当前位置: 仪器信息网 > 行业主题 > >

生物医学工程与医疗仪器学术产业

仪器信息网生物医学工程与医疗仪器学术产业专题为您整合生物医学工程与医疗仪器学术产业相关的最新文章,在生物医学工程与医疗仪器学术产业专题,您不仅可以免费浏览生物医学工程与医疗仪器学术产业的资讯, 同时您还可以浏览生物医学工程与医疗仪器学术产业的相关资料、解决方案,参与社区生物医学工程与医疗仪器学术产业话题讨论。

生物医学工程与医疗仪器学术产业相关的方案

  • 医疗器械包装检测
    全球医疗器械行业是多学科交叉、知识密集、资金密集型高技术产业,综合了各种高新技术成果,是将传统工业与生物医学工程、电子信息技术和现代医学影像技术等高新技术相结合,具有高壁垒、集中度高的特点,是一个国家制造业和高科技发展水平的标准之一。
  • 科众精密仪器-接触角测量仪在生物医学领域中的应用及解决方案
    接触角测量仪是一种用于测量液体与固体之间接触角的仪器,广泛应用于材料科学、化学工程、表面科学等领域。在生物医学领域中,接触角测量仪也有着重要的应用。
  • 梯度功能材料的发展和应用
    梯度功能材料(Functional Gradient Materials,FGM)是基于一种全新的材料设计概念而开发的新型功能材料。由于材料构成要素(成分、组织结构等)在几何空间上连续变化,从而得到性能在几何空间上也是连续变化的非均质材料,在复杂环境下使用时,要比性能均匀的材料具有更大优势⋯ 1。FGM 最初的目的是解决高性能航空航天飞行器对超高温材料的需求,目前FGM 的应用不再局限于航宇工业,已扩大到核能源、电子、光学、化学、生物医学工程等领域。
  • 斑马鱼呼吸代谢及行为分析技术在生物医学领域的应用
    斑马鱼作为一种模式动物,与人类共享高达 70% 的基因组,保留了多达 80% 的人类疾病相关蛋白。同样作为一种脊椎动物,斑马鱼与人类的组织和发育生物学过程相似,故而针对各种癌症、肝病、血液疾病、心脏病和行为障碍的斑马鱼模型被建立起来,斑马鱼进而成为了基因表达调控、发病机理、药物筛选领域的主要模式动物,在生物医学研究的地位越来越重要(Patton et al., 2021)。北京易科泰提供生物医学领域斑马鱼呼吸代谢及行为分析的全套技术方案,包括斑马鱼成鱼和鱼卵、胚胎、幼鱼的呼吸代谢测量、斑马鱼视频跟踪和行为分析及游泳能力评估。
  • 扫描电镜如何促进生物医学研究
    生物医学研究是一个广泛的领域。 它描述了一个致力于研究生命过程,疾病预防和治疗以及与疾病和健康有关的遗传和环境因素的科学领域。而且,由于该领域的多样化,其研究所用到的设备也是相当广泛。 扫描电镜(SEM)作为这些类型的设备之一, 通过观察组织或器官结构,可以了解到可能的改变和疾病。 这篇博客通过介绍扫描电镜(SEM)在各个领域中的应用,来展示其强大功能,下面具体介绍三项科学研究。
  • 大表面接触角测量
    寻找替代人体部位的人造技术是生物医学工程的一个重要课题。它可以是骨头、关节、牙齿、皮肤、头发、肌肉、血管、完整器官或药物传输系统。但人造材料的对机械强度以及化学和电子信息的传递要求很高。这取决于组成的生物相容性生物惰性等。本文以牙齿为例对其表面作出研究。
  • 美国TA仪器:利用热机械分析仪TMA鉴定玻璃类材料
    热机械分析分析在玻璃类材料中有着广泛的应用领域。 本文作者许炎山先生系TA仪器台湾办事处技术部经理,1985年毕业于台湾中央大学化学工程硕士班,主修高分子科学。曾先后任职于台湾台塑集团的南亚塑料公司第六轻油裂解计划ABS厂研发专员, 与台湾化学纤维公司的ABS建厂专员共七年有余, 台湾立源兴业公司负责精密分析仪器部门之业务经理超过十三年, 累积丰富的流变学与热分析技术在产业界与学术界之相关应用经验, 并且也拥有犀利的仪器操作实做能力。许经理由于长期与产业界有密切的合作关系, 因此对于工业技艺与仪器分析之间的连结能力特别专长, 颇为受到台湾各行各业用户的重视与欢迎。
  • 模式识别技术在电子舌中的 应用与发展
    模式识别是当代高科技研究重要领域之一,发展成为一门独立的学科。目前,广泛应用于系统控制、生物医学工程、机器人、人工智能等领域。电子舌是一种用于液体分析的多传感器系统,主要由传感器阵列、信号处理和模式识别系统组成。其中,模式识别系统是电子舌性能的关键部分之一。介绍几种常用电子舌模式识别技术的原理及其应用,同时,对电子舌模式识别技术在食品工业的应用进行展望
  • 易科泰能量代谢测量技术——生物医学研究案例
    北京易科泰提供的高分辨率能量代谢测量系统,主要由呼吸代谢测量仪、无铅微型植入式温度(心率)自动记录仪(监测核心体温或体表温度)、Thermal-RGB红外热成像、以及RF-O2荧光光纤血氧测量单元等组成,可用于各种模型动物的体温与呼吸代谢功能监测与评估,助力于传染病学、病毒学、生理学、转化医学、内分泌学、细胞代谢、以及常见慢性病等生物医学科学研究。
  • dPCR用于遗传性耳聋检测
    近日,清华大学医学院生物医学工程系郭永实验室合作在《Analytical Chemistry》发表题为”Noninvasive and Accurate Detection of Hereditary Hearing Loss Mutations with Buccal Swab Based on Droplet Digital PCR”的研究论文,该研究以数字PCR技术为基础,以口腔拭子为检材,建立了一种精准可靠、灵敏度高、适合在人群中开展耳聋基因突变无创检测的新方法。
  • LUMiFrac在骨骼修复表面涂层方面的应用
    骨修复作为生物医学工程中的一项主要挑战,鼓励了各种新方向。其中,结构金属是骨植入材料的一个主要和成熟的类别。目前在该类别中,Ti6Al4V (TC4) 是最常用的,因为它具有优异的平衡性能,例如:相对较低的弹性模量和防腐性能。然而,TC4显示出各种不良反应,例如缺乏骨诱导性、生物活性弱、耐磨性差和应力屏蔽,这往往限制了其在长期临床使用中的广泛应用。另一方面,需要改进钛合金上细胞和组织的粘附、增殖和分化,以确保长期手术成功。研究人员采用了一系列物理和化学处理方法来改变种植体表面,将软聚合物应用在硬质金属基材表面以提高其体内反应。丝素蛋白(SF)是一种众所周知的天然纤维蛋白聚合物,已应用于骨组织的修复和再生,并被证明是一种有效的骨细胞增殖、成骨和骨矿化支架材料。也能够通过β -折叠物理交联在钛基医疗材料上形成强水凝胶的SF涂层,改善植入物的生物活性、机械性能和细胞生长。 尽管钛及其合金上的聚合物涂层取得了进展,但仍然存在挑战。例如,聚合物和合金基材之间的弱结合使得涂层很容易剥落。该实验的目的是建立一种方便的物理沉积方法,以在最常用的 TC4 合金上制造SF涂层,旨在提高钛合金在骨组织工程中SF涂层与TC4基材之间的界面结合强度。
  • BINDER 培养箱帮助瑞士卢塞恩应用科学与艺术大学
    近日,瑞士卢塞恩应用科学与艺术大学医学工程研究所正在进行太空生物学领域的研究。BINDER 为这个由 Fabian Ille 博士领导的研究小组提供了 CO2 培养箱的支持。
  • 生物医学科学的全面解决方案
    这本手册概述了制备样品进行分析时医学界所面临的一些挑战。采用Buehler的专业技术,尤其是设备、耗材以及在医疗电子失效分析中的服务,这些挑战会以各种方式得到解决。我们的培训计划提供了关于设备和耗材的深入知识、支持和示范。
  • 高通量圆二色性用于生物医学和pH依赖性分析
    在本申请说明中,我们将演示ASU-800自动化系统的使用,以评估pH对人血清白蛋白(HSA)结构的依赖性。关键词:生物医学,质量控制,自动化测量,高通量筛选,人血清白蛋白,圆二色性,J-1500,ASU-800,生物化学,制药
  • 使用新型放大增强方法实现生物医学组织样品的高空间分辨率 FTIR 成像
    傅立叶变换红外 (FTIR) 成像是一项成熟的分析方法,可同时获得微米级范围的光谱和空间信息。这一技术已广泛用于多种不同的应用领域,从高分子科学到生物医学成像。近年来,人们越来越关注通过主要使用基于同步加速器的系统,来提高受到衍射极限制约的 FTIR 成像系统的空间分辨率。在本应用简报中,我们展示了一项使用现有物镜实现放大增强的新型方法。最终,我们的 FTIR 系统显示出 1 ?m/像素级别的高空间分辨率成像能力。独特的是,这种构造在设置不同的放大倍率时不需更换物镜,从而保持了常规物镜相对较大的工作距离(约 21 mm)。
  • dPCR用于NIPT 研究
    2019年1月8日,清华大学医学院生物医学工程系郭永实验室合作在《分析学家》(Analyst)在线发表题为《基于多重微液滴数字PCR的胎儿染色体非整倍体无创产前检测方法》(A Multiplex Droplet Digital PCR Assay for Non-invasive Prenatal Testing of Fetal Aneuploidy)的研究论文,该研究利用数字PCR技术检测孕妇外周血中的游离DNA,建立了一种胎儿染色体非整倍体无创产前检测的新方法。
  • 医学、医疗设备的测量方法【激光显微镜】
    大多数医疗设备都直接用于人体,因此需要确保高水准的质量、安全性和有效性。此外,医疗设备技术革新很快,产品改良频繁,所以评估和检测的频率也很高。即使增加样品数,也能在相同条件下准确地自动评估和检测的测量仪,大幅缩短了作业时间。本次将介绍医学/医疗设备相关技术信息以及利用形状测量激光显微系统的检测案例。
  • 医疗器械分析中的重要角色——显微红外光谱仪
    这两年越来越多的医疗企业发力医疗器械领域,行业规模将进一步壮大,很多实力强大的械企从中脱颖而出,并发力高端领域,我国医疗器械产业瓶颈有望得到解决。随之而来的,医疗器械检测行业的发展和技术的不断进步也势在必行,有关政府对检测机构的要求也将越来越高,而且相关政策正逐步落地推行。未来,医疗器械发展水平将迈上新的台阶!目前国际市场上,影像大型设备、心血管、体外诊断、眼科、骨科与内窥镜是医疗器械产业中附加值较高的几大领域。
  • 生物医疗设备涂层应用-Filmetrics 膜厚测量仪
    Filmetrics 膜厚测量仪的卓越技术,Filmetrics膜厚测量仪提供了范围广泛的测量生物医疗涂层的方案。支架: 支架上很小的涂层区域通常需要显微镜类的仪器。 我们的 F40膜厚测量仪 在几十个实验室内得到使用,测量钝化和/或药物输送涂层。我们有独特的测量系统对整個支架表面的自動厚度测绘,只需在测量时旋轉支架。植入件: 在测量植入器件的涂层时,不规则的表面形状通常是唯一挑战。 Filmetrics 提供这一用途的全系列探头。导丝和导引针: 和支架一样,这些器械常常可以用象 F40 这样的显微镜仪器。 用 F42 可以进行显微区域内厚度的两维测绘。导液管和血管成型球囊的厚度:大于 100 微米的厚度和可见光谱不透明性决定了 F20-NIR 是这一用途方面全世界众多实验室内最受欢迎的仪器。
  • XX市工程产业链扬尘在线监控建设工作
    为了有效控制扬尘污染,保护和改善大气环境质量,保障人体健康,根据《中华人民共和国大气污染防治法》、《南京市大气污染防治条例》等法律、法规,结合实际情况制定本案,本案提供了一种对建设工程产业链(包括矿场、码头、堆场、搅拌站、建筑工地、渣土车运输、渣土处理厂等)扬尘实时监测的解决方法,通过对接全市统一的“智慧工地”监管平台,实行远程数据实时在线监测。项目的全面实施,可将全市范围内重点区域纳入监管范围,真正实现有效管理和标准化Z法。
  • Nicolet iN10 在复合材料分析上的应用
    傅立叶变换显微红外光谱仪在各个化学相关领域,如材料、法医、化工、医学、电子等行业已得到越来越广泛的应用。尤在物证鉴定、失效分析、材料分析和研究、倒置工程等领域已成首选的分析工具之一,其作用不可替代。如在倒置工程分析研究课题中,生物医学领域广泛应用的输液袋是一种常见的研究材料。输液袋是多层聚合物材料复合膜,常见的输液袋由三层或五层聚合物材料组成。其中,多层膜的上下表面可以通过ATR技术方便表征,但如何表征中间层材料一直是个难题。因为各层均为透明聚合物材料,层与层之间没有明显分界线,所以依靠传统技术,一直以来很难得到满意的结论。
  • 高分子凝胶材料的交联评价
    高分子凝胶材料因其独特的物理和化学特性,在生物医学、药物递送和组织工程等领域具有广泛的应用。交联过程是决定凝胶性能的关键步骤。透明质酸钠作为一种天然高分子,因其优异的生物相容性和保湿性而备受关注。低场核磁共振技术(LF-NMR)为交联过程的实时监测和评价提供了一种新的工具。
  • 布鲁克生物材料与医疗器械表征方案
    布鲁克原子力显微镜在生物医用材料领域用途广泛,可以表征包括生物材料、医疗器械、生物分子、细胞、组织等在内的多种类型样品。除了常规的表征材料微观形貌以外,还能表征材料力学性能、细胞-材料-生物分子相互作用等。结合高速成像技术,还能获得这些参数的动态变化。生物组织存在跨尺度的多种分级结构,生物材料的设计也引入各种微观结构。这些微观结构与其生物效应密切相关。
  • 凝胶相分离现象:水凝胶材料特性与低场核磁共振技术的应用
    水凝胶作为一种多功能的软材料,在生物医学、药物释放、组织工程等领域具有广泛的应用。凝胶相分离作为影响水凝胶性能的关键因素,对其研究至关重要。本文将探讨凝胶相分离现象,水凝胶的特性,以及低场核磁共振技术在水凝胶研究中的应用。
  • 丹纳赫生命科学精准医疗解决方案
    精准医学(Precision Medicine)是以实现个体化医疗为目标,伴随基因组测序技术的快速发展以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。其本质是通过适合人群大队列研究的基因组、转录组、蛋白质组、翻译后修饰组和代谢组学等新一代“基因型-表型”的大数据,结合最先进的医学前沿技术与个体临床表型,对大样本人群与特定疾病类型进行生物标记物的分析、鉴定、验证与应用,从而精确寻找到疾病的病因和治疗的靶点,并对同一种疾病的不同状态和过程进行精确分类,提高疾病的预防效益与诊治效率,最终实现对患者进行个性化精准治疗。我国的精准医学涵盖疾病“研究”、“诊断”和“个性化治疗”等三个方面,国家鼓励在基因组测序、多组学等生物标志物等研究技术的基础上,结合“合成生物学”、“系统生物学”、“疫苗”和“生物药”的最新技术与进展,借助“大数据”、“大健康”、“人工智能”等新兴技术手段,促进“生物样本库”、“人群队列研究”往纵深方向发展,进而加快科学研究成果向临床应用的转化,不断推进个性化治疗。与此同时,国家对“癌症”、“疑难杂症”、“糖尿病”、“心脑血管疾病”等具有代表性的疾病投入了大量的资源,并且在监管和制度方面也给予了政策扶持,其目的就是为了集中力量快速实现研究、诊断及治疗疾病的“个性化”和“精准化”,全方位推进精准医学在我国的发展。丹纳赫生命科学拥有丰富的精准医学解决方案和业界领先的技术创新。产品、流程与应用的有机组合,能更好地满足精准医学的市场需求,加速实验室的研究成果向临床转化。结合精准医学的具体实践,解决方案可以分为“基础/临床医学研究”、“诊断”和“个性化治疗”三个方面,这三个方面层层递进,又互相依存,形成了支撑中国精准医学事业迈向纵深发展的的巨大宝库。为了让大家全面了解丹纳赫精准医学的具体应用,我们推出了“合成生物学”、“多组学”、“高通量自动化二代测序”、“超微病理研究与应用”、“基因治疗与细胞治疗”等具有代表性的解决方案;同时,结合“新型冠状病毒解决方案”,一共推出了六大核心解决方案,希望大家喜欢。如需获取进一步的信息,欢迎大家扫描封底上的二维码,关注丹纳赫生命科学微信公众号,即时获得支持。
  • 医疗器械中的环氧乙烷检测
    医疗器械由于其特殊用途,往往需要做灭菌处理,这样在产品质量控制过程中,灭菌剂的残留量就需要得到监控。 有实力的医疗器械厂家都会配有HS-GC-FID,即带有顶空进样器和氢火焰检测器的气相色谱仪(ECH的检测根据需求可选择ECD检测器或FID检测器)。 环氧乙烷是一种有机化合物,化学式是C2H4O,是一种有毒的致癌物质,以前被用来制造杀菌剂。环氧乙烷易燃易爆,不易长途运输,因此有强烈的地域性。被广泛地应用于洗涤,制药,印染等行业。在化工相关产业可作为清洁剂的起始剂。 环氧乙烷是继甲醛之后出现的第2代化学消毒剂,至今仍为最、好的冷消毒剂之一,也是目前四大低温灭菌技术(低温等离子体、低温甲醛蒸汽、环氧乙烷、戊二醛)最重要的一员。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,环氧乙烷在一类致癌物清单中。
  • 浸入式液氮冷冻研磨仪轻松应对脱细胞基质研磨实验挑战
    样品介绍:脱细胞基质是通过去除细胞成分从组织或器官制备的天然支架,已广泛应用于再生医学与组织工程应用。通过使用浸入式冷冻研磨仪破碎脱细胞基质,可以获得其组织结构和成分的详细信息,用于样品破碎后的组织学研究和生物医学等研究领域。
  • 生物工程涂料用于被动流动控制
    采用德国LaVision公司2D2C平面粒子成像测速(PIV)系统。对边生物工程涂料边界层流场,采用高空间分辨率的PIV+PTV分析方法计算流体速度矢量场,分析了生物工程涂料用于被动流动控制的可行性。
  • 全自动顶空进样器在药物研发和生物医学领域中的应用
    在科学的殿堂中,一台神秘而巧妙的仪器矗立在人们的视野中,它就是顶空进样器。如同一个魔法之匣,它可以将液态样品转化为气态,实现快速、准确的进样过程。顶空进样器是实验自由的释放者,为科学家带来了便利和效率。它的出现,为实验的进行增添了一抹神奇的色彩。
  • 易科泰生态健康专题快讯:高光谱成像技术应用于病原体检测
    高光谱成像技术以其快速、无损、非接触、高通量和强大的光谱识别能力,日益引起生物医学研究和医疗检测的关注。意大利Brescia大学的科研人员Giovanni等对五种培养于显色琼脂上的UTI(尿路感染病原体)细菌进行了研究,他们使用Specim V10e采集了样本高光谱数据,并基于机器学习方法进行了细菌菌落分类。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制