣”、“吉祥”和最高境界。正是经过9年的漫长孕育,今天我们才迎来了这喜庆的奠基典礼。此时此刻,我们将亲手助力“凤凰”出壳,亲耳聆听“雏鸟”鸣唱,亲眼见证中国生命科学的珠峰崛起,亲身感受北京科技力量的雄峰屹立。  “凤凰工程”规划为一体两翼,今天奠基的是总部设施。从天空俯视,这栋建筑将呈鲜明的英文“R”型,就像一艘巨大的“航母”,意在代表科学研究圣地,引领生物科技创新。根据规划,清华、北大还将建设以冷冻电镜、高频核磁等配套设施,同时吸纳中科院相关平台,从而打造世界蛋白质科学的核心基地和研究旗舰。作为项目法人单位,我们一定不负厚望,全力以赴将“凤凰工程”建设成经得起历史检验的国家级平台、国际性重镇。  贺福初强调,21世纪是生物科技的时代,更是创造新纪元的时代。当前,机械化的洪水仍在前行,信息化的波涛正在澎湃,生物化的桅杆渐现端倪。可以预见,随着各种技术的不断飞跃和深层融合,人类跨越的时间将得到极大延伸,涉猎的空间将得到极大拓展,人类生存与活动的质量和境界将得到极大提高。习主席讲,“人世间的一切幸福都是要靠辛勤的劳动来创造的。”古往今来,任何物种、任何国家的王者地位并非从来就有,也绝非亘古不变。正是辛勤的劳动、不断的创造推动了人类的进化,我们只有永远进击,才能创造更加美好的明天。  贺福初表示,刚刚闭幕的党的十八大确立了创新驱动发展战略,并将科技创新定位于国家发展全局的核心位置,这是时代赋予我们的机遇,这是历史赐予我们的厚礼。我们今天构筑的“凤巢”,是种下一林千年梧桐,旨在感召百鸟朝凤,旨在孵化金色凤凰。我们满心期待——不久的将来,在神州神奇的大地上,能够走出光耀星空的科学巨匠,能够诞生流芳千古的旷世鸿著,能够铸就改变人类历史进程的丰功伟绩。  贺福初强调,千百年来,人类螺旋式上升、迂回式前进的奋斗足迹告诉我们,逾越的台阶越高,变革的量级越大,遇到的困难就会越多,面临的挑战就会越大,但我们坚信,只要胸怀科学大志,发扬愚公移山精神,就一定能够为民族的伟大复兴、为人类的发展进步建立卓越功勋。  据了解,出席奠基典礼活动的还有国家部委、中科院、北京大学、清华大学、深圳大学、北京市科委、北京市外联办、中关村发展集团、昌平生命科学园相关部门领导,我院机关三部和直属单位领导、科技干部,凤凰工程设计单位、施工单位、监理单位代表共600余人参加,人民日报、新华社、光明日报、中央人民广播电台、中央电视台、经济日报、科技日报、健康报、中国科学报、中国医药报等13位中央媒体记者也来到奠基现场进行采访。
  • 国家蛋白质科学基础设施仪器采购启动
    仪器信息网讯 2013年4月9日,中国仪器进出口(集团)公司在中国政府采购网发布了一条招标公告,就“国家蛋白质科学基础设施仪器设备采购项目”进行公开招标,此次采购2台质谱仪,1台显微注射系统。该招标的公布也标志着国家蛋白质科学基础设施北京基地(凤凰工程)仪器设备采购拉开序幕。  据熟悉此事的人士介绍,凤凰工程仪器设备采购将持续3年,分批采购,而作为蛋白质研究的重要工具——质谱也将成为采购的大头。预计一场争夺战将在各质谱厂商展开。  2008年底,国家发改委近日批复了蛋白质科学研究设施国家重大科技基础设施项目建议书,将其列入国家高技术产业发展项目计划。该项目分北京设施、上海设施两部分,凤凰工程即为其中的北京项目。2012年12月,凤凰工程在中关村生命科学园开工建设。该工程由国家发展改革委、教育部、总后勤部和北京市投资12.22亿元,军事医学科学院联合清华大学、北京大学、中科院共同承建。  据介绍,凤凰工程占地2.53万平方米,科研大楼建筑面积3.73万平方米,并根据需求设计蛋白质组分析系统、蛋白质结构解析系统、蛋白质功能研究系统等不同的功能分区。根据规划,军事医学科学院将承担凤凰工程总部的设施建设,清华大学、北京大学分别承担以冷冻电镜、高频核磁为主的辅助设施建设,同时吸纳中科院生物物理所现有的蛋白质研究平台,组建国家蛋白质科学中心(北京),共同打造一流的世界蛋白质科学研究核心基地。(编撰:杨娟)附录:国家蛋白质科学基础设施仪器设备采购项目招标公告  中国仪器进出口(集团)公司(招标代理)受中国人民解放军军事医学科学院招标人委托,就国家蛋白质科学基础设施仪器设备采购项目(以下简称项目)所需的货物和服务,以国内公开招标的方式进行采购。现邀请合格的投标人就下列货物及有关服务提交密封投标。有兴趣的投标人可从招标代理所在地址得到进一步信息和查看招标文件。具体招标公告请参见“中国采购与招标网(www.chinabidding.com.cn)”和“中国政府采购网(www.ccgp.gov.cn) ”。  注:除上述两个网站外,中国仪器进出口(集团)公司从未在其他任何网站或媒体发布过有关本项目的任何信息,从其他任何渠道或以其他任何方式获取招标信息或招标文件的投标人,中国仪器进出口(集团)公司均不予认可。  1.招标编号:13CNIC03-8018/01包  2.项目名称:国家蛋白质科学基础设施仪器设备采购项目  3.设备名称:序号设备名称数量1质谱仪22显微注射系统1  具体内容详见第八部分。  投标人须以包为单位进行投标,不得拆分,否则其投标将被拒绝。评标、授标以包为单位。  合格的投标人:  (1)具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体   (2)国外设备制造商或其代理商须在国内设有满足售后服务要求的服务网点和技术支持体系   (3)产品制造商和其授权代理商均可投标。若代理商投标,需出具投标产品主要制 造商的投标授权书,同时相关制造商失去其所授权产品的投标资格。  (4)制造商同一包同一型号产品授权参加本项目投标的代理商不得超过一家,若授权两个(含)以上代理商,则所有的授权及其投标文件均无效。  (5)本项目不接受联合体投标   (6)按本招标邀请的规定获取招标文件。  (7)参加政府采购活动前三年内,在经营活动中没有重大违法记录。  4.购买招标文件时间、地点及要求:  时间:2013年04月09日至2013年04月13日(节假日除外) ,上午9:30至11:30 下午1:30至16:30(北京时间)。  地点:北京市西直门外大街6号中仪大厦615室。  招标文件售价为500人民币/包,售后不退。招标代理提供招标文件电子版。投标人应对所投包内全部内容投标,不得拆分。购买招标文件需提供合格的投标人规定的全部证明文件(原件并复印件加盖红章装订成册)。  5. 投标截止时间:2013年04月30日上午9:30(北京时间),逾期收到或不符合规定的投标文件恕不接受。  6. 开标时间:2013年04月30日上午9:30(北京时间)。  7. 开标地点:北京市西直门外大街6号中仪大厦三层302会议室  8.所有投标文件都应附有招标文件第二册“资料表”中规定金额的投标保证金,并于开标时间前由投标人代表亲自递交至开标地点。招标代理只接受在截标当日递交的投标文件。  9.本项目评标办法为综合评分法。  10.凡对本次招标提出询问,请与 中国仪器进出口(集团)公司 联系(技术方面的询问请以信函或传真的形式)。  中国仪器进出口(集团)公司(招标采购代理机构)  地  址:北京市西直门外大街6号中仪大厦615室  邮  编:100044  电  话:010-88316237 传 真:010-88316233  电子信箱:caoxin@cnic.genertec.com.cn  联 系 人:曹欣  开户名称:中国仪器进出口(集团)公司  开户行:中国银行总行营业部  账号:778350008791
  • 蛋白质科学研究(北京)国家重大科技基础设施清华大学基地通过验收
    p  7月13日上午,由教育部组织的蛋白质科学研究(北京)国家重大科技基础设施清华大学基地单项验收会在清华大学生命科学馆召开。来自北京大学等14个单位的23位验收专家分组听取了设备、财务、档案和工艺总结报告,通过查阅验收资料、现场考察建设情况,经质询和讨论后,一致同意清华大学基地通过单项验收。/pp  在验收会上,教育部科技司基础处处长方建慧充分肯定了清华大学基地在建设及试运行过程中为生命学科及相关领域研究做出的突出贡献,并为本次验收评审工作布置任务。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/13dafe8e-650b-4c78-9d10-3dca75ee83b9.jpg" title="1500946943532916_副本.jpg"//pp style="text-align: center "教育部科技司基础处处长方建慧在会议上致辞。/pp  蛋白质科学研究(北京)设施总工程师、清华大学副校长施一公院士介绍了基地项目概况,特别是基地“设施统一管理、科研成果井喷式爆发”的管理模式和试运行成果,希望在各方的继续大力支持下,保持清华大学基地冷冻电子显微镜等平台在国际上的领先地位。蛋白质科学研究(北京)设施首席科学家王志新院士和蛋白质科学研究(北京)设施副总经济师、清华大学财务处处长郝永红分别致辞。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/2c95fd80-950c-4ced-b5a9-5352da8416f2.jpg" title="1500946944933663_副本.jpg"//pp style="text-align: center "施一公做项目概况介绍。/pp  清华大学生命科学学院院长王宏伟对蛋白质设施整体建设情况做了详细汇报,随后验收工作分为设备、财务、档案和工艺四个分组进行。/pp  清华大学科研院副院长邓宁主持会议,清华大学各部处代表、清华大学基地建设小组成员、北京京成会信会计师事务所代表等60余人参加会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/0f8dff73-dfcb-4988-b32f-874fbbe6ca21.jpg" title="1500946944227093_副本.jpg"//pp style="text-align: center "蛋白质科学研究(北京)国家重大科技基础设施清华大学基地档案验收会场。/pp  蛋白质科学研究(北京)设施是“十一五”、“十二五”期间重点建设的国家重大科技基础设施,于2012年正式启动,由军事医学科学院、清华大学、北京大学等单位共同建设,旨在建设成为国际领先的蛋白质科学研究核心基地。自2013年至今,清华大学基地已为134个国内外单位提供技术支撑,依托清华大学基地的设施,已在《细胞》《自然》《科学》等世界级刊物发表论文43篇。/p
  • 投资7亿 蛋白质科学研究(上海)国家重大科技基础设施开工
    中国科学院上海高等研究院12月26日入驻浦东科技园,标志着中国科学院与上海市政府共同建设的中国科学院上海浦东科技园建设取得重大进展。上海市委副书记、市长韩正出席仪式。中科院副院长江绵恒、施尔畏、李家洋,上海市领导殷一璀、杨雄、徐麟、沈晓明,以及张学兵等出席仪式。  上海高等研究院筹备组长封松林介绍,在短短的一年多时间里,中科院上海高等研究院已经集聚了一支由50余位海内外高级人才领衔的蓬勃向上、富有活力的高水平科研团队,与企业开展了多种形式卓有成效的合作,成立了近20个研发中心和联合实验室,已经启动了一批重点方向和项目,并初步形成了由交叉前沿与先进材料、空间与海洋科技、信息科学与技术、能源与环境、生命科学与技术五大领域的科研战略布局。他表示,高研院人将再接再励,艰苦奋斗、励精图治、克难攻坚、努力创新,实现立足上海、服务中国、走向世界,成为“长三角”区域内独具特色,集技术创新、成果转化、科技服务、人才培育于一体的综合性工业技术研究机构的总体发展目标。  与此同时,蛋白质科学研究(上海)设施国家重大科技基础设施项目也在浦东科技园开工建设。该项目投资规模为7亿人民币,将在3年内建成。它将依托“上海光源”开展蛋白质结构生物学相关研究,建设蛋白质三维结构测定、蛋白质结构的动态过程研究和功能成像分析等5条光束线、6个实验站。开展蛋白质结构生物学相关研究,分析蛋白质修饰和相互作用,阐释蛋白质与化学小分子之间的相互作用机理 以新药物靶点的发现为突破口,研究蛋白质药物新靶标的功能活动的结构特征 支撑提升我国生命科学领域及生物技术领域的核心竞争力,促进我国生物技术与医药产业、农业与环境保护、重要生物资源的开发与利用等的快速发展。
  • 蛋白质科学研究(北京)国家重大科技基础设施通过国家验收
    p style="text-indent: 2em text-align: justify "近日,总投资12亿余元的蛋白质科学研究(北京)国家重大科技基础设施顺利通过国家验收。该设施的建成并投入运行,将为国内外生命科学和健康产业的发展再添强劲原动力。/pp style="text-indent: 2em text-align: justify "该设施汇聚了生物质谱、生物大数据与超级计算、冷冻电镜等尖端技术平台,为深度解析蛋白质组及蛋白质复合体的结构和功能,全景式揭示人类、重要动植物与微生物等生理、病理、药理、毒理等相关分子机制,提供高通量分析、高时空分辨、高复杂度覆盖、大数据解析、智能化知识发现等一站式综合技术体系。/pp style="text-indent: 2em text-align: justify "该设施将为通量发现与重大疑难病症的诊断、预防、治疗紧密相关的功能蛋白质和药物靶标提供独到的强大技术支撑。据不完全统计,该设施调试运行3年多来,已直接支撑了近400项国家级课题研究,产出了300余篇国际权威杂志的高水平科学论文、100余项发明专利和软件著作权。/pp style="text-indent: 2em text-align: justify "项目首席科学家贺福初院士和王志新院士表示,蛋白质科学是生物科技与信息科技的交叉学科,是未来科技的战略制高点。该设施将努力建设成为国际生命科学领域高端人才的集聚和培养平台、国际生命科学重大发现的发射塔、国际化生命科学大数据中心、蛋白质组学驱动的精准医学(PDPM)的全球策源地。/p
  • 蛋白质科学研究(北京)国家重大科技基础设施通过国家验收
    p style="text-indent: 2em text-align: justify "近日,蛋白质科学研究(北京)国家重大科技基础设施(简称“凤凰工程”)通过了国家发展和改革委组织的国家验收。凤凰工程是由国家发展改革委、北京市政府、总后勤部和教育部共同投资,军事医学研究院、清华大学、北京大学等单位共同建设的一项国家重大科技基础设施,以电镜为主的复合结构蛋白质组解析系统及功能蛋白质组研究系统的部分设施由清华大学(简称“清华基地”)负责实施。清华大学常务副书记姜胜耀,凤凰工程首席科学家、生命科学学院教授王志新院士,凤凰工程总工程师、生命科学学院教授施一公院士出席验收会并致辞。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/09c9b08e-41b0-4081-bf7e-ee310c952178.jpg" title="1.jpg" alt="1.jpg"//pp style="text-indent: 2em text-align: center "验收会现场/pp style="text-indent: 2em text-align: justify "姜胜耀充分肯定了清华基地试运行期间为生命学科及相关领域科学研究作出的突出贡献,并对验收会的召开表示祝贺。清华大学生命学院院长、清华基地主任王宏伟汇报了基地的建设及试运行情况。/pp style="text-indent: 2em text-align: justify "验收专家组由来自国家发展和改革委、军事科学院、教育部、国家档案局、南京大学、复旦大学、中国科学技术大学、解放军总医院、北京师范大学等17家单位的19名知名专家学者组成。经现场考察建设情况、查阅资料及质询讨论,验收委员会一致认为,凤凰工程的各项指标均达到或优于国家发展改革委批复的设计指标,整体能力达到国际先进水平,在蛋白质组学与结构生物学平台等方面达到国际领先水平,蛋白质科学研究(北京)国家重大科技基础设施圆满完成建设任务。/pp style="text-indent: 2em text-align: justify "清华基地于2012年-2016年完成设备采购、安装和调试工作,2017年7月顺利通过教育部组织的设备、工艺、财务、档案单项验收,2018年9月整体设施顺利通过军事科学院及教育部组织的主管部门联合验收。目前已发展成为世界领先的冷冻电子显微镜实验室及结构生物学研究平台,全部仪器已试运行并7天24小时面向校内外开放服务。截至目前,清华基地已为150余个国内外单位提供技术支撑,依托清华基地设施,科研用户取得了一系列尖端的原创性研究成果,在《细胞》《自然》《科学》等国际顶级期刊发表文章66篇,获得中国科学十大进展、高等学校十大科技进展5项,支撑项目获得省部级以上科技奖4项。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/f6a70348-a62e-4729-bde1-d8dc507f61ae.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em text-align: center "位于清华基地的Titan Krios 300KV场发射透射电子显微镜/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/bd333e95-1063-40b5-81d5-ce0a340c1dc3.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em text-align: center "位于清华基地的蛋白质大分子单晶衍射仪/pp style="text-indent: 2em text-align: justify "出席验收会的还有凤凰工程副总工艺师、生命科学学院教授李蓬院士,凤凰工程副总经济师、清华大学财务处处长郝永红,清华大学生命科学学院副院长、清华基地常务副主任王新泉,清华基地副主任潘勋等,以及清华大学科研院、实验室与设备处等相关部门的负责人。/p
  • 国家蛋白质科学基础设施(凤凰工程)可行性研报告顺利通过评估
    2010年8月23日,受国家发改委委托,中国国际工程咨询公司(以下简称“中咨公司”)在北京永兴花园饭店组织召开了国家蛋白质科学基础设施—北京基地(凤凰工程)建设项目可行性研究报告(以下简称“可研报告”)评估会。总后卫生部、国家教育部、中国科学院、北京市发改委和昌平区发改委的有关领导出席了会议。中心主任、军事医学科学院院长贺福初院士、院科技部徐天昊副部长、院务部任华林副部长、二所杨晓明所长、清华大学陈吉宁常务副校长、生命科学学院院长施一公教授、北京大学林建华常务副校长、生命科学学院院长饶毅教授、中科院生物物理所许瑞明副所长等出席了此次会议。  专家组认真听取了军事医学科学院、清华大学、北京大学、中科院生物物理所等建设单位和可研报告编制单位中国中元国际工程公司的汇报,并与出席会议的建设单位的领导和专家进行了充分的交流。专家组认为,凤凰工程是在国家层面统一部署、集中建设的大型基础设施,是开展大规模蛋白质研究与开发,抢占生命科学研究战略前沿必要的基础条件,其建设符合《国家中长期科学和技术发展规划纲要(2006—2020年)》总体部署要求。   根据前期对该项目情况的了解以及可研报告中各项建设条件的充分论证分析,专家组认为,该项目建设单位拥有科研基础雄厚、专业水平顶尖的人才队伍,为项目建设提供了雄厚的技术支持和保障;项目技术方案合理,选址及建设规模符合北京市规划要求,布局合理;项目所在位置的市政条件配套完善,环境保护措施和节能措施完备,投资估算全面细致,规范合理。   经充分讨论,专家组一致认为,该项目的建设将进一步提升我国蛋白质科学的整体研究水平和能力,培养高水平人才,为我国生命科学研究和发展做出重要贡献;该项目建设条件已经基本具备,可行性研究分析合理,应加快项目前期工作,尽早获得国家批复并开工建设。同时专家组建议进一步健全对外开放的运行机制,促进科研院所与高等院校之间的强强联合和资源集成,使该设施充分发挥作用。   会上,总后卫生部、国家教育部和中国科学院有关领导希望项目建设单位继续团结协作,利用这个契机,建设和完善我国蛋白质科学的支撑体系,共同为我国我军的蛋白质科学乃至生命科学的发展做出更大的贡献,同时也为今后生命科学领域的其它大型设施的建设起到引领和示范作用。   最后,贺福初院士对国家发改委、中咨公司、国家教育部、总后卫生部、北京市发改委等相关部门和评审组专家长期以来对该项目的关心和支持表示感谢。作为项目法人单位的负责人、项目建设总负责人和首席科学家,贺院士同时表示,要充分发挥解放军敢打硬仗、能打胜仗、会打漂亮仗的传统,联合清华大学等优势单位,把“凤凰工程”建设好,管理好、运行好,让这只“凤凰”飞起来。这个项目之所以命名为“凤凰工程”,就是希望这个国家设施能充分发挥国家级公共平台的作用,有力支撑我国乃至全世界的蛋白质科学的发展和腾飞。   清华大学生命科学学院王志新院士、隋森芳院士、科研院王治强副主任,北京大学生命科学学院科研部周辉部长,我院科技部综合计划处徐池副处长、二所科技处王东根处长、甄蓓副处长等领导出席了此次会议。
  • 投7.6亿 国家蛋白质科学研究(上海)设施在沪验收
    今天上午,全球生命科学领域首个综合性大科学装置——国家蛋白质科学研究(上海)设施在沪通过国家验收,这意味着这个集各种大型科学仪器和先进技术于一体、被誉为探索生命奥秘的“国之利器”正式“亮剑出鞘”。工作人员在位于浦东张江的质谱实验室内通过仪器进行样品数据分析  作为继上海光源后第二个落户浦东张江的国家重大科技基础设施,上海设施于2010年12月开工起便引起海内外高度关注,总建筑面积3.3万平方米,完成总投资7.56亿元人民币。  上海设施的落成是生命科学领域大科学装置建设史上的“一件大事”。上海设施集成了具有不同空间和时间分辨率的仪器和设备,形成了蛋白质研究的先进体系,在分析精度、检测极限和处理通量上均取得了突破。  以规模化蛋白质制备系统为例,上海设施自主研发了国内首套将软件控制、硬件设备和生物应用进行整合的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,在样品处理通量上超过半自动化10倍,超过传统的人工系统100倍,居于国际领先水平。  据上海设施总工艺师雷鸣介绍,在上海设施建成之初,曾设定一年解析150个蛋白质结构的指标任务。然而,仅在过去7个月里,就有超过370个蛋白质结构在此被解析,远远超过当初设计的指标。极大地提高了中国生命科学领域的研究能力,按上海光源一期建设的生物实验站能力,仅能满足中国15至20%的用户需求 上海设施的投入使用,则可以基本满足中国用户的需求。  与此同时,作为世界首个生命科学领域综合性的大科学装置,上海设施能以其完备的条件满足研究人员“五花八门”的要求。“对科研有着极大的促进,许多实验在没有这个(上海设施)之前是不可想象的。”雷鸣说。  “聚集一流的人才,造就一个宽松的科研环境,”雷鸣认为上海设施产出突出的科研项目只是“时间上的问题”。
  • 国家蛋白质科学研究(上海)设施公开招聘冷冻电镜管理技术员
    p  国家蛋白质科学研究(上海)设施(简称:上海设施,网址:http://www.sibcb-ncpss.org/)是国家重大科技基础设施,是全球生命科学领域首个综合性的大科学装置。上海设施位于浦东新区张江高科技园区中区西部(上海市海科路333号)。/pp  上海设施旨在成为具有国际竞争力的蛋白质科研设施,同时拥有国际一流的蛋白质科学设施平台以保障国内外科研用户的高效实验平台及高质量科研设施的需求;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。上海设施将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。/pp  上海设施现因工作扩展的需要,面向社会公开招聘冷冻电镜管理技术员2名。受聘者将有机会接受此技术的全面培训。/pp  一、招聘岗位名称及人数:/pp  冷冻电镜系统120KV 管理技术员1名/pp  冷冻电镜系统200KV 管理技术员1名/pp  二、工作职责:/pp  冷冻电镜系统120KV管理技术员岗位职责:/pp  1. 负责管理120KV电镜及其附属设备的日常维护和部分维修工作。/pp  2. 负责电镜用户的上机测试服务、制样设备及电镜使用培训及技术支撑。/pp  3. 负责用户课题的初步技术审核、电镜机时的预约和机时的统计。/pp  4. 高压冷冻-冷冻替代电镜制样以及负染制样、超薄切片制备等工作。/pp  5. 负责系统备品备件的预算、采购执行、仓库管理及报销等工作。/pp  6. 领导安排的其他工作。/pp  冷冻电镜系统200KV管理技术员岗位职责:/pp  1. 负责管理200KV电镜的日常维护和部分维修工作。/pp  2. 负责电镜用户的上机测试服务、制样设备及电镜使用培训及技术支撑。/pp  3. 负责冷冻样品杆和干泵以及冷冻制样仪器的日常维护和部分维修工作。/pp  4. 负责用户课题的初步技术审核、电镜机时的预约和机时的统计。/pp  5. 完成领导安排的其他工作。/pp  三、任职条件:/pp  1. 已有或即将获得生物化学、细胞生物学、生物物理等相关专业全日制本科以上学历;/pp  2. 有生物电镜、结构生物学等研究经验者优先;/pp  3. 热爱平台工作性质,积极主动,有团队精神;/pp  4. 有较好的英语听、说、阅读能力;/pp  5. 为人诚实,易于沟通,身体健康,能长期稳定工作。/pp  四、招聘方式及程序:/pp  1、应聘材料:/pp  (1)《附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a title="" href="http://img1.17img.cn/17img/files/201710/ueattachment/ff416f6f-237b-4788-a3d4-2cf136bb3bfd.docx" target="_blank" textvalue="应聘人员信息登记表.docx》;"应聘人员信息登记表.docx》;/a(点击附件名称下载)/pp  (2)应聘函,包括对应聘岗位的理解、认识及工作设想等;/pp  (3)个人简历(包括联系电话、电子邮箱);/pp  (4)2封推荐信;/pp  (5)有关材料:身份证复印件、学历及学位证书复印件、相关资格证书复印件、获奖证书复印件等;/pp  (6)个人认为重要的其他材料。/pp  2、资格审查/pp  对应聘者进行资格审查,通过初审者,将另行通知面试时间和地点。/pp  3、请将上述材料的电子版或扫描件发至hr-ncpss@sibcb-ncpss.org(请在应聘材料和邮件主题栏注明应聘岗位和姓名,按如下格式:“姓名—应聘部门—应聘岗位”),本岗位招满前有效。/pp  4、谢绝来电来访,应聘材料恕不退还,招聘单位将予以保密。/pp  5、上述岗位按照公开报名、资格审查、面试、决定聘任的程序和方法进行。/pp /p
  • 国家蛋白质科学研究(上海)设施公开招聘技术人员
    p  国家蛋白质科学研究(上海)设施(简称:上海设施,网址:http://www.ncpss.org/)是国家重大科技基础设施,是全球生命科学领域首个综合性的大科学装置。上海设施位于浦东新区张江高科技园区中区西部(上海市海科路333号)。/pp  上海设施旨在成为具有国际竞争力的蛋白质科研设施,同时拥有国际一流的蛋白质科学设施平台以保障国内外科研用户的高效实验平台及高质量科研设施的需求;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。上海设施将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。/pp  上海设施现因工作扩展的需要,面向社会公开招聘规模化蛋白质制备系统运行管理人员2名和复合激光显微镜系统流式细胞仪技术员1名。受聘者将有机会接受此技术的全面培训。/pp strong 一、招聘岗位名称及人数:/strong/pp  规模化蛋白质制备系统:/pp  开放仪器运行管理员1名/pp  哺乳系统运行管理员1名/pp  复合激光显微镜系统:/pp  流式细胞仪技术员 1名/pp strong 二、岗位职责:/strong/pp  strong开放仪器运行管理员岗位职责:/strong/pp  1. 负责设施多台晶体学生物仪器对外开放及技术支持;/pp  2. 负责设施多台对外开放蛋白相互作用仪器的技术支持;/pp  3. 负责用户课题的预约和机时的统计;/pp  4. 负责系统备品备件的预算、采购执行、仓库管理及报销等工作;/pp  5. 完成领导安排的其他工作。/pp strong 哺乳系统运行管理员岗位职责:/strong/pp  1. 负责哺乳细胞自动化蛋白表达筛选系统的项目运行;/pp  2. 负责设施动态光散射仪的对外开放及技术支持;/pp  3. 负责设施静态光散射仪的对外开放及技术支持;/pp  4. 负责超速离心机对外开放及维护;/pp  5. 完成领导安排的其他工作。/pp strong 流式细胞仪技术员岗位职责:/strong/pp  1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;/pp  2. 负责流式细胞仪的操作,用户培训和技术支持;/pp  3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;/pp  4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与设施相关职能部门对接,收集整合系统宣传信息,与设施宣传对接;/pp  5. 完成领导安排的其他工作。/pp strong 三、任职条件:/strong/pp  strong开放仪器运行管理员和哺乳系统运行管理员任职条件:/strong/pp  1. 生物学相关专业,硕士或以上学历;/pp  2. 能熟练掌握哺乳动物细胞实验的优先;/pp  3. 有生物仪器管理运行经验优先;/pp  4. 熟练掌握蛋白表达及纯化试验优先;/pp  5. 具备自动化生物运行经验优先;/pp  6. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;/pp  7. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;/pp  8. 身体健康,能长期稳定工作。/pp  strong流式细胞仪技术员任职条件:/strong/pp  1. 生物学相关专业,硕士或以上学历;/pp  2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;/pp  3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;/pp  4. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;/pp  5. 良好的英文文献阅读和理解能力;/pp  6. 身体健康,能长期稳定工作。/pp strong 四、招聘方式及程序/strong/pp strong /strong1. 应聘材料:/pp  (1)《附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201711/ueattachment/b344f994-0a67-469c-b76a-16c42f66aa14.docx"应聘人员信息登记表.docx》(见附件);/a/pp  (2)应聘函,包括对应聘岗位的理解、认识及工作设想等;/pp  (3)个人简历(包括联系电话、电子邮箱);/pp  (4)有关材料:身份证复印件、学历及学位证书复印件、相关资格证书复印件、获奖证书复印件等。/pp  2. 资格审查/pp  对应聘者进行资格审查,通过初审者,将另行通知面试时间和地点。/pp  3. 请将上述材料的电子版或扫描件发至hr-ncpss@sibcb-ncpss.org(请在应聘材料和邮件主题栏注明应聘岗位和姓名,按如下格式:“姓名—应聘部门—应聘岗位”),本岗位招满前有效。/pp  4. 谢绝来电来访,应聘材料恕不退还,招聘单位将予以保密。/pp  5. 上述岗位按照公开报名、资格审查、面试、决定聘任的程序和方法进行。/pp /p
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象图为蛋白质科学研究(上海)设施核磁共振分析系统。  生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。  在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。  国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?  为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。  不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。  &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。  可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。  雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。  在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。  围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。  史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。  上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。  要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。  找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。  在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。  高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。  传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。  上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。  &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。  五线六站 透视蛋白质内部结构  蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。  肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。  大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。  在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。  记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。  国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。  &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。  过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。  &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。  核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。  在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。  分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。  离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。  和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。  &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。  为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。  蛋白质研究为药物研发铺路  蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。  一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。  细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。  然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。  上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。  &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。  走近中国大科学工程  生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。  在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。  国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?  为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。  不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。  &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。  可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。  雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。  在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。  围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。  史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。  上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。  要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。  找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。  在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。  高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。  传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。  上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。  &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。  五线六站 透视蛋白质内部结构  蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。  肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。  大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。  在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。  记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。  国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。  &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。  过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。  &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。  核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。  在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。  分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。  离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。  和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。  &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。  为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。  蛋白质研究为药物研发铺路  蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。  一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。  细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。  然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。  上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。  &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展
    赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展赛默飞色谱与质谱中国 // 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携手中国科学院上海高等研究院国家蛋白质科学研究(上海)设施(以下简称:蛋白设施)在上海举办蛋白质动态分析联合实验室签约仪式。双方在蛋白质动态分析研究领域,及通过蛋白设施联合上海临床研究中心开展的临床应用等领域,基于良好的合作意向,同意共建实验室及建立战略合作伙伴关系,并在2024年上海市产业技术创新大会得到会议举办方及与会代表众多领导、专家和学者的见证。本次战略合作基于赛默飞全球领先的高分辨质谱、电镜等平台及蛋白组学解决方案基础上,结合了蛋白设施在蛋白组学领域领先的科研能力、研发成果和强大的技术团队。双方围绕蛋白组学解决方案合作、技术培训交流、人才培养等方面达成了共识,旨在整合双方优势资源,共同提升蛋白组学研究、临床样本队列研究和生物医药领域产业的发展,共创技术新生态,为科研的新质生产力注入活力。高分辨质谱+冷冻电镜打造蛋白质科学创新平台赛默飞高级副总裁、亚太和拉美地区总裁Mark Smedley先生,赛默飞分析仪器事业部中国区商务副总裁周晓斌先生,蛋白设施主任吴家睿教授等出席了本次签约座谈仪式。双方领导共同讨论了高分辨质谱结合冷冻电镜技术,电镜技术结合AI,以及高分辨质谱、电镜技术与Olink方案的整合在蛋白组学领域的创新应用,并探讨了未来共同建立临床质谱标准数据库的落地化方案。滑动查看更多强强携手 加深合作全面推动蛋白质科学创新发展在报告环节,吴家睿主任介绍了蛋白设施成立的背景、技术系统、平台设备、重点方向以及近年来取得的成果。赛默飞材料与分析业务生命科学市场销售发展总监陈昉和色谱与质谱业务科学研究市场高级商务总监周昕分别对之前的技术及培训合作进行了回顾,并对未来计划进行了展望。蛋白组学领域自问世以来,取得了令人瞩目的进展。基于质谱和电镜平台,已经诞生了许多重要的发现。这些发现不仅深化了我们对蛋白质结构、功能和相互作用的理解,还为疾病诊断、药物研发和个体化治疗等提供了重要的指导。 此次合作,将共同推动Orbitrap质谱技术和Cryo-EM冷冻电镜在蛋白组学领域的应用,为蛋白质科学研究和生物医药相关领域产业的发展贡献更多华丽的成果。在未来的合作中,双方将共同努力,充分发挥赛默飞的全球领先技术和蛋白设施的科研实力,为蛋白质科学的创新突破和应用推广开辟更加辉煌的前景。关于中国科学院上海高等研究院国家蛋白质科学研究(上海)设施 蛋白质设施是国家“十一五”规划建设的国家重大科技基础设施项目,是全球生命科学领域首个综合性的大科学装置。蛋白质设施主体位于上海市张江科学城,于2008年经国家发改委批复,2014年建成并开放试运行,2015年通过国家验收正式开放运行。蛋白质设施的目标是建设国际一流的蛋白质科学研究体系和成为我国蛋白质科学及技术发展的重要创新基地。主要任务包括:开展蛋白质科学相关研究;研究蛋白质的多尺度时空结构;分析蛋白质修饰和相互作用;阐释蛋白质与化学小分子之间的相互作用;研究蛋白质相关的计算生物学与系统生物学;发展蛋白质研究的新方法和新技术学;结合创新药物的发展,研究蛋白质药物靶标的功能活动的结构特征等。蛋白质设施将聚焦世界科技前沿领域,在不断创新中实现跨越和发展,充分发挥大科学设施平台效能,全面支撑我国蛋白质科学研究和生物医药相关领域产业的发展。如需合作转载本文,请文末留言。
  • 百家实验室:访国家蛋白质科学中心上海(筹)
    仪器信息网讯 2014年4月,我国生命科学领域中第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施(以下简称为:上海设施)通过工艺测试,正式进入开放试运行阶段。近日,仪器信息网工作人员参观拜访了上海设施及同步筹建的国家蛋白质科学中心· 上海(以下简称为:上海中心),一睹这一国家级重大科技基础设施的先进水平和创新风采,上海中心科研项目高级主管汪利俊博士及行政事务主管高馨热情接待了我们。国家蛋白质科学研究(上海)设施/国家蛋白质科学中心· 上海建筑群  为了形成国际一流的蛋白质科学研究体系,并为我国蛋白质科学研究提供&ldquo 利器&rdquo ,2008年11月,&ldquo 蛋白质科学研究设施国家重大科技基础设施项目&rdquo 列入国家高技术产业发展项目计划,项目分北京设施、上海设施两部分,其中北京设施以蛋白质组学研究为主,而上海设施以结构生物学研究为主。  两年后的2010年12月,上海设施在上海浦东张江高科技园区内动工建设,总投资7亿元,项目总建筑面积3.3万平方米。而今历经3年多建设,上海设施/上海中心正式进入试运行阶段,预计于今年年底正式面向多用户、多领域开放。  据介绍,上海设施配备了蛋白质科学研究所需的各种大型科学仪器设备,以及由上海设施的技术人员自主研发的规模化、系统化技术装备体系。目前,上海设施由基于同步辐射光源的五线六站、规模化蛋白质制备系统、质谱分析系统、核磁分析系统、电镜分析系统、分子影像系统、复合激光显微成像系统、数据库与计算分析系统、动物设施等平台组成,可为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障。  在各大平台中,最令上海设施团队自豪的是几项创新:其中一项是将蛋白质表达实现了从&ldquo 手工作坊&rdquo 到&ldquo 智能工厂&rdquo 的转变。目前,在科研界和制药业对于各种蛋白样品的需求日益强烈,但蛋白表达是一个公认复杂、高成本、耗时和资源占用的过程。上海设施规模化蛋白质制备系统自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化)。高通量自动化克隆系统  整个流程实现了自动化,从大规模PCR扩增开始,依次自动进行重组质粒的构建、细胞生长、诱导表达、蛋白表达(构建了大肠杆菌、昆虫细胞、哺乳动物细胞三种表达体系),最终完成蛋白纯化及蛋白性质表征。以克隆过程为例,实验效率从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆。  第二项创新则是分子影像系统自主研发的高精度激光双光镊系统。据悉,设备的所有零部件都购自现成。光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量。依靠这套系统,激光是&ldquo 镊子&rdquo ,能研究蛋白质如何折叠、变形,以及大分子生物酶的工作原理。高精度激光双光镊系统  第三项创新则是上海设施团队基于平台开发的相关研究方法。有了最先进的仪器,没有相应的研究方法也是枉然。为此,上海设施/上海中心的年轻PI们除了从事科学研究外,方法开发也是他们工作的重点。  以核磁系统分析平台为例,上海设施目前拥有5台核磁共振波谱仪,其中有国内第一台最高磁场强度的核磁共振设备(布鲁克900M NMR),主要用来测试蛋白质的溶液结构。上海中心PI周界文带着研究人员开展了核磁共振新技术的开发和新方法的研究。目前新方法的主体研究已完成,正进入软件测试阶段,对推广核磁共振技术在结构生物学领域的广泛应用有重要意义,特别是对依托高场强核磁共振设施进行大蛋白质的三维结构测定过程将更加可行。布鲁克900M 核磁(左)、安捷伦800兆核磁(中)、安捷伦600兆核磁(右)布鲁克600兆核磁(左)、安捷伦700兆核磁(右)核磁系统分析平台一览  同样,上海设施的质谱分析系统平台也很强大,拥有赛默飞、AB SCIEX、安捷伦、沃特世等主流质谱品牌的仪器13台,是全国目前最大、质谱仪器种类最全的质谱分析平台之一。这个实验室在上海中心PI黄超兰的主持下,已自主研发了一系列国内其他实验室尚不具备的研究手段,吸引了全国各地甚至美国的诺奖获得者的研究组等多家科研单位前来合作,在短短半年间已有超过70多个合作项目在进行。赛默飞质谱系统(2台 Q Exactive、1台LTQ Orbitrap XL、1台LTQ Orbitrap Elite、1台 LTQ Orbitrap Elite-ETD)AB SCIEX质谱系统(左上:QTRAP 6500、左下:Triple TOF 5600+、右:MALDI-TOF/TOF 5800)安捷伦质谱系统(1台 6530Q-TOF、1台6550 ifunnel Q-TOF、1台6490 QQQ)沃特世质谱系统(左:Xevo TQ-S 右:Synapt G2-Si HDMS)质谱分析系统平台一览(左:FEI TitanKrios 300kV 球差矫正透射电镜 右上:FEI TF20 场发射冷冻透射电镜 右下:FEI T12 冷冻透射电镜)电镜分析系统平台一览(左上:ZEISS Cell Observer SD 转盘式激光共聚焦 左下:NIKON N-SIM 超高分辨率显微镜 右上:LEICA SP8 激光共聚焦显微镜 右下:OLYMPUS FV1200MPE 双光子显微镜)复合激光显微成像系统平台一览  此外,上海中心还自主研发了一套科研物资管理系统(e-Supply),所有实验室的研究人员都可通过ID登录系统下单购买实验试剂、耗材,资金从课题组经费账户中扣除,而上海中心则能以&ldquo 团购&rdquo 方式,拿到最优的价格。并且上海设施还为供应商提供了库存仓库,供应商只需付较少的费用就可以把上海设施常用的试剂、耗材存于此,这样也极大方便了研究人员,省去了试剂耗材运送的时间。现该系统已获国家计算机软件著作权,除管理上海中心物资外,还兼管筹建中的上海科技大学的物资,不久有望在中科院其他研究院所推广。科研物资管理系统(e-Supply)供应商在上海设施库存的商品数据库与计算分析系统机房  上海设施不仅仅是一个供科学家使用的科研平台,更是一个具有强大科研能力的科学中心。目前,上海中心有PI 14位,仅在上海设施试运行期间,上海中心各研究组就已获得了包括中科院战略性先导科技专项和国家重大科学研究计划项目在内的多项重大课题,相关研究成果已在《自然》、《癌细胞》等国际著名学术刊物上陆续发表。  许琛琦研究组在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。  周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。  周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。  雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。  未来,上海设施将对中国乃至全球的科学家开放,旨在让上海设施发挥其更大的作用与价值。(撰稿:杨娟)  附录:国家蛋白质科学研究(上海)设施及国家蛋白质科学中心· 上海网址 http://www.sibcb-ncpss.org/  http://www.ncpss.org
  • 国家蛋白质科学中心将组建 总投资18亿
    北京市发改委网站2008年12月23日公布,国家发改委近日批复了蛋白质科学研究设施国家重大科技基础设施项目建议书,将其列入国家高技术产业发展项目计划。  该项目分北京设施、上海设施两部分,总投资18亿元,其中国家安排投资11亿元,暂按北京设施、上海设施各5.5亿元安排,其余由地方配套和项目单位自筹解决。  北京设施由军事医学科学院为项目法人单位,清华大学为共建单位,在北京市建设以蛋白质组学研究能力为主的蛋白质科学研究设施,建设期4年。上海设施由中国科学院上海生命科学研究院作为项目法人,在上海市建设以蛋白质结构解析能力为主的蛋白质科学研究设施,建设期3年。  项目建成后,将依托北京设施和上海设施联合组建国家蛋白质科学中心,按照"开放合作、资源共享"的原则,面向多用户、多领域开放,开展科学研究和国内外交流。
  • 投资7亿 国家蛋白质科学中心(上海)建成
    我国生命科学领域第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施日前通过工艺测试,进入开放试运行阶段,预计于今年年底正式面向多用户、多领域开放。25日,记者走进基本建成的国家蛋白质研究中心,见识了国际一流的研究设施和紧锣密鼓开展科研的研究团队:  高通量自动化克隆构建系统,中心自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化),达到全球生物自动化一流水平,从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆,极大地提高了生物实验效率。  自主研发高精度激光双光镊系统,光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现压纳米级位移和压皮牛级力的测量。这些技术有望在蛋白质折叠、RNA聚合酶合等研究领域提供单分子层次的信息。在仪器研发方面,为拓展仪器性能,还将结合单分子荧光技术和高精度激光光镊,有望提升蛋白质科学领域的仪器自主研发能力。  尽管仍处于紧张建设筹备中,科研活动早已紧锣密鼓地开展。截至2013年底,中心科研项目共计31项,年度新增13项,其中包括国家重大科学研究计划项目2项、中科院科研装备研制项目1项以及国家自然科学基金多项。中心成立伊始,许琛琦研究组即在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash &mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。  国家蛋白质科学中心上海(筹)在保障上海设施高效运行的同时,定位于蛋白质科学研究,研究内容涵盖染色质结构与功能的调控、跨膜分子信息传递、非编码RNA以及结构生物学新技术和方法研究等学科领域,着重开展蛋白质多尺度结构分析、蛋白质动态结构研究、蛋白质修饰与相互作用研究、设备自主创新与集成研究和生物信息学与计算生物学等五大领域的研究。在未来的科学研究中,国家蛋白质科学中心/上海(筹)/蛋白质科学研究(上海)设施将围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,保障国家中长期科技规划纲要部署的蛋白质重大研究计划的实施,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,提供全面和完整的技术与条件保障,打造开放、协作、创新的国际一流蛋白质科学研究平台,为我国的蛋白质科学基础研究提供强有力的支撑。  背景介绍  蛋白质科学研究(上海)设施于2010年12月破土动工,总投资约7亿元,总建筑面积3.3万平方米,由中科院上海生科院承建,并依托上海设施同步筹建&ldquo 国家蛋白质科学中心· 上海&rdquo 。迄今,已有逾10位诺贝尔奖得主到访,对蛋白质中心表现出浓厚兴趣。
  • 上海国家蛋白质科学中心:托起生命科学梦
    地处上海市海科路园区的国家蛋白质科学中心上海(以下简称蛋白质中心)并不十分引人瞩目,但这个蛋白质中心大院,却在过去短短两年多的时间里吸引了国内外200多家高校、科研院所和企业。  原来,在这个总面积3.3万平米的建筑里,容纳着蛋白质结构与功能研究的九大系统,其中涵盖了包括先进光束线站、电镜、核磁、质谱、规模化蛋白质制备系统等国内乃至世界最为先进的蛋白质设施。  记者到达蛋白质中心时,中心内正忙得热火朝天。  加速前进的科研服务器  走进蛋白质中心,记者被大堂展板上的信息介绍所吸引,上面清晰地介绍了中心研究人员的成果。事实上,还有很多依托蛋白质中心设施的研究用户成果未进行展示,其中包含诸如施一公、高福、许彦辉等生命科学研究领域人们耳熟能详的名字。  2015年到2016年,清华大学施一公研究团队连续两篇论文登上美国《科学》杂志,引起社会普遍关注,甚至有媒体用“诺奖级成果”来评价施一公的研究。然而,人们没有注意到的是,这两篇文章都与蛋白质中心有紧密关联。  “由设施提供基础支持产生的高端研究成果,从2013年到现在已经70多篇,最近是一个加速的过程。”中科院上海生科院生化与细胞所副所长、蛋白质中心主任雷鸣告诉《中国科学报》记者,蛋白质中心已经成为国内蛋白质基础研究的一个重要依托。  在生命科学领域,蛋白质研究被视作基础中的基础,不仅是基础研究中的前沿方向,还与人民健康紧密关联,并能和实际应用有机结合,是雷鸣口中“比较突出的需要大型投入的研究领域”。  “科学创新方面的努力和设想,需要这样一个基础。”雷鸣说。然而,蛋白质中心这一总投资7.56亿元的“国之利器”,并未获得所有人的认可。从筹建之日起,外界就一直存在不同声音。  相比较物理学等学科,生命科学中的大科学装置并不多见。然而,要窥探生命的奥秘,大科学装置自然有它独到的优势。  事实上,在蛋白质中心未建成前,国内生命科学仪器设备散落在全国各地的实验室,许多研究对设施的需求长期得不到满足,这也令大科学装置的建设显得迫切而紧要。  先进光束线站研究员、蛋白质中心副主任张荣光对此有深刻体会。他告诉记者,蛋白质设施开放运行之初,原本只有一条生物大分子晶体学线站,但全国却有180到200个课题组,只能满足国内相关研究20%~25%的机时需求。  “很多课题组都不得不去日本、美国用同步辐射光源晶体学实验站完成自己的研究。”张荣光回忆道。  自2014年5月面向国内外用户开放至今年6月,蛋白质设施已累计试运行超过18万小时,执行用户课题1300多个。从服务基础科研的角度来说,蛋白质中心已经基本达到了预期的设想。  “一站式”设施集成价值凸显  走进蛋白质中心大楼一层宽敞的实验室,规模化蛋白质制备系统运维主任邓玮向记者展示了自动化程度极高的“机械手臂”是如何在轨道上来回运行,将研究人员从繁重的重复劳动中解放出来,并让蛋白质实验变得高效。  如同眼前这条像工厂里的生产线一般的实验设备,蛋白质中心似乎是一条生命科学研究仪器的“流水线”,让蛋白质研究手段更加多元,也令研究本身更加便捷。  但拨开表面看本质,蛋白质中心绝非一条简单的程式化“流水线”。  今年早些时候,中科院上海生科院生化与细胞所分子生物学国家重点实验室的许琛琦与李伯良研究团队,研究发现了一种肿瘤免疫治疗的新方法,成果发表在《自然》杂志。  蛋白质中心工作人员介绍称,这一成果是经过质谱、核磁等多套蛋白质设施的联合攻关,才获得了喜人的实验结果。“一站式”科研设备的集成价值,在研究人员、实验人员与仪器设备的有机互动中,焕发出了夺目的光彩。  表面看来,蛋白质中心的价值核心似乎在于先进的仪器设备,但记者与蛋白质中心工作人员的沟通中清晰地感受到,“人才”也是他们始终关注的焦点,因为这也是中心集成价值大放异彩的关键所在。  从筹建至今,人才储备与培养都是蛋白质中心工作的重点。  蛋白质中心建设的构想成形之初,上海生命科学研究院生化细胞所挑选了7名优秀人才派往国外学习先进仪器设备应用技术。  到如今蛋白质中心建立并成功对外开放,中心已聘请多位国内外一流专家学者,构建了一支由150多人构成的强大运维、科研团队,在探索科学前沿问题的同时,也在为科研用户提供近乎“保姆式”的科研服务。  以蛋白质中心质谱系统为例,在为高校、科研院所提供科研服务时,研究人员往往要与相关研究课题进行长时间的讨论,依据研究者的需求“定制服务”,设计出最佳的实验方法和路径。  事实上,大部分情况下,这九大系统都需要蛋白质中心的研究人员与用户长时间的沟通协调,并根据设备性能调整实验方法,才能获得理想的实验结果。  也正因这样定制化的服务模式,才最终架起技术与研究间的桥梁,使得蛋白质中心在国内相关研究中的推动作用日趋明显。  创新永不止步  如今,蛋白质中心的运行日趋平稳,但创新的脚步却从未停歇。近期建立的生物大分子小角散射和红外线站,便是最好的证明。  张荣光告诉记者,这两条线站在医学应用、减少蛋白质溶液状态散射数据收集的辐射损伤及低分辨率结构的快速测定等方面具有明显的优势。  作为国内建立的首条相关线站,张荣光和他的同事在吸收新技术后,也在通过举办学习班、论坛,让国内更多科研人员认识这些世界领先技术,并期望未来相关技术能在他们的研究中得到应用。  除了紧跟世界先进技术步伐之外,自主设备研发也是蛋白质中心追求卓越的策略。  蛋白质中心自主设计并与国外公司合作搭建了一条“高通量蛋白质生产线”,但这并非终点。在这条“生产线”隔壁实验室里,一条依据进口设备系统为原型,经改进、创新后自主搭建的一台小型自动化设备,已具雏形。  这意味着,成本低廉却能实现中等通量实验效率的蛋白质设备,将从蛋白质中心工作人员的手中,走进国内外大大小小的实验室。“我们打算经过进一步改善,将它推广,为国内相关研究人员提供支付得起的研究设备。”邓玮说。  技术上的创新,也要配合相应管理上的创新。如今,蛋白质设施的机时逐步变得“供不应求”,如何把握设备高效利用与向前沿科学问题倾斜之间的平衡,成了蛋白质中心关注点所在。  中心管理人员告诉记者,他们会通过已构建的第三方用户委员会遴选实验课题,让蛋白质中心这一国之利器得到充分利用的同时,也能有的放矢,“直指以往无法解决的科学难题”。  所有人努力的目的只有一个——服务国内基础科研。对他们而言,这是一份需始终坚守的“初心”,他们也已用漂亮的成绩单,交出了一份令人满意的科研服务答卷。  下一步,在做好科研服务的同时,中心也将在寻求设施价值最大化的途径上有所突破。  记者在采访中了解到,今年9月,蛋白质中心计划召开一次大规模的用户大会,向上海及周边地区医院、企业介绍蛋白质设施及其可以承担的工作,吸引医院和企业利用蛋白质设施来服务自己的工作。  正如雷鸣所说,“转化,是将来我们要做的事情之一。”只不过在他看来,要真正做好转化并非一件容易的事情,需要从国家体制机制、科学家自身,到风险投资集群等许多层面发生深层次的转变。  未来,我们也期待,在国民经济发展的贡献中,能够更多地看到蛋白质中心这一大科学装置的身影。  记者手记:  为科学而坚守  没有催人奋进的口号标语,没有震撼人心的标志性装备,甚至人员配备在上海激烈的人才竞争中也显得捉襟见肘,走进国家蛋白质科学中心上海,记者时刻被一种低调而踏实的氛围所环绕。  高度集成的仪器设备自然是蛋白质中心宝贵的财富,但经过一天的走访,记者发现,蛋白质中心不乏放弃国外优厚待遇归国的学科带头人,不乏24小时值班、超负荷工作的年轻研究人员,不乏为了科学信念而坚持不懈的技术人员,维持设备运行并让设备得到充分利用的“人才”也是蛋白质中心最引以为傲的宝藏。  作为国际一流蛋白质科学研究支撑体系,也作为全球生命科学领域以各种大型科学仪器和先进技术集成为核心的首个综合性大科学装置,它承载着国内相关领域基础科学研究的殷切期望,也终将在未来为国民经济发展和百姓健康发挥更直接、更强劲的作用。  但正是因为创建了一支对科学研究有着最单纯追求的科研团队,蛋白质中心才将一个个孤立的仪器设备串联成一个高效的蛋白质研究综合体系。而只有当这个庞大系统的“大脑”——而未来随着“人才”得到越来越多的重视,随着评价体系这个指挥棒指引更多有科学追求的人才走进并融入这个体系,蛋白质中心也才能进一步加速“从有到好”的进程,实现更大的飞跃。
  • FEI与国家蛋白质科学中心(北京)共同启动cryo-EM项目
    FEI和中国国家蛋白质科学中心(北京)清华大学基地宣布,双方将合作启动新的结构生物学冷冻电子显微镜 (cryo-EM) 联合培训和研究项目。通过这个联合项目,中国国家蛋白质科学中心将采用亚洲首套完整的 cryo-EM 工作流程,为分子和细胞结构生物学家的研发工作提供助力。  Cryo-EM 在研究方法上取得了突破性进展,能够在原子分辨率级别分析各类蛋白质复合物的结构。过去,由于X射线衍射 (XRD) 和核磁共振 (NMR) 等现有结构分析技术在技术上存在局限性,因而开展上述工作可以说是一项异常艰巨、近乎不可能完成的任务。如今,借助 cryo-EM,研究人员将能够探索这片在很大程度上尚属空白的未知领域,而且也会吸引更多的研究人员加入到该领域的工作中。北京中心的培训和研究项目的设立宗旨正是为了满足亚洲地区在这方面的教育需求。  &ldquo 通过将 cryo-EM 获取的三维 (3D) 分子级别信息与 XRD 结果以及 NMR 数据 结合在一起,研究人员可呈现并了解分子复合物的结构与功能之间的关系,这可能会让一些核心的生物医学难题迎刃而解&rdquo ,FEI 副总裁兼生命科学部门总经理 Peter Fruhstorfer 说道,&ldquo 因此,我们可以创造一些边界条件,以期对生命系统的运作机理取得突破性的新认识,而且可以为开发高效的新药和其他靶向分子治疗方法开辟一条捷径。&rdquo   &ldquo 我们热切希望将 FEI 的工作流程解决方案引入我们的核心设施&rdquo ,清华大学教授王宏伟称,&ldquo 在中国及整个东南亚地区建立一个重要的合作示范基地,这是一个十分难得的机会。采用的工作流程解决方案将为我们打开一扇大门,让我们了解各类蛋白质和蛋白质复合物的结构和功能,而这是单靠 NMR 和 XRD 无法实现的。而且,融入了 cryo-EM 的综合性研究方法可以让我们着手解决当今一些极为重要的生物学难题。&rdquo   王教授补充道,&ldquo 与 FEI 在清华大学合作创办培训项目,是培养知识型人才队伍的关键,依靠这些人才,我们就能在该领域达到并保持领先地位。&rdquo   研究人员利用 Cryo-EM 可以观察在接近自然状态下冷冻的大蛋白质和蛋白质复合物。在综合性结构生物学研究中,EM 可以为 XRD 和 NMR 的原子级结果提供更大的分子级环境。FEI 独特的工作流程方法涵盖了 cryo-EM 分析流程的所有阶段,包括:样品优化、冷冻样品制备、图像/数据采集、图像/数据分析、三维结构建模、可视化和演示。该工作流程围绕 FEI 的 Titan Krios&trade 而建,后者是一款高度自动化的冷冻透射电子显微镜 (TEM),专门用于满足结构生物学家的研究需求。除了对样品进行冷冻处理外,Titan Krios 还具备结构分析所需的长期稳定性和无人值守的运行能力,可以连续数天采集数十万张图像。  已在清华大学&ldquo 安家落户&rdquo 的 Titan Krios TEM 包括一个集成相位板,这是一种稳定耐用的解决方案,能够提高敏感生物样品的对比度,并且在 FEI 开发的大多数 TEM 平台上都有提供。清华大学还将安装 CorrSight&trade 系统,该系统是一款高级光学显微镜,支持多种工作流程以便开展对比实验。它能直接对活细胞成像实验迅速进行化学固定,用于后续在超微结构级别进行分析。此外,它还能以极高的分辨率对冷冻样品进行荧光成像,以便标识样品中的潜在目标区域,供 cryo-EM 分析。  如需了解有关 FEI 开发的结构生物学工作流程的详细信息,请访问 http://www.fei.com/life-sciences/structural-biology/。
  • 国家蛋白质科学中心上海与美国丹纳赫生命科学公司共建示范实验室正式启用
    国家蛋白质科学中心上海与美国丹纳赫生命科学公司共建示范实验室正式启用 2014年10月20日,国家蛋白质科学中心上海(筹)与丹纳赫生命科学公司的共建示范实验室在上海国家蛋白质科学中心正式启用。这是丹纳赫公司在中国继北京联合实验室后又一个专注于科研与应用市场的研究平台。上海生科院生化与细胞所副所长&国家蛋白质科学中心上海主任雷鸣教授与丹纳赫集团公司亚太区高级副总裁&中国区总裁Jon Clark共同出席了签约仪式并为实验室揭幕。 图1-双方领导签署并交换合作协议 图2-揭牌仪式 丹纳赫集团作为目前全球最大的跨国仪器公司,此次携手具有一流人才与科研水平的国家蛋白质科学中心,整合双方强大的生命科学设备与技术资源,将藉由该共建实验室的成立,创建国内首屈一指的蛋白质组研究平台,在食品安全、生物医药以及转化医学等领域实现快速的分析检测,切实推动中国生命科学领域的研究进程。用户在此整合实验室,可以体验到蛋白科学研究流程中所需的包括AB SCIEX、Beckman Coulter、Leica Microsystems以及Molecular Devices公司设备在内的各种高端测试仪器、软件和技术。此外,本共建示范实验室还可为用户提供样本处理、技术咨询、工作流程分析,并致力于为生命科学的研究者开展合作与交流提供平台。 图3-合作双方领导团队在签约后合影 雷鸣在接受生物谷记者采访时表示,通过在国家蛋白质科学中心设备建设阶段与丹纳赫集团及旗下生命科学公司AB SCIEX、Beckman Coulter、Leica Microsystems以及Molecular Devices的合作,我们充分体会到了与国外先进公司合作的优势。尤其值得一提的是,我们在与Beckman Coulter公司的合作过程中,建造了五套大型的蛋白质制备和高通量筛选系统,实现了大规模蛋白表达过程的自动化,并且拥有了自己的知识产权,这次合作非常成功。 目前在我国生命科学研究领域中,国产生命科学仪器少之甚少。雷鸣表示,希望与丹纳赫集团的这次合作能够使得新兴的生物技术尤其是生命科学研究仪器技术得到更多的重视,使得我国在高端实验仪器开发及生物技术研制上有更大的进步。“在科研文化方面,希望我国科学家在研究过程中能够着眼于生物产业相关领域,在从科研到产业的转变过程中引入更加先进的思想,同时学习国外先进科学文化氛围,顺应我国经济转型的潮流,创造新的经济增长点。” 据了解,国家蛋白质科学中心与丹纳赫的本次合作领域主要集中在Beckman Coulter克隆、构建、以及蛋白质的表达与提纯环节。国家蛋白质科学中心希望将来能够利用自动化的先进技术,在生命科学的其他领域,例如抗体的筛选、细胞实验、药物筛选等方面与丹纳赫集团展开更加深入的合作。 此次签约仪式也将全面开启国家蛋白质科学中心计划与丹纳赫集团旗下生命科学公司Leica Microsystems、AB SCIEX以及Molecular Devices在相关技术领域的推广、应用及开发的合作洽谈。对于今年因为超高分辨率荧光显微技术而获得诺贝尔奖的显微成像技术领域,雷主任表现出了极大的兴趣。 签约仪式之后,合作双方领导团队对共建实验室进行了参观,并详细介绍了双方合作的多个技术领域及成果。据了解,目前国家蛋白质中心所属的九大技术系统已经配备了多项丹纳赫集团的产品:包括AB SCIEX的串联质谱系统、Beckman Coulter的高通量细胞培养自动化系统和离心系统、Leica Microsystems的激光扫描共聚焦显微镜以及Molecular Devices的高通量实时克隆挑选分析系统。这些设备都在国家蛋白质中心发挥了不可替代的作用。 图4-共建实验室参观 关于国家蛋白质科学中心上海国家蛋白质科学中心上海(筹)/国家蛋白质科学研究(上海)设施是国家重大科技基础设施,以各种大型科学仪器和先进技术集成为核心的规模化、系统化技术装备体系,具有不同的空间分辨率和时间分辨率的研究技术装备。中心覆盖蛋白质结构与功能在空间尺度和时间尺度变化范围的全部研究技术系统,为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障,为我国的蛋白质科学基础研究提供强有力的支撑,将成为国家蛋白质科学和技术的重要创新基地。详情请点击中心网站:www.ncpss.org. 关于美国丹纳赫集团生命科学公司丹纳赫是全球领先的科学与技术创新产品与服务的设计商及制造商,主要服务于专业领域、医疗领域、工业领域及商业领域的客户。在服务的众多领域中,其主要品牌均获得了用户的高度认可。丹纳赫业务系统为来自全球25个国家的63,000位用户提供了一个平台。仅在2012年期间,丹纳赫集团就创造了183亿美元的总收入。如需了解更多信息,请访问我们的网站www.danaher.com。
  • 国家蛋白质科学中心(上海)与美国丹纳赫生命科学公司 共建示范实验室正式启用
    2014年10月20日,国家蛋白质科学中心上海(筹)与丹纳赫生命科学公司的共建示范实验室在上海国家蛋白质科学中心正式启用。这是丹纳赫公司在中国继北京联合实验室后又一个专注于科研与应用市场的研究平台。上海生科院生化与细胞所副所长&国家蛋白质科学中心上海主任雷鸣教授与丹纳赫集团公司亚太区高级副总裁&中国区总裁Jon Clark共同出席了签约仪式并为实验室揭幕。 图1-双方领导签署并交换合作协议图2-揭牌仪式丹纳赫集团作为目前全球最大的跨国仪器公司,此次携手具有一流人才与科研水平的国家蛋白质科学中心,整合双方强大的生命科学设备与技术资源,将藉由该共建实验室的成立,创建国内首屈一指的蛋白质组研究平台,在食品安全、生物医药以及转化医学等领域实现快速的分析检测,切实推动中国生命科学领域的研究进程。用户在此整合实验室,可以体验到蛋白科学研究流程中所需的包括AB SCIEX、Beckman Coulter、Leica Microsystems以及Molecular Devices公司设备在内的各种高端测试仪器、软件和技术。此外,本共建示范实验室还可为用户提供样本处理、技术咨询、工作流程分析,并致力于为生命科学的研究者开展合作与交流提供平台。图3-合作双方领导团队在签约后合影雷鸣在接受生物谷记者采访时表示,通过在国家蛋白质科学中心设备建设阶段与丹纳赫集团及旗下生命科学公司AB SCIEX、Beckman Coulter、Leica Microsystems以及Molecular Devices的合作,我们充分体会到了与国外先进公司合作的优势。尤其值得一提的是,我们在与Beckman Coulter公司的合作过程中,建造了五套大型的蛋白质制备和高通量筛选系统,实现了大规模蛋白表达过程的自动化,并且拥有了自己的知识产权,这次合作非常成功。目前在我国生命科学研究领域中,国产生命科学仪器少之甚少。雷鸣表示,希望与丹纳赫集团的这次合作能够使得新兴的生物技术尤其是生命科学研究仪器技术得到更多的重视,使得我国在高端实验仪器开发及生物技术研制上有更大的进步。“在科研文化方面,希望我国科学家在研究过程中能够着眼于生物产业相关领域,在从科研到产业的转变过程中引入更加先进的思想,同时学习国外先进科学文化氛围,顺应我国经济转型的潮流,创造新的经济增长点。”据了解,国家蛋白质科学中心与丹纳赫的本次合作领域主要集中在Beckman Coulter克隆、构建、以及蛋白质的表达与提纯环节。国家蛋白质科学中心希望将来能够利用自动化的先进技术,在生命科学的其他领域,例如抗体的筛选、细胞实验、药物筛选等方面与丹纳赫集团展开更加深入的合作。 此次签约仪式也将全面开启国家蛋白质科学中心计划与丹纳赫集团旗下生命科学公司Leica Microsystems、AB SCIEX以及Molecular Devices在相关技术领域的推广、应用及开发的合作洽谈。对于今年因为超高分辨率荧光显微技术而获得诺贝尔奖的显微成像技术领域,雷主任表现出了极大的兴趣。签约仪式之后,合作双方领导团队对共建实验室进行了参观,并详细介绍了双方合作的多个技术领域及成果。据了解,目前国家蛋白质中心所属的九大技术系统已经配备了多项丹纳赫集团的产品:包括AB SCIEX的串联质谱系统、Beckman Coulter的高通量细胞培养自动化系统和离心系统、Leica Microsystems的激光扫描共聚焦显微镜以及Molecular Devices的高通量实时克隆挑选分析系统。这些设备都在国家蛋白质中心发挥了不可替代的作用。图4-共建实验室参观点击优酷视频,了解更多信息:http://v.youku.com/v_show/id_XODIwMTYzODcy.html关于国家蛋白质科学中心上海国家蛋白质科学中心上海(筹)/国家蛋白质科学研究(上海)设施是国家重大科技基础设施,以各种大型科学仪器和先进技术集成为核心的规模化、系统化技术装备体系,具有不同的空间分辨率和时间分辨率的研究技术装备。中心覆盖蛋白质结构与功能在空间尺度和时间尺度变化范围的全部研究技术系统,为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障,为我国的蛋白质科学基础研究提供强有力的支撑,将成为国家蛋白质科学和技术的重要创新基地。详情请点击中心网站:www.ncpss.org.关于美国丹纳赫集团生命科学公司丹纳赫是全球优秀的科学与技术创新产品与服务的设计商及制造商,主要服务于专业领域、医疗领域、工业领域及商业领域的客户。在服务的众多领域中,其主要品牌均获得了用户的高度认可。丹纳赫业务系统为来自全球25个国家的63,000位用户提供了一个平台。仅在2012年期间,丹纳赫集团就创造了183亿美元的总收入。如需了解更多信息,请访问我们的网站www.danaher.com。
  • 国家系统布局未来20年重大科技基础设施建设
    国家发展和改革委员会同科技部等8部门编制的《国家重大科技基础设施建设中长期规划(2012—2030年)》(简称《规划》),目前已经国务院批准印发。其中,包括加速器驱动嬗变研究装置、上海光源线站工程、中国南极天文台等16项重大科技基础设施建设,成为我国“十二五”时期的建设重点。据悉,该《规划》是我国历史上第一部系统部署国家重大科技基础设施中长期建设和发展的指导性文件。  据介绍,我国设施建设总体处于由局部突破迈向整体推进的关键时期。目前我国重大科技基础设施的规模、技术水平和国际影响力都已迈上新台阶,为下一步全面推进设施建设储备了丰厚的人才、技术基础和建设经验。但同时尚存在总体规模偏小、数量偏少,学科布局系统性不够,开放共享和高效利用水平仍需提高,管理体制机制亟待健全等问题。  国家发展和改革委员会有关负责人今天就《规划》答记者问时指出,在兼顾传统大科学装置领域与学科交叉及新兴学科发展需求、国际发展趋势与国内基础、学科发展与国家战略需求的基础上,《规划》明确,未来20年能源科学、生命科学、地球系统与环境科学、材料科学、粒子物理和核物理科学、空间和天文科学、工程技术科学领域7个科学领域重大科技设施发展的主要方向。  值得关注的是,“十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,将优先安排16项重大科技基础设施建设。能源领域包括加速器驱动嬗变研究装置、高效低碳燃气轮机试验装置 生命领域包括转化医学研究设施、模式动物表型与遗传研究设施 地球系统与环境领域包括海底科学观测网、精密重力测量研究设施、地球系统数值模拟器 材料领域包括高能同步辐射光源验证装置、综合极端条件实验装置、上海光源线站工程 粒子物理与核物理领域包括强流重离子加速器、高海拔宇宙线观测站 空间和天文领域包括空间环境地面模拟装置、中国南极天文台 工程技术领域包括未来网络试验设施、大型低速风洞等。  该负责人介绍说,“十二五”时期的16项国家重大科技基础设施建成后,将在提升我国重大科技设施总体水平、提高我国科技前沿研发能力和推动新兴产业发展方面发挥积极的促进作用。一是促使我国重大科技基础设施总体技术水平进入国际先进行列,其中物质科学、核聚变、天文等领域的部分设施将跃居国际领先水平。如强流重离子加速器建成后,将成为国际上相同能区稳定核束流脉冲流强最高、脉冲功率最高、短寿命原子核质量测量精度最高的实验装置。二是将为我国空间、海洋等领域的部分前沿技术方向开展国际顶尖水平研究提供支持。如大型低速风洞将使流场品质达到甚至优于国际先进水平,实验模型能够准确模拟飞机实物,综合性能将达到世界先进水平。三是这些设施在建造和运行过程中将催生和衍生出大量新技术、新工艺和新装备,为培育战略性新兴产业和促进产业技术进步提供源源不断的强大动力。如未来网络试验设施在建造和利用过程中,需要高性能集成电路、量子通信、云计算等大量新兴技术的集成,将有力地促进相关技术水平的提升,带动相关产业的发展。  从国家重大科技基础设施建设的历程看,其从概念提出到付诸建设再到投入运行,往往需要历经十几年甚至数十年时间。美国每4年左右对科学装置规划进行修订,欧盟每两年对设施路线图进行一次更新。该负责人表示,考虑到当前科技和产业发展正孕育着新的突破,未来发展会不断产生新的需求,我国今后拟以5年为期对《规划》进行修订。  通知全文:  国务院关于印发国家重大科技基础设施建设  中长期规划(2012—2030年)的通知  国发〔2013〕8号  各省、自治区、直辖市人民政府,国务院各部委、各直属机构:  现将《国家重大科技基础设施建设中长期规划(2012—2030年)》印发给你们,请认真贯彻执行。  国务院  2013年2月23日  (此件公开发布)  国家重大科技基础设施建设中长期规划  (2012—2030年)  重大科技基础设施是为探索未知世界、发现自然规律、实现技术变革提供极限研究手段的大型复杂科学研究系统,是突破科学前沿、解决经济社会发展和国家安全重大科技问题的物质技术基础。当前,我国正处于建设创新型国家的关键时期,按照全国科技创新大会部署和深化科技体制改革要求,前瞻谋划和系统部署重大科技基础设施建设,进一步提高发展水平,对于增强我国原始创新能力、实现重点领域跨越、保障科技长远发展、实现从科技大国迈向科技强国的目标具有重要意义。为贯彻《国家中长期科学和技术发展规划纲要(2006—2020年)》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》,明确未来20年我国重大科技基础设施发展方向和“十二五”时期建设重点,制定本规划。  一、规划基础和背景  新中国成立特别是改革开放以来,国家不断加大投入,我国重大科技基础设施规模持续增长,覆盖领域不断拓展,技术水平明显提升,综合效益日益显现。“十一五”时期,启动建设重大科技基础设施12项,验收设施10项,目前在建和运行设施总量达到32项。设施的建设和运行为科学前沿探索和国家重大科技任务开展提供了重要支撑,推动我国粒子物理、核物理、生命科学等领域部分前沿方向的科研水平进入国际先进行列。依托设施解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾和生物多样性保护等方面发挥着不可替代的作用。设施建设带动了大型超导、精密制造和测控、超高真空等一批高新技术发展,促进了相关产业技术水平提高 凝聚和培养了一批国内外顶尖科学家和研究团队,以及高水平工程技术和管理人才。此外,设施还在深化科技国际合作交流、提升全民科学素质、增强民族自信心等方面发挥了独特作用。在快速发展的同时,我国重大科技基础设施也存在一些问题:总体规模偏小、数量偏少,学科布局系统性、前瞻性不够,技术水平有待进一步提升,开放共享和高效利用水平仍需提高,管理体制机制亟待健全,工程技术和管理队伍建设需要加强等。  当今世界,科技发展正孕育着一系列革命性突破,发达国家和新兴工业化国家纷纷加大重大科技基础设施建设投入,扩大建设规模和覆盖领域,抢占未来科技发展制高点,我国重大科技基础设施建设面临机遇和挑战并存的新形势。  (一)科学前沿的革命性突破越来越依赖于重大科技基础设施的支撑能力。现代科学研究在微观、宏观、复杂性等方面不断深入,学科分化与交叉融合加快,科学研究目标日益综合。科学领域越来越多的研究活动需要大型研究设施的支撑,要求不断提高科技基础设施的单体规模和技术性能,强化相互协作,形成大型综合性设施群。进一步加强我国重大科技基础设施建设,有利于在新一轮科技革命中抢占先机、有所作为。  (二)技术创新和产业发展越来越需要重大科技基础设施提供强大动力。当前,科学研究与技术研发相互依托、协同突破的趋势日益明显,技术创新和产业振兴的步伐不断加快。重大科技基础设施的建设和运行,越来越注重科学探索和技术变革的融合,可以衍生大量新技术、新工艺和新装备,加快高新技术的孕育、转化和应用。我国在若干重要领域超前部署一批重大科技基础设施,有利于更好地促进产业技术进步、破解经济社会发展中的瓶颈性科学难题,对加快培育战略性新兴产业、实现经济发展方式转变、支撑经济社会发展具有重要意义。  (三)国际科技竞争合作越来越需要重大科技基础设施的牵引和依托。近年来,在事关国家核心利益的科技领域,主要国家在重大基础设施建设方面的竞争日趋激烈。同时,随着气候变化、生态保护、人口健康等全球性问题不断增多,在事关人类共同利益和长远发展的科技领域,由于建造设施资金投入、技术难度等超出单个国家的能力,联合共建与合作研究越来越成为发展重大科技基础设施的重要方式。加快提升我国重大科技基础设施的水平,适时在重要优势领域发起合作建设计划,有利于在国际科技竞争合作中赢得主动,不断提高我国科技国际影响力。  党的十八大明确提出实施创新驱动发展战略,强调科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。这对国家重大科技基础设施建设和运行赋予了新的使命和责任。面对新形势新任务,我国必须加快重大科技基础设施建设,进一步突出设施建设在我国总体发展战略中的基础性、前瞻性和战略性作用,加强与相关规划、计划的衔接,强化支撑服务功能 优化设施布局,提升技术水平,加强人才培养,形成较为完善的重大科技基础设施体系,促进自主创新能力提升,有力支撑创新型国家建设。  二、指导思想、建设原则和建设目标  (一)指导思想。  以邓小平理论、“三个代表”重要思想、科学发展观为指导,落实全国科技创新大会部署和深化科技体制改革、加快国家创新体系建设的要求,以提升原始创新能力和支撑重大科技突破为目标,以健全协同创新和开放共享机制为保障,布局新建与整合提升相结合、自主发展与国际合作相结合、设施建设与人才培养相结合,加大投入力度,加快建设完善重大科技基础设施体系,全面提升设施建设水平和运行效率,为我国科技长远发展和创新型国家建设提供有力支撑。  (二)建设原则。  一是着眼长远、服务大局。突出重大科技基础设施建设的战略性,既要瞄准探索未知世界和发现自然规律的科技发展前沿方向,又要结合国情,聚焦影响未来经济社会发展和国家安全的重大科技难题,衔接好科技重大专项等相关规划和计划,强化设施建设对国家重大战略的支撑作用。  二是科学谋划、系统布局。把握科学技术发展的总体趋势,有机衔接现有科技资源,统筹考虑学科领域布局,加强国际合作,全面系统谋划重大科技基础设施建设与发展,形成“探索一批、预研一批、建设一批、运行一批”的发展格局。  三是重点突破、实现跨越。分清轻重缓急,优先选择具有相对优势、科技发展急需或科技突破先兆已经显现的科学前沿和学科交叉领域,选准主攻方向,集中优势资源,加快重大科技基础设施建设,实现重点领域跨越发展。  四是创新机制、持续发展。将重大科技基础设施建设作为深化科技体制改革的重要抓手,针对重大科技基础设施的基础性、公益性特征,建立完善高效的投入机制、开放共享的运行机制、产学研用协同创新机制、科学协调的管理制度,提高设施建设和运行的科技效益,形成持续健康发展的良好局面。  (三)建设目标。  到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。  “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。  三、总体部署  未来20年,瞄准科技前沿研究和国家重大战略需求,根据重大科技基础设施发展的国际趋势和国内基础,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,从预研、新建、推进和提升四个层面逐步完善重大科技基础设施体系。在可能发生革命性突破的方向,前瞻开展一批发展前景较好的探索预研工作,夯实设施建设的技术基础 在2016—2030年期间适时启动建设一批科研意义重大、条件基本成熟的设施,强化未来科技持续发展的能力 在我国具有一定基础和优势的领域,在“十二五”期间建设一批科研急需、条件成熟的设施,强化科技持续发展的支撑能力 对已经启动但尚未完成建设任务的在建设施,加大工程管理和技术攻关力度,力争早日建成投入使用 对已经投入运行但仍有较大发展潜力的设施,进一步完善提升技术指标和综合性能,最大程度发挥其科学效益。  (一)能源科学领域。  以解决人类社会可持续利用能源的科学问题为目标,面向我国中长期核能源开发与安全运行、化石能源高效洁净利用与转化、可再生能源规模化利用等方向,以核能和高效化石能源研究设施建设为重点,注重新能源、新材料、网络技术相结合,逐步完善相关领域重大科技基础设施布局,为能源科学的新突破和节能减排技术变革提供支撑。  核能源方面。完善提升全超导托卡马克核聚变实验装置的性能,积极参与国际热核聚变实验堆计划,保持我国在磁约束核聚变研究领域的先进地位 建设长寿命高放核废料嬗变安全处置实验装置,攻克核裂变能安全洁净发展的技术瓶颈 适时启动高效安全聚变堆研究设施建设,加快聚变能走向实际应用进程。  化石能源方面。建设高效低碳燃气轮机试验装置,支撑相关领域重大基础理论研究,解决煤炭清洁利用和高效转换关键科技问题 探索预研二氧化碳捕获、利用和封存研究设施建设,为应对全球气候变化提供技术支撑。  可再生能源方面。针对风能、太阳能、生物质能、地热能、海洋能等能量密度低、随机波动等问题,探索预研能量捕获、储能、转换、并网研究设施建设,促进可再生能源规模化高效利用。  (二)生命科学领域。  以探索生命奥秘和解决人类健康、农业可持续发展的重大科技问题为目标,面向综合解析复杂生命系统运动规律、生物学和医学基础研究向临床应用转化、种质资源保护开发与现代化育种等方向,重点建设以大型装置为核心、多种仪器设备集成的综合研究设施,完善规模数据资源为主的公益性服务设施,支撑生命科学向复杂宏观和微观两极发展并实现有机统一,突破生命健康、普惠医疗和生物育种中的重大科技瓶颈。  现代医学方面。建设转化医学研究设施,从分子、细胞、组织、个体等方面系统认识人类疾病发生、发展与转归的规律,促进生物医学基础研究成果快速转化为临床诊疗技术。  农业科学方面。建成国家农业生物安全科学中心,支撑农业危险性外来入侵生物、农业毁灭性高致害变异性生物和农业转基因生物安全的创新性理论、方法与防控新技术研究 建设模式动物研究设施,支撑表型及基因型关系、遗传信息高通量获取与工程转化、细胞和动物模型开发与应用等研究 适时启动农作物种质表型和基因、动物疫病、农业微生物研究设施建设,支撑我国农业生物技术和产业的持续发展及生物多样性保护。  生命科学前沿方面。建成蛋白质科学研究设施,支撑高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究 探索预研系统生物学研究设施及合成生物学研究设施建设,满足从复杂系统角度认识生物体的结构、行为和控制机理的需要,综合解析生物系统运动规律,破解改造和设计生命的科学问题。  生命科学研究基础支撑方面。适时启动大型成像和精密高效分析研究设施建设,满足生物学实时、原位研究和多维检测、分析、合成技术开发的需求 探索预研生物信息中心建设,为生命科学研究提供科学数据、种质资源、实验样本和材料等基础支撑。  (三)地球系统与环境科学领域。  以实现人类与自然和谐发展为目标,面向地球结构演化与变化过程、地壳物质组成和精细结构、地球系统各圈层间复杂作用及其耦合过程、太阳及其活动控制下各圈层的响应与耦合、人类活动影响环境的过程和机理等方向,重点建设海底观测、数值模拟和基准研究设施,逐步形成观测、探测和模拟相互补充的地球系统与环境科学研究体系。  现场探测与观测方面。建成海洋科学综合考察船,满足综合海洋环境观测、探测以及保真取样和现场分析需求 建成航空遥感系统,提高我国遥感信息技术与装备研发实验能力,为自然灾害和突发事件提供快速、实时、精确的遥感数据 建设海底科学观测网,为国家海洋安全、资源与能源开发、环境监测和灾害预警预报等研究提供支撑 适时启动地球系统科学航天航空遥感等技术监测、深海探测与调查、固体地球深部探测与动态监测、陆海地球环境观测等研究设施建设,实现多时空尺度全面长期连续监测与数据积累,逐步形成对地球系统的立体、动态监测分析能力。  基准系统建设方面。建设精密重力测量研究设施,获取高分辨率、高精度地球质量变化基础数据,支撑固体地球演化、海洋与气候变化动力学、水资源分布和地质灾害规律等研究,满足国家安全、资源勘探和防灾减灾的战略需求。适时启动包括地基基准、环境基准、深空基准等方面的基准系统建设。  数值和实验模拟方面。建设地球系统数值模拟装置,支撑气候变化、地球系统及各层圈过程模拟研究,认识地球环境过程基本规律,提高预测环境变化和重大灾害的能力。适时启动环境污染机理与变化研究模拟实验装置建设,支撑空气污染、流域水污染预测模型开发和气候变化模式研究,提高空气质量、流域水污染等预报预警能力。  (四)材料科学领域。  适应材料科学研究从经验摸索阶段到人工设计调控阶段转变的趋势,面向量子物质演生现象、纳米尺度量子结构、极端条件下材料物性与物质演变、重要工程材料服役性能等方向,以材料表征与调控、工程材料实验等为研究重点,布局和完善相关领域重大科技基础设施,推动材料科学技术向功能化、复合化、智能化、微型化及与环境相协调方向发展。  材料表征与调控方面。完善提升已有同步辐射光源,建成软X射线自由电子激光试验装置,建设高能同步辐射光源验证装置 探索预研硬X射线自由电子激光装置建设,适时启动高性能低能量同步辐射光源建设,满足以纳米空间分辨率、皮秒至飞秒时间分辨率、极高能量动量分辨率对材料多层次结构分析研究的需求,逐步形成布局合理的国家光源体系。建成散裂中子源和强磁场实验装置,建设极低温、超快、超高压极端条件研究设施,形成与大型同步辐射光源结合的格局,满足研究和发现新物态、新现象、新规律和创造新材料的需求。  工程材料实验方面。建成重大工程材料服役安全研究评价设施,支撑不同尺度及跨尺度的结构性能研究 探索预研超快光谱界面反应检测装置、极端和工业特殊服役环境模拟装置建设,支撑材料服役行为和规律研究 结合高能同步辐射光源,适时启动综合工程环境在线装置建设,支撑真实环境下工程材料实时、原位研究。  (五)粒子物理和核物理科学领域。  以揭示物质最小单元及其相互作用规律为目标,面向超越标准模型新粒子和新物理探索、暗物质和暗能量探测、中低能核物理与核天体物理研究等方向,建设相关大型研究设施,提高微观世界探索能力和自然界基本规律认知水平。  粒子物理方面。建设高能宇宙线研究设施,探索高能空间粒子起源和相关新物理前沿 适时启动用于中微子和其他高能粒子物理研究的非加速器实验设施建设,探索预研新型加速器实验设施建设。  核物理方面。建设高性能重离子束研究装置,使我国核物理基础研究在原子核层次上的整体水平进入国际先进行列 探索预研强流放射性束实验设施建设。  (六)空间和天文科学领域。  以揭示宇宙奥秘和解释物质运动规律为目标,面向宇宙天体起源及演化、太阳活动及对地球的影响、空间环境与物质作用等方向,按宇宙、星系、太阳系等不同空间尺度布局设施建设,提升我国天文观测研究能力、空间天气和灾害应对能力以及空间科学实验基础能力。  宇宙和天体物理方面。建成大口径射电望远镜,为宇宙大尺度结构及物理规律研究提供支撑 建设中国南极天文台,支撑暗物质、暗能量、宇宙起源、天体起源等前沿研究 探索预研先进多波段天文观测设施建设,逐步形成比较完善的天文观测及数据应用系统。  太阳及日地空间观测方面。建成空间环境地基监测网,揭示近地空间环境的时间和空间变化规律,并逐步形成覆盖更多重要区域的空间环境监测、预警能力 适时启动大型太阳观测研究设施建设,支撑太阳、行星际、磁层、电离层和中高层大气变化过程和规律研究,深化太阳变化及其对地球和人类影响的认识。  空间环境物质研究方面。建设空间环境与物质作用模拟装置,支撑近地空间环境与材料、元器件、结构、系统及生物体作用规律研究 探索预研空间微重力科学实验设施、南极气球站和引力波研究设施的建设,揭示空间微重力环境物质运动规律,提升我国深空探测、空间基础物理、空间利用等方面的研究能力。  (七)工程技术科学领域。  瞄准未来信息技术发展的基础和前沿、岩土地质体的动力特性及地质灾害过程等工程技术中的重大科技问题,以产生变革性技术为主要目标,以信息技术、岩土工程和空气动力学为研究重点,探索和逐步推进相关设施建设,为保障国家重点任务的实施、引领未来产业发展提供基础支撑。  信息技术方面。建设未来网络研究设施,解决未来网络和信息系统发展的科学技术问题,为未来网络技术发展提供试验验证支撑 适时启动新一代授时系统建设,支撑超精密时间频率技术开发,逐步形成高精度卫星授时系统和高精度地基授时系统共同发展的格局。  岩土工程方面。适时启动超重力模拟研究设施建设,揭示复杂岩土地质体的动力特性 探索预研大型地震模拟研究设施建设,开展地震动输入和工程地震灾害模拟研究 探索预研深部岩土工程研究设施建设,揭示深部岩体的力学特征。  空气动力学方面。建成多功能结冰风洞,支撑不同冰型和冰积累过程对飞行器空气动力特性的影响等研究 建设大型低速风洞,支撑气动噪声、流动分离与涡旋运动、流动控制、流固耦合、电磁空气动力学等研究 适时启动大型跨声速风洞、低温高雷诺数风洞、先进航空发动机研究设施建设,为我国航空航天、高速铁路建设等提供必要的研究试验手段。  四、“十二五”时期建设重点  “十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,综合考虑科学目标、技术基础、科研需求和人才队伍等因素,优先安排16项重大科技基础设施建设。  (一)海底科学观测网。  海洋科学研究正经历着由海面短暂考察到内部长期观测的革命性变化,这将从根本上改变人类对海洋的认识。围绕实现全天候、综合性、长期连续实时观测海洋内部过程及其相互关系的科学目标,建设海底长期科学观测网,主要包括:基于光电缆的陆架和深海观测系统,基于无线传输的海底观测网拓展系统,基于固定平台的海底观测网综合节点系统,岸基站、支撑系统和管理中心等。该设施建成后,将为国家海洋安全、深海能源与资源开发、环境监测、海洋灾害预警预报等研究提供支撑。  (二)高能同步辐射光源验证装置。  高能同步辐射光源是前沿基础科学、工程物理和工程材料等研究不可或缺的手段,是世界同步辐射光源领域竞争的制高点。以具备建设全球最高亮度高能同步辐射光源的能力为目标,建设相关验证装置,主要包括:高能量加速器、光束线、实验站等方面的工程性预研和关键部件的工程样机试制,高精度特种磁铁系统、高精度束流位置测控系统、高性能插入件、纳米级硬X射线聚焦系统、超高分辨X射线单色器、纳米定位与扫描装置的试制。该设施建成后,将为我国建设高能同步辐射光源奠定坚实的基础。  (三)加速器驱动嬗变研究装置。  长寿命核废料的安全处理处置是影响核电持续发展的瓶颈。加速器驱动次临界反应系统利用散裂中子嬗变核废料,大幅降低核废料放射性寿命,具有安全性高和嬗变能力强等特点,是安全处理核废料的最佳手段之一。为深入研究核废料嬗变过程中的科学问题,突破系列核心关键技术,建设核废料嬗变原理实验研究装置,主要包括:强流质子直线加速器、高功率中子散裂靶、液态金属冷却次临界反应堆三大子系统。该设施建成后,将满足我国长寿命高放核反应堆废料安全、妥善处理处置的研究需求,为我国核能可持续发展提供技术支撑。  (四)综合极端条件实验装置。  极端物理条件是拓展物质科学研究空间,发现和研究新物态、新现象、新规律必不可少的手段。针对当前凝聚态物理、化学、材料前沿研究所需的极端条件向综合化、集成化和规模化发展的趋势,围绕为量子物质、功能材料和物态变化动力学过程等研究提供科学手段的目标,建设综合性的物质科学研究极端条件用户装置,主要包括:达到亚毫开温度的极低温系统,高于300吉帕的超高压系统,亚飞秒时间分辨的超快激光系统,以及极低温、超高压、强磁场和超快光场互相结合的集成系统。该设施建成后,将为物质科学研究提供有力支撑。  (五)强流重离子加速器。  高流强放射性核束、高功率重离子束团和宽能区重离子束流是探索原子核存在极限和研究原子奇特性质必不可少的手段。围绕短寿命核质量精确测量、放射性束物理、高能量密度物理以及重离子束应用等研究需要,建设强流重离子加速器装置,主要包括:强流离子源、超导直线加速器、大接受度放射性束流线、冷却储存环同步加速器和物理实验终端等。该设施建成后,将为研究原子核存在极限、核结构新现象和新规律、宇宙中重元素起源等重大科学问题提供重要支撑。  (六)高效低碳燃气轮机试验装置。  围绕化石燃料高效转化和洁净利用中的气体动力学、燃烧科学和传热传质问题,为实现高压比、高透平温度、高效和近零排放等目标,建设高效低碳燃气轮机试验装置,主要包括:压气机、燃烧室和高温透平的全温、全压、全流量、全尺寸的大型试验装置研究系统,以及精细和高精度测试系统。该设施建成后,将为我国燃气轮机部件和系统特性研究提供研发手段,为化石能源持续和低碳发展提供基础支撑。  (七)高海拔宇宙线观测站。  宇宙线起源一直是物理学最大的谜团之一。我国在高海拔宇宙线观测研究方面具有长期积累和深厚基础,台址条件具有特殊地理优势,适合建设由多个性能先进的探测系统组成的多参数宇宙线复合观测站。围绕推动国际甚高能伽马天文研究迈入大统计量新时代的科学目标,建设大型高海拔空气簇射宇宙线观测站,主要包括:100万平方米探测阵列,9万平方米伽马射线巡天望远镜,24台广角契伦科夫望远镜,0.5万平方米芯探测器阵列。该设施建成后,将集高灵敏度、大视场、全时段扫描搜索伽马射线源、伽马射线强度空间分布和精确能谱测量等多功能为一体,成为具有国际竞争力的宇宙线研究中心。  (八)未来网络试验设施。  三网融合、云计算和物联网发展对现有互联网的可扩展性、安全性、移动性、能耗和服务质量都提出了巨大挑战,基于TCP/IP协议的互联网依靠增加带宽和渐进式改进已经无法满足未来发展的需求。为突破未来网络基础理论和支撑新一代互联网实验,建设未来网络试验设施,主要包括:原创性网络设备系统,资源监控管理系统,涵盖云计算服务、物联网应用、空间信息网络仿真、网络信息安全、高性能集成电路验证以及量子通信网络等开放式网络试验系统。该设施建成后,网络覆盖规模超过10个城市,支撑不少于128个异构网络并行实验,将为空间网络、光网络和量子网络研究提供必要的实验验证条件。  (九)空间环境地面模拟装置。  磁暴、高能粒子辐照等极端空间环境可能对航天活动造成极大影响。为保障人类太空探索活动的顺利开展,必须突破地面单因素模拟的局限,全面了解空间环境综合因素对物质的作用。以揭示空间环境条件下物质结构演化规律和各种环境耦合效应的物理本质为目标,建设空间环境与物质作用地面模拟研究装置,主要包括:空间环境模拟源、大型真空与热沉、综合测试分析系统等。该设施建成后,将为我国空间科学发展和深空探测模拟研究提供有力支撑。  (十)转化医学研究设施。  转化医学研究是现代医学发展的重要方向,对推动医学基础研究成果快速向临床应用转化和提高诊治水平具有关键作用。围绕人类重大疾病发生、发展与转归中的重大科学问题,建设转化医学研究设施,主要包括:符合国际标准并具有我国人种和疾病特色的临床资源库,医学信息技术系统,疾病生物标志物检测、功能分析和临床验证技术系统,个性化医学技术系统,细胞、组织和再生医学技术系统,临床技术研发系统等。该设施建成后,将推进临床医学和系统生物学结合,促进我国转化医学研究水平大幅提升。  (十一)中国南极天文台。  南极内陆冰穹A是我国科考队首先从地面到达和利用的地区。该处大气湍流边界层极薄,大气中水汽含量极低,是地球上条件最优异的天文观测台址和天文研究长远发展的珍稀资源。在南极内陆冰穹A,充分利用中国南极昆仑站的现有基础建设中国南极天文台,主要包括:太赫兹望远镜,光学和红外望远镜,远程运控系统,支撑服务系统等。该设施建成后,将开辟地球上独一无二的太赫兹波段天文观测窗口,为研究宇宙和天体起源、暗物质、暗能量、地外生命等科学问题提供有力支撑。  (十二)精密重力测量研究设施。  精密重力测量是获取全球和局部区域地球质量变化基础数据不可或缺的手段,在大面积矿产资源勘查、环境变化研究和重力辅助导航中有广泛应用需求。建设精密重力测量研究设施,主要包括:精密重力测量基准台与检测系统,卫星、航空和水下重力探测环境模拟与物理仿真试验系统,全球高精度重力场数据处理系统等。该设施建成后,将为解决固体地球演化、海洋与气候变化、水资源分布和地质灾害研究中的科学问题提供重要支撑。  (十三)大型低速风洞。  大型运输机、客机及地面交通工具研制对低速风洞的规模、技术性能不断提出新要求。着眼飞机地面效应试验、大飞机涡扇发动机动力影响模拟和反推力影响试验、飞机和车辆气动声学试验的科技需求,建设回流式、多试验段、多功能大型低速风洞,具备支撑飞行器起飞、着陆特性研究,发动机、机身、机翼一体化研究,气动力及气动声学和降噪研究的能力。该设施建成后,流场品质和综合性能将达到国际先进水平。  (十四)上海光源线站工程。  上海同步辐射装置(上海光源)是第三代中能同步辐射光源,具有最多可提供60多条光束线和近百个实验站的能力,完全建成后将为我国多学科前沿研究取得突破提供有力支撑。在已建成的7条光束线站基础上,围绕满足我国材料科学、能源科学、环境科学以及生命科学等领域迅速发展的研究需求,建设上海光源线站工程,主要包括:新建若干光束线站,扩建用户实验支撑条件,进一步提升光源性能。该设施建成后,将大幅提升光源和束线的能力,使上海光源继续保持国际先进水平,为相关科学研究提供更全面、先进、便捷的支撑。  (十五)模式动物表型与遗传研究设施。  模式动物表型性状的精确测定和度量是解析生命规律,开发疾病调控方式的关键之一。以解决表型和基因型测定及关联遗传机制分析中的科学问题为目标,建设重要模式动物的表型与遗传分析研究设施,主要包括:表型及基因型连续、快速、综合、自动化与智能化获取分析系统,表型和基因型全面自动检测分析系统,信息集成、处理及遗传性状分析系统等。该设施建成后,可系统、准确地描述生命的表型、基因型及其在环境变化中的响应,并以此正确描述生命的调节状态和方式,为人类疾病、动物生命过程调节等研究提供支撑。  (十六)地球系统数值模拟器。  地球系统模拟是衡量地球科学研究综合水平的重要标志,是开展气候变化、防灾减灾和环境治理等科学研究不可缺少的手段。以认识地球环境复杂系统、模拟地球系统圈层变化和长期气候变化、精细描述和预测地球物理化学及生物过程等为目标,建设地球系统数值模拟器,主要包括:超级计算及存储专用系统,超级模拟支撑与管理软件系统,地球各层圈过程模拟软件系统,地球系统科学数据库与海量数据智能分析与可视化系统等。该设施建成后,将大幅提高我国地球系统模拟的整体能力和重大自然灾害预测预警、气候变化预估的研究水平。  五、保障措施  (一)健全管理制度。加快完善管理规章制度,规范和促进重大科技基础设施的建设、运行和管理。健全部门协调制度,加强规划实施中各部门间的统筹协调,发展改革、科技、财政等部门要各司其职、分工协作。建立健全规划动态调整机制,滚动推进“十二五”建设重点的立项和实施,并根据形势发展每五年对规划内容进行必要调整。制定符合设施特点和发展规律的管理办法,加强设施运行评价,提高设施运行效率。完善设施建设配套政策措施,鼓励地方政府在土地、资金、人才等方面出台相关政策,形成共同支持设施发展的良好局面。  (二)保障资金投入。加强重大科技基础设施预研、建设、升级改造、运行和科研的协调,加大财政资金投入力度,鼓励企业等其他来源资金投入,形成多元化投入格局。规范投入管理,加强绩效评价,切实提高资金的使用效率和效益。  (三)强化开放共享。健全重大科技基础设施开放共享制度,最大限度发挥其公共平台作用。健全用户参与机制,形成科研院所、高等学校、企业等多方共建、共管和共享的局面。统筹安排开放共享配套条件建设,提高设施科研服务能力。将开放共享程度作为设施运行考核的重要指标,根据评价结果配置运行资源。  (四)协同推进预研。加强部门沟通协调,协同加强预研工作,为重大科技基础设施建设提供充分的技术和工程储备。充分利用现有资金渠道,系统安排原理探索、技术攻关、工程验证等类型的预研项目。强化预研工作各阶段以及预研与设施建设之间的衔接,形成循序推进、动态调整、持续发展的良好局面。  (五)加强人才培养。坚持设施建设与人才培养相结合,造就高水平的重大科技基础设施建设、管理和科研人才队伍。制定与设施发展相配套的人才计划,吸引和凝聚一大批高层次创新人才。加强设施建设与国家科技重大专项、重大科技计划的衔接,加速培养一批高水平科技创新领军人才,造就一批科研、工程和管理人才队伍。建立健全与设施特点相适应的人员分类评价、考核、激励政策,凝聚和稳定设施建设和运行专业人员队伍。  (六)促进国际合作。适应重大科技基础设施发展日益国际化的趋势,结合我国科技发展实际需求,积极参与享有知识产权和使用权的重大科技基础设施国际合作项目。积极探索以我为主的国际合作,吸引国外资源参与我国发起的重大科技基础设施建设和相关科学研究。注重引进国外先进技术和管理经验,提高我国重大科技基础设施建设、运行的技术和管理水平。
  • 国家重大科技基础设施建设中长期规划(2012—2030年)印发
    3月4日,国务院办公厅下发关于印发国家重大科技基础设施建设中长期规划(2012—2030年)的通知,其中规划中指出:  到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。  “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。  具体详情如下:国务院关于印发国家重大科技基础设施建设中长期规划(2012—2030年)的通知国发〔2013〕8号  各省、自治区、直辖市人民政府,国务院各部委、各直属机构:  现将《国家重大科技基础设施建设中长期规划(2012—2030年)》印发给你们,请认真贯彻执行。  国务院  2013年2月23日  (此件公开发布)国家重大科技基础设施建设中长期规划(2012—2030年)  重大科技基础设施是为探索未知世界、发现自然规律、实现技术变革提供极限研究手段的大型复杂科学研究系统,是突破科学前沿、解决经济社会发展和国家安全重大科技问题的物质技术基础。当前,我国正处于建设创新型国家的关键时期,按照全国科技创新大会部署和深化科技体制改革要求,前瞻谋划和系统部署重大科技基础设施建设,进一步提高发展水平,对于增强我国原始创新能力、实现重点领域跨越、保障科技长远发展、实现从科技大国迈向科技强国的目标具有重要意义。为贯彻《国家中长期科学和技术发展规划纲要(2006—2020年)》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》,明确未来20年我国重大科技基础设施发展方向和“十二五”时期建设重点,制定本规划。  一、规划基础和背景  新中国成立特别是改革开放以来,国家不断加大投入,我国重大科技基础设施规模持续增长,覆盖领域不断拓展,技术水平明显提升,综合效益日益显现。“十一五”时期,启动建设重大科技基础设施12项,验收设施10项,目前在建和运行设施总量达到32项。设施的建设和运行为科学前沿探索和国家重大科技任务开展提供了重要支撑,推动我国粒子物理、核物理、生命科学等领域部分前沿方向的科研水平进入国际先进行列。依托设施解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾和生物多样性保护等方面发挥着不可替代的作用。设施建设带动了大型超导、精密制造和测控、超高真空等一批高新技术发展,促进了相关产业技术水平提高 凝聚和培养了一批国内外顶尖科学家和研究团队,以及高水平工程技术和管理人才。此外,设施还在深化科技国际合作交流、提升全民科学素质、增强民族自信心等方面发挥了独特作用。在快速发展的同时,我国重大科技基础设施也存在一些问题:总体规模偏小、数量偏少,学科布局系统性、前瞻性不够,技术水平有待进一步提升,开放共享和高效利用水平仍需提高,管理体制机制亟待健全,工程技术和管理队伍建设需要加强等。  当今世界,科技发展正孕育着一系列革命性突破,发达国家和新兴工业化国家纷纷加大重大科技基础设施建设投入,扩大建设规模和覆盖领域,抢占未来科技发展制高点,我国重大科技基础设施建设面临机遇和挑战并存的新形势。  (一)科学前沿的革命性突破越来越依赖于重大科技基础设施的支撑能力。现代科学研究在微观、宏观、复杂性等方面不断深入,学科分化与交叉融合加快,科学研究目标日益综合。科学领域越来越多的研究活动需要大型研究设施的支撑,要求不断提高科技基础设施的单体规模和技术性能,强化相互协作,形成大型综合性设施群。进一步加强我国重大科技基础设施建设,有利于在新一轮科技革命中抢占先机、有所作为。  (二)技术创新和产业发展越来越需要重大科技基础设施提供强大动力。当前,科学研究与技术研发相互依托、协同突破的趋势日益明显,技术创新和产业振兴的步伐不断加快。重大科技基础设施的建设和运行,越来越注重科学探索和技术变革的融合,可以衍生大量新技术、新工艺和新装备,加快高新技术的孕育、转化和应用。我国在若干重要领域超前部署一批重大科技基础设施,有利于更好地促进产业技术进步、破解经济社会发展中的瓶颈性科学难题,对加快培育战略性新兴产业、实现经济发展方式转变、支撑经济社会发展具有重要意义。  (三)国际科技竞争合作越来越需要重大科技基础设施的牵引和依托。近年来,在事关国家核心利益的科技领域,主要国家在重大基础设施建设方面的竞争日趋激烈。同时,随着气候变化、生态保护、人口健康等全球性问题不断增多,在事关人类共同利益和长远发展的科技领域,由于建造设施资金投入、技术难度等超出单个国家的能力,联合共建与合作研究越来越成为发展重大科技基础设施的重要方式。加快提升我国重大科技基础设施的水平,适时在重要优势领域发起合作建设计划,有利于在国际科技竞争合作中赢得主动,不断提高我国科技国际影响力。  党的十八大明确提出实施创新驱动发展战略,强调科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。这对国家重大科技基础设施建设和运行赋予了新的使命和责任。面对新形势新任务,我国必须加快重大科技基础设施建设,进一步突出设施建设在我国总体发展战略中的基础性、前瞻性和战略性作用,加强与相关规划、计划的衔接,强化支撑服务功能 优化设施布局,提升技术水平,加强人才培养,形成较为完善的重大科技基础设施体系,促进自主创新能力提升,有力支撑创新型国家建设。  二、指导思想、建设原则和建设目标  (一)指导思想。  以邓小平理论、“三个代表”重要思想、科学发展观为指导,落实全国科技创新大会部署和深化科技体制改革、加快国家创新体系建设的要求,以提升原始创新能力和支撑重大科技突破为目标,以健全协同创新和开放共享机制为保障,布局新建与整合提升相结合、自主发展与国际合作相结合、设施建设与人才培养相结合,加大投入力度,加快建设完善重大科技基础设施体系,全面提升设施建设水平和运行效率,为我国科技长远发展和创新型国家建设提供有力支撑。  (二)建设原则。  一是着眼长远、服务大局。突出重大科技基础设施建设的战略性,既要瞄准探索未知世界和发现自然规律的科技发展前沿方向,又要结合国情,聚焦影响未来经济社会发展和国家安全的重大科技难题,衔接好科技重大专项等相关规划和计划,强化设施建设对国家重大战略的支撑作用。  二是科学谋划、系统布局。把握科学技术发展的总体趋势,有机衔接现有科技资源,统筹考虑学科领域布局,加强国际合作,全面系统谋划重大科技基础设施建设与发展,形成“探索一批、预研一批、建设一批、运行一批”的发展格局。  三是重点突破、实现跨越。分清轻重缓急,优先选择具有相对优势、科技发展急需或科技突破先兆已经显现的科学前沿和学科交叉领域,选准主攻方向,集中优势资源,加快重大科技基础设施建设,实现重点领域跨越发展。  四是创新机制、持续发展。将重大科技基础设施建设作为深化科技体制改革的重要抓手,针对重大科技基础设施的基础性、公益性特征,建立完善高效的投入机制、开放共享的运行机制、产学研用协同创新机制、科学协调的管理制度,提高设施建设和运行的科技效益,形成持续健康发展的良好局面。  (三)建设目标。  到2030年,基本建成布局完整、技术先进、运行高效、支撑有力的重大科技基础设施体系。传统大科学领域设施得到完善和提升,新兴领域设施建设布局较为完整,能够全面支撑前沿科技领域开展原创性研究 设施技术水平持续提高,一大批设施的技术指标居国际领先地位 设施共建、共管、共享的体制机制更加完善,运行和使用效率整体进入世界前列 设施科技效益和经济社会效益显著,取得一批有世界影响力的科研成果,催生一批具有变革性、能带动产业升级的高新技术 基本形成若干布局合理的世界级重大科技基础设施集群,设施整体国际影响力和地位显著提高。  “十二五”期末要实现以下目标:重大科技基础设施总体技术水平基本进入国际先进行列,物质科学、核聚变、天文等领域的部分设施达到国际领先水平。支撑科技发展的能力明显增强,凝聚一批世界优秀科研人才,部分前沿方向能开展国际顶尖水平的研究工作,事关经济社会发展的重大科技领域初步具备取得实质性突破的能力。投入运行和在建的重大科技基础设施总量接近50个,薄弱领域设施建设明显加强,优势方向进一步巩固和发展,初步建成若干在国际上有一定影响的重大科技基础设施集群,重大科技基础设施体系初具轮廓。以开放共享为核心的运行机制基本建立,符合设施自身特点与发展规律的管理制度初步形成,设施运行和使用效率整体达到国际先进水平。  三、总体部署  未来20年,瞄准科技前沿研究和国家重大战略需求,根据重大科技基础设施发展的国际趋势和国内基础,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,从预研、新建、推进和提升四个层面逐步完善重大科技基础设施体系。在可能发生革命性突破的方向,前瞻开展一批发展前景较好的探索预研工作,夯实设施建设的技术基础 在2016—2030年期间适时启动建设一批科研意义重大、条件基本成熟的设施,强化未来科技持续发展的能力 在我国具有一定基础和优势的领域,在“十二五”期间建设一批科研急需、条件成熟的设施,强化科技持续发展的支撑能力 对已经启动但尚未完成建设任务的在建设施,加大工程管理和技术攻关力度,力争早日建成投入使用 对已经投入运行但仍有较大发展潜力的设施,进一步完善提升技术指标和综合性能,最大程度发挥其科学效益。  (一)能源科学领域。  以解决人类社会可持续利用能源的科学问题为目标,面向我国中长期核能源开发与安全运行、化石能源高效洁净利用与转化、可再生能源规模化利用等方向,以核能和高效化石能源研究设施建设为重点,注重新能源、新材料、网络技术相结合,逐步完善相关领域重大科技基础设施布局,为能源科学的新突破和节能减排技术变革提供支撑。  核能源方面。完善提升全超导托卡马克核聚变实验装置的性能,积极参与国际热核聚变实验堆计划,保持我国在磁约束核聚变研究领域的先进地位 建设长寿命高放核废料嬗变安全处置实验装置,攻克核裂变能安全洁净发展的技术瓶颈 适时启动高效安全聚变堆研究设施建设,加快聚变能走向实际应用进程。  化石能源方面。建设高效低碳燃气轮机试验装置,支撑相关领域重大基础理论研究,解决煤炭清洁利用和高效转换关键科技问题 探索预研二氧化碳捕获、利用和封存研究设施建设,为应对全球气候变化提供技术支撑。  可再生能源方面。针对风能、太阳能、生物质能、地热能、海洋能等能量密度低、随机波动等问题,探索预研能量捕获、储能、转换、并网研究设施建设,促进可再生能源规模化高效利用。  (二)生命科学领域。  以探索生命奥秘和解决人类健康、农业可持续发展的重大科技问题为目标,面向综合解析复杂生命系统运动规律、生物学和医学基础研究向临床应用转化、种质资源保护开发与现代化育种等方向,重点建设以大型装置为核心、多种仪器设备集成的综合研究设施,完善规模数据资源为主的公益性服务设施,支撑生命科学向复杂宏观和微观两极发展并实现有机统一,突破生命健康、普惠医疗和生物育种中的重大科技瓶颈。  现代医学方面。建设转化医学研究设施,从分子、细胞、组织、个体等方面系统认识人类疾病发生、发展与转归的规律,促进生物医学基础研究成果快速转化为临床诊疗技术。  农业科学方面。建成国家农业生物安全科学中心,支撑农业危险性外来入侵生物、农业毁灭性高致害变异性生物和农业转基因生物安全的创新性理论、方法与防控新技术研究 建设模式动物研究设施,支撑表型及基因型关系、遗传信息高通量获取与工程转化、细胞和动物模型开发与应用等研究 适时启动农作物种质表型和基因、动物疫病、农业微生物研究设施建设,支撑我国农业生物技术和产业的持续发展及生物多样性保护。  生命科学前沿方面。建成蛋白质科学研究设施,支撑高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究 探索预研系统生物学研究设施及合成生物学研究设施建设,满足从复杂系统角度认识生物体的结构、行为和控制机理的需要,综合解析生物系统运动规律,破解改造和设计生命的科学问题。  生命科学研究基础支撑方面。适时启动大型成像和精密高效分析研究设施建设,满足生物学实时、原位研究和多维检测、分析、合成技术开发的需求 探索预研生物信息中心建设,为生命科学研究提供科学数据、种质资源、实验样本和材料等基础支撑。  (三)地球系统与环境科学领域。  以实现人类与自然和谐发展为目标,面向地球结构演化与变化过程、地壳物质组成和精细结构、地球系统各圈层间复杂作用及其耦合过程、太阳及其活动控制下各圈层的响应与耦合、人类活动影响环境的过程和机理等方向,重点建设海底观测、数值模拟和基准研究设施,逐步形成观测、探测和模拟相互补充的地球系统与环境科学研究体系。  现场探测与观测方面。建成海洋科学综合考察船,满足综合海洋环境观测、探测以及保真取样和现场分析需求 建成航空遥感系统,提高我国遥感信息技术与装备研发实验能力,为自然灾害和突发事件提供快速、实时、精确的遥感数据 建设海底科学观测网,为国家海洋安全、资源与能源开发、环境监测和灾害预警预报等研究提供支撑 适时启动地球系统科学航天航空遥感等技术监测、深海探测与调查、固体地球深部探测与动态监测、陆海地球环境观测等研究设施建设,实现多时空尺度全面长期连续监测与数据积累,逐步形成对地球系统的立体、动态监测分析能力。  基准系统建设方面。建设精密重力测量研究设施,获取高分辨率、高精度地球质量变化基础数据,支撑固体地球演化、海洋与气候变化动力学、水资源分布和地质灾害规律等研究,满足国家安全、资源勘探和防灾减灾的战略需求。适时启动包括地基基准、环境基准、深空基准等方面的基准系统建设。  数值和实验模拟方面。建设地球系统数值模拟装置,支撑气候变化、地球系统及各层圈过程模拟研究,认识地球环境过程基本规律,提高预测环境变化和重大灾害的能力。适时启动环境污染机理与变化研究模拟实验装置建设,支撑空气污染、流域水污染预测模型开发和气候变化模式研究,提高空气质量、流域水污染等预报预警能力。  (四)材料科学领域。  适应材料科学研究从经验摸索阶段到人工设计调控阶段转变的趋势,面向量子物质演生现象、纳米尺度量子结构、极端条件下材料物性与物质演变、重要工程材料服役性能等方向,以材料表征与调控、工程材料实验等为研究重点,布局和完善相关领域重大科技基础设施,推动材料科学技术向功能化、复合化、智能化、微型化及与环境相协调方向发展。  材料表征与调控方面。完善提升已有同步辐射光源,建成软X射线自由电子激光试验装置,建设高能同步辐射光源验证装置 探索预研硬X射线自由电子激光装置建设,适时启动高性能低能量同步辐射光源建设,满足以纳米空间分辨率、皮秒至飞秒时间分辨率、极高能量动量分辨率对材料多层次结构分析研究的需求,逐步形成布局合理的国家光源体系。建成散裂中子源和强磁场实验装置,建设极低温、超快、超高压极端条件研究设施,形成与大型同步辐射光源结合的格局,满足研究和发现新物态、新现象、新规律和创造新材料的需求。  工程材料实验方面。建成重大工程材料服役安全研究评价设施,支撑不同尺度及跨尺度的结构性能研究 探索预研超快光谱界面反应检测装置、极端和工业特殊服役环境模拟装置建设,支撑材料服役行为和规律研究 结合高能同步辐射光源,适时启动综合工程环境在线装置建设,支撑真实环境下工程材料实时、原位研究。  (五)粒子物理和核物理科学领域。  以揭示物质最小单元及其相互作用规律为目标,面向超越标准模型新粒子和新物理探索、暗物质和暗能量探测、中低能核物理与核天体物理研究等方向,建设相关大型研究设施,提高微观世界探索能力和自然界基本规律认知水平。  粒子物理方面。建设高能宇宙线研究设施,探索高能空间粒子起源和相关新物理前沿 适时启动用于中微子和其他高能粒子物理研究的非加速器实验设施建设,探索预研新型加速器实验设施建设。  核物理方面。建设高性能重离子束研究装置,使我国核物理基础研究在原子核层次上的整体水平进入国际先进行列 探索预研强流放射性束实验设施建设。  (六)空间和天文科学领域。  以揭示宇宙奥秘和解释物质运动规律为目标,面向宇宙天体起源及演化、太阳活动及对地球的影响、空间环境与物质作用等方向,按宇宙、星系、太阳系等不同空间尺度布局设施建设,提升我国天文观测研究能力、空间天气和灾害应对能力以及空间科学实验基础能力。  宇宙和天体物理方面。建成大口径射电望远镜,为宇宙大尺度结构及物理规律研究提供支撑 建设中国南极天文台,支撑暗物质、暗能量、宇宙起源、天体起源等前沿研究 探索预研先进多波段天文观测设施建设,逐步形成比较完善的天文观测及数据应用系统。  太阳及日地空间观测方面。建成空间环境地基监测网,揭示近地空间环境的时间和空间变化规律,并逐步形成覆盖更多重要区域的空间环境监测、预警能力 适时启动大型太阳观测研究设施建设,支撑太阳、行星际、磁层、电离层和中高层大气变化过程和规律研究,深化太阳变化及其对地球和人类影响的认识。  空间环境物质研究方面。建设空间环境与物质作用模拟装置,支撑近地空间环境与材料、元器件、结构、系统及生物体作用规律研究 探索预研空间微重力科学实验设施、南极气球站和引力波研究设施的建设,揭示空间微重力环境物质运动规律,提升我国深空探测、空间基础物理、空间利用等方面的研究能力。  (七)工程技术科学领域。  瞄准未来信息技术发展的基础和前沿、岩土地质体的动力特性及地质灾害过程等工程技术中的重大科技问题,以产生变革性技术为主要目标,以信息技术、岩土工程和空气动力学为研究重点,探索和逐步推进相关设施建设,为保障国家重点任务的实施、引领未来产业发展提供基础支撑。  信息技术方面。建设未来网络研究设施,解决未来网络和信息系统发展的科学技术问题,为未来网络技术发展提供试验验证支撑 适时启动新一代授时系统建设,支撑超精密时间频率技术开发,逐步形成高精度卫星授时系统和高精度地基授时系统共同发展的格局。  岩土工程方面。适时启动超重力模拟研究设施建设,揭示复杂岩土地质体的动力特性 探索预研大型地震模拟研究设施建设,开展地震动输入和工程地震灾害模拟研究 探索预研深部岩土工程研究设施建设,揭示深部岩体的力学特征。  空气动力学方面。建成多功能结冰风洞,支撑不同冰型和冰积累过程对飞行器空气动力特性的影响等研究 建设大型低速风洞,支撑气动噪声、流动分离与涡旋运动、流动控制、流固耦合、电磁空气动力学等研究 适时启动大型跨声速风洞、低温高雷诺数风洞、先进航空发动机研究设施建设,为我国航空航天、高速铁路建设等提供必要的研究试验手段。  四、“十二五”时期建设重点  “十二五”时期,在我国科技发展急需、具有相对优势和科技突破先兆显现的领域中,综合考虑科学目标、技术基础、科研需求和人才队伍等因素,优先安排16项重大科技基础设施建设。  (一)海底科学观测网。  海洋科学研究正经历着由海面短暂考察到内部长期观测的革命性变化,这将从根本上改变人类对海洋的认识。围绕实现全天候、综合性、长期连续实时观测海洋内部过程及其相互关系的科学目标,建设海底长期科学观测网,主要包括:基于光电缆的陆架和深海观测系统,基于无线传输的海底观测网拓展系统,基于固定平台的海底观测网综合节点系统,岸基站、支撑系统和管理中心等。该设施建成后,将为国家海洋安全、深海能源与资源开发、环境监测、海洋灾害预警预报等研究提供支撑。  (二)高能同步辐射光源验证装置。  高能同步辐射光源是前沿基础科学、工程物理和工程材料等研究不可或缺的手段,是世界同步辐射光源领域竞争的制高点。以具备建设全球最高亮度高能同步辐射光源的能力为目标,建设相关验证装置,主要包括:高能量加速器、光束线、实验站等方面的工程性预研和关键部件的工程样机试制,高精度特种磁铁系统、高精度束流位置测控系统、高性能插入件、纳米级硬X射线聚焦系统、超高分辨X射线单色器、纳米定位与扫描装置的试制。该设施建成后,将为我国建设高能同步辐射光源奠定坚实的基础。  (三)加速器驱动嬗变研究装置。  长寿命核废料的安全处理处置是影响核电持续发展的瓶颈。加速器驱动次临界反应系统利用散裂中子嬗变核废料,大幅降低核废料放射性寿命,具有安全性高和嬗变能力强等特点,是安全处理核废料的最佳手段之一。为深入研究核废料嬗变过程中的科学问题,突破系列核心关键技术,建设核废料嬗变原理实验研究装置,主要包括:强流质子直线加速器、高功率中子散裂靶、液态金属冷却次临界反应堆三大子系统。该设施建成后,将满足我国长寿命高放核反应堆废料安全、妥善处理处置的研究需求,为我国核能可持续发展提供技术支撑。  (四)综合极端条件实验装置。  极端物理条件是拓展物质科学研究空间,发现和研究新物态、新现象、新规律必不可少的手段。针对当前凝聚态物理、化学、材料前沿研究所需的极端条件向综合化、集成化和规模化发展的趋势,围绕为量子物质、功能材料和物态变化动力学过程等研究提供科学手段的目标,建设综合性的物质科学研究极端条件用户装置,主要包括:达到亚毫开温度的极低温系统,高于300吉帕的超高压系统,亚飞秒时间分辨的超快激光系统,以及极低温、超高压、强磁场和超快光场互相结合的集成系统。该设施建成后,将为物质科学研究提供有力支撑。  (五)强流重离子加速器。  高流强放射性核束、高功率重离子束团和宽能区重离子束流是探索原子核存在极限和研究原子奇特性质必不可少的手段。围绕短寿命核质量精确测量、放射性束物理、高能量密度物理以及重离子束应用等研究需要,建设强流重离子加速器装置,主要包括:强流离子源、超导直线加速器、大接受度放射性束流线、冷却储存环同步加速器和物理实验终端等。该设施建成后,将为研究原子核存在极限、核结构新现象和新规律、宇宙中重元素起源等重大科学问题提供重要支撑。  (六)高效低碳燃气轮机试验装置。  围绕化石燃料高效转化和洁净利用中的气体动力学、燃烧科学和传热传质问题,为实现高压比、高透平温度、高效和近零排放等目标,建设高效低碳燃气轮机试验装置,主要包括:压气机、燃烧室和高温透平的全温、全压、全流量、全尺寸的大型试验装置研究系统,以及精细和高精度测试系统。该设施建成后,将为我国燃气轮机部件和系统特性研究提供研发手段,为化石能源持续和低碳发展提供基础支撑。  (七)高海拔宇宙线观测站。  宇宙线起源一直是物理学最大的谜团之一。我国在高海拔宇宙线观测研究方面具有长期积累和深厚基础,台址条件具有特殊地理优势,适合建设由多个性能先进的探测系统组成的多参数宇宙线复合观测站。围绕推动国际甚高能伽马天文研究迈入大统计量新时代的科学目标,建设大型高海拔空气簇射宇宙线观测站,主要包括:100万平方米探测阵列,9万平方米伽马射线巡天望远镜,24台广角契伦科夫望远镜,0.5万平方米芯探测器阵列。该设施建成后,将集高灵敏度、大视场、全时段扫描搜索伽马射线源、伽马射线强度空间分布和精确能谱测量等多功能为一体,成为具有国际竞争力的宇宙线研究中心。  (八)未来网络试验设施。  三网融合、云计算和物联网发展对现有互联网的可扩展性、安全性、移动性、能耗和服务质量都提出了巨大挑战,基于TCP/IP协议的互联网依靠增加带宽和渐进式改进已经无法满足未来发展的需求。为突破未来网络基础理论和支撑新一代互联网实验,建设未来网络试验设施,主要包括:原创性网络设备系统,资源监控管理系统,涵盖云计算服务、物联网应用、空间信息网络仿真、网络信息安全、高性能集成电路验证以及量子通信网络等开放式网络试验系统。该设施建成后,网络覆盖规模超过10个城市,支撑不少于128个异构网络并行实验,将为空间网络、光网络和量子网络研究提供必要的实验验证条件。  (九)空间环境地面模拟装置。  磁暴、高能粒子辐照等极端空间环境可能对航天活动造成极大影响。为保障人类太空探索活动的顺利开展,必须突破地面单因素模拟的局限,全面了解空间环境综合因素对物质的作用。以揭示空间环境条件下物质结构演化规律和各种环境耦合效应的物理本质为目标,建设空间环境与物质作用地面模拟研究装置,主要包括:空间环境模拟源、大型真空与热沉、综合测试分析系统等。该设施建成后,将为我国空间科学发展和深空探测模拟研究提供有力支撑。  (十)转化医学研究设施。  转化医学研究是现代医学发展的重要方向,对推动医学基础研究成果快速向临床应用转化和提高诊治水平具有关键作用。围绕人类重大疾病发生、发展与转归中的重大科学问题,建设转化医学研究设施,主要包括:符合国际标准并具有我国人种和疾病特色的临床资源库,医学信息技术系统,疾病生物标志物检测、功能分析和临床验证技术系统,个性化医学技术系统,细胞、组织和再生医学技术系统,临床技术研发系统等。该设施建成后,将推进临床医学和系统生物学结合,促进我国转化医学研究水平大幅提升。  (十一)中国南极天文台。  南极内陆冰穹A是我国科考队首先从地面到达和利用的地区。该处大气湍流边界层极薄,大气中水汽含量极低,是地球上条件最优异的天文观测台址和天文研究长远发展的珍稀资源。在南极内陆冰穹A,充分利用中国南极昆仑站的现有基础建设中国南极天文台,主要包括:太赫兹望远镜,光学和红外望远镜,远程运控系统,支撑服务系统等。该设施建成后,将开辟地球上独一无二的太赫兹波段天文观测窗口,为研究宇宙和天体起源、暗物质、暗能量、地外生命等科学问题提供有力支撑。  (十二)精密重力测量研究设施。  精密重力测量是获取全球和局部区域地球质量变化基础数据不可或缺的手段,在大面积矿产资源勘查、环境变化研究和重力辅助导航中有广泛应用需求。建设精密重力测量研究设施,主要包括:精密重力测量基准台与检测系统,卫星、航空和水下重力探测环境模拟与物理仿真试验系统,全球高精度重力场数据处理系统等。该设施建成后,将为解决固体地球演化、海洋与气候变化、水资源分布和地质灾害研究中的科学问题提供重要支撑。  (十三)大型低速风洞。  大型运输机、客机及地面交通工具研制对低速风洞的规模、技术性能不断提出新要求。着眼飞机地面效应试验、大飞机涡扇发动机动力影响模拟和反推力影响试验、飞机和车辆气动声学试验的科技需求,建设回流式、多试验段、多功能大型低速风洞,具备支撑飞行器起飞、着陆特性研究,发动机、机身、机翼一体化研究,气动力及气动声学和降噪研究的能力。该设施建成后,流场品质和综合性能将达到国际先进水平。  (十四)上海光源线站工程。  上海同步辐射装置(上海光源)是第三代中能同步辐射光源,具有最多可提供60多条光束线和近百个实验站的能力,完全建成后将为我国多学科前沿研究取得突破提供有力支撑。在已建成的7条光束线站基础上,围绕满足我国材料科学、能源科学、环境科学以及生命科学等领域迅速发展的研究需求,建设上海光源线站工程,主要包括:新建若干光束线站,扩建用户实验支撑条件,进一步提升光源性能。该设施建成后,将大幅提升光源和束线的能力,使上海光源继续保持国际先进水平,为相关科学研究提供更全面、先进、便捷的支撑。  (十五)模式动物表型与遗传研究设施。  模式动物表型性状的精确测定和度量是解析生命规律,开发疾病调控方式的关键之一。以解决表型和基因型测定及关联遗传机制分析中的科学问题为目标,建设重要模式动物的表型与遗传分析研究设施,主要包括:表型及基因型连续、快速、综合、自动化与智能化获取分析系统,表型和基因型全面自动检测分析系统,信息集成、处理及遗传性状分析系统等。该设施建成后,可系统、准确地描述生命的表型、基因型及其在环境变化中的响应,并以此正确描述生命的调节状态和方式,为人类疾病、动物生命过程调节等研究提供支撑。  (十六)地球系统数值模拟器。  地球系统模拟是衡量地球科学研究综合水平的重要标志,是开展气候变化、防灾减灾和环境治理等科学研究不可缺少的手段。以认识地球环境复杂系统、模拟地球系统圈层变化和长期气候变化、精细描述和预测地球物理化学及生物过程等为目标,建设地球系统数值模拟器,主要包括:超级计算及存储专用系统,超级模拟支撑与管理软件系统,地球各层圈过程模拟软件系统,地球系统科学数据库与海量数据智能分析与可视化系统等。该设施建成后,将大幅提高我国地球系统模拟的整体能力和重大自然灾害预测预警、气候变化预估的研究水平。  五、保障措施  (一)健全管理制度。加快完善管理规章制度,规范和促进重大科技基础设施的建设、运行和管理。健全部门协调制度,加强规划实施中各部门间的统筹协调,发展改革、科技、财政等部门要各司其职、分工协作。建立健全规划动态调整机制,滚动推进“十二五”建设重点的立项和实施,并根据形势发展每五年对规划内容进行必要调整。制定符合设施特点和发展规律的管理办法,加强设施运行评价,提高设施运行效率。完善设施建设配套政策措施,鼓励地方政府在土地、资金、人才等方面出台相关政策,形成共同支持设施发展的良好局面。  (二)保障资金投入。加强重大科技基础设施预研、建设、升级改造、运行和科研的协调,加大财政资金投入力度,鼓励企业等其他来源资金投入,形成多元化投入格局。规范投入管理,加强绩效评价,切实提高资金的使用效率和效益。  (三)强化开放共享。健全重大科技基础设施开放共享制度,最大限度发挥其公共平台作用。健全用户参与机制,形成科研院所、高等学校、企业等多方共建、共管和共享的局面。统筹安排开放共享配套条件建设,提高设施科研服务能力。将开放共享程度作为设施运行考核的重要指标,根据评价结果配置运行资源。  (四)协同推进预研。加强部门沟通协调,协同加强预研工作,为重大科技基础设施建设提供充分的技术和工程储备。充分利用现有资金渠道,系统安排原理探索、技术攻关、工程验证等类型的预研项目。强化预研工作各阶段以及预研与设施建设之间的衔接,形成循序推进、动态调整、持续发展的良好局面。  (五)加强人才培养。坚持设施建设与人才培养相结合,造就高水平的重大科技基础设施建设、管理和科研人才队伍。制定与设施发展相配套的人才计划,吸引和凝聚一大批高层次创新人才。加强设施建设与国家科技重大专项、重大科技计划的衔接,加速培养一批高水平科技创新领军人才,造就一批科研、工程和管理人才队伍。建立健全与设施特点相适应的人员分类评价、考核、激励政策,凝聚和稳定设施建设和运行专业人员队伍。  (六)促进国际合作。适应重大科技基础设施发展日益国际化的趋势,结合我国科技发展实际需求,积极参与享有知识产权和使用权的重大科技基础设施国际合作项目。积极探索以我为主的国际合作,吸引国外资源参与我国发起的重大科技基础设施建设和相关科学研究。注重引进国外先进技术和管理经验,提高我国重大科技基础设施建设、运行的技术和管理水平。
  • 两会聚焦科技基础设施建设见成效,赛默飞助力顶级研究成果
    科技部部长王志刚:“中国科技创新有“三步走”战略,到2020年进入创新型国家,到2035年左右进入创新型国家前列,到2050年要成为世界科技强国。” 3月14日,据CCTV2报道,提出要深入实施创新驱动发展战略,特别强调加强重大科技基础设施及科技创新中心的建设,从而保障并提升国家重大科技的基础研究。 新闻中提到,近期国际学术期刊《Nature》发表的《Proteomics Identifies Therapeutic Targets of Early-tage Hepatocellular Carcinoma》文章引起学术界广泛关注。 该研究由军事科学院军事医学研究院、凤凰中心-国家蛋白质科学中心(北京)、蛋白质组学国家重点实验室贺福初院士团队、钱小红教授团队,与复旦大学附属中山医院樊嘉院士团队等共同完成,将有助于目前临床上认为的早期肝细胞癌患者进一步分类诊治。新闻中, 研究人员强调:“这一突破背后离不开整个科研团队软硬件设施的提升,其中高分辨质谱仪就是设备升级的典型代表。”工欲善其事必先利其器,赛默飞助力中国蛋白质组学研究驶入快车道新闻中提到及展现的就是赛默飞超高分辨率质谱仪Orbitrap系统,国家蛋白质科学研究中心北京(凤凰中心)拥有高分辨质谱涵盖赛默飞Orbitrap Fusion Lumos、Fusion、QE HF-X、QE-HF、QE Plus、QE多个型号。 新闻中,研究人员告诉记者:“没有这些设备的话,我们现在还达不到这么大规模临床样本的数据产出,之前一例样本要做2-3天,有国家大科学基础设施的支撑,一个样本能达到2-3个小时。2014以来,中国蛋白质组计划启动后,5-600万元的质谱仪,这里就有20多台,对比曾经使用的老设备,变化太大。完全不在一个量级,产出也好很多。”单个样品从2-3天到2-3个小时的跨越,正是运用Orbitrap高通量、高分辨质谱技术,经过科研工作者的不断探索,带给蛋白质组学分析的进展。越来越多国内外的蛋白质组学分析工作者的共同选择,铸就了Orbitrap成为蛋白质组学金标准;而广泛的技术通量提升,也帮助中国蛋白质组学研究驶入快车道。 赛默飞科研解决方案,助力中国科技发展,成就创新型国家赛默飞优势的技术与完善的科研解决方案,助力重大科技发展,为国家建设、高校学科改革、完善科研重大基础设施、建设科技创新平台、成就创新型国家等诸多科技发展进程上,提供有力的技术支撑。无论是助力中国蛋白质组学计划、离子色谱IC(URG)技术助力北极科考、推动健康医疗中心、还是共建学科平台助力建设,都有赛默飞的身影;创新的技术、有针对性的科研细分领域解决方案,极大程度的帮助生命科学、医学、药学、农林、食品、环境等研究领域用户实现新的科研成就;全流程解决方案,涵盖丰富的产品组合和完善的研究工作流程,更是极大程度的助力科学家解决研究面临的前处理、样品分析、数据处理等诸多挑战,不断实现突破。 赛默飞作为科学服务领域世界,携手客户,让世界更健康、更清洁、更安全。同时,也愿意与中国科研工作者一起,完成科技强国的中国梦!
  • 国内外专家齐呼吁尽快全面启动中国人类蛋白质组计划
    在日前结束的第381次香山科学会议上,国内外众多专家呼吁,在国际蛋白质组计划呼之欲出的之际,应尽快启动中国人类蛋白质组计划。  军事医学科学院研究员杨晓明介绍,蛋白质组学是一门新兴但发展迅速的学科。1994年,蛋白质组概念的提出加速了蛋白质组学的凝聚和发展,国际上主要发达国家和地区自此纷纷加大对蛋白质组学的支持力度,蛋白质组学成为各强国科技角力新的“战场”,尤其是2001年国际人类蛋白质组组织成立之后,蛋白质组研究进展迅速。  10余年来,蛋白质组学无论从技术方法和研究策略,还是研究资源和研究领域等都有了质的飞跃。近几年来,在蛋白质组定量分析、翻译后修饰研究、规模化相互作用及功能研究、生物标志物的筛选验证、抗体制备、数据标准和数据挖掘等方向取得一系列突破性进展。同时,蛋白质组研究的核心技术,一直在不断的发展和完善,实现更高通量、定量地分析生物样本中的蛋白质组成和变化。目前,蛋白质组学研究已逐渐从全蛋白质组学向亚细胞蛋白质组学转变,从定性分析向定量描述转变,从实验室研究到临床应用拓展,从数据积累向知识挖掘转变。  目前,蛋白质组学已成为几乎所有国际著名医学研究机构的重要支撑平台,在疾病研究中的应用十分广泛。国际上也先后启动了多种疾病的蛋白质组研究计划,直接寻找疾病相关特异蛋白质或对疾病相关已知蛋白质进行深入机制分析。  本次会议执行主席之一、中国科学院院士、军事医学科学院院长、蛋白质组学国家重点实验室主任贺福初研究员认为,蛋白质组学不仅自身发展迅速,并且作为生命科学与生物高技术的新一代引擎,带动了大量相关学科领域的快速发展,为生命科学的研究、生物技术的应用和人类疾病的防治带来新的革命。通过与基因组研究的对接,极大推动了基因组的全面阐释、“基因组”天书的系统解读 通过其学术与技术的系统性、全息性,全局性地揭示了生命活动的规律和本质、人类重大疾患(及其病原体)致病的物质基础以及发生与发展的病理分子机制 通过其强大的需求牵引和突出的集成融合,直接推动了分析科学与技术、信息科学与技术、材料科学与技术等学科在生命科学与生物高技术中的深层次应用及其各自的快速发展。  据悉,我国政府历来重视和支持蛋白质组学的发展,并较早部署和启动蛋白质组学一系列重大项目。在国际人类蛋白质组组织先后启动的十多个国际性蛋白质组计划中,由我国科学家倡导并领衔的国际人类肝脏蛋白质组计划是最早启动的两个蛋白质组计划之一,也是首个人类组织器官的蛋白质组计划,该计划成功建立了蛋白质组研究框架、模式和标准,是国际人类蛋白质组计划各分计划中成就最为显著的核心计划之一。我国科学家无论是在蛋白质组学技术方法,还是在重要生物学功能和重大疾病相关的蛋白质组研究方面,都取得了一系列令国际学术界瞩目的重要成就,据统计,中国科学家在国际蛋白质组学主要刊物《分子细胞蛋白质组学》、《蛋白质组研究》和《蛋白质组学》上发表的论文数量排世界第二位。  据介绍,不久前在澳大利亚悉尼召开的第九届国际蛋白质组大会上,国际人类蛋白质组组织宣布全面启动实施国际人类蛋白质组计划,各国政府和科学家对该计划的全面实施给予了高度关注,并纷纷申领任务,中国有必要也有能力在这一宏大计划中发挥主流作用。  在这个大背景下,与会专家一致呼吁,我国应抓住蛋白质组学发展的新契机,立足国际发展前沿,加强蛋白质组学新技术新方法的研究 在建设国家蛋白质科学基础设施的基础上,通过对原始创新、集成创新与消化吸收再创新,大力发展一批具有自主知识产权的新技术新方法和新设备新试剂 充分整合现有蛋白质组研究基础,建立完善国家层面的蛋白质组学协作网络 结合国际人类蛋白质组计划的全面实施,整合国内优势力量,加快启动实施中国人类蛋白质组计划 推进前期基础研究成果的转化,使其真正成为重大疾病防诊治和创新药物研发的源头创新的成果 综合我国产出的海量人类蛋白质组数据,建立以中国为主的蛋白质数据库,充分利用这些数据,积极推进蛋白质组数据对人类基因组的注释,并全面揭示生理功能调控规律和病理机制 加大蛋白质组学推广和普及的力度,针对不同人群加强蛋白质组学的培训和教育,培养更多的蛋白质组学人才,拓宽其应用领域和方向。同时针对严重制约我国医药、农业、工业、资源环境与能源、国防等行业/产业改造、换代中的蛋白质关键科学与技术问题进行系统、深入研究,实现我国蛋白质科学与技术领域的跨越式发展,带动我国生命科学与生物技术的快速突破,为我国经济社会的全面、协调、可持续的发展提供强大的科学技术原动力和战略性基础性支撑。
  • ProteinSimple凝胶成像系统中标国家蛋白质科学研究基地设备购置项目
    近日,在国家蛋白质科学研究清华基地设备购置项目招标中,ProteinSimple公司凭着先进的设计理念、卓越的性能表现和专业的售后服务能力,在激烈的竞争中脱颖而出,包括普通凝胶成像、化学发光成像、多色荧光成像系统全部成功中标! 国家蛋白质科学基础设施&mdash &mdash 北京基地,简称&ldquo 凤凰工程&rdquo ,是我国生命科学领域最大的单体项目,投资12.22亿元,由中国军事医学科学院、清华大学、北京大学、中国科学院生物物理研究所共同建设,旨在打造我国世界蛋白质科学领域的核心基地和研究旗舰。 美国ProteinSimple公司总部位于美国硅谷,致力于发展先进的蛋白质分析技术,是居世界领先地位的专业公司之一,2009年ProteinSimple公司收购Alpha Innotech。原Alpha Innotech公司创立于1992年,总部位于美国加州,2005年上市,在数字化凝胶成像领域有20多年的成功历史,用户超过20000个,引用的文献近10000篇,在中国拥有大量忠实用户。Alpha在凝胶成像领域处于领先地位,是高端多色荧光和化学发光技术的全球领导者。品质铸就品牌,相信ProteinSimple能为越来越多的中国和全球用户提供一流品质的蛋白分析仪器和良好的技术服务。 更多信息请访问www.proteinsimple.com.cn 或致电 4000-863-973 (李俊山)
  • 中国人类蛋白质组计划(CNHPP)正式启动
    今天上午,&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 在军事医学科学院召开第一次工作部署会,国家科技部、总后勤部相关领导、重点专项管理委员会成员及全国40多个科研单位的70余名院士、专家出席,这标志着CNHPP全面启动实施,这是我国科学界乃至世界生命科学领域一件具有里程碑意义的大事。&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 正式启动  人类蛋白质组计划(HPP)是继基因组计划之后人类全面探索自我奥秘征程中又一伟大科技工程,是新世纪第一个国际大型科技合作计划。在国家科技部等部门的大力支持下,中国科学家率先倡导并领衔了人类第一个器官(肝脏)国际蛋白质组计划(HLPP),开中国引领国际大型科技合作计划之先河,所形成的理论框架、整体策略和技术标准被国际同行广泛认可和应用,为人类蛋白质组计划的全面展开发挥了示范和指导作用,得到学术界高度评价。  中国科学家构建了人类第一个器官(肝脏)蛋白质组图谱,出版人类首个器官蛋白质组&ldquo 百科全书&rdquo ,相关数据得到国际著名专业机构等认同及广泛使用,成为人类蛋白质百科全书主体内容之一,部分工作被《自然》杂志最近发表的人类蛋白质组草图的文章引用。近4年,中国在该领域国际核心刊物发文量直线上升,历史性地达到1000多篇,跃居世界第二。在新的代谢通路调控、炎症诱发肿瘤、骨形成调节、疾病易感性等方面取得系列原创成果,相关论文发表在《科学》、《自然》等国际一流刊物,并被国际同行评述为重大突破性进展。总体来说,我国蛋白质组学研究已处于国际先进水平。  亚太蛋白质组组织主席、该计划首席科学家贺福初院士介绍说,CNHPP是在系统总结HLPP成功经验基础上,经过4年迭代论证提出的,主要目标是以我国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,绘制人类蛋白质组生理和病理精细图谱、构建人类蛋白质组&ldquo 百科全书&rdquo ,全景式揭示生命奥秘,为提高重大疾病防诊治水平提供有效手段,为我国生物医药产业发展提供原动力。这是我国863高技术计划、973基础研究计划、国际合作计划再次联手资助的重点专项,也是国家大科学设施与大科学计划的首次会师,将在我国开创大科学设施、大科学计划、大数据产出、大发现孕育的新时代。  当前,全球每年产生的生物数据总量高达EB级,生命科学领域正在爆发一次数据革命。据统计,2000 年以来,国际上共发表2万余篇有关高通量生物数据的文献 近几年,《自然-遗传》近三分之一的论文是介绍关于高通量生物数据的工作。数据已成为矿物或化学元素一样的原始材料,未来可能形成&ldquo 数据探矿&rdquo 、&ldquo 数据化学&rdquo 等新学科和&ldquo 数据驱动&rdquo 的新模式,孕育着科学大发现、大突破和产业大发展的前所未有的重大机遇。  大数据的产生、管理和利用正逐步成为衡量一个国家创新能力以及竞争力的关键要素。但目前生物大数据的产生和分析还被美国、欧洲、日本等少数国家所垄断。我国生物数据主权受到严重威胁。从过去来看,生物数据最大的是基因组数据,基因组计划实施和完成后,蛋白质组数据无疑将成为最大、最重要和最核心的科学数据。我国已部署建设蛋白质科学基础设施,这是国际上最大的蛋白质组学研究基地,将有力支撑和推动CNHPP的实施和大数据的产生,有望迅速改变现有格局,打破垄断,维护国家生物数据主权。  CNHPP产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 。构建的人类蛋白质组生理和病理图谱,将呈现多种病理状态下蛋白质组的变化,揭示疾病的发病机制和病理过程,发现系列新型诊断标志物、治疗靶点和创新药物,为全面提高疾病防诊治水平提供新策略新手段。  最近英国《自然》杂志同时刊登两篇文章,介绍了美国和德国、印度等合作完成的人类蛋白质组草图的工作。中国科学院院士饶子和说,这是蛋白质组学领域乃至整个生命科学领域和人类科技史上具有里程碑意义的一项重要科学贡献,拉开了新一轮科技竞赛的序幕。中国科学院院士张玉奎指出,逆水行舟不进则退,中国科学家在这场新世纪最重要、最核心和最具代表性的大数据资源争夺中没有犹豫的时间,没有回头的道路,只有勇往直前,直面竞争的选择。我们必须充分发挥体制优势,借鉴&ldquo 两弹一星&rdquo 、&ldquo 载人航天&rdquo 等国家重大工程实施的成功经验,集中力量,重点突破,打赢这场没有硝烟的科技竞赛和资源争夺战。  贺福初院士表示,在人类基因组计划中,中国作为六国中唯一的发展中国家,做出了1%的贡献,2001年,江泽民总书记与美英等国首脑共同宣布了人类基因组草图的问世 在人类蛋白质组计划中,中国作为第二大经济体和复兴崛起的大国,将做出不少于30%的贡献,并有望成为最大的贡献国。我们梦想在2017年,习近平总书记可以代表主要完成国宣布人类蛋白质组精细图的问世。我们将为实现这一梦想而不懈努力!中国必须为人类做出更大贡献!中国必然为人类做出更大贡献!
  • 广东将建我国第四个综合性国家科学中心 科技基础设施必不可少
    p  中国科学院副院长张亚平18日在中科院2019年度工作会议新闻发布会上表示,中科院、广东省将共同争取建设珠三角综合性国家科学中心,以进一步打造粤港澳大湾区国际科技创新中心。/pp  综合性国家科学中心是国家创新体系建设的基础平台。目前,全国共有上海张江、合肥、北京怀柔3个综合性国家科学中心获批。此前,武汉、成都、南京、西安等城市都在积极争取建设综合性国家科学中心。国家科学中心的建设不仅可以带动地方经济转型升级、提升当地创新能力,而且还能促进地方与国内顶尖高校的合作交流。对带动地方转型发展有着重要意义。/pp  而重大科技基础设施是综合性国家科学中心的一项重要支撑。目前上海张江综合性国家科学中心在建或已完成的重大科技设施有国家蛋白质科学研究设施、自由电子激光装置、超强超短激光装置、SXFEL用户站等 合肥综合性国家科学中心在建或已完成的重大科技设施有中国聚变工程实验堆、全超导托卡马克核聚变实验装置,大气环境立体探测实验研究设施等,北京怀柔综合性国家科学中心在建或已完成的重大科技设施有全球最大风洞实验室、世界上最大的高速列车模型试验平台,极端条件实验装置等。中科院与广东省2018年签署了共建重大科技基础设施、高水平创新平台、成果转移转化服务平台、科教融合园区等多项合作协议。粤港澳大湾区至今也有较多相关的规划布局,比如,中国散裂中子源已在广东东莞投入正式运行,这标志着我国成为世界上第4个拥有散裂中子源的国家。江门中微子实验站也正按计划推进建设,新型地球物理综合科学考察船、惠州强流重离子加速器装置已于2018年底开工建设,加速器驱动嬗变研究装置也将于近期开工建设。张亚平表示粤港澳大湾区的重大科技基础设施建设力度2019年将有大幅度提升。/pp  此前,仪器信息网曾简单分析整理过a href="https://www.instrument.com.cn/news/20181204/476463.shtml" target="_blank" title="广东地区科研水平现状" style="color: rgb(31, 73, 125) text-decoration: underline "span style="color: rgb(31, 73, 125) "广东地区科研水平现状/span/a。相信珠三角综合性国家科学中心的建设将会极大推动广东及周边地区的科研水平发展。/p
  • 顾祥林代表:需要特殊政策保障重大科技基础设施高效建设和运维
    今年政府工作报告提出,要加快推动高水平科技自立自强。高水平科技自立自强,必须加强基础研究,特别是原创性的技术创新与基础研究。作为基础研究的平台,重大科技基础设施是解决重点产业关键问题、支撑关键核心技术攻关、保障经济社会发展和国家安全的物质技术基础,也是抢占全球科技制高点、构筑竞争新优势的战略必争之地。目前,上海已建、在建和规划建设的重大科技基础设施共计20个。上海光源、国家蛋白质科学研究(上海)设施等8个大科学设施形成了基础研究创新生态,在支撑前沿基础研究、关键核心技术攻关等方面发挥了重要作用。全国人大代表,同济大学原副校长、教授顾祥林。受访对象供图然而,全国人大代表、同济大学原副校长顾祥林教授经过长期的工作和调研发现,重大科技基础设施建设和运维主体建制不明、定位不清,重大科技基础设施创新效能未能充分发挥,概算资金不足,难以构建多元化人才队伍等。“重大科技基础设施建设工程具有开创性和特殊性。一般都需要较大规模投入和较长时间的工程建设。进入运行阶段后,也必须保证其稳定性和持续性,才能支撑和实现重大科研目标。”顾祥林强调,这需要国家特殊的政策保障和持续的财政支持方能实现其高效建设和运维。为此,他建议:明确重大科技基础设施建设和运维主体的建制体系。由国家相关部委发文明确重大科技基础设施建设和运维主体作为独立的实体性科研机构的建制体系;逐步建立健全与重大科技基础设施工程和科研双重属性相匹配的运行管理和评价体系;有建制地组建一支稳定的建设运维一体化队伍,以确保重大科技基础设施的长期运维和不断升级,保持其国际先进性。同时,设立高水平科技研发重大专项,吸引顶尖科学家领衔高水平科研团队进行原创性、引领性科技攻关并产出高水平研究成果;谋划技术攻关创新行动计划,加快攻克重要领域关键技术;启动高端装备创新工程专项课题,将重大科技基础设施打造为具备新技术、新工艺、新设备和新材料的可靠性测试与验证平台,推动重大基础研究成果和关键核心技术的产业化,促进产业与科研平台的良性互动。对于分步建设的国家重大科技基础设施,顾祥林建议,予以分步匹配运维经费,以鼓励国家重大科技基础设施提前发挥创新效能并保障安全运行。由于重大科技基础设施建设周期长、难度大、风险高,且无工程先例参照,顾祥林建议,完善资金投入机制,适时开展阶段性评审和概算调整,并根据设施建设的实际需求,适当增加研发费用和工程验证经费。另外,不同的重大科技基础设施建设与运维环境存在极大差别,建议针对在海上、高海拔等极端环境下建设的大科学设施,予以超概算资金托底。针对人才建设难题,顾祥林还建议,给予稳定的人员经费支持和突破性的评价激励政策。
  • GE医疗与国家蛋白质科学中心-上海携手共建生命科学实验室
    2014年3月12日,上海——今天,GE医疗生命科学与国家蛋白质科学中心上海(简称“中心”)的共建生命科学实验室在张江正式启用。这是GE公司在中国继成都卓越客户中心后又一个专注于科研与应用市场的研究平台。GE医疗生命科学部大中华区总经理牟一萍女士和国家蛋白质科学中心主任雷鸣教授共同出席了启用仪式并为实验室揭幕。 GE医疗作为世界知名的生命科学设备供应商,此次携手具有一流人才与科研水平的国家蛋白质科学中心,整合双方强大的生命科学设备与技术资源,将藉由该共建实验室的成立,创建国内首个合作型蛋白和细胞技术平台,通过方法开发,应用合作和专业人才培养,助力在结构生物学,生物医药、以及转化医学等领域的研究和应用转化,切实推动中国生命科学领域的研究和发展。 牟一萍总经理在致辞时表示,生命科学作为GE医疗集团的核心业务之一,坚持通过不断创新与技术合作来与全世界科学家共同探索生命科学的奥秘。此次与国家蛋白质科学中心合作共建生命科学实验室,是继2012年生命科学研发培训中心Fast Trak在上海落成,2013年生命科学卓越客户中心CoE在成都落成后,GE医疗致力于“立足中国,服务中国”在生命科学领域的又一重大举措。 合作共建生命科学实验室将借助国家蛋白质科学中心强大的蛋白质科学研究平台,引进GE医疗国际领先的技术和设备,实现强强联合,优势互补,携手共赢,共同推进中国生命科学的发展。 雷鸣教授在致词时也表示,中心的成立属于国家“十一五”战略规划之列,旨在结合国家蛋白质科学设施运维、研究及服务外部用户等定位,凝聚人才致力于蛋白质科学的研究。由于中心作为国家的大科学装置,将基于蛋白质设施独一无二的综合性、交叉性的科研仪器设备,重点投入力量推进新技术、新方法的研究与发展。此次中心携手GE医疗集团,将共同推进这一目标的达成。 目前,共建实验室针对蛋白质研究配备了AKTA purifier,AKTA pure,AKTA start系列蛋白纯化系统,Biacore T200生物分子相互作用系统,ITC200等温滴定量热仪,Cytell细胞图像分析仪,NanoVue Plus超微量分光光度计以及双向电泳仪等。未来,双方还将根据研究需要不断完善实验室的硬件设备。 据悉,GE医疗生命科学卓越客户中心未来将根据中国市场,尤其是科研及应用领域用户的需求,开发应用技术和方法,其范围涵盖细胞培养、基因重组、细胞收获、目标分离、目标纯化、目标活性等研究,并开发中药提取、有效成分鉴定、有效成分毒理与药理分析等。 人才培训将是该共建实验室的另一项重要职能。未来,这里作为GE医疗生命科学部在东部地区的主要培训基地,将为广大用户提供更加完善而系统化的产品及应用培训课程,更好满足华东地区客户的需要。 值此共建实验室启用之机,GE医疗生命科学部还举办了GE纯化系统和细胞图像分析仪新品见面会,详细介绍并演示了GE医疗蛋白纯化家族新成员--AKTA start入门级实验室制备色谱系统,以及最新发布的Cytell细胞图像分析仪。两款产品都非常适合蛋白质研究实验室,既操作简便满足常规实验室分析,又具备强大完善的功能为研究人员提供可靠的数据。会后,与会者又参观了位于张江华佗路的GE中国科技园区和生命科学FastTrak实验室。
  • 多项重大科技基础设施建设集中“剧透”—— “大国重器”有哪些“秘密武器”
    3月25日,上海张江第九期“大国重器”发布会在张江药谷举行。张江科技创新的三个主力军“军长”—— 上海同步辐射光源主任、中科院上海应用物理研究所所长赵振堂,中科院上海生科院生化与细胞所副所长、国家蛋白质科学中心上海主任雷鸣,中科院量子信息与量子科技前沿卓越创新中心(上海)主任、中科院院士潘建伟“剧透”了这些国家级重大科技基础设施建设的进程和“秘密武器”。  上海光源:从分子照片到分子电影  “普通的X光就能清晰拍摄出人体的组织和器官,而上海光源释放的光,亮度是普通X光的一千亿倍。通俗说,上海光源就相当于一个超级显微镜集群,能够帮助科研人员看清一个病毒结构、材料的微观构造和特性。”赵振堂说。上海光源是目前世界上性能最好的中能光源之一,为我国材料、生命、环境、医药、物理、化学、地质等学科的基础和应用研究提供了重要支撑。  截至2015年12月,上海光源首批7条线站共开机提供182123小时用户实验机时,支持课题近7000个。  赵振堂介绍,上海光源目前能为科学家拍摄“分子照片”,正在加紧筹备的上海光源线站(二期)工程和X射线自由电子激光试验装置与用户装置,属于“第四代先进光源”,能够对生物活体细胞进行三维全息成像和显微成像,进入“拍摄分子电影”的时代。  蛋白质中心:认识一个蛋白质只要2分30秒  “以前一个科学家可能要花很多年才能认识一个蛋白质。但是在蛋白质中心,借助各式各样的先进设备和仪器,最短仅需2分30秒就能认识一个蛋白质。”雷鸣说,蛋白质中心是当今全球生命科学领域首家综合性的大科学装置。  雷鸣说:“不久前,利用蛋白质中心的冷冻电镜设施,蛋白质中心丛尧研究员与巴斯德所黄忠研究员合作成功分析揭示了手足口病病毒抗体的作用原理。”  就在前几天,蛋白质中心许琛琦研究员在肿瘤免疫治疗研究领域取得了突破性进展,发现了提高T细胞抗肿瘤免疫功能的新方法,为开发新的肿瘤免疫治疗方法奠定了重要基础。  自2014年5月起,蛋白质中心开始试运行陆续接待用户,至今已累计运行超过12万小时,执行用户课题1200多个。  量子卓越中心:100个粒子把全球计算能力甩几条街  “一个粒子在量子相干状态时,就好比让计算机电路同时处于0和1状态。如果利用100个粒子相干操作制造出的量子计算机,其计算能力达到2100,而目前全世界计算机加在一起的计算能力大约是280,未来一台量子计算机超过全世界的计算机。”潘建伟说,如何利用量子进行信息处理和传输,如何搭建起量子传输的“通道”、推进对量子的产业利用,已成为国际物理学争相研究的问题。  量子卓越中心已牵头承担了中科院战略性先导科技专项(A类)“量子科学实验卫星”、中科院战略性先导科技专项(B类)“量子系统的相干控制”、发改委量子保密通信“京沪干线”技术验证及应用示范项目等多项国家重大科技任务,均在顺利实施。今年,量子卫星将在7月发射,“京沪干线”将在下半年开通。  “量子卓越中心的战略目标是,力争15年左右,构建完整的空地一体广域量子通信网络体系,在国防、政务、金融和能源等领域率先加以广泛应用,形成具有国际引领地位的战略性新兴产业和下一代国家信息安全生态系统。”潘建伟说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制