当前位置: 仪器信息网 > 行业主题 > >

原位局部扫描电化学测试技术

仪器信息网原位局部扫描电化学测试技术专题为您整合原位局部扫描电化学测试技术相关的最新文章,在原位局部扫描电化学测试技术专题,您不仅可以免费浏览原位局部扫描电化学测试技术的资讯, 同时您还可以浏览原位局部扫描电化学测试技术的相关资料、解决方案,参与社区原位局部扫描电化学测试技术话题讨论。

原位局部扫描电化学测试技术相关的论坛

  • 前沿电化学研究的热点--微区扫描电化学新技术讲座

    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临!近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。http://img1.17img.cn/17img/images/201405/uepic/d1d0fc49-4aa6-4600-bac6-035a24653e58.jpg本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。Dr. John Harper (AMETEK GROUP 科学仪器部)http://img1.17img.cn/17img/images/201405/uepic/e684dcd0-3d7e-4ae9-962b-e4218d3a5918.jpgDr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用王佳教授 (中国海洋大学)http://img1.17img.cn/17img/images/201405/uepic/6fc401fa-573b-44b4-ade7-744995d7c789.jpg中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿

  • 【原创】美国普林斯顿扫描电化学工作站技术交流会 信息共享

    我这有个消息给相关人士分享PrincetonApplied Research普林斯顿M370扫描电化学工作站用户技术交流会通知电化学扫描工作站是微区电化学研究的重要工具,它采用了纳米分辨率、快速精确的三维微区扫描探针平台,灵活便捷的数据采集系统,把电化学的测试技术带到微区,让电化学反应的应用及理论研究进入一个新的境界。为了让现有普林斯顿M370扫描电化学工作站的用户更好的使用这一强大的工具,解决用户在使用M370扫描电化学工作站过程中存在的疑问,Advanced Measurement Technology, Inc公司将于2010年11月在厦门大学举办“M370扫描电化学工作站用户技术交流会”,届时M370扫描电化学工作站全球应用支持专家Dr. Rob Sides博士将与用户一起做现场技术交流,与大家分享仪器使用及操作、应用研究之宝贵经验,欢迎广大用户前来参加。会议时间:2010年11月9日会议地点:厦门大学化学化工学院新化学楼2楼会议室为保证交流会的有效进行,请将您的回执在11月1日前回给 李荣 女士 电话:010-85262111-10分机 传真:010-85262141 Email:rong.li@ametek.com.cn

  • 《电化学测试技术》教学大纲

    一、课程目的与要求电化学测试是基于动力学方法研究电化学过程特征的基本方法,本课程将通过对电化学基本研究方法的介绍,使学生了解电化学过程研究的原理和常用技术方法,为电化学过程研究奠定基础。本课程包括方法理论介绍和实验研究两个部分,其中理论介绍部分通过对电极过程动力学的概要介绍,帮助学生理解常用电化学研究方法的原理,以及实验结果的解析,并通过对一些研究实例的介绍,使学生了解电极过程原理在研究过程中如何应用;实验研究则通过对常用电化学仪器和方法的使用,是学生掌握电化学研究主要仪器的使用,并通过对实验结果的解析掌握电化学原理。 二、教学内容及学时安排第一章:电化学理论基础(8学时)电化学体系的基本单元电化学过程热力学非法拉第过程及界面性能法拉第过程及影响电极/溶液界面因素物质传递控制绪论电化学研究方法介绍稳态与暂态电位扫描技术——循环伏安法控制电位技术——单电位节跃法控制电流技术——恒电位电解光谱电化学方法微电极技术简介第二章:电催化过程(4学时)电催化原理氢电极催化过程氧电极催化过程有机小分子的催化过程第三章:化学电源(4学时)一次电池二次电池燃料电池第四章:电化学腐蚀与防护(4学时)金属的电化学腐蚀腐蚀电池电势—pH图及其在金属防护中的应用金属的电化学防腐蚀讨论:电化学实验结果的处理(2学时)实验一:恒电位仪性能的测试(2学时)参考资料:“北航”电化学实验技术讲义实验二:电势阶跃与电位扫描法测量金属腐蚀与缓蚀速度(4学时)阶跃法:Rp的测量;扫描:腐蚀曲线测量实验三:旋转电极技术——氢析出过程的电化学曲线与电容曲线测量(4学时)旋转电极:氢析出曲线;DDII电镀仪:电容曲线实验四:聚苯胺薄膜的电化学制备及应用(4学时)讨论:结合专题的电化学测试方案:自设计电化学实验(4学时) 三、教材及主要参考书1.《应用电化学》,杨辉等编著,科学出版社,2001年2.《电化学测试技术》,北航出版社,1999年。

  • 新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)

    新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM) 材料2106 李昊哲新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)是一种具有创新性的技术,它在电化学领域的研究和应用中起到了重要的作用。EC-SPM采用了先进的技术和方法,可以对电化学反应进行精确的测量和分析,为科学家们提供了更为准确和可靠的数据。EC-SPM的创新之处在于其结合了扫描探针显微镜(SPM)和电化学技术,实现了对电化学反应的原位观察和测量。传统的电化学测量仪器往往只能提供宏观的电化学数据,而EC-SPM通过在电极表面放置微小的探针,可以实现对电化学反应的纳米级别的测量。这种纳米级别的测量能够更加准确地了解电化学反应的动态变化,提供了更为详细和全面的信息。EC-SPM在前处理合计数方面也进行了改进和优化。传统的电化学测量仪器在前处理过程中往往需要复杂的操作和多个步骤,容易出现误差和不确定性。而EC-SPM通过引入自动化和智能化的前处理系统,可以实现对样品的快速处理和准确计数。这不仅提高了测量的效率,还减少了人为因素对结果的影响,提高了测量的精确度和可靠性。我有幸在实验室使用了电化学扫描探针显微镜(EC-SPM),并且对其性能和使用体验有了一些真实的心得体会。我认为EC-SPM的性能非常出色。它采用了先进的扫描探针显微镜技术,可以实现纳米级的高分辨率测量。在我的实验中,我使用EC-SPM对一种新型材料进行了表面形貌和电化学性质的同时测量,结果非常令人满意。EC-SPM能够清晰地显示出样品的表面形貌,并且能够通过电流-电压曲线来研究材料的电化学行为。这对于我研究材料的结构与性能之间的关系非常有帮助,其次,EC-SPM的操作非常简便。它采用了直观的用户界面,使得操作人员能够快速上手。在我使用的过程中,我只需要按照仪器的操作指南进行操作,就能够轻松地完成测量。而且,EC-SPM还具有自动化的功能,能够实现自动扫描和测量,省去了繁琐的手动调整步骤,提高了实验效率。最后,EC-SPM的数据处理和分析功能也非常强大。它可以对测量得到的数据进行实时处理和分析,并且能够生成高质量的图像和曲线。在我的实验中,我使用EC-SPM获得了一系列的电流-电压曲线,并且通过对这些曲线进行分析,我能够得到材料的电化学性质,比如电荷转移速率和电化学反应动力学参数。这对于我研究材料的电化学性能非常有帮助。EC-SPM在电化学领域的研究和应用中取得了重要的成果。例如,在电池研究中,EC-SPM可以帮助科学家们更好地了解电池中的界面反应和电化学性能,从而提高电池的效率和稳定性。在催化剂研究中,EC-SPM可以实时观察催化剂表面的电化学反应,揭示催化剂的活性和稳定性等关键性质。此外,EC-SPM还可以应用于材料科学、生物医学等领域,实现对材料表面性质和生物分子相互作用的研究。EC-SPM作为一种新型电化学测量仪器,具有创新性的技术和方法。它通过纳米级别的测量,实现了对电化学反应的精确观察和分析。在前处理合计数方面的改进,使得测量结果更加准确和可靠。研究成果在电化学领域的应用广泛,为科学家们的研究和实践提供了重要的支持。它的高分辨率测量能力、简便的操作和强大的数据处理功能使得我能够更好地研究材料的电化学性质。我相信,随着电化学扫描探针显微镜技术的不断发展,EC-SPM将会在材料科学、电化学等领域发挥更加重要的作用。

  • 【资料】英文电子版腐蚀电化学测试技术

    英文电子版腐蚀电化学测试技术,该书详细介绍了腐蚀电化学原理以及常规电化学技术(动电位扫描,旋转圆盘电极以及组抗技术)在腐蚀电化学体系中的具体应用,非常实用。[~100871~][~100873~][~100872~]

  • 【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    1700次,H指数 为18.【会议简介】电化学应用与日常生活和前沿研发的很多领域都有着紧密联系,比如在新能源开发,生物电分析,材料合成,表面保护等。 宏观的电化学反应是电极表面的混杂异构的平均结果, 包含了来自不同反应位点,晶面多向属性以及不同的表面缺陷的平均响应。 这些微观尺度的多样性源取决于材料在纳米尺度下结构,力学,电学以及电化学特性的不均一性。现代电极材料的结构工程正是希望能够在纳米尺度对这些特性进行可控剪裁和加工。在这种情况下,原位和微区电分析技术研究纳米尺度的表面反应是不可或缺的。 为了适应今天这些高度跨学科的研究需要, 能够在原位电化学过程中同时获取相关微观多维信息的技术是科学工作者和工程师们一直的追求。本次报告介绍了布鲁克(Bruker)最新开发,批量制备,高质,稳定且使用便捷的扫描电化学(SECM)纳米电极探针。这些纳米电极探针的特征尺度大约为50 nm。这些探针被用于结合了峰值力轻敲成像模式的原子力显微镜(AFM)平台,也就是布鲁克最近推出的峰值力轻敲扫描电化学显微镜技术。这项技术能够实时的提供空间分辨率高于100 nm的电化学形貌图,以及其他同时获取的高分辨的AFM信息,比如表面形貌图,电学图以及力学图。 另外,这些探针也可以跟布鲁克高带宽的电学模块结合,使得液下纳米电分析成像成为可能。在这次报告,我们也将通过具体例子介绍这项技术在多个领域的应用。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-09 8:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1979http://ng1.17img.cn/bbsfiles/images/2016/09/201609271113_612273_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669143_2507958_3.gif

  • 新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    http://simg.instrument.com.cn/bbs/images/default/em09504.gif2017年05月18日 14:00开讲!!!http://ng1.17img.cn/bbsfiles/images/2017/04/201704131643_01_1785258_3.jpg报名链接:file:///C:\Users\zhangyan\AppData\Roaming\Tencent\QQEIM\Temp\8LDO48C$8@http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/2568主讲人:王竞鹏(Frank Wang) 博士现任Harvard Bioscience Inc. 旗下德国HEKA Elektronik品牌的高级应用技术科学家,职责覆盖北美,欧洲和亚洲区HEKA电化学仪器技术的应用研发和推广支持。王博士本科毕业于天津南开大学分析化学专业,在加拿大完成的博士和博士后研究期间, 师从于多位国际著名的电化学家,致力于广泛的活性纳米材料在多个电化学应用领域内的研究。王博士拥有10年以上的使用HEKA电化学仪器技术及扫描探针显微镜(SPM)技术的科研经验。本次报告会将详细介绍HEKA ElProScan(扫描电化学显微镜)系列产品平台在多个尖端技术应用领域的科研实例。ElProScan凭借德国电化学工业界的开放扫描平台设计以及HEKA全球领先的小电流放大检测技术, 具有一机多用的鲜明独家特点 - 利用HEKA自主研发40多年的一套可高度定制的硬件/软件平台全面支持SECM/SICM/SECCM/SMCM,以及同步荧光微观成像,同步剪切力感应微观形貌成像 和 同步光电化学微观成像等亚微米/纳米尺寸的扫描成像技术。这次报告将深入浅出的介绍ElProScan平台使用微电极(microelectrode)和玻璃微毛细管(micropipette)作为电化学扫描探针,在多种跨学科的前沿科学领域的科研实例,涵盖了生物细胞功能及形貌成像,导电高分子材料/光电半导体材料/锂离子电池材料的微观电化学及形貌表征,防腐蚀材料的微区表征研究等等热门课题。http://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • 【资料】电化学噪声的分析与应用1

    111112221前言电化学噪声(Electrochemicalnoise,简称EN)是指电化学动力系统演化过程中,其电学状1,2态参量(如:电极电位、外测电流密度等)的随机非平衡波动现象.B.A.TЯΓaЙ等1967年3首先注意到了这个现象,之后,电化学噪声技术作为一门新兴的实验手段在腐蚀与防护科4~11学领域得到了长期的发展.电化学噪声的起因很多,常见的有腐蚀电极局部阴阳极反应活性的变化、环境温度的改变、腐蚀电极表面钝化膜的破坏与修复、扩散层厚度的改变、表面膜1,12~20层的剥离及电极表面气泡的产生等.迄今为止,已有很多技术用于表征电极的界面状态,但是它们都存在着各自不同的缺陷.例如:基于真空技术的低能电子衍射法(LEED)和俄歇电子能谱法(AES)等以及基于电磁波原理的椭圆偏光法(Ellipsometry)和扩展X-射线吸收精细结构技术(EXAFS)等诸多光学方法15,21~25都不能对电极腐蚀现象进行原位观察 基于对研究电极施加外界扰动信号的极化曲线法等传统电化学研究方法则可能因为外加信号的介入而影响腐蚀电极的腐蚀过程,同样无26,27法对被测体系进行原位监测.而电化学噪声技术相对于诸多传统的腐蚀监测技术(如:重量法、容量法、极化曲线法和电化学阻抗谱等)具有明显的优良特性.首先,它是一种原位无损的监测技术,在测量过程中无须对被测电极施加可能改变腐蚀电极腐蚀过程的外界扰28~3126动 其次,它无须预先建立被测体系的电极过程模型 第三,它无须满足阻纳的三个27,32基本条件 最后,检测设备简单,且可以实现远距离监测.2电化学噪声的分类根据所检测到的电学信号视电流或电压信号的不同,可将电化学噪声分为电流噪声或电33~36压噪声.1,29,37,38根据噪声的来源不同又可将其分为热噪声、散粒效应噪声和闪烁噪声:(1)热噪声是由自由电子的随机热运动引起的,是最常见的一类噪声.电子的随机热运动带来一个大小和方向都不确定的随机电流,它们流过导体则产生随机的电压波动.但在没有外加电场存在的情况下,这些随机波动信号的净结果为零.1928年贝尔实验室的J.B.Johnson首先对热噪声进行了详细地实验研究(所以热噪声又称为约翰逊噪声),之后,H.Nyquist根据热力学原理在理论上对其进行了大量探讨.实验与理论结果表明,电阻中热噪声电压的均方值2E[VN]正比于其本身的阻值大小(R)及体系的绝对温度(T):2E[VN]=4KBTRΔυ(1)式中,V是噪声电位值,Δυ是频带宽,KB是Boltzmann常数[KB=1.38×(-23)J/K.上式在13直到10Hz频率范围内都有效,超过此频率范围后量子力学效应开始起作用.此时,功率谱将按量子理论预测的规律而衰减.热噪声的谱功率密度一般很小,例如,1MΩ的电阻在室温298K时所产生的热噪声的谱2功率密度的最大值仅为0.0169μV/Hz.因此,在一般情况下,在电化学噪声的测量过程中,热噪声的影响可以忽略不计.热噪声值决定了待测体系的待测噪声的下限值,因此当后者小于监测电路的热噪声时,就必须采用前置信号放大器对被测体系的被测信号进行放大处理.(2)散粒效应噪声是Schottky于1918年研究此类噪声时,用子弹射入靶子时所产生的噪声命名的.因此,它又称为散弹噪声或颗粒噪声.在电化学研究中,当电流流过被测体系时,如果被测体系的局部平衡仍没有被破坏,此时被测体系的散粒效应噪声可以忽略不计.然而,在实际工作中,特别当被测体系为腐蚀体系时,由于腐蚀电极存在着局部阴阳极反应,整个腐蚀电极的Gibbs自由能ΔG为:ΔG=-(Ea+Ec)zF=-E外测zF(2)式中,Ec和Ea为局部阴阳极的电极电位,E外测为被测电极的外测电极电位,z为局部阴阳极反应所交换的电子数,F为Faraday常数.所以,即使外测E外测或流过被测体系的电流很小甚至为零,腐蚀电极的散粒效应噪声也决不能忽略不计.散粒噪声类似于温控二极管中由阴极发射而达到阳极的电子在阳极所产生的噪声.Schottky从理论上证明了该噪声符合下列公式:2E[IN]=2eI0Δυ(3)式中,e为电子电荷,等于1.59×(-19)C,I0为平均电流.在电化学研究中,e应该用q代替,而q是远大于电子电荷的电量.例如,在单晶Ag的电结晶过程中,q相当于在基体表面上生长一单层Ag所需的电荷 在电极腐蚀过程中,q相当于一个孔蚀的产生或单位钝化膜的破坏所消耗的电量.公式(3)在频率小于100MHz的范围内成立.热噪声和散粒噪声均为高斯型白噪声,它们主要影响频域谱中SPD曲线的水平部分.α(3)闪烁噪声又称为1/f噪声,α一般为1、2、4,也有取6或更大值的情况.与散粒噪声一样,它同样与流过被测体系的电流有关、与腐蚀电极的局部阴阳极反应有关 所不同的是引起26散粒噪声的局部阴阳极反应所产生的能量耗散掉了,且E外测表现为零或稳定值,而对应于极局部腐蚀部位的修复而正移 如果在恒压情况下测定,则在电流-时间曲线上有一个正的脉冲尖峰.关于电化学体系中闪烁噪声的产生机理有很多假说,如“时间常数假说”和“渗透理论假说”等,但迄今能为大多数人接受的只有“钝化膜破坏/修复”假说.该假说认为:钝化膜本身就是一种半导体,其中必然存在着位错、缺陷、晶体不均匀及其它一些与表面状态有关的不规则因素,从而导致通过这层膜的阳极腐蚀电流的随机非平衡波动,于是导致电化学体系中产生了α3类似半导体中1/f噪声.闪烁噪声主要影响频域谱中SPD曲线的高频(线性)倾斜部分.3电化学噪声的测定28,41电化学噪声的测定可以在恒电位极化或在电极开路电位的情况下进行.当在开路电位下测定EN时,检测系统一般采用双电极体系,它又可以分为两种方式:同种电极系统和异种电极系统:(1)传统测试方法一般采用异种电极系统,即一个研究电极和一个参比电极.参比电极一般为饱和甘汞电极(SCE)或Pt电极,也有采用其它形式的参比电极的(如Ag-AgCl参比电极42-47等).电化学噪声用参比电极的选择原则为:除了符合作为参比电极的一般要求以外,还1,44要满足电阻小(以减少外界干扰)、电位稳定和噪声低等要求.(2)同种电极测试系统是近年才发展起来的,它的研究电极与参比电极均为被研究的材48,49料.研究表明:电极面积影响噪声电阻,采用具有不同研究面积的同种电极系统测定体系27的电化学噪声时有利于获取电极过程的机理.当在恒电位极化的情况下测定EN时,一般采用三电极测试系统.在双电极测试系统的基础上外加一个辅助电极给研究电极提供恒压极化.3测试系统应置于屏蔽相中,以减少外界干扰.应采用无信号漂移的低噪声前置放大器,1特别是其本身的闪烁噪声应该很小,否则将极大程度地限制仪器在低频部分的分辨能力.4电化学噪声的分析411频域分析电化学噪声技术发展的初期主要采用频谱变换的方法处理噪声数据,即将电流或电位随时间变化的规律(时域谱)通过某种技术转变为功率密度谱(SPD)曲线(频域谱),然后根据SPD曲线的水平部分的高度(白噪声水平)、曲线转折点的频率(转折频率)、曲线倾斜部分的斜率和曲线没入基底水平的频率(截止频率)等SPD曲线的特征参数来表征噪声的特性,探寻电极过程的规律.常见的时频转换技术有快速傅立叶变换(FastFourierTransform,FFT)、最大熵值法(MaximumEntropyMethod,MEM)、小波变换(WaveletsTransform,WT).特别是其中的小波变换,它是傅立叶变换的重要发展,既保留了傅氏变换的优点又能克服其不足.因此,它代表了电化学噪声数据时频转换技术的发展方向.在进行噪声的时频转换之前应剔除噪声的直流部分,否则SPD曲线的各个特征将变得模糊不清,影响分析结果的可靠性.15,50,51(1)傅立叶变换(FFT)傅立叶变换是时频变换最常用的方法.假设信号为s(t),则由该信号经Fourier变换后得1-ωjt2到频谱s(ω)=s(t)edt,及其相应的能量密度频谱(频率密度)P(ω)=|s(ω)|.根∫39,40闪烁噪声的E外测则表现为具有各种瞬态过程的变量.局部腐蚀(如孔蚀)能显著地改变腐蚀电极上局部微区的阳极反应电阻值,从而导致Ea的剧烈变化.因此,当电极发生局部腐蚀时,如果在开路电位下测定腐蚀电极的电化学噪声,则电极电位会发生负移,之后伴随着电

  • 五分钟了解电化学原位红外光谱

    本作品对电化学原位红外光谱这个热门的分析方法进行了一个全面的梳理,首先介绍了电化学原位红外光谱的定义,重要意义及应用领域;然后阐明了电化学原位红外光谱中常用的两种采样模式及其原理,并根据各自特点选取相

  • 【原创大赛】SPM观察金属表面局部电位变化

    【原创大赛】SPM观察金属表面局部电位变化

    1、SPM原位分析扫描电化学显微镜可用于原位检测电极表面微区电位、电流分布以及检测微观尺寸上的STM形貌分布。采用XMU-BY电化学扫描显微镜研究碳钢试样在孔蚀电位Eb及亚稳态孔蚀电位Em下恒电位极化时,碳钢试样表面的微区电位分布的变化。SPM技术是一种新型的观测金属表面的测试技术,包括扫描隧道显微镜(STM) 、原子力显微镜(AFM) 、磁力显微镜(MFM) 等。相较于其他表面分析技术,SPM不仅能够采用高分辨率的三维表面成相与测量,还能够对材料的性质差别进行研究。对于SPM的运用也从最初的测试工具发展为加工、制造等微观精密领域的应用。本文中所使用的XMU-BY扫描电化学工作站可用于原位检测电极表面微区电位、电流分布以及检测微观尺寸上的STM形貌分布。此外,XMU-BY扫描电化学工作站特有的定点测试功能,可以自动地将扫描探针定位到感兴趣的区域,然后可以进行局部点位置多种电化学信息的跟踪测试,比如电位随时间的变化测试、电位随X/Y/Z方向距离的变化测试、物质分布变化的测试以及形貌变化的测试。另外,还通过与恒电位仪联用,进行了外加恒电位条件下试样表面形貌的原位分析,实验用恒电位仪为。图1为联用系统结构原理框图,原理框图如下:http://ng1.17img.cn/bbsfiles/images/2015/09/201509271337_568105_2590289_3.png图1扫描探针显微镜与恒电位仪联用系统结构原理框图 http://ng1.17img.cn/bbsfiles/images/2015/09/201509271337_568106_2590289_3.png图2扫描探针显微镜与恒电位仪联用系统实物图图2为根据原理结构框图我们所建立的恒电位下扫描探针显微镜实物图。从图中可看出, XMU-BY扫描电化学工作站由5部分组成:扫描平台(包括扫描探头、扫描平台底座、扫描器、探针架和探针)、控制机箱、恒电位仪、电机控制器、计算机控制系统。2、实验与讨论在碳钢孔蚀电位Eb下进行恒电位极化,得到Q235碳钢表面电位变化。每隔5min得到一张电位微区分布图,连续恒电位测量1h,将所得的图片使用CSPM Imager图片编辑软件进行分析,绘制出三维图像。图3为实时监测电位分布图,图4为将得到数据进行三维处理后的电位分布图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568107_2590289_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568108_2590289_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568109_2590289_3.jpg图3 SPM恒电位极化下,碳钢表面电位分布http://ng1.17img.cn/bbsfiles/images/2015/09/201509271352_568110_2590289_3.png图4 恒电位Eb下Q235碳钢表面随时间变化的电位分布图3、结论在电位Eb恒电位极化下,碳钢表面微区电位同样呈现不均匀性,存在活性阳极与活性阴极区。

  • 【转帖】著名电化学专家田昭武院士

    著名电化学专家田昭武院士姓名: 田昭武 性别: 男 籍贯: 福建福州 学位: 博士 毕业院校: 厦门大学 个人简介 田昭武,男,1927年6月生于福建福州; 1980年当选为中国科学院院士; 现任主要职务:厦门大学教授 ; 主要学习及工作经历: 1949年毕业于厦门大学化学系。1984年获英国威尔士大学名誉博士学位; 1982-1989任厦门大学校长; 1986年当选为中国化学会理事长; 1996年当选为国际电化学会副主席和第三世界科学院院士; 历任厦门大学教授,同体表面物理化学国家重点实验室名誉主任,中国人民政协常务委员,中国化学会理事长,福建省科协主席, 国家教委化学教学指导委员会主任委员, 国际电化学学会理事及第 46 届年会主席,国际太阳能光化学转化与储存会议组织委员及第九届会议主席; 主要研究成果 专长物理化学,重视交叉学科,研究领域扩展到光电化学、光谱电化学、量子电化学、扫描隧道显微技术和纳米加工技术等; 在多孔电极极化理论方面, 提出“特征传输电流”概念和气体扩散多孔电极的“不平整液膜”模型 对半导体电极光电转换提出数学模型和“可移动掺杂物”高聚物半导体光电转换理论 对电极交流阻抗绝对等效电路提出微分新解法 得到自催化电极暂态过程理论解。专著《电化学研究方法》, 主编《PHOTOCHEMICAL AND PHOTOELECTROCHEMICAL CONVERSION AND STORAGE OF SOLAR ENERGY 》; 首创的电化学研究方法和技术有: 用于测定瞬间交流阻抗的选相调辉测定法和选相检波测定法 用于测定超低腐蚀速率的控制电位脉冲电流技术 用于测定局部腐蚀的扫描微电极技术。在他指导下研制成功并投入生产的仪器有: DHZ-1型电化学综合测试仪, XYZ-1型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]抑制器, WF-III型微区腐蚀电位分布测量系统等, 获发明专利权六项。近期在纳米技术领域提出超微复杂三维图形的复制新技术; 当前研究兴趣: 1.纳米工艺学. 2.光谱电化学与光电化学. 3.电化学分析新技术. 4.量子电化学. 5.应用电化学(化学电源、金属腐蚀等); 已发表科学论文130余篇,专著《电化学研究方法》,并主编了《电化学实验方法进展》和《Photochemical and Photo-electrochemlcal Conversion and Storage of Solarenergy》; 曾作为第一获奖者获部级以上奖励7项:1986年国家教委科技进步一等奖,1987年同家自然科学三等奖,1989年国家教委科技进步二等奖(2项),1990年国家发明三等奖,1980年第四机械工业部科技成果一等奖,1982年福建省科技成果一等奖,1986获年全国五一劳动奖章;

  • 【求助】电化学工作站测试电极的电流,电压

    一直以来电化学工作站采用的测试都是恒电流,恒电压方式。貌似不能表征出被测电极原位的电压,电流值。因为即使采用相对于开路的恒压方式,电极的开路值很多都是在变化的,而电化学工作站也不能动态采集变化的开路电位,因此测量结果就不是原位的。我是这么理解的,不知道有谁用的比较熟的,帮我解释下,或是否有这样的功能用来设置体系,使之测量值为原位的电压,电流值。最好是273A,autolab电化学工作站上的方法还有一种方法就是对电极和研究电极采用相同电极,恒电压设置成相对对电极电压为零,貌似可以理解为动态开路测量,还是也只是最开始设置值,并不是动态跟踪的。对一起的测量原理,我知道的太少了啊。

  • 电化学测试技术的若干进展

    [font=&]【题名】: 电化学测试技术的若干进展[/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH197901000.htm[/font]

  • 电化学测试技术详细介绍

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34021]电化学测试技术[/url]

  • 【分享】好书推介:电化学测量方法

    书 名: 电化学测量方法 作  者: 贾铮,戴长松,陈玲 编著出 版 社: 化学工业出版社出版时间: 2006-8-1 内容简介本书全面系统地介绍了进行电化学测量所需要的各方面知识,内容包括电化学测量的基本原则和步骤,电化学体系的数学描述,测量实验的基本知识,测量仪器的基本原理,各类稳态和暂态的测量方法。目前常用的电化学测量方法均给予了详细的介绍,包括稳态极化曲线的测量方法、控制电流阶跃暂态法、控制电势阶跃暂态法、线性电势扫描伏安法、脉冲伏安法、交流阻抗法、电化学扫描探针显微技术、光谱电化学技术及其它联用表征技术。重点介绍的是各类测量方法的原理、测量技术和数据解析方法,同时兼顾具体的实验细节。本书可用作高等学校化学工程与工艺、应用化学、工业催化、材料化学等专业的本科生和研究生的教材或教学参考书,也可供从事一切电化学应用领域生产和研究的科技人员参考。

  • 请教电化学问题:循环伏安曲线为何为一直线?如何用电化学工作站进行充放电测试?

    鄙人刚开始进行电化学方面的工作,对此几乎一窍不通,还望各位不吝赐教!请教各位:使用的上海辰华CHI660B电化学工作站,想测定Mg-Ni的电化学性能,采用Ni(OH)2/NiOOH做正极,Mg-Ni压片做负极,之前用HgO/Hg电极做参比电极时,电势范围-0.5~-1.1V,扫描速率10mv/s,测定循环伏安曲线时有峰出现,但现在不知道为何,最近这几天测定的CV曲线却几乎为一条直线?不知道是什么原因造成的?是否是参数设置不合理?另外还有一个问题:使用CHI660B电化学工作站如何对Mg-Ni材料进行充放电测试?应该用哪一个程序?参数应如何设置?问题好像有点多:)请各位高手不吝赐教!在此先道谢!

  • 中华环保联合会关于《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》团体标准征求意见的函

    [font=宋体, SimSun][size=18px]各有关单位、专家:[/size][/font][font=宋体, SimSun][size=18px]根据国家标准化管理委员会、民政部印发的《团体标准管理规定》和《中华环保联合会团体标准管理办法(试行)》相关要求,由中华环保联合会归口,北京大学提出的《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》团体标准,经多次调研、内部讨论、召开专家技术审查会等工作,数易其稿形成了征求意见稿。[/size][/font][font=宋体, SimSun][size=18px]为保证标准的科学性、严谨性和适用性,现公开征求意见。公示期间,可登录全国团体标准信息平台([/size][/font][url=http://www.ttbz.org.cn/]www.ttbz.org.cn[/url][font=宋体, SimSun][size=18px])或我会网站([/size][/font][url=http://www.acef.com.cn/]www.acef.com.cn[/url][font=宋体, SimSun][size=18px])下载审阅标准文本。[/size][/font][font=宋体, SimSun][size=18px]诚挚邀请各有关单位及专家提出宝贵建议和意见,并于2023年11月20日前将《团体标准意见反馈表》反馈至联系人邮箱,逾期未反馈按无意见处理。[/size][/font][font=宋体, SimSun][size=18px] [/size][/font][font=宋体, SimSun][size=18px]联系人:梁巧英 18330686008(同微)[/size][/font][font=宋体, SimSun][size=18px]邮 箱:acef_nec@163.com[/size][/font][font=宋体, SimSun][size=18px]地 址:北京市朝阳区和平里14区青年沟东路华表大厦6层[/size][/font][font=宋体, SimSun][size=18px] [/size][/font][font=宋体, SimSun][size=18px]附件:[/size][/font][font=宋体, SimSun][size=18px]1、《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》(征求意见稿)[/size][/font][font=宋体, SimSun][size=18px]2、《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》(征求意见稿)编制说明[/size][/font][font=宋体, SimSun][size=18px]3、中华环保联合会团体标准意见反馈表[/size][/font][align=right][font=宋体, SimSun][size=18px]中华环保联合会[/size][/font][/align][align=right][font=宋体, SimSun][size=18px]2023年10月18日[/size][/font][/align][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20231018/6383324132165414216475341.pdf]附件1.《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》(征求意见稿).pdf[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20231018/6383324132221517427200753.pdf]附件2.《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》(征求意见稿)编制说明.pdf[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif[/img][url=https://www.ttbz.org.cn/upload/file/20231018/6383324132115311354561427.doc]附件3.中华环保联合会团体标准征求意见反馈表.doc[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20231018/6383324132180215061960482.pdf]关于《铬污染场地原位修复技术指南 矿物—电化学还原稳定法》团体标准征求意见的函.pdf[/url]

  • 电化学工作站能否用来测试光电池的放电曲线?

    我现在做的课题是染料敏化太阳能电池,已经有了光源,需要一台能够测试电池放电曲线的仪器,不是很清楚能否用电化学工作站的线性扫描伏安法来测IV曲线呢?比较便宜的能完成这个试验的仪器得多少钱呢?哪位有详细的资料麻烦告知一下:chenrk#sohu.com,谢谢了

  • 【资料】电化学噪声的分析与应用3

    根据Butter-Volmer方程从理论上证明了噪声电阻与线性极化电阻RP的一致性,其证明的前提条件为:(a)阴阳极反应均为活化控制,(b)研究电极电位远离阴阳极反应的平衡电位,(c)阴阳极反应处于稳态.噪声电阻被定义为电位噪声与电流噪声的标准偏差比值,即Rn=SV/SI(12)50,68Rn与Rsn之间存在着内在的联系.GordonP.Bierwagen从物理学原理出发,导出了另一个噪声电阻的概念,但有的学者对公71式推导的严谨性提出了质疑.69,72,73(4)Hurst指数(H)是E.H.Hurst于1956年采用标度变换技术(R/S)研究分维Brownian运动(fBm)的时间序列时提出来的.之后,E.H.Hurst与L.T.Fan和B.B.Mandel2brot等学者先后独立提出时间序列的极差R(t,s)与标准偏差S(t,s)之间存在着下列关系:HR(t,s)/S(t,s)=S  01/2时,时间序列的变化具有持久性,而当H0表明信号时间序列是多峰分布的,Ku=0或Ku3,则信号的分布峰比Gaussian分布峰尖窄,反之亦然.Ku可用下式表达:N14Ku=(I-I)(15)4imean(N-1)Si6=1  在电化学噪声的时域分析中,除了上述方法外,应用得较多的还有统计直方图(HistogramRepresentation),它分为两种.第一种统计直方图是以事件发生的强度为横坐标,以事件发生的次数为纵坐标所构成的直观分布图.实验表明,当腐蚀电极处于钝态时,统计直方图上只有一个正态(Gaussian)分布 而当电极发生孔蚀时,该图上出现双峰分布.另一种是以事件发29,74生的次数或事件发生过程的进行速度为纵坐标,以随机时间步长为横坐标所构成.该图能在某一个给定的频率(如取样频率)将噪声的统计特性定量化.413电化学发射光谱法(EES)26电化学发射光谱(EES)是在传统的电化学噪声测试技术基础上发展起来的一种新方法.该方法采用三电极体系(参比电极、工作电极和微阴极),其中微阴极应该足够小,以致于工作电极的腐蚀情况不会因为该工作电极与微阴极组成回路的原因而产生变化.根据Butter-Volmer方程可导出:ΔIk+1Ik+1-IkIcorr,kIcorr,k-IkAC,k+1===2303+(16)ΔVk+1Vk+1-Vk1babc式(16)中的Ik和Vk分别为k时刻的噪声电流和电压 Icorr,k为k时刻工作电极的腐蚀电流 AC,k+1是k+1时刻腐蚀电极的导纳 bc和ba分别为工作电极阴阳极反应的Tafel斜率.如果Icorr,kμIk,则式(16)可以进一步简化.由式(16)求出的AC,k+1不仅可以用来计算均匀腐蚀的腐蚀速率,而且可用于区分均匀腐蚀与局部腐蚀.如果工作电极发生均匀腐蚀,则AC,k+10 如果工作电极发生局部腐蚀,则AC,k+10.K.Habib于2000年在EES技术的基础上提出了改进的电化学发射光谱方法(ModifiedElectrochemicalEmissionSpectroscopy,MEES),实际上只是改用光学方法测定腐蚀电流,而其74它方面与EES完全一致.即在MEES方法中,工作电极的腐蚀电流Icorr,k的测定不是采用传统的零电阻安培计,而是采用光学腐蚀仪:F|Z|duIcorr,k=(17)MT式(17)中Icorr,k为k时刻的腐蚀电流,F为Faraday常数,|Z|为电子转移数,M为组成工作电极材料的原子的原子量,T是测定工作电极时阳极电流流过的时间,d是工作电极材料的密度,u为电极材料的光学参数.5电化学噪声技术的发展展望从1967年提出电化学噪声的概念以来,电化学噪声技术得到了迅速地发展.然而,迄今为止,它的产生机理仍不完全清楚、它的处理方法仍存在欠缺.因此,寻求更先进的数据解析方法已成为当前电化学噪声技术的一个关键问题.另外,结合当今微观世界的最新研究成果来分析电化学噪声的产生机理,以及结合非线性数学理论(如:分形理论)来描述电化学噪声的特征都可能代表了电化学噪声将来的研究方向.而电化学噪声技术在生物化学领域的应用则代表了它的发展方向.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制