当前位置: 仪器信息网 > 行业主题 > >

药明康德生命化学研究奖

仪器信息网药明康德生命化学研究奖专题为您整合药明康德生命化学研究奖相关的最新文章,在药明康德生命化学研究奖专题,您不仅可以免费浏览药明康德生命化学研究奖的资讯, 同时您还可以浏览药明康德生命化学研究奖的相关资料、解决方案,参与社区药明康德生命化学研究奖话题讨论。

药明康德生命化学研究奖相关的方案

  • 2019诺贝尔化学奖出炉!拉曼光谱深度解析锂电研究
    2019年10月9号下午,诺贝尔化学奖授予了对锂电池的发明做出杰出贡献的三位科学家,分别是:约翰· B· 古迪纳夫( John B. Goodenough)、M· 斯坦利· 威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino)。拉曼光谱能够深度解析锂电池材料的表征,助力锂电池行业应用的研究
  • 2019诺贝尔化学奖出炉!拉曼光谱深度解析锂电研究
    2019年10月9号下午,诺贝尔化学奖授予了对锂电池的发明做出杰出贡献的三位科学家,分别是:约翰· B· 古迪纳夫( John B. Goodenough)、M· 斯坦利· 威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino)。拉曼光谱能够深度解析锂电池材料的表征,助力锂电池行业应用的研究
  • 丹纳赫生命科学生物制药行业整体解决方案
    中国的经济多年来一直保持了离速的稳定增长。近年来,中国政府对千人民健康的不断关注,从2015年起不断地改革药品和医疗器械等的审评审批制度,加大了对千创新药械的鼓励和支持。生物制药市场也迎来了蓬勃的发展。目前,一些国产生物药已经获得批准进入市场,一大批生物药项目处千研发后期或临床阶段,等待报批商业化,这些中国创新药物将极好的服务于人类健康,提高人类对抗疾病的能力。同时一大批国内优秀企业,也走出国门,在全世界各地设立研发生产中心,看好全球的健康市场。丹纳赫生命科学生物制药整体解决方案分为“抗体研发” , “工艺开发和临床前研究” , “工艺放大和临床研究”和 “商业化生产“ 四个方面。这些解决方案根据不同阶段,为客户提供高通量的,完善的,合规的产品技术和服务,深入参与和帮助生物制药研发和生产企业,协助企业降低生物制品的成本并加快上市时间。丹纳赫生命科学会持续加强自身服务千该市场的能力,未来将通过技术,商业模式,本土化创新等方面,更加深入的参与和推动中国生物制药的产业发展。
  • 水分活度|对微生物的新研究扩大了地球及其他地方生命的已知极限
    对探测地球以外生命感兴趣的科学家长期以来一直在研究盐分环境,他们知道液态水是生命所必需的,而盐可以让水在更广泛的温度范围内保持液态。盐还可以保存生命迹象,就像盐水中的泡菜一样。
  • 代谢组学在中药研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 丹纳赫生命科学超微病理研究与应用解决方案
    超微病理学是从细胞超微结构水平以至分子水平研究疾病的病因、发病机理、病理变化和探索疾病防治的学科,是组织学和病理学向微观的深入发展,又称为超微结构病理学。电子显微镜技术作为探索微观世界的一种有力手段,在半个多世纪的实践中,显示出它旺盛的生命力和广阔的应用前景。电子显微镜技术的应用,不仅在阐明疾病的发生、发展及转归规律方面发挥了卓越的作用,而且逐步扩大到临床医学范畴,在对疾病的诊断和鉴别诊断中亦起着举足轻重的作用,特别是在肾脏疾病、血液病、病毒性疾病以及某些肿瘤的诊断等方面,其作用尤为明显。跟使用光学显微镜的传统病理观察相比,电子显微镜最大的优点是其高分辨率。电镜的最大分辨率可达0.2nm,比普通光学显微镜的极限(200m)提高了大约1000倍,因此可以观察到更细微的亚细胞病变结构,或更早期的病变迹象,从而提高病理诊断质量。
  • 拉曼光谱在生命科学领域的应用
    本文列举了Horiba Scientific及其拉曼用户在生命科学研究(包括基础研究、生物医学、药物、化妆品以及食品)中的一些应用实例,显示了共聚焦拉曼技术、新的拉曼成像方法可为该领域的应用提供坚实的技术支持。
  • 丹纳赫生命科学合成生物学解决方案
    合成生物学被认为将催生新一代生物技术的革命,欧美等发达国家早在十多年前就开始设立和资助大型合成生物学研究中心。至今为止,美国政府已支持设立3个大型合成生物学研究中心,英国政府已经资助6个大型合成生物学研究中心。其中,美国国防高级研究计划局(DARPA)资助的“生命铸造厂(Living Foundries)计划”是实施最早、规模最大的计划之一,目标是利用合成生物学技术构建基千生物体的新型制造平台。德国、荷兰、日本、新加坡澳大利亚等国也在紧密跟进,在各大研究中心与学术机构中,一般都搭建有生物铸造厂作为核心。我国合成生物学领域的布局晚于欧美等发达国家,但推进速度快、投入集中、目标明确。2013年,中国把建设“合成生物研究重大科技基础设施”项目列入《国家重大科技基础设施建设中长期规划(2012-2030年)》的总体部署,并于2018年1月批复立项,设施计划投入9.4亿元人民币。同时,科技部从2018年至2020年连续3年发布国家重点研发计划“合成生物学”重点专项:教育部自2018年开始启动合成生物学前沿科学中心立项和建设。丹纳赫生命科学平台整合了独特的优势技术,产品和方案,盖了合成生物学的“设计-构建测试学习闭环工作流,针对现有生物铸造厂中试错实验量大、自动化手段少、大片段DNA合成成本高、研究维度单一等局限,提供了围绕川克曼库尔特生命科学自动化工作平台为核心的高通量现代合成生物学工业平台。运用创新的纳升级声波移液系统、IDT单链寡核苷酸和双链DNA片段、美谷分子的智能微孔板检测系统、SCIEX基于高端质谱的代谢/脂质蛋白等多组学分析技术、徕卡显微系统的高分辨和共聚焦显微镜等,有效降低成本、提升通量、拓展研究深度和广度。
  • XRM应用介绍 | 生命科学
    XRM技术在生命科学领域中有着非常广泛的应用,高分辨断层三维扫描主要可以应用于骨科学、口腔科学、植物学以及医学领域中的呼吸系统研究、血管系统研究以及生物制药研究等方面。
  • 代谢组学在疾病、中药及植物表型的研究以及复杂样品分离分析新方法、新技术及代谢组学技术的其他应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 调节三高类中成药和保健食品中非法添加 化学药物及其检测研究进展
    摘要: 高血糖、高血压、高血脂统称为“三高症”, 现在已经成为威胁人们身体健康的常见疾病.具有调节“三高症”作用的保健食品和中成药越来越频繁地应用于此类疾病的日常预防及治疗.然而有不法分子为谋取利益,向其中违规添加化学药物,对患者造成安全隐患针对调节“三高症”的中成药和保健食品中非法添加化学药物的种类进行了总结,并对此类非法添加药物的国家标准补充检验方法及其他学者的检测分析方法研究情况进行了综述,最后根据目前非法添加现状分析了进一步的研究方向,以期为非法添加检测工作提供参考。
  • 代谢组学在疾病研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 代谢组学在植物表型研究中的应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 合成糖类化合物杂质提纯研究案例
    糖类化合物亦称碳水化合物,是多羟基(2个以上)的醛、酮类化合物或在水解后能产生这类化合物的物质,是自然界数量最多的有机化合物。糖类化合物是植物、动物和微生物的重要组分,与人类生活密切相关,是人体能量的主要来源,当然与药物研究也密不可分,如:葡萄糖注射液、右旋糖酐作血浆制剂等。近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。
  • STING抑制剂片段筛选
    由NanoTemper和药明康德子公司Crelux合作完成的STING抑制剂片段筛选案例。包括阳性化合物TSA实验验证STING蛋白结合活性,片段化合物单点筛选及亲和力排序实验。
  • 天津兰力科:苯二胺对聚苯胺电化学合成及其降解的影响
    运用循环伏安法和紫外2可见吸收光谱分别研究了邻、间、对3 种苯二胺单体对苯胺聚合及其生成膜降解过程的影响. 结果表明,对苯二胺在催化苯胺聚合的同时加速了膜的降解,而邻、间苯二胺对聚合与膜的降解均起抑制作用. 这可能是由于3 种苯二胺结构的不同影响了聚合机理,并在一定程度上改变了膜的化学物理性质所致. 扫描电镜显示,苯二胺的加入对聚合膜的形态结构也有明显影响,与纯聚苯胺膜相比,共聚膜变得更加致密、光滑.
  • AFM/SPM在生命科学领域的应用
    是德科技AFM系列都可以选择配有专用接口平台,可方便地将高精度AFM成像部件直接与各类倒置显微镜联用,从而实现多种显微手段同时成像,既可以得到光学的明场像、暗场像、荧光图或激光共聚焦图,又可以轻松获得原子力图像;对用一个样品的同一个位置同时原位得到高衬度的光学图和高分辨的AFM图,这是生命科学领域用户最心仪的显微解决方案。 是德科技AFM还具有很强的兼容性,可与各个厂商的倒置显微镜和激光共聚焦联用,也可支持FRET,暗场和明场成像多种光学附件功能。
  • 天津兰力科:盐酸阿霉素在玻碳电极上的电化学行为研究及分析应用
    采用线性扫描伏安法和循环伏安法研究了盐酸阿霉素在玻碳电极上的电化学行为及电极反应机理, 优化了测定盐酸阿霉素的各实验参数。结果表明, 在0.01 mol/L的HCl溶液中, 盐酸阿霉素在-0.40V处出现(vs.SCE) 一灵敏的还原峰, 峰电流与其溶液浓度在0.00000005~0.000001 mol/L ( r = 0.999) 和0.000001~0.00001mol/L ( r = 0.998) 范围内呈良好的线性关系, 检出限为0.00000001mol/L。并用循环伏安法研究了盐酸阿霉素的峰电流性质, 发现电极反应属于准可逆过程, 出现一对灵敏的氧化还原峰, 体系属准可逆吸附波。利用盐酸阿霉素在玻碳电极的电化学行为建立的分析方法可用于盐酸阿霉素的质量监控及药代动力学研究。
  • 非侵入性钙化结构的背鳍刺在大西洋蓝鳍金枪鱼微量元素研究中的应用(英文原文)
    鱼类钙化结构中的化学特征代表了环境化学和物理特征的自然标记。研究了大西洋蓝鳍金枪鱼非侵入性结构背脊替代耳石的适用性。首次通过比斯开湾的蓝鳍金枪鱼鳍刺年增长环带(即半透明和不透明带)研究了微量元素在全年增长过程中随空间和时间的变化。利用LA-ICP-MS在不同鳍刺截面做四条线扫分析,以研究微量元素的变化。首先,结果证实了微量元素在背鳍刺中空间稳定性问题。其次,大多数分析元素 88Sr, 137Ba, 24Mg, 55Mn, 7Li(生命必需元素),66Zn 和 65Cu(污染元素)在检出限之上。锶和钡在整个环带中表现出相似的模式,第二环的半透明带中的浓度显著升高。镁的浓度呈环状增加的趋势,半透明带和不透明带(第二个冬季)之间没有差别。相反,锰在整个环层中的浓度呈下降趋势,在不透明带(即夏季带)中的浓度显著高,而不是整个截面含量高。Li,Cu,Zn分布模式不清楚,尽管Zn与生长过程同步沉积。研究结果表明,某些生物必需元素的化学特征在脊椎骨中保持稳定,加强了它作为大西洋蓝鳍金枪鱼化学研究的非侵入性替代结构的应用。
  • 天津兰力科:紫外2可见吸收光谱法现场监测聚苯胺的电化学降解
    采用紫外2可见吸收光谱法现场监测了苯胺电化学聚合时的动力学降解过程, 简单、直观地显示了阳极电位、酸度和苯胺浓度对降解过程的影响, 结果表明, 阳极电位越正、酸度越强、苯胺浓度越大, 聚苯胺的降解速度越快。该方法得到的结果与聚苯胺膜在空白溶液中采用循环伏安法研究其降解动力学时得到的结果类似。
  • Olympus奥林巴斯共聚焦显微镜+PicoQuant共聚焦显微系统荧光寿命升级套件
    共聚焦型激光扫描显微镜广泛应用于生物化学,细胞生物学以及其它生命科学研究领域。时间分辨技术进一步加强了显微镜的功能,如:荧光共振能量转移(FRET)效率的荧光寿命量化测量利用时间分辨成像测量环境参数(pH,离子浓度)基于荧光团浓度的寿命测量基于寿命辨别分子间距的研究提高对荧光信号的甄别能力减少探测器的数量利用寿命衰减时间提高实验分析的精确度
  • 二氧化锰/C复合材料的电化学电容特性研究
    应用乙炔黑还原高锰酸钾直接制备二氧化锰/C复合材料,研究其电化学性能,实验证明,二氧化锰/C复合材料具有良好的电化学电容特性! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 天津兰力科:化学镀Ni - Fe - P - B合金的稳定剂醋酸铅研究
    用失重腐蚀、电化学和热处理方法,研究了稳定剂醋酸铅对化学镀Ni - Fe - P - B 合金的孔隙率、失重腐蚀速率、腐蚀电流密度和硬度等影响。结果表明:当醋酸铅浓度为1. 0 mg/L时,Ni - Fe - P - B合金镀层的腐蚀电流密度最小(1. 259 mA / cm2 ) ,孔隙率最低(0. 33个/ cm2 ) ,失重腐蚀速率最小。经200~600℃热处理后,合金耐蚀性有不同程度的下降,当CPb (Ac) 2 = 1. 0 mg/L时,耐蚀性下降程度最小。然而合金硬度和耐磨性提高了(200~400℃) ,当CPb (Ac) 2 = 1. 0 mg/L, 400℃热处理后,合金硬度高达939 HV,是镀态的2倍。
  • 丹纳赫生命科学新冠病毒解决方案
    随着新型冠状病毒肺炎疫情的爆发,社会各界亟需精准医学领域的科技力量为疫情的防治提供有力的支持。对传染性疾病的医疗工作者来说,如何借助最新的检测技术实现快速、安全、准确地完成检测任务 如何利用药物试验和新型临庆研究的最近进展,精准辅助患者的用药和进一步的跟踪与治疗,如何提升实验室整体的生物安全性和可靠性,是摆在人们面前的挑战。丹纳赫生命科学平台拥有新型冠状病毒检测、分析与研究的工作流和前沿解决方案(有些已纳入新型冠状肺炎的诊疗标准),在疫情期间可用于病毒检测与筛查,提供安全、快速精准的实验数据和结果通过一系列已验证的技术创新,全面提升实验室的生物安全性 通过高通量自动化系统的有机整合,显著提高样本检验通量:借助最新的临床前沿技术,提升检验的灵敏度和可靠性 利用先进的创新技术,精准辅助病人的精准用药。这些方案在国家疾控中心、各省市疾控中心和在以武汉协和医院检验科为代表的众多医疗机构中都得到了广泛的应用。
  • OLS OMNI 生命科学: 类器官和细胞计数的解决方案
    OLS OMNI生命科学以智能、可靠和用户友好的技术加速生命科学和生物技术的细胞研究。持续在3D细胞培养、细胞计数、细胞检测、细胞成像和微生物学领域提供解决方案的合作伙伴。我们高度专注于细胞培养、干细胞扩增和分化、细胞计数和细胞测定的应用。
  • 天津兰力科:硼氢化钠的电化学行为研究
    硼氢化钠直接燃料电池(DBFC)理论开路电压达到1.64V而引起人们的广泛关注,且其高能量密度可达到9.3Wh/g,高于甲醇燃料电池(6.1 Wh/g)。在硼氢化钠直接燃料电池的工作过程中,硼氢化钠在阳极进行直接氧化反应,但同时硼氢根的水解反应也在进行,而氢气的生成不仅会降低燃料的利用率,且会降低电池的性能。因此,在研究BH4-阳极氧化过程中,如何改善BH4-直接氧化反应,抑制BH4-水解反应具有重要的意义。论文首先采用循环伏安法研究了NaBH4碱性溶液在铂、微盘铂、金、铜、银、泡沫镍、玻碳等电极上的电化学行为。结果表明:在以金、铂电极作工作电极时,硼氢化钠直接氧化反应可以很好的发生;微盘铂电极不宜用于研究浓度较大的硼氢化钠溶液的电化学性能;银和铜电极活性高,但对硼氢化钠直接氧化的研究干扰较大;泡沫镍也显示了一定的活性,但稳定性不好;玻碳不宜作为研究硼氢化钠直接氧化的电极材料。论文进一步采用线性伏安法对铂电极和金电极上的氧化过程进行了详细研究。结果表明:当硼氢化钠浓度大于0.135mol/L且[NaOH]∕[NaBH4]比值在3~7内,铂电极能较好地抑制硼氢化钠水解反应;在金电极上,[NaOH]∕[NaBH4]比值在10~40内,增大氢氧化钠浓度能抑制水解反应,但同时直接氧化电流会随之下降。在硼氢化钠浓度相同,用金电极比用铂做工作电极时,氢氧化钠的需用量要大;铂电极上的硼氢化钠直接氧化过程为非氧化-还原催化,金电极上的硼氢化钠直接氧化过程为扩散控制。但硼氢化钠浓度一定而氢氧化钠量未到所需时,扫描速度增大,溶液对流对电极反应的响应影响减少,有利于电流峰的测定;在303K~353K范围,铂电极上的直接氧化反应电流随温度升高先增大后降低,而金电极上的直接氧化反应电流随温度的升高而升高;添加适量的硫酸钠和硝酸钠,都能使铂和金电极上的直接氧化反应电流增大,但硫酸钠的加入还能促进硼氢化钠的水解反应且过量时会导致氧化反应电流降低,硝酸钠能抑制硼氢化钠水解反应。
  • 二氧化锰/C复合材料的电化学电容特性研究
    应用乙炔黑还原高锰酸钾直接制备二氧化锰/C复合材料,研究其电化学性能,实验证明,二氧化锰/C复合材料具有良好的电化学电容特性! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 热分析技术研究失控反应
    在经济快速发展进程,对化学品的生产及使用逐渐走向多样化、大量化、复杂化,化学品的性质也趋于复杂及高危害性。失控反应最终可能导致火灾、爆炸甚至外泄等安全议题,造成巨大的生命财产损失,因此也日益受到关注。国家十三五规划中也表明应提供安全生产的工作环境,建立良好之物质管理体系,有效推动灾害防范;充分知悉工作场所危害物质的特性及危害,并依各项安全规定工作,维持生产安全。本文与国际知名热分析厂家美国TA仪器合作,浅谈在国际上及个人研究经验对热分析技术研究失控反应的案例介绍及心得。
  • 丹纳赫生命科学公共卫生与疾病预防控制综合解决方案
    丹纳赫生命科学,拥有丰富的适用于疾控系统的领先解决方案和产品,可以为疾控系统的传染性疾病检测,食品中有害物质例行监测,环境污染物风险因子筛查,毒理分析,疫苗与新药研发,营养、食品、健康与慢性病管理与研究,职业性中毒与肿瘤等方面的分析与监测工作提供广阔的仪器平台与分析方法。全方位支持疾控中心为健全国家公共卫生应急管理体系,提高应对突发重大公共卫生事件的能力水平,完善国家疾病预防控制体系做出贡献。
  • 天津兰力科:大黄酚和牛血清蛋白相互作用的电化学/ 光谱性质研究
    在pH = 4. 0 的Britton2Robinson (B2R) 缓冲体系中,应用循环伏安法、示差脉冲伏安法和紫外光谱法对大黄酚与牛血清白蛋白(BSA) 相互作用的电化学/ 光谱性质进行研究. 结果表明,二者结合生成了一种非电活性的超分子化合物.BSA 的存在导致大黄酚氧化还原峰电流降低,峰电位基本不变,峰电流的下降值同所加入的BSA 浓度在一定范围内呈线性关系. 线性范围为5. 0 ×10 - 6~1. 0 ×10 - 7 mol/ L ,检出限为3 ×10 - 7 mol/ L.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制