当前位置: 仪器信息网 > 行业主题 > >

中科院自适应光学

仪器信息网中科院自适应光学专题为您整合中科院自适应光学相关的最新文章,在中科院自适应光学专题,您不仅可以免费浏览中科院自适应光学的资讯, 同时您还可以浏览中科院自适应光学的相关资料、解决方案,参与社区中科院自适应光学话题讨论。

中科院自适应光学相关的资讯

  • 中科院自适应光学重点实验室与南美天文研究中心签署战略合作协议
    p   3月19日上午, 中科院光电所副所长饶长辉研究员和中科院南美天文研究中心主任王仲研究员分别代表中科院自适应光学重点实验室和中科院南美天文研究中心签署了双方战略合作协议, 旨在进一步加强双方在天文观测大科学项目研究、天文观测科研仪器研发、天文台筹建工作等方面的合作,同时积极开拓各方发展契机,服务国家需求。 /p p   中科院南美天文研究中心是中科院在海外的独立研究机构,总部位于智利。该中心旨在通过与智利大学及智利国家科委的合作,搭建以智利为中心,辐射南美其他国家的长期、稳固、互利合作的天文科技平台,推动我国天文事业的长期发展。中心与自适应光学重点实验室将基于智利拥有的国际先进望远镜观测平台、大规模数值模拟研究以及光电天文仪器设备和技术方面的优势,合作开展最前沿的天文观测和天文技术方法研究,促进天文观测装置的发展,培养我国的天文研究人才。 /p p style=" text-align: center "    img style=" width: 450px height: 300px " title=" " alt=" " src=" http://www.ioe.cas.cn/xwdt/ttxw/201803/W020180327618377930452.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p br/ /p
  • 自适应光学仪器可以带来“超视力”吗?
    人类的视力有极限吗?最近,科学家在实验中运用新技术,通过光学仪器矫正人的视力,有的被试者的视力甚至达到了2.0。   新技术为“超视力”提供可能   中国科学技术大学周逸峰小组与中科院成都光电所张雨东小组合作,创造性地将视知觉训练与人眼自适应光学技术结合起来。在实验中,他们对20岁左右的正常被试者测量视力等视功能后,让他们每天参加一小时的视觉训练。这种训练,即在自适应光学系统上,呈现一种高空间频率光波的黑白条纹图像,让被试者根据要求完成图像的检测任务。训练程序根据完成任务情况,自动调控图像参数,使之维持在一定的难度水平上。如此反复多次,坚持10—12天,每天1小时左右。   周逸峰指出,“这项实验反映了在一定的条件下,经过学习,成年神经系统对图像识别的能力可大大提高。即便是发育成熟后,正常成年视觉神经系统仍具有相当程度的可塑性。不过,这些可塑性的发挥,受限于人眼的光学系统质量。”   据专家介绍,人眼的光学系统,除了存在近视、远视等“低阶像差”外,还存在难以用普通手段测量和矫正的“高阶像差”。研究小组对被试者进行高阶像差的矫正,使之拥有较理想的人眼光学系统,在此基础上配合视知觉训练,让被试者的视力有了明显的提高,有的甚至达到了2.0及以上的视力。据介绍,他们的“超视力”在5个月后复测时仍可保持。该研究成果可用于探索新的治疗方法,来提高视力低下患者的视功能,也为达到“超视力”提供了可能。   目前还处于临床阶段   关于这项技术的最新应用情况,周逸峰在接受采访时介绍:“目前,我们与合作单位中科院光电技术研究所一起正在进行面向临床应用的产品开发和推广,已经研制出自适应光学视力治疗仪,7月份进入医院进行临床试验,在国家药监局审批注册后即可上市用于临床。”同时,周逸峰还指出:“这项技术还处于临床试验阶段,从之前测试的结果来看,效果比较显著,但由于临床试验受到各种因素的制约,不能保证每次试验都达到预期效果。”   对此,焦永红指出,“自适应光学技术属于高科技,作为一种辅助的装置,它主要从两个层面推动眼科技术的发展。其一,让使用设备的医务人员可以更清楚地分析数据;其二,可以让病人接受的手术更加精准。目前,它仍属于前瞻性的研究。”   关于视知觉训练,焦永红则认为:“视知觉训练主要通过锻炼肌肉的灵敏度,通过反复刺激的方法来训练人的能力。这项训练比较主观,而且需要坚持。因此,被试者的视力恢复水平可能因人而异。”   不过,任何一项新技术的发展都是不断尝试、不断推新的过程。屈光手术自90年代初期试用以来,已经发展成熟,这一技术通过改变人眼的光学系统,使得人眼视力水平得到很大改善。焦永红认为:目前,自适应光学技术还处在临床适应阶段,从原理上说,这项技术可以辅助临床试验,让手术更加精准。   是否具有“超视力”不重要   那么视力的优劣该如何测定呢?2.0的视力是怎样的“超视力”呢?   目前国内有两种视力表记录法:小数记录法、五分记录法。一般情况下,正常裸视力能达到1.0,也就是5.0。小数记录法的1.5,2.0分别相当于五分记录法的5.2,5.3。   对于视力有限性的问题,北京同仁医院眼科中心眼肌科主任焦永红指出:“人的视力受限于最小视角,它是指视网膜视觉细胞能分辨的最近距离的两点对眼的最小夹角。”视力表是根据视角的原理制定的。正常人眼能看清最小物体的视角为1分视角,又称最小视角。   焦永红认为,“人的视力是有极限的,单纯通过视力表的指标来衡量人的视力的优劣并不是目的。1.5的视力已经是正常视力,不同衡量体系得出的结论也不同。衡量视力水平,不能光看指数,还要看眼睛各个方面是否协调一致。关键在于眼睛的健康,无各种眼科疾病,这才是我们追求的目标。至于是否是2.0这样的"超视力"并不重要。”   焦永红说:“视力检查是一种知觉检查,具有较强的主观性,一些其他的因素,也会影响到检查结果。”常见的影响视力检查准确性的因素有:光线,比如灯箱老旧、光源亮度不达标、面板刮花、检测地点周围光线昏暗等;环境,如周边环境吵闹、噪音大等;此外,如果在感冒、发烧或服药期间,视力也可能下降。   中国人民解放军第二炮兵总医院眼科主任医师蔡春梅介绍说:“目前所测的视力主要为远视力,被试者离视力表5米。视力达到2.0,说明远视力很好,不排除有其他眼睛问题的可能,没有一个评论视力优劣的绝对指数,普通人达到1.0的视力就是正常视力。”   通常情况下,人们认为成人的视力不具备可塑性。就此,蔡春梅认为:“如果一个成年人存在屈光不正的问题,如近视、远视、散光等问题,通过镜片、手术矫正的方法,才可以矫正视力。”自适应光学技术也正基于此,通过仪器调整人眼的光学系统,才能够有效的矫正视力。
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。   美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。   在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 自适应光学波前传感的理想选择—sCMOS 相机
    自适应光学波前传感的理想选择—sCMOS 相机牛津仪器 Andor sCMOS 相机作为自适应光学波前传感的优选设备,拥有高度并行的像素读出产生的高帧频,结合短曝光条件下的低噪声和高量子效率能够获得最佳信噪比图像。在本次技术说明中,我们比较了Andor sCMOS 系列中三款特别适合波前传感的相机: Marana 4.2B-6(具有CoaXpress接口) Zyla 4.2 PLUS(具有CameraLink接口) Balor 17F(具有CoaXpress接口)下表总结了每款相机的关键性能参数。表1 用于波前传感的三款 Andor sCMOS 相机的关键成像参数在第1部分中,我们将详细分析潜在的帧频性能,尤其是 ROI 模式下帧频的提升。在第2部分中,我们将比较三款相机相对“延迟”特性,这是自适应光学应用的一个重要考虑因素,因为它决定了图像在软件中的准备时间,以便作为闭环可变形镜像系统的一部分进行处理。Part 1 | sCMOS 帧频高速帧频性能对于波前传感至关重要,使用(ROI)子阵列能够实现每秒数百帧的图像采集。作为波前传感备选的成像探测器,表2显示了上述三款 sCMOS 相机在不同 ROI 阵列尺寸上的帧频。表 2 的关键成像参数(可用选项): 卷帘快门曝光模式 重叠(100%占空比)模式 16位(全动态范围)模式 中心 ROI 成像 CoaXpress(CXP)接口(Marana 和 Balor) CameraLink(CL)接口(Zyla)表2 三款 Andor sCMOS 相机在不同 ROI 阵列尺寸上的帧频 请注意,在比较 Marana 和 Zyla(均为2048 x 2048阵列)时,尽管 Zyla 能够实现更快的帧频,但 Zyla 是使用前照式芯片,通过在每个像素上使用微透镜来实现高量子效率。Marana 使用背照式芯片,在没有微透镜的情况下可实现高达95%的量子效率。此外,如果 Zyla 的 ROI 没有在垂直方向上居中,帧频将会降低(降低到原来的2倍),而对于Marana 和 Balor,ROI 可在任何区域,帧频的降低可以忽略不计。Part 2 | “延迟”比较科学成像相机用作波前传感器的一个关键考虑因素是“延迟”。由于波前传感成像是 AO 配置闭环系统的一部分,因此软件必须快速采集图像以进行实时处理,以便它能够持续地通知变形镜系统如何在到达科学探测器的过程中对入射波前进行重塑和展平。比较波前传感器相机,我们需要清楚地了解曝光、传感器读出和任何图像传输耗时相关的相对时间。在成像的时序流程中,对于“延迟”的定义可能存在一些主观的变化。为了在当前的比较研究中实现标准化,我们将考虑从曝光开始到软件处理该曝光时间内的完整图像/ROI 的整个端到端时间。我们还将通过假设曝光时间为 10 毫秒(帧频达到100 fps)进行标准化。但是请注意,我们比较的三款相机,这 10 毫秒的曝光对应于不同的 ROI 阵列大小和相应的视野。图 1 和图 2 为 Zyla 4.2 PLUS 与 Marana 4.2B-6 进行比较的时序示意图。sCMOS 相机之间的“延迟”区别如下:Zyla 必须先将整个 ROI 阵列(10 毫秒)读出到组装图像的相机 FPGA,然后再通过 CameraLink 接口传输图像,这里又需要10 ms。由于这些过程是按序发生而不是同时进行的,因此整个端到端处理接近曝光(10 ms)+ 读出(10 ms)+ 通过 CameraLink 的数据传输(10 ms)= 30 ms。注意,Zyla图像必须首先在 FPGA上组装的原因是其复杂的传感器读出,这涉及到同时读出阵列的两半,从中间行开始,向外分别移动到顶部和底部行。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。 Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机 PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Balor 未在所示的图中具体表示,但具有与 Marana 相似的单向传感器读出架构,区别在于 Balor 通过同时读取每组 4 行的数据来提高速度。因此,如果 Balor 定义了 ROI 阵列,其结果是曝光时间为 10 ms(相应的读数为10 ms),那么 Balor 的整个端到端过程也将近似于曝光时间(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。因此,相对于 Zyla 固有的“延迟”, Marana 和 Balor 的“延迟”减少了。然而,如第 1 节所示,Zyla 4.2 PLUS 相对于Marana 4.2B-6 可能具有更高的帧速。在为您的装置选择最合适的波前传感成像相机时,应在确切的实验要求范围内考虑这两个因素。图 1 和图 2 的关键成像参数(可用选项): 曝光时间/读出时间 — 10毫秒(需要选择ROI) 卷帘快门曝光模式图1 Zyla4.2 PLUS:表示曝光、读出和图像传输(通过 CameraLink接口)的计时示意图图2 Marana 4.2B-6:表示曝光、同时读出/图像传输(通过Coaxress 接口)的计时示意图。Balor 的实验数据接近Marana 4.2B-6
  • “一米新真空太阳望远镜多层共轭自适应光学系统”投入使用
    在国家自然科学基金的支持下,中国科学院光电技术研究所联合云南天文台成功研制国家重大科研仪器“一米新真空太阳望远镜多层共轭自适应光学系统”并投入使用,实现了大视场自适应光学技术从原理方法创新到实际仪器应用的跨越。   2月2日至3日,该仪器技术指标现场测试会在云南天文台抚仙湖太阳观测基地召开。测试专家组经现场技术指标测试后认为,该仪器各项技术指标达到了资助项目计划书的要求,可以对太阳目标长时间稳定闭环工作,在大气相干长度r0优于10cm@500nm情况下,可见光波段成像分辨力优于0.2″,校正视场大于1′。   “一米新真空太阳望远镜多层共轭自适应光学系统”是光电所联合云南天文台申请的国家自然科学基金国家重大科研仪器研制项目(自由申请)。该项目瞄准空间天气预报重大需求和太阳物理科学前沿研究,针对云南天文台一米新真空太阳望远镜(New Vacuum Solar Telescope,NVST)研制一套多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)系统,对太阳大气进行大视场、高分辨成像和光谱观测。   该仪器基于研究提出的新型MCAO架构,采用3块变形镜、2个大视场多视线波前传感器以及2套波前实时处理机,实现了在角分量级视场内对大气湍流波前像差的有效补偿。目前,该仪器已与NVST后端科学仪器对接进行常规观测,为太阳风暴的预警预报和太阳物理科学研究持续提供高质量的光谱和成像数据。
  • 1650万!上海科技大学硬X射线自由电子激光装置-自适应光学系统采购项目
    一、项目基本情况项目编号:310000000240126156034-00137596项目名称:上海科技大学硬X射线自由电子激光装置-自适应光学系统预算编号: 0024-J00024033 预算金额(元): 16500000元(国库资金:16500000元;自筹资金:0元)最高限价(元): 包1-16200000.00元 采购需求: 包名称:自适应光学系统 数量:2 预算金额(元):16500000.00 简要规格描述或项目基本概况介绍、用途:按照本次招标要求交付的自适应光学系统,用于100PW激光装置波前畸变控制及优化,提升激光的聚焦能力。 合同履约期限: 交货期:合同签订后21个月内分批交货。 本项目( 否 )接受联合体投标。二、获取招标文件时间:2024年07月26日至2024年08月02日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网方式: 网上获取 售价(元): 0 三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海科技大学地 址:华夏中路393号联系方式:021-206853072.采购代理机构信息名 称:上海中招招标有限公司地 址:上海市共和新路1301号D座2楼201联系方式:021-66272917,183170943353.项目联系方式项目联系人:陈永亮、唐 闽、张 佳电 话:021-66272917,18317094335
  • 上海光机所在基于监督学习的超精密光学曲面自适应工艺决策方面取得进展
    近期,中国科学院上海光学精密机械研究所精密光学制造与检测中心在基于监督学习的超精密光学曲面自适应工艺决策方面取得重要进展。研究团队首次提出了一种傅里叶卷积-并联神经网络框架,攻克了光学加工领域小样本训练条件下高维度输出的瓶颈难题,综合训练正确率优于90%,实现了数字化子孔径制造多维度参数组合加工智能化决策,对光学制造的智能化发展具有重要指导意义。相关研究成果以“Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication”为题发表在Optics Letters上。现代光学系统如光刻系统、大型望远镜和高功率激光等对各类超精密光学元件数量和表面质量提出了更高的需求,而现有工艺决策很大程度上仍然依赖经验丰富的技术专家,受专业人员的稀缺性以及人工决策的不稳定性影响,决策过程智能化是光学制造精度和效率进一步提升面临的关键问题。近年来,数据驱动的机器学习网络发展为解决这一瓶颈问题提供了可能;但在光学加工领域,训练样本获取难而决策维度高,如何实现小样本条件下的有效训练来满足高特征维度输出要求,是数据驱动智能化光学加工发展面临的首要难题。图1 结合去除函数库匹配的傅里叶卷积-并联神经网络框架针对以上问题,研究团队首次提出了一种结合去除函数库匹配的傅里叶卷积-并联神经网络框架,实现了数据驱动下工具种类、尺寸、磨料类型和体去除率等关键参数的联合自主决策,决策范围涵盖了自研磨/粗抛到修形/光顺等大部分工艺流程,也是首次证明了光学制造通过数据驱动神经网络解决的可行性。实验结果表明,仅在网络模型的指导下,260mm260mm的离轴非球面镜的面形精度(PV)可由初始的15.153λ收敛至0.42λ(λ=632.8nm),RMS由初始的2.944λ收敛至0.064λ,总加工时间仅为25.34个小时,收敛率优于97%,已达到专业技术人员决策水平。该研究成果对超精密光学元件的高效制造具有重要价值,并有可能将光学制造的智能化水平推向新的高度。图2 网络模型指导下离轴非球面镜的加工结果
  • 中科院光电所启动一国家重大仪器专项
    4月16日,2012年国家重大科学仪器设备开发专项“自适应光学高分辨率活体成像仪及其应用”项目在中科院光电技术研究所正式启动。该仪器研制成功后,将有望为我国数百万不可逆致盲眼病患者带来福音。   在视网膜中,感光细胞、双极细胞核神经节细胞是在视觉通路中的三大神经元,它们也是视觉通路中最容易受损伤的细胞。视网膜色素变性、青光眼、老年黄斑变性、糖尿病性视网膜病变以及多种物理化学因素都有可能导致视网膜神经元蜕变或凋亡,最后导致视力下降、甚至失明。世界卫生组织统计数据显示,目前全世界有盲人近4500万人,视力障碍患者达1.35亿人。其中,视网膜神经元病变导致失明的人占全球盲人的第二位。多数视网膜神经元病变如果早期发现,是可以控制的。然而,由于分辨率达不到细胞分辨程度,也无法克服人眼相差对成像的影响,国内外现有的检查技术均不能在活体细胞尺度发现最早期的视网膜细胞异常改变。   针对这一需求,光电所将自适应光学技术原理与光学相干层析和共焦显微技术相结合研发具有细胞分辨尺度的自适应光学活体成像仪。新仪器将有望成为医生的“慧眼”。利用新仪器,医学研究人员可以从细胞水平对以青光眼为代表的神经性病变、以糖尿病视网膜病变为代表的血管性病变、以视细胞退行性改变为代表的视功能损伤进行早期诊断,进而寻求有效手段进行干预,使眼病患者避免由于视功能的严重损害而导致丧失劳动能力和生活能力。   自适应光学高分辨力活体成像仪项目由光电所进行仪器研发,上海复旦大学眼耳喉鼻科医院、温州医学院、四川大学华西医学中心、中国标准化研究院、成都科奥达公司进行相关的应用开发及产业化推广工作。
  • 中科院“LAMOST激光信标系统”通过验收
    p style=" text-indent: 2em text-align: justify " 近日,位于河北兴隆国家天文台的“LAMOST激光信标系统”项目通过中科院条财局组织的专家验收,该项目在中科院重大科技基础设施项目的支持下,由南京天文光学技术研究所李国平团队和福建物构所林文雄团队共同合作完成。 br/ & nbsp & nbsp 林文雄团队研制的绿光激光器作为LAMOST的核心部件——激光信标,在12公里附近产生一颗处于望远镜中心视场的7等左右的激光星,通过对大气分子的瑞利散射光波前进行采样,获 得望远镜的面形数据并传递给促动器,实现了望远镜的主动光学校正。 br/ & nbsp & nbsp 在激光器研制过程中,为了克服超长激光谐振腔的光学畸变问题,创新性采用时序控制及4f像传递技术,突破了一般工业用途激光器20 ns脉宽的瓶颈,研制出65 ns脉宽的激光器。为了使激光器能够适应-30℃~+40℃的环境温度,一方面采用热膨胀系数较低的材料作为激光器底板,并且通过合理的光学设计使激光谐振腔处于稳腔状态;另一方面,自主研发出自适应光学调整架,能够利用自身形变抵消环境温度变化引起的应力,保证了激光谐振腔在环境温度变化时的稳定性。这些技术为实现7等激光星以及精确测量瑞利散射光波前提供了有力的保障,相关的研究工作申请了专利3件,其中授权专利2件,发表文章1篇。 br/ & nbsp & nbsp 激光器各项指标均优于合同指标:激光功率33 W,功率稳定性为0.7%;重复频率12 kHz;脉冲宽度65 ns;光束质量M2 = 1.3。验收总结会上,激光器稳定的性能指标得到了专家组的一致好评,由激光器产生的人工信标大大缩短了主动光学的校正时间,提高了LAMOST的巡天效率,为我国自主研制用于大气校正的激光导星系统提供了重要技术储备。 /p
  • 中科院微电子所在极紫外光刻基板缺陷补偿方面取得新进展
    近日,微电子所集成电路先导工艺研发中心在极紫外光刻基板缺陷补偿方面取得新进展。 与采用波长193nm的深紫外(DUV)光刻使用的掩模不同,极紫外(EUV)光刻的掩模采用反射式设计,其结构由大约由40层Mo和Si组成的多层膜构成。在浸没式光刻技术的技术节点上,基板制造和掩模制造已足够成熟,掩模缺陷的密度和尺寸都在可接受的水平。但是在EUV光刻系统中,由于反射率及掩模阴影效应的限制,掩模基板缺陷是影响光刻成像质量、进而导致良率损失的重要因素之一。 基于以上问题,微电子所韦亚一研究员课题组与北京理工大学马旭教授课题组合作,提出了一种基于遗传算法的改进型掩模吸收层图形的优化算法。该算法采用基于光刻图像归一化对数斜率和图形边缘误差为基础的评价函数,采用自适应编码和逐次逼近的修正策略,获得了更高的修正效率和补偿精度。算法的有效应性通过对比不同掩模基板缺陷的矩形接触孔修正前后的光刻空间像进行了测试和评估,结果表明,该方法能有效地抑制掩模基板缺陷的影响,提高光刻成像结果的保真度,并且具有较高的收敛效率和掩模可制造性。 基于本研究成果的论文Compensation of EUV lithography mask blank defect based on an advanced genetic algorithm近期发表在《光学快报》期刊上[Optics Express, Vol. 29, Issue 18, pp. 28872-28885 (2021),DOI: 10.1364/OE.434787],微电子所博士生吴睿轩为该文第一作者。微电子所韦亚一研究员为该文通讯作者。此项研究得到国家自然科学基金、国家重点研究开发计划、北京市自然科学基金、中科院的项目资助。图1 (a)优化算法流程 (b)自适应分段策略样例 (c) 自适应分段的合并与分裂 图2 (a)对不同大小的基板缺陷的补偿仿真结果 (b) 对不同位置的基板缺陷的补偿仿真结果 (c) 对复杂图形的基板缺陷的补偿仿真结果 (d) 对不同位置的基板缺陷的补偿、使用不同优化算法,目标函数收敛速度的比较
  • 预算超亿元!中科院光电所2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院光电技术研究所(简称光电所)始建于1970年。建所以来,围绕国家重大战略需求,聚焦世界科技前沿开展光电领域基础性、前瞻性、颠覆性的创新研究,逐步成为国家科技战略体系中不可或缺的光电科技力量。光电所建有微细加工光学技术国家重点实验室、中国科学院光束控制重点实验室、中国科学院自适应光学重点实验室、中国科学院空间光电精密测量技术重点实验室,和光电工程总体研究室等10个创新研究室,以及中科院成都几何量及光电精密机械测试实验室;还建有精密机械制造、先进光学研制、轻量化镜坯研制、光学工程总体集成、质量检测等5个研制中心,以及科技信息中心等技术保障中心。目前承担有国家重点研发计划、自然科学基金、部委重大重点项目及企业委托开发项目研究,研究水平居国内领先或国际先进。成果的产出离不开仪器的支持,中国科学院光电技术研究所每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对中国科学院光电技术研究所2022年政府采购意向进行了整理汇总。共收集到16个仪器采购项目,预算金额相加为1.0248亿元,采购品目涉及磁控溅射、匀胶机、共聚焦显微镜、套刻精度检测设备、光学系统辐射定标系统、力矩测量系统、抛光机等多种仪器设备类型。序号采购项目名称采购品目预算金额(万元)预计采购日期项目详情1亚分辨辅助图形(SRAF)添加软件A021006992256月详情链接2光学邻近效应修正(OPC)验证软件A021006992706月详情链接3磁控溅射A0210069914606月详情链接4套刻精度检测设备A0210069928006月详情链接5大口径光学系统辐射定标系统A033499其他专用仪器仪表5606月详情链接6微干扰力-力矩测量系统A033499其他专用仪器仪表1706月详情链接7大口径高精度匀胶机A033499其他专用仪器仪表8806月详情链接8φ800真空光管A033499其他专用仪器仪表7756月详情链接9大口径清洗设备A033499其他专用仪器仪表5386月详情链接10空间环境辐照模拟仿真试验系统A021099其他仪器仪表5406月详情链接11光学级聚酰亚胺薄膜真空流延成膜设备A033499其他专用仪器仪表4306月详情链接126轴光学抛光中心A021099其他仪器仪表4506月详情链接13球面数控抛光机A021099其他仪器仪表3306月详情链接14光学中继通道检测装置A021099其他仪器仪表2406月详情链接15大口径共聚焦显微镜A021006994308月详情链接16环境监测数据综合分析系统A021006991508月详情链接
  • 中科院西安光机所三维显微成像技术研究取得新进展
    日前,Nature旗下的Scientific Reports 刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组题为Full-color structured illumination optical sectioning microscopy 的研究论文。  众所周知,色彩(光谱)信息是描述物体特征的一个重要物理量。三维物体彩色层析成像技术是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,但是逐点扫描整个三维样品需要较长的时间,而且视场很小,目前仅应用于生物医学显微成像领域。条纹投影法和白光相移干涉法是较为成熟的三维物体表面成像与测量技术,得到了广泛的应用,这两种技术结合三维贴图技术(3D mapping)都可以近似得到三维物体的表面颜色信息,但是贴图技术的缺点是图像畸变大而且分辨率不高。同时,受到相位解包裹算法的限制,条纹投影法和白光相移干涉法对于表面具有复杂和突变结构的物体都不适用,而类似的复杂结构又是常见的(例如动物的毛发、机械工件的表面毛刺、植物的叶片等)。结构光照明显微(SIM)是一种特殊照明方式的宽场成像技术,经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。但目前所有的SIM都是单色的,另外,受显微物镜视场大小的限制,SIM技术目前也仅应用于微观领域。  西安光机所姚保利研究组自2010年开始SIM技术研究以来,开展了深入细致的理论和实验研究工作,首次提出并实现了基于数字微镜器件(DMD)和LED照明的SIM技术(Scientific Reports 2013,国家发明专利ZL201110448980.8)。在本次发表的研究论文中,通过使用彩色CMOS相机记录白光或多色结构光照明获得的光切片图像,对传统光切片SIM技术采用的均方根层析算法进行改进,提出了基于HSV彩色空间的彩色解码算法(已申请国家发明专利),获得了物体高分辨率彩色三维图像。结合三维多视场数据自适应融合技术,解决了对介观物体(亚毫米到毫米量级尺寸)显微成像时,由于显微物镜视场有限,无法一次获得整个物体高分辨三维图像的问题,视场范围达到了2mm2以上。研究组与中科院动物研究所开展了联合实验研究,实现了对螨虫和昆虫跳器的彩色三维光切片成像,为该方面的研究提供了有力的技术支持。同时对微电子芯片及硬币表面结构进行了大视场彩色三维成像,推动了SIM技术在三维物体表面形貌测量方面的应用。  三维成像与测量技术是目前国内外光学领域一个重要的研究方向,已嵌入到了现代工业与文化创意产业的整个流程。该研究取得的成果使西安光机所在三维显微成像方面掌握了核心技术,该技术通过与生物医学、材料化学、精密制造等学科的交叉合作,将大大提高我国在该领域的研究水平,具有广泛的应用前景。螨虫(a)和跳甲跳器(b)的彩色三维图像数字微镜器件芯片的彩色三维图像
  • 中国环境光学仪器正在崛起——访中科院安徽光机所所长刘文清研究员
    引言 目前,环境监测仪器市场已成为我国环保产业新的增长点,据不完全统计,预计2010年国内该市场容量将增至110亿元,国家环境保护部科技标准司日前也明确表示,环境监测仪器和技术是未来我国环保产业重点发展的四大领域之一。但长期以来,我国环境监测仪器的研发和应用却严重滞后:上世纪80年代才开始从国外引进一些仪器设备,90年代出现仿制、或部分研制的国产仪器,而成套在线监测设备的国产化则起步于2000年左右。 进入21世纪,中国科学院安徽光学精密机械研究所(下简称“安光所”)瞄准环境科学的国际前沿和国家对环境问题的重大需求,通过承担国家863资源环境领域、中科院知识创新工程及国家自然科学基金等课题,积极开展环境监测技术新原理、新方法和环境监测仪器技术集成等环境高新技术研究,先后自主研发“机动车尾气遥测车”、“城市空气质量连续自动监测系统”、“烟气排放连续自动监测系统”、“气溶胶激光雷达”等系列环境光学监测仪器,已在激烈市场竞争中崭露头角,大有逐步替代同类进口仪器之趋势;以“城市空气质量连续自动监测系统”为例,截至目前,累计在全国25个省市区安装DOAS城市空气质量子站400余套,占据全国同类产品约2/3的市场份额,单这一项产品就为国家节省外汇数亿元。 中科院安徽光机所所长刘文清研究员 为了深入了解安光所在环境光学仪器研制方面的成功经验,2009年8月11日,仪器信息网采访了中科院安徽光机所所长刘文清研究员,其就我国环境光学技术与仪器的目前现状、产业化模式、发展趋势等方面发表了见解;采访过程中,安光所副所长刘建国研究员、环境光学监测技术研究室副主任谢品华研究员全程陪同。 安光所开启我国环境光学仪器研制的新局面 刘文清研究员说:“目前,从环境监测技术原理看,无非有光学、电化学、色谱、质谱等几类,监测方式有在线的、离线的、遥测的、车载移动的等;其中,光学监测技术,监测范围广、速度快、成本低、可实现长期动态监测,是环境监测分析仪器发展主流方向之一。估计环境光学仪器要占据整个环境仪器市场的三分之一。” 早在1998年,刘文清研究员在安光所组建技术团队,以环境光学监测技术为主要研究方向,利用安光所在光、机、电及自动控制方面的优势,重点开展高分辨光谱分析方法的研究,如激光光谱技术、差分光学吸收光谱学(DOAS)、可调谐二极管激光光谱学(TDLAS)等。在水体、大气环境和污染源监测方面,发展若干种具有自主知识产权的环境优先物高灵敏、低剂量检测方法,以及重要污染指标常规在线监测技术和激光环境探测技术。 2003年5月,安徽省委副书记张平陪同全国人大副委员长、中科院院长路甬祥视察实验室,并听取关于环境光学监测技术研究和产业化情况汇报 安光所在研发替代进口的高档常规环境监测仪器设备、开拓创新性环境监测技术方面取得了优异成绩,开发了区域大气复合污染立体监测技术系统,并在北京、广州、上海等城市开展了综合科学观测实验和系统示范,为深入探讨区域大气污染防护和治理提供了新的监测技术和手段,先后获得国家、省部级科技成果20余项、国家专利30多项,其部分科研成果成功实现产业化,初步打破了多年来我国高档环境监测仪器依赖进口的局面。 国家自主创新产品:环保机动车尾气道边监测系统 国家自主创新产品:城市空气质量连续自动监测系统 安光所两项产业化成果入选首批《国家自主创新产品目录》 烟气连续自动监测系统光谱仪系统(市场销售600余套) 在2008北京奥运与残奥会期间,安光所在中国科学院领导指挥下联合中科院兄弟单位,主持“北京及周边地区奥运大气环境监测和预警联合行动计划”项目,刘文清研究员出任该项目负责人,所采用仪器设备95%以上都是中科院研究所自主研发的,其中利用安光所自主研发的环境光学立体监测技术及设备达60余套,有效弥补了北京市大气环境例行业务在监测手段、内容和范围等方面不足,出色地完成了国家交付的这项战略任务。 2007年8月,北京市市长王岐山在中科院江绵恒副院长的陪同下,视察安徽光机所建立的大气环境立体综合监测系统,并实地考察了奥运主场馆环境监测超级站 安光所荣获“北京奥运会残奥会环境质量保障特别贡献奖” 历经十年发展,安光所已成为我国环境光学在线监测技术的创新源头单位。“针对环境光学与监测技术目标,相对国内外同行,做的比较系统和全面。在自主技术创新的同时重视重大应用突破,重视对环境污染机理、环境污染对生态和气候的影响、以及环境遥感监测等基础性研究方面深入探求并取得了国际先进水平的研究成果,并发展了一系列环境监测先进技术和新方法,适时地产品化、工程化和努力产业化。” 谈及取得出色成绩的原因时,刘文清研究员谈了如下几点: (1)以市场需求为导向,以实现产品化为研发目标,核心技术研发是关键 “我们强调充分调动科研人员的主观能动性,坚持把科技成果作为实现产品化的第一步,重点解决原理样机到实用化产品之间的稳定性、可靠性等关键技术和工艺问题,特别注重新研制产品的示范、试用这个环节,这也是我们作为高技术研究所与其它类型院所的区别,通过高技术研究,推动先进环境监测技术产品化、实用化。” “‘照葫芦画瓢’,无技术创新的仿制不可能做出好仪器来。做高端仪器产品,就必须重视核心技术的研发,只有在核心技术突破之后,再去研发整机。同时,在关键元器件上不能省钱,一千元传感器与几百元传感器的性能是有区别的。” (2)瞄准国际环境监测技术制高点,力争做到同步发展 “瞄准环境监测技术制高点,参与国际环境监测高技术竞争,作为高技术背景的中科院研究所,定位在国家环境战略高技术研发,不去做目前国内企业已经能够做和应该做的研发工作。比如说,我们正在研究的温室气体排放监测,其进度应该跟国外差不多,一旦国家在这方面有需求,我们的研究技术就能迅速产品化。” 安光所非常注重国际间科技交流与合作,目前已与二十多个国家和地区研究单位、大学和有关公司建立了合作,如与亚洲雷达观察网、亚太经合组织环境监测技术中心、DOAS环境探测技术发明人U. Platt教授研究团队(德国海德堡大学环境物理研究所)等组织或团队有着良好合作关系,密切关注国际环境监测技术发展动态和技术制高点。 (3)仪器研制,要特别注重对其技术路径的知识产权保护 “目前,大部分仪器工作原理基本不存在知识产权问题,其核心部分往往是其分析方法与分析思路,所以研制仪器时要有自己的技术创新,并要做好专利申请,避免日后发生知识产权纠纷。我们的科技人员要有专利保护的意识。” 曾经,刘文清团队在空气监测子站研制之初,一家国外公司就质疑安光所在收发兼容望远镜设计中采用了他们的技术路线,但当刘文清团队给对方传去德国一位教授多年前对该结构的构思,以及自己对其改进后的技术路径发明专利,该公司随后便发来书面道歉函。 激光雷达(安光所是目前该系统国内唯一研发和生产单位) 新成果之一:工业有毒废气激光在线监测技术及系统(成功应用于胜利油田站场管道H2S气体在线监测) 新成果之二:分布式无源光纤瓦斯传感器系统(已在安徽淮南矿业集团谢家集第一煤矿进行试用) 2009年初通过鉴定的安光所两项最新科研成果(综合技术性能均达到国内领先水平) (4)应用示范、开发国产环境光学监测仪器市场 一直以来,由于稳定性和可靠性问题,用户有时宁愿花高价买国外产品,也不愿意尝试使用国产仪器,但在与国外产品的竞争中,安光所研制的环境光学监测仪器却逐渐得到用户认可。刘文清研究员认为:“一方面,我们必须先做到仪器在性能上不弱于国外同类仪器,比如在总投入3亿元以珠三角为示范区的“十一五”国家863计划资源环境技术领域“重点城市群大气复合污染综合防治技术与集成示范”重大项目,我们安光所参与其中,与国外多个研发团队同时进行的外场观测实验中,NO3这个参数就是我们最先测出来,国外的仪器就没有测出来;另一方面,中国一些城市的大气污染较重,以及污染特点与国外也有所区别,国外仪器有时在中国市场上的环境适应性方面还存在一些问题。这就给能适合国情的国产仪器发展留下较大的市场空间。” 积极探索环境监测仪器产业化的一些做法 “十五”期间,刘文清研究员及其领导的团队争取到多项国家863和国家自然科学基金项目,先后承担“可调谐红外激光差分吸收汽车尾气道边监测技术与系统研究”、“城市空气质量自动监测系统关键技术及集成设备研制”和“基于激光技术的大气污染光学监测技术与产业化”等课题研究。 “十一五”期间,安光所又承担了国家863“连续自动环境监测技术系统与设备”和“重点污染源现场监测技术与仪器研制”等重点项目的研究工作,开展了针对饮用水源、水环境质量和水污染源,工业面源VOC和温室气体排放,以及工业源现场监测仪器的研发。 安光所在大气、水环境质量和污染源监测技术方面,先后与“安徽蓝盾”、“安徽宝龙”、“河北先河”、“武汉天虹”、“湖南力合”、“合肥金星”等企业建立长期合作,与“北京远东”、“北京仪浮”等企业开展技术成果转让合作,与“聚光科技”等企业合作承担国家课题。 安光所荣获荣誉陈列处一角 勿容置疑,安光所在科研成果产业化方面积累了丰富经验,针对如何进一步探索环境监测仪器产业化的成功道路,刘文清研究员强调: (1)坚持走产学研结合的产业化道路,注重“优势互补” “要坚定不移地走产学研结合的产业化之路,通过长期战略合作,实现技术转移和转化;在技术研发的过程中,不需要什么都做,要与有实力的企业合作,优势互补、强强联合;比如说,我们的光学很强,与电子、机械方面强的企业合作比较合适。技术转移和转化中企业还需要再创新,与具有相关基础的实业联手比较好。” “我们愿意跟搞实业的企业合作。就前段时间,合肥有位做高尔夫产业的老板赚了一大笔钱,想做环境监测仪器,我谢绝了他。” (2)让企业成为环境科技创新的主体,与企业建立长效合作机制,有助促进科研成果真正实现工程化、产业化 “作为高技术研究单位,还是希望合作的企业能把成果一次性‘接’过去,但企业也有难处,能否顺利消化、转化是个问题,同时,企业也担心研究单位今天一次性把技术转移给我了,改天又变变形式又‘转’给别的企业。所以就目前情况,就需要科研院所与企业建立一种长效的合作机制。一方面,企业比较放心,另一方面,科研人员研发的东西可以持续跟进。事实上,一个科研人员一辈子把一种仪器真正研究清楚,就已经是非常了不起。” “我们与企业合作,一般根据具体成果及其市场前景,采用入股、转让等多种方式,但前提是真正能保证技术成果的产业化,至于合作可能产生的利益如何分配倒是第二位的。” (3)主张“生产一代、储存一代、研发一代”的仪器研制发展思路 “为了企业长远发展,从仪器研发角度,企业应该要有‘生产一代、储存一代、研发一代’的发展思路;特别是在‘研发一代’层次上,真正搞清楚一些分析方法,做一些系统性集成创新,同时加大技术积累与基础研究,毕竟高端仪器做到最后,基础研究显的更为重要。 “但是有很多企业,特别中、小型企业,只能‘生产一代’,‘存储一代’、‘研发一代’就谈不上,这样的企业没有多大后劲。我想说,企业老板要有战略眼光,为了企业的未来发展,应该注重一些高端技术与产品的‘储存一代与研发一代’。” (4)成立“863国家环境监测技术产业化联盟”,致力创建整个产业链 日前,由安光所牵头正在积极争取组建“863国家环境监测技术产业化联盟”,前段时间,这个国家863环境监测技术研讨会在合肥召开,有十几个企业积极参与。“国家应该进一步鼓励产学研合作、并建立技术产业化联盟,我认为,未来的环境监测仪器市场还要细分,通过这种一系列产研单位的‘联盟’,致力于把整个产业链建起来。” 刘文清研究员谈我国环境监测行业严峻态势与发展趋势 采访现场 我国环境监测技术现状与发展趋势是业内普遍关注的话题,自然是此次采访的主题之一,刘文清研究员对此发表如下见解与观点: (1)目前我国环境监测仪器与技术的基本现状 总体来说,中国环境监测技术总体上发展比较快、潜力很大,与国外先进水平差距不断缩小,尤其在光谱类环境监测技术与仪器方面;在一些重大的国家项目中,我国自主研制的仪器也发挥越来越重要的作用。环境监测设备国产化程度在逐步提高,如:大气环境监测设备发展迅速,水环境监测设备稳步发展,土壤环境监测设备也已起步。但国产的环境监测仪器和设备中还存在着自动化程度较低、部分关键元器件仍受制于人等问题。 我国环境监测技术在时间、空间、数据可靠性、一些特殊污染物的监测手段等方面仍存在一些问题,与欧美等国有较大差距;尤其,在机载平台上的环境遥感监测技术研究开展的很少,用于星载大气痕量成份探测的专用传感器研究几乎还没有开展,支撑环境物理和环境化学研究工作的先进分析仪器设备还依赖进口。 (2)制约我国环境监测高技术产业化的主要因素 首先,我国环境监测技术自主创新不够,环境监测设备的制造水平亟待提高。国产大气和水环境污染源现场和自动监测设备在适应高温高湿等恶劣条件方面急需加强,设备的稳定性和可靠性等急需提高。 其次,发展国家先进环境技术产业缺乏工程化的科技成果。由于我国环境资源监测的业务范围、应用部门增多,监测手段、方式、项目、精度发生明显转变,对在线、连续、远距离、高灵敏、高选择性的先进环境监测技术和设备的需求比任何时候都更加迫切。这就对新仪器的适应性、工程化提出了更高的要求。 最后,支撑国家环境监测的技术体系、标准和方法亟待完善。国外环境监测已进入以人的健康为内容的环境监测,而我国仍然进行的是以主要污染物监测为内容的环境质量监测,三级国控环境监测网尚在建设中,建设国家环境监测预警系统是一项长期而艰巨的任务。 (3)环境监测技术与仪器的发展趋势 目前,环境监测技术的总体发展趋势:以现场人工采样和实验室分析为主向多参数网络在线、多功能自动化方向发展;环境样品预处理由手工单样品处理向在线自动化和批量化处理方向发展;由较窄的局部监测、单纯的地面环境监测向全方位遥感遥测相结合的方向发展;野外和现场环境监测仪器向便携式、小型化方向发展;环境监测手段向物理、化学、生物、电子、光学等技术综合应用的高技术领域发展,表现在高精度、自动化、集成化和网络化;环境监测方法的综合性、灵敏性和多功能性日益增强,检测限越来越低。 在技术研发上,将从单项监测技术研发应用转变为监测技术集成应用,从局部(点)监测转变为区域(面)监测,能够实现多参数同时测定的各种监测技术研发和仪器设备实现业务化应用、用于科学研究的高层次专用监测技术设备,将成为环境监测发展的主流 。 编者手记 随着目前国家对日趋严峻的环境与生态问题越来越重视,我国环境监测仪器行业市场因此孕育巨大商机已不言而喻,大力发展先进环境监测技术和先进监测仪器设备变得必不可少。近几年我国环境监测仪器企业虽然有了较大发展,一批骨干环境监测制造企业也在做大做强,但仍存在产品技术水平不高、种类比较单一、没有形成产品系列等问题,尤其在中、高端市场上,还很难跟国外仪器厂商全面竞争。 如何在激烈市场中迎来发展良机,进一步抢占国内中、高端环境监测仪器市场,安光所在环境光学领域的创新研究以及产业化示范,带给我们诸多启示与借鉴;也正如刘文清研究员所言,随着国家整体产学研结合机制与政策的有效实施,国内基础元器件行业的整体发展,一系列环境监测领域核心技术和关键部件的攻关与突破,以及国内用户对国产仪器“不好用”观念逐渐被事实所扭转,相信经过“十二五”的努力,我国自主研制的环境监测仪器会在中、高档市场上占据“一席之地”。 采访编辑:王海 附录1:中科院安徽光机所 http://www.aiofm.ac.cn/ 附录2:刘文清研究员简介 刘文清,1954年1月出生,安徽蚌埠人,中国科学院安徽光学精密机械研究所所长,研究员、博士生导师,国家环境光学监测仪器工程技术研究中心主任。1978年毕业于中国科技大学物理系分配安徽光机所工作,其间1987~1989年意大利米兰工业大学物理系访问学者,从事生物组织激光光谱研究;1scii-font-family: Arial mso-hansi-font-family: Arial"十一五”国家863计划资源环境领域专家、安徽省“115”产业创新“环境光学监测仪器研发”团队带头人。2000年获国务院政府津贴。
  • 中科院苏州生药基地落户苏州高新区
    2月3日下午,中科院院地合作局与高新区代表在高新区会堂签署了共建“中国科学院苏州生物医学工程与生物医药产业化基地”协议。这标志着苏州高新区经国家科技部同意,开展国家创新型科技园区创建工作又向前推进了一大步。   据悉,已于去年11月揭牌的中科院苏州生物医学工程技术研究所(筹),首批启动的4个国内领先的科研项目,包括长脉冲绿激光血管治疗仪、全自动生化分析仪、多功能酶标仪、自适应像差补偿视网膜成像仪等已基本完成,今年3月份将作为创新成果正式对外发布。2009年,苏州医工所将着力抓好基建工作和抓好现有创新成果的转化,争取今年上半年开工,建设工期一年,明年10月前项目竣工。   今天,中科院院地合作局与苏州高新区再次签约共建“苏州生药基地”,规划占地将达到1000亩。双方将充分发挥各自优势,建设科技成果转移转化平台、产业技术公共支撑平台和专业服务平台,加速提升苏州生物医学工程与生物医药产业发展水平和能力,辐射长三角地区,引领我国医疗器械与装置、生物医药产业的培育和发展。   此外,在今天的创建国家创新型科技园区动员大会上,高新区还透露了到2015年,该区的一整套打造创新高地的目标体系,包括:区域研发总投入占销售收入的比例达到5%以上 力争培育1家产值100亿元级的高科技企业,区域国内生产总值占全市的比例达到15%左右 累计引进国内外研发机构140家,建设公共技术服务平台45家 全区每万名就业人口理工类本科以上学历人数不低于2500名,各类上市企业数量达到50家以上等。
  • 清华大学330万元采购单光子自适应高速三维显微成像系统,仅限国产
    8月24日,清华大学公开招标购买1套单光子自适应高速三维显微成像系统,预算330万元,仅限国产。  项目编号:清设招第2021172号  项目名称:单光子自适应高速三维显微成像系统  预算金额:330.0000000 万元(人民币)  采购需求:包号名称数量是否允许进口产品投标采购预算(人民币)01单光子自适应高速三维显微成像系统1套否330万元  设备用途介绍:实验需要对在体活细胞进行清晰地大范围亚细胞结构动力学过程观测,比如细胞器间的相互作用、胚胎发育过程、神经响应等等,必须能够高速获取大范围的三维荧光信号。  单光子自适应高速三维显微成像系统的成像方式极大的提高了成像速度及有效的解决了系统及样品的像差问题,同时大大降低了激光对样品的损伤,能够实现更长时间的活体观察,其图片能观察细微的差别,分辨亚细胞水平动力学及结构,成像质量非常高。  简要技术指标 :  1)基本配置:系统由以下主要模块组成  倒置荧光显微镜   多波段激光器   数据采集系统   图像处理系统。  2)技术要求:  系统分辨率:XY小于250nm,Z小于400nm   图像采集系统:支持活体哺乳动物三维图像采集   图像处理系统:专业处理器i9 10920,内存不小于128GB,固态硬盘不小于10T,显卡Nvidia RTX2080TI。  合同履行期限:交货时间:合同签订后5个月内  本项目( 不接受 )联合体投标。 开标时间:2021年09月14日 09点00分(北京时间)
  • 中科院苏州医工所签约 高端医疗仪器国产化提速
    中科院苏州生物医学工程技术研究所二期建设今天在苏州高新区签约,一批国家急需的高端医疗设备,将于两年内在苏州高新区实现产业化,从而服务大众健康和经济社会发展。此前,苏州高新区与国家卫生部正式签署医疗器械研发转化及产品推广合作协议,19个项目已签约或达成意向。   中科院苏州医工所是中科院、江苏省、苏州市合作共建项目,落户苏州高新区以来,一条打通研发、成果转化、产业化的生物医药和医疗器械产业链正在高新区形成。去年以来,苏州高新区将生物医药产业列入重点培育的新兴产业,正加快推进生物医学工程产业化基地建设。目前,医疗器械产业园也已全面开工建设,并被列入江苏省首批科技产业园。   苏州医工所是中科院新建院所中投资最大的项目,正在建设中的苏州医工所一期投资额为4.3亿元,一、二期总投资达7.8亿元。自2008年启动以来,已取得诸多成果。2009年3月,推出液晶自适应像差补偿视网膜成像仪、全自动化学发光免疫测定仪等6项科研成果,目前另有5项科研成果在研发过程中。其中,液晶自适应像差补偿视网膜成像仪的分辨率比目前常规眼底检查仪器高5-10倍,小型全自动生化分析仪测试速度达240次/小时以上。   苏州医工所二期建设与一期同时展开,一期预计在今年10月竣工并交付使用,二期将于2011年底完成建设。二期建设投资总额为3.5亿元,将实施PET-CT、全数字便携式彩色B超、激光共聚显微镜等7个重大项目,建成相关技术研发平台,形成生物医学工程技术领域的综合基础能力。根据二期建设方案,这些高科技、小型化、低成本的医疗设备,将于两年内在苏州高新区实现产业化。   据悉,目前高端医疗设备多依赖进口,价格昂贵,极大限制国内患者的使用。苏州医工所二期7大项目的建设,将实现高端医疗设备的低成本国产化。项目之一的便携式全数字彩色B超,体积只有笔记本电脑大小,重量是台式B超的几十分之一,但可以完成彩超所有功能,成本大大降低,将促进基层社区医院及农村、边远地区迅速提升医疗诊断水平。   中科院副院长施尔畏表示,二期建设确定“高技术、低成本、惠民生”的理念,为社会提供更多“安全、有效、方便、廉价”的医疗器械。
  • 中科院安徽光机所环境光学持续发展纪实
    岂止熟悉道路交通?   &ldquo 现在的中国,其局部地区和几十年前的洛杉矶非常相似。&rdquo 美国的环境专家奇普· 雅各布(Chip Jacobs)说。他的著作《雾霾之城》2008年出版时,大多数中国人不知雾霾为何物。   2008年奥运会开幕式时,奥运村一墙之隔,中科院安徽光学精密机械研究所(以下简称安光所)的几位科学家,正蹲守中科院遥感研究所,在几具&ldquo 炮筒&rdquo 前聚精会神,分析来自大气中的尘埃数据。他们是所长刘文清、副所长刘建国、环境光学中心主任谢品华等。   时任北京市市长王岐山在时任中科院副院长江绵恒陪同下,当时还看过他们神奇的&ldquo 炮筒&rdquo ,听过他们的汇报。   他们的大气环境立体综合监测系统,在奥运主场馆环境监测超级站和交通污染监测站的初步观测结果,不仅受到了王岐山给予的高度评价,也为中科院与北京市在环保领域的战略合作打下良好基础。刘建国对《中国科学报》记者说:包括奥运村在内的北京许多主要路段,我们这些年因搞环境监测总在奔走,都很熟悉。   北京雾霾重重,举国关注。安光所用自行研制的光学设备,对雾霾等环境污染进行科学监测,熟悉的岂止是城市道路交通?他们的&ldquo 火眼金睛&rdquo 所及,穿透了大气中微细的尘埃。   岂能&ldquo 光学&rdquo 不练?   1996年10月,时任中科院常务副院长路甬祥调研安光所,与该所领导班子交流。这无异于对安光所做了一次&ldquo CT诊断&rdquo ,对安光所的发展作了一次历史性的新定位。   环境光学的大方向基本确定,但枝叶还比较零乱。研究所领导和刚从日本做博士后归来的刘文清认为:把主要的骨架先搭起来,不能&ldquo 披头散发&rdquo 地做科研。   主攻方向首先瞄准大气污染。刘文清与研究所领导达成共识:以城市空气质量监测系统作为切入点。刘文清认为,仅仅关注平面还不够,必须选好三维坐标系。在学术上站得住脚,得到同行认可 技术成果必须工程化,能够实现产业化 监测数据能够用于国家的宏观环境决策管理。   满足国家战略需求,必须抓住&ldquo 三气&rdquo 中的科学和技术问题:一是城市空气质量监测、二是机动车尾气排放监测、三是烟气排放连续监测。对&ldquo 三气&rdquo 和污染状况监测提供技术、方法和设备,为政府和企业提供准确可靠的相关监测数据。   安光所在当时所内资金匮乏的情况下,给了环境光学监测研究室20万元启动经费,研制空气二氧化硫监测仪。   胡欢陵和王英俭带领的两届所领导班子全力支持,根据学科发展进行内部结构调整,抽调力量加强环境光学中心的建设 选择国家急需的实时在线环境监测仪器设备作为研究室发轫与攻坚的突破口。   2000年5月,中科院知识创新工程方向性项目&ldquo 环境污染高灵敏光谱在线监测技术研究&rdquo 立项。其他瞄准国家环境监测需求的项目,也在安光所迅速启动。   市场争夺战   1998年,时任中科院副院长的江绵恒带领刘文清等科技人员,在与国家环保总局的领导商谈时提出:面向国家可持续发展的需求,中科院可望在环境保护方面提供先进监测技术等科技支撑。   2001年,时任国家环保总局副局长王心芳带队,调研安光所的环境光学科研工作,明确表示要支持发展先进的环境监测技术。   安光所的环境光学创新刚起步便得到大师们的支持,王大珩、龚知本、任阵海、刘鸿亮、魏复盛、刘颂豪、何多慧等多位院士指导环境光学的发展。2000年4月,由两院院士组成&ldquo 先进环保技术领域专题组&rdquo ,向国家提供了《先进环保技术咨询报告》,肯定了安光所开发的多种环境监测技术,建议把&ldquo DOAS空气质量自动监测系统&rdquo &ldquo 紫外差分烟道在线监测系统&rdquo 等明确列为国家重点发展项目。   在1998年以前,国内一直没有像样的大气污染监测仪器生产厂家。刘文清带领他的同事,仅用几年时间,就成功研制出了监测城市环境大气污染的仪器,在我国环保系统推广后,其产品价格低于国外进口产品的50%。   2003年初,美国某公司看好中国市场意欲前来,当他们被告知中国已有了&ldquo 安光所&rdquo 的国货后,不仅感到意外和惊讶,还带着敬佩:&ldquo 这是哪里半途突然杀出的野马?&rdquo   &ldquo 环境光学无论军民都十分有用!&rdquo 在安光所上报的一份供领导参阅的文件上,时任中科院院长路甬祥的批示一语中的。   创出整体思路   早年用光学手段监测大气污染,后来用光学手段监测水污染、监测土壤重金属污染等,安光所近年则瞄准了雾霾。   在国家环保部后续组织的PM2.5仪器考核中,河北先河、安徽蓝盾、武汉天虹等一批企业的监测仪器都先后通过了认证考核,安光所的科技贡献率不可磨灭。   2014年4月底,刘建国荣任中科院合肥物质科学院副院长。今年46岁的他,科研生涯一直与我国的环境光学相伴。他认为:安光所一路走来所取得的成绩,与我国环境监测的需求与发展唇齿相依,密切相关。   安光所原党委书记许正荣回顾说:环境光学监测技术新领域的开拓,得益于知识创新工程的实施。我们选对了方向,实实在在地做事才能成事。   安光所搞环境光学终于闯出了一片天地。其创新点究竟&ldquo 创&rdquo 在了哪些方面?刘文清给《中国科学报》记者梳理道:以国家需求中的科学问题为导向,以创新驱动环境光学监测技术发展。这也符合中科院院长白春礼竭力倡导的,科学家要牢记社会责任,工作要出成果、出人才、出思想的要求。   刘建国补充说:空气质量、水环境质量、土壤质量等问题,均与老百姓生活质量生死攸关。从长远的观点看,对环境污染的认识,要更加重视环境质量的监控和环境承载能力的认识。
  • HORIBA用户动态 | 北京航空航天大学成功制备具有自适应润湿性和抗冻性的油水凝胶
    撰文:李一鸣水凝胶具有类似于生物组织的富水性和弹性,被广泛用于多种领域,如:化妆品中的面膜、退热贴,农业用薄膜,建筑中结露防止剂、调湿剂,医疗中的药物载体等等。然而,传统水凝胶在零下温度时将出现结冰及随之而来的弹性消失现象,大地限制了其在生物组织工程中的应用。长久以来,这个问题一直未得到有效解决。近,北京航空航天大学刘明杰教授领导的研究团队从自然界获取灵感,根据高纬度和高海拔地区的生物因细胞多脂而度耐寒的现象,成功制备出一种具有异质网络结构的二元油水凝胶。该凝胶除可在-78-80 ℃的宽温度范围内保持稳定弹性外,还具有优良的自适应(随溶剂性质不同而变化的)润湿性。那么它是如何制备出来的?又有哪些应用前景呢?让我们一起来看下面的介绍。材料制备团队首先以聚n,n-二甲基丙烯酰胺的亲水网络(hpn)为三维支架,然后对分散其中的甲基丙烯酸正丁酯进行原位聚合得到亲油网络(opn),由此实现水凝胶和油凝胶二元相互渗透的异质网络结构。性能介绍01溶胀性能图1. 具有不同网络结构溶胶的溶胀行为及透光性变化油水凝胶中两组分相反的溶剂(水性和油性),受亲和作用影响使其在水和油中均产生溶胀;当凝胶具有合适的opn/hpn质量比时,两组分在空间上的相互约束使其在水和油中的膨胀体积相近。此外,在水和油中,两组分的相对分布状态存在差异,导致水和油中溶胀样品的透光性不同。02自适应润湿性 图2.油水凝胶的自适应表面润湿性和结构重构特征。其中(b-d)为样品表面共聚焦raman成分图从宏观上看,该油水凝胶可产生随溶剂性质改变而变化的表面润湿行为,并与微观异质网络在不同溶剂中的结构重排有关:当凝胶在水下时,网络中的hpns溶胀并导致表面opns向内收缩,使凝胶转变为类水凝胶,从而产生超疏油性;当凝胶在油下时,opns向油中溶胀并导致网络中的hpns向内坍缩,使凝胶转变为类油凝胶,从而产生超疏水性。在实验中,团队使用horiba labram hr evolution型共聚焦拉曼光谱仪,并用labspec-6软件进行数据处理,得到不同环境下凝胶表面的共聚焦raman图像,从而在亚微米级精度表征了上述变化的化学结构改变。另外,该油水凝胶还具有快地(抗冻和耐热性 图3.宽温度范围内的弹性稳定性对于热响应机械性能,异质网络结构的二元油水凝胶表现更为出众。它不会出现传统水凝胶在-10 ℃断裂和油凝胶在80 ℃瘫软的现象,因为它的的互补效应使该油水凝胶从更低的实验温度到80 ℃高温均保持稳定的弹性。以此观之,它具有强的抗冻和耐热能力。应用前景基于以上特性,团队相信,该油水凝胶在智能开关系统、抗冻、防蜡、防着色和异质催化等领域具有广阔的应用前景。据悉,利用其自适应润湿性,该团队在此研究中已对油水凝胶作为智能开关的油水分离系统进行了实验探索。另外,此研究中异质网络的概念,以及二元凝胶性能对水凝胶和油凝胶性能的桥接思路,将启发研究者开发出更多功能独特及优势互补的多元软性材料。此项研究工作得到了国家自然科学基金、国家重大科学研究计划、中国科学院重点部署项目、中央高校基本科研业务费专项资金和国家青年千人计划等的资金支持。相关研究成果已于近期发表在英国自然出版集团旗下的快讯类在线期刊《nature communications》上。本文参考文献: hainan gao, ziguang zhao, yudongcai, jiajia zhou, wendahua, lie chen, li wang, jianqi zhang, dong han, mingjie liu, lei jiang, “adaptive and freeze-tolerant heteronetworkorganohydrogels with enhanced mechanical stability over a wide temperature range”. nature communications 2017, 8, 15911horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 常态条件下实现自适应超高光谱纯度激光
    区别于普通光源,激光具有相干性高、单色性纯和方向性好等优点。因此,自激光问世以来,科学家们一直致力于激光参数极致调控的研究,以推动科学研究和工业应用的发展。其中,光谱纯度是决定激光相干性的关键因素。激光运转过程中自发辐射对其强度和相位的影响、泵浦源的功率抖动、谐振腔的温度变化和振动以及发光增益介质的晶格缺陷等原因都会对激光器的线宽进行展宽,从而降低输出激光的相干性。基于稳频控制的腔外伺服电学反馈技术和基于光子寿命延长的固定外腔光反馈技术是当前实现窄线宽激光输出的常用手段。腔外伺服电学反馈技术的核心是引入高稳定度频率基准参考源,固定外腔光反馈技术实现线宽压缩的程度有限,且不能自动匹配主腔激光波长的变化。因此如何在常态条件下实现激光线宽深度压缩的同时,还能自适应波长的变化具有重要的科学意义和工业应用价值。重庆大学朱涛教授团队从源头出发,系统深入地研究了超窄线宽激光的波长自适应光谱纯化机制,提出通过外部微弱的分布扰动信号来有效抑制激光腔的自发辐射,从而在常态条件下实现激光光谱深度纯化的思想。在此基础上提出了一种主腔结合弱分布反馈外腔的激光新构型,这种构型对光纤激光器、半导体激光器等具有增益类型的激光器均适用,并且弱分布反馈的方式可以通过连续波导实现连续的弱分布反馈,也可采用干涉结构如WGM等实现离散的弱分布反馈,其中弱分布反馈的物理过程可以是瑞利散射,也可以是构建的分布弱反射等。他们在论文中展现了半导体DFB激光器结合弱分布反馈的超窄线宽激光器,在常态条件下实现了十赫兹量级的自适应输出(理论上该线宽可以低至赫兹以下)。分布弱反馈深度压缩激光线宽的核心首先是减缓了激光腔内运转过程中自发辐射的耦合速率,从而大幅减小了激光本底线宽;其次是较弱的分布反馈可对激光腔中光子相位在时空域上进行自适应连续修正,避免了固定外腔反馈形成的激光相位突变和多纵模振荡,保证激光单纵模持续运转的同时可实现激光线宽的极致压缩。这项工作为在常态条件下实现自适应超高光谱纯度激光提供了有力的理论和实验基础。图1 激光光谱纯化原理图图2 光谱纯化及自适应动态演化过程该研究团队提出的思路和激光构型为改进和获得各种增益类型的高相干激光光源打开了新的视野,对实现其它激光参数的极致调控也具有重要的参考意义。目前,研究团队下一步将在高相干的基础上进一步研究激光时频空参数的极致调控,并推动激光精密测量领域向着精度更高、速度更快、范围更广的方向发展。该工作以“Ultra-high spectral purity laser derived from weak external distributed perturbation”为题发表在Opto-Electronic Advances (光电进展)2023年第2期。
  • 中科院动物所等揭示大熊猫对竹子黄酮类化合物的代谢规律及其肠道微生物适应性响应机制
    植物次生代谢产物(Plant secondary metabolites,PSMs)在植食性哺乳动物的觅食生态中起到重要作用。黄酮类化合物是一类重要的PSMs,在植物中广泛存在;具有显著的促进健康的作用,包括抗菌、抗病毒、增强免疫,以及心血管保护等功能。目前,对食源性黄酮类天然复合成分的整体代谢规律及其与动物肠道微生物的双向作用,尚缺乏清晰的认识;关于黄酮类化合物的生态学功能研究相对较少,特别是其对濒危野生动物的生理影响及动物对食物中黄酮类化合物的适应性演化机制鲜有研究。  大熊猫属于食肉目动物,具有食肉目动物的消化生理特征,但其食性特化为专性食竹。竹中具有丰富的黄酮类化合物。因此,大熊猫-竹子为研究食源性黄酮类化合物在植食性动物与植物之间的生态学功能提供了理想模型。  9月22日,中国科学院院士、中科院动物研究所研究员魏辅文团队联合成都大熊猫繁育研究基地,在Microbiome上发表了题为Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal的研究论文。该研究运用代谢组学、宏基因组学和体外培养等方法,在完整的年周期内同步采集野外大熊猫的可获得样本(食物和粪便);采集成都大熊猫繁育研究基地中圈养大熊猫的食物、粪便和血浆,剖析了大熊猫对黄酮类化合物的吸收代谢、利用偏好和生物转化,以及黄酮类化合物对大熊猫肠道微生物组成和功能的影响。主要研究结果如下:  大熊猫对黄酮类化合物的利用规律:利用代谢组学方法,在竹子中鉴定了97个黄酮类单体化合物;与竹笋相比,竹叶中含有更多种类和更高丰度的黄酮类化合物。因此,随着食笋和食叶的季节性转化,黄酮类物质的摄入存在显著的季节性差异。血浆靶向代谢组学检测发现,直接以原型化合物的形式进入血液的化合物仅有12种。食物与粪便代谢组的比较分析发现,大熊猫对食物源黄酮类化合物的利用在亚类和单体水平上均有不同的偏好性,对食物源中的38种单体具有较高的利用率,且粪便中有新的黄酮类单体化合物生成。  大熊猫肠道微生物适应性响应机制:粪便代谢组和宏基因组关联分析显示,PSMs-黄酮类化合物与肠道微生物的季节性具有显著的相关性。体外培养实验证明,黄酮类物质的季节性的差异摄入驱动了大熊猫肠道微生物的季节性变化,如野外大熊猫肠道微生物关键物种的变化(狭义梭菌属1,Clostridium sensu stricto 1),特别是对有益菌的生长促进作用,如益生菌丁酸梭菌(Clostridium butyricum)。食物中黄酮类摄入越高,大熊猫肠道微生物的多样性越低,微生物毒力因子的丰度也更低。宏基因组功能分析揭示了70%黄酮类化合物的吸收转化由肠道微生物参与完成,且肠道微生物也促进大熊猫对黄酮类物质的转化和利用偏好。  以上结果证明,在长期演化过程中,大熊猫季节性食物转化行为是大熊猫对竹中有益元素最大化利用的适应。其中,黄酮类化合物对维持大熊猫肠道微生态的动态平衡发挥重要作用。该研究拓展了关于大熊猫营养生态学的认识:有益的PSMs可以通过调控肠道微生物,正反馈调节宿主生理,从而影响大熊猫的觅食策略。此外,该研究也为圈养大熊猫管理提供了重要参考,即食物源黄酮类化合物是大熊猫重要的天然益生元,对大熊猫的临床健康管理,特别是肠道疾病的治疗具有广阔的应用前景。  该研究首次以非模式野生动物为模型,探索食源性黄酮类化合物的吸收代谢规律及其与肠道微生物的互作模式。从动物生态学的视角,应用多组学方法探讨有益的PSMs对植食性哺乳动物的生理作用。黄酮类化合物与肠道微生物的双向作用为探究动物-肠道微生物共演化提供了新思路。研究得到中科院战略性先导科技专项(B类)、国家自然科学基金的资助。
  • 中科院深圳先进院实现全新二维近红外光学编码技术
    近日,中科院深圳先进技术研究院蔡林涛课题组在新一代近红外量子点二维编码技术研究方面取得突破,实现全新的二维近红外光学编码技术。相关研究发表于《先进材料》杂志。   大数据对光学编码的数据量提出了更高要求,但传统光学编码主要利用颜色进行编码,由于荧光发光的颜色相互之间重叠严重,造成可用的编码量非常少。如果能从其他维度进行编码,将是解决这一难题的关键所在。   该团队借鉴带隙工程理论,通过同时调节量子点组分与结构,首先合成小粒径的CdTe内核材料,然后在其表面原位生长一层CdS,并在包壳的过程中引入Cu2+离子,同时利用晶格应变及掺杂实现量子点波长和寿命的调节,发展了一种具有长寿命的近红外量子点。   研究人员将这种量子点包裹在微珠中,利用其荧光寿命和波长特性,结合近红外荧光成像与荧光寿命成像技术,实现全新的二维近红外光学编码,进一步开拓了量子点编码的维度。   量子点具有很宽的吸收光谱,而发射光谱却很窄,采用一种波长就可以同时激发不同组成或大小的量子点发射出不同的颜色,且不同颜色之间几乎没有重叠。特别是近红外量子点在活体成像分析及示踪方面展现了巨大潜力,而量子点在近红外光学编码方面相比荧光染料具有显著的优势。
  • 中科院新成果!首次实现干细胞-269℃液氦低温保存 相关设备已在百余家医院实现临床应用
    深冻 -16℃、被冰封 4 个月,木蛙仍能复活。在被冷冻之前,木蛙会在组织中积累血浆尿素,一旦开始冻结,尿素可以转化为葡萄糖充当低温保护剂。  南极线虫,作为已知唯一能在胞内大面积冷冻中存活的动物,它产生的冰活性蛋白可作为再结晶的抑制剂,借此在细胞冻结过程中有效地控制冰晶生长行为。  这两种动物的耐寒能力,给中科院低温工程学重点实验室副主任饶伟研究员带来了研究灵感。图 | 饶伟(来源:饶伟)  日前,她和团队在 Trends in Biotechnology 发表了题为 《用于先进冷冻保存的仿生材料和技术》(Bioinspired materials and technology for advanced cryopreservation )的论文[1]。  图 | 相关论文(来源:Trends in Biotechnology)  论文中,她就三维体相生物系统的仿生型低温保存材料与技术的发展做以总结,并展望了低温保存的未来发展趋势。低温保存曾让三万年前的种子“复活”根据 Arrhenius 方程(阿伦尼乌斯公式, 化学反应速率常数随温度变化关系的经验公式),温度越低,生化反应速率越慢。因此,样品保存的温度越低,保存的时间就越长,在 4℃ 时存活时间只有数小时的生物样本,在 -80℃ 下可以保存数月,在 -196℃ 下,随着反应速率近乎于 0,能保存数世纪。目前,低温保存技术是各类生物样本长期保存的唯一可行途径。  俄罗斯科学家曾经利用冰冻在西伯利亚科雷马河永冻层里三万年前的种子,成功培育出一棵植物,打破复苏最古老植物种子的记录。利用现代低温冷冻保存技术,低温技术在新兴的医学前沿领域,如人类精子、卵子及胚胎长期保存已成为现实。可以说,低温冷冻保持创造了一个又一个生命奇迹。低温冷冻保存技术,极大地推动了临床医学的发展。  对具有较高医疗价值的生物样品来说,低温保存有助于满足相关需求。然而,目前很难有效地对大尺度组织和器官进行冷冻保存。随着体积增大,细胞种类增多,结构复杂性增大,对生物系统从微观到宏观的多尺度精准控冰要求越来越高。因此,很有必要借鉴耐寒动物的抗冰策略,从物质与能量传递的角度全面解读和发展仿生型低温冷冻保存技术。(来源:Trends in Biotechnology)低温保存的技术路径有待全面考虑    此前的低温保存方法分为三类:静态冷藏、慢速冷冻(缓慢冷冻/快速解冻)和玻璃化冻存。  静态冷藏是临床器官保存的主要方法,通过将器官保持在 4°C 来降低其代谢速率。然而,保存时间一般限制在 24 小时之内,典型器官如心、肺低温冷耐受时间约为 4 小时,这会使得珍贵的供体器官由于运输、手术的时间超出耐受冷缺血时间而不得不被废弃。  许多细胞和简单组织通常借助缓慢冷冻/快速解冻的手段,通过程序降温保存在−196°C,但这个过程需要根据样本传热传质特征平衡降温与升温过程的冰晶损伤与溶液损伤,否则有可能造成不可逆冷冻损伤。  而玻璃化冻存目前主要用于敏感细胞,譬如卵母细胞和干细胞。由于固有的低传热速率以及高浓度低温保护剂的毒性,该方法对于大体积生物样品见效甚微。由于不受控制的新陈代谢或冰晶损伤,目前仍不能按需获得高质量的器官。  当生物样品被低温保存时,样品的生理、热学及力学性能是相互关联的。因此,有必要全面考虑低温保存的技术路径。(来源:Trends in Biotechnology)首次利用液氦,实现干细胞-269°C 低温保存到目前为止,即使是最先进的超低温保存方案,也不能在有冰形成的情况下保证器官完整性。  大自然中的耐寒动物,给饶伟团队提供了灵感。这类动物通过调节生物系统来对抗低温胁迫,对于从生化或生物传热学角度解决低温保存问题,这是很好的参考。  该研究展示了耐寒动物的生存策略:冬眠动物通过减缓代谢速率以节约能量并减轻缺血损伤 冷冻避免型动物采用过冷来防止或减轻冰晶带来的损伤,而冷冻耐受动物则可以忍受部分体液结冰,通过在较高温度下触发胞外冰的形成来避免伤害更大的胞内冰形成,从而将冷冻损伤降至最低。  此外,该研究还讨论了受天然抗冻机制启发的材料和技术。为了实现与冰共存,具备高生物相容性的低温控冰保护剂必不可少。天然的低温保护剂,如海藻糖、脯氨酸以及它们的衍生物,在保存生物样本上具有巨大潜力。  进一步地,该工作首次阐述了耐寒动物的抗寒机制与先进的低温保护技术之间的关系。通过模仿自然界中耐冻或避冻生物的耐寒机制,有望建立新的低温保存方法。(来源:Trends in Biotechnology)  据悉,对于冰晶生长的精准调控,是减少细胞冷冻保存损伤的基础。简单来说,要想低温保存就得精准控制细胞内外结冰的时空分布。饶伟研究团队提出了普适性的分子靶向控冰新策略,目前可以实现在单细胞特定位点冰晶成核与冰晶生长的精准调控,从而实现细胞内外的选择性控冰[2]。  进一步的,在拓展研究中,饶伟首次利用液氦(−269 °C)进行了包括人胚胎干细胞在内的多种干细胞的低温保存,突破了现有干细胞低温保存温度极限(-196 °C)并绘制了液氦保存的热力学过程图。  在自然界中,一些大体积的动物不仅依赖于来自外部环境的热传导,并且通过化学能产生热量以提高新陈代谢率,这一过程有助于均匀、快速地重新升温,以避免再结晶。  对木蛙解冻的 1 小时磁共振成像显示,木蛙的所有区域几乎同时解冻。快速、均匀的解冻可保证较低的热机械应力,减少缺血-再灌注损伤。  受这种生物调控的解冻过程的启发,纳米颗粒低温保护剂被开发出来,作为外部物理场驱动的自加热种子,可以实现快速和均匀的复温加热,而不是完全依赖于从表面到组织深处的热传导。  这种纳米加热方法不仅能显著提高升温速率,减少所需的低温保护剂数量,还可以消除温度的不均匀性,以减少温度梯度产生的热应力所导致的开裂损伤。(来源:Trends in Biotechnology)  研究中,目前给冷冻实验提供复温能量的方法主要有两种:射频和激光。  射频纳米加热,指的是利用磁性纳米颗粒,将射频能量转化为热量,从而去加热生物样本。这种基于超顺磁、或铁磁机制的感应加热方法,可通过降低机械应力和再结晶来扩大低温冷冻体积。  而激光再加热则利用具有高吸收系数的纳米粒子将近红外光的能量转化为热。  在一项实验中,饶伟团队合成了具有高光热转换效率的柔性液态金属纳米颗粒,并使用激光照射加热玻璃化的人骨髓间充质干细胞和小鼠尾巴。  其中,干细胞的存活率高达 78%,而常规方法只有 25%,并且重新加热的小鼠尾巴的血管中包含一个完整的组织结构。  可以说,激光纳米加热可迅速加热相对较小体积的生物样本,比如胚胎和细胞悬浮液。而射频纳米加热有望实现大体积生物系统的复温,例如肾器官。每年拯救几百万性命,价值之高不亚于治愈癌症  细胞、组织和器官等生物样本,在医疗系统中具备巨大价值,可用于药物发现、不孕不育症、创伤、再生医学、移植等领域。  器官等生物样本的临床应用,还可创造巨大的公共卫生效益,并在全球范围内每年拯救几百万性命,这与治愈癌症不相上下。最近,美国国家科学基金会投资 2600 万美元,以用于开发细胞、组织、器官及活体等生物系统的先进低温保护技术。  仿生自适应低温保存技术,有望为微小生命活体的生物样本库保存提供标准化冷冻方案和标准,为保护生物多样性提供技术支撑。饶伟团队通过喂饲仿生保护剂及低温自适应驯化,成功将冷冻敏感型日本弓背蚁转化为冷冻耐受型,驯饲后的蚂蚁在冷冻条件下的存活率相比较对照组增加了两倍多,实现了目前最大尺度的非耐寒活体低温自适应保存与复活[3]。  饶伟团队发现的系列低温保护新材料以及新技术,可为器官长期低温保存提供理论和技术支持,如此或可改变目前 70% 以上心/肺器官,因为输运、手术时长超过器官冷缺血耐受时间而导致的供体器官废弃现象。(来源:Trends in Biotechnology)  饶伟表示,活体大脑中的记忆等功能能否通过解冻进一步复苏,仍需进行系统的研究。目前该团队正在做蚂蚁在经历冻存和复活后记忆能否保存的工作,初步结果非常乐观。  她和团队博士生窦蒙家在冻存前,对蚂蚁的嗅觉进行了特殊的奖励训练,使得训练后的蚂蚁对特定的气味保持倾向性。之后,对蚂蚁进行低温冻存和常温下复活之后,其发现复活后的蚂蚁仍然保持着对特定气味的记忆能力。  对于此次论文,她总结称,虽然分别讨论了不同的生物样本低温保存方法,但它们在实际情况下面临着同样的挑战,如多尺度精准控制冰核形成和冰晶生长,以及避免缺血-再灌注损伤的需要。“科研于我,犹如心底一抹深红”  饶伟说,做低温保存研究需要有一颗“强大的心脏”,尤其是挑战大尺度异质异构生物体保存时,因为绝大部分实验都是失败的,无法实现具备完整功能的生物体成功复活。而活体的低温保存,更是充满了不确定性,其中做蚂蚁冻存和复活的实验过程是很难忘的。  蚂蚁本身是非耐寒的生命体,受季节影响,蚂蚁的生活习性和行为模式变化也比较明显。由于北京的四季温差较大,饶伟团队在进行蚂蚁活体低温保存实验时,经常发现冻存之后的存活率随季节波动较大。  尤其是冬季,订购的蚂蚁往往在运输的途中由于不耐受低温就发生了大概率死亡。为了确保实验数据的一致性,蚂蚁的驯饲和低温适应实验只能安排在特定的季节来进行。所以,获取一组成功的实验往往周期特别长。  研究虽苦,但却是饶伟心之所爱。  饶伟读本硕时,学习暖通空调专业,更注重工程设计能力,很多同学毕业后去设计院做暖通设计师。她更喜欢每天都挑战不一样的事物,读博之前非常想换方向。当时得知中科院理化所刘静教授从事生物传热学方向,能把传热传质的基础知识与探索生命奥秘结合,感觉是一个特别奇妙的领域。  她表示:“读博时,我探索了利用碱基液态金属的热化学治疗机理。在美国的两站博后期间,又拓展到材料学和分子生物学等方向。科研的确是一场不设限的奇妙‘旅行’。而我目前所在团队,又能把实验室前沿技术快速转化并实现临床应用。此前,我们曾利用‘冷冻保存’的反作用‘冷冻破坏’去治疗肿瘤,开发的低温治疗装备已在全国100多家医院实现临床应用。一路从博士、到博士后、再到老师,在不同航道上划着生命行舟逆水而上。路上平平仄仄动荡往复,却也灿烂惊心摇曳生姿。科研于我,犹如心底一抹深红,意味着最重的分量。”
  • 中科院纳米等高端科研设备面向地方企业开放
    近日,来自北京怀柔的地方性企业&mdash &mdash 北京森根比亚生物技术有限公司在中科院北京综合研究中心的协助下,借助中科院北京物质科学与纳米技术大型仪器区域中心的仪器设备,顺利完成了生物蛋白质样品检测项目。该公司也成为了中科院北京物质科学与纳米技术大型仪器区域中心仪器设备对外开放后,首家获得设备共享服务的企业。   据了解,为了服务地方经济,提升企业技术水平,早在几年前,中科院就面向企业开放了一系列科研设备,并在北京成立了中科院京区大型仪器区域中心,其设备的对外开放服务由中科院北京综合研究中心统筹安排。   今年4月,该中心所属的北京纳米科学大型仪器区域中心与北京物质科学大型仪器区域中心合并,成立了新的中科院北京物质科学与纳米技术大型仪器区域中心,仪器设备主要来源于中科院所属的物理所、化学所、理化所、高能物理所、国家纳米中心等10家单位。   今年6月举行的中科院与怀柔区科技服务双向对接会上,该区域中心负责人宣布,中心所属的扫描电子显微镜、透射电子显微镜、细胞培养分析仪、光学显微镜、纳米粒度和ZETA电位分析仪、液相色谱仪等多种仪器设备面向全国各地方企业开放。   据介绍,该区域中心将为企业重点提供纳米表征与检测、纳米材料与制备、纳米生物医药等3个技术支撑平台的顶尖研究设备。企业使用这些设备时,中心将按设备使用情况收取一定的成本性费用。由于提供这些设备的科研单位大多位于北京雁栖经济开发区内,因此园区企业&ldquo 近水楼台&rdquo ,成为了设备开放后重点服务的对象。   中科院北京综合研究中心相关负责人表示,一些企业在产品研发过程中对产品性能、达标水平进行测试等方面有很多共性需求,在研发与产业化过程中要进行大量的科学试验,而一些关键设备价格昂贵,企业自身无力购置,中科院相关科研设备的开放,正是适应了企业的这一需求,既有利于推动企业的创新,也有利于提高设备的利用效率。&ldquo 在北京森根比亚生物技术有限公司之后,还将会有更多地方企业使用我们的设备,我们也愿意为推动中科院大型仪器区域中心向地方企业开放做出更多的努力。&rdquo 他说。   据了解,目前,中科院北京综合研究中心正积极推动中科院北京物质科学与纳米技术大型仪器区域中心在北京雁栖经济开发区网站开设仪器设备共享信息平台,企业可通过平台了解设备情况,预约设备的使用。此外,中科院北京综合研究中心还将向中科院和北京市争取财政支持,为企业使用设备提供一定的资金补贴。
  • 刘文清院士谈激光雷达在环境监测中的应用——访中科院安徽光学精密机械研究所所长刘文清院士
    激光雷达的研究起源于上世纪60年代末,起初主要用于军用领域,自1995年正式实现商业化之后,在测绘、资源勘探等领域发挥了越来越多的作用,在最近盛行的“黑科技”无人驾驶技术的开发上,激光雷达更是核心技术之一。随着技术的发展和完善,激光雷达的应用范围也越来越广,其中环境监测领域就是很重要的一个方面,可以用来测量颗粒物、臭氧、温度和湿度的变化等等。  中科院安徽光学精密机械研究所于1991年建立了当时我国最大L625激光雷达系统,用于探测平流层气溶胶分布,该激光雷达系统被美国国家宇航局选为全球10个激光雷达站之一。后来又陆续开发出了探测平流层臭氧的紫外差分吸收激光雷达、可移动式双波长米散射L300激光雷达、车载式拉曼-米散射激光雷达等等,受到了广泛的关注。  近日,仪器信息网编辑专门针对激光雷达在环境监测领域的应用采访了中科院安徽光学精密机械研究所所长刘文清院士。刘院士为我们详细介绍了激光雷达在我国环境监测领域的应用、技术发展以及未来的技术需求。中科院安徽光学精密机械研究所所长刘文清院士  Instrument: 我们知道刘院士在环境光学领域有很多研究成果,今天我们把目光聚焦在空气质量监测上,空气质量监测仪器和技术种类众多,如常规六参数、VOCs监测仪、激光雷达、卫星遥感等等。首先请刘院士谈一谈目前我国空气质量监测仪器的整体情况?国产环境监测仪器与同类进口产品相比有何不同?  刘文清:我国大气环境监测技术现阶段主要还是以点式监测方式为主,如AQI六参数、VOCs等。这些监测设备组成了我国现阶段的地面空气质量监测网,为我国空气质量监测做出了巨大的贡献,逐步形成了具有中国特色的环境监测技术规范、环境监测分析方法、环境质量标准体系。目前采用的标准方法,主要以人体健康为关注重点,测量的是人们日常生活和工作活动范围内的空气质量,可以较为准确的监测空气中气溶胶和污染气体的含量,但它的局限性主要是获得局部低层、较小地域范围内的污染物浓度变化信息,缺乏污染物区域性变化、时空演变等指标的数据演变信息。近年来随着分析仪器的快速发展,结合卫星遥感,探空气球和高塔能够测量一些气溶胶、气体成分的垂直分布特征,但是卫星遥感直接获取的是整层大气污染,反演近地面污染有一定误差,而探空气球及飞机受时间空间影响,此类探空设备仍然存在着不足之处。  对于区域性复合污染监测,需要快速有效的技术手段进行区域范围内时间和空间上的监测。与以上传统点式监测方法相比,激光雷达等光学遥感监测技术的发展改变了传统的由点到线再到面的演绎方法,为大气环境研究提供了一个新的技术手段,克服了传统大气环境研究中的诸多局限性,实现了大空间、长时间、多尺度、多参数的遥感遥测。此类技术已达到了国际先进水平,尤其在业务化应用方面,我们已根据中国环境监测现阶段的需求进行了深入的研发,这是国外进口设备所不能做到的。目前,国产环境监测仪器已基本打破了进口产品的国际垄断地位,全面实现了中国造。  Instrument:颗粒物激光雷达技术被越来越多的用户所接受,请刘院士重点谈一谈颗粒物激光雷达技术。颗粒物激光雷达的核心技术要点是什么?在我国大气环境领域的应用情况?此技术在空气质量监测系统中的独特作用?  刘文清:激光雷达主要由激光器、发射和接受光学系统、探测器、高速数据采集卡和数据分析软件等部件组成,其核心技术在于稳定可靠的激光器和性能优良的反演算法。激光器单脉冲能量大小直接决定了激光雷达的探测高度。保证激光器单脉冲能量,能够有效保证系统信噪比,实现理想高度的探测。国内外不同厂家的激光雷达反演算法存在一定的差异性,应用最为广泛的是Fernald方法,也是我们安光所选择的反演算法。应用该算法,参考点的选择尤为重要,一般须假定一个近乎不含大气气溶胶的清洁大气层所在高度来视作参考点,为保证反演结果的有效性,必须通过明显气溶胶层或者云层的剔除方法来确认合适的参考高度。  随着“说清环境质量、改善环境质量”重大管理需求的发展和监测事权上收等管理机制的改革,地方政府动态精准管理能力支撑成为越来越迫切的要求,尤其是快速说清空气质量监测点数据变化原因、重污染应对、事故应急监测与快速评估等。针对区域性大气污染问题,及监测管理的迫切需求,作为一种成熟的主动遥感手段,颗粒物激光雷达在大气环境监测方面具有重要的意义。其在大气环境监测中的应用可分为以下几点:1)垂直监测:监测边界层变化特征,了解污染来源和变化趋势 2)水平扫描监测:可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献 3)车载移动监测:对污染源进行快速溯源,应对污染突发事件,并对污染气团进行跟踪 4)雷达组网监测:说清区域间污染跨界传输,为短时间空气质量预警预报提供及时、有效、准确的数据支撑。  Instrument:安徽光机所可以说是我国激光大气探测研究领域的先行者,在激光雷达技术的研发上,刘院士主要做过哪些工作?您认为未来还有哪些技术需要突破?  刘文清:激光雷达按照监测方法和监测种类可分为米散射激光雷达、大气成分差分吸收激光雷达、拉曼激光雷达等。我所在颗粒物激光雷达和大气差分吸收激光雷达方面已取得了阶段性进展。在北京奥运会、上海世博会、广州亚运会、北京APEC会议、北京九三阅兵式、南京青奥会、福州青运会、郑州上合首脑会议、乌镇物联网大会的联合环境空气保障工作中交上了令人满意的答卷,相应成果也证实了我们激光雷达在稳定性、有效性方面取得了一定的成绩。但在某些方面还是存在一定的不足,需要我们进一步完善,如:1)拉曼激光雷达方面。由于其监测原理的限制,拉曼激光雷达白天会受到天空背景噪声的严重影响,如何有效提高其信噪比,将拉曼激光雷达成功的应用于环境监测日常业务中,为环境污染的扩散、大气化学过程的演变提供有效的气象数据。2)颗粒物激光雷达方面。雨水消光系数大,颗粒物雷达在降雨天气条件下应用效果不佳,如何去除降雨对颗粒物监测的影响,也是接下来的研究重点。3)细粒子质量浓度空间分布。我们已在无锡中科光电成功产业化了双波长三通道颗粒物激光雷达,应用532nm波长我们已可以反演PM10质量浓度的时空分布。对于细粒子质量浓度的时空分布也是迫在眉急的管理需求,目前我们已加大投入,研究开发应用355nm反演PM2.5质量浓度的时空分布的相应工作。4)大气差分吸收激光雷达方面。应用大气差分吸收原理监测臭氧的时空分布,已被成功运用,为证实其监测准确性,我们也参与了由上海环境监测中心举办的探空联盟比对实验。实验中监测臭氧的差分吸收激光雷达与探空气球、无人飞机等监测技术进行了廓线比对,比对结果令人非常满意。对于差分吸收激光雷达只能监测臭氧不是我们的目的,我们希望应用一种技术可以进行多参数测量,如同时监测二氧化硫、二氧化氮等,此类设想我们已取得了阶段性的成果。  Instrument: 安徽光机所的产业化公司——中科光电最近推出了高能扫描系列的大气颗粒物监测激光雷达,此台仪器的主要特点是什么?其研发目的是什么?其市场竞争力主要体现在哪?  刘文清:高能扫描颗粒物激光雷达是基于快速扫描振镜的激光雷达技术,该技术使激光雷达在保留原有垂直探测的功能上,还可以实现快速多角度扫描功能。如此针对固定安装的激光雷达,高能扫描激光雷达不仅可以监控5KM半径范围内的污染源(本地源以及外来源)变化过程,还可以同时获取垂直的颗粒物时空演变数据、边界层高度变化数据。使一台雷达可以同时获取区域内垂直与水平立体空间数据,为说清区域污染变化提供了更有力的数据支撑。同时,在产品设计中,我们也考虑了车载走航监测获取线源数据的技术要求,在固定加走航监测结合的模式下,可以全面获取“点面域、地空天”一体化数据。  我所张天舒研究员率领的激光雷达团队联合中科光电,组织技术骨干进行技术攻坚,经过近两年的不懈努力,攻克了快速扫描振镜技术、高重复频率激光器技术、多姿态雷达扫描数据分析技术、车载雷达减震避震技术和快速走航观测技术等一系列关键问题。其中,快速扫描振镜技术其核心竞争力在于,可以使扫描及成图时间分辨率达到3分钟,确保了监测数据的时效性(目前国内外采用3D支架扫描方式,完成扫描及成图时间需要2小时,没有时效性保证,无法动态说清变化过程)。  Instrument:在环保领域,标准被认为是一类仪器推广的“利器”,对于激光雷达,有没有正在制定的标准?或者说您认为需要哪些方面来规范此类仪器的生产和应用?  刘文清:激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。实际上,为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,我们联合合作企业已经编制了相关的企业技术规范标准,希望能够逐步发展为行业和国家标准。  激光雷达标准规范的建立目的是为了保证雷达数据的有效性和一致性,科学的系统测试和校验方法是其重要的技术支撑。完整的系统测试即包括仪器组成部分的性能测试,如激光器的功率、脉冲能量、发散角,光学发射和接受系统与激光准直系统的匹配性,数据采集系统本身的采集速率、电子学噪声,以及雷达数据处理和分析软件性能 也包括功能指标,包括探测成分、探测距离、距离分辨率以及信噪比等。对于激光雷达这样一个复杂的光电探测系统的校验也可以与其他观测设备进行一致性的对比分析。使用激光雷达与能见度仪、太阳光度计等观测仪器进行数据一致性对比分析,采用探空气球数据对激光雷达观测数据产品的准确性进行校验等。  后记:随着我国大气环境治理工作的深入,大气环境质量监测的项目、时间要求和空间要求都在提升,随之而来的是监测手段的多样化。除激光雷达之外,卫星遥感、无人机、探空气球等技术不断被引入大气环境质量监测领域,不同的手段为我们多维度了解大气污染过程提供了依据,也为我们更精准的治理大气环境提供了技术支持。(编辑:李学雷)
  • 应用案例 |吸收光谱优化基于深度学习网络的自适应Savitzky Golay滤波算法
    Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.近日,来自安徽大学、山东师范大学联合研究团队发表了一篇题为Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究论文。研究背景 Research BackgroundNitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.氮氧化物(NO2)是大气中的主要污染物,源自自然光照、排放和工业排放。长时间暴露于NO2与呼吸问题的风险增加有关。NO2在大气中产生的二次污染物可能导致光化学烟雾和酸雨。激光光谱学,如吸收光谱、荧光光谱和拉曼光谱,在物理学、化学、生物学和材料科学中发挥着日益重要的作用。它为追踪具有极高灵敏度、选择性和快速响应的气体分析提供了强大的平台。激光吸收光谱已被用于NO2的定量分析。然而,测得的气体吸收光谱数据通常受到各种噪声的污染,如随机和相干噪声,这可能扭曲有效吸收光谱并影响检测灵敏度。The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple multivariate thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.最近,Savitzky-Golay(S-G)滤波算法因其参数较少、操作速度较快且保留了光谱的高度和形状而受到关注。此外,可以在一个简单的步骤中计算导数和平滑的光谱。Rivolo和Nagel开发了一种自适应S-G平滑算法,逐点选择最佳滤波参数。通过简单的多变量阈值方法,S-G滤波器可以去除连续葡萄糖监测(CGM)信号中的所有类型噪声,并进一步用于检测低血糖/高血糖事件。S-G平滑滤波器广泛用于平滑傅立叶变换红外光谱的光谱,可消除随机地震噪声、遥感图像融合和脉动波的处理。The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance. S–G 平滑滤波器的性能取决于多项式阶数和窗口大小的适当折中。然而,在实际应用中,噪声源和吸收光谱是未知的。在固定的窗口大小和多项式阶数下获得最佳的滤波效果是困难的。为解决这个问题,我们提出了一种优化的自适应S-G算法,将深度学习(DL)网络与传统的S-G滤波结合起来,以提高测量系统的性能。实验设置Experimental setupFig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube&trade , HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.图1展示了实验设置,包括光源、带有气体压力控制器的多通道吸收池、一系列镜子、探测器和计算机。Fig. 1. Experimental device diagram.宁波海尔欣光电科技有限公司为此项目提供了量子级联激光器(型号:QC-Qube&trade 全功能迷你量子级联激光发射头)。激光器由温度控制器控制,最大峰值输出功率为30 mW,由电流控制器控制,工作在~6.2 mm,通过钙氟化物(CaF2)镜子的辐射与追踪激光(可见红光,波长632.8 nm)共线,使用氧化锌硒(ZnSe)分束器。光束进入具有2 m有效光程的多通道池,通过流量控制器和气体池入口和出口的隔膜泵控制池中的压力。典型频率为100 Hz的三角波用作扫描信号。在296 K的温度下,波数从1630.1调至1630.42 cm-1。使用热电冷却的汞镉镓探测器进行信号检测,该探测器使用75 mm焦距的平凸透镜。DAQ卡探测器放置在探测器旁边,将数据传输到计算机,数据由LabVIEW程序进行实时分析。QC-Qube&trade , HealthyPhoton Co., Ltd.Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.结论ConclusionAn improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.在这项研究中,我们开发了一种改进的Savitzky-Golay(S-G)滤波算法,用于去噪氮氧化物(NO2)的吸收光谱。我们引入了深度学习(DL)网络到传统的S-G滤波算法中,以实时调整窗口大小和多项式阶数。DL网络的自适应和跟踪反馈能够有效解决数字信号处理中选择输入滤波器参数的盲目性。我们将优化后的自适应S-G滤波算法与多信号平均滤波(MAF)算法进行比较,以展示其性能。优化后的S-G滤波算法被用于检测氮氧化物在基于中量子级联激光器(QCL)的气体传感器系统中的应用。实验结果表明,该算法获得了5倍的灵敏度增强,表明新开发的算法可以生成高质量的气体吸收光谱,适用于大气环境监测和呼吸气检测等应用。reference参考来源:Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187
  • 中科院“大气细颗粒物在线监测”技术荣获国家科技进步奖
    雾霾频频来袭,治理迫不及待。作为国家科技进步二等奖获得者,中科院合肥物质科学研究院 “大气细颗粒物在线监测关键技术及产业化”项目,为科学认知雾霾奠定重要技术基础。  在刚刚结束的省“两会”上,“绿色发展”“健康安徽”成为代表、委员关注的热点。随着雾霾天气日益增多,如何科学治霾成为亟待解决的重要难题。日前,中科院合肥物质科学研究院安徽光学精密机械研究所主持完成的“大气细颗粒物在线监测关键技术及产业化”项目荣获国家科技进步二等奖,为我国环境监测技术现代化和监测仪器国产化作出突出贡献。  雾霾治理亟需技术支撑“十多年前,很多人不相信中国会出现严重的雾霾天气,但我们早已预测到这种可能性的存在,于是先期开展大气细颗粒物在线监测技术研究和科技攻关。”中科院合肥物质科学研究院研究员、“大气细颗粒物在线监测关键技术及产业化”项目主要完成人刘建国说,这种前瞻性研究为我国开展环境质量准确监测、发展自主产权的环境监测仪器打下良好的基础。  近年来,随着工业化、城镇化快速推进,我国大气污染形势严峻,高浓度大气细颗粒物导致雾霾频发、大气能见度下降,严重影响大多数城市空气质量和人体健康。为准确掌握大气细颗粒物污染现状、正确认识大气细颗粒物来源,快速准确地测量大气细颗粒物质量浓度、成分、粒径谱分布和大气能见度,成为我国大气环境科学研究和业务监测的迫切之需。  然而,由于雾霾本身的复杂性,我国以城市为中心的空气质量自动监测站所提供的监测数据,难以满足雾霾追因与控制需求。 “治理雾霾,监测数据非常重要。”中科院合肥物质科学研究院研究员、项目主要完成人桂华侨介绍,发展先进的大气细颗粒物监测设备与观测平台,准确全面掌握大气雾霾污染特征,认识其发展和演变规律,是科学制定雾霾防治措施的基础。  “大气细颗粒物在线监测关键技术及产业化”项目,由刘建国研究员牵头,中科院安徽光学精密机械研究所科技攻关、安徽蓝盾光电子股份有限公司产业化开发而形成的科研成果。 “这一‘十年磨一剑’的成果,立足环境监测和科学研究之需,也符合‘健康中国’的时代需求。 ”刘建国表示,源源不断的监测数据可以进一步了解污染源清单,让未来大气环境治理措施更加科学。  “火眼金睛”瞄准细颗粒物  大气细颗粒物PM2.5监测仪、粒径谱仪、有机碳/元素碳分析仪、大气能见度仪...走进中科院安徽光机所实验室,一系列已走向产业化的监测设备,让记者眼睛一亮。 “别小看这些设备,有了它们就如同有了‘火眼金睛’,能够快速准确查出大气细颗粒物质量浓度、成分等。 ”桂华侨透露,早在6年前,我省就在全国率先建成“安徽省高速公路恶劣气象条件监测预警系统”,利用他们自主研发的大气能见度仪,可实时监测高速公路大气能见度变化情况。由于预警及时,该系统自试运行以来,全省高速公路死亡3人以上交通事故起数和死亡人数同比下降40%以上。  “关键技术的突破,使得我国大气细颗粒物在线监测技术达到国际先进水平。 ”刘建国介绍,通过动态加热系统、采样管升降装置/走纸装置、碳临界温度的精确定位、差分电迁移分级和快速分析、稳定的场致电离电荷源技术、大气能见度标定和野外校准、光学透镜测污装置等一系列关键技术的突破,他们创新设计了一整套大气细颗粒物高灵敏探测技术工程化解决方案,解决了大气细颗粒物多参数准确、快速、在线监测的技术难题,一举满足了我国环境、气象、交通、科研等多部门对大气细颗粒物在线监测的技术需求。  “稳定性强、灵敏度高,可实时在线、无人值守,这是我们设备最显著的优势。 ”桂华侨表示,围绕该系统关键技术的研发和仪器设备的研制,他们已累计获得8项发明专利授权、5项软件著作权登记以及8项实用新型专利授权。其中,大气细颗粒物PM2.5监测仪,通过环保部环境监测仪器质检中心技术认证 大气细颗粒物切割器,通过中国疾控中心检测 大气能见度仪,以零故障和96%的数据准确率通过中国气象局定型认证 大气颗粒物有机碳/元素碳分析仪,通过省科技厅科技成果鉴定,关键技术指标达到国际同类产品的先进水平。  监测设备告别进口时代“由于我们技术的投入使用,使得国内至少三分之二以上的大气细颗粒物在线监测设备实现国产化。 ”刘建国骄傲地说,过去,我国大气细颗粒物在线监测核心设备主要从美国、日本、德国等国家进口,国产设备在品种、数量、性能、质量上远远满足不了实际工作需要,安徽光机所技术成果产业化后,打破了长期以来高档环境监测设备依赖进口的局面。  我国地域辽阔、气候差异大,对环境监测仪器的适应性要求也比较高。 “进口设备高价买回来后,有时会‘水土不服’,服务也跟不上。 ”桂华侨告诉记者,他们与企业合作生产的国产设备不仅价格低、服务好,性能也与进口设备相当,可以24小时全天候稳定运行。 2008年以来,项目组利用该监测系统先后在珠三角、长三角和北京等地区开展综合应用示范,验证了监测数据的准确性,并参与2008年北京奥运会、2010年上海世博会、广州亚运会以及2014年北京亚太经合组织会议空气质量保障任务,用科学数据评估了国家重大活动空气质量保障措施的效果。  目前,中科院安徽光机所研制的大气细颗粒物在线监测设备,已批量应用于环保部城市空气质量自动监测网、重点区域和城市大气灰霾监测超级站、中国气象局气象观测网、气溶胶质量浓度监测网络,以及安徽、贵州等省“高速公路恶劣气象条件监测网”。近3年,全国20多个省市已安装大气细颗粒物监测设备2100余套,实现新增产值2.5亿元,新增利税9533万元。  “下一步,我们将更加关注与百姓健康有关的研究,比如纳米量级的大气超细颗粒物监测。 ”刘建国透露,超细颗粒物对于人体健康、环境、气候变化的影响可能更大,其在线监测难度也更大,需要更多的技术研发,这是一个重大挑战。另外,大气环境领域臭氧、挥发性有机污染物监测,也需要更多高灵敏度的仪器设备。 “科学研究任重而道远,需要持之以恒的科技攻关。 ”他坦言,国产仪器推广应用的时候,也面临一些困境,很多人对国产仪器抱有怀疑和不信任的心态,国家还应加大对国产仪器的政策支持,为推广应用提供便利。
  • 自主研发高真空光学冷台 高效助力原位结构生物学研究——访“朱良漪奖”获得者中科院生物物理研究所李硕果
    2022年1月,中国仪器仪表学会分析仪器分会十届三次理事会及“朱良漪分析仪器创新奖”颁奖在京举行。经过10位专家的会评,2021年“朱良漪分析仪器创新奖”最终评选出“创新成果奖”3项,“青年创新奖”4名。仪器信息网同中国仪器仪表学会分析仪器分会对“朱良漪创新奖”获奖人员进行了联合采访,本期我们的采访对象是“朱良漪青年创新奖”获得者中国科学院生物物理研究所李硕果。李硕果 高级工程师 中科院生物物理研究所主要成果:一种光镜电镜关联成像用光学真空冷台。其研制的成果在科技创新方面,为原位结构生物学研究提供了一种新型、高效的技术手段;在成果转化方面,合作研发产品已落户清华大学生命科学学院。仪器信息网:请您介绍一下您自己,以及您所在的单位?李硕果:感谢仪器信息网的采访,也再次感谢分析仪器学会对我的认可和鼓励。我2012年毕业于四川农业大学生命理学院生物物理学专业,同年加入中国科学院生物物理研究所蛋白质科学研究平台生物成像中心,是一名技术支撑工程师。我的研究方向是生物显微成像新技术新方法的研究,涉及到的主要成像技术包括:超分辨荧光显微成像技术、冷冻聚焦离子束技术和冷冻透射电镜技术以及配套的样品制备技术等。仪器信息网:请介绍您进入仪器技术领域的机缘?您在仪器的研制和产业化方面开展了哪些工作,取得了怎样的创新成果?李硕果:要说“进入仪器技术领域的机缘”,我觉得可能要得益于我的物理学背景。我本科专业是物理学,后来决定考研和从事科研工作。主要有两方面的原因:一方面是因为物理学是一门基础学科,在学习过程中我意识到,仅以一个受教育者的身份来学习,不足以深入了解一门学科,需要进一步进修和钻研;另一方面是现实原因,刚毕业的时候找工作确实很迷茫,没想好人生的发展方向,选择考研是希望能给自己进入社会前安排一个缓冲期,同时也可以慎重思考一下自己未来的职业规划。我在读研的时候曾经有一段时间陷入过深深的迷茫与困惑,看待问题不够全面,经常判断错误,导致很多事情都进展不顺利,挫败感带来了很深的焦虑和自我怀疑,也是在那个时候产生了很多次放弃的念头。机缘巧合,我在这种很不成熟的情绪状态下竟然幸运地加入了生物物理所蛋白质科学研究平台。那个时候我就对自己说,也许是天意,那就再给自己一次机会吧。更幸运的是,我在生物物理所遇到了非常多优秀的前辈以及志同道合的朋友。在生物物理所蛋白质科学研究平台韩玉刚主任,生物成像中心孙飞研究员、李栋研究员和季刚教授级高工以及各位同事们的指导、支持和帮助下,我先后以项目负责人的身份承担了中国科学院仪器设备功能开发项目和国家自然基金委青年基金项目,还参与了多项国家重点研发计划、中科院先导专项等,我们项目组团队设计完成了一款基于高真空光学冷台的冷冻光电关联成像系统HOPE,以及一款基于冷冻结构光照明的光电关联成像系统SIM-HOPE,申请发明专利5项,其中已授权2项(含1项美国发明专利);申请实用新型专利3项,其中已授权3项,发表研究成果性论文5篇。基于高真空冷台的冷冻光电关联成像系统HOPE仪器信息网:您所研制的仪器成果解决了哪些实际问题,仪器的主要用户有哪些,成果的市场前景如何?李硕果:由我们自主研发的高真空光学冷台HOPE,提出了一种全新的真空环境冷冻光学成像以及光电关联成像技术,解决了冷冻光电关联成像技术流程繁琐、操作复杂、实验效率低下的难题,研制成果——高真空低温光电关联荧光成像仪入选《2021年中国科学院自主研制科学仪器》最新产品名录,获中国国家发明专利授权一项,美国国家发明专利授权一项,发表SCI方法学论文一篇,技术应用论文2篇,还先后受邀在2018冷冻电镜国际研讨会(获最佳墙报奖)、2019年冷泉港亚洲专题研讨会等国际学术会议上就该成果的应用进展做大会报告。2019年2月,就该研究成果达成技术成果转化协议,2020年6月,第一台合作研发产品落户清华大学并完成技术验收。随后,我们在该系统基础上完成升级的冷冻结构光照明光电关联成像系统SIM-HOPE也已经研制完成,并入选《2022年中国科学院自主研制科学仪器》最新产品名录。该研究成果已经提交了发明专利申请,并于2022年4月达成技术成功转化协议,后续的市场推广也在稳步推进中。结构光照明成像技术的引入将有助于实现通过三维高分辨率荧光定位指导聚焦离子束对目标区域的精准加工,以及后续开展对目标区域生物大分子的原位高分辨率电子断层数据收集和高分辨数据重构,是对原位结构生物学研究的一大助力。仪器信息网:作为一名同时熟悉技术开发和应用的人员,请您谈谈您对当前我国生物显微成像仪器研制和应用现状的看法,您认为在实际应用中,现有技术最需要解决的问题是什么?李硕果:作为生物显微成像领域的一名科研工作者,我觉得我们处在一个机遇与挑战并存的时代。在技术基础方面,超分辨荧光成像技术、冷冻电镜高分辨率解析技术等等划时代的技术突破如雨后春笋,喷薄而出;在应用研究方面,随着技术的发展,多科学领域,特别是生命科学领域出现了非常多惊人的重大发现,并衍生出了越来越多的精细分支,而新的实际应用需求又将迫使技术不断更新迭代,引发新的技术突破。从眼前看,实际应用似乎更倾向于新技术新突破,但追本溯源,技术的发展,是根植于对基本原理的深刻理解和灵活运用。因此,我个人认为,现有技术最需要解决的问题是,科技工作者们对基本原理的深入认知,以及融会贯通。因为技术创新本质上,是对原理认知的提升和推演。仪器信息网:对于此次获奖您有何感受?您认为“朱良漪分析仪器创新奖”将给青年人带来怎样的影响?李硕果:首先要再次感谢分析仪器学会“朱良漪分析仪器创新奖”对我的认可和鼓励!我个人对本次获奖最大的感受是:深受鼓舞!真的很受激励,这些激励会让人获得被认可的满足感,进而转化为排除万难努力前进的动力。有一句话叫做“热爱是一种能力”,我觉得在个人成长过程中,“扶持”和“鼓励”真的是非常重要的一种力量,它能在你疲惫的时候给你注入新的力量,让你持续保持热爱的能力。我是在获奖之后才了解到,朱良漪先生是我国仪器仪表行业、自动化控制技术行业最早和始终不渝的开拓者之一,是分析仪器行业的主要创始人,也是不断身体力行的实践者,而且,在他的指导和带领下,造就了一大批中、青年科技人材。朱老先生是一位对新生事物敏感而又敢于接受挑战的探索者,而这种精神和意志力正是需要年轻人用一生的时间去学习和锻炼的。我特别希望未来能有更多的科研工作者们可以获得这样精神层面上的鼓励与引导,这些对于年轻人来说才是最宝贵的财富。仪器信息网:后续您还将开展哪些创新工作?我未来近三年的工作重点是将我们的研发成果,包括高真空冷台和冷冻结构光照明光电关联成像系统进一步优化,同时结合聚焦离子束以及冷冻电子断层成像技术开展精准原位结构生物学研究。关于“朱良漪分析仪器创新奖”朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。“朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发五届,先后有15项分析仪器创新成果、18位青年创新科学家获奖。
  • 2021年度中国光学十大进展发布
    近日,中国激光杂志社发布“2021中国光学十大进展”。经过评审委员会多轮遴选,冰光纤、小型化自由电子激光等10项前沿进展入选“2021中国光学十大进展”基础研究类;六维光信息复用、能降温的光学超材料织物等10项进展入选“2021中国光学十大进展”应用研究类;此外,魔角激光器、光电智能计算、高效白色发光二极管等19项成果分别荣获“2021中国光学十大进展”提名奖(基础研究类)与“2021中国光学十大进展”提名奖(应用研究类)。2021中国光学十大进展基础研究类(10项)1.浙江大学童利民教授、郭欣副教授团队与合作者发现弹性冰单晶微纳光纤;2.南开大学陈志刚、许京军课题组及合作团队实现了非线性对宇称时间对称性和非厄米拓扑态的调控;3.中科院上海光机所电子加速研究团队等在国际上首次实现激光尾波场加速驱动的台式化自由电子激光;4.华中科技大学张新亮、李培宁教授课题组与国家纳米科学中心戴庆研究员、新加坡国立大学仇成伟教授等国内外团队,在双折射晶体中发现“幽灵”双曲极化激元;5.中科院上海光机所研究团队等实现了阿秒电子动力学的直接绘图;6.南京大学金飚兵教授与吴镝教授课题组等合作发现了室温零磁场条件下反铁磁中超快自旋流;7.上海交通大学张文涛研究组与张杰、向导团队等合作提出利用飞秒激光对量子材料电子维度的操控机制;8.清华大学精密仪器系杨昌喜课题组与北京邮电大学电子工程学院肖晓晟课题组合作,证实了大模间色散下的时空锁模;9.哈尔滨工业大学(深圳)肖淑敏微纳光子学实验室设计并制备了近红外生物成像窗口的高效宽带消色差超构透镜;10.南开大学研究团队及合作者预言并证实了受激声子极化激元,实现了太赫兹波巨非线性效应。2021中国光学十大进展应用研究类(10项)1.暨南大学和上海理工大学等联合研究团队实现了纳米尺度六维光信息复用;2.华中科技大学陶光明团队与多家科研和产业单位基于形态学分级结构设计了辐射降温光学超材料织物;3.中国科学技术大学李传锋、周宗权研究团队演示了基于吸收型存储器的多模式量子中继;4.中国科学院上海高等研究院和中国科学院上海应用物理研究所自由电子激光团队提出了一种相干能量调制的自放大机制;5.中科院上海技术物理研究所胡伟达研究员与复旦大学周鹏教授等研制出新型范德瓦尔斯单极势垒红外探测器;6.南京大学姜校顺、肖敏团队实现了片上光力光学频率梳;7.复旦大学彭慧胜/陈培宁研究团队等实现了柔性显示织物及其智能集成系统;8.浙江大学冯建东团队实现了溶液中单分子电化学反应的直接成像;9.华中科技大学、海南大学骆清铭团队通过发明线照明调制显微术实现了高清成像;10.南京大学新型显示技术研发团队等提出基于二硫化钼TFT驱动电路集成的超高分辨氮化镓Micro-LED显示技术方案。“2021中国光学十大进展”10项基础研究类提名奖包括:1.上海光源中心自由电子激光团队实验验证并测量了激光-束流在二极磁场的能量交换;2.北京大学马仁敏团队实现了基于莫尔超晶格纳米结构的魔角激光器;3.华南理工大学周博教授、张勤远教授团队等提出基于镱亚晶格的多光子上转换发光;4.北京大学刘运全教授和龚旗煌院士领导的“极端光学创新研究团队”实现了强激光场中光子轨道自旋耦合的探测和操控;5.清华大学黄文会、颜立新团队首次实现相对论电子束的高梯度级联太赫兹加速;6.清华大学戴琼海院士团队提出并构建了大规模可重构光电智能衍射计算处理器;7.上海交通大学李良教授与意大利米兰-比科卡大学Brovelli Sergio教授团队等合作,实现环境温度处于100℃范围内量子点荧光性能近乎零“热猝灭”,所制备LED电致发光器件也具有优异的抗“热猝灭”性能;8.北京大学刘开辉课题组等提出并发展了瑞利散射圆二色性技术,实现了单根碳纳米管的完整结构;9.苏州大学蒋建华、蒲殷教授团队等利用光子系统证实了拓扑体-缺陷对应关系;10.中国科学技术大学郭光灿院士团队李传锋、柳必恒研究组与南京邮电大学盛宇波等人合作,首次实现11公里远距离量子纠缠纯化。“2021中国光学十大进展”9项应用研究类提名奖包括:1.南京理工大学曾海波教授团队和华盛顿大学David Ginger教授团队合作,基于α/δ-CsPbI3同质异相层实现高效白色发光二极管;2.清华大学团队等研制自适应扫描光场显微镜,打破活体成像壁垒;3.中科院上海光机所电子加速研究团队等实现GeV(吉电子伏特)量级超低能散的台式化电子加速器;4.福州大学杨黄浩/陈秋水教授和新加坡国立大学刘小钢教授等实现高分辨X射线发光扩展成像技术;5.电子科技大学张雅鑫教授团队与中国电子科技集团公司第十三研究所冯志红研究员团队等合作,实现了太赫兹片上可编码超构调控芯片;6.北京理工大学陈棋教授团队和北京大学周欢萍特聘研究员团队等合作,开发了钙钛矿薄膜加工的关键技术,制备了高质量钙钛矿薄膜及光伏器件;7.清华大学鲁巍教授团队等实现了从传统直线加速器到激光尾波加速器的高效率外注入级联加速;8.厦门大学聂立铭教授团队等运用光声成像技术,研制了具有脂质代谢药物,发展了光声技术监测脂肪组织脂质、血红蛋白代谢变化评估肥胖疗效的新方法;9.黑龙江大学许辉教授团队和新加坡国立大学刘小钢教授团队合作,通过有机小分子表面配位实现了稀土纳米颗粒表面的巨大发光增强。
  • 中科院发起成立科技“双创”联盟 以促进科技成果产业化
    p   12月19日,中国科学院在京召开科技服务国民经济主战场座谈会,协同国内外科研机构、大学、人才机构、企业、科技孵化器和投资机构,发起了科技“双创”联盟,共同推动“大众创业,万众创新”,并在座谈会上签署相关科技合作协议。中国科学院院长白春礼、上海市市长杨雄、山东省省长郭树清、陕西省省长娄勤俭出席了座谈会,并见证了联盟的签约。 /p p   “双创”联盟以促进科技成果产业化、服务“大众创业,万众创新”和制造业转型升级为宗旨,着力发挥科研院所科技资源、人才和科技平台优势,联合各类专业机构,创新体制机制,建立科技、产业与资本联动、融合的机制和环境,营造优良的“创新创业生态系统”。 /p p   中国科学院院长白春礼在会上介绍:“今年中国科学院为适应新的改革形势和发展要求,根据经济发展新常态的要求,对办院方针进行了调整,确定了‘三个面向’‘四个率先’的新方针,力争既要面向世界科技前沿,取得一批世界领先的重大创新成果,也要面向国家重大需求、面向国民经济主战场,深入实施创新驱动发展战略,增强科技支撑与服务能力,突破一批重大关键共性技术问题,以科技创新服务经济社会发展。” /p p   中国科学院国有资产经营有限责任公司、欧美同学会海归创业学院、中国技术交易所、中国科学院西安光学精密机械研究所、联想之星投资管理有限公司、中科院科技创新孵化投资有限责任公司、西安中科创星科技孵化器有限公司作为联盟发起单位的代表,参加了此次协议签约活动。 /p p br/ /p
  • 光学专家张雨东出任科技部副部长
    8月9日,据人社部消息,国务院任免国家工作人员,任命张雨东为科学技术部副部长。张雨东张雨东,工学博士,研究员,国家级专家、四川省学术技术带头人。十三届全国政协常委,民进中央副主席、四川省委主委,十二届四川省政协副主席,中科院成都分院院长、分党组成员。其中,1980年9月至1984年9月在浙江大学学习。1984年9月至1987年7月在中国科学院光电技术研究所光学专业硕士研究生学习。1987年7月至1991年6月在中国科学院上海光学精密机械研究所光学专业博士研究生学习。1991年6月至1998年7月在中国科学院福建物质结构研究所工作,历任助理研究员、副研究员、研究员。1998年7月至2015年10月在中国科学院光电技术研究所工作,历任第八研究室副主任、副所长、所长,自2011年5月起任中国科学院成都分院院长。2001年7月起先后任民进四川省副主委、主委,民进中央常委、副主席。2008年1月至2021年7月任四川省政协副主席。中科院成都分院网站显示,张雨东主要从事新型自适应光学技术研究与系统研制工作,在我国率先开展了人眼视光学波前工程研究方向,为活体人眼细胞级疾病诊断提供了全新手段。获国家技术发明一等奖1项,二等奖1项;省部级一等奖3项;授权发明专利60余项,国际专利8项。先后获得国家“863计划先进工作者”、“中国科学院杰出青年”、“中国科学院杰出科技成就奖”、四川省青年“五四奖章”等荣誉。张雨东非常重视保障科研人员合法权益,曾多次在采访中提到相关话题。2014年两会,张雨东作为全国人大代表在提案中建议合理提高科研人员薪酬。他认为:一、国家事业费拨款不足,科研人员收入水平与对国家的科技发展贡献匹配不够;二、国家科研任务中人员经费部分比例过低。长此以往,必将影响科研人员对国家重大科研任务的积极性和专注度。对此,他建议:一、加大国家事业费投入,提高科研人员薪酬结构中的固定部分,使其能安心从事科研工作。二、尊重科研及辅助人员在科研活动中的创新劳动,适度放宽国家科技计划执行中各支出科目的限制,提高人员经费计提比例,激发科研人员创新积极性,真正建立按劳、按贡献取酬的分配机制。此外,张雨东2016年接受《中国科学报》采访时曾建议建立保障科技创新法律体系。他认为,由于科技创新固有的超前性和中立性,我国科技领域相关法律规定严重滞后于科技创新的迅速发展。特别是在科技创新追责时,司法机关极易忽视历史条件,混淆科技创新与使用不当间导致的不同法律责任,将责任盲目扩大到科技创新主体上来,甚至造成侵犯科技人员合法权利,伤害科研人员创新积极性的严重事实。为此,张雨东建议,建立有利于科技创新系统良性运行的法律体系,切实保护科研人员创新积极性及合法权益。法律对于科技创新的规范应严格限定在“应用”层面,切实保护科技成果的创造者和生产者,严厉打击恶意使用科技成果的违法犯罪行为,而不应对科技创新的积极性产生不当影响,限制科技发展的步伐。参考资料:http://www.cdb.cas.cn/jggk/xrld/201108/t20110818_3323830.htmlhttp://news.sciencenet.cn/htmlnews/2014/3/289764.shtmhttp://news.sciencenet.cn/htmlnews/2016/3/341352.shtm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制