当前位置: 仪器信息网 > 行业主题 > >

颗粒测试与表征仪器名企

仪器信息网颗粒测试与表征仪器名企专题为您整合颗粒测试与表征仪器名企相关的最新文章,在颗粒测试与表征仪器名企专题,您不仅可以免费浏览颗粒测试与表征仪器名企的资讯, 同时您还可以浏览颗粒测试与表征仪器名企的相关资料、解决方案,参与社区颗粒测试与表征仪器名企话题讨论。

颗粒测试与表征仪器名企相关的资讯

  • 近20家颗粒测试与表征仪器名企“协奏”中国颗粒学盛曲
    p style="text-indent: 2em "2018年8月9-12日,中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会在辽宁省沈阳市拉开帷幕,两年举办一届的中国颗粒学盛会吸引了近800位颗粒学及粉体技术领域的专家学者、业内代表参加。而在年会设立的仪器设备展区中,众多相关企业也集中亮相,其中颗粒测试与表征仪器领域的知名企业占据了大半壁展位。/pp style="text-indent: 2em "在年会学术会议的间歇时间,各参展仪器企业展区负责人通过易拉宝、宣传册展示、实物讲解、互动交流体等方式,让与会代表更加全面真实地感受到颗粒测试与表征领域的产业化发展和技术与应用现状。专家与展商进行了气氛热烈的学术交流,并就具体的科研应用需求进行了深度对接。/pp style="text-indent: 2em "下面就跟着仪器信息网编辑一同领略现场的部分风采吧:(顺序不分先后)/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/9efef2bd-a0f0-478e-a7e1-c36ef322e33a.jpg" style="float:none " title="IMG_0173.JPG"//pp style="text-align: center "丹东百特仪器有限公司[a href="http://www.instrument.com.cn/netshow/SH100350/" target="_self" title=""点击进入公司展位/a]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/9aca0875-765e-48f2-93c0-7e258cbf58e0.jpg" style="float:none " title="IMG_0639.JPG"//pp style="text-align: center "珠海真理光学仪器有限公司[a href="http://www.instrument.com.cn/netshow/SH104201/" target="_self" title=""点击进入公司展位/a]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/17dd8d39-2b56-45be-b1c2-992dd9757710.jpg" style="float:none " title="IMG_0649.JPG"//pp style="text-align: center "济南微纳颗粒仪器股份有限公司[a href="http://www.instrument.com.cn/netshow/SH100386/" target="_self" title=""点击进入公司展位/a]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/fe880a26-a14c-4188-b3fa-e01975849e41.jpg" style="float:none " title="IMG_0716.JPG"//pp style="text-align: center "奥地利安东帕(中国)有限公司[点击进入公司展位]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/86ba44d8-d3db-4f31-affc-f08b9fdbfd05.jpg" title="IMG_0720.JPG" style="float: none "//pp style="text-align: center "珠海欧美克仪器有限公司[点击进入公司展位]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/855e23f6-f74e-46b5-a037-c13768580ba4.jpg" style="float:none " title="IMG_0796.JPG"//pp style="text-align: center "马尔文帕纳科(中国)[a href="http://www.instrument.com.cn/netshow/SH100646/" target="_self" title=""点击进入公司展位/a]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/98eeb699-98c2-4ed3-b445-c12d8a3758c4.jpg" style="float:none " title="IMG_0799.JPG"//pp style="text-align: center "北京精微高博科学技术有限公司[a href="http://www.instrument.com.cn/netshow/SH100710/" target="_self" title=""点击进入公司展位/a]/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/3da959e2-7c64-4fc5-992e-2645f20db1c2.jpg" title="376268889879612771.jpg"//pp style="font-size: inherit font-weight: normal padding: 0px margin: 0px color: rgb(68, 68, 68) font-family: 微软雅黑 white-space: normal background-color: rgb(255, 255, 255) text-align: center "麦克默瑞提克(上海)仪器有限公司span style="text-align: center font-family: sans-serif "[/spana href="http://www.instrument.com.cn/netshow/SH100677/" target="_self" title="" style="text-align: center font-family: sans-serif "点击进入公司展位/aspan style="text-align: center font-family: sans-serif "/spanspan style="text-align: center font-family: sans-serif "]/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/eb31a5fb-464d-4792-8649-23325526e681.jpg" style="float:none " title="IMG_0922.JPG"//pp style="text-align: center "仪思奇(北京)科技发展有限公司[a href="http://www.instrument.com.cn/netshow/SH103908/" target="_self" title=""点击进入公司展位/a]/p
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • IPB 2014上的颗粒测试与表征仪器公司(图)
    仪器信息网讯 在今天(10月14日)开幕上的第十二届中国国际粉体加工/散料输送展览会(IPB 2014)上,10余家国内外知名颗粒测试与表征仪器供应商参展,纷纷展示了各自主推的技术与产品。英国马尔文仪器公司丹东百特仪器有限公司贝克曼库尔特商贸(中国)有限公司堀场(中国)贸易有限公司济南微纳颗粒仪器股份有限公司大昌华嘉商业(中国)有限公司珠海欧美克仪器有限公司北京精微高博科学技术有限公司美国麦克仪器公司德国新帕泰克有限公司广州市博勒飞粘度计质构仪技术服务有限公司
  • 盘点目前主流的颗粒测试与表征仪器(图)
    仪器信息网讯 一年一度的中国国际粉体加工/散料输送展览会(IPB),可以说是国内外知名颗粒测试与表征仪器制造商集中亮相的业内盛会之一,今年的展会吸引了马尔文、贝克曼库尔特、大昌华嘉、丹东百特、济南微纳、欧美克、堀场以及麦克仪器、精微高博等11家公司参展。  经过一天的参观,仪器信息网编辑为广大网友盘点一下目前中国市场中比较主流的颗粒测试与表征产品:马尔文的两款主推产品:Mastersizer 3000 超高速智能粒度分析仪(左)、zetasizer nano系列纳米粒度和Zeta电位仪(右)。丹东百特最高端、最经典的Bettersize2000智能激光粒度仪,拥有百特独创的单光束双镜头专利技术。贝克曼库尔特主推的LS13320全自动型激光粒度分析仪,配套的干法分散装置采用了一种很炫的&ldquo 龙卷风&rdquo 专利技术。HORIBA的LA-960激光粒度仪特别为大颗粒设置了进样系统,因此LA-960配有两个单独的干法进样器。济南微纳最新升级产品Winner802纳米粒度仪,该公司年底还将推出一款模块化设计的激光粒度仪新品Winner 2309。大昌华嘉独家代理的美国麦奇克公司的S3500SI激光粒度粒形分析仪,创新融入了现代模块化设计理念。欧美克今年推出的LS-POP(9)激光粒度仪,在市场定位方面与该公司的TopSizer激光粒度分析仪实现互补。德国新帕泰克公司配置最为高端的 HELOS/RODOS 干法激光粒度仪麦克仪器主推的研究级多站扩展式全自动快速比表面及孔隙度分析仪ASAP 2420,该公司刚在上海成立中国分析服务中心,可向用户提供分析测试服务。精微高博现场展出的JW-BK132F型比表面及孔径分析仪,成功入选了&ldquo 国产好仪器(2013-2014)&rdquo 名单。美国博勒飞的Brookfield PFT粉体流动测试仪英国Freeman Technology公司主打产品FT4多功能粉末流动性测试仪该公司刚刚成立了上海代表处,计划全面拓展中国市场。
  • 近20家颗粒测试与表征企业集中亮相中国颗粒学术盛会
    仪器信息网讯 2016年8月13-14日,每两年一届的“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”在四川省成都市举办,来自颗粒学及粉体技术领域的约650位专家学者、企业出席会议,仪器信息网作为合作媒体全程参与了会议报道。大会开幕式  为丰富会议交流形式,本届年会还设立了小型的仪器设备展等,吸引了国内外近30家相关企业集中登场亮相。其中约2/3的企业属于颗粒测试与表征仪器领域,涉及颗粒测试仪器、表界面物性测试仪器、颗粒形貌表征仪器、粉体流动性测试仪、大气颗粒监测仪器等类别。在展会现场,各个参展商通过现场展示、互动体验的方式,让与会者更全面真实地感受到了颗粒测试表征领域技术进步与应用突破。  下面请跟随仪器信息网编辑的镜头去感受一下展会现场的活跃气氛:英国马尔文仪器有限公司[点击进入公司展位]丹东百特仪器有限公司[点击进入公司展位]大昌华嘉商业(中国)有限公司[点击进入公司展位]珠海欧美克仪器有限公司[点击进入公司展位]美国麦克仪器公司[点击进入公司展位]美国康塔仪器公司[点击进入公司展位]德国莱驰科技中国总部[点击进入公司展位]美国PSS粒度仪公司[点击进入公司展位]英国富瑞曼科技有限公司[点击进入公司展位]北京精微高博科学技术有限公司[点击进入公司展位]苏州纽迈分析仪器股份有限公司[点击进入公司展位]复纳科学仪器(中国)有限公司[点击进入公司展位]欧波同有限公司[点击进入公司展位]美国TSI公司[点击进入公司展位]北京赛克玛环保仪器有限公司[点击进入公司展位]青岛众瑞智能仪器有限公司[点击进入公司展位]
  • 安东帕发布全球最全颗粒特性表征参数仪器库
    随着最近对康塔仪器的收购,安东帕现在成为全球颗粒表征仪器最广泛的提供商:为超过20项指标提供29款仪器。研发和质量控制人员能够从整体上确定各种各样的颗粒行为和性质。了解颗粒行为和特性是材料和最终产品开发、品质管理、研发新材料过程中关键的一步。由于对技术研发的投入和深思熟虑的投资,安东帕现在成为单一的源头向全球提供颗粒标准领域最宽泛的仪器,为高校和各行业的研发人员提供支持。随着去年对康塔仪器的收购,安东帕现在能为您提供最全面的颗粒表征解决方案:我们提供29款仪器,能为您测试超过20项指标。测量指标包括:§ Particle size and shape颗粒尺寸和形貌§ Pore size 孔径尺寸§ Surface area 比表面积§ Density of solids 固体密度§ Reactive area 活性面积 § Vapor uptake 蒸汽吸附§ Open-cell porosity 开孔孔隙率§ Zeta potential Zeta电位§ Powder flow粉体流动§ Gas storage capacity储气能力 § 以及更多 部分仪器是在其专门的领域的第一款仪器。例如,PSA系列该款粒度分析仪在1967年作为第一台激光衍射仪器被发明。康塔仪器,尤其是气体吸附分析仪,拥有几十年的研发经验和丰富的应用知识。安东帕的粉体流变仪是市面上唯一提供黏度绝对值,而非相对值的流变仪,提供无可匹敌的测量结果。仅需几个简单的步骤,该款仪器就可以改装成带有多种附件的多功能流变仪。但是我们不止步于此,我们还有更多解决方案和应用知识详见官网颗粒特性表征落地页, 安东帕提供了互动式的产品线概览,组成了一个内容丰富的知识库,包括在线网络研讨会(现场和录音),展示安东帕颗粒特性测量无止境的可能。
  • 欧美克仪器正式入驻中国机械总院颗粒表征联合实验室
    近日,中国机械总院怀柔科技创新基地中国机械总院雁栖湖基础制造技术研究院(简称基础院)正式揭牌成立。基础院地处北京市怀柔区中高路9号,总占地面积超100,000平方米。内部研发、实验、试生产、会务和生活起居区域一应俱全。新落成的实验中心将按照符合CNAS标准的相关配置进行运营。珠海欧美克仪器有限公司、罗姆(江苏)仪器有限公司、福建强纶新材料股份有限公司、弗尔德(上海)仪器设备有限公司、苏州纽迈分析仪器股份有限公司有幸参与到基础院此次实验中心颗粒表征联合实验室的共建工作中,并与基础院展开深度合作。同时,专门开设了基础院和欧美克仪器联合的颗粒表征实验室并计划在将来对相关颗粒表征检测工作的推进以及相关检测人员的培训贡献力量。怀着激动的心情,欧美克仪器销售总监吴汉平先生及北区销售经理李宏成先生作为欧美克代表与全国颗粒表征与分检及筛网标准化技术委员会委员单位成员、颗粒表征专家代表共同出席了揭牌仪式。中国机械总院雁栖湖基础制造技术研究院是中国机械研究总院为落实国家推进装备制造业“产业基础高级化、产业链现代化”战略要求,在中机生产力促进中心有限公司的总体架构基础上,整合集团国家级重点实验室、国家级工程研究中心在京创新资源,成立的一家装备制造业基础共性技术研究机构。基础院测试技术与装备研究所致力于为汽车、机器人、航空、兵器、船舶、轨道交通、风电、石油化工等领域用户提供规划-标准-测试-装备-软件-咨询全套传动系统解决方案。以试验检测为桥梁,帮助企业构建产品全寿命周期一体化体系,从而提高工艺水平、提高产品性能、降低制造成本、缩短开发周期、减少售后赔付,全方位提高产品竞争力,推动行业高质量发展。颗粒表征联合实验室的成立依托怀柔基地零部件试验检验和标准验证能力建设,在丰富基础院服务颗粒表征领域技术能力的同时,将有力推动颗粒表征标准、方法和检测技术研究与应用,促进颗粒表征标准人才培养。目前,基础院欧美克颗粒表征联合实验室已配备了多款欧美克仪器最新的激光粒度分析仪、纳米粒度电位仪、颗粒图像系统和颗粒计数器等多款颗粒表征检测分析设备。纳米科学与技术是当今国家战略新兴科技领域之一。纳米技术在材料制备、分析、功能化材料等方面有着独特优势,被广泛应用于生物医学、环境保护、信息技术、人工智能、新能源、新材料等领域。得益于服务新能源、制药以及各工业领域三十年的粒度粒形检测技术的积累,珠海欧美克仪器有限公司在成功引进和吸收马尔文帕纳科 (Malvern Panalytical)纳米颗粒表征技术后,于2023年8月正式推出全新升级的NS-90 Plus纳米粒度分析仪和NS-90Z Plus纳米粒度及电位分析仪,以更优越的粒度和电位分析性能,新颖易操作的新软件界面满足广大纳米材料、制剂开发和生产用户的颗粒粒度和Zeta电位的测试需求!NS-90Z Plus纳米粒度及电位分析仪在上一代NS-90Z的基础上进一步优化了光学电子测量技术和分析性能,同时融合马尔文帕纳科恒流模式下的M3-PALS快慢场混合相位检测分析技术,有效缓解电极极化的影响,使得结果重现性更好,准确性更高,且可获得电位分布的信息。相比上一代产品,NS-90Z Plus能满足具有更高电导率的样品的Zeta电位和电泳迁移率测试,同时可以提高电位样品池的使用次数。▲ 快慢场混合相位检测Zeta电位分布、相位、频移及电压和电流图而Topsizer激光粒度分析仪作为一款全自动干、湿二合一激光粒度分析仪,具有量程宽、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿,是广受客户赞誉的国产高性能干、湿法激光粒度仪。该款仪器湿法测试范围0.02-2000um,干法测试范围0.1-2000um,能够满足绝大多数材料粒度检测要求。Topsizer型号激光粒度仪自上市以后,广受锂电池、生物制药、精细化工等行业用户的青睐。除了对欧美克品牌和技术的信赖外,还因为Topsizer系列产品保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,重要的是可避免粒度检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。此次联合实验室的成立将进一步融合多方资源,不断提高科研水平和创新能力,扩大国产仪器在颗粒表征领域的核心竞争力和影响力。欧美克仪器也将肩负中国颗粒表征领域的先导及创新者的职责,以材料粒度检测技术推进产业智能质造发展,为实现产业技术向低碳、数字、智能化的高质量发展贡献欧美克力量!
  • 重磅!安东帕收购美国康塔仪器, 全面完善颗粒表征产品组合
    2018年2月9日,奥地利安东帕公司(Anton Paar)和美国康塔仪器公司(Quantachrome)在美国康塔仪器公司总部佛罗里达州博因顿海滩完成收购流程,康塔仪器成为安东帕集团旗下第七家新的子公司。 安东帕集团首席执行官Friedrich Santner表示:“康塔仪器的产品是我们产品组合中颗粒表征的完美补充。到现在为止,我们主要为液体和颗粒物理检查提供分析解决方案。通过此次收购,我们在固体分析方面的业务将得到深入扩展。两家公司现有技术和新技术的结合将为创建改进的或新的测量解决方案打下基础。此外,我们的战略目标是在安东帕尔集团内拥有一家位于美国的研究、开发和生产部门。" 康塔仪器前总裁Scott Lowell表示:“我很高兴像安东帕这样一个赋予创新和价值的公司将继续开发和生产康塔仪器的产品。安东帕以其卓越的企业文化、以研发为推进企业保持领先、以苛刻而又感恩的态度对待每一位员工的团队文化等而闻明。与许多国际公司相比,安东帕拥有可持续发展的公司理念,他们决定继续并扩大康塔仪器在佛罗里达州博因顿海滩的业务就是一个体现。” 安东帕自2013年将TriTec(原瑞士CSM)产品招入麾下,其微纳米压痕仪、摩擦磨损测试等产品与安东帕传统的流变仪、小角X-射线衍射仪等一起丰富了纳米表征测量的产品线。2016年收购了法国激光粒度仪器制造商CILAS公司PSA业务后, 持续扩大颗粒研究的应用范围,在制药、化妆品、材料等领域都有广泛应用。 美国康塔仪器公司,原先在设计用于分析多孔材料和粉末的表征仪器方面居全球领先地位,产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、竞争性气体吸附、真密度、堆密度、开/闭孔率、粒度粒形、 Zeta电位、孔隙率、压汞仪、大孔分析、微孔分析、滤器分析等诸多领域。此次收购如虎添翼,不仅可为安东帕用户的粉体及多孔物质的测量提供更精确的分析,并且完善了颗粒表征产品的组合,为中国地区高校、工业试验室的用户带来高质量的颗粒表征分析技术。材料颗粒分析领域可谓是安东帕今后大展身手的舞台。 安东帕成立于1922年,位于奥地利格拉茨,是密度和流变学测量,溶解二氧化碳测定以及流变测量领域的全球领先企业。安东帕的客户包括全球大部分主要的啤酒和软饮料制造商以及从事食品,化学品和制药行业的公司。除了专注于研究和开发之外,安东帕的战略收购为持续增长也起到了一定作用。 与国外的用户相比,中国的用户更加活跃,也更具有创新的想法。在国内材料科学迅猛发展下,颗粒表征测量领域取得了长足的进步。如何满足中国用户最新的需求,提供最优质的技术和服务是我们今后更高的目标。
  • 丰收的2023年 | 颗粒表征技术及仪器国家标准盘点
    2023年,市场监管总局(国家标准委)积极实施《国家标准化发展纲要》、《质量强国建设纲要》加大标准供给力度,以高标准引领高质量发展。市场监管总局数据显示,前三季度新批准发布国家标准1971项,同比增长超过110%。其中,工业领域发布国家标准1660项,占比84.2%。仪器信息网关注到,2023年,我国颗粒学领域标准建设工作成果斐然。多项颗粒表征技术及分析仪器相关国家标准发布或实施,涉及静态光散射法、静态图像法、电泳光散射法、离心沉降法、单颗粒电感耦合等离子质谱法、纳米颗粒跟踪分析法等,由全国纳米技术标准化技术委员会、全国颗粒表征与分检及筛网标准化技术委员会归口管理。本文特将上述标准加以整理,供相关从业者查阅参考。2023年度发布/实施的颗粒表征国家标准标准号标准名称发布日期实施日期GB/T 43196-2023纳米技术 扫描电子显微术测量纳米颗粒粒度及形状分布2023-09-072024-04-01GB/T 42732-2023纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法2023-08-062024-03-01GB/T 42469-2023纳米技术 抗菌银纳米颗粒 特性及测量方法通则2023-03-172023-10-01GB/T 42311-2023纳米技术 吸入毒性研究中呼吸暴露舱内纳米颗粒的表征2023-03-172023-10-01GB/T 42348-2023粒度分析 颗粒跟踪分析法(PTA)2023-03-172023-10-01GB/T 42342.2-2023粒度分布 液相离心沉降法 第2部分:光电离心法2023-03-172023-10-01GB/Z 42353-2023Zeta电位测定操作指南2023-03-172023-10-01GB/T 41949-2022颗粒 激光粒度分析仪 技术要求2022-12-302023-07-01GB/T 42208-2022纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法2022-12-302023-07-01GB/T 41948-2022 颗粒表征 样品准备2022-12-302023-04-01一、《纳米技术 扫描电子显微术测量纳米颗粒粒度及形状分布》本标准牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。标准解读详见:【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布 二、《纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。本标准是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。标准解读详见:《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读 三、《Zeta电位测定操作指南》 本标准由山东理工大学 、上海市计量测试技术研究院 、中机生产力促进中心有限公司 、河南中科智能制造产业研发中心有限公司制定。Zeta 电位通常用于研究液体介质中颗粒分散体系的等电点(IEP)和表面吸附,并作为比较不同样品静电分散稳定性的指标。Zeta电位不是可直接测量的量,而是使用适当理论确定的量。此外,Zeta电位不是悬浮颗粒的固有属性,而是取决于颗粒和介质属性,以及它们在界面上的相互作用。介质的化学成分和离子浓度的任何变化都会影响这种界面平衡,从而影响Zeta电位。因此,样品制备和测量过程都会影响测定结果。为了避免zeta电位测量操作问题使测量结果出现误差,需要一个统一的zeta电位测量操作指导原则。本标准发布实施,提供了使用光学电泳迁移法或电声法测定Zeta电位的样品制备和测量过程的操作指南。标准解读详见:ISO颗粒表征专家许人良解读《Zeta电位测定操作指南》国家标准 四、《纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法》本标准牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。标准解读详见:【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径 五、《粒度分析 颗粒跟踪分析法(PTA)》本标准由中国计量科学研究院 、深圳国技仪器有限公司 、太原理工大学 、上海思百吉仪器系统有限公司 、中机生产力促进中心有限公司 、湖州中能粉体材料股份有限公司 、山东理工大学 、仪思奇(北京)科技发展有限公司 、珠海真理光学仪器有限公司 、大昌洋行(上海)有限公司等单位制定。PTA基于激光照射、散射光成像、颗粒识别及定位、单一颗粒跟踪等技术手段,对悬浮液中的颗粒扩散运动进行测量。近年来,学术界在脂质体及其他药物载体、纳米毒理学、病毒、外泌体、蛋白聚集、喷墨墨水、颜料颗粒、化妆品、食品、燃料添加剂及微气泡等工作中开始使用PTA技术进行表征。ASTM已发布了一个标准指南(E2834-12),指导纳米颗粒跟踪分析法NTA测量粒径分布。本标准旨在扩展规范的范围并推进PTA操作的系统化。本标准概述了颗粒跟踪分析法的理论、基本原理及优缺点,同时对仪器配置、测量程序、系统确认和分析报告等进行了描述,数据含义阐述及解释是其中重要内容之一。六、《粒度分布 液相离心沉降法 第2部分:光电离心法》本标准由罗姆(江苏)仪器有限公司 、中机生产力促进中心有限公司 、安徽鼎恒实业集团有限公司 、中国计量大学 、长兴旭日粉体科技股份有限公司制定。尽管过去20年发展了多种颗粒表征新技术,但由于技术的进步(例如多波长特征)以及沉降技术是基于重力或离心场中定向运动(迁移)进行颗粒表征最本初的方法,沉降法在某种程度上重新焕发活力。作为一种分级技术,沉降分析有助于区分具有接近沉降速度的不同颗粒及其相应的等效斯托克斯直径。可以非常精细地分辨粒度分布,这与光谱集成技术相比是一个优势。此外,如果颗粒的扩散通量按沉降通量的顺序排,一些离心技术有助于对颗粒系统进行多维表征,即同时确定多个分布量(例如颗粒大小和密度或形状因子)。GB/T42342《粒度分布液相离心沉降法》是通过离心沉降法加速颗粒在液体中迁移来确定颗粒材料的沉降速度、沉降系数和粒度分布的方法。第1部分给出了离心沉降法的基本原理和指南,第2部分给出了用液相离心沉降法测定颗粒粒度分布的方法。七、《纳米技术 抗菌银纳米颗粒 特性及测量方法通则》本标准由国家纳米科学中心 、中国食品药品检定研究院 、中国医学科学院基础医学研究所制定。银纳米颗粒具有抗菌性能,成为在消费品中应用最广泛的纳米材料之一。银纳米颗粒越来越多地应用于消费品中,以控制产品表面或内部的微生物生长。尽管市面上有很多含银纳米颗粒的抗菌产品,但大多数产品在销售时并未提供纳米颗粒理化性质和抗菌特性的信息。目前,大多数生产商依据实践经验提供特性指标。在参考了纳米技术领域抗菌银纳米颗粒粉体和胶体的其他标准的基础上,本标准提供了银纳米颗粒特性指标及推荐测量方法的指南。本标准中推荐的主要测量方法可用于工业界具体参数确定。本标准总结选取了目前常用的测量方法,因此需要适时更新。八、《纳米技术 吸入毒性研究中呼吸暴露舱内纳米颗粒的表征》 本标准由国家纳米科学中心 、广东粤港澳大湾区国家纳米科技创新研究院制定。纳米颗粒吸入毒理学的一个关注点是确保从业人员和消费者的健康。为了进行纳米颗粒的呼吸毒理学研究,有必要对呼吸舱内纳米尺寸颗粒的浓度、尺寸和分布特征进行监测。监测细颗粒或粗颗粒的传统方法,如称重法,不足以用于纳米颗粒,因为纳米特性参数(如颗粒表面积、颗粒数目等)可能是关键的决定因素,需进行监测。本标准提供了一系列的呼吸暴露舱内纳米颗粒监测方法,既包括差分迁移分析系统(DMAS),用于测量颗粒数量、尺寸、分布、表面积和估算质量浓度;也包括应用透射电子显微镜(TEM)或者扫描电子显微镜(SEM)进行形貌表征;还包括应用X射线能量色散谱(TEM-EDXA)进行化学成分分析。九、《颗粒 激光粒度分析仪 技术要求》本标准由中国计量科学研究院 、珠海真理光学仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、丹东百特仪器有限公司 、中国计量大学 、济南微纳颗粒仪器股份有限公司 、成都精新粉体测试设备有限公司 、堀场(中国)贸易有限公司 、上海思百吉仪器系统有限公司(马尔文帕纳科) 、大昌洋行(上海)有限公司(MicrotracMRB) 、上海理工大学 、珠海欧美克仪器有限公司等单位制定。激光粒度分析仪是用于测量颗粒大小及其分布的仪器。与其他粒度测量仪器相比,激光粒度分析仪具有粒度测量范围宽、测量速度快、测量重复性好和操作方便等优点。激光粒度分析仪在制造和使用中,制造单位和用户最关心的就是其性能指标。本标准对仪器的重复性、准确性、分辨力和Dso检测下限等提出具体要求,以规范仪器厂家的生产与宣传行为,便于不同实验室之间对粒度结果进行比较,利于用户选择适合自己需要的激光粒度分析仪。十、《颗粒表征 样品准备》本标准由深圳市德方纳米科技股份有限公司 、合肥鸿蒙标准技术研究院有限公司 、山东理工大学 、济南微纳颗粒仪器股份有限公司 、中国科学院过程工程研究所 、华南理工大学 、澳谱特科技(上海)有限公司 等单位制定。颗粒材料在国民经济的众多领域都起着重要的作用。在颗粒材料的研发、制备、生产与应用中,都离不开对颗粒特性的表征。除了需要对各类表征技术及分析仪器进行标准化外,对颗粒表征样品准备过程(包括取样、制样和样品转移等)的标准化也至关重要。适宜和规范的样品准备是得出正确颗粒表征特性的必要条件。本标准用于确立颗粒表征所用样品的准备程序,以指导颗粒测试人员得到正确的待测样品。
  • 重磅!安东帕收购美国康塔仪器 完善颗粒表征产品组合
    p  strong仪器信息网讯 /strong2018年2月9日,奥地利安东帕公司(Anton Paar)和美国康塔仪器公司(Quantachrome)在美国康塔仪器公司总部佛罗里达州博因顿海滩完成收购流程,安东帕完成对康塔仪器的收购。两家公司同意不透露购买价格。/pp  被收购后,康塔仪器成为安东帕集团旗下第七家新的子公司,且将继续在博因顿海滩开展业务。安东帕生产和采购执行总监Georg Cortolezis-Supp将负责管理这个新的子公司。根据安东帕的战略,该公司正在规划工厂的现代化和扩张。前总裁Scott Lowell和首席财务官Lauren Spector 将在过渡时期提供支持。/pp  strong安东帕集团首席执行官Friedrich Santner/strong表示:“康塔仪器的产品是我们产品组合中颗粒表征的完美补充。到现在为止,我们主要为液体和颗粒物理检查提供分析解决方案。通过此次收购,我们在固体分析方面的业务将得到深入扩展。两家公司现有技术和新技术的结合将为创建改进的或新的测量解决方案打下基础。此外,我们的战略目标是在安东帕尔集团内拥有一家位于美国的研究、开发和生产部门。“/pp  strong康塔仪器前总裁Scott Lowell/strong表示:“我很高兴像安东帕这样一个赋予创新和价值的公司将继续开发和生产康塔仪器的产品。安东帕以其卓越的企业文化、以研发为推进企业保持领先、以苛刻而又感恩的态度对待每一位员工的团队文化等而文明。与许多国际公司相比,安东帕拥有可持续发展的公司理念,他们决定继续并扩大康塔仪器在佛罗里达州博因顿海滩的业务就是一个体现。”/pp  span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于康塔仪器/strong/span/pp style="text-align: left " img src="http://img1.17img.cn/17img/images/201802/insimg/e042a0f3-9d4e-4773-a206-319682ac3aa9.jpg" title="qc_logo.png"//pp  康塔仪器是一家知名的家族企业,在分析业务领域有着悠久的传统。该公司成立于1968年,拥有170名员工,在设计用于分析多孔材料和粉末的表征仪器方面居全球领先地位。该仪器被用于工业和研究实验室研究表面、密度、孔径和分布,以及特定的气体和蒸气的相互作用。这些物理性质是电池和燃料电池材料,催化剂,药物粉末,陶瓷,沸石,生物和泡沫材料或食品的基本表征特性。该技术涉及BET方法(由Stephen Brunauer,Paul Hugh Emmett和Edward Teller开发),该方法使用气体吸附来确定多孔组分的表面积。康塔仪器生产样品制备和分析仪器,在中国和日本设有子公司,在50多个国家销售25种仪器类型,并为全球知名客户提供服务。br//pp  span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于安东帕/strong/span/pp style="text-align: left " img src="http://img1.17img.cn/17img/images/201802/insimg/9abf81a8-6613-44d4-99ad-caccbc6cd1d3.jpg" title="SH101011_logo84.gif!w200x80.jpg"//pp  安东帕成立于1922年,位于奥地利格拉茨,是密度和流变学测量,溶解二氧化碳测定以及流变测量领域的全球领先企业。安东帕的客户包括全球大部分主要的啤酒和软饮料制造商以及从事食品,化学品和制药行业的公司。该公司在奥地利格拉茨成立为一个独立的锁匠工作室,致力于将高精度制造与最新科学成果相结合。安东帕股份有限公司将年营业额的20%投入研发,分析仪器设备几乎完全在公司内部开发和生产。安东帕集团在超过110个国家开展业务,拥有29个销售子公司,并且在收购康塔仪器之后,在欧洲和美国拥有7家生产型子公司。全球约有2900名员工(包括康塔仪器)在研发、生产、销售和支持的全球网络中负责安东帕生产的产品的质量,可靠性和服务。/pp  从2003年起,慈善基金会“Santner基金会”成为安东帕的所有者,专为慈善目的而设。/pp  除了专注于研究和开发之外,安东帕的增长还基于战略收购。 2007年,公司在汉诺威(德国,现为安东帕OptoTec)附近收购了Dr. Kernchen GmbH,随后于2012年收购了Petrotest集团(德国,安东帕ProveTec),并于2014年在瑞士增加了CSM Instruments SA(安东帕 TriTec)。2016年,安东帕收购了BaySpec Inc.(美国加利福尼亚州)的拉曼台式设备产品线,并授权SciAps Inc.(美国马萨诸塞州)拉曼手持式仪器的技术。2017年,安东帕又将从Cilas(法国)购买的粒度分析技术集成到颗粒测试产品组合中。/p
  • 许人良:颗粒表征领域的十年回顾与展望
    颗粒表征行业过去十数年间从各类表征技术的发展、各工业领域内更广泛的应用、各项技术的标准化程度的提高与普及、新款仪器的问世,到许多商家公司的变更,是本行业半个世纪前随着激光与微电子行业的问世而跨入现代化进程以来变化最明显的。颗粒表征技术的发展回顾现代颗粒表征技术的初始化发端于延伸传统的筛分、光学显微镜、与沉降法粒度测量的下限。那些用于表征10微米以上颗粒的技术,特别是应用于固体颗粒的颗粒表征仪器商业化可以说是早已完成了。近十几年来主要是一些技术细节的进一步改进与应用的进一步推广,例如在3D打印、能量储存(锂离子电池)、药物等很多行业。这方面的最大变化是各类技术的国际标准化、国内标准化与行业标准化的建立与普及,以及各类有证(标准)的国家级与行业参考颗粒物质(RM),包括单分散粒径RM、多分散粒径RM、计数RM、表面积RM、Zeta电位RM等的可利用性。迄今为止国际标准化组织仅颗粒表征技术委员会(ISO TC 24)就已有61个国际标准、1个技术规范、3个技术报告。中国国家标准化管理委员会的颗粒表征与分检及筛网标准化委员会专委会(TC 168)也已有60个国家标准。这些技术在过去十数年内的持续改进发展与一些新技术的问世,主要来自于纳米科学技术发展的推动与将测量粒径下限进一步下推与测量样品浓度上推的需求。表征技术与仪器本身的发展也受益于其他行业的新技术,例如3D打印、光刻与微机电系统已被用于生产颗粒表征仪器的过程;不断发展的各类光源、光导纤维、CCD、CMOS、光电探测器阵列都已成为现代化颗粒表征仪器的一部分。某些测量技术例如传统的库尔特原理(电阻法),进一步扩展了测量的动态范围与测量下限、数值化的脉冲记录可使同一测量除了计数与颗粒体积测定以外,也可用以测定颗粒形状或追踪样品的动态变化。基于同样原理的可调谐电阻脉冲传感法使用在可伸展薄膜上的小孔测量纳米级颗粒,已成功地用于病毒研究,包括新冠病毒研究;利用纳米碳管、3D打印以及小至10纳米的电极,整个电阻法测量可在微芯片上完成。英国科学家在2006年发明的、基于追踪激光照射下悬浮液内纳米颗粒运动的颗粒示踪法是近十年来发展最迅速的基于数量测定的纳米颗粒粒径测定新技术。这个可以包含计数、电泳迁移率测定与荧光分析的新技术可与动态光散射互补,如果能够进一步增宽测量粒径与浓度的动态范围,则一定可以有更广泛的应用前景。传统的动态光散射已突破稀溶液和90度散射角测量的局限,利用光学纤维进行后向散射、多角散射测量,以及多角度整体分析已逐渐成为通例。随着计算机能力的进一步扩展与数据传输速度的提高,动态范围高达1012与采样速度快达10纳秒的芯片相关器或软件相关器取代了传统相关器。越来越多的相关函数反演算法使这一已沉寂了很多年的领域又活跃了起来。打破测量必须在静止液体中进行的限制,在分馏设备的出口处测量在流动液体中单分散分馏成分的动态光散射也取得了可喜的进展。中国科学家在2012年发明的,以CCD或CMOS作为探测器,同时测量动态光散射时间与空间相关性的超快速图像动态光散射方法,利用系综平均取代扩散平均,弥补了传统动态光散射费时、信噪比低的缺点,可以在瞬间(快达1微秒的两幅帧)测出颗粒的平均粒径,已成功地在数秒钟内实时测量了金颗粒的成长。这一测量速度还将随着帧传输速率的增加进一步提高。另一个可注意到的变化是电泳光散射测量zeta电位技术的进一步发展,例如直流与交流电场混用以排除测量中电渗的影响、使用透明电极以测量极高浓度样品中颗粒的zeta电位、用大规模并行相位分析光散射测量蛋白质的电泳、用对称测量增加分辨率等。Zeta电位测量的应用与数据解释也为更多的用户理解与接受。随着越来越多行业对颗粒形状表征的需求,动态图像法,特别是取样方法与图像分析算法与软件也是活跃的热点。颗粒表征仪器企业的并购整合这十几年来最引人注目的可能是颗粒表征仪器行业内商家的整合。据不完全统计,从2000年至今,至少有13家公司的所有权发生了变化,有的是集团内整合,有的是国际兼并,有的是国内并购。随着现代化颗粒表征技术第一代研发人员由于年龄原因的退出、公司所有权变化后的人事变动、以及很多成熟技术的黑盒子化,提供用户支持的第一线应用人员甚至总部的应用支持人员对科学技术知识掌握的深度与广度打了很多折扣,有些人对自己公司的产品知其然而不知其所以然,市场上的竞争也经常脱离应有的科学技术基础。中国颗粒表征领域的发展可喜的是中国颗粒表征领域的发展,无论是对技术的推进(激光粒度法中的很多新型光学设计、图像动态光散射、各类矩阵反演算法等)、应用的普及化(全球最大的激光粒度仪与质控气体吸附表面分析仪的用户群体)、标准化程度(全球数一数二的与颗粒有关的国家标准与颗粒标准物质的类型与数量)、商业化的活跃程度(具有最多业内商家的国家)都随着中国国力的增强与现代化的发展而走在前沿。中国颗粒表征企业也开始进行国际并购,销售渠道越来越宽。颗粒表征技术未来展望展望下一个十年,颗粒表征技术在现有的基础上会在各级标准化的促进下得到更广泛的应用,云数据计算与共享会逐渐推广,表征技术不再限于单参数测量而是在单一测量、或同时测量中得到多个参数,或同一参数在不同条件下测量后对数据进行整体分析。更多的注意力会放在气溶胶、气泡动态测量与在线测量;各类数据挖掘法会用于动态图像法中的图形辨识以用来测量更小与更浓的样品;激光粒度仪将不再局限于球形模型而开始对实际样品尝试非球形模型。作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引4700以上、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。
  • 麦克默瑞提克(上海)仪器有限公司颗粒表征技术讲座成功举办
    麦克默瑞提克(上海)仪器有限公司于2011年4月27日在北京中科院过程工程研究所过程大厦成功的举办了2011年第5次&ldquo 颗粒表征技术讲座&rdquo 。在此次讲座中,来自美国麦克仪器公司的资深专家Simon Yunes博士和Andres先生深入浅出地讲解了物理吸附,化学吸附,电阻法颗粒计数粒径分析以及动态图象法颗粒分析等技术。此外,两位专家还结合使用Micromeritics产品的一些方法技巧与问题,与各位用户进行了深入的交流。麦克默瑞提克(上海)仪器有限公司总经理许人良博士主持了此次讲座。 本次培训班吸引了来自石油、催化、材料等领域的100余名听众,其中不乏麦克仪器的用户。值得欣喜的是90高龄的中国颗粒界元老郭慕孙院士也出席了此次技术讲座。郭院士早在20多年前就与美国麦克仪器公司创始人Orr博士有过交往,与Simon Yunes博士也相识20多年。Simon Yunes博士还与郭院士互赠书籍。
  • 2013年颗粒测试与表征技术培训班成功举办
    仪器信息网讯 在IPB 2014召开期间,&ldquo 2013年颗粒测试与表征技术培训班&rdquo 在上海国际展览中心举办,吸引了100多位颗粒测试与表征技术工作者参加培训。2013年颗粒测试与表征技术培训班现场  本期培训班由中国颗粒学会主办,并得到了丹东百特仪器有限公司、广州博勒飞粘度计质构仪技术服务有限公司与纽伦堡会展服务(上海)有限公司的大力支持。北京粉体技术协会理事长胡荣泽教授致辞丹东百特仪器有限公司总经理董青云  董青云携丹东百特软件部经理范继来及上海办事处主任侯东瑞分别介绍了激光粒度分析方法新版国际标准ISO 13320-2009、激光粒度分析原理与方法以及百特最新的粒度分析技术。  新标准ISO 13320:2009 (E)将原标准ISO 13320-1:1999、13320-:1999合二为一,并增加了一些新内容与心新术语,附录E对获得更高测量精度给出了建议。而等同于采用ISO 13320:2009 (E)的中国国标预计明年正式发布。  董青云表示:&ldquo 激光粒度分析是目前应用最广泛的一种方法,具有宽、快、简、广等特点,但它又不是万能的方法,会受到环境、样品、仪器、人等的影响。要获得准确的粒度分析结果,就要研究样品、研究仪器、研究标准,找到更适合自己的方法。&rdquo 广州博勒飞粘度计质构仪技术服务有限公司总经理丁晓炯  丁晓炯主要向与会者介绍了粉体流动性的评价方法、PFT粉体流动测试仪在粉体流动性测量、数据解析中的实际应用,并在现场亲自操作PFT粉体流动测试仪进行测样演示。  粉体的流动性研究是目前很多材料行业的难点,而现有常见的一些方法不能满足实际需求。美国Brookefield公司根据ASTM D6128推出的PFT粉体流动测试仪,拥有流动函数测试、时间固结流动函数测试、壁面摩擦测试、松装密度测试等功能,特别适合测量5mm粒径以下的粉体,能够为工业处理设备中的粉体流动行为提供了快捷而容易的分析结果。
  • 明天开播!千人大会之“电池材料与颗粒分析表征”专场精彩预告
    电池性能的优劣,很大程度上取决于其构成材料的选择与制备工艺,以及材料微观结构的精细控制。颗粒分析表征作为材料科学研究的重要手段,能够揭示材料在纳米至微米尺度的结构特征、化学成分、相变过程及界面效应等关键信息,为电池材料的设计与优化提供科学依据。为促进学术界与产业界的交流,推动电池材料科学与技术的进步,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“电池材料与颗粒分析表征”专场。点击图片直达报名页面 会议特邀中国颗粒学会秘书长王体壮致辞,中科院金属所研究员孙振华、北汽新能源高级经理宋冉冉、天目湖先进储能技术研究院吴喜明、清华大学博士研究生左安昊、中科大理化科学实验中心工程师周宏敏分享电池材料结构调控与电化学性能研究、关键指标及表征方法、单颗粒动力学测试方法与材料数据库等。中国科学院金属研究所研究员 孙振华《聚合物基储能材料的结构调控与电化学性能研究》(点击报名)孙振华研究员研究工作主要围绕着锂硫电池和固态电池等新型电池体系,开展关键电极材料、电解质和器件性能研究,相关研究成果在Nature Commun.、Chem. Soc. Rev.、Energy Environ. Sci.、Adv. Mater.等期刊发表SCI收录论文120余篇,被引用12000余次,H-index为53,申请发明专利22项,获授权专利9项。曾获得中国颗粒学会自然科学一等奖(排名第二),入选中国科学院青年创新促进会优秀会员和辽宁省“兴辽人才计划”青年拔尖人才。目前担任中国颗粒学会青年理事,《天津大学学报》编委,SusMat、eScience和中国化学快报的青年编委。聚合物材料在电化学储能材料和器件中具有重要的作用。聚合物材料的结构决定着锂离子在聚合物中的反应和输运行为,从而影响储能器件的性能。针对聚合物材料在锂硫电池电极材料中的应用,该报告系统总结了有机硫聚合物在锂硫电池中的不同功能。在此基础上,报告为聚合物在电化学储能中应用和提高锂硫电池、聚合物固态电池的性能提供了新思路。北京新能源汽车股份有限公司高级经理 宋冉冉《动力电池核心原材料关键指标及表征方法》(点击报名)宋冉冉博士2014年毕业于北京化工大学材料学,2016年入职北汽新能源。10年锂电池材料研发经验,对电芯材料合成制备、表征、电化学原理、材料前瞻技术等有较深入的研究。牵头电芯技术项目开发、负责电芯原材料选型及体系开发工作。本报告针对影响动力电池性能的各项核心原材料关键指标,讲述了指标特征、相关作用机理、表征方法和测试原理等,并对原材料失效进行典型案例分析。天目湖先进储能技术研究院高级工程师 吴喜明 《电池材料形貌、表界面表征方法及应用案例》(点击报名)吴喜明高工硕士毕业于深圳大学材料学专业,具有多年材料显微分析,表面分析、理化测试工作经验,目前在天目湖先进储能研究院从事电镜及表面分析仪器的测试工作,专注于先进分析仪器表征电池材料微观形貌、表面成分,为电池材料、电芯企业提供检测服务。电池材料的形貌、表界面性质对电池性能的发挥起着至关重要的作用,而常规的测试分析手段存在一定的局限性,本报告列举了透射电子显微镜(TEM)、俄歇电子能谱(AES)、X射线光电子能谱(XPS)、飞行时间-二次离子质谱(Tof-sims)等先进表征分析仪器在电池材料分析方面的独特作用,依赖类似高水平的测试技术可以对电池材料进行更加深入、细致的理解。清华大学博士研究生 左安昊《电池材料单颗粒动力学测试方法与材料数据库》(点击报名)左安昊博士担任北京易析普罗科技有限责任公司CEO,主要从事电池材料单颗粒测试方法相关基础研究与产业化工作。在Cell Reports Physical Science、Journal of Power Sources、Journal of Energy Storage、储能科学与技术等期刊上发表学术论文10篇,授权发明专利13项,参与国家自然科学基金、国家重点研发计划等多项课题。曾获国家奖学金、北京市三好学生、江苏省优秀学生干部、清华大学优秀学生干部标兵、清华大学“一二九”辅导员等荣誉以及世界电动车大会优秀论文奖、首届未来颗粒前沿论坛优秀报告奖等奖项。电池材料研发需要快速、精准的性能评价手段,电池模型搭建需要精确的动力学参数输入。目前,业内主要以电极/单体为测试对象,根据电池性能反推材料性能/参数。然而,电池内部含有多种材料、多种物相,传统动力学测试方法仅能得到不同材料各自动力学过程的混合结果,难以确定单因素对材料/电池性能的影响,也不能反映单一材料性能。本报告将介绍一种以材料单颗粒为实验对象的热/动力学性能测试方法。该方法适用于锂离子电池活性材料并具有较高的测量精度,对固态电解质、钠离子电池材料等也具有一定通用性。中国科学技术大学理化科学实验中心工程师 周宏敏《扫描电镜在新能源电池和钙钛矿材料表征中的应用》(点击报名)周宏敏工程师在中国科学技术大学理化科学实验中心从事扫描电镜应用服务及相关技术开发。主持中科院仪器设备功能开发技术创新项目2项,参与863仪器研究项目1项,作为第一发明人获授权专利3项,发表仪器技术及管理文章10余篇。针对新能源电池研究材料如Li,Na,K以及卤素、硫化物的全固态电解质等化学性质活泼的材料,不能接触空气的特点,周宏敏研制了基于气氛保护的传输盒,在扫描电镜仓内真空环境下打开,实现了测试材料从实验室手套箱全程不接触空气进入扫描电镜进行分析表征,支撑了多项成果发表于Nature Communications,Angew. Chem. Int. Ed.,Energy Storage Materials,J. Am. Chem. Soc.等高水平杂志。本报告针对有机无机杂化钙钛矿材料在电子辐射条件下不稳定的难点,将进行OIHP薄膜样品的扫描电镜成像条件探讨研究,采用低加速电压的策略,既保持OIHP表面细节的分辨率又减小辐射损伤,并采用扫描旋转的成像方式较好地解决截面成像易畸形的难点。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 一场学术交流的饕餮盛宴——颗粒的测试与表征分会场成功举办
    p style="line-height: 1.5em " 2020年10月24-25日,中国颗粒学会第十一届学术年会暨海峡两岸颗粒技术研讨会在福建省厦门市召开。会议同期举办16个不同主题的分会场,仪器信息网对“第4分会场:颗粒的测试与表征”进行了跟踪报道。该分会场由中国颗粒学会颗粒测试专业委员会(以下简称“测试专委会”)主办,测试专委会荣誉委员蔡小舒,秘书长周素红,主任葛宝臻,副主任沈建琪、韩鹏、董青云、张福根等近200位专家学者与企业代表出席。br//pp style="line-height: 1.5em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/9096e91b-02c9-4139-b99e-2a79f20e5aac.jpg" title="IMG_8341.JPG" alt="IMG_8341.JPG"/strong style="text-align: center "分会场现场/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 颗粒的测试与表征分会场会期1天,共设置特邀报告与学生报告43个。会议伊始,测试专委会主任葛宝臻发表致辞,对与会代表表示欢迎和感谢。谈及新冠病毒,以及美国对我国科技发展的打压,葛宝臻倡议颗粒工作者应大胆创新,积极参与病毒颗粒的相关研究,开设新课题,共同探索解决颗粒测试领域的难点问题。/pp style="white-space: normal line-height: 1.5em "img src="https://img1.17img.cn/17img/images/202010/uepic/fa4ee06c-186d-4f63-8c93-3c70e8ce6796.jpg" title="2.jpg" alt="2.jpg" style="max-width: 100% max-height: 100% "//pp style="white-space: normal text-align: center line-height: 1.5em "strong葛宝臻致辞/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 尺寸和折射率是粒子的两个基本参数。在基于光散射理论的粒子测量中,通常根据粒子的折射率测量其粒径,或者根据粒子的粒径测量其折射率,无法同时测量粒子的尺寸和折射率。天津大学教授吕且妮在《喷雾场粒子尺寸和折射率同时测量》报告中提出了一种扩展干涉粒子成像(IPI)技术,采用双光束照射的双光路的IPI实验系统,可同时测量粒子的尺寸和折射率。这种测量方法还可获得粒子的位置信息,结合粒子追踪测速/粒子图像测速技术(PTV/PIV),可实现粒子场粒子尺寸、速度和折射率的同时测量。该技术引起参会人员的广泛关注与热烈讨论。/pp style="white-space: normal line-height: 1.5em text-align: center "strongimg src="https://img1.17img.cn/17img/images/202010/uepic/af653cfd-86ef-47bd-a048-323b5de06f52.jpg" title="3.jpg" alt="3.jpg" style="max-width: 100% max-height: 100% "/吕且妮作《喷雾场粒子尺寸和折射率同时测量》特邀报告/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 微塑料为粒径小于5mm的塑料纤维、颗粒或薄膜,普遍存在海洋及内陆环境中,已成为新的全球性环境污染问题。由于缺乏微塑料在天然环境中的浓度和特性等信息,造成微塑料新型污染物环境效应的研究正面临挑战,因此,亟需建立微塑料收集、分离、表征和定量的标准化方法。北京市理化分析测试中心副主任高峡在《“微塑料”分析测试技术》的报告中,简要介绍了微塑料样品的采集、分离方法,以及目视鉴别法、傅里叶变换红外光谱法、拉曼光谱法等微塑料分析测试技术,并探索显微红外光谱及粒度粒形成分分析仪在微塑料鉴别中的应用,测试对比发现,显微红外光谱点扫描+反射模式、粒度粒形成分分析仪均具有较好的鉴别效果。/pp style="white-space: normal line-height: 1.5em text-align: center "strongimg src="https://img1.17img.cn/17img/images/202010/uepic/e5e904a8-afcf-4c69-8fdd-637ae6943f4d.jpg" title="4.jpg" alt="4.jpg" style="max-width: 100% max-height: 100% "/高峡作《“微塑料”分析测试技术》报告/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 常用的喷雾粒径和速度测量技术有激光衍射粒度仪、干涉粒子成像仪、相位多普勒粒子分析仪等,但这些技术都有各自的应用范围,存在一定的局限性。上海理工大学副教授周骛在《基于离焦成像的喷雾粒径和速度测量技术》报告中,提出一种基于离焦成像的前沿测量技术,采用单镜头双相机系统以解决离焦成像中的二义性问题;基于离焦成像原理提出了颗粒粒径和深度测量的不同图像处理算法,分析了不同算法的测量误差与影响因素,并对该方法在喷雾测量中的应用展开研究。该方法有明确的测量深度范围,可获得数目浓度;易与3DPTV方法相结合获得三维颗粒速度场。/pp style="white-space: normal line-height: 1.5em text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/25effbc3-126c-457b-922b-07edacc5a6bc.jpg" title="IMG_8712.jpg" alt="IMG_8712.jpg"/周骛作《基于离焦成像的喷雾粒径和速度测量技术》报告/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 此外,中国计量大学教授于明州、华南师范大学教授彭力、上海理工大学教授于海涛、大连海事大学教授张洪朋、山东理工大学教授刘伟等行业大咖纷纷带来精彩报告;同时,多家颗粒测试与表征仪器名企的技术咖齐聚本会场,共同奉献了一场学术盛宴。strongbr//strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/937017bc-239b-4b3e-8149-4ca87c8cb006.jpg" title="IMG_8484.JPG" alt="IMG_8484.JPG"//pp style="white-space: normal line-height: 1.5em margin-top: 10px text-align: center "strong报告人:珠海真理光学仪器有限公司董事长 张福根/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px text-align: center "strong报告题目:不同激光粒度仪测量结果存在差异的深层原因探讨/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px "img src="https://img1.17img.cn/17img/images/202010/uepic/aa5bdd02-69c4-4dc0-8082-1664d8da38e2.jpg" title="IMG_8736.JPG" alt="IMG_8736.JPG" style="max-width: 100% max-height: 100% "//pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:仪思奇(北京)科技发展股份有限公司 杨正红/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:颗粒球形度的表征、分级及其应用/strong/pp style="white-space: normal line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e38e655d-f9b4-4dd7-b7af-af1b1ef300ea.jpg" title="IMG_8824.JPG" alt="IMG_8824.JPG"//pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:贝克曼库尔特商贸(中国)有限公司 张强/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:高分辨粒度表征技术与其研发、质控应用/strong/pp style="white-space: normal line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/09d38781-1dfd-4876-b39c-ac7b7563ebb1.jpg" title="IMG_8828.JPG" alt="IMG_8828.JPG"//pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:马尔文帕纳科公司 杨凯/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:通过毛细管动态光散射技术扩展流体力学尺寸测量的范围/strong/pp style="white-space: normal line-height: 1.5em "strongimg src="https://img1.17img.cn/17img/images/202010/uepic/e54ced4e-ae95-4177-8f5d-4d26e580ceb5.jpg" title="IMG_8859.JPG" alt="IMG_8859.JPG" style="max-width: 100% max-height: 100% "//strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:大昌华嘉科学仪器部 姜丹/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:增材制造中TPU材料的性能表征/strong/pp style="white-space: normal line-height: 1.5em "strongimg src="https://img1.17img.cn/17img/images/202010/uepic/875db5a1-0cda-468b-b3e9-3838aaa5c8c7.jpg" title="IMG_8902.JPG" alt="IMG_8902.JPG" style="max-width: 100% max-height: 100% "//strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:珠海欧美克仪器有限公司 官泽贵/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:锂电子电池电极材料的粒度分布测试方法优化及应用研究/strong/pp style="white-space: normal line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/bdf65e8c-f9fc-40b0-8de2-7292d394bba0.jpg" title="IMG_9014.JPG" alt="IMG_9014.JPG"//pp style="white-space: normal line-height: 1.5em text-align: center "strong报告人:丹东百特仪器有限公司 宁辉/strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong报告题目:动态光散射技术的测量进展及应用/strong/pp style="white-space: normal line-height: 1.5em "strongimg src="https://img1.17img.cn/17img/images/202010/uepic/cbd9f1a9-1b84-4835-a5ef-fafd27ec9f7f.jpg" title="IMG_8584.JPG" alt="IMG_8584.JPG" style="max-width: 100% max-height: 100% "//strong/pp style="white-space: normal line-height: 1.5em text-align: center "strong部分参会人员合影/strong/pp style="white-space: normal line-height: 1.5em margin-top: 10px " 更多报道请关注a href="https://www.instrument.com.cn/zt/KLNH" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong中国颗粒学会第十一届学术年会暨海峡两岸颗粒技术研讨会专题/strong/span/a/p
  • 2018年颗粒测试与表征技术培训班圆满落幕
    p style="text-indent: 2em "10月18日,由中国颗粒学会主办的2018年颗粒测试与表征技术培训班在第十六届中国国际粉体加工/散料输送展览会(IPB2018)上同期召开,6位业内知名的颗粒测试表征企业科研专家,就激光衍射法粒度测量、图像颗粒表征、纳米激光粒度技术、粉体流动性等研究进展和应用就行了专题培训,30余位中国颗粒学会的个人会员参加了本次课程,培训班由中国颗粒学会秘书长王体壮主持。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/68c7a018-6caf-451b-9fda-bc524aa7ddc8.jpg" style="" title="IMG_9001.JPG"//pp style="text-align: center "strong培训现场/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/0cc251a5-aea7-4e36-bc77-374ae722d1a6.jpg" style="" title="IMG_8984.JPG"//pp style="text-align: center "strong王体壮主持培训/strong/pp style="text-indent: 2em "培训会的主讲嘉宾分别为中国颗粒学会荣誉理事、珠海真理光学仪器有限公司董事长张福根博士,马尔文帕纳科(中国)产品经理孙正亮,英国福瑞曼科技有限公司大中华地区销售经理张志俊,丹东百特仪器有限公司大区销售经理李雪冰博士、珠海欧美克仪器有限公司首席研究员傅晓伟博士、德国新帕泰克有限公司大区销售经理赵春霞。/pp style="text-indent: 2em "颗粒学从数学意义上既包含天文、气象、地理、地质等自然万物,也涉及医学、脑科、人类、合生等精神社会。在资源、能源、环境、材料、健康等领域尤其有着突出的应用,具有跨学科、多学科和交叉学科的复杂特点。因此举办颗粒测试与表征技术的相关培训对于从事相关工作的科研人员、特别是学生和初入职场的技术人员具有重要的意义。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/dfddf830-ac29-41cf-950c-4daa4b1c08a3.jpg" title="IMG_9027.JPG" alt="IMG_9027.JPG"//pp style="text-align: center text-indent: 0em "strong张福根/strong/pp style="text-indent: 2em "培训班上,张福根博士做了《激光粒度测试理论与技术的最新进展》报告,他深入剖析了激光衍射法粒度分析仪的测量原理。并就个人研发团队对爱里斑的反常变化、全反射盲区、激光粒度仪上下限、光学系统及反演算法的改进等问题的研究成果进行了报告。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/6a8e7746-86d4-4773-85c3-17d7bcb707cf.jpg" title="IMG_9085.JPG" alt="IMG_9085.JPG"//pp style="text-indent: 2em text-align: center "strong孙正亮/strong/pp style="text-indent: 2em "孙正亮的报告聚焦自动成像技术。他论述了传统的显微图像测试技术在粒度检测、粒度统计、粒型分析等方面的局限性,并详细介绍了集成了显微成像和粒度粒形分析技术的自动成像技术。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/4c5307c7-b150-4bea-9da9-a2e14d8cdfa6.jpg" title="IMG_9115.JPG" alt="IMG_9115.JPG"//pp style="text-align: center text-indent: 0em "strong张志俊/strong/pp style="text-indent: 2em "粉体是一种复杂材料,近年来粉体的流变性和粉体多元分析越来越被科研工作者重视。张志俊的报告就介绍了粉体流变仪在制药、化工、半导体、增材制造等众多的领域的应用,并针对几个特色的应用案例进行了分享。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/a6cd69ef-cdcb-44d0-b20e-b79f66bb998c.jpg" title="IMG_9192.JPG" alt="IMG_9192.JPG"//pp style="text-align: center text-indent: 0em "strong李雪冰/strong/pp style="text-indent: 2em "李雪冰博士的报告着重比对了干法和湿法激光粒度仪的优缺点。他表示,干法激光粒度仪在测试速度、分散方式影响因素、取样量、测试便捷性、光学参数影响等方面更擅胜场,而湿法激光粒度仪则具有训话测试、分散方式灵活性、细颗粒解决方案、数据稳定性、适应性等方面更为出色。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/dde1b0b9-03ca-4ab2-9862-ea6ac95cdf93.jpg" title="IMG_9222.JPG" alt="IMG_9222.JPG"//pp style="text-align: center text-indent: 0em "strong傅晓伟/strong/pp style="text-indent: 2em "傅晓伟博士《纳米激光粒度仪技术及其应用》报告分析了电镜、原子力显微镜、动态光散射技术(DLS)等几种主要的纳米粒度测试方法。他表示动态光散射技术具有对团聚灵敏、测试快、可在线、质控适用程度高等优势,并着重剖析了动态光散射技术的技术原理和特色应用实例。/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201810/uepic/574a9ace-8f2e-4d1d-a68d-24ae45251940.jpg" title="IMG_9317.JPG" alt="IMG_9317.JPG"//pp style="text-align: center text-indent: 0em "strong赵春霞/strong/pp style="text-indent: 2em "赵春霞则从工艺优化和品质提升的角度探讨了粒度粒形检测技术的应用。她表示获得最佳粒度检测结果要受到取样、分散、检测三大因素的综合影响,并就此展开详细介绍了颗粒表征的误差来源和在水泥、石墨负极材料、3D打印等行业的应用解决方案。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/3d270a82-b5dc-4bc7-b9bb-ab9c7737f6a4.jpg" title="IMG_9401.JPG" alt="IMG_9401.JPG"//pp style="text-align: center "strong学员领取培训证书/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/f6af367c-ca23-4311-a1cc-0f454116f30a.jpg" title="IMG_9178.JPG" alt="IMG_9178.JPG"//pp style="text-align: center "strong培训学员与主讲嘉宾合影/strong/pp style="text-indent: 2em "报名参加此次培训学员主要为研究生和企业技术研发人员,培训期间,学员们向主讲嘉宾踊跃提问,现场学术气氛浓烈。会后学员们领取了中国颗粒学会颁发的培训证书,并纷纷表示此次参训受益匪浅,从实际应用的角度完善了理论知识体系,对学习和工作具有积极的促进作用。/pp style="text-indent: 2em "据了解颗粒测试与表征技术培训班是中国颗粒学会IPB展览-行业专题培训之一,也是学会为2300余名个人会员倾心打造的人才一站式职业服务和特色终生培训之一,其他针对个人会员的特色培训还有学术年会—领域专题培训、专委会会议-专题培训、仪器信息网-行业专题培训等。/p
  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 2015年颗粒测试与表征技术培训班通知
    p  为满足颗粒粉体行业对颗粒测试与表征技术的需求,搭建企业与用户的互动交流平台,提高仪器用户颗粒测试仪器实践操作的水平,中国颗粒学会、上海颗粒学会及北京粉体技术协会拟定于2015年10月28?29日在上海跨国采购会展中心合作举办“2015年颗粒测试与表征技术培训班”。/pp  本期培训班将与“IPB 2015第十三届中国国际粉体加工/散料输送展览会”和“第一届绿色涂层与纳米技术应用高层论坛”同期同地举办。展览期间参与本次培训的部分厂商将现场展示最新推出的激光粒度测试、比表面及孔径分析测试等方面的仪器。培训班除将邀请专家介绍最新的测试技术进展外,还将重点针对大家在实际工作中可能遇到的问题进行分析并解答,同时参加培训班的学员还可到展位现场了解操作相关测试设备。有关培训班详情如下:/pp  1. 培训时间:10月28?29日/pp  2. 培训地点:上海跨国采购会展中心(上海市光复西路2739号,电话:021-60290070/72)三夹层3M5会议室/pp  3. 初定培训内容/ptable cellspacing="0" cellpadding="0"tbodytrtd style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " valign="top" width="225"p style="margin: 8px 0px 0px text-align: center "strongspan style="font-family: 宋体 "报告题目/span/strong/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"p style="margin: 8px 0px 0px text-align: center "strongspan style="font-family: 宋体 "报告人/span/strong/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"p style="margin: 8px 0px 0px text-align: center "strongspan style="font-family: 宋体 "单位/span/strong/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"p style="margin: 8px 0px 0px "span style="font-family: 宋体 "动态光散射(/spanspan style="font-family: "DLS/spanspan style="font-family: 宋体 ")与电泳光散射(/spanspan style="font-family: "ELS/spanspan style="font-family: 宋体 ")/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"p style="margin: 8px 0px 0px "span style="font-family: 宋体 "许人良/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"p style="margin: 8px 0px 0px "span style="font-family: 宋体 "麦克默瑞提克(上海)仪器有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"p style="margin: 8px 0px 0px "span style="font-family: 宋体 "拉曼光谱与成像技术的结合/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"p style="margin: 8px 0px 0px "span style="font-family: 宋体 "张/spanspan style="font-family: " /spanspan style="font-family: 宋体 "帅/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"p style="margin: 8px 0px 0px "span style="color: black font-family: 宋体 "英国马尔文仪器公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "颗粒特性及粒度分析技术的应用及发展/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="font-family: 宋体 "梁偉豪/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px word-break: break-all background-color: transparent " valign="top" width="214"pspan style="color: black font-family: 宋体 "贝克曼库尔特商贸(中国)有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "显微图像法粒度粒形表征技术的新进展/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "董青云/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"pspan style="color: black font-family: 宋体 "丹东百特仪器有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "《干法激光粒度仪在粉体行业测试中的应用——从实验室到工业在线》/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "耿建芳/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"pspan style="color: black font-family: 宋体 "德国新帕泰克有限公司苏州代表处/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "动态图像粒度粒型分析技术/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "蔡/spanspan style="color: black "span style="font-family: Times New Roman " /span/spanspan style="color: black font-family: 宋体 "斌/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"pspan style="color: black font-family: 宋体 "弗尔德(上海)仪器设备有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "颗粒大小和形貌分析技术进展/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "杨正红/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="208"pspan style="color: black font-family: 宋体 "美国康塔仪器公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "微粒捕集过滤用袋式除尘器用配件的合理选用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "高/spanspan style="color: black "span style="font-family: Times New Roman " /span/spanspan style="color: black font-family: 宋体 "佳/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="208"pspan style="color: black font-family: 宋体 "上海袋式除尘配件有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "激光粒度仪的设计优化在干法测试和较大颗粒测试上的应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="color: black font-family: 宋体 "傅晓伟/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"pspan style="color: black font-family: 宋体 "珠海欧美克仪器有限公司/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " valign="top" width="225"pspan style="font-family: 宋体 "颗粒表征技术标准化现状及展望/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="95"pspan style="font-family: 宋体 "李兆军/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " valign="top" width="214"pspan style="font-family: 宋体 "全国颗粒标准化分技术委员会/span/p/td/tr/tbody/tablep   4. 培训费用:免收培训费。/pp  5. 培训证书:对于提前预约报名并参加的学员,将颁发由中国颗粒学会签发的培训证书。/pp  6. 培训班报到:10月28日08:30在上海跨国采购会展中心(上海市光复西路2739号)展览注册处培训班报到台。/pp  7. 乘坐地铁到达会场的线路:/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 22px "td style="background: rgb(221, 217, 195) padding: 0px 7px border: 1px solid black " height="22" valign="top" width="89"p style="margin: 8px 0px 0px "strongspan style="color: black font-family: 宋体 font-size: 12px "出发地/span/strong/p/tdtd style="background: rgb(221, 217, 195) border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: black black black rgb(0, 0, 0) padding: 0px " height="22" valign="top" width="109"p style="margin: 8px 0px 0px text-align: center text-indent: 24px "strongspan style="color: black font-family: 宋体 font-size: 12px "两地距离/span/strong/p/tdtd style="background: rgb(221, 217, 195) border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: black black black rgb(0, 0, 0) padding: 0px " height="22" valign="top" width="363"p style="margin: 8px 0px 0px text-align: center text-indent: 24px "strongspan style="color: black font-family: 宋体 font-size: 12px "交通/span/strong/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "上海火车站/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="109"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "9.2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="363"p style="margin: 0px 0px 0px 18px "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "1/span/spanspan style="color: black font-family: 宋体 font-size: 12px "、/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "3/span/spanspan style="color: black font-family: 宋体 font-size: 12px "、/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "4/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线:上海火车站——人民广场站(换乘地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线)——地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(威宁路站),威宁路站/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "4/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号口出来右转上威宁路桥,过河后即下楼梯沿光复西路向东步行/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "400/span/spanspan style="color: black font-family: 宋体 font-size: 12px "米即到。/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "浦东国际机场/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="109"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "55/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="343"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(浦东国际机场——威宁路站),随后同上。/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "虹桥国际机场/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="109"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "1/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "8.8/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里,/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "12.6/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="363"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼——威宁路站),随后同上。/span/p/td/tr/tbody/tablep  8. 酒店住宿:费用自理。附件为同期展览“IPB 2015”联系酒店的信息及价格,参会代表如需预订房间,请在线预订: https://www.orient-explorer.net/ipb2015。/pp  9. 会务组联系方式/pp  地 址:北京中关村北二街1号(100190) 中国颗粒学会秘书处/pp  联系人:郭峰(15110169497),林红卫(13918222077),周素红(13301330433)/pp  电 话:010-62647647/62647657 传 真:010-82629146 /pp  E-mail: klxh@home.ipe.ac.cn/pp style="text-align: right "  中国颗粒学会/pp style="text-align: right "  上海颗粒学会/pp style="text-align: right "  北京粉体技术协会/pp style="text-align: right "  2015年9月/pp style="text-align: center "  strong2015年颗粒测试与表征技术培训班/strong/pp style="text-align: center "strong  回 执/strong/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 33px page-break-inside: avoid "td style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " height="33" width="83"pspan style="font-family: 宋体 "姓 名/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="117"/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="57"pspan style="font-family: 宋体 "性 别/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="66"/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="66"pspan style="font-family: 宋体 "职 称/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="129"/td/trtr style="height: 35px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="35" width="83"pspan style="font-family: 宋体 "通信地址/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="240" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="66"pspan style="font-family: 宋体 "邮 编/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="123"/td/trtr style="height: 34px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="34" width="83"pspan style="font-family: 宋体 "工作单位/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="240" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="66"pspan style="font-family: 宋体 "手 机/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="129"/td/trtr style="height: 33px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="33" width="83"pspan style="font-family: Times New Roman "Email/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="240" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="66"pspan style="font-family: 宋体 "传 真/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="129"/td/tr/tbody/tablep  烦请计划参会的代表于10月15日之前返回此回执,以便提前准备会议资料及证书。非常感谢!/pp  温馨提示:IPB为参会人员提供了地铁站免费短驳巴士(来往于展馆和地铁2号线娄山关路站)/pp  发车时间及上车点(每15分钟一班或满员即走):/pp /p
  • 2014上海颗粒学会年会暨颗粒表征应用技术会举办
    仪器信息网讯 在IPB 2014举办期间,由上海市颗粒学会主办、马尔文仪器公司赞助的&ldquo 2014上海市颗粒学会年会暨颗粒表征应用技术会&rdquo 于2014年10月14日上午在上海国际展览中心召开。本次会议旨在加强颗粒材料领域的学术交流,促进本市颗粒领域的科学研究、技术进步和产品开发应用等方面的发展,方便学术界与产业界的交流和合作。会议现场上海理工大学动力工程学院蔡小舒教授主持会议  作为上海颗粒学会理事长,蔡小舒教授就上海市颗粒学会第七届理事会情况向与会人士作了简单介绍。据了解,上海市颗粒学会第七届理事会由19位科研院高校的专家学者及2位颗粒测试仪器公司负责人共同组成,其中9位理事为最新加入的。上海理工大学周骛博士报告题目:图像法颗粒多参数在线测量  目前,简单的粒度测量已经不能再满足用户在生产、科研工作中提出的高要求,而伴随着计算机和图像传感器技术近来的快速发展,基于数字图像处理的颗粒测量技术应运而生,并且发展速度非常迅猛。在当天的报告中,周骛博士介绍到,通过对图像获取硬件的研制和图像处理分析算法的研究,单帧单曝光图像法可用于三维颗粒场多参数在线测量,并且多方法多传感器的结合可以为复杂颗粒系统提供更多信息,如图像法颗粒在线测量参数包括颗粒粒度及分布、速度及分布、颗粒浓度和颗粒流量等。同济大学李建波博士报告题目:基于磁热效应的纳米药物传输系统的制备及其在肿瘤热化疗中的应用研究  鉴于目前肝癌治疗方法的局限性,我国亟需开发更加安全有效的化疗药物载体系统,以提高化疗效果。李建波博士所在团队研发出的高SAR纳米磁流体,具有超顺磁性、良好胶体稳定性和生物相容性等特点。经过实验验证,这种纳米磁流体可对肿瘤细胞可以起到高效的磁热疗作用,并在优化磁场条件下,可通过诱导凋亡的方式消灭肿瘤细胞保证磁热疗的安全性。在这种基础上,该团队还进行了肿瘤的词热化疗协同增效研究与肿瘤耐药性的磁热化疗逆转研究,均获得了良好的实验成果。华东理工大学沈建华博士报告题目:多功能金纳米核壳杂化材料的制备及应用  金纳米粒子具有小的尺寸和高的表面能,结构和性能都不稳定,如果将金纳米与其他材料杂化,不仅能提高Au(金)的特性,还能引入其他材料的特性,例如将Au与Fe3O4杂化后的新型材料,不仅具有Au的催化、生物、光学等性能,同时还拥有Fe3O4的磁分离、核磁显影等优势。在此基础上,沈建华博士所在团队不断尝试研发出的金纳米核壳杂化材料,在催化特性、等离子共振、拉曼增强、生物传感等方面均有着很明显的特色优势。英国马尔文仪器公司梅洁报告题目:纳米颗粒跟踪分析技术(NTA)的原理及其应用  梅洁介绍到,鉴于纳米颗粒很小,不能被显微镜直接观测到,如此可以借助入射激光将颗粒照亮,研究人员就能观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。该技术可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域。华东师范大学卜凡兴报告题目:微/纳米结构材料的界面法合成及性能研究  金属氧化物微纳米结构材料拥有奇特的功能特性,在生物医学、能源催化及纳米器件等领域有广泛应用。而对特殊结构与形貌的金属氧化物材料制备与性能研究,对胶体与界面化学、结晶学等基础研究领域有重要的研究意义。卜凡兴介绍到,通过实验研究发现,液-液两相界面是一个可以有效合成具有特殊形貌的金属氧化物微纳米结构材料的体系,由此合成的具有特殊形貌的微纳米结构材料往往表现出一些特殊的功能特性。
  • 大昌华嘉公司携Freeman在“颗粒测试与表征技术培训班”发表演讲
    大昌华嘉公司携手英国Freeman Technology公司华丽亮相IPB 2012&mdash &mdash 第十届中国国际粉体加工/散料输送展览会。本次展会同期,大昌华嘉粉末流动性测试仪供应商&mdash Freeman Technology公司的应用专家傅晓伟博士在由中国颗粒学会举办的&ldquo 2012年颗粒测试与表征技术培训班&rdquo 上发表演讲,演讲题目为:粉体综合性能分析技术--流动性。傅博士的演讲吸引了广大参会专家的关注,并且在此次演讲中介绍了大昌华嘉最新引进的国际领先粉末性质测试仪器&mdash FT4。 Freeman Technology从事粉体特性研究已经有超过十年的经验,最新升级的FT4是当前世界上最先进的粉末性质测试仪器,用于测量粉末的流动性,剪切性和包含压缩性、透气性和密度在内的粉末整体特性。Freeman Technology于2007年4月获得英国企业女王奖创新类奖;并于2012年7月再次获得女王国际贸易企业奖。 FT4至今足迹已经横跨英国、欧陆、美国、日本等世界各地,广泛的被采用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。应用范围从优化新配方、提升生产效率到对原料、半成品以及最终产品实现质量控管。 Freeman Technology 应用专家傅晓伟博士在颗粒测试与表征技术培训班发表演讲 关于 Freeman Technology Freeman Technology专精于粉末及其流动特性的先进表征与分析技术。该公司成立于1989年,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业获得ISO 9001:2008认证,所有仪器都在其位于英国格洛斯特郡(Gloucestershire)的设计制造中心生产。研究解读粉末的行为是该企业的经营策略中心。 关于 DKSH (大昌华嘉) 具有200年历史的大昌华嘉商业(中国)有限公司作为英国Freeman Technology在大中国区的独家代理商,负责其所有产品、技术的推广销售和服务。我们热忱的欢迎广大客户来电咨询,与产品专家一起探讨、研究、开拓、优化粉末流动测试方法。 Freeman Technology 公司 多功能粉末流动性测试仪FT4 详细信息请查看以下链接:http://www.dksh-instrument.cn/page_show.asp?tid=2&IMType=C09&sortid=C0905&IMShowNameid=C143467&order= 更多信息,请联系: 中国上海徐汇区虹梅路1801号凯科国际大厦2208室,200233电话 +86 400 821 0778传真 +86 21 3367 8466
  • 弗尔德仪器助力颗粒表征国际标准化会议黄浦江游轮之旅
    想领略大上海的车水马龙、日新月异、华灯璀璨,黄浦江畔无疑是见证上海百年变迁的不二之选。不管是万国建筑华灯初上的外滩,还是摩登高楼鳞次栉比的陆家嘴,踏上弗尔德仪器赞助的黄浦江游轮之旅,让您在会议思想碰撞之余体验上海的繁华昌盛。? 华灯初上的陆家嘴VS万国建筑的外滩会议介绍随着我国医疗、新能源、增材制造、食品、化妆品和化工等领域的飞速发展,颗粒调整得到广泛应用,特别是微米、纳米材料研发等应用领域,颗粒表征逐渐成为不可或缺的技术手段。2018年10月15-16日,全国颗粒表征与分析及筛网标准化技术委员会在上海组织召开了颗粒表征国际标准会议,来自ISO/TC24/SC4成员国代表、ISO/TC281(精细气泡)专家、ISO/TC229(纳米)专家、欧盟联合研究中心专家、国家标准化管理委员会、中国颗粒表征技术专家等60多位中外来宾济济一堂、共同商讨与制定颗粒表征标准。会议围绕颗粒表征术语、沉降与分级、孔径分布和孔隙度、激光衍射法、动态光散射、图像分析法、液体中分散颗粒表征等主要议题,展开了深入而又激烈地讨论。?作为15日颗粒表征国际标准会议黄浦江游轮晚宴的东道主,弗尔德(上海)仪器设备有限公司科学仪器事业部总经理董亮先生发表了会议开幕致辞,热烈欢迎了到场的中外嘉宾,并对弗尔德仪器旗下的子品牌和产品做出了简要的介绍。?在经历了一天紧锣密鼓的会议之余,弗尔德仪器精心为参会代表们策划了一场美轮美奂的黄浦江游览之旅,洗涤舟车劳顿的疲惫,游览华灯初上的黄浦江畔。莱驰科技Retsch Technology(莱驰科技)作为Retsch的姊妹公司,专业致力于粒度及粒形分析仪仪器的研发和生产,基于ISO13322-2标准设计,Camsizer P4i/Camsizer X2可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数、密度及比表面积测量,Camsizer系列已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠。?Camsizer X2/Camsizer P4
  • 【好书推荐】《颗粒表征的光学技术及应用》
    颗粒业内有句行话:万物皆颗粒。鸟瞰各行各业,还真难找得到一个不与颗粒打交道的领域。甚至表面上看起来与颗粒毫无关系的行业,人们其实也一直在与颗粒材料打交道。例如,编程码工使用的键盘是用塑料颗粒材料制成的,显示器的荧光粉本身就是颗粒;再如,音乐作曲者使用的纸张、笔墨也都与颗粒有关。几乎所有材料,从原料到成品,总有一个阶段处于颗粒态。由于颗粒材料的多样性与多分散性,人们甚至将颗粒称为物质的第五态, 颗粒材料的物理特性表征也具有与其他化学分析、物理测量不同的独特性。颗粒与材料品质紧密相关。例如,巧克力的颗粒度需要与味蕾之间的距离吻合,可口可乐中风味液滴的密度必须与水一致,牙膏中碳酸钙的硬度与颗粒度要适当,定时释放肥料颗粒的大小与溶解度有一定的规格等。如何表征颗粒?技术概貌:颗粒表征技术成百上千,仅粒径测量就曾有400多种。现在仍在普遍使用的表征颗粒粒度、数量、表面特性、内部孔径的技术就有十几种。这些技术有着相当广泛的日常应用,例如新材料的研发过程、生产过程的质量控制、或商业贸易上下家的衡量指标等。仅在中国,每年新安装的各类颗粒表征仪器据估计当在数千台甚至上万台。不足:颗粒表征作为对各行各业如此重要的领域,现有的高等教育却很少涉及,甚至专门教授与这些技术有关基础知识的研究生课程也不太多见,集中论述这些技术的中文书籍更是少之又少。现状:这一实践与教育的脱节,造成了很多在工作中涉及颗粒表征的工作者不完备的专业知识体系与错误的应用实践,例如在用动态光散射测量纳米颗粒粒径或用电泳光散射测量颗粒表面电位时,用纯净水进行样品稀释,或者在激光粒度法测量颗粒粒度时,用高压气体分散药物晶体。颗粒材料领域专著出版扫码即可优惠购买为了填补上述空白,为广大颗粒表征技术使用者提供普及版读物,作者精心挑选了当今应用最广的六种颗粒表征技术,从历史起源、物理原理、数学基础、仪器构造、操作要点、数据处理阐释等方面对这些技术做了全面的介绍。这六种方法分别是光学计数法、激光粒度法、光学图像分析法、颗粒跟踪分析法、动态光散射法、电泳光散射法,它们都与光与和颗粒之间的作用有关。对光与和颗粒作用的系统研究始于1936年化学诺贝尔奖获得者彼得• 德拜(数学家大卫• 希尔伯特的学生阿诺尔德• 索末菲的第一位博士生)1908年的博士论文。作为这些技术的铺垫知识与辅助资料,颗粒表征中的样品准备、基本数据统计知识、光散射在颗粒表征中的基本原理、几乎所有其他常用的颗粒表征技术,以及这些技术的标准化现状,也特别另立章节介绍。这是一本别无二版的、系统介绍当代颗粒表征技术的专著。本书可供欲了解与掌握当代颗粒表征技术的教师、本科生、研究生、科学家、技术专家、仪器操作人员阅读与学习参考,为他们提供坚实的颗粒表征理论基础与丰富的实践参考。读者不但可以从中学习这些技术的物理基础以及仪器工作原理,而且通过了解每种技术的实际操作与实用细节,可以在应用过程中避免常犯的错误,不断改进仪器操作的正确性、测量数据的准确性、重复测量的精确性。本书作为进入颗粒表征技术领域的引荐读物,除了汇集了作者经年累积的丰富知识与资料外,还引用了上千篇中外文献。这些跨越两个多世纪(1809—2021)的文献,除了与该技术的最初发明有关的以及里程碑式的重要论文,还有大量与这些技术的最新动态与发展有关的报道,为有志于进一步探索发展颗粒表征技术、成为承前启后新一代的颗粒人提供一些可借鉴的方向与途径。 作者简介本书作者 许人良作者专业背景:在过去半个世纪里,作者许人良在德拜的关门弟子朱鹏年与当代荧光胶体化学大师魏尼克的教诲指导下,除了进行高分子物理与胶体化学的研究,还从搭建全角度动静态光散射仪器为起点,涉足纳秒级相关器、米氏理论的收敛分析、拉普拉斯转换的技术探讨、光导纤维频移器等颗粒表征的多个领域,发明了从电泳光散射测量中剥离布朗运动以得到真实表面电荷分布曲线的方法以及颗粒表征方面的数个专利,填补了颗粒在水中的德拜长度与水化层厚度之间关系的实验验证空白,其中的一些论文几十年来一直在不断地被引用。进入美国首台动态光散射仪器生产公司后,作者曾先后在全球三家主要颗粒表征仪器公司内担任技术、商务、管理的各类主要职务,对多种仪器的设计、试验、投产、应用有第一手感性认识与全方位了解;作者并在过去近30年中,参与制定了多项颗粒表征技术的国际标准、美国国家标准以及中国国家标准,时刻关注着这一领域的最新发展。目录预览第1章 颗粒体系与颗粒表征 / 0011.1 颗粒与颗粒体系 / 0011.2 样品制备 / 0061.3 颗粒测量数据及其统计分析 / 018参考文献 / 032第2章 光散射的理论背景 / 0352.1 光散射现象与技术 / 0352.2 光散射理论要点 / 0392.3 其他光学技术 / 059参考文献 / 069第3章 光学计数法 / 0813.1 引言 / 0813.2 仪器构造 / 0833.3 测量结果与数据分析 / 098参考文献 / 108第4章 激光粒度法 / 1134.1 引言 / 1134.2 仪器 / 1214.3 数据采集与分析 / 1414.4 测量精确度与准确性 / 153参考文献 / 161第5章 光学图像分析法 / 1695.1 引言 / 1695.2 图像获取 / 1715.3 图像分析 / 1815.4 颗粒形状表征 / 1875.5 仪器设置、校准与验证 / 193参考文献 / 196第6章 颗粒跟踪分析法 / 1996.1 引言 / 1996.2 仪器与测量参数 / 2006.3 样品与数据 / 2086.4 颗粒跟踪分析法的其他考虑因素 / 217参考文献 / 219第7章 动态光散射法 / 2217.1 引言 / 2217.2 仪器组成 / 2237.3 数据分析 / 2417.4 测量浓悬浮液 / 263参考文献 / 269第8章 电泳光散射法 / 2818.1 引言 / 2818.2 zeta电位与电泳迁移率 / 2828.3 电泳光散射仪器 / 2898.4 数据分析 / 3068.5 相位分析光散射 / 315参考文献 / 317第9章 颗粒表征的标准化 / 3239.1 文本标准 / 3249.2 标准物质、参考物质与标准样品 / 3329.3 标准化组织 / 345参考文献 / 349第10章 其他颗粒表征技术概述 / 35110.1 电阻法:计数与粒度 / 35110.2 沉降法:粒度 / 35810.3 筛分法:分级与粒度 / 36110.4 色谱方法:分离与粒度 / 36310.5 超声分析 / 36610.6 气体物理吸附:粉体表面积与孔径 / 37010.7 压汞法:孔径分析 / 37410.8 空气渗透法:平均粒度 / 37510.9 毛细管流动孔径分析法:通孔孔径 / 37510.10 气体置换比重测定法:密度 / 37710.11 核磁共振技术 / 37810.12 流动电位测量:zeta电位 / 37910.13 共振质量测量:计数与粒度 / 38010.14 亚微米气溶胶测定:计数与粒度 / 38110.15 颗粒表征技术小结 / 381参考文献 / 382附录1 符号 / 392附录2 Mie理论的球散射函数 / 395附录3 常用液体的物理常数 / 397附录4 常用分散剂 / 402附录5 用于分散一些粉体材料的液体与分散剂 / 404
  • 颗粒表征智能时代已来——马尔文帕纳科超级品牌日成功举办
    2024年6月26日,“颗粒表征迈入智能时代——马尔文帕纳科超级品牌日”活动成功举办。本次活动由马尔文帕纳科和仪器信息网联合举办,吸引2300余人观看,引发热烈讨论与交流。王体壮分享《颗粒、颗粒学与颗粒学会》活动特别邀请中国颗粒学会秘书长王体壮分享《颗粒、颗粒学与颗粒学会》。王体壮以深入浅出的方式,从狭义和广义两个维度,全面而精准地阐述了“什么是颗粒”;系统介绍了颗粒及颗粒群的特性、颗粒学的研究内容,以及中国颗粒学会的服务产品。他总结到,颗粒学是一门融合数学、物理、化学及生物学基本原理的综合性学科,研究自然万物和精神社会当中物质、能量、信息之间的相互转换关系;颗粒学致力于实现多学科交叉、多领域融合,涵盖了物理世界、化工技术、生命科学乃至社会科学等多个领域,包含了所有科学的分支。因此,可以说颗粒源自宇宙,颗粒学连接生活。走进总部:马尔文帕纳科颗粒表征技术的发展随后,马尔文帕纳科总部应用专家团队带领用户一起探索马尔文帕纳科的历史、创新和应用,深入了解马尔文帕纳科颗粒表征技术的发展以及研究、开发和生产的幕后故事。马尔文颗粒表征技术发展历程始于1958年,1970年,公司更是推出了世界上首个数字相关器,使得亚微米颗粒的测量成为现实。随后,一系列经典的颗粒表征仪器型号相继问世,如Mastersizer激光粒度仪系列、Zetasizer纳米粒度仪系列、Spraytec喷雾液滴分析仪、Morphologi静态粒度粒形分析仪系列、OMNISEC凝胶渗透色谱,以及NanoSight Pro纳米颗粒跟踪分析仪等。这些技术的演进不仅彰显了马尔文帕纳科在颗粒表征领域的卓越实力,也为全球用户提供了更为精准、高效的颗粒表征解决方案。走近用户:我眼中的颗粒表征技术紧接着,来自各行各业的马尔文帕纳科用户分享了他们和颗粒表征技术之间的故事,并畅谈了对马尔文帕纳科仪器的使用心得和宝贵建议。 随着应用技术的不断发展,单一的颗粒表征方式往往难以应对日益复杂的样品测试需求,用户在测试过程中也常常为了方法开发或数据质量、异常信号等问题而苦恼,或是疲于应对大量重复测量工作,却得不到具有统计意义的测试结果。为帮助广大用户轻松应对这一挑战,马尔文帕纳科上海应用实验室主管、粒度仪产品线资深应用专家黎小宇,生命科学业务发展部门经理、微量热技术产品经理韩佩韦先后分享了马尔文帕纳科的智能化多维度颗粒表征技术。 黎小宇分享《智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -激光衍射和形貌图像篇》马尔文帕纳科与时俱进,在自动化与智能化方向持续创新,通过标准化的测试流程和自动化助手,极大地简化了测试过程;借助先进的机器学习和AI技术,在软硬件功能方面实现了智能化升级,为操作人员提供了从方法建立、结果分析到质量判断的全流程支持,确保了测试结果的准确性。黎小宇深入介绍了马尔文帕纳科微米级别颗粒大小和形状的表征技术,包括Mastersizer 3000+激光衍射仪法粒度仪新品、M4智能自动图像分析仪以及Spraytec喷雾液滴分析仪在自动化和智能化方面的亮点。韩佩韦分享《智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -动态光散射和纳米示踪篇》韩佩韦则重点介绍了马尔文帕纳科纳米级颗粒表征技术。常见的纳米颗粒分析方法包括显微镜法和光散射法,但它们各有优劣。为了弥补这些分析技术的局限,马尔文帕纳科创新地开发了原理互补技术,即DLS动态光散射技术和NTA纳米颗粒跟踪技术,能够互补地解决纳米粒径测试的问题,为产品开发、工艺开发、质量控制以及分析方法提供强有力的支持。以上两种技术与智能样品助手组成了马尔文帕纳科的纳米颗粒表征解决方案。该方案采用了先进的智能算法,帮助用户更好地进行数据甄别;同时,配备的智能硬件显著降低了用户错误使用的可能性;通过智能识别,它能够触及人眼和人工操作难以达到的领域;而智能控制则极大地提高了工作效率。蔡厚安分享《智能维保,专业赋能》最后,马尔文帕纳科技术中心经理蔡厚安介绍了一项智能维保服务——Smart Manager 睿联平台。 这是一款针对马尔文帕纳科设备的云服务产品,通过云服务器,该平台能够实时在线监测设备的软硬件工作状态,实现对用户设备软硬件异常状态的即时预警。一旦发现异常情况,平台将迅速主动联系客户,协助进行现场问题排查,有效避免设备停机,从而确保用户的设备运行周期达到最大化,显著提升设备的使用效率和稳定性。更多精彩详见下方专题:马尔文帕纳科超级品牌日专题页面
  • 马尔文成功在京举办颗粒表征技术及应用研讨会
    仪器信息网讯 为深入研究探索颗粒表征方法,2014年5月26日,马尔文仪器成功在京举办了&ldquo 颗粒表征技术及应用研讨会&rdquo ,近200位颗粒测试领域的专家及用户出席了会议,仪器信息网作为特邀媒体参会。会议现场  马尔文仪器的大客户经理Stephen Ward-Smith博士、激光衍射产品专家李雪冰博士、生物科学专家张帅博士等人在会上详细介绍了NanoSight NS300纳米颗粒跟踪分析仪、Mastersizer3000激光粒度仪、Zetasizer Nano系列纳米粒度仪、Spraytec高速喷雾粒度仪、Morphologi G3-ID颗粒形状及颗粒化学组分分析仪等产品的技术原理与实际应用。马尔文仪器大客户经理Stephen Ward-Smith博士  激光衍射技术本身简单易懂,但如何能够利用这个技术得到稳定可靠的结果却并非易事。不同的样品特性可能会采取不同的分散测试方法,而不同的分散方法可能面临不同的影响因素,在这些众多的影响因素里,我们该如何选择、判定直至最后找到合适的参数?对此,Stephen博士以湿法分散与干法分散两种常见的分散方式为例,比较了两者之间的优势,并对不同进样方式的方法开发及常见问题等进行了介绍。  湿法分散影响因素较多,在这些影响因素中,溶剂的选择、搅拌速度、超声强度及时间、表面活性剂的使用等是比较关键的影响因素,用户可以通过实验对这些关键影响因素一一考量,确定适合的参数并进行风险评估,直至确定最终的测试方法并进行验证。  同时湿法分散过程中常常会发生溶解、聚集等问题,这些问题如何来判定?有何现象?怎么来解决?对此,Stephen博士做了比较详细的介绍。比如微溶现象最显著的表现就是遮光度下降的同时D10反而逐渐变大,这种反常可能就是颗粒发生了微溶从而导致小颗粒&ldquo 消失&rdquo ,如果发生了这种现象,Stephen博士给出了几种补救方案,比如更换溶剂、使用饱和溶液或者快速测量等方案。当然如果样品出现聚集问题,用户可以通过调整分散泵速以及加入表面活性剂/添加剂来解决,但一定要注意控制气泡的产生。  而干法分散往往是颗粒分散和颗粒破碎之间的一种较量,因此对于分散压力的选择至关重要。Stephen博士表示,干法分散拥有快速、可以测量相当大的样品量的优点。相比湿法分散,干法分散不容易控制,用户可以通过调节分散压力,从而使聚集物分散却不使原始颗粒破碎;过快的进料速率将降低分散系统的效率,用户可以通过优化进料速率,使样品流速保持一致。  Stephen博士建议,干法分散可以通过压力滴定实验来确定实际的分散压力,压力由高到底,通过观察颗粒粒径随压力的变化来判定颗粒的状态,是分散还是破碎,从而找到颗粒分散的最佳压力平台。  会议现场,马尔文仪器特别展示了其NanoSight NS300纳米颗粒跟踪分析仪和Mastersizer 3000激光粒度仪。NanoSight NS300纳米颗粒跟踪分析仪  马尔文NanoSight NS300基于一种独特的纳米颗粒跟踪分析技术(以下简称:NTA),对大小在10&ndash 2000nm范围内的纳米颗粒进行快速可视的动态检测,其测量的参数包括颗粒粒径、浓度和颗粒的聚集。该仪器可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时,实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域,因此该仪器是马尔文仪器公司力推的一款颗粒测试表征产品。Mastersizer 3000 超高速智能粒度分析仪  Mastersizer 3000是马尔文仪器公司于2011年隆重推出的一款全新的粒度分析仪,采用全新的折叠式光路设计,量程宽达10nm-3.5mm,准确度和仪器间的重现性均优于1%,配有先进的Aero干法分散附件系列与快速高效的Hydro湿法分散附件系列。现场答疑解惑用户参观仪器(编辑:刘玉兰)
  • 《仪咖说》vol.11直播预告:从技术到市场,我的颗粒表征50年
    颗粒表征技术经过半个多世纪的发展多达上百种,能够表征粉体、悬浮液、气溶胶、微细气泡等各类颗粒体系的多项物理特性。近年来,随着纳米技术的迅速发展,颗粒表征技术的创新与发展主要聚焦于亚微米与纳米尺度内各类颗粒的表征。表征范围也从一维的球状颗粒粒径向多维发展,即二维的颗粒表面、三维的颗粒形状、四维结合时空的颗粒体系动态表征。国产颗粒测试仪器起步较晚,但发展迅猛,打破了一个又一个的技术垄断。目前,中国已成为全球最大的颗粒表征仪器市场,呈现进口和国产品牌百花齐放的态势;也是增长最快、竞争最激烈的市场,保持年均两位数的高速增长。为帮助广大用户更好地了解颗粒表征技术及市场,仪器信息网计划于8月26日上午10:00举办《仪咖说2022》第十一期直播访谈活动,以“从技术到市场,我的颗粒表征五十年”为主题,邀请国际标准化组织(ISO)颗粒表征专家许人良博士,分享其从事颗粒表征五十年的收获与感悟。一、主办单位:仪器信息网二、本期直播时间2022年8月26日10:00-12:00三、直播平台仪器信息网视频号四、本期直播嘉宾国际标准化组织(ISO)颗粒表征专家 许人良1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持多个颗粒表征国际标准 美国标准测试材料学会与美国化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》(2001年出版),以及由化学工业出版社出版的《颗粒表征的光学技术及应用》。五、本期直播议题颗粒表征技术发展历程与市场变革主流颗粒表征技术发展现状与趋势颗粒表征标准化现状中国颗粒测试市场现状国产颗粒表征仪器产业发展现状与建议… … 扫描二维码提前预约参与直播间互动即有机会获得《颗粒表征的光学技术及应用》
  • “纳米颗粒表征及应用技术研讨会”在京召开
    由北京粉体技术协会、英国马尔文仪器有限公司联合举办的“纳米颗粒表征及应用技术研讨会”于2008年12月16日在北京市理化分析测试中心北科大厦报告厅顺利召开,会议内容涉及纳米粒度分布测量、Zeta电位测量、纳米样品分散等技术原理与应用及纳米技术相关标准现状的介绍。“纳米颗粒表征及应用技术研讨会”会议现场  会议伊始,国内粉体行业知名专家胡荣泽先生作了“超微粉粒度分布测量”学术报告:介绍已有的超微粉粒度分布测量方法及超微粉分散方法;解释不同仪器测出结果不一样的原因;详细解释粒度仪的选择要点。胡荣泽先生:“超微粉粒度分布测量”  北京理化测试中心周素红高工在其“纳米技术相关标准现状”报告中,主要介绍标准的分类、与纳米相关的国际标准化组织及国内纳米材料标准化现状及进展。周素红高工:“纳米技术相关标准现状”  以“纳米测量技术最新进展”、“纳米样品分散技术及应用”为主题,马尔文公司专业技术人员的报告内容丰富——涵盖纳米检测技术概述、动态光散射原理和最新进展、静态光散射和分子量的测定、多普勒电泳光散射和Zeta电位测定、颗粒间相互作用和高浓度样品测定等。  在报告中,马尔文公司提到其最新推出的纳米粒度仪Zetasizer APS和Zetasizer μV。这两款新品指向生物领域应用,为蛋白质表征而设计。Zetasizer APS可对行业标准96或384孔载样板中的样品进行自动化动态光散射测量;Zetasizer μV则是对马尔文已有Zetasizer系列产品在应对高灵敏度和小容量测试需求上的补充。  在问题解答环节,多位观众就自身在测试工作中遇到的问题提问,马尔文仪器(中国)公司总经理秦和义先生及马尔文技术人员一一解答,现场交流气氛热烈。部分用户将样品带至会场,递交马尔文公司进行检测。马尔文仪器(中国)公司总经理秦和义先生解答用户问题马尔文公司客服人员解答用户问题  有60余位业内人士到会,从秦先生处获悉,参会人员主要来自大专院校、科研院所及公司企业,一半左右人员是粒度仪用户。  秦先生介绍,该会是马尔文仪器(中国)公司今年以来在颗粒表征技术方面参与主办的第一场学术性质的会议,公司明年将主办更多介绍该领域技术及相关进展的类似会议。
  • 发明人库尔特的传奇人生——颗粒表征电阻法(上)
    史上曾经有 400 多种颗粒表征技术,其中有一种以发明者命名的颗粒计数与粒度测试技术至今尚在广泛使用,并且是全球血细胞计数的标准技术,那就是被冠以科学名称电阻法(或电感应区法)的库尔特原理。此项技术自20 世纪 50 年代初发明以来[i],被广泛应用于医学以及各个工业领域,包括超过 98%的自动细胞计数器[ii,iii]。除了测量各类血细胞外,此原理还可用于表征(计数和粒度测量)合适粒度范围内的任何可悬浮在电解质溶液中的颗粒材料[iv]。在过去 70 多年中,该方法已被用来表征数千种不同的医学与工业颗粒材料,2022 年的谷歌学者搜索发现有近 16 万篇有关库尔特计数器的各类文献。 在电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。 由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后),小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。 1 库尔特原理示意图 本文将分为两篇。第一篇介绍库尔特先生,第二篇介绍经典库尔特原理及其最新发展。库尔特先生&库尔特原理库尔特先生是与中美两国有密切关系的一位传奇性人物。2 华莱士• 库尔特(Wallace H. Coulter,1913-1998)他出生于阿肯色州,在乔治亚理工学院学习电子工程。1930 年代,他是美国通用电气公司在中国的销售代理,住在上海和平饭店。 正当他处于热恋之中,与一位白俄罗斯美女在和平饭店品着美酒咖啡,欣赏爵士音乐,漫步月光下的外滩时,太平洋战争爆发,日军侵入了上海的公共租界。他不得不离开恋人,随着日军的不断南侵,从华南经东南亚回到美国。中美 1979 年建交后,他成为最初一批前往中国访问的美商。他与随行人员回到和平饭店那间包房,抚摸着外滩的岸墙,勾起了深深的回忆。他期望在中国政府的帮助下,寻找那在战乱中失联的情人。30多年的动荡岁月,又是一位外籍女子,那是一个达不成的愿望。他钟情一生,终身未婚,也无子女,可是中国情结却挥之不去。 3 库尔特在 1990 年代与中国代表团,右一为作者。早在 1970 年代,库尔特公司就由其英国分公司在华销售血细胞计数仪。中美建交之后的 1980 年代,库尔特公司在蔡光天开办的改革开放早期最大的英语培训学校——上海前进业余进修学校的帮助下,成为最早一批在中国开展业务的美国企业。他办公室内,桌上地下放满了与中国有关的书籍物品,每次有来自中国的访客或员工,他都会亲切地与他们会面,亲自解释库尔特原理。1940 年代,美国在日本投了原子弹后,受辐射区人们需要进行大量的血液检验,但当时的医学界缺乏快速准确的血细胞检验方法。库尔特在自家车库内埋头研究了数年。最初的设计是在一张纸上打一个粗糙的洞,然后将纸浸在液体中。经过无数次的试验与设计改动,并据说他曾经割破自己的手指滴血,来验证他的发明。库尔特最终在 1953 年发明了被世人普遍认可的库尔特原理,并为之成立了库尔特电子公司(Coulter Electronics),量产血液计数仪,给全球血液检验带来了革命性的飞跃。库尔特公司在佛罗里达州全盛时有四五千员工。 库尔特并直接促成了颗粒表征业内另外两家公司的成立与发展。他的一个员工伯格 (Rebert H. Berg, 1921-1999)考虑到工业界颗粒大小的分布一般较宽,线性电子线路无法满足, 发明了对数安排的电子线路,可以测量粒径跨越几个数量级的样品。伯格后来在 1958 年成立了规模较小的颗粒数据实验室(Particle Data Laboratories),在工业界推广库尔特计数仪。而当库尔特母校乔治亚理工学院的奥尔教授(Clyde Orr,1921-2010)与他的博士生亨德里克斯(Warren P. Hendrix,1932-2005)在 1962 年下海生产全球首款商用表面吸附仪时,已在商业上小有成就的库尔特出资促成了麦克仪器公司(Micromeritics Instrument Company)的成立。而麦克仪器公司又在 1997 年收购了由于伯格陷入尼日利亚骗局而濒临破产的公司的库尔特计数仪产品。 4 收藏在美国历史国家博物馆中最早的库尔特计数仪:型号 A当库尔特自知来日不多时, 他想起了老朋友贝克曼(Arnold O. Beckman,1900-2004)。尽管贝克曼早已退休,可是贝克曼仪器公司的文化传承很使库尔特满意,他拒绝了数家更大公司的高价,在贝克曼仪器公司保证保留他姓的条件下,在 1997 年促成了贝克曼库尔特公司的诞生。 他将出售公司获得的款项,建立了有近 5 亿美金的华莱士·H·库尔特基金,专用于通过医学与工程研究而发展医疗保健。库尔特并被美国科学历史研究所列入了名人堂。参考文献【i】 Coulter, W.H., Means for Counting Particles Suspended in a Fluid, US Patent 2,656,508, 1953. 【ii】Graham, M.D., The Coulter Principle: Foundation of an Industry, J Assoc Lab Auto, 2003, 8(6), 72-81. 【iii】 Graham M.D., The Coulter Principle: Imaginary Origins, Cytometry A, 2013, 83(12), 1057-61. 【iv】 Lines, R.W., The Electrical Sensing Zone Method, in Liquid and Surface-Borne Particle Measurement Handbook, Eds. Knapp, J.Z., Barber, T.A., Lieberman, A., Marcel Dekker, New York, 1996, Chpt.4, pp113-154. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 马尔文携颗粒表征拳头产品亮相第七届世界颗粒学大会
    (2014年5月14日,中国上海)全球材料表征领域的领先企业英国马尔文仪器公司,将亮相于5月19至22日在北京举办的第七届世界颗粒学大会(The 7th World Congress of Particle Technology,简称WCPT7)(马尔文展位号:18)。马尔文将在本次大会中展示公司引领业界的动态光散射(DLS)仪器系统ZetasizerNano ZSP,以及NanoSight NS300纳米颗粒跟踪分析仪。作为大会的主赞助商之一,马尔文还将针对颗粒表征领域的技术前沿在大会中发表独到见解。  &ldquo 世界颗粒学大会&rdquo 是由美国、英国、德国、日本、澳大利亚等多国科学家联合发起的世界颗粒学研究及技术领域最主要的会议之一,自1990年开始举办,每四年举办一次,分别在欧洲/非洲、亚洲/澳洲、美洲三个地区轮流举办。第七届世界颗粒学大会将于本月在北京国际会议中心召开,本次会议为该系列会议首次在中国举办。  马尔文中国区总经理秦和义表示:&ldquo 在颗粒表征领域,马尔文在颗粒粒度、颗粒形状、Zeta电位、分子量、分子结构、流变特性以及化学成分的测量方面拥有丰富经验。世界颗粒大会是我们与业界分享成果,共同进步的理想平台。&rdquo   马尔文公司本次带来两款颗粒表征领域的先进产品:动态光散射系统ZetasizerNano ZSP,以及NanoSight NS300纳米颗粒分析仪。  马尔文ZetasizerNano是一系列设计紧凑的光散射仪器,其出众的性能和简便的操作使之在近十年来一直是工业和学术界的宠儿,这些优点在该系列最高规格产品ZetasizerNano ZSP上得到完美体现。马尔文ZetasizerNano ZSP独具蛋白质测量和微观流变学测量两项功能,可实现对各种粒度表征、蛋白质电泳迁移率、纳米颗粒及Zeta电位的测量,并拥有系列产品中最高的测量灵敏度。  马尔文NanoSight NS300纳米颗粒分析仪采用独特的纳米颗粒跟踪分析技术(简称:NTA),可对10&ndash 2000nm 范围内的纳米颗粒进行快速实时动态检测,其测量的参数包括颗粒粒径、浓度、Zeta电位和颗粒的聚集。  在本届世界颗粒学大会期间,三位来自马尔文公司的业界专家,包括全球大客户经理Steve Ward-Smith博士、应用经理Alan F. Rawle先生、以及产品经理宁辉先生,将发表相关学术文章,并做现场报告。  &ldquo 一直以来,马尔文仪器公司致力于将创新的技术与有力的服务支持相结合,确保分析仪器的精确性和效率,推动研发和生产的开展。从制药、蛋白质研究到涂料、油墨和印刷工业,马尔文先进的颗粒表征技术将确保各关键下游产业在颗粒参数的获取和控制中保持领先优势,&rdquo 秦和义表示说。  马尔文、马尔文仪器均为马尔文仪器有限公司的注册商标。马尔文新型动态光散射系统Zetasizer Nano产品系列马尔文NanoSight NS300纳米颗粒跟踪分析仪(专利可视化NTA技术)  关于马尔文仪器  马尔文提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。  马尔文的产品体现了开发最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药、到化学品、水泥、塑料和聚合物、能源及环境等。  马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学测定。  马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。www.malvern.com.cn
  • 颗粒表征迈入智能时代——马尔文帕纳科超级品牌日精彩抢先看
    超级品牌日专题页面颗粒表征应用范围非常广泛,可以帮助人们了解粉末的流动性和填充性、药物的溶解速率、蛋白质的稳定性、涂料的光学性能等。随着人们对材料的探索不断深入,颗粒表征在科学研究和工业应用中扮演着越来越重要的角色。 马尔文帕纳科作为激光衍射粒度表征的先驱,在颗粒表征领域深耕超过半个多世纪,将颗粒表征技术从最初的针对微米级颗粒进行测量扩展至纳米级颗粒尺度,表征范围也增加了粒形、成分、浓度、Zeta电位、比表面积等物理、化学特性的测量和分析。完整的解决方案,助力科研人员和工业用户进行更精确、更高效的颗粒表征;丰富的行业经验帮助客户用颗粒表征结果指导自己的研究或生产。马尔文帕纳科颗粒表征解决方案 随着应用技术的不断发展,单一的表征方式往往难以应对日益复杂的样品测试需求,用户在测试过程中也常常为了方法开发或数据质量、异常信号等问题而苦恼,或是疲于应对大量重复测量工作,却得不到具有统计意义的测试结果。除了利用不同的测试方法相互补充,智能化成为提升测试能力的关键。马尔文帕纳科在软硬件智能化以及仪器智能化管理方面都做出了自己的尝试并取得了令人满意的结果。6月26日,仪器信息网携手马尔文帕纳科举办“颗粒表征迈入智能时代”超级品牌日。马尔文帕纳科将分享其经验,展示机器学习、智能化、自动化赋予不同颗粒表征方式的巨大能量。John Oude Egbrink(客户成功部门,马尔文帕纳科全球副总裁)邀您参会交流会议日程时间主题嘉宾14:00--14:02活动开场主持人14:02--14:20颗粒、颗粒学与颗粒学会王体壮 中国颗粒学会秘书长14:20--14:30走进总部:马尔文帕纳科颗粒表征技术的发展马尔文帕纳科总部应用专家团队14:30--14:35走近用户:我眼中的颗粒表征技术马尔文帕纳科客户采访14:35--14:40互动抽奖 第一轮精美洗漱包14:40--15:15智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -激光衍射和形貌图像篇黎小宇 马尔文帕纳科上海应用实验室主管、粒度仪产品线资深应用专家15:15--15:20互动抽奖 第二轮多功能支架/实验室粒度仪培训名额15:20--15:40智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -动态光散射和纳米示踪篇韩佩韦 马尔文帕纳科生命科学业务发展部门经理、微量热技术产品经理15:40--15:55智能维保,专业赋能蔡厚安 马尔文帕纳科技术中心经理15:55--16:00互动抽奖 第三轮 & 结束语双肩包/Mastersizer维护包及Smart Manager 5折优惠券 /售后服务合同5折优惠券注:(实验室培训和售后优惠券的有效期截止今年底,如果中奖者是非马尔文帕纳科用户,可置换为WMF便携餐具套装)扫描二维码报名抢位直播时间:2024年6月26日14:00-16:00;直播平台:仪器信息网3i讲堂参与此次超级品牌日活动,您将看到马尔文帕纳科总部应用专家团队分享的颗粒表征技术发展历史和幕后故事,也将听到马尔文帕纳科用户对颗粒表征分析仪器的心声。在专题报告环节,您将看到智能化多维度颗粒表征技术如何助力客户轻松应对微米及纳米颗粒分析挑战。在客户服务环节,您将对马尔文帕纳科的智能维保服务有更全面的了解。活动中除了定制礼品的抽奖,您还有机会获得维护备件大礼包、实验室粒度仪培训名额、售后服务优惠券等多项独家福利。精彩内容,不容错过,期待您的参与。
  • 2012年上半年仪器新品盘点:表界面及颗粒测试仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。比表面分析仪  比表面分析仪是用来检测颗粒物质比表面积的专用设备,而比表面积测试方法主要包括动态色谱法和静态容量法,其中动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子的吸附量 而静态法根据确定吸附量的方法的不同分为重量法和容量法 重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用 容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子的吸附量。  现在国际上比表面积分析仪的使用已经非常广泛,在国内也逐步得到了认识,因此涌现出了好多优秀的厂商,然而企业能够持续发展来源于它持续的创造力。下面列举国内外厂家2012年上半年推出的新产品,以飨读者。  2012年上半年的表面分析仪器主要有:北京精微高博科学技术有限公司全自动比表面积及真密度测试仪JW-BK224T、北京金埃谱科技有限公司物理吸附分析仪V-Sorb 4800、贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪3H-2000PS2、瑞典百欧林科技有限公司上海代表处Theta QC光学接触角仪、威杰(香港)有限公司全自动表面能分析仪SEA、浙江泛泰仪器有限公司全自动微反评价设备4200。  从这些新产品的创新点可以看出未来表界面仪器的发展趋势。  北京精微高博科学技术有限公司全自动比表面积及真密度测试仪产品型号:JW-BK224T  上市时间:2012年6月  北京精微高博科学技术有限公司独自开发设计静态容量法和动态色谱法两大类六种型号比表面仪器,其中静态容量法比表面及孔隙率测定仪是与国外同类产品相同质量和功能的仪器,JW-BK和JW-RB为精微高博独创的静态容量法比表面积及比表面及孔隙率测定仪,性能达到国外同类水平,深受国内用户欢迎。而JW-BK224T是精微高博的创新产品,该产品设有4个样品分析位,4个样品预处理位,测试系统与预处理系统可同时工作,互不干扰 比表面和真密度测试积聚一身的测试仪器!真密度测试:采用新颖独特的集装式管路设计,有效提高了真密度分析仪密封性,减小了基体腔自由体积空间,同时可有效提高整体测试系统的温度均匀性及抗各种外界干扰能力,有利于提高测试结果的重复性。  北京金埃谱科技有限公司物理吸附分析仪产品型号:V-Sorb 4800  上市时间:2012年3月  全自动物理吸附分析仪V-Sorb 4800是金埃谱科技自主研发的全自动智能化比表面积和孔径分析仪器,采用静态容量法测试原理,并参考众多著名科研院所及500强企业应用案例,相比国内同类产品,金埃谱物理吸附分析仪多项独创技术的采用使产品整体性能更加完善, 该仪器采用进口4升大容量金属杜瓦瓶,在无需增加保温盖的条件下可连续进行72小时测试,无需添加液氮,可同时进行4个样品的分析和脱气处理,相比同类产品工作效率提高了一倍。整个测试系统采用模块化结构设计,完全自动化的设计理念,配以功能完善的测试软件,可实现夜间无人值守式自动测试,大大提高测试效率。  贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪产品型号:3H-2000PS2  上市时间:2012年1月  贝士德公司今年一月份刚刚推出的高精度比表面积和孔隙度测定仪3H-2000PS2增加了国内唯一的分子置换模式,对样品预处理模式进行了改进 该仪器增加了PO测试,PO测试对静态法比表面积和孔隙度测定仪的准确性和重复性有很大的作用.。另外,该仪器还获得了两项国家技术专利:静态法高精度比表面积和孔隙度测定仪的净化预处理装置(专利号:ZL201120136943.9) ,静态法比表面及孔径分析仪的饱和蒸汽压测试装置(专利号:ZL201120136959.X )。  瑞典百欧林科技有限公司上海代表处光学接触角仪产品型号:Theta QC  上市时间:2012年2月  瑞典百欧林科技有限公司拥有Q-Sense, KSV, Attension, Nima, Osstell等品牌,主要产品为基于QCM-D专利技术的石英晶体微天平、LB膜分析仪,浸入成膜仪、表/界面张力仪,光学接触角仪、表面等离子共振仪、表面流变测试仪、表面红外测试仪等。在2012年一月刚刚推出的Theta QC 是一款设计精巧紧致的便携式光学接触角测试仪,可用于精确测试润湿、吸附、均一性、表面自由能、铺展性、吸收、清洁度和印刷适性等,用于快速在线检测和生产过程中的质量控制,可广泛应用于包装、涂料、印刷和材料工程等行业。与同类仪器相比,Theta QC的主要特点:1. 轻巧,灵活便携,适用于在线检测 2. 真正的无线测试:自带电池可连续工作8小时,测试数据可无线传输至远程电脑 3. 内置存储,可存200个数据点 4. 使用方便,软件界面友好。  威杰(香港)有限公司全自动表面能分析仪产品型号:SEA  上市时间:2012年1月  iGC(反气相色谱法)-是一项的针对粉末、颗粒、纤维、薄膜、半固体的表面与体积性质的气相表征技术。iGC 表面能分析仪继续保持了SMS 公司15年来开拓历史的反气相色谱法的世界领导者地位。全自动表面能分析仪SEA代表了iGC技术的巨大进步。SEA创新的核心是其独特的多面注射系统。这个系统生成了具有最大精度和范围的溶剂脉冲,精确地产生样品空前的高和极低的表面覆盖范围的等温线。这使得非均匀分布的表面量的测量更加精准。Cirrus Plus 利用了iGC SEA的实验灵活性,提供广泛的,人性化的数据分析,并可以单击生成报表,帮您最大程度的运用iGC数据。 浙江泛泰仪器有限公司全自动微反评价设备 产品型号:4200  上市时间:2012年3月  浙江泛泰仪器有限公司在2012年3月推出了这款全自动微反评价设备4200,装置采用框架式结构,模块化设计,分为气体减压、进料、反应、产品收集和放空等区域,且该装置反应各部件可以根据用户的具体需求,做相应的调整 该仪器的控制装置能够自动控制气体和液体流量,多段式反应炉的温度 此外,全自动微反评价设备主要用来进行催化剂或其他物质的固定床微反评价,可以实现同时多路气体和多路液体进样,并使用MFC和液体计量泵计量 反应器可以支持1200度或20Mpa的操作压力,能够设计成桌面型、小型立式、DCS控制型、小试装置等。颗粒/粉体流动性测试   随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟2) 图像颗粒分析技术东山再起3) 颗粒计数器不可替代4) 纳米颗粒测试技术有待突破5) 光子相关技术独树一帜6) 颗粒在线测试技术正在兴起。其中,粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。另外,测定粉末流动性的仪器称为粉末流动仪,也叫霍尔流速计。由漏斗、底座和接粉器等部件组成。因为在工业生产中,粉体的颗粒形状、细度、粒度分布和粘聚性,会直接影响产品的质量,所以不管是颗粒度的测试还是粉体流动性的测试在实际的应用中都很为重要,选用仪器分析检测也尤为重要。  2012年上半年的颗粒或者粉体流动性测试仪器的新品主要有:珠海欧美克仪器有限公司生产的激光粒度仪LS-C(III)型干湿二合一和英国Freeman Technology公司(大昌华嘉商业(中国)有限公司代理)生产的FT4多功能粉末流动性测试仪。  从这些新产品的创新点可以看出未来试验机行业的发展趋势。  珠海欧美克仪器有限公司激光粒度仪产品型号:LS-C(III)  上市时间:2012年1月  欧美克是一家专注于粒度检测与控制技术的研发与生产的公司,是中国粒度检测仪器第一大制造企业。刚刚面世的这款激光粒度仪采用独有的大角散射光的球面接收技术(专利号:95223756.3),对透镜后傅立叶变换结构,将大角探测器布置在适当的球面上,以实现大角散射光的精确聚焦 该仪器采用一体化激光发射器(专利号:00228952.0),有效降低了激光管热变形、外界机械振动对仪器稳定性的影响。自动对中系统步进精度达到0.5微米,使用户操作更为方便 湿法进样系统采用增压泵,转速达5000转/分,相较于蠕动泵能有效实现大颗粒的循环 干法进样系统振动电机无极可调,实现遮光比的有效控制 测试窗口材质采用高品质光学材料,窗口构件采用全不锈钢材,耐磨、易清洗,维护方便 光路系统采用全封闭设计,防止灰尘污染及外界光污染。  大昌华嘉商业(中国)有限公司多功能粉末流动性测试仪产品型号:FT4  上市时间:2012年2月  国外高技术仪器公司众多,但是他们中很多公司并不能全面理解中国文化和市场,在拓展中国市场方面“心有余而力不足”,因此急需诸如华嘉这样专注市场拓展的贸易代理公司的帮助。早期,华嘉总是搜寻一些大公司或第一品牌的公司进行合作,而如今,华嘉更加倾向于专业型企业,同时这些企业也必须在他们所专注的领域具有领导地位或者拥有创新的技术。英国Freeman Technology公司就是这样的一家优质公司。今年4月份推出的最新一代FT4多功能粉末流动性测试仪,利用专利的粉末均匀化预处理,通过测量粉末的动力学性质,剪切性质和包含压缩性、透气性和密度在内的粉末整体特性,给出粉末高重复性的流动性质的定量数据,在此之前,没有任何其他仪器可以做到这些。除此以外,一些与加工过程有关的变量,如贮存时间、静电、结团、颗粒偏析、颗粒破碎或湿法制粒时的含水量等也都可以由FT4获得评估,真正实现了粉末在实际应用环境中的定量表征。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制