当前位置: 仪器信息网 > 行业主题 > >

低维纳米结构与性能工作组

仪器信息网低维纳米结构与性能工作组专题为您整合低维纳米结构与性能工作组相关的最新文章,在低维纳米结构与性能工作组专题,您不仅可以免费浏览低维纳米结构与性能工作组的资讯, 同时您还可以浏览低维纳米结构与性能工作组的相关资料、解决方案,参与社区低维纳米结构与性能工作组话题讨论。

低维纳米结构与性能工作组相关的资讯

  • 全国纳标委低维纳米结构与性能工作组邀您参与3项国标制定
    p style="text-indent: 28px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "2005/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "年span4/span月span1/span日,全国纳米技术标准化委员会(spanSAC/TC279/span)由国标委发文批准成立,主要负责纳米技术领域的基础性国家标准制修订工作。span2016/span年span11/span月span20/span日,经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“工作组”)正式成立,编号为spanSAC/TC279/WG9/span,负责组织协调全国低维纳米技术领域标准化工作。/span/pp style="text-indent: 28px margin-top: 15px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生;这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的应用前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,可为产业界和学术界交流提供统一的技术语言,促进低维纳米材料产业的健康、有序发展。/span/pp style="text-indent: 28px margin-top: 15px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "2020/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "年,工作组有span3/span项纳米技术国家标准项目计划通过审批/span。为确保标准编制工作顺利开展,特成立各项目的标准制定工作组,在标准制修订过程中牵头组织必要的技术研讨、关键技术研究及对比实验验证等工作,现公开广泛征集标准制定工作组成员,欢迎有关单位及专家共同参与。/pp style="margin-top: 15px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "一、《纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "计划号:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span20202906-T-491/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-08-07/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "清华大学/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/6ZS0z85"http://tc279wg9-ldmas.mikecrm.com/6ZS0z85/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "img style="max-width: 100% max-height: 100% width: 186px height: 181px " src="https://img1.17img.cn/17img/images/202012/uepic/4129d6cf-f195-4cdb-8bf0-92eac6533200.jpg" title="1.jpg" alt="1.jpg" width="186" height="181"//span/pp style="line-height: 1.5em margin-top: 20px "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "二、《纳米技术 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "计划号:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span20202801-T-491/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-08-07/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "泰州巨纳新能源有限公司、中国科学院上海微系统与信息技术研究所、泰州石墨烯研究检测平台有限公司、东南大学、南京大学/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/4HXF5FP"http://tc279wg9-ldmas.mikecrm.com/4HXF5FP/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "img style="max-width: 100% max-height: 100% width: 190px height: 190px " src="https://img1.17img.cn/17img/images/202012/uepic/6fb0de26-ab1e-4ba8-85b1-08074a90df90.jpg" title="2.jpg" alt="2.jpg" width="190" height="190"//span/pp style="line-height: 1.5em margin-top: 20px "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "三、《纳米技术 拉曼法测定石墨烯中缺陷含量》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family: 微软雅黑, sans-serif "计划号/spanspan style="font-family: 微软雅黑, sans-serif ":/span/strongspan style="font-family: 微软雅黑, sans-serif "20204113-T-491/spanbr//pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-11-23/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "泰州石墨烯研究检测平台有限公司、东南大学、中国科学院大连化学物理研究所、泰州巨纳新能源有限公司、内蒙古石墨烯材料研究院、绍兴文理学院/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/dADKmru"http://tc279wg9-ldmas.mikecrm.com/dADKmru/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' " img style="max-width: 100% max-height: 100% width: 194px height: 194px " src="https://img1.17img.cn/17img/images/202012/uepic/1065d376-8e24-463d-97d4-c7fcf47fe6dc.jpg" title="3.jpg" alt="3.jpg" width="194" height="194"//span/strong/pp style="line-height: 1.5em margin-top: 20px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "更多咨询请联系工作组秘书处:/span/strong/pp style="line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "全国纳标委低维纳米结构与性能工作组秘书处联系方式/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "联系人:邵悦span 13914543362 /span/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "固定电话:span0523-82836717/span/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "Email: standard@graphene-center.org, shaoyue@graphene-center.org/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "通信地址:江苏省泰州市凤凰西路span168/span号span5/span号楼/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "邮编:span225300/span/span/p
  • 2021年全国纳标委低维纳米结构与性能工作组年会及委员扩大会议成功召开
    2021年10月9日,在2021年第四届低维材料应用与标准研讨会(LDMAS2021)期间,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“工作组”)2021年会及委员扩大会议成功召开。会议对工作组2021年重要工作进行了总结,并就相关国际标准、国家标准的申报和起草等事项展开讨论。工作组主任、南京大学教授王欣然主持会议工作组秘书长梁铮汇报2021年工作组年报低维材料应用与标准研讨会(Symposium on Low-Dimensional Material Application and Standardization, LDMAS)是由工作组发起的全国性学术会议,每年举办一届。LDMAS2021重点关注纳米能源与催化材料等低维材料以及低维半导体电子/光电子器件等领域的研究、应用及标准化,旨在为相关领域的专家学者及企业家交流最新研究成果、探讨产业发展方向提供平台。2021年,工作组重点开展了4项标准的起草工作,并计划新增4项国家标准的立项申请;组织召开线上、线下标准编制讨论会,走访低维纳米材料相关企业;参加其他标准化活动,互相交流。工作组副主任丁荣宣读工作组章程修改说明随即,《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》国家标准项目启动,并由中国科学院半导体研究所所长谭平恒介绍项目整体情况和工作计划。谭平恒介绍《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》国家标准项目情况《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》(计划号20212960-T-491)国标由中国科学院半导体研究所起草。二硫化钼是二维层状材料中过渡金属硫化物的代表性材料,具有优异的电学、光学、力学、热学、润滑、催化等性能,以及半导体或超导性质,应用前景及其广阔。然而,二硫化钼薄片的物理和化学性质会随着其层数或厚度的改变而改变,其层数将显著影响光学和电学等性能,因此,二硫化钼薄片层数是其商业产品的重要指标参数研究表明,拉曼光谱法是一种表征二硫化钼薄片层数的简单、可行、高效、无损的方法。谭平恒所长详细介绍了本项目的先进性、创新性,以及标准编制的工作计划安排。该标准的发布实施将为生产企业提供二硫化钼薄片层数表征的质检控制标准,规范行业,有效筛除不合格产品;为科研院所和高校进行二硫化钼薄片基础科学研究提供保障,推动其持续、健康、有序发展;可拓展到其他二维半导体材料等产品;引领国际标准,在国际竞争中占据制高点。工作组副秘书长吕俊鹏介绍三项国际标准研究解读与转化目前,《纳米技术 纳米尺度薄膜厚度评估 椭圆偏振技术应用指南》(项目号:IEC/TR 63258:2021)、《纳米技术 石墨烯及相关二维材料的特性及测量方法矩阵》(项目号:ISO/TR 19733:2019)、《纳米技术 石墨烯结构表征 第1部分:石墨烯粉末及分散》(项目号:IS0/TS 21356-1:2021)三项国际标准在国内无相关标准,为填补国内空白,进一步提升工作组在低维材料领域的话语权,工作组将对上述标准进行采标与转化。工作组部分委员合影
  • 全国纳标委低维纳米结构与性能工作组2020年会暨标准化论坛成功召开
    p style="line-height: 1.5em " 2020年12月7日,在下一代电子信息材料与器件高峰论坛暨第三届低维材料应用与标准研讨会(LDMAS2020)期间,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“低维工作组”)年会及委员扩大会议在无锡成功召开。会议对低维工作组2020年重要工作进行了总结,并公开广泛征集新立项国家标准编制工作组成员;会议结束后随即举办标准化论坛。来自国家纳米科学中心的全国纳标委副主任葛广路、秘书长王孝平等领导出席了本次活动。/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/0fb2e880-1799-4614-8cf4-a9789ddeaacb.jpg" title="会议.JPG" alt="会议.JPG"//pp style="text-align: center line-height: 1.5em "strong会议现场 /strong /pp style="line-height: 1.5em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/dd1043ca-c873-4d9c-ac96-d317960f8426.jpg" title="葛广路.JPG" alt="葛广路.JPG"//strong/pp style="text-align: center line-height: 1.5em "strong全国纳标委副主任、国家纳米科学中心研究员葛广路/strong/pp style="text-align: left margin-top: 15px line-height: 1.5em " 会议由低维工作组主任、南京大学教授王欣然主持。葛广路简要介绍了国际标准化工作,低维工作组秘书处汇报了工作组2020年工作总结及2021年工作计划。/pp style="margin-top: 15px line-height: 1.5em " 今年,低维工作组筹划举办了2020年低维材料应用与标准研讨会,该系列研讨会(Symposium on Low-Dimensional Material Application and Standardization, LDMAS)是由低维工作组发起的全国性学术会议,始于2018年,目前已成功举办三届, LDMAS2018在江苏南京召开,LDMAS2019在陕西西安召开,LDMAS2020近日在江苏无锡召开。此外,在2020年,低维工作组有3项国家标准项目计划通过审批,组织申报IEC标准项目2项。 /pp style="margin-top: 15px line-height: 1.5em " 自低维工作组成立以来,一直面向社会各界征集热衷于从事低维纳米技术标准化的专家学者。为进一步加强低维工作组的技术力量和专业覆盖面,增强工作组影响力,本年度增补工作组委员6位,副主任委员2位,副秘书长1位,单位成员4家,以及通讯成员7位。同时,为更好地了解国内低维纳米技术的研究及发展情况,工作组秘书处特走访了部分拟计划增补的工作组委员单位和单位成员单位,并积极参与多个其他标准化活动,与同行互相交流学习。/pp style="margin-top: 15px line-height: 1.5em " 展望2021年,低维工作组将积极开展各类标准的申报及编制工作,加强标准化项目的征集,继续办好LDMAS系列会议以形成行业特色,组织举办各类标准化活动,并加强工作组工作成果宣传,进一步吸纳更多企业及个人加入工作组。/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/feb0e489-3b33-4b41-a498-a90ac6e319a9.jpg" title="王孝平.JPG" alt="王孝平.JPG"//pp style="text-align: center line-height: 1.5em "strong全国纳标委秘书长、国家纳米科学中心王研究员王孝平/strong/pp style="margin-top: 15px line-height: 1.5em " 王孝平介绍了低维工作组2020年新立项的3项国家标准,包括《20202906-T-491 纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》,《20202801-T-491 纳米技术 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法》,《20204113-T-491 纳米技术 拉曼法测定石墨烯中缺陷含量》,并欢迎相关单位及专家加入以上国家标准编制工作组,共同参与完成标准制定工作。/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/912292e9-8ca5-4907-8fb9-a17a5598c033.jpg" title="丁荣.JPG" alt="丁荣.JPG"//pp style="text-align: center line-height: 1.5em "strong全国纳标委低维工作组副主任、泰州巨纳新能源有限公司董事长丁荣/strong/pp style="text-align: left margin-top: 15px line-height: 1.5em " 最后,低维工作组副主任丁荣介绍了工作组成员增补的具体情况,其中,增补中科院半导体所研谭平恒研究员、东南大学孙立涛教授为副主任委员,东南大学教授吕俊鹏为副秘书长。葛广路、王欣然与丁荣共同为与会的新成员代表颁发证书。/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/8ae6ac7e-3dc6-4491-9cb3-45999912a18d.jpg" title="低维聘书.JPG" alt="低维聘书.JPG"//pp style="text-align: center line-height: 1.5em "strong自左至右:丁荣,王欣然,谭平恒,吕俊鹏,葛广路/strong/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/41d8fffb-af21-4771-bac9-6a495933f2df.jpg" title="会员.JPG" alt="会员.JPG"//pp style="text-align: center line-height: 1.5em "strong低维工作组新成员单位/strong/pp style="margin-top: 15px line-height: 1.5em " 低维工作组年会及委员扩大会议结束后,全国纳标委秘书处高洁、中科院微系统所王浩敏、武汉大学高恩来、Wiley出版集团蒋方圆、东南大学于远方带来精彩主题报告。br//pp style="margin-top: 15px line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3fc63dd0-7320-4c0a-8d4b-1131f169addc.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center margin-top: 10px line-height: normal "strong报告人:全国纳标委秘书处 高洁/strong/pp style="text-align: center line-height: normal margin-top: 5px "strong报告题目:全国纳米技术标准化委员会(SAC/TC279)情况简介及标准制修订/strong/pp style="margin-top: 15px line-height: 1.5em " 全国纳标委成立于2005年4月,主要负责纳米技术领域的基础性国家标准制修订工作,旨在通过标准促进产学研结合,助推企业发展。为保证标准质量,推进标准项目按期完成,纳标委对标准项目进行全过程管理,2020年组织了48项标准的征求意见、预审查、审查、投票、报批及颁布。此外,纳标委还组织了国家标准外文版翻译项目;与国内相关标委会深入沟通合作,建立了紧密联系;并从10个重要考核指标出发,反思总结其整体工作;积极参与ISO/TC229、IEC/TC113标准化活动。报告中,高洁还对纳标委的立项推荐要点与立项评估程序,以及国家标准的制定流程做了详细介绍。/pp style="margin-top: 5px line-height: 1.5em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c8e80801-6988-42a2-9144-869499db2900.jpg" title="2.JPG" alt="2.JPG"//strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告人:中科院微系统所 王浩敏/strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告题目:石墨烯薄膜载流子迁移率及方块电阻测量方法/strong/pp style="margin-top: 5px line-height: normal "strong/strong/pp style="margin-top: 15px line-height: 1.5em " 石墨烯具有极高的载流子迁移率,在电子学领域具有重要的应用前景。目前,制备石墨烯薄膜的方法众多,电学特性测量方法各异,造成产品性能难以比对,限制了该材料的推广和应用。霍尔测量方法具有结果精准,因而受到广大研究人员的认可,但该测量方法在产业界却没有形成统一的标准和规范操作。王浩敏在报告中,提出了一种能够广泛适用的石墨烯电学特性的测量方法,拟与产业界达成共识,形成国家与国际标准。/pp style="margin-top: 5px line-height: 1.5em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/d484bba4-5141-4584-9f24-e173714e88cb.jpg" title="3.jpg" alt="3.jpg"//strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告人:武汉大学 高恩来/strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告题目:小尺寸纳米结构薄膜拉伸性能测定方法/strong/pp style="margin-top: 15px line-height: 1.5em " 纳米结构薄膜如石墨烯、碳纳米管薄膜等,具有优异的力学性能(强度可达~1-10GPa) , 且在导电、导热、过滤分离等领域有多功能应用。拉伸性能是纳米结构薄膜质量控制和应用开发的核心指标,其准确表征和测量是纳米结构薄膜材料研究、开发和应用的基础。现有的测试纳米结构薄膜力学性能的方法中,所用的测试样品(形状、尺寸)和方式(固定、加载)各异,测试过程具有夹持效应、尺寸效应和应变率效应。因此,测试方法不规范,缺乏相关国际、国家与行业标准。高恩来在报告中,提出了一种规范小尺寸纳米结构薄膜的刚度、强度、韧性等力学性能的测量方法,填补了此领域的空白。/pp style="margin-top: 5px line-height: 1.5em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1ed453d8-708f-45b8-bfe3-9911fa2fa18a.jpg" title="4.jpg" alt="4.jpg"//strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告人:东南大学 于远方/strong/pp style="margin-top: 5px text-align: center line-height: normal "strong报告题目:/strongstrongNANOMANUFACTURING – KEY CONTROL CHARACTERISTICS – Graphene – Measuring layer-number distribution of CVD graphene by optical contrast method/strong/pp style="margin-top: 5px line-height: normal "strong/strong/pp style="line-height: 1.5em margin-top: 15px " 通过化学气相沉积法(CVD)制备的大面积石墨烯在科研和工业方面具有广阔的应用前景。在生长过程中, CVD 石墨烯样品上出现的多层晶畴会导致额外的散射来源,严重降低载流子迁移率,影响样品的光学特性。因此,准确表征层数分布情况是研究、开发和应用 CVD 石墨烯的关键。光学对比度法是一种快速、无损且精确的表征手段,但在利用光学对比度法表征层数分布时,显微镜的光场分布、硅衬底表面氧化层厚度和物镜的数值孔径等因素都会影响测量结果;因而,在产业迸发前期,亟待进行 CVD 石墨烯层数分布率测定方法的标准化。/pp style="margin-top: 5px line-height: 1.5em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e32f7819-30e7-4b0d-8db5-1f16c9da318a.jpg" title="5.jpg" alt="5.jpg"//strong/pp style="margin-top: 5px line-height: 1.5em "strong/strong/pp style="text-align: center line-height: normal "strong报告题目:审稿标准化:如何做一名优秀的审稿人/strong/pp style="text-align: center line-height: normal "strong报告人:Wiley 出版集团蒋方圆/strong/pp style="line-height: normal margin-top: 15px " 审稿人的工作不仅对论文本身,同时也对该专业领域和整个科学界做出了贡献。期刊希望审稿人能给出及时、客观、专业的评审意见,在帮助期刊筛选合适的发表稿件的同时,又能助力被评审的研究工作锦上添花。本报告从专业编辑的角度,对审稿人的评审流程、评审注意事项等方面作了相关介绍和探讨。/pp style="line-height: normal margin-top: 15px " 为了激励及培养年轻科研人员的工作热情,大会特设立研究生论坛,优选出12位研究生代表分别作各自研究领域的学术报告。大会共评选出5项优秀研究生报告奖,低维工作组副主任、东南大学物理学院院长倪振华,东南大学材料学院副院长陶立,江南大学教授肖少庆为获奖的研究生颁奖。/pp style="line-height: normal margin-top: 15px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/36e7bc47-5f98-490a-afa4-9ce9077c2cce.jpg" title="刚刚.jpg" alt="刚刚.jpg"//pp style="line-height: normal margin-top: 15px text-align: center "strong研究生报告掠影/strong/pp style="margin-top: 15px line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9ff359c2-b877-4a99-92af-e0c20754e025.jpg" title="11.jpg" alt="11.jpg"//pp style="margin-top: 15px line-height: 1.5em text-align: center "strong优秀研究生报告奖/strong/pp style="line-height: 1.5em margin-top: 25px "更多LDMAS2020精彩内容,详见:/pp style="margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em "a href="https://www.instrument.com.cn/news/20201206/566823.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px "12位院士领衔 下一代电子信息材料与器件高峰论坛暨LDMAS2020盛大开幕/span/strong/span/a/pp style="margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em "a href="https://www.instrument.com.cn/news/20201207/566956.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px "LDMA2020盛会来袭!聚焦大会首日精彩报告/span/strong/span/a/pp style="margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em "a href="https://www.instrument.com.cn/news/20201207/566955.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px "低维材料与器件盛会LDMAS2020圆满闭幕 2021相约北京/span/strong/span/a/p
  • 2018年低维材料应用与标准研讨会(LDMAS)暨低维纳米标准化工作组年会在南京隆重召开
    p style="text-align: center "strong2018年低维材料应用与标准研讨会(LDMAS)/strong/pp style="text-align: center "strong暨低维纳米标准化工作组年会在南京隆重召开/strong/pp  10月19日-20日,2018年低维材料应用与标准研讨会(LDMAS)暨全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9,简称低维纳米标准化工作组)年会在江苏南京隆重召开。/pp  低维材料应用与标准研讨会是由全国纳米技术标准化技术委员会低维纳米结构与性能工作组发起的全国性学术会议,每年举行一次。会议旨在为我国低维材料相关领域的高校、科研院所、企事业单位提供交流与合作的平台,将低维纳米材料最新研究成果与标准化工作进一步结合,促进我国低维纳米科技事业登上崭新的台阶。会议由全国纳米技术标准化委员会低维纳米结构与性能工作组和江苏省泰州市质量技术监督局联合主办,南京邮电大学、南京大学、东南大学、国家纳米科学中心联合承办。众多知名学者、行业专家、标准专家、企业代表齐聚一堂,就我国低维材料的最新研究进展和发展趋势、产业化应用及标准化工作进行了深入广泛的交流。/pp  19日上午,2018年低维材料应用与标准研讨会正式开幕。大会开幕式由南京邮电大学副校长汪联辉主持。国家纳米科学中心主任、全国纳米技术标准化技术委员会主任刘鸣华,江苏省质量技术监督局标准化处处长洪淼,江苏省泰州市质量技术监督局副局长江峰相继致辞。北京大学张锦教授、徐东升教授、清华大学魏飞教授、中国科学技术大学俞书宏教授、新加坡南洋理工大学教授张华和兰州大学张浩力教授分别做精彩学术报告。/pp style="text-align: center "img title="汪联辉校长.jpg" alt="汪联辉校长.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/67652e68-834d-4853-99e4-fa307f26c65e.jpg"//pp style="text-align: center "  汪联辉校长主持开幕式/pp  本次研讨会聚焦低维材料的制备、调控和表征分析技术 低维信息与能源功能材料 半导体低维结构及器件 低纬传感器和发光材料 低维材料应用探索 低纬材料产业化和标准化六大主题。除了大会报告外,还分设两个分会场进行为期两天41个学术报告的研讨与交流。/pp style="text-align: center "img title="参会人员交流.jpg" alt="参会人员交流.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/61c771a4-b3fb-4feb-8795-5d04e82dd635.jpg"//pp style="text-align: center "  参会人员与主讲嘉宾现场交流/pp  会议同期还设置了19个低维纳米科技学术成果的墙报公示区,并邀请企、事业单位、检测机构、仪器设备厂商近二十家单位到会展示技术成果,参展的仪器设备厂商包含了HORIBA、上海临点、天美、岛津、牛津仪器等。/pp  20日上午,2018年低维材料应用与标准研讨会(LDMAS2018)圆满落幕,闭幕式由南京邮电大学教授马延文主持,全国纳米技术标准化技术委员会副主任、国家纳米科学中心研究员葛广路做了总结致辞。闭幕式上还揭晓了8名优秀墙报奖得主。/pp style="text-align: center "img title="墙报奖.png" alt="墙报奖.png" src="https://img1.17img.cn/17img/images/201811/uepic/aac5db24-66e8-43a3-98e6-3b1c7713648c.jpg"//pp style="text-align: center "  LDMAS2018优秀墙报奖/pp  20日下午,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9,下简称低维纳米标准化工作组)年会召开。会议总结了低维纳米标准化工作组2018年的重要工作,就企业标准化基地及试点项目进行了答辩,并就5项标准化项目进行了预立项评审。会议还对低维纳米标准化工作组2019年的工作重点进行了建议和部署。/pp  会上,低维纳米标准化工作组秘书长、国家火炬(泰州)石墨烯研究检测平台执行主任梁铮教授对低维纳米标准化工作组的重点工作做了汇报。截至目前,低维纳米标准化工作组累计征集待开展标准化项目41项,其中6项即将参加国标委的立项答辩。此外,2018年,工作组还组织申报IEC标准项目2项,组织了《纳米科技 术语 第13部分:石墨烯及相关二维材料》国家标准和《石墨烯粉体材料检测方法》河北省地方标准的函审。另外,工作组还增补委员两名,组建了官方网站(dw.tc279.cn)和微信公众号低维纳米资讯(LDNanoTech),并积极走访低维纳米技术领域相关单位,参与其他标准化活动的制定。/ppimg title="梁铮.png" alt="梁铮.png" src="https://img1.17img.cn/17img/images/201811/uepic/16b12db6-904b-4189-9264-130d48613ad4.jpg"//pp style="text-align: center "  梁铮汇报2018年工作总结/pp  年会还组织了“低维纳米产品(产业)综合标准化基地”和“石墨烯行为标准化良好行为企业”提名企业的评审测评会。江苏河海纳米科技股份有限公司和山东安恒华盛石墨烯材料科技有限公司分别汇报了“低维纳米产品(产业)综合标准化基地”和“石墨烯行为标准化良好行为企业”两个标准体系建设项目的进展。/pp /p
  • 2019年全国纳标委低维工作组年会成功召开
    p style="text-align: justify text-indent: 2em "2019年11月16日下午,在LDMAS2019期间,第三届全国纳米技术标准化技术委员会低维纳米结构与性能工作组年会及委员扩大会议在西安广成大酒店召开。会议对全国纳标委低维工作组2019年的重要工作进行了总结和梳理,并对一项国家标准项目开展了意见征集。会议还对纳标委低维工作组2020年的工作重点进行了建议和部署。全国纳标委秘书长、国家纳米科学中心王孝平研究员,全国纳标委副主任、国家纳米科学中心研究员葛广路等领导出席。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/0cf36ca0-6eff-4e29-835a-48010bcc82f3.jpg" title="2019年全国纳标委低维工作组年会成功召开.JPG" alt="2019年全国纳标委低维工作组年会成功召开.JPG"//pp style="text-align: center text-indent: 0em "strong丁荣/strongbr//pp style="text-align: justify text-indent: 2em "会议由全国纳标委低维工作组副主任委员、泰州巨纳新能源有限公司董事长丁荣主持,全国纳标委低维工作组秘书长梁铮教授首先对全国纳标委低维工作组(下简称低维工作组)2019年的重点工作做了汇报。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/ffe1a6a2-ae05-4371-a406-f7ec955db224.jpg" title="2019年全国纳标委低维工作组年会成功召开 (2).JPG" alt="2019年全国纳标委低维工作组年会成功召开 (2).JPG"//pp style="text-align: center text-indent: 0em "strong梁铮/strongbr//pp style="text-align: justify text-indent: 2em "低维工作组是经国标委和中科院批准正式成立,负责组织协调全国低维纳米技术领域标准化工作的专项工作组。在2019年,低维工作组共征集了6项国家标准参加国家标准管理委员会的立项答辩,其中《2017LD02 检测方法 纳米技术 石墨烯比表面积测量方法——固体标样参比法》、《2017LD10 检测方法 纳米技术 拉曼法测定石墨烯中缺陷含量》、《2017LD15 检测方法 纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》、《2017LD27 检测方法 纳米技术 低场核磁共振测量石墨烯材料湿式比表面积的方法 》四项已成功结束公示。此外,低维工作组还在2019年新征集国家标准项目2项,组织申报IEC标准项目2项,并初步完成了以低维纳米碳材料、低维纳米材料结构表征、低维纳米材料性能测试为核心的低维纳米结构与性能标准化体系建设。/pp style="text-align: justify text-indent: 2em "自低维纳米结构与性能工作组成立以来,一直面向社会各界征集热心低维纳米技术标准化工作、在低维纳米技术领域具有良好工作基础、具有一定标准化工作经验的专家学者。2019年低维工作组还对通讯及单位成员进行了增补,除41名委员外,新增通讯成员14名,单位成员6家。委员和成员们在2019年还参与了数十项其他标准化活动与工作。/pp style="text-align: justify text-indent: 2em "展望2020,梁铮表示,低维工作组将继续积极开展各类标准的申报及编制工作,加强标准化项目的管理,组织举办各类标准化活动,加强低维工作组工作成果的宣传,进一步吸纳更多单位及个人进入工作组。/pp style="text-align: justify text-indent: 2em "报告中,梁铮还以《纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》为例,从项目必要性,项目可行性,适用范围,拟解决主要问题,技术先进性、创新性和产业化情况、国家/企业项目支持情况,内外标准一致性程度、预期作用和效益等几个维度详细介绍了如何申报国家标准项目。他特别强调,低维纳米相关国家标准的申报项目,要From Lab to Industry to Production。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/df42622b-bec1-4a63-9ba9-c07238753ead.jpg" title="2019年全国纳标委低维工作组年会成功召开 (5).JPG" alt="2019年全国纳标委低维工作组年会成功召开 (5).JPG"//pp style="text-align: center text-indent: 0em "strong倪振华/strongbr//pp style="text-align: justify text-indent: 2em "年会还开展了对《纳米技术 石墨烯及相关二维材料的层数测量 光学对比度法》国家标准项目的意见征集,第一起草人东南大学倪振华教授对标准做了介绍。石墨烯及具有类似结构的相关二维材料的层数与其性能密切相关,光学对比度法是测定相关二维材料层数的一种快速、无损、高灵敏度的方法,本标准规定了光学对比度发测量石墨烯及相关二维材料层数过程中的步骤、仪器参数要求、数据分析、层数判定准则等。适用于晶体质量高、具有微米级尺寸的、层数不多于5层的均匀石墨烯薄膜及石墨烯薄片,且不适用径向尺寸小于2微米或的结构缺陷多、晶体质量差的上述物质。标准所规定的仪器设备为正置或倒置光学显微镜(明场,100倍镜头)和可成彩色像的电荷耦合装置(CCD)。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 664px height: 664px " src="https://img1.17img.cn/17img/images/201911/uepic/b850e5dd-eea3-4aef-865f-6dcf341f7a45.jpg" title="2019年全国纳标委低维工作组年会成功召开 (10).jpg" alt="2019年全国纳标委低维工作组年会成功召开 (10).jpg" width="664" height="664" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong会议研讨剪影/strongbr//pp style="text-align: justify text-indent: 2em "年会上,与会领导、专家、委员、成员们畅所欲言,对《纳米技术 石墨烯及相关二维材料的层数测量 光学对比度法》国家标准和低维工作组下阶段的重点工作提出意见与建议。/pp style="text-align:center"img style="max-width: 100% max-height: 100% " src="https://img1.17img.cn/17img/images/201911/uepic/0633b76e-bf9a-45c4-8e37-12b066996b94.jpg" title="IMG_6529.JPG" alt="IMG_6529.JPG"//pp style="text-align: center text-indent: 0em "strong王孝平/strongbr//pp style="text-align: justify text-indent: 2em "王孝平秘书长总结发言,他充分肯定了低维材料组2019年的突出成绩,并对工作组下一步的工作重心提出要求:一是要继续聚焦真正对纳米产业发展有贡献的标准征集与申报;二是继续大力推动低维纳米材料领域的标准建设工作,特别是要加强相关国际标准的制定;三是进一步完善标准化体系的建设工作。他表示,全国纳标委将继续大力支持低维工作组的各项工作,共同促使我国低维纳米标准化工作再上一个台阶。/p
  • 2018年全国纳标委低维工作组年会成功召开
    p style="text-indent: 2em text-align: justify "2018年10月20日下午,在LDMAS2018结束后,第二届全国纳米技术标准化技术委员会低维纳米结构与性能工作组(下简称全国纳标委低维工作组)年会在南京召开。会议总结了全国纳标委低维工作组2018年的重要工作进行了梳理,就企业标准化基地及试点项目进行了答辩,并就5项标准化项目进行了预立项评审。会议还对纳标委低维工作组2019年的工作重点进行了建议和部署。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/630c3ce8-0528-4972-8490-e4e4787aec5d.jpg" title="IMG_0726.JPG" alt="IMG_0726.JPG"//pp style="text-align: center text-indent: 0em "strong丁荣主持/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201810/uepic/47e0ed10-91db-4ac2-a5d5-9bc048c6207f.jpg" title="IMG_0736.JPG" alt="IMG_0736.JPG"//strong/pp style="text-align: center text-indent: 0em "strong王孝平致辞/strong/pp style="text-indent: 0em text-align: center "strongimg src="https://img1.17img.cn/17img/images/201810/uepic/30747fbb-6926-4163-930b-a3177d2814f5.jpg" title="IMG_0766.JPG" alt="IMG_0766.JPG"//strong/pp style="text-indent: 0em text-align: center "strong葛广路/strong/pp style="text-indent: 2em text-align: justify "会议由全国纳标委低维工作组副主任委员、泰州巨纳新能源有限公司董事长丁荣主持,全国纳标委秘书长、国家纳米科学中心王孝平研究员,全国纳标委副主任、国家纳米科学中心研究员葛广路等领导出席。王孝平研究员开场致辞,他肯定了全国纳标委低维工作组在2018年取得的工作成果,并结合自身经验,就标准申报、答辩过程中的注意事项进行了建议。表示希望工作组再接再厉,立足标准化与产业界相结合的理念,继续加强标准的制定工作。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/16b2f28d-e3fe-4816-aa43-658a0184d8df.jpg" title="IMG_0729.JPG" alt="IMG_0729.JPG"//pp style="text-indent: 2em text-align: center "strong会议现场/strong/pp style="text-indent: 2em text-align: justify "全国纳标委(SAC/TC279)于2005年4月1日由国标委发文批准正式成立,主要负责纳米技术领域基础性国家标准的制修订工作。成立12年来,已有归口国家标准54项,管理的标准制定项目80项。为我国纳米技术和产业化的健康发展作出突出贡献。/pp style="text-indent: 2em text-align: justify "近年来低维材料在光电、催化、传感等领域的前景引起了学术界和产业界的高度关注,已逐步进入从实验室研发到产业化应用的阶段,相关命名方式、测试方法、技术规范、性能评价等标准化工作的开展,已成为低维纳米技术产业和技术发展的迫切需求。在这样的形势下,全国纳标委低维工作组(SAC/TC279/WG9)经国标委和中科院批准正式成立,负责组织协调全国低维纳米技术领域标准化工作。王欣然任工作组主任委员,倪振华、丁荣任工作组副主任委员。梁铮任秘书长,工作组现有委员41人,秘书处设在泰州石墨烯研究检测平台有限公司。/pp style="text-indent: 2em text-align: justify "泰州石墨烯研究检测平台是由泰州市人民政府、泰州市巨纳新能源有限公司联合组建的石墨烯研究检测机构。平台2014年成为科技部认定的国家火炬计划平台,2016年成为中国国际石墨烯资源产业联盟国际标准工作委员会秘书处。截至目前共获批国家标准4项(1项即将发布),联盟标准7项(3项已发布)、联盟标准项目7项(3项已发布)。另外还率先发布全国首批石墨烯检测技术领域企业标准19项、共编技术标准87项、管理标准45项、工作标准10项。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/1a723b2e-f91a-492e-ab14-5e3e108cc466.jpg" title="IMG_0926.JPG" alt="IMG_0926.JPG"//pp style="text-align: center "strong梁铮汇报2018年工作总结/strong/pp style="text-indent: 2em text-align: justify "会上,全国纳标委低维工作组秘书长、国家火炬(泰州)石墨烯研究检测平台执行主任梁铮教授对全国纳标委低维工作组的重点工作做了汇报。截至目前,全国纳标委低维工作组累计征集待开展标准化项目41项,其中6项即将参加国标委的立项答辩。此外,2018年,工作组还组织申报IEC标准项目2项,组织了《纳米科技 术语 第13部分:石墨烯及相关二维材料》国家标准和《石墨烯粉体材料检测方法》河北省地方标准的函审。另外,工作组还增补委员两名,组建了官方网站(dw.tc279.cn)和微信公众号低维纳米资讯(LDNanoTech),并积极,走访低维纳米技术领域相关单位,参与其他标准化活动的制定。刚刚结束的2018年低维材料应用与标准研讨会(LDMAS2018)也由全国纳标委低维工作组组织举办。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6807bbfe-5960-4430-9184-e70df054404f.jpg" title="IMG_0991.JPG" alt="IMG_0991.JPG"//pp style="text-align: center "strong2018LD02项目代表汇报工作/strong/pp style="text-indent: 2em text-align: justify "2018年全国纳标委低维工作组新征集标准化项目5项。年会上,组委会专家就进行了预立项评审。经过立项代表报告、答辩等环节的严格审查,项目“2018LD02 检测方法 二维材料各向异性及其器件偏振对比度测试方法”得到首肯,被批准立项,进入海审阶段。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/97813505-c51b-4a6d-99af-a0aece5c1dda.jpg" title="IMG_0941.JPG"//pp style="text-align: center "strong江苏河海纳米科技股份有限公司企业代表/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/cb0c43d2-7720-4041-8156-ed530eb612e3.jpg" title="IMG_0980.JPG"//pp style="text-align: center "strong山东安恒华盛石墨烯材料科技有限公司企业代表/strong/pp style="text-indent: 2em text-align: justify "年会还组织了“低维纳米产品(产业)综合标准化基地”和“石墨烯行为标准化良好行为企业”提名企业的评审测评会。两项评选是全国纳标委低维工作组于2018年开展的两项面向企业重点项目,参加年会评审测评的两家提名企业是经过组委会严格初审,从17个申报企业中遴选而得。其中“低维纳米产品(产业)综合标准化基地”需要企业针对低维纳米产业的重大关键问题开展综合标准化,为低维纳米技术产业化和标准化提供有效支撑;“石墨烯行为标准化良好行为企业”则需要按照《企业标准体系》系列国家标准的要求,建立了健全完善的企业标准体系,并取得了良好的经济和社会效益。两项评审项目旨在树立低维纳米技术标准化示范企业,带动产业界投身相关行业的标准化建设中。最终经过专家评审和测评,江苏河海纳米科技股份有限公司和山东安恒华盛石墨烯材料科技有限公司分别成功当选“低维纳米产品(产业)综合标准化基地”和“石墨烯行为标准化良好行为企业”。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/14cd9d6b-cfff-45e2-8d01-6a187f5b5774.jpg" title="1111112qqqqqqqqqqqqq.jpg" alt="1111112qqqqqqqqqqqqq.jpg"//pp style="text-indent: 2em text-align: center "strong参会专家发言掠影1/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/08e3cf1b-1385-4c60-b8ca-855b2e303223.jpg" title="222222222222211111111111111qqqq.jpg"//pp style="text-align: center "strong参会专家发言掠影2/strong/pp style="text-indent: 2em text-align: justify "年会上,与会领导、专家、委员们畅所欲言,探讨了我国低维纳米技术标准化工作的现状和发展趋势,并对全国纳标委低维工作组下阶段的重点工作提出几个方面的建议:一是围绕重点工作方向和热点领域、关键技术,积极开展各类标准的申报和编制工作;二是加强标准化项目的管理,对标准项目申报单位对项目可行性及必要性进行评估;三是组织举办各类标准化活动,继续积极开展LDMAS2019的筹备工作;四是加强对工作成果的宣传推广,让更多的科研机构、企事业单位参与到低维纳米标准化工作中来;五是进一步吸纳更多优秀单位和个人进入全国纳标委低维工作组,共建我国低维纳米标准化体系。/p
  • 清华大学《PNAS》:基于极小曲面的微纳米点阵材料的优异力学性能
    作为一种新兴的力学超材料,三维微纳米点阵材料具有低密度、高模量、高强度、高能量吸收率和良好的可恢复性等优异的力学性能,极大地拓展了已有材料的性能空间。如何通过拓扑结构设计获得具有优异力学性能的三维微纳米点阵材料是固体力学领域的研究热点之一。微纳米点阵材料通常由具有特定结构的单胞在三维空间中周期阵列形成。根据组成单胞的基本元素的种类,可以将三维微纳米点阵材料分为基于桁架(truss)、平板(plate)和曲壳(shell)三种类型。目前,基于桁架的微纳米点阵材料已经表现出良好的力学性能,但其节点处的应力集中限制了其力学性能的进一步提升。近年来的研究表明,基于平板的微纳米点阵材料可以达到各向同性多孔材料杨氏模量的理论上限,然而其闭口的结构特点为其通过增材制造的手段进行制备带来了挑战。相比之下,具有光滑、连续、开口特点的曲壳结构则在构筑具有优异力学性能的微纳米点阵材料方面具有天然的优势。近期,清华大学李晓雁教授课题组采用面投影微立体光刻设备(microArch S240,摩方精密BMF)制备了特征尺寸在几十至几百微米量级的多种桁架、平板和曲壳微米点阵材料。所研究的结构包括Octet型和Iso型两种桁架结构、cubic+octet平板结构以及Schwarz P、I-WP和Neovius三种极小曲面结构。其中,cubic+octet平板结构是早先研究报道的能够达到各向同性多孔材料杨氏模量理论上限的平板结构。该团队通过原位压缩力学测试研究并对比了多种不同结构的微米点阵材料的变形特点和力学性能。结果表明,相对密度较大时,I-WP和Neovius曲壳微米点阵材料与cubic+octet平板点阵材料类似,在压缩过程中呈现均匀的变形特点。而Octet型和Iso型两种桁架点阵则在压缩过程中形成明显的剪切带,发生变形局域化。相应地,I-WP和Neovius两种曲壳点阵和cubic+octet平板点阵具有比桁架点阵更高的杨氏模量和屈服强度,这与有限元模拟的结果一致。有限元模拟同时揭示了曲壳和平板单胞具有优异力学性能的原因在于其在压缩过程中具有更均匀的应变能分布,而桁架单胞节点处存在明显的应力集中,其节点处及竖直承重杆件的局部应变能甚至可以达到整体结构平均应变能的四倍以上。该研究表明,基于极小曲面的点阵材料能够表现出比传统的桁架点阵材料更为优异的力学性能,同时其光滑、连续、无自相交区域的特点使得其在构筑结构功能一体化的微纳米材料方面具有重要的应用前景。图1. (A-F) 多种桁架、平板及曲壳单胞结构;(G-L)采用面投影微立体光刻技术制备的多种不同结构的聚合物微米点阵材料图2. 利用面投影微立体光刻技术制备的聚合物微米点阵材料原位压缩力学测试结果。(A-F)工程应力-应变曲线;(G-L)不同结构的点阵材料在加载过程中的典型图像(标尺为2 mm) 图3. 周期边界条件下不同单胞结构单轴压缩的有限元模拟结果。(A-B)归一化杨氏模量和屈服强度随相对密度的变化;(C-H)不同单胞结构的应变能分布
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
  • ETH Zurich Norris教授课题组:3D纳米直写技术助力任意形貌六方氮化硼(hBN)纳米3D结构的制备
    【引言】六方氮化硼(hBN)单晶纳米片的原子平滑表面,为光电应用领域带来了革 命性的突破。在纳米光学方面,hBN的强非线性、双曲线色散和单光子发射等特性,为相应的光学和量子光学器件带来一些有性能。在纳米电子学领域,良好的物理,化学稳定性和较宽的禁带,使hBN成为二维电子器件的关键材料。目前,对hBN的研究重点局限于二维扁平结构,尚未涉其3D立体结构对性能的影响。如果能根据需求对hBN纳米片的高度做出相应调整,将为下一代光电器件中调节光子流,电子流和激子流等性能提供一个有效的方法。 【成果简介】近日,Norris教授课题组利用3D纳米直写技术和反应离子刻蚀的方法制备出可任意调控形貌的hBN纳米3D结构。此类hBN纳米3D结构在光电子器件研究领域尚属次。得意于3D纳米结构高速直写机(NanoFrazor)在光刻胶上能实现亚纳米精度的加工,Norris教授课题组运用该方法制备了光电子学相板、光栅耦合器和透镜等元件。获得的元件通过后续组装过程制备成高稳定、高质量的光学微腔结构。随后,通过缩小图形长度比例的方法,引入电子傅里叶曲面,在hBN上实现复杂的高精度微纳结构,展现了NanoFrazor在3D纳米加工领域的潜力。【图文导读】图1. 使用NanoFrazor制备hBN纳米3D结构流程图(a)左图为利用NanoFrazor在光刻胶表面上实现3D结构制备,右图为通过反应离子刻蚀方法将光刻胶上的3D结构转移到hBN的流程;(b)Mandelbrot分形图案刻蚀在光刻胶上的结果。黑色代表图形的 高处,白色为 低处;(c)光刻胶上的Mandelbrot分形图案通过图(a)中的过程转移到hBN上的结果;(d)图(c)中hBN的SEM(倾转30o)表征结果。图2. 利用NanoFrazor在hBN上制备任意形貌的纳米3D结构(a)白色中线左侧为准备的高密度图形样图,右侧为通过NanoFrazor将高密度图形转移到hBN后的实际结果;(b)将图(a)中的图形转移到hBN后的SEM表征结果;(c)AFM测量图(a)中红色虚直线所示部分的表面形貌;(d)hBN纳米3D结构的高分辨成像,左下角厚度为95 nm,右上角厚度为50 nm;(e)AFM测量hBN中高密度方形结构(29 nm)周期性图样结果,体现了NanoFrazor对制备结构的高度可控性;右上角插图是该周期性结构的快速傅里叶变换(FFT)结果。 图3. 利用NanoFrazor制备的hBN光学微纳元件(a)在130 nm厚hBN上制备螺旋相位板阵列的光学表征结果;(b)单个螺旋相位板的AFM结果;(c)具有球形轮廓的hBN微透镜光学显微照片;(d)微透镜理论图样(左侧)和实际制备结果(右侧)比较;(e)光学微腔的示意图,镜、底镜、hBN微透镜(蓝色)和带横向限制(黑色箭头)的腔模式(红色);(f)拥有hBN微透镜的微腔角分辨光谱结果;(g)根据制备的微腔几何结构所计算的横向Ince-Gaussian模分布结果;(h)测量的横向Ince-Gaussian分布结果。图4. hBN上制备的电子傅里叶曲面(a)具有六边形晶格的电子傅里叶曲面位图;(d)将两个六边形晶格与一个在平面上旋转10°的晶格叠加而成的位图;(g)两个叠加的六边形晶格的位图,周期分别为55和47 nm,无平面内旋转;(j)将九个位图分别在平面内旋转0、20、40、60、80、100、120、140和160°后的叠加效果;(b)、(e)、(h)、(k)为使用NanoFrazor在光刻胶上制备(a)、(d)、(g)、(j)中图形时所获得的结果;(c)、(f)、(i)、(l)、是把(b)、(e)、(h)、(k)中的图案刻蚀在hBN上的AFM测量结果;(a)-(l)中的插图代表着相应图案的FFT结果。【小结】本文利用NanoFrazor有的3D纳米直写技术在hBN上实现了复杂高精度纳米3D结构的制备,为光电器件性能的应变调控和能带结构调控带来了新的研究方向。这一研究结果表明,NanoFrazor在开拓双曲线超材料、化电子、扭转电子、量子材料和深紫外光电器件等领域新的研究方向上有着重要的作用。
  • 纳米压印光刻领头羊天仁微纳获数千万元战略投资,加速布局微纳光学市场
    据麦姆斯咨询报道,近日,青岛天仁微纳科技有限责任公司(以下简称“天仁微纳“)宣布完成由中芯聚源独家战略投资的数千万元A轮融资。本轮融资将用于加快公司用于微纳光学等领域纳米压印设备和解决方案的研发和布局,完善售后服务,进一步扩大市场领先优势。从2015年成立至今,天仁微纳已经成为国际领先的纳米压印设备与解决方案供应商,应用包括3D传感(DOE、Diffuser等)、增强现实与虚拟现实(AR/VR)、生物芯片、集成电路、平板显示、太阳能电池、LED等领域。依靠着全球领先的创新技术和设备性能,完善的售后服务,快速的产品迭代,凭借2018年以来微纳光学晶圆级加工生产的市场契机,天仁微纳厚积薄发,打败诸多国际竞争对手,迅速占领了国内超过90%的市场份额,成为该领域市场的领头羊。晶圆级光学加工(WLO)2017年苹果公司发布的结构光人脸识别技术第一次将微纳光学元器件引入了消费类电子领域,晶圆级光学器件加工的概念也逐渐映入人们的眼帘。随着纳米压印光刻技术被应用在结构光人脸识别的DOE元件生产,业界逐渐认识到,与传统光学透镜加工不同的是,基于纳米压印光刻技术的晶圆级光学加工(WLO工艺)更加适合移动端消费电子设备。特别是在3D视觉发射端结构复杂的情况下,光学器件采用WLO工艺,可以有效缩减体积空间,同时器件的一致性好,光束质量高,采用半导体工艺在大规模量产之后具有成本优势。2019年高端智能手机3D传感iToF(间接飞行时间)模组中的匀光片(diffuser)再次引入了纳米压印作为量产手段,2020年AR衍射光波导光栅加工将纳米压印技术的应用推向面积更大的12英寸,纳米压印终于完成了从科研到大规模量产的华丽转身。纳米压印结果厚积薄发,从跟随到超越晶圆级光学加工量产对纳米压印设备精度、稳定性与一致性要求极高,过去一直被德国、奥地利两家光刻设备公司的进口设备所垄断。天仁微纳创始人冀然博士,从事纳米压印技术研发与推广20年。冀然博士2000年赴德留学,师从欧洲纳米压印之父Kurz教授研究纳米压印设备与材料,先后获得德国亚琛工业大学硕士学位与马普所博士学位。博士毕业后加入德国半导体设备上市公司负责纳米压印设备开发与市场推广。2015年,看到纳米压印在微纳光学晶圆级加工领域的市场前景,冀然博士辞去德国上市公司纳米压印首席科学家职位归国创业,成立天仁微纳,专注于纳米压印设备与全套解决方案的研发与产业化。纳米压印应用领域经过几年的研发与积累,实现了面向微纳光学晶圆级加工的完整设备与工艺材料的解决方案。2019年,在中国高科技企业受到国外技术封锁与制裁的背景下,国产高端智能手机着眼于使用国产设备加工3D传感所需的衍射光学器件。作为国内该领域唯一一家能与欧洲设备公司"掰手腕"的天仁微纳,凭借领先的技术、完善的售后服务和快速的市场应对能力抓住了这个机会,设备打入衍射光学器件量产生产线,经过不断的打磨与迭代,占领了大部分市场份额,打败国际竞争对手,实现了国产替代。2020年初,AR衍射光栅波导市场迅速展开,天仁微纳凭借多年研发,积累了完整的AR衍射光波导生产解决方案,包括步进式压印制造12英寸大面积衍射光栅模具、高精度工作模具复制与大面积高保型性光栅压印的全套设备与工艺解决方案,通过给客户提供AR衍射光栅波导生产“设备+工艺”的一站式解决方案的模式,一举垄断了国内市场,从技术到市场全面超越进口设备。不改初心,剑指纳米压印全球第一对于公司未来的发展,冀然博士充满信心:“无论从技术领先性,还是产业化市场份额,我们在国内微纳光学市场已经具有绝对领先优势,对比国际竞争对手,我们有两大竞争优势:一是贴近市场,二是响应速度快。市场需求是驱动技术创新和发展的源头,而未来纳米压印生产最大的市场一定在中国。我们立足于中国市场,贴近客户需求,以最低的沟通成本得到市场反馈。纳米压印是一个不断发展中的、动态变换的技术和市场,基于对市场需求的理解,我们要发挥我们的快速技术迭代能力,不断推出适应客户需求的设备和工艺,来推动市场的发展。这些优势都是国外竞争对手所不具备的,我们要将这些优势发挥到极致,转换为胜势,在快速发展的同时,发挥精雕细琢的工匠精神,相信我们一定能在纳米压印这个细分领域做到全球第一!“天仁微纳将继续致力于纳米压印光刻在晶圆级光学加工领域的拓展,加快设备与工艺的研发迭代,扩大领先优势,同时还将拓展纳米压印在半导体集成电路、平板显示、生物芯片等其它领域的产业化应用,为客户提供更多、更完善的研发和生产解决方案。中芯聚源创始合伙人暨总裁孙玉望表示:“纳米压印是微纳光学器件量产的理想方式,随着3D传感、AR等应用的持续发展,纳米压印将迎来快速发展的黄金期。中芯聚源看好天仁微纳团队在纳米压印行业的多年积累,天仁微纳已推出多款适用于不同场景的纳米压印设备,形成纳米压印设备和材料的一体化平台,将助力国产纳米压印设备打破进口垄断。”冀然博士表示:”深耕纳米压印这个技术20年了,无论市场对这个技术是冷是热,一直坚持下来,就是因为坚信这个技术会有很好的应用前景。守住这份初心,不贪大而全,先做好小而美,做隐形行业冠军,认真打磨产品,真诚服务每一个客户,在一个技术领域深挖到极致,为中国的微纳加工设备产业发展踏踏实实地做出我们的贡献,未来天仁微纳才能成长为有国际竞争力的公司。”关于天仁微纳青岛天仁微纳科技有限责任公司成立于2015年,是世界领先的纳米压印设备和解决方案提供商,产品与服务涵盖纳米压印相关的设备、模具、材料、工艺以及生产咨询服务。天仁微纳致力于拓展纳米压印技术在创新产品领域的应用,例如3D传感(DOE、Diffuser等)、AR/VR、生物芯片、集成电路、显示、太阳能电池、LED等。天仁微纳的使命是成为世界领先的创新公司,并利用卓越的创新力为客户解决高附加值生产难题,帮助客户实现创新技术到产品的转化。
  • 点赞 | 实现性能调控的纳米尺度结构设计
    p  在物理与材料研究领域中,众多问题的解决受限于样品质量、尺寸、探测极限等因素制约而搁置,而这些问题是可以通过电子显微学方法来实现突破。近年发展起来的球差矫正等先进电子显微学方法,为在纳米乃至原子尺度对众多物理量及其耦合关系的测量与表征提供了可能,也为实现性能调控的纳米尺度结构设计提供了依据。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/a8bbe64e-d38a-46f2-b984-3ba9190a2d19.jpg" title="1.jpg" alt="1.jpg" width="450" height="325" border="0" vspace="0" style="width: 450px height: 325px "//pp style="text-align: center "span style="color: rgb(0, 176, 240) "田鹤老师科研工作照/span/pp  众所周知,大多数材料在温度变化时呈现热胀冷缩的性质,而有一类特殊的材料因其在温度变化时体积基本保持不变,被称为零膨胀材料。一直以来,零膨胀材料因其在高精度仪器、极端条件元器件等方面极具应用价值而备受关注。然而,目前发现的零膨胀材料仍非常稀少,设计制备宽服役温度范围、低膨胀系数的零膨胀材料是该领域的核心目标。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/84763b66-77b5-492c-be61-1be8b29b18d9.jpg" title="2.jpg" alt="2.jpg" width="600" height="281" border="0" vspace="0" style="width: 600px height: 281px "//pp style="text-align: center "span style="color: rgb(0, 176, 240) "研究图a/span/pp  针对这一问题,张泽院士带领下的田鹤团队进行了系统的原位实验及微结构研究,表明铁电材料中,封闭介孔内存在着正负铁电极化表面,这些表面分别由氧离子、氧空位的聚集而被屏蔽。这一特殊的自发铁电极化屏蔽机制使得介孔微区附近的铁电性消失,从而显示出正膨胀性能。这一特性与钛酸铅本征的负膨胀性质相协同,从而使单晶介孔钛酸铅纤维表现出零膨胀的特性。成功将大量纳米尺度的封闭介孔引入到单晶钙钛矿钛酸铅中,这有效地调制了热膨胀性能,其晶胞体积在极宽的温度范围内基本保持不变。这一研究揭示了铁电体内部表面微结构的构建及其铁电极化屏蔽机制对材料热膨胀性能起到了显著调控作用,为设计、制备性能优异的新一类单相零膨胀材料提供了新思路。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/45816567-b796-4776-9c9f-f02335703bfd.jpg" title="3.jpg" alt="3.jpg" width="600" height="455" border="0" vspace="0" style="width: 600px height: 455px "//pp style="text-align: center "span style="color: rgb(0, 176, 240) "研究图b/span/pp  另一方面,由于尺寸、表面和界面效应以及量子效应等因素,材料中的有序结构,如铁磁有序、铁电有序等,通常在极限尺寸下被显著抑制。由于长程有序的尺寸限制,到目前为止,在室温下实现具有垂直于表面极化的原子厚度铁电薄膜仍然是一个艰巨的挑战,严重制约了高密度非易失性存储器件的发展与小型化。针对这一问题,我们团队利用球差矫正电子显微镜,在一个单位晶胞厚的BiFeO3薄膜中直接观察到了面外的强自发极化,并且实现了高达370% 的隧道电流变效应。这一发现证实了BiFeO3薄膜中的铁电临界厚度可以通过结构设计以实现突破,这对于高密度数据存储显示出巨大的应用前景,将为铁电基器件的小型化突破开辟可能性。/pp  借助先进电子显微学方法,在纳米乃至原子尺度对众多物理量及其耦合关系进行研究的能力,可以为探索材料性能与微结构关系提供依据,为设计、优化功能性材料特性,实现纳米尺度结构设计调控宏观性能提供新的途径。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/59832007-ec42-4212-85c3-242933457bcf.jpg" title="4.jpg" alt="4.jpg" width="600" height="275" border="0" vspace="0" style="width: 600px height: 275px "//pp  在此工作基础上,田鹤负责的“实现性能调控的纳米尺度结构设计”成功入围浙江大学“2018年度十大学术进展评选”活动。以下为该项目具体情况:/pp  strong项目名称/strong:实现性能调控的纳米尺度结构设计/pp  strong申报单位/strong:材料科学与工程学院/pp  strong负责人/strong:田鹤/pp  strong项目简介/strong/pp  在过渡族金属氧化物这类强关联电子体系中,电子表现出的不仅是电荷,还有自旋、轨道这些复杂的属性,相互耦合诞生了如高温超导、庞磁电阻、多铁性等诸多具有重要应用前景的特性。但对电荷、轨道、自旋间的耦合关系,及其有序性与晶格的耦合、相互作用理解的依然不足,制约了对此类功能性材料性能有效调控的探索。/pp  项目的主要特色是摆脱性能测试宏观、平均的限制,在纳米乃至原子尺度通过对各物理量间耦合关系的研究,直接构建微观结构对宏观性能的影响。通过纳米尺度结构设计,探索调控宏观性能的途径,为设计新型的功能性材料与器件提供了新的机遇。证实了针对性纳米尺度结构设计,对宏观性能的有效调控。成功研制了一种具有宽温度服役范围(低温、室温与高温区)的单相零膨胀系数材料,为航天、航空等领域,精密载荷关键部件的高精度、高稳定性需求提供了新的解决方案 在常温下实现了具有原子级别厚度,面外铁电极化的高密度纳米器件,打破了铁电薄膜临界厚度的认知。/pp  strong项目团队/strong/pp  张泽院士领导的田鹤团队利用自主发展的电子显微学方法,在纳米乃至原子尺度对各物理量间耦合关系开展研究,有针对性的探知耦合本质与性能的依存关系,并探索性能调控的途径。揭示了在铁电材料内部,引入纳米尺度极化表面,对单相铁电材料宏观热膨胀行为调控的物理机制。与浙江大学韩高荣、任召辉团队合作,设计并制备出一种PbTiO3单相铁电介孔零膨胀系数材料 创新提出了一种调制铁电材料热膨胀系数的新途径,为设计、制备性能优异的单相零膨胀材料提供了新思路。(Nature Communications, 9 (2018) 1638 )进而,发现了晶格调控可突破极限尺寸对铁电极化的抑制作用。与新加坡国立大学陈景生团队合作,实现了四方相BiFeO3薄膜在室温二维极限尺度下的铁电序 证实了极限尺度下(一个单胞厚)的BiFeO3薄膜,所具有的超强铁电性与自发的面外极化 揭示了铁电极化产生、稳定和转化的物理机制 奠定了其作为高密度非易失性存储器的科学基础。(Nature communications 9 (2018) 3319)/p
  • 全球最小的三维纳米雄鸡贺卡,3D纳米激光直写设备NanoFrazor专业定制
    金鸡报晓已迎春,元宵临近聚福门,Quantum Design China恭祝大家新春愉快,元宵吉祥。上图这幅立体逼真的画作是 Quantum Design China专为您打造的新年特别礼物。看到图像右面的坐标轴,是不是很惊讶?没错,这不是一幅手绘作品,而是借助SwissLitho公司制造的3D纳米结构高速直写设备—NanoFrazor专业定制的三维纳米雄鸡贺卡! 这幅雄赳赳气昂昂的鸡年贺卡,其尺寸仅有10μm*10μm,深度差为50nm,是目前全球小的三维纳米鸡年贺卡。整只雄鸡的微纳尺寸,以及鸡身立体的轮廓和清晰的线条,都体现了3D纳米结构高速直写机NanoFrazor让人膜拜的高直写精度(XY: 10nm, Z: 1nm)、高形貌感知灵敏度(0.1nm),另外还有高速直写,无需显影,实时观察直写效果,无临近效应,无电子/离子损伤等有的特点。 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的新研究成果。NanoFrazor纳米3D结构直写机采用直径为5nm的探针,通过静电力控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测,次将纳米尺度下的3D结构直写工艺快速化、稳定化。该技术自问世以来已经多次刷新了上小3D立体结构的尺寸,创造了上小的马特洪峰模型,小立体地图,小刊物封面等记录。2016年10月,瑞士Swisslitho公司又发布了一款NanoFrazor Scholar,这款小型的纳米加工设备竟然可以放置在实验室桌面上,而且分辨率依然可达到XY:10nm;Z:2nm,轻松实现小于20nm的线宽与间距,更加便于课题组内进行纳米原型器件、微纳光学/光子学/磁学,NEMS、超材料等领域纳米机构与器件的设计与制备,是纳米结构和器件加工制备领域的之选。 2017的年味儿少不了科学的情怀,少不了我们对未知的探索和追求,带着NanoFrazor专业定制的全球小的三维纳米雄鸡贺卡,Quantum Design China祝愿大家在新的科学年中创意无限,收获满满!2017,Quantum Design China将继续伴您左右,提供丰富、的科研设备,便捷、专业的售后服务,助力您的科学研究更有说服力,更具创造力! 相关产品: 3D纳米结构高速直写机NanoFrazor: http://www.instrument.com.cn/netshow/C226568.htm小型台式无掩模光刻系统: http://www.instrument.com.cn/netshow/C155920.htm
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • 国家纳米中心等在微纳制造方法研究种获进展
    微纳加工是纳米研究的两大基础之一,备受重视。然而,随着各种新型器件和结构的出现,常规的微纳加工方法已无法完全满足需要,激发了人们探索更高性价比、更强加工能力的非常规加工方法。中国科学院国家纳米科学中心刘前团队基于自主开发的新概念激光直写设备,开发出多种非常规加工方法。近日,该团队在物理不可复制功能(PUF)防伪标签研究中取得新进展。相关研究成果以Random fractal-enabled physical unclonable functions with dynamic AI authentication为题,在线发表在《自然-通讯》(Nature Communications)上。   当前,传统防伪标签因其确定性的构筑模式在自身安全性上面临挑战。PUF标识本征的唯一性和不可预测性可作为商品的“指纹”秘钥,从根本上遏制标签自身被伪造的可能。为此,科学家利用金属薄膜去湿原理产生的随机分形金网络结构作为PUF,开发出一种由随机分形网络标识符和深度学习识别验证模型组成的新型PUF防伪系统,并展示该PUF的多层级防克隆能力。   借助高通量的图案化光刻(镂空模板)、薄膜沉积及一步热退火技术,可实现晶圆级PUF单元制作,体现了批量化、低成本(单个标签成本不到1美分)的生产特点。为了应用到实际防伪场景,研究人员开发了一种基于深度学习算法的图像PUF识别验证系统,借助ResNet50分类神经网络模型对37000个PUF标识符(10348)实现了可溯源、快速(6.36 s)、高精度(0%假阳性)验证,并提出了动态数据库策略,赋予深度学习模型极高的数据库扩容能力,理论上打破了庞大数据库的建立与低时间成本之间难以兼容的障碍。此外,这种PUF制作与微电子工艺流程高度兼容,有望与元器件同时集成并完成元件单元的真实性验证。PUF系统可初步满足工业化需求,有望推动商业化的PUF防伪技术的发展与普及。相关技术已申请国家发明专利并已获授权。   研究工作得到国家自然科学基金,国家重点研发计划“纳米科技”专项等的支持。该工作由国家纳米中心、北京航空航天大学和德国卡尔斯鲁厄理工学院合作完成。图1. PUF的制作流程及表图2. 深度学习识别验证系统的建立与性能展示
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • ACS Nano:原子层沉积技术助力复杂纳米结构的合成和精准调控取得新进展
    MoS2(二硫化钼),由于其优异的带隙结构(直接带隙为1.8 eV),高表面体积比和的场效应晶体管(FET,field effect transistor)性能,已成为具代表性的二维过渡金属硫族化合物(TMDC, transition-metal dichalcogenide)。使用纳米晶(Nano-Crystal,NC)修饰MoS2,即可以保持每个组成部分的立特性,同时又提供了复合材料产生的协同特性,大的扩展了MoS2材料的应用领域。控制纳米晶(NC)在 MoS2基底上的形貌,包括浓度,尺寸大小和表面体积比,对电子器件的整体性能影响是至关重要的。原子层沉积技术(ALD,Atomic layer deposition)是基于自限制的表面化学反应,对缺乏表面活化学反应基团的二维材料可实现选择性表面纳米晶修饰,其中NC大小可以通过循环次数来控制。美国斯坦福大学化学工程学院的Stacey F. Bent教授,通过使用台式三维原子层沉积系统-ALD发现了一种合成ZnO修饰MoS2基杂化纳米结构(纳米片或纳米线)的新方法。ZnO纳米晶的特性,包括浓度、大小和表面体积比,可以通过控制ZnO循环次数以及ALD磺化处理得到的MoS2衬底的性能来进行系统的合成和调控。通过材料化学成分(XPS以及 Raman),显微镜观察(TEM, SEM)和同步加速器X射线技术(GIWAXS) 分析ZnO与ALD沉积次数的相互关系,并结合量子化学计算的结果,作者阐明了ZnO在MoS2衬底上的生长机理及其与MoS2衬底性能的关系。MoS2纳米片的缺陷密度和晶粒尺寸可以由MoO3的硫化温度进行控制,ZnO纳米晶会选择性地在MoS2表面的缺陷位置处成核,且尺寸随着ALD循环次数的增加而增大。ALD循环次数越高,ZnO纳米晶的聚结作用越强,使得ZnO在MoS2衬底表面的覆盖和自身尺寸大幅增长。此外,复合结构的几何形貌可以通过改变MoS2衬底的取向进行调控,即采用MoS2的垂直纳米线(NWs,nanowires)作为ALD ZnO NCs的衬底,可以大幅改善复合结构的表面体积比。该类材料有望用于一些新拓展的领域,尤其是依赖过渡金属卤化物和NCs相互耦合结构的,如基于p−n异质结的传感器或光电器件。该工作发表在2020年的国际知名期刊ACS Nano (2020, 14, 1757−1769)上。图1. (a)ZnO@MoS2复合纳米结构示意图;(b)800°C-MoS2表面的HR-STEM图像;(c)两步合成二硫化钼的工艺,即在三个不同的退火温度下(600,800,和1000°C)下使用H2S硫化ALD 合成的MoO3;(d)600 °C-, 800 °C-, 和1000 °C-MoS2的Raman光谱图,(e)Zn 2p XPS谱图(循环次数为50次),(f)相对原子比 Zn/(Zn + Mo),(g)TEM图像,(h)表面覆盖度,(i)MoS2表面ZnO颗粒的数密度及(g)GIWAXS(grazing incidence wide-angle X-ray scattering,掠入射小角X射线散射) 图样(不同沉积次数下);(k)800 °C-MoS2 纳米线的SEM,TEM和HR-TEM图像;(l)DEZ(diethylzinc,二乙基锌)反应的量子化学计算结果,在MoS2的边缘位和基面上进行DFT分析,黄色和绿色原子分别表示S和Mo。 上述工作中作者团队采用的原子层沉积设备来自于美国ARRADIANCE公司的GEMStar系列台式三维原子层沉积系统-ALD(如图2所示),其在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在8英寸基体上膜厚的不均匀性小于99%,而且更适合对超高长径比的孔径3D结构等实现均匀薄膜覆盖,对高达1500:1长径比的微纳深孔内部也可实现均匀沉积。GEMStar系列ALD系统广泛应用于高深宽比结构沉积,半导体微纳结构制备,微纳粉末包覆等,服务于锂离子电池,超电容器,超电容器,LED等研究领域。图2. 美国ARRADIANCE公司生产的GEM-tar系列台式三维原子层沉积系统 参考文献:[1]. Il-Kwon, et al., Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer Deposition., ACS nano., 2020,14(2), 1757-1769.
  • 大连化物所提升B,N@C纳米反应器的电化学氧还原性能
    近日,中科院大连化物所催化基础国家重点实验室微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队和澳大利亚悉尼科技大学黄振国教授合作,在B,N@C纳米反应器的电化学氧还原研究方面取得新进展,通过平衡传质特性与活性位点暴露情况,有效提升催化剂电催化氧还原性能,为优化催化剂的结构提供了新思路。传质在催化过程中至关重要,特别是在涉及气体的电催化反应中。目前,大多数研究致力于提高活性位点的本证活性及数量,但对电催化传质过程的研究还较少。由于气/液/固三相界面的复杂性,人们对电催化剂构效关系的理解非常有限,而且也缺乏合适的材料研究平台。本工作中,合作团队通过主客体化学与限域刻蚀相结合的方法,制备了一系列活性点位相似但孔隙结构不同的催化剂,证明了传质强化的重要性。在氧还原反应测试中,具有丰富微孔、介孔和大孔的B,N@C纳米反应器表现出最高的催化活性。实验结果和有限元计算结果表明,与微孔和大孔结构相比,这种分级三模态多孔结构增强了传质和活性位点的可及性,从而提高了电催化氧还原的活性及反应速率。刘健团队近年来在MOF衍生微纳米反应器的构筑及可持续催化应用方面进行了深入系统的研究(Angew. Chem. Int. Ed.,2016;Adv. Funct. Mater.,2018;Advanced Science,2019;National Science Review,2020;Nat. Commun.,2020)。相关工作以“Balancing Mass Transfer and Active Sites to Improve Electrocatalytic Oxygen Reduction by B,N Codoped C Nanoreactors”为题,于近日发表在《纳米通讯》(Nano Letters)上,并选为前封面文章。该工作的第一作者是大连化物所05T7组联合培养博士研究生王雪飞。上述工作得到国家重点研发计划、国家自然科学基金、上海市科委科技基金、澳大利亚研究委员会Future Fellow、中国留学基金等项目的资助。
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(Nano-CT)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon)。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。Bruker多量程X射线三维纳米显微成像系统(Nano-CT)
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(3D XRM)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon)。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行 者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个 组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。Bruker多量程X射线三维纳米显微成像系统(3D XRM)
  • HPLC性能测试方法标准研制工作组将成立
    10月8日,中国分析测试协会网站发布《关于成立高效液相色谱仪性能测试方法标准研制工作组的通知》。通知中提到,为研究制定我国高效液相色谱仪性能测试方法的标准草案,分析测试协会将成立高效液相色谱仪性能测试方法标准研制工作组。并欢迎各单位推荐在高效液相色谱仪生产、性能测试、应用等方面具有较强能力的专家以个人的身份参加工作组的工作。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 多功能显微镜助力一篇AFM!3D纳米几何结构新突破
    论文题目:Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing发表期刊:Advanced Functional Materials IF: 19.924DOI: 10.1002/adfm.202310110【引言】 等离子体纳米颗粒由于具有特殊的光学特性被广泛应用于光电器件、化学和生物传感器等领域。若想调节纳米结构的等离子效应,则需要准确地制备出具有特定几何形状的3D纳米结构。目前,等离子纳米结构主要采用纳米颗粒或纳米颗粒阵列,通过纳米狭缝自组装法等手段,制备相应的等离子体纳米结构。可是,在制备等离子体纳米结构的过程中,由于受到了光刻等技术手段的限制,所制备的纳米结构多为2D平面结构。对于制备具有准确几何形状的3D等离子体纳米结构的相关研究尚属空白。【成果简介】 近日,格拉茨技术大学相关团队提出了基于聚焦电子束诱导沉积(Focused Electron Beam Induced Deposition,FEBID)方法制备具有准确纳米尺度3D几何结构的等离子体纳米结构。同时,作者通过FusionScope多功能显微镜和透射电镜(TEM)对相应的3D纳米结构进行了原位几何尺寸的表征。然后,使用扫描透射电子显微镜的电子能量损失谱仪(STEM-EELS)对所制备的3D纳米结构的等离子性能进行表征。所测量的结果与相关模拟计算结果相比,两者结果相互吻合,证明了通过FEBID的方法制备3D等离子体纳米结构的可行性。相关工作以《Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing》为题在SCI期刊《Advanced Functional Materials 》上发表。 本文使用的FusionScope多功能显微镜创新性地将SEM和AFM技术深度融合,利用SEM进行实时、快速、精准导航AFM针尖,实现同一时间、同一样品区域和相同条件下的SEM&AFM原位精准定位与测量;测量时也可以实时观察AFM悬臂的尖端,在不需要转移样品的情况下,原位进行80° AFM与样品台同时旋转,对几乎所有样品(包括复杂样品)均可以实现无视野盲区观测;其丰富的功能选件如力曲线、导电原子力显微镜(C-AFM)和磁力显微镜(MFM)以及EDS能谱仪,可有效实现多维度同区域的高级测量。本文将简要阐述FusionScope多功能显微镜对不同平面结构的等离子体样品观测结果。 图1. FusionScope多功能显微镜【图文导读】图2. 制备、清除和3D加工能力展示。(a)气体注入系统(GIS)将金属气体前驱物分子(Me2(acac)Au(III))注入到基底附近,利用聚焦电子束形成在基底上形成沉积。(b-g)展示了FEBID制备复杂构型的3D纳米结构的能力。(h)运用聚焦电子束去除碳的过程。图3. 不同平面结构的等离子体测量结果。(a)利用FusionScope多功能显微镜的原位AFM功能测量的在制备后和清除后的微纳结构变化区别。(b)通过原位AFM测量的在去除前后所制备纳米结构的体积变化。(c)部分去除样品的STEM-EELS能谱。(d-l)不同设计下的等离子体测量结果。图4. 利用FusionScope多功能显微镜获取用于模拟的数据。(a-b)利用FusionScope多功能显微镜中的SEM对AFM进行引导,在放置在TEM网格上的Au纳米线进行测量。(c)对FusionScope所获得的数据和TEM所获得的数据进行相互验证。(d)FusionScope测量Au纳米线的高度为24 nm,半峰宽为51 nm。图5. Au纳米线的等离子性能的实验和模拟结果。(a) Au纳米线在不同能量损失下的EELS模拟结果。(b)Au纳米在不同能量损失下的EELS实验结果。(c)在纳米线的边缘部分(d)中蓝色区域的EELS实验和模拟对比结果。(e)为Au纳米线的中间部分(d)中绿色区域的EELS的模拟和实验结果。图6. 可进行光谱调谐的等离子体3D纳米结构的实验和模拟结果。(a)在3D纳米结构尖端部分的EELS结果,实线为实验结果,虚线为模拟结果。(b-c)不同形貌的3D纳米结构的实验和模拟结果。(d)不同形貌的纳米结构的三个显著共振峰位置的实验和模拟结果。【结论】 论文中,格拉茨技术大学相关团队通过FEBID的方法制备了具有纳米级精度的3D等离子体纳米结构。在制备相关纳米结构过程中,通过FusionScope系统对所制备的纳米结构进行了原位的几何结构表征,为模拟过程提供了数据支持。Quantum Design公司研发的FusionScope多功能显微镜,通过特有的共坐标系统,解决了原位联合显微分析中不同表征方式无法共享微区的问题,又通过优化AFM和SEM工作流给用户提供了一个清晰简单的操作流程,为原位微区信息的获取提供了极大的便利。此外,FusionScope还可以通过更换不同AFM探针,实现对样品三维形貌,力学性能,电学性能和磁学性能的综合物性表征。 样机体验: 为了更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室开放Fusionscope多功能显微镜样机体验活动,我们将为您提供样品测试、样机参观等机会,欢迎各位老师垂询!
  • 上海微系统所等研制出微纳光纤耦合超导纳米线单光子探测器
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylestyle type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。/pp  SNSPD器件主要有两种光耦合方式,一种是垂直光耦合方式,光纤端面平行于SNSPD光敏面,光子垂直入射到纳米线上,采用光学腔体或反射镜结构实现高效光耦合。利用该类耦合结构,中国科学院上海微系统与信息技术研究所已实现NbN基SNSPD系统探测效率超过90%,相关结果发表后受到国内外广泛关注。该光耦合结构的特点是,可以实现高光耦合效率,但受限于光耦合结构,工作波长范围受限。另一种光耦合方式是波导光耦合方式,将纳米线制备在光波导上,可实现高效的本征吸收。但光纤到波导的耦合效率较低,使这类器件仅能作为片上光子学的解决方案,无法作为独立单光子探测器使用。/pp  上海微系统所/中国科学院超导电子学卓越创新中心尤立星研究员团队和浙江大学教授方伟、童利民团队合作,首次提出微纳光纤耦合的SNSPD器件结构。该结构将SNSPD器件置于微纳光纤的倏逝场内,实现纳米线对微纳光纤中传输的光子吸收。光学计算显示,该类结构有望实现高吸收效率的同时,保持很好地宽谱特性。经过上海微系统所巫博士君杰和浙江大学博士徐颖鑫等近3年实验探索,科研团队研制出微纳光纤耦合SNSPD器件。在1550nm/1064nm工作波长,系统探测效率分别达到20%/50%。相关成果近日发表在emOptics Express/em上,该结果有望在新型SNSPD器件及微纳光纤领域开辟新的研究方向。/pp  研究工作得到了国家重点研发计划项目“高性能单光子探测技术”、中科院战略性先导科技专项(B)“超导电子器件应用基础研究”、自然科学基金以及上海市科委等的资助。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171213665024470514.jpg" src="http://img1.17img.cn/17img/images/201712/uepic/bc478657-1ca0-4a06-a7b0-fc3659b0aeca.jpg"//pp style="text-align: center "微纳光纤耦合超导纳米线单光子探测器原理示意图/p
  • 天美公司将参加第二届全国纳米材料与结构、检测与表征研讨会
    2010年5月9-12日由中国微米纳米技术学会纳米科学技术分会主办,全国纳米技术标准化技术委员会纳米检测技术标准化工作组协办,厦门大学和国家纳米科学中心联合承办的&ldquo 第二届全国纳米材料与结构、检测与表征研讨会&rdquo 在福建厦门大学举行。会议将邀请国内相关领域的知名专家做大会专题报告,会议期间还将召开纳米科学技术分会第二届理事会会议。 天美(中国)科学仪器有限公司将作为赞助商参加此次研讨会,展示天美公司用于&ldquo 表面及微结构&rdquo 、&ldquo 触摸纳米世界&rdquo 表征的综合方案,为促进我国纳米科学技术交流与合作,提升我国纳米科学技术的创新能力做出自己的贡献。时间:2010年5月9-12日 地点:福建&bull 厦门大学
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p strong 各有关单位:/strong/pp  由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。/pp  拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。/pp  为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。/pp  同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。/pp  会议事项通知如下:/pp strong 一、时间和地点/strong/pp  会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议/pp  会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室/pp  地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内)/ppstrong  二、宣贯内容/strong/pp  1、拉曼光谱的基本原理与应用介绍 /pp  2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /pp  3、拉曼光谱仪的校准与溯源 /pp  4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。/pp strong 三、考核与发证/strong/pp  培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。/pp strong 四、培训费用/strong/pp  培训费:1500 元/人,包括讲义、标准复印件、培训证书。/pp  请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款/pp  信息如下:/pp  账户名:中国计量科学研究院/pp  开户行:交通银行北京分行和平里支行/pp  账号:110060224018010008693/pp  行号:301100000074/pp  电话:010-64524304/pp  银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填span style="TEXT-ALIGN: center"写参会回执(附件2)中的开票信息。/span/pp style="TEXT-ALIGN: center"img title="QQ截图20180906104247.jpg" style="HEIGHT: 701px WIDTH: 600px" border="0" alt="QQ截图20180906104247.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width="600" height="701"//ppstrong  附件:/stronga title="附件2. 宣贯会参会回执(1).docx" style="FONT-SIZE: 12px COLOR: rgb(0,102,204)" href="https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx"br/strong  /strong/astrong/stronga title="附件1. CSTM-FC00领域委员会简介(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf"strong附件1. CSTM-FC00领域委员会简介.pdfbr/  附件2. 宣贯会参会回执.docxbr/  /strong/astrong/stronga title="附件3. 酒店交通(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf"strong附件3. 酒店交通.pdf/strongbr//a/p
  • iCEM 2016特邀报告:聚焦离子束(FIB)技术在微纳米材料研究中的应用
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong聚焦离子束(FIB)技术在微纳米材料研究中的应用/strong/pp style="TEXT-ALIGN: center"img title="彭开武.jpg" style="HEIGHT: 278px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201610/insimg/01ec28bb-5e1a-48ea-973c-2268ccee47cb.jpg" width="200" height="278"/ /pp style="TEXT-ALIGN: center"strong彭开武 高级工程师/strong/pp style="TEXT-ALIGN: center"strong国家纳米科学中心纳米检测技术室/strong/ppstrong报告摘要:/strong/pp  聚焦离子束技术原理和功能,并围绕其在微纳米材料表征方面,介绍几个具体应用,包括:透射电镜样品制备、纳米材料的三维表征等,重点讨论用于微纳米材料电学性能测试的电极制作方法。/ppstrong报告人简介:/strong/pp  彭开武,高级工程师。1999年开始在中国科学院电工研究所微纳加工研究室从事基于电镜(含扫描电镜与透射电镜)的电子束曝光机的研制工作。2003年以访问学者身份在英国卢瑟福实验室中央微结构中心从事微纳米器件工艺研究。2007年起至今在国家纳米科学中心纳米检测技术室从事聚焦离子束加工方面的工作。/ppstrong报告时间:/strong2016年10月25日上午/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"span style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//span/aspan style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"/span/p
  • 中科院发明砷的微纳米电化学检测新方法
    近期,中科院合肥研究院智能所仿生功能材料与传感器件研究中心&ldquo 百人计划&rdquo 黄行九研究员和973首席科学家刘锦淮研究员领导的课题组研究人员在砷的微纳米电化学检测中取得新进展。  长期以来,地下水砷污染问题已成为世界性的环境问题,已被世界卫生组织称为&ldquo 人类史上最大的危害&rdquo 。实现地下水环境中砷的痕量、高准确性、高选择性检测,是正确评估环境污染的关键所在,可为环境管理和规划、污染防治提供科学依据。近几年来,该课题组研究人员一直致力于探索纳米材料应用于电分析行为实现环境中无机砷的可行性检测。通过对相关文献的调研、总结归纳,提出了自身对电分析技术检测无机砷的认识与理解。该研究成果也以综述形式发表在顶级分析化学杂志&mdash 《分析化学发展趋势》上。  近期,智能所科研人员从实际应用的角度出发,依托内蒙古托克托县兴旺庄村地下水为背景,通过简易方式构建了金丝微纳米结构电化学电极,从多方面系统研究了其应用于地下水砷的电化学检测问题,并讨论地下水无机离子及有机质分子对砷检测的影响规律,实现了复杂地下水环境中砷的高效准确灵敏检测,可针对大量监测点砷污染情况进行实时分析。同时也提供了一种可实现高效稳定在线检测砷的方法。研究论文发表在环境类知名期刊《危险材料杂志》上。  以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。金丝微纳结构电极实现复杂环境中As(III)的电化学检测
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制