当前位置: 仪器信息网 > 行业主题 > >

基因编辑技术

仪器信息网基因编辑技术专题为您整合基因编辑技术相关的最新文章,在基因编辑技术专题,您不仅可以免费浏览基因编辑技术的资讯, 同时您还可以浏览基因编辑技术的相关资料、解决方案,参与社区基因编辑技术话题讨论。

基因编辑技术相关的资讯

  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 2015技术展望之基因组编辑
    规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,原本是细菌抵御病毒的重要武器,现在这一组合已经成为了最热门的基因组编辑利器。   2014年基因组编辑热潮在持续发酵,CRISPR/Cas9仍旧是最引人注目的话题之一,相关论文被大量下载和引用。纵观CRISPR/Cas9的发展我们可以看到,科学家们仍在追求最理想的基因组工程技术,而2015很有可能会成为基因组工程年。   这里我们不妨大胆预测一下,明年基因组工程领域会起那些波澜:   1. 大规模CRISPR/Cas9。2013年,麻省理工的CRISPR技术先驱张锋(Feng Zhang)和同事为我们展示了CRISPR/Cas9进行多重基因组编辑的能力。相信在2015年大规模CRISPR/Cas9全基因组操作将越来越多,同时新多重基因组编辑法会大量涌现,还很可能会出现大型的引导RNA数据库。在这样的趋势下,每个人都能在自己的基因组工程研究中用上CRISPR/Cas9。   2. CRISPR对簿公堂。2015年将有更多公司提供以CRISPR为基础的实验工具,基于CRISPR的药物也将离我们越来越近。在这种情况下,基础研究领域可能会迎来历史上最大的专利诉讼。目前有三个团队都宣称自己享有CRISPR/Cas9技术的部分专利权,他们很可能最终会对簿公堂,而专利权的归属将决定CRISPR/Cas9日后的命运。   3.用细胞来记录生命。假如细胞能将自己发生的所有事情记录下来,我们将会读到些什么呢?2014年Timothy K. Lu和Fahim Farzadfard在Science杂志上发表了一项令人振奋的成果。他们通过合成生物学技术,将细胞事件的模拟记忆编码在活细胞DNA中。虽然这类研究还处于早期阶段,但随着研究者们不断突破细胞工程的极限,我们期待在2015年看到更多的进展和应用。   当然了以上都只是我们的推测,基因组工程领域其实是很难预测的,因为相关技术发展得非常之快。你看,短短两三年CRISPR/Cas9系统就走了这么远。这些基因工程领域的预测是否过于保守,就让我们拭目以待吧。
  • 天壤之别!胚胎基因编辑伦理不容,另一项基因编辑技术却在造福人类!
    p style=" text-indent: 2em text-align: justify " 近日刷爆朋友圈的不仅是抗癌“神药”Vitrakvi& reg 的问世,还有一则是首例基因编辑婴儿的诞生! /p p style=" text-align: justify text-indent: 2em " 来自中国深圳的科学家贺建奎向外界公布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。 /p p style=" text-align: justify text-indent: 2em " 她们的基因已经经过人为修饰,能够天然抵抗艾滋病。消息一出,舆论哗然,遭到百余位中国科学家发表联署声明谴责,国家相关部委对此已经做出回应,对违法违规行为坚决予以查处! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/bfe6a416-98de-499b-bf93-960d34dd0bf9.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 541" height=" 230" style=" width: 541px height: 230px " / /p p style=" text-align: justify text-indent: 2em " 人类生殖细胞的基因编辑可能诱发非常严重的伦理问题,即被改写的生殖细胞会影响其子孙后代,甚至随着现象的普及、改变整个人类的基因池。 /p p style=" text-align: justify text-indent: 2em " 因为存在高风险,基因编辑技术并未在人体上广泛应用。过去有少数科学家曾在人类早期胚胎上进行实验,但只是停留在胚胎阶段。& nbsp /p p style=" text-align: justify text-indent: 2em " 2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而此次“基因编辑婴儿”如果确认已出生,必将引起一场轩然大波!& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 引发轩然大波的基因编辑到底是一种什么技术? /strong /span /p p style=" text-align: justify text-indent: 2em " 中国农业大学生物化学与分子生物学系教授吴森向中新网记者介绍,DNA结构被发现之后,科学家需要通过一项技术去研究每个基因的功能,基因编辑技术便于上世纪80年代后期应运而生。& nbsp /p p style=" text-align: justify text-indent: 2em " 当时,基因编辑技术被称作基因打靶技术。科学家以小鼠作为模型,通过基因打靶的方法改变小鼠的特定基因,借由观察其表型或者行为变化,研究这个基因的功能。& nbsp /p p style=" text-align: justify text-indent: 2em " 基因编辑技术实际上是基因打靶技术的“升级换代”。“基因编辑是一种重构基因序列的手法,就像一个制作精良的橡皮擦,能针对出了毛病的基因,进行精准的‘擦除’。”同济大学医学院教授、同济大学丽丰再生医学研究院执行院长高正良这样评价基因编辑的作用。& nbsp /p p style=" text-align: justify text-indent: 2em " 吴森表示,在过去30年里,基因打靶技术在基础科学研究领域和生物医学领域的用途非常广泛,做出了很多有价值的研究,包括在肿瘤治疗领域中的CAR-T技术(嵌合抗原受体T细胞免疫疗法)等。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 为什么CAR-T不违背伦理? /strong /span /p p style=" text-align: justify text-indent: 2em " CAR-T技术实质上也是一种基因工程技术,但是为何不违背伦理?很重要的一点是,该技术是通过对体细胞(即免疫细胞)而非体细胞进行基因编辑,遗传基因不会发生改变,对于人类子孙后代不会造成影响。& nbsp /p p style=" text-align: justify text-indent: 2em " 据欧洲药品管理局资料,CAR-T疗法先后须经专利药品委员会、高级治疗委员会和欧盟委员会批准后方可获得临床应用。在中国,同样需要相关职能部门审核通过,才能进行临床试验及应用。我国的CAR-T细胞治疗研究虽然较国外整体起步较晚,但后期发展突飞猛进。& nbsp /p p style=" text-align: justify text-indent: 2em " 从2012年我国首次在clinicaltrial.gov上登记CAR-T细胞临床试验以来,我国每年新注册的CAR-T项目以数倍的速度爆发式增加,目前我国在clinicaltrial.gov上登记的CAR-T项目超过170项,已经超过美国的103项,成为世界上CAR-T细胞临床试验注册数量最多的国家,文末有招募信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/280c8040-d0e2-4a0e-84d7-d65c14acf8b6.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 457" height=" 374" style=" width: 457px height: 374px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " CAR-T是一种什么样的技术? /span /strong /p p style=" text-align: justify text-indent: 2em " CAR-T疗法是一种通过T细胞基因改造实现肿瘤靶向杀伤的免疫治疗技术。它通过基因转导技术,把识别肿瘤相关抗原的单链抗体和T细胞活化序列的融合蛋白表达到T细胞表面,经过纯化、体外扩增和活化,输注回患者体内,对抗肿瘤。& nbsp /p p style=" text-align: justify text-indent: 2em " 全称为(Chimeric antigen receptor T-cell therapy)嵌合抗原受体 T细胞疗法,本质上一种肿瘤基因疗法,也是免疫疗法。对于这个中文名您一定还是一头雾水,即便中文名也是看不懂。 /p p style=" text-align: justify text-indent: 2em " 首先,我们必须先对T细胞有初步的认识,T细胞是一种免疫细胞,负责保护身体免于外来病原的攻击。 /p p style=" text-align: justify text-indent: 2em " 而身体裡面的T细胞有又分很多种,其中一种名为细胞毒性T细胞(cytotoxic T cell),它的功能主要是辨识异常的细胞,分泌细胞毒素(如穿孔素、颗粒酶素B),并消灭这些异常细胞。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法,简单来说就是,我们在原本无法辨识癌细胞的T细胞上,装上一个名为CAR(嵌合抗原受体)的雷达。如此一来,经过改造的T细胞就会像导弹一样,精准的定位癌细胞位置,并将这些癌细胞杀死。 /p p style=" text-align: justify text-indent: 2em " 这样的技术,开启了细胞疗法新的扉页。将来,面对不同的癌症,只要找出适合的雷达-CAR,我们就能请T细胞代劳,替我们对抗癌症。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 原理讲完了,再给您介绍下CAR-T的治疗流程,很easy。 /strong /span /p p style=" text-align: justify text-indent: 2em " 1、分离:从癌症病人身上分离免疫T细胞。 /p p style=" text-align: justify text-indent: 2em " 2、修饰:用基因工程技术给T细胞加入一个能识别肿瘤细胞并且同时激活T细胞的嵌合抗体,也即制备CAR-T细胞。 /p p style=" text-align: justify text-indent: 2em " 3、扩增:体外培养,大量扩增CAR-T细胞。一般一个病人需要几十亿,乃至上百亿个CAR-T细胞(体型越大,需要细胞越多)。 /p p style=" text-align: justify text-indent: 2em " 4、回输:把扩增好的CAR-T细胞回输到病人体内。 /p p style=" text-align: justify text-indent: 2em " 5、监控:严密监护病人,尤其是控制前几天身体的剧烈反应。& nbsp /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5f16e10d-c481-41a8-9337-3ed0d9b85536.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " 目前,已经有两项CAR-T技术获得美国FDA批准上市。 /p p style=" text-align: justify text-indent: 2em " 2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p style=" text-align: justify text-indent: 2em " 紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法无疑已成为肿瘤免疫治疗领域中新的国际研究热点。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong CAR-T在肿瘤治疗领域有何贡献? /strong /span /p p style=" text-align: justify text-indent: 2em " 提到CAT-T治疗,最出名的就是在2012年被Carl June博士用来治愈了6岁的小女孩Emily Whitehead后,由此被认为是最有希望攻克肿瘤的手段之一,迅速引发了全球性的研发热潮。 /p p style=" text-align: justify text-indent: 2em " 2012年至今,6年过去了,6岁的小女孩已经长成12岁亭亭玉立的少女,那么,Emily的现状怎么样呢? /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9fa16f1c-61a5-4c42-afe6-1d1af37da321.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 572" height=" 337" style=" width: 572px height: 337px " / /p p style=" text-align: justify text-indent: 2em " 今年8月份,家人刚刚为她庆祝了十二岁生日。除了曾经患过白血病之外,Emily与普通的孩子并无区别,脸色红润,头发蓬松,与小伙伴们在海滩上嬉戏,显得生气勃勃。根本无法想象在6年前,她是一名晚期癌症患者。& nbsp /p p style=" text-align: justify text-indent: 2em " 她是第一个接受CAR-T治疗的孩子,在治疗的早期临床试验中被认为是一种危险的治疗方法。而如今CAR-T已经获得FDA批准用于临床肿瘤治疗后,Emily成为治疗效果的象征,CAR-T疗法的新型癌症免疫疗法挽救了她的生命,并为数以千计的白血病患儿接受该治疗增加了信心。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 中国首例!CLL1新靶点CAR-T治疗10岁转化型急性髓系白血病女孩获成功 /strong /span /p p style=" text-align: justify text-indent: 2em " 广州市妇女儿童医疗中心血液肿瘤科张辉主任团队结合现有治疗手段和经验,并根据小慧白血病细胞的免疫分型特点,大胆尝试了CLL1新靶点的CAR-T临床试验性治疗。 /p p style=" text-align: justify text-indent: 2em " 据悉,CAR-T技术用于急性白血病治疗,已有多个成功案例,但针对CLL1靶点的CAR-T治疗,在全国尚属首次! /p p style=" text-align: justify text-indent: 2em " 治疗两个月后,小慧体内的大部分白血病细胞被成功清除,目前已进入观察期,只需定期复查即可。 /p p style=" text-align: justify text-indent: 2em " 如果顺利度过了18至24个月的观察期,小慧有望和美国的Emily(全球首位接受CAR-T治疗急性淋巴细胞白血病的儿科患者)一样被彻底治愈,恢复健康。(来源:金羊网)& nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 中、美CAR-T临床试验招募信息 /span /strong /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 美国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、EGFR806 CAR T细胞免疫治疗儿童和青少年复发/难治性实体肿瘤 /span /p p style=" text-align: justify " 小儿实体肿瘤:生殖细胞肿瘤、视网膜母细胞瘤、肝母细胞瘤、Wilms肿瘤、横纹肌样瘤、骨肉瘤、尤文肉瘤、横纹肌肉瘤、滑膜肉瘤、透明细胞肉瘤、恶性周围神经鞘瘤、增生性小圆细胞肿瘤、软组织肉瘤、神经母细胞瘤 /p p style=" text-align: justify " 入组医院:西雅图儿童医院 /p p style=" text-align: justify " 入组人数:36 /p p style=" text-align: justify " 截止日期:2021年10月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、CD19 + CAR T细胞治疗淋巴恶性肿瘤 /span /p p style=" text-align: justify " 肿瘤类型:白血病、淋巴瘤 /p p style=" text-align: justify " 入组医院:MD安德森癌症中心 /p p style=" text-align: justify " 入组人数:30 /p p style=" text-align: justify " 截止日期:2021年12月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、EGFR-vIII CAR-T细胞用于复发性GBM治疗 /span /p p style=" text-align: justify " 肿瘤类型:脑胶质瘤 /p p style=" text-align: justify " 入组医院:杜克癌症研究所 /p p style=" text-align: justify " 入组人数:24 /p p style=" text-align: justify " 截止日期:2021年12月31日& nbsp /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 中国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、CAR-T细胞在间皮素阳性实体瘤中的应用研究 /span /p p style=" text-align: justify " 肿瘤类型:成人实体瘤 /p p style=" text-align: justify " 入组医院:解放军总医院 /p p style=" text-align: justify " 入组人数:10 /p p style=" text-align: justify " 截止日期:2019年11月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、恶性肿瘤的自体CAR-T / TCR-T细胞免疫治疗 /span /p p style=" text-align: justify " 肿瘤类型:B细胞急性淋巴瘤、白血病淋巴瘤、骨髓性白血病、多发性骨髓瘤、肝癌、胃癌、胰腺癌、间皮瘤、结直肠癌、食道癌、肺癌、胶质瘤、黑色素瘤、滑膜肉瘤、卵巢癌、肾癌 /p p style=" text-align: justify " 入组医院:郑州大学第一附属医院 /p p style=" text-align: justify " 入组人数:73 /p p style=" text-align: justify " 截止日期:2023年3月1日 /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、研究评估CAR-T治疗儿童复发或难治性神经母细胞瘤的疗效和安全性 /span /p p style=" text-align: justify " 肿瘤类型:复发或难治性神经母细胞瘤 /p p style=" text-align: justify " 入组医院:南京儿童医院 /p p style=" text-align: justify " 复旦大学附属儿童医院 /p p style=" text-align: justify " 入组人数:22 /p p style=" text-align: justify " 截止日期:2020年9月 /p
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 种业基因编辑技术引发创投机构关注
    自古以来,民以食为天,粮食安全一直被视为“国之大者”,而粮食安全的前提之一是种业安全。种业,被誉为农业的“芯片”,其发展的关键是种质资源的创制和高效育种技术的应用。当前,基因编辑技术正助力我国种业更具竞争力。  近年来,得益于第二代测序技术的商业化应用,测序成本不断降低,测序技术的应用更为广泛。业内人士表示,在畜牧业、农业等生物技术领域中,基因组编辑技术可以用来改良动植物品种,提供高产、优质、安全的食品。全基因组重测序和高通量测序技术的发展,促进了群体基因组学研究的进步,解决了许多重要的植物科学问题,并通过基因编辑、转基因、合成生物学等技术手段使得生物育种成为现实。  在此背景下,境内外资本市场颇为关注植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司,相关融资事件不断发生。  基因编辑生物育种赛道受到资本关注  公开资料显示,生物育种是现代农业生物技术育种的统称,生物育种是指利用基因工程、细胞工程和胚胎工程等现代生物技术,培育和推广一系列性能优良的动植物新品种的育种新技术和新产业。当前,现代生命科学和生物育种技术创新加快突破,孕育着新一轮农业科技革命。  此前,中国工程院院士万建民在接受媒体采访时表示,加快农业生物育种创新,构建现代种业创新体系,是贯彻落实中央决策部署实现种业科技自立自强的关键举措,是实现种源自主可控的根本路径。  近年来,植物基因编辑技术的专利许可、新型工具的开发迭代、种质资源产品创制的创业公司受到国际投资机构关注,融资事件不断发生:例如,美国某种子科技初创公司于2021年完成D轮2.08亿美元融资;总部位于美国的某农业基因编辑创业公司于2021年完成B轮9000万美元融资;此外,还有数家基因编辑公司相继获得超百万美元规模的融资,且部分公司已在资本市场上市。  国内方面,今年3月,基因编辑公司齐禾生科宣布完成了由杏泽资本领投的逾亿元种子轮融资,所募集资金将主要用于公司新一代基因编辑工具的开发,以及基因编辑技术在生物育种等各产业方向的应用。据了解,齐禾生科的联合创始人高彩霞,是中国科学院遗传与发育生物学研究所研究员。中国科学院遗传与发育生物学研究所官网显示,高彩霞主要从事植物基因组编辑技术、生物安全新型育种技术以及基因组编辑定向设计分子育种等方面的研究,致力于推动基因组编辑在分子设计育种中的应用。2013年,高彩霞团队在《自然生物技术》期刊(Nature Biotechnology)发表了世界首篇CRISPR基因编辑植物研究论文,率先将CRISPR基因编辑技术应用于植物研究。此后,高彩霞实验室陆续发表了数十篇基因编辑相关研究论文。  业内人士表示,不同于转基因技术,基因编辑技术在实现对基因组自身序列修改的同时,不会引入任何外源(其它非本物种)基因片段,具有商用领域广、安全性强、精准性高等特点,成为当下种业行业的发展焦点。私募投资机构正意识到,在国家粮食安全的大前提下,我国农业急需开发适合我国实际情况且拥有自主可控知识产权的种业“芯片”、减少粮食方面的进口依赖。  种业赛道投资需要坚持长期主义  中国科学院院士、中国科学院遗传与发育生物学研究所研究员李家洋曾公开表示,在生物育种技术中,诱变育种、杂交育种、分子标记辅助选择育种以及转基因育种都是“2.0”或“3.0”版本的技术,基因编辑技术才是当前最高的技术水平,也是全球育种业正在竞争的制高点,应该称为现代育种技术的“4.0”版本。  当前,生物育种发展得到了政策有力支持。2022年1月,农业农村部公布了《农业用基因编辑植物安全评价指南(试行)》,我国农作物基因编辑研发、应用有了更明确的规范,强化了我国基因编辑技术应用的制度保障,这对我国生物育种技术研发与产业推动具有里程碑意义。  业内人士表示,基因编辑应用于种业优势明显,具有研发周期短、成本较低、稳定性强、可以同时编辑多个性状等特点。在产品端,在保证高产、优质、多抗的前提下,更能兼顾各类营养物质的含量,实现产品订制化服务。可为产业链增效,如延长销售时间、产后保鲜和害病治理;为生产者提高粮食作物产量并获得新收益。  尽管在行业利好与需求增长的双重影响下,种业引发私募投资机构涌入,但投资人对种业赛道需要有更清晰的思考:我国种业行业集中度低,种业赛道具有周期长、投入高等特点,与资本的耐心可能形成错位,因此更需要资本与企业有共同抵抗风险的准备和耐心。  “产学研用”紧密结合是推动基因编辑育种向产业化迈进的关键。杏泽资本管理合伙人强静表示,杏泽资本秉承长期价值投资理念,将全力支持齐禾生科发展成为全球领先的解决基因编辑“卡脖子”难题的生物技术公司。“相信在国家对生物经济领域政策引领下,在我国科学家团队联合攻关的创新研发支持下,在以创新型生物企业为主体的投资产业化运营保障下,未来,我国生物经济领域战略科技力量将持续壮大,中国基因编辑技术一定会让中国饭碗端得更牢。”强静称。点击图片免费报名参加“第五届基因测序网络大会”
  • 专家称我国基因组编辑技术须破壁前行
    中国科协第114期新观点新学说学术沙龙专家称我国基因组编辑技术须破壁前行  本报讯(实习生曾云 本报记者潘希)近日,中国科协第114期新观点新学说学术沙龙以“基因组编辑新技术的兴起将带来的冲击”为主题,邀请相关专家讨论了基因组编辑技术在国内外的现状与发展。  近几年,由于CRISPR(规律成簇间隔短回文重复)等工具的不断问世,基因组编辑技术迎来了新的浪潮。“CRISPR能完成90%的工作,但核心的专利仍掌握在西方人手中。”中科院动物所研究员王皓毅直言,一定要开发新的工具,寻找比CRISPR效率更高的酶。  “国内科学家要协调合作,思考如何在坚持国际合作的同时,又保持国内优势。”中科院院士、华大基因研究院理事长杨焕明表示,同时应该加强科普避免重蹈转基因的覆辙,也不要在基因组编辑研究中一哄而上。  在杨焕明看来,现在可以考虑借CRISPR的东风讨论生命科学的服务问题。  目前,我国也处在CRISPR研究的前沿。例如在植物研究领域,中科院遗传与发育所运用TALEN和CRISPR技术在六倍体小麦中实现了3个同源等位基因的编辑,解决了小麦白粉病广谱持久抗性世界性难题,得到国际上的高度评价。  不过,专家也列出了目前基因组编辑技术面临的一些技术难题,例如如何提高敲除效率、减少脱靶效应、提高同源重组效率、实现基因定点替换或插入等。  华南农业大学教授刘耀光认为,对基因的定点替换以及插入等基因靶向修饰来说,技术上还有瓶颈,现在能够做到替换的例子很少。对植物来说,仍然需要提高效率达到实用性。“希望在不久的将来有实用突破”。  在讨论中,知识产权等问题也成为专家对国内基因组编辑发展的担忧。中科院遗传发育所研究员高彩霞表示,技术的推广需要强大的知识产权支撑,应分析哪些能做哪些不能做,利用自身优势加快推广速度。  “可以通过合作把专利的渠道拓宽。” 大北农生物科技有限公司专家杨进孝认为,企业要通过服务的方式参与进来,加强研究机构与企业的合作,促进产品落地。  杨焕明表示,基因组编辑应用的大门已经打开,国内要创造成熟的条件来推动我国基因组编辑技术的研究与推广。
  • GOTI技术可灵敏检测基因编辑是否脱靶
    p style=" text-indent: 2em text-align: justify " 基因编辑的“子弹”如果没有命中目标,就会产生脱靶效应,可能会导致诸如癌症等不良的基因变异。这种风险让人们对这种新的技术手段望而却步。近日,中国科学院神经科学研究所与国内外研究机构的研究者们合作开发了一种被命名为GOTI的技术,能够准确、灵敏地检测到基因编辑方法是否会产生脱靶效应,使基因编辑技术向安全地带迈进了一步。 /p p style=" text-indent: 2em text-align: justify " 此前,人们推出过多种检测脱靶的方案。但小鼠或者人类个体间基因存在很大差异,基因编辑所产生的脱靶效应会被淹没在这些差异之中。以往的检测方法很难从这些差异中分辨出哪些是基因编辑所造成的脱靶,哪些是个体本身的差异,因此无法有效判别基因编辑工具的安全性。 /p p style=" text-indent: 2em text-align: justify " GOTI颠覆了原有的脱靶检测手段。实验的精妙之处是利用小鼠胚胎做实验。在受精卵分裂成两个时,基因编辑其中的一个,并用红色荧光蛋白进行标记。编辑之后,让两个细胞继续分裂,等小鼠胚胎发育到14.5天时,基于红色荧光蛋白筛选出基因编辑细胞和没有基因编辑的对照细胞。 /p p style=" text-indent: 2em text-align: justify " 由于这两组细胞基因背景完全一致,且无需基因组体外扩增,避免了遗传背景的干扰,同时还可以清楚地展现单个碱基的突变,GOTI因此展现出强大的灵敏性,对数量极少的基因编辑脱靶也可感知。 /p p style=" text-indent: 2em text-align: justify " 此外,研究人员使用GOTI技术发现BE3单碱基编辑会产生大量脱靶突变。这一发现使人们重新审视原本认为“特别安全、几乎不会有脱靶”的单碱基突变技术,并为基因编辑工具的安全性评估带来了突破性的新技术,有望成为新的行业检测标准。相关研究结果于3月1日发表在《科学》上。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 超越韩春雨?新一代基因编辑技术南京大学问世
    2016年9月15日,《Genome Biology》报道了一种基于SGN的基因编辑新技术,以结构引导的内切酶(SGN,Structure-guided nuclease)实现体内外DNA任意序列的靶向和切割。论文一作为Shu Xu,论文通信作者为南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。做为基因编辑领域的从业者,读后很有感触,应BioArt主编之邀请,以半学术的方式、以随笔的形式写出,与各位分享,不严谨之处请大家各自消毒。  感触之一:构思巧妙,略有瑕疵,瑕不掩瑜。  论文中,作者巧妙地融合FEN1(Flap endonuclease-1,是一种可以特异性识别flap结构的核酸内切酶,参与DNA的复制,修复和重组过程 除此之外它还具有双链DNA特异的5‘-3’的核酸外切酶活性)和已经被成功用于ZFN和TALEN的DNA剪切结构域Fok I,结合标准化的linker(GS repeats),设计了一个chimeric protein,实现了可编程的基因编辑系统,具有以下特点:短链ssDNA导向的基因组特定位置 编辑结果是产生大片段的deletion(可以大于2.6kb) 可以在斑马鱼胚胎中成功编辑内源基因。这个构思,看得出包含ZNF以及TALEN的影子,其实这三者设计思路是一致的,其创新点在于靶向元件的选择十分巧妙,切割元件直接me too。令人惊喜的是,这种原创性工作出自我们中国科学家团队,略有遗憾的是,论文中体内靶点做的偏少,也没有以CRISPR或者TALEN为对照,导致尚不能够评估其相对低的编辑效率是来自位点特异性障碍还是来自技术本身(znf703基因编辑效率1/96≅ 1% cyp26b1基因编辑效率是3/29≅ 10%、这个位点还真不低)。另外一点,如果SGN系统编辑结果是产生大片段的deletion,那么后期的同源重组做起来要相对困难(冒昧的揣测一下:FEN-1外切酶活性是否可以dead?貌似大片段的deletion应该是5' -3' 的核酸外切酶活性引起的)。  感触之二:表述质朴谦逊,留下很大的优化空间。  通篇论文读下来,科学之外,还感觉到一种相对质朴的文风,措辞之间充盈着谦逊。这么讲,可能超出了学术范畴,所以称之为随笔,既然自己给自己开了这么一个后门,所以,干脆就谈出来,好在笔者与南京大学与作者没有关联,也就没有了套磁之嫌疑。例如,在基本术语上作者没有跟风:“SGN”而不是“ssDNA guided Nuclease”,“DNA editing”而不是“genome editing”,这些细节都能够体现出一种“独立性”。基因编辑技术的效率是极其重要的,目前看在这篇论文中,作者没有更多地报道相关的条件优化工作,例如效率瓶颈是存在于guide DNA与靶向区域的结合效率?还是存在于SGN的识别效率?整个生物学场景之中,目标区域的DNA melting究竟有多重要?是转录相关事件还是复制相关事件?(冒昧的揣测一下:是不是质粒编辑实验中采用可诱导启动子即可帮助判断?)当然,不应该要求一篇论文解决和回答这么多的科学或技术问题,但是可以预计,这个新工具可能还有较大优化空间,期待着他们更多的进一步报道。  感触之三:就是要挑战CRISPR,尽管它似乎难以逾越!  众所周知,今年5月2日《Nature Biotechnology》在线发表河北科技大学韩春雨博士“一鸣惊人”的论文,报告了一种NgAgo-gDNA基因编辑新工具,尽管因不可重复而使韩春雨“一波三折”地陷入学术诚信危机,但是,此文也算是高调地揭开了挑战CRISPR暗中竞赛的盖子。尽管CRISPR如日中天,甚至有“long live CRISPR”之类的戏言,但是,CRISPR并不完美,这种“不完美”不仅仅来自Off-target、PAM的限制性、难以实现单碱基精确编辑之类的技术瑕疵,更是来自人类对新技术的“天然贪婪”,来自根深蒂固的奥林匹克精神“更快、更高、更远”,来自我们骨子里的征服欲。正如哈佛大学医学院遗传学教授George Church所言:新技术都是脆弱的,随时可能被取代 加州大学圣迭戈分校的Prashant Mali 说的更直白“我们需要的不止这些”。所以,从技术使用者的角度看,CRISPR是大自然和几位先锋科学家送来的珍贵礼物,在欣然拥抱它的同时、当然也期待着更好的技术出现 从技术开发者的角度看,大红大紫般火热的CRISPR又是新的竞赛标杆,它令人嫉妒地、高傲地立在那里,挑逗和激发着人们超越它的冲动。  感触之四:源自天然、超越天然,从基因编辑技术演化史看“工程化”在技术工具开发中的重要性。  有人把基因编辑技术做了“断代工程”,给技术划代,很形象、也利于普及,但是有时候也比较困难。一般地,理论上可以在哺乳动物细胞中近乎任意位点切割并引发编辑的ZFN、TALEN以及CRISPR,它们在时间节点上依次出现、而且效率和便利性也越来越好,所以被称为第一代、第二代、第三代基因编辑技术(1G、2G、3G)。笔者愿意把他们称之为大众基因编辑工具,因为对应着的还有一些小众工具,鉴于其自身的技术局限和缺陷,并没有被大家普遍接受。今天,先聊一聊大众工具,随后加一些小花边,再聊聊那些正在被淘汰和被遗忘的小众工具,补充这些小众工具的演化史,可以更加清晰地看出技术发展脉络,或许从中获得另外的灵感和启发。  从大众工具看,“工程化”贯穿始终。现代中文语境中,一直有一种混淆科学与技术的“语义学”困境。科学与技术相关但不相同,有人形象地这样区分科学与技术:know what,know why是科学,know how是技术。基因编辑总体上是一种技术,其相关工具的开发,起步于科学发现,但是不止步于科学发现。例如,从现有公开文献看,CRISPR最重要的科学发现节点是2011年卡彭蒂艾(Emmanuelle Charpentier)对tracrRNA的生物学功能的阐明。但是,有时候,造物主很懒,他开辟了这个世界之随后可能置之不理了。所以,大自然留给我们的礼物,有时候配不上我们征服的野心,因此,就人类目标而言,我们从来都不吝啬和迟疑于改进和再造。果然,随后的2012年,卡彭蒂艾就会同詹妮弗刀娜(Jennifer A. Doudna)联合发表了划时代论文,把tracrRNA和guide RNA合二为一,做成了工程化的“chimeric single guide”,sgRNA由此诞生。而在CRISPR-Cas工程化、模块化方面贡献最大的,应该首推华人科学家张锋教授。除CRISPRi、 CRISPRa之外,早在2013年的综述中,张锋教授就展望了包括把Cas设计为光控模式在内的各类工程化方案。而就是在本月,又推出了两项以遥控sgRNA的方式对CRISPR实施即时控制的技术方案。哈佛和神户大学的团队先后发表了利用“工程化”措施将AID与dCas9做成chimeric protein实现了不依赖于同源重组的单碱基编辑。就在本月初,MIT的团队创建了光敏感的sgRNA技术 几乎与此同时,深圳的科学家团队报告了“化学控制”的sgRNA的控制技术。  让我们把视野再回望到ZFN和TALEN,更是工程化的杰出案例,直至今天讨论的SGN,其“动作模块”甚至“毫不动摇”地使用FokⅠ,所变换进化的是“GPS定位模块”。这堪称技术演化之中还留下了历史痕迹,好似“保守序列”一样,让人惊叹“自然进化”与“人工进化”异曲同工之奇妙。  所以,基因编辑工具开发工程化的基本方程式是:GPS定位模块+执行模块。话分两头说。  先聊“执行模块”。FokⅠ屡战屡胜,但是,一定还有其它选择,毕竟,造物主应该是慷慨的,地球生命演化了四十亿年,留下的自然遗产极为丰富。  再聊聊GPS定位模块。这个模块工作效率及操作便利性如何,是基因编辑工具“好不好使”的关键。ZFN和TALEN的主要特点是:以蛋白质特定结构域来完成靶向定位,其主要缺陷是:定位模块体外准备麻烦,工作量大成本高 相比之下,CRISPR-Cas却方便的多,所以在总体竞争中胜出。但是CRISPR-Cas还是或多或少存在Off-target的弊端,为了解决这个问题、进一步强化定位精准性,已有报道以dcas9为定位器,融合上FokⅠ,实现正义链和反义链双向定位、并形成FokⅠ二聚体造成DNA双链断裂(DSB)、引发编辑。本次讨论的南京大学的这篇文章,再一次创新了GPS定位模块,首次采用FEN-1(flap endonuclease-1)来执行定位功能,将定位指令转化为方便人工编程的guide-ssDNA,做的很巧妙。  聊到这里,下一个创新近似于呼之欲出:尽管NgAgo似乎失败了,但是它工程化改造的前景呢?pAgo做为基因组“GPS定位模块”的可能性,怎能不令工具开发者怦然心动,就连我那个简陋的实验室,都已经于几个月前就开始努力了,万一大牛们漏掉了某些创意呢?  总之,GPS定位模块+执行模块=基因编辑工具,两个模块的重点是定位模块。设计灵感源自天然存在的自然遗产、但不止步于天然存在。自然界留给我们很多的提示和启发,例如:位点特异重组酶(site specific recombinase)如何?整合酶(integrases)如何?转座酶(transpotase)如何?其它未知的recombinase如何?这个领域的干法和湿法挖掘竞赛应该一直在进行。张锋曾说到:“通过对多种酶进行探索,我们可以得到一个更强的基因组编辑工具箱。我们必须继续探索未知。”  最后的花边:从G0谈起,回顾一下“沦落”为小众的基因编辑工具。  上世纪七十年代末,利用限制性内切酶实现了质粒体外重组,标志着第一代基因工程的诞生。随后,基于同源重组的体内染色体水平的基因工程成为现实,但是由于重组率极低,必须使用抗生素抗性或营养缺陷等标记加以筛选,做不到无痕编辑。之后,尽管发展了反向筛选标记、cre位点预埋及抗性回收等技术措施,但是,还是繁琐和低效。业界对无标记的无痕基因编辑技术是十分期待的,无标记无痕的关键在于编辑效率,只要效率达到百分之一以上的数量级别,就有希望。这里让我们一起回顾一下两个小众工具,作为“绿叶”来衬托一下广为人知的大众工具。  其一,G0代的重组工程(Recombineering)。上世纪90年代末,基于λ 噬菌体的Red重组酶的重组工程(Recombineering)出现了,这个领域中,中国科学家于代冠(Daiguan Yu)跟随NIH的Donald L . Curt,做出了不少贡献,于代冠博士后来回到了中科院广州生物医药与健康研究院。基于Red系统,哈佛大学George Church于2008年在《Nature Biotechnology》上发表了改进版的MAGE,可以自动化地在数天内引发十亿计的突变 至2013年,Church又把基于ss-oligo的的重组工程从大肠杆菌扩展到酿酒酵母,这个过程还与rad51/rad54相关,被Church发展成YOGE技术,之所以特别强调Church,是因为这位伟大的科学家也是早期CRISPR的推进者之一,他采用Cas9编辑高等细胞基因组的论文,与张锋“同框”于2013年1月的Science。但是,重组工程最终没有能够再扩展到其它物种,特别是没有实现哺乳动物细胞的基因编辑。大肠杆菌的Red/ET系统,也是重组工程的重要实现工具,也是目前仍在普遍使用的分子生物学基本操作工具,这个系统源自中国科学家张友明在欧洲留学工作期间做出的开创性工作,张友明博士后来回到山东大学工作。总体上,基于寡核苷酸入侵的重组工程可扩展性不够好(局限于原核的细菌、真核最多跨到酿酒酵母),效率相对低下(在千分之一到百分之一之间),难以大幅度优化。  其二,G2.5代的Targetron。这个来自原核微生物防御机制的Targetron技术,笔者更愿意把它称之为2.5代技术,不是因为它的效率,而是因为它的GPS定位模块的工作方式,其方式是结合了“个别DNA位点的蛋白质识别”和“其它位点的RNA识别”,而且识别序列是可编辑的、可以“reprogrammable”的。这个编辑工具的大本营首推德克萨斯大学奥斯汀分校,他们有对外开放的设计软件及一些技术服务,但是,它编辑复杂、使用困难、物种可扩展性不高,梭状芽孢杆菌是可以用的,中科院微生物所李寅组和上海的杨晟组都有相关工作。总之,仍然是一个小众工具。  SGN将会如何?是小众工具还是能够发展成大众工具呢?pAgo能不能进一步W为NgAgo“正名”?能不能正名之后再发展成大众工具呢?前提是solid、可重复,并且用户友好。让我们拭目以待吧!  源于天然而超越天然,正道也!再次祝贺南京大学科学家在基因编辑领域的这项重大突破!
  • 从“单个修改”到“全面覆盖” 我国科学家开发基因编辑新技术
    基因编辑技术是面向未来的技术,以CRISPR为代表的基因编辑技术,基本实现了对基因的“单个修改”——单碱基和短序列尺度的精准编辑。那么,能不能发明一种新的基因编辑技术,实现一次修改全面覆盖?中国科学院动物研究所/北京干细胞与再生医学研究院的生物学家们开发了一种具有自主知识产权的基因编辑新技术,成功实现了以核糖核酸(RNA)为媒介的基因精准写入,为新一代创新基因疗法的发展提供了基础。这项成果由中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成,相关论文发表在7月8日晚出版的国际学术期刊《细胞》上。李伟介绍,基因组脱氧核糖核酸(DNA)是生命的蓝图,对基因组DNA实现任意尺度的精准操作代表对生命蓝图进行修改绘制的底层能力,是基因工程技术发展的核心。目前,实现大片段基因尺度的DNA在基因组的高效精准整合,是整个基因工程领域急需突破的难题。针对这一重大技术挑战,多种基因写入技术已被开发,但是这些技术大多依赖于DNA模板作为基因写入的供体。在实际医学应用中,DNA供体面临免疫原性高、在体递送困难、在基因组中具有随机整合风险等诸多挑战。研究人员将视线转向RNA供体。RNA供体具有更低的免疫原性、可被非病毒载体有效递送、在细胞内迅速降解、无随机整合风险等特点,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。在多次尝试后,研究团队选定R2逆转座子进行攻关。李伟介绍:“结合基因组数据挖掘和大分子工程改造等手段,我们开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因高效精准的整合,最高效率超过60%。”这一技术的突破,意味着可以通过外源功能基因的精准写入,来干预涵盖不同位点多种突变谱的基因所导致的遗传缺陷等疾病,能够开发更为通用的基因与细胞疗法,具有广泛的应用前景。李伟说:“这一技术目前尚无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。这也是我们下一步工作的重点。”
  • CRISPR基因编辑技术遭遇迄今最大安全性质疑
    p   据《新科学家》杂志网站5月30日报道,美国科学家通过全基因组测序发现,CRISPR基因编辑技术能引起基因组内大量非靶标区内的基因发生突变,包括1500多种单核苷酸突变和100多种大片段序列的敲入和敲除。发表在《自然· 方法学》杂志上的这一论文表明,CRISPR的脱靶效应可能远超人们此前的估计。 /p p   CRISPR基因编辑技术因其快速和高精准等特点,成为研究基因与疾病关系的热门之选,并因其能敲入新基因、敲除或修复受损基因,为基因疗法带来了更大希望。但最新论文共同作者、哥伦比亚大学医学中心病理学和细胞生物学副教授斯蒂芬· 曾认为,随着临床试验的相继展开,科学界是时候慎重考虑CRISPR技术脱靶效应的潜在风险了。 /p p   之前对CRISPR脱靶效应的研究,主要通过计算机模型先识别最可能受到影响的非靶标区,再详细研究这些位点是否发生过基因敲入或敲除现象,但这些研究只能对培养皿的细胞或组织展开,而斯蒂芬团队首次通过全基因组测序对活体动物内CRISPR技术的全部脱靶效应进行了研究。 /p p   他们对两只经过CRISPR基因编辑的小鼠进行了全基因组测序,并与未编辑小鼠进行对照后发现,虽然CRISPR成功修复了导致小鼠失明的基因,但这两只小鼠基因组内不但出现了1500多种单核苷酸突变,而且其100多种非编码区内还出现了基因敲入和敲除现象,而这些变异都是之前计算机模拟未发现的脱靶效应。 /p p   斯蒂芬表示,如果不用全基因组测序方法,研究人员就会“忽略”这些具有潜在威胁的突变,而其实哪怕只出现一种单核苷酸变异,也有可能造成致癌性等严重副作用。他指出:“希望其他团队利用我们的方法对CRISPR的脱靶效应进行研究,不断改进CRISPR系统,进一步提高其精确性和安全性。” /p
  • 《自然-生物技术》首声明否定韩春雨基因编辑,明年1月完成调查
    北京时间11月29日日凌晨, 在围绕河北科技大学韩春雨NgAgo实验的可重复性问题上争论达半年之久后, 发表该论文的《自然—生物技术》(NBT)终于发布声明称,其于今日发表的Toni Cathomen及同事(编注:美德韩三国的研究团队)的通信文章,可能会否定韩春雨原论文所称的有效编辑内源性基因的这一主要发现。如果一篇论文在发表后遭到批评,NBT会对各种批评进行审慎和全面的评估,其将在2017年1月底之前完成对韩春雨NgAgo实验的调查。以下是“声明”全文。  关于韩春雨及同事发表于《自然-生物技术》的“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute”(利用NgAgo进行DNA引导的基因组编辑)一文的声明  《自然-生物技术》今天就此前发表的韩春雨及同事所著论文“利用NgAgo进行DNA引导的基因组编辑”发表了“编辑部关注”,并发表Toni Cathomen及同事的通信文章,题为“利用Natronobacterium gregoryi Argonaute(NgAgo)未能检测到DNA引导的基因组编辑”。  《自然-生物技术》已审慎考虑过所有关于韩春雨及同事原著论文的评论。在任何情况下,如果一篇论文在发表后遭到批评,我们都会对各种批评进行审慎和全面的评估,此次也不例外。今天,我们不仅发表了Toni Cathomen及同事的通信文章,这可能会否定原论文所称的有效编辑内源性基因的这一主要发现 而且我们还连同原论文一起发表了“编辑部关注”,以确保读者知晓Cathomen及同事的论文,以及另外一篇在别处发表的论文(doi:10.1007/s13238-016-0343-9)所提出的担忧。目前,原论文的作者中有两位,即韩春雨和沈啸,已同意我们的发表这一“编辑部关注”,而高峰、姜峰和Yongqiang Wu则认为这并不合适。  《自然-生物技术》认为,让原作者在能力所及的情况下对上述通信文章所提出的担忧展开调查,并补充信息和证据来给原论文提供依据是非常重要的。因此,我们将继续与原论文的作者保持联系,并为他们提供机会,以在2017年1月底之前完成其调查。届时,我们会向公众公布最新进展。  编辑部关注:利用NgAgo进行DNA引导的基因组编辑  《自然-生物技术》的编辑就上述论文发表“编辑部关注”,以提醒读者人们对原论文结果的可重复性存有担忧。此次,我们发表三个团队的实验结果(http://dx.doi.org/10.1038/nbt.3753),他们都设法去重复韩春雨及同事发表在原论文中图4的结果,这一关键图表展示了对哺乳动物细胞内源性基因位点的编辑。这些团队无一能在任何位点,或在任何高于检测方法敏感度的条件下观察到NgAgo所诱发的变异。另外一组作者在《蛋白质与细胞》期刊也报告了类似结果(doi:10.1007/s13238-016-0343-9)。  我们和论文作者进行了沟通,他们正在调查造成可重复性缺乏的潜在原因。我们向其告知了这一声明。尽管调查仍在进行中,但韩春雨和沈啸同意我们的发布这一编辑部关注,高峰、姜峰和Yongqiang Wu则认为目前并不合适。这些调查一旦完成,我们会向读者提供最新信息。  以下为英文原文  Statement regarding“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Han Chunyu and colleagues, published in Nature Biotechnology  Nature Biotechnology is today publishing an Editorial Expression of Concern, alongside a Correspondence entitled “Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute” by Toni Cathomen and colleagues, in relation to a previously published paper “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Chunyu Han and colleagues.  Nature Biotechnology has carefully considered all comments relating to the original paper by Han and colleagues. As in all cases where apaper encounters criticisms after publication, we have undertaken a careful and thorough evaluation of these criticisms. Today, we are publishing not only a Correspondence by Cathomen and colleagues that may refute the main finding of efficient editing of an endogenous gene claimed in the original paper, but alsoan Editorial Expression of Concern alongside the original paper to ensure that readers are aware of the concerns raised by the paper by Cathomen and colleagues and a report published elsewhere in the literature(doi:10.1007/s13238-016-0343-9). At this time, two authors of the original paper, Chunyu Han and Xiao Shen, agree with this Editorial Expression of Concern, whereas Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate.  Nature Biotechnology believes that it is important for authors to be able to investigate the concerns raised by the Correspondence and to provide additional information andevidence to support their paper if they are able to do so. Thus, we will continue to liaise with the authors of the original paper to provide them with the opportunity to do that by January 2017. An update will be provided to the community at that time.  Editorial Expression of Concern: DNA-guided genome editing using the Natronobacterium gregoryi Argonaute  The editors of Nature Biotechnology are issuing an editorial expression of concern regarding this article to alert our readers to concerns regarding the reproducibility of the original results. At this time, we are publishing the results of three groups (http://dx.doi.org/10.1038/nbt.3753) that have tried to reproduce the results in the critical Figure 4 in the original paper by Han and colleagues, which demonstrates editing of endogenous genomic loci in mammalian cells. None of the groups observed any induction of mutations by NgAgo at any of the loci or underany of the conditions tested above the sensitivity of the assays used. Similar results have been recently reported by a different group of authors in Protein& Cell(doi:10.1007/s13238-016-0343-9).  We are in contact with the authors, who are investigating potential causes for the lack of reproducibility. The authors have been informed of this statement. While the investigations are ongoing, Chunyu Han and Xiao Shen agree with this editorial expression of concern. Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate at this time. We will update our readers once these investigations are complete.    三国科学家表示使用NgAgo无法检测到基因组编辑效果  《自然-生物技术》发表的韩国首尔大学、德国弗莱堡大学和美国梅奥研究生院的10位学者的来信显示,三个独立的实验小组利用NgAgo未能发现基因组编辑的迹象。  “三个小组都合成了5’磷酸化的gDNA序列,使用高峰等人在Addgege提供的NgAgo质粒去转染相同的细胞系,并分析了基因组DNA寻找基因编辑的迹象。”  “尽管在报道的三种细胞系中做优化NgAgo介导的基因组编辑的不同尝试,但未能检测到成功编辑靶向序列的证据。”这十位科学家在来信中说。  “我们认为,在设计用于复制Gao等人的条件下,同时转染编码NgAgo的质粒DNA和单独的5'磷酸化单链gDNA不足以诱导在原始研究中报道的培养的人细胞中的indel,实现基因编辑。”  10位署名作者名单  Seung Hwan Lee,韩国基础科学研究院基因组工程中心   Giandomenico Turchiano,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心   Hirotaka Ata,美国明尼苏达州梅奥研究生院   Somaira Nowsheen,美国明尼苏达州梅奥研究生院   Marianna Romito,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学生物研究院   Zhenkun Lou,美国明尼苏达州梅奥诊所肿瘤研究部   Seuk-Min Ryu,韩国基础科学研究院基因组工程中心,国立首尔大学化学系   Stephen C Ekker,美国明尼苏达州梅奥诊所生物化学和分子生物部   Toni Cathomen,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学医学部   Jin-Soo Kim,韩国基础科学研究院基因组工程中心,国立首尔大学化学系。
  • 美法科学家基因编辑技术获2017“日本国际奖”
    日本国际科学技术财团2日在东京宣布,今年的“日本国际奖”授予美国、法国和以色列的3名科学家,以表彰他们在基因编辑和网络安全领域的贡献。  获得今年生命科学领域“日本国际奖”的有2名科学家,分别是美国加利福尼亚大学伯克利分校教授珍妮弗道德纳和在德国马克斯普朗克感染生物学研究所工作的法籍科学家埃玛纽埃勒沙尔庞捷。获得电子、信息、通信领域“日本国际奖”的是以色列魏茨曼科学研究所教授阿迪沙米尔。  道德纳和沙尔庞捷的获奖理由是2012年发明了新的基因编辑技术“CRISPR-Cas9系统”。这一技术比以往的基因编辑方法更加简便、高效和低成本,对于任何生物的目标DNA都可以进行任意部位的切断、剔除、插入和置换等操作,已作为生命科学的研究手段广为应用。  沙米尔教授的获奖理由是“先驱性的加密研究对于信息安全的贡献”。他发明的“RSA算法”等各种加密方法对保护网络个人信息等贡献巨大。  “日本国际奖”由日本国际科学技术财团于1983年设立,1985年首次颁奖,评选范围覆盖几乎所有科技领域,每年对其中两个领域的杰出科学家进行表彰。该奖将于今年4月19日在东京举行颁奖仪式。两个领域的奖金均为5000万日元(约合44万美元)。截至去年,88位“日本国际奖”得主中,有10位获得了诺贝尔奖。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 新发现,基因组编辑技术可对DNA进行微调
    Crispr基因编辑——一种分子剪刀可以让科学家对生物体的DNA进行有针对性的改变。Crispr基因编辑毫无疑问是治疗镰状细胞病的一个希望。镰状细胞病是一种与之相关的血液疾病,被称为地中海贫血,是一种罕见的失明,以及一种毁灭性的疾病,被称为转甲状腺素淀粉样变性,在这种疾病中,一种畸形的蛋白质会在体内堆积。有时候,科学家可以使用Crispr剪掉有问题的DNA以达到治疗疾病的目的,但在某些情况下,保留一个基因并对其进行微调,即系进入表观遗传编辑,可能会达到更好的目的。表观遗传学是研究DNA在一生中发生的化学变化,这些变化反过来又影响基因的表达。这些变化可能是由于一个人的行为(如饮食或吸烟)或环境暴露(如毒素或紫外线)造成的。表观遗传学是一种分子记忆,反映了我们多年来遇到的经验。这就是为什么,在拥有相同DNA密码的同卵双胞胎中,一个可能会患上癌症,而另一个则保持健康。虽然基因编辑依赖于改变DNA密码本身,而表观遗传编辑则涉及到上调或下调单个基因的表达。基因包含制造重要蛋白质的指令,而它们的表达是基因被“开启”来制造它们的过程。如果将基因比喻成音板上的音量旋钮,表观遗传编辑控制着它们的设置是“响亮的”还是“柔和的”。对于这样的“音量控制”进行实验是一个新领域,而刚好在今年5月发表在《科学进展》杂志上的一项研究提供了一个有趣的线索,揭示了一个可能的应用:对抗早期饮酒改变基因工作方式的方式。在之前的研究中,科学家们发现,青春期的酗酒会改变杏仁核的大脑化学成分–杏仁核是大脑中控制恐惧和快乐反应的小杏仁形状的部分。在啮齿动物和人类身上,他们都发现,在生命早期接触酒精似乎会减少一种名为Arc的基因的表达。这个基因是大脑可塑性的主要调节器,也就是大脑基于经验的适应能力。当Arc的表达被抑制时,这种变化与成年后易患焦虑和酒精使用障碍有关。在这项新研究中,由伊利诺伊大学芝加哥分校酒精表观遗传学研究中心主任、精神病学教授Subhash Pandey带领的团队想看看他们是否可以通过在老鼠杏仁核中对Arc进行表观遗传编辑来逆转这种改变。他们构建了一种经过修改的Crispr形式,这种Crispr不是编辑或删除基因,而是增加基因的表达。然后,他们将其注射到成年大鼠的大脑中,这些成年大鼠在青少年时期曾接触过酒精——相当于10至18岁的人类。这种早期的接触意味着Arc的表达在成年动物中已经受到抑制。Subhash Pandey表示他们瞄准了杏仁核的中央核,因为这是处理进入大脑的信息的关键中枢,也是焦虑、恐惧和饮酒行为的中心。注射Crispr使Arc的表达恢复到基线水平,Subhash Pandey称之为大脑的“工厂重置”。之后,这些啮齿动物摄入的酒精减少了,焦虑也减少了——研究人员通过行为测试来测量这一点,包括老鼠在所谓的“高架迷宫”中的表现。十字形迷宫由两条暴露在外的臂和两条封闭的臂组成。啮齿类动物的压力越大,它们就越不愿意在迷宫的露天部分呆上一段时间。Subhash Pandey说:“我们没有看到任何迹象表明他们的饮酒水平会回到基线,所以我们认为,也许这种表观基因编辑会产生持久的影响,我认为,就如何将这种疗法转化为人类治疗而言,还有很多工作要做,但我抱有很高的希望。”为了测试Arc基因是否真的导致了这一结果,研究人员还设计了一种旨在减少其表达的Crispr注射。他们在青春期没有接触酒精的老鼠身上进行了测试。注射后,老鼠比之前更焦虑,喝了更多的酒。这项研究提出了一种可能性,即我们的分子记忆可能会被修改,甚至被删除。加州大学伯克利分校的遗传学教授、加州大学伯克利分校和加州大学旧金山分校创新基因组学研究所的科学主任费奥多尔乌尔诺夫说:“这项研究展示了改变基因对其经历的记忆的可行性,这深深给我留下了深刻的印象。”但是他也强调,老鼠不是人类,我们不应该草率下结论。乌尔诺夫说表示治愈一只老鼠和用表观遗传编辑器给一个酗酒成瘾的人注射之间的距离还很遥远。我们是否具备向那些轻度饮酒问题的人的杏仁核进行快速注射还有很长的路要走。乌尔诺夫作为表观遗传编辑公司Tune Therapeutics的联合创始人之一,他认为,这样的实验疗法可以在多次治疗后复发、没有其他治疗选择的酒精成瘾患者中进行测试。然而,与直接编辑基因一样,调整基因表达可能会产生意想不到的后果。因为Arc是一种与大脑可塑性有关的调节基因,修改它的表达可能会产生酒精成瘾以外的影响。俄勒冈健康与科学大学遗传学教授贝琪弗格森(Betsy Ferguson)研究成瘾和其他精神疾病的表观遗传机制,她说:“我们不知道这种变化会改变其他什么行为。”“这是一种平衡,既要找到有效的方法,又要找到不会破坏日常生活的方法。”另一个复杂的因素是,随着时间的推移,酒精的使用会改变数十个、甚至数百个基因的表达。在人类中,这可能不像提高Arc的表达那么简单,这只是其中之一。虽然解决方案似乎是调整所有这些基因,但同时操纵许多基因的表达可能会导致问题。“我们知道行为,包括饮酒行为,是由许多基因控制的,这真的是一个具有挑战性的问题来解决,”Betsy Ferguson说。目前还不清楚这种编辑的影响会持续多久。Betsy Ferguson表示自然发生的表观遗传变化可能是暂时的,也可能是永久性的,有些甚至可以传给后代。总的来说,她认为使用表观遗传编辑治疗酒精成瘾的想法很有趣,但她希望看到结果被复制,并在更接近人类的大型动物身上试验Crispr治疗。相信这一天可能不会太远,因为最近有几家公司推出了表观遗传编辑商业化。在总部设在圣地亚哥的Navega治疗公司,研究人员正在研究如何通过抑制一种名为SCN9A的基因的表达来治疗慢性疼痛。当它高度表达时,它会发出许多疼痛信号。但简单地删除这个基因并不是一个好主意,因为一定程度的疼痛是有用的;当身体出现问题时,它会发出信号。(在极少数情况下,携带SCN9A突变的人对疼痛具有免疫力,这使他们容易受到无法感觉到的伤害。)。在Navega的实验中,小鼠的表观遗传编辑似乎抑制了几个月的疼痛。点击图片免费报名参加“第五届基因测序网络大会”
  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • 陈凯先院士:基因编辑技术对促进新药研发具有重大价值
    p   6月27日,由《药学进展》编辑委员会、中国药科大学、中国药学会共同主办,复星医药、恒瑞医药、先声药业联合承办的《药学进展》编委会暨“第三届药学前沿高峰论坛”在上海隆重召开。包含多位院士、产业领袖、政界精英、临床权威在内的强大嘉宾阵容吸引了数百名与会者。 /p p style=" text-align: center " img title=" 陈凯先院士.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/0d2ed797-ad36-4873-bc20-45b40e3881ab.jpg" / /p p style=" text-align: center " strong 陈凯先院士 /strong /p p   会上,“重大新药创制”技术副总师、《药学进展》主编陈凯先院士发表了题为《我国创新药物研发发展态势——新药重大专项的回顾和展望》的精彩演讲。报告中,陈凯先院士首先回顾了重大专项自设立以来的实施情况,解析了重大专项的“十三五”布局。 /p p style=" text-align: center " img title=" 陈凯先院士ppt.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/97df37d2-0050-4998-9349-d19e6292f5ac.jpg" / /p p style=" text-align: center " strong 图片来源:陈凯先院士大会报告 /strong /p p   我国新药研发走向新阶段 /p p   随后,演讲中,陈凯先院士强调,我国药物研究和产业发展正进入创新跨越新阶段,正在实现从跟踪仿制——模仿创新——原始创新的转变。 /p p   具体来说,跟踪仿制阶段(1950s-1990s)我国药物研究主要是仿制国外的药物,实现国产化,在此基础上构建和发展了我国医药产业,但缺乏系统性的创新能力。 /p p   模仿创新阶段(1990s-目前)的起点是以中美知识产权谈判、中国加入WTO为始因和标志的。这一阶段不再能无偿仿制国外产品,新药研究开始转入以新化学结构为主要目标的阶段。在这一阶段,我国药物创新技术平台体系建设取得长足进步,一批具有自主知识产权的新药研发成功,但新药研发仍处于模仿创新层面,大多数为国外已有新药的跟进(follow on),多为me-too或me-better等快速模仿创新品种。 /p p   原始创新阶段(目前-未来):随着我国经济科技实力的增长,我国新药研究和医药产业发展必须实现新的历史转变,加强原始创新,从“跟跑”向“并跑”和“领跑”跨越,开创我国新药研究的第三个阶段——First in class阶段。 /p p   中国新药研发存在的三大问题 /p p   报告中,陈凯先院士提出了中国新药研发存在的三大问题,具体如下: /p p   第一, 原始创新力不足:1)靶点创新不足,我国近年上市及申报新药基本属于已知靶点的跟踪创新 2)新药创新研究技术支撑作用尚未充分发挥。 /p p   第二, 顶层设计需要完善:1)基础研究、转化研究专项组织实施管理方式薄弱 2)开放共享、技术服务机制不完善 3)监管机构效率有待提升等。 /p p   第三, 企业总体实力不足:1)低水平重复现象突出 2)技术创新能力不强,市场竞争能力、抗风险能力以及国际影响力不足。 /p p   同时,陈凯先院士也强调,随着国家监管部门改革、新药平台的不断完善以及生物医药成为投资热点,中国新药研发正迎来新的发展。此外,当代科技发展为新药研究带来了新机遇。 /p p   当前新药研发所需的知识、方法和技术更加深入,生命组学、系统生物学、结构生物学等新兴学科,数理和信息科学(如高性能计算和大数据分析)方法和技术,深度融入药物研发,催生了药物研发的新策略、新方法和新技术。 /p p   “点名”基因编辑等技术 /p p   报告中,陈凯先院士“点名”了DNA编码化合物库合成与筛选技术以及基因编辑技术。前者是化学与分子生物学交叉融合产生的一项革命性技术,筛选化学空间可从百万级扩展至亿甚至兆级,筛选成本节约至1/1012,时间缩短至1/109,有望实现新药发现效率的提升 后者对于阐明疾病发生和药物作用机理、建立疾病动物模型、遴选药物作用靶点都具有重要作用,对促进新药研发具有重大价值。 /p p   陈凯先院士强调,准确认识和判断新药研究技术变革方向和趋势,加强前瞻性布局才能抓住先机,占据战略主动 否则,我们就可能与科技革命和产业变革的机遇擦肩而过,丧失历史机遇,陷入战略被动。 /p p br/ /p
  • 基因编辑技术再添新工具,真核生物中类CRISPR机制首次揭示
    图中是Fanzor蛋白(灰色、黄色、浅蓝色和粉色)与ωRNA(紫色)及其目标DNA(红色)复合的冷冻电镜图。非目标DNA链呈蓝色。图片来源:麻省理工学院美国麻省理工学院麦戈文脑研究所、麻省理工学院博德研究所和哈佛大学张锋团队在真核生物中发现了第一个可编程的RNA引导系统。29日发表于《自然》杂志上的论文称,这种基于Fanzor蛋白的系统能对人类基因组进行编辑,类似于CRISPR的基因编辑系统。与CRISPR-Cas系统相比,Fanzor蛋白系统更精准,有望成为被递送至人类细胞的新型基因编辑工具。研究表明,RNA引导的DNA切割机制存在于包括真核生物在内的所有生命王国。张锋表示,这个新系统是对人类细胞进行精确改变的另一种方式,补充了已有的基因组编辑工具。两年前,团队成员在原核生物中发现了一类名为OMEGA的RNA可编程系统,这种系统通常与细菌基因组中的转座元件或“跳跃基因”相关联,并可能产生CRISPR-Cas系统。这项研究还突显了原核生物OMEGA系统和真核生物中Fanzor蛋白之间的相似之处,表明Fanzor蛋白可能也使用RNA引导的机制来靶向和切割DNA。在这项研究中,研究人员从真菌、藻类和变形虫物种以及北圆蛤中均分离出Fanzor蛋白。Fanzor蛋白的生化特征研究结果表明,它们是切割DNA的核酸内切酶,使用附近的非编码RNA(即ωRNA)来靶向基因组中的特定位置。这是第一次在动物等真核生物中发现这种机制。进一步研究发现,Fanzor蛋白可对人类细胞基因组的特定位点进行靶向的插入与缺失编辑,证明了Fanzor蛋白作为基因组编辑工具的潜力。研究人员通过工程化技术,在蛋白质中引入了一系列突变,使其活性增加了10倍。此外,Fanzor蛋白没有显示出“附带活性”,即当RNA引导内切酶切割DNA时,会同时降解邻近的DNA或RNA。这些结果表明,Fanzor蛋白有可能被开发为高效的基因组编辑程序。
  • “沉睡”古菌随基因组编辑技术“重现江湖”
    “最近,这种菌都脱销了,订单有两厘米厚。”中国普通微生物菌种保藏管理中心(CGMCC)高级工程师辛玉华近日在接受《中国科学报》记者采访时说。她所说的菌叫作格氏嗜盐碱杆菌。自河北科技大学副教授韩春雨因利用该菌实现基因组编辑技术NgAgo-gDNA而出名之后,这种在保藏室里睡了20年“大觉”的古菌也跟着火了。  据透露,该菌种是1996年由中科院微生物所老所长周培瑾从苏格兰交换到中国的,其最先分离自肯尼亚马加迪湖。这种菌只是CGMCC保藏的数千种微生物中的一员。通常,它们或是通过真空冷冻干燥法,或是通过-190℃左右的液氮超低温冻结法处于休眠状态,其中一些甚至已在冷藏室中睡了半个多世纪。然而,一旦有需求,它们就会被唤醒并投入工作。  “CGMCC就像一个‘生物银行’,通过整合大家的力量,汇集研究中获得的各种微生物菌种,并将其功能转变为生物技术服务于社会。”微生物所副所长东秀珠对《中国科学报》记者说。  生命的“银行”  据悉,目前CGMCC保存的各类微生物资源超5700种,5万多株。它们按保藏形式可分为公开、非公开以及专利程序保藏等。“若从专利微生物保藏数量来看,我们的保藏量已超过1万株,在全球位居第2位。”辛玉华说。  与其他知识产权专利不同,微生物是唯一一种可通过专利保护的生命形式。过去几年来,我国专利微生物年保藏量增长速度一直位居世界第一。若加上武汉大学典型培养物保藏中心(CCTCC)的相关数据,我国在78个《国际承认用于专利程序的微生物保存布达佩斯条约》签约国中,保藏量已仅次于美国。  “CGMCC是公益性机构,一株菌只有500~1000元,不仅价格不贵,而且质量有保证。”东秀珠说。否则,如果科研人员自己分离菌种,在国际上得不到承认就会造成麻烦 同时,新微生物物种也需要经过权威鉴定、保藏才能在国际期刊生效发表,而CGMCC就具有这样的权威性。  该中心可保证微生物不会死、不被污染、避免退化。以放线菌为例,东秀珠介绍说,临床所用抗生素药物的70%来自微生物中的放线菌,而这类细菌在生产中最怕传代,因为反复传代就会退化。而该中心已经保藏了7000余株状态良好的放线菌。  战略性宝藏  关于菌种保藏的意义,东秀珠给记者讲了一个故事。聚合酶链式反应(PCR)就像“DNA复印机”一样,能实现体外DNA扩增,对分子生物学具有划时代的意义,美国生化学家凯利?穆利斯也因发明该技术获得了诺奖。但穆利斯一开始使用的大肠杆菌DNA聚合酶不耐高温,每次循环都要重新加入,非常麻烦。后来,他从美国生物保藏中心找到产生耐高温Taq酶的嗜热微生物,才使PCR广泛应用。  目前,CGMCC已经汇集了我国(除高致病菌外)80%的微生物物种。随着知识的积累,很多微生物正在被“唤醒”,并在各个领域一展身手。  例如,抗癌药物紫杉醇来源于生长速度缓慢的红豆杉,但若将其基因放在微生物中生产该蛋白并合成药物,就能大批量快速生产 生产汽车轮胎需要大量橡胶树,微生物所研究人员已在CGMCC找到了相应的微生物前体 该所研究人员还筛选制备了可用于多种青草的青储饲料菌剂,促进了西部数省畜牧业的发展。  此外,CGMCC还打造了一支以博士牵头的技术团队。“他们一半时间做管理,一半时间做科研,不断提高保藏技术并满足日益提升的科研需要。”东秀珠说。正因如此,很多国家级微生物项目直接落到了该中心的头上。比如,环保部指定CGMCC为进口环保菌剂的鉴定部门。国家质检总局、中国海关等也在技术层面与中心合作,建立检疫性真菌检测的国家标准。  支撑未来发展  今年5月,美国宣布启动“国家微生物组计划”,这是继2012~2014年美国在微生物学研究领域投资9.22亿美元之后的又一重大举措。目前,在微生物所科学家的倡导下,我国正在推进微生物组研究计划,竞争国际微生物领域战略高地。东秀珠认为,CGMCC必将发挥更大的支撑作用。“微生物资源是生物技术创新的重要源泉。未来,微生物资源保藏一定要保证,这个要是丢了,几代人都积攒不起来。”她严肃地说。  “至今为止,地球上99%的微生物我们还不知道如何培养。”东秀珠说,“只有经过培养,才知道它们适宜什么样的环境,能够做什么,也才能实现利用,所以未来发展空间很大。”  好消息是,当前我国专利微生物菌种年保藏量每年都达到4位数。不仅如此,2011年,世界微生物数据中心(WDCM)作为我国生命科学领域的第一个世界数据中心从日本落户中国,也体现了我国在微生物研究领域的竞争实力。  然而,我国生物保藏仪器设备研发却依旧存在短板。作为全国最先进的微生物资源服务中心,CGMCC有着全世界一流的实验设备,然而记者在实验室里看到,诸如氨基酸分析仪、紫外可见分光光度计、变性高效液相色谱仪等必备高端设备均产自德国、美国、日本,而国产的仅有普通冰箱、电磁炉、色谱仪等低端设备。“我们的工业制造确实需要提升,否则怎么竞争?”辛玉华说,当前我国在科研设备方面尤其需要自主创新。
  • 默克生命科学业务部门将CRISPR基因编辑技术许可给Evotec
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 近日,MilliporeSigma今天宣布已签署许可协议,允许Evotec SE访问MilliporeSigma的基础CRISPR知识产权。总部位于德国汉堡的国际生物技术公司Evotec将使用MilliporeSigma的CRISPR基因组编辑技术来创建用于Evotec商业和内部研究目的的编辑细胞系。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " MilliporeSigma首席执行官Udit Batra说:“这项CRISPR许可证是重要药物测试和发现的推动力,有望加速研究并推动新疗法的发展。” “ MilliporeSigma在基因编辑创新领域一直保持15年的领先地位,并继续与业界和学术界合作,以合乎道德和负责任的态度使用我们获得专利的CRISPR技术解决复杂问题。” /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " Evotec计划使用MilliporeSigma的CRISPR知识产权产品组合来开发精确设计的测定法,以确定在药物开发周期中潜在候选药物的生物学和毒性。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " Evotec首席运营官Craig Johnstone说:“ Evotec很高兴通过许可其开创性的CRISPR技术与MilliporeSigma保持牢固的合作关系。” “我们对创新的愿景和热情包括使用CRISPR技术来测试和改进我们开发的新药的功效,以缓解全球服务不足患者的痛苦。” /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 该项新许可证加强了MilliporeSigma和Evotec之间的合作。 2016年11月,两家公司达成了一系列协议,Evotec将使用MilliporeSigma的遗传试剂集合(包括CRISPR和shRNA库)提供筛选服务。将对MilliporeSigma的基因组编辑库的访问与Evotec的筛选专业知识相结合,为探索和确定新的药物靶标提供了更快的途径。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " MilliporeSigma在全球范围内拥有20项CRISPR相关专利的方法和组成,包括CRISPR Cas9用于哺乳动物细胞遗传整合的基本技术。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 作为基因组编辑技术的供应商,MilliporeSigma在认真考虑道德和法律标准的情况下,支持基因组编辑研究。 MilliporeSigma的母公司,德国达姆施塔特的默克公司(Merck KGaA),已经建立了一个独立的外部生物伦理咨询小组,以为其业务所涉及的研究提供指导,包括有关基因组编辑或使用基因组编辑的研究。该公司还考虑到科学和社会问题,确定了明确的运营位置,以为研究和应用中有望使用的治疗方法提供参考。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 550px height: 311px " src=" https://img1.17img.cn/17img/images/201911/uepic/fdb80b46-535e-43aa-9771-92ca611d9e44.jpg" title=" 基因png.png" alt=" 基因png.png" width=" 550" height=" 311" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 关于默克公司的生命科学业务 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 德国达姆施塔特的默克(Merck KGaA)的生命科学业务在美国和加拿大以MilliporeSigma的身份运营,其产品组合超过30万种,致力于科学发现,生物制造和测试服务。& nbsp span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " 2015年11月,德国达姆施塔特的默克股份公司以170亿美元的价格完成了对Sigma-Aldrich的收购,成为生命科学行业的领先企业。 /span /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 默克(Merck KGaA)业务涉及医疗保健,生命科学和高性能材料,其业务范围涵盖从先进的基因编辑技术到发现治疗最具挑战性疾病的独特方法,再到智能设备等。 /span /p
  • 革命性基因编辑技术CRISPR专利战再起波澜
    p   近日,德国制药巨头默克集团下属的MilliporeSigma成为一场欧洲复杂专利战的主要新参与者之一,这场专利战的核心是革命性的基因编辑技术CRISPR。 /p p   欧洲专利局(EPO)不久前暗示计划将一项专利授权给在美国和加拿大运行的MilliporeSigma,因其利用CRISPR将基因信息拼接到真核细胞中。正是这样一项“敲入”策略近日占据了新闻媒体头条,它在一项争议性的实验中纠正了人类胚胎中的一个致病基因。MilliporeSigma清楚地声明,“这种方法并不会改变生殖细胞系的遗传特性。” /p p   备受关注的CRISPR技术专利战使加州大学(UC)带领的团队在与马萨诸塞州布罗德研究所及其合作者的竞争中处于下风。在那次于美国专利和商标局办公室提出的诉讼中,UC主张其专利覆盖在所有种类的细胞中使用CRISPR,布罗德研究所则仅要求在真核生物中使用该工具的专利权,而这正是利用该技术开发新型药物的关键所在。“我发现很有趣的一点是,大多数人似乎认为专利纷争是两个群体之间发生的事情,而事情实际上比这复杂得多。”英国约克郡HGF公司专利律师Catherine Coombes说。她曾处理过一些与CRISPR相关的诉讼。 /p p   正如Coombes解释的那样,在欧洲不可能有“赢家通吃”的情况发生。MilliporeSigma是向EPO提出早期CRISPR拥有权的六方之一。“在欧洲,所有六家早期参与者基本上不可能有大量重叠的权利。”Coombes说,“让MilliporeSigma参与进来非常适合。它们将会拥有一些很好的基本专利权,这将在很大程度上为它们带来裨益。”除了UC、布罗德研究所和MilliporeSigma之外,其他的团队包括ToolGen公司、维尔纽斯大学和哈佛学院。 /p p   纽约法律学院专利专家、一直密切跟踪CRISPR案件的Jacob Sherkow说,他对EPO的决定“感到震惊”。他表示,MilliporeSigma作出的特定要求与布罗德研究所首席研究员在2013年1月发表于《科学》的一篇地标性文章极为一致。但MilliporeSigma比布罗德团队提出专利权的要求早6天。“这太疯狂了。”Sherkow说,“我不确定这是如何做出决定的。欧洲专利环境令人称奇。” /p
  • 科学技术部关于对“基因编辑婴儿事件”调查结果的回应
    p style=" text-indent: 2em text-align: justify " 广东省“基因编辑婴儿事件”调查组初步查明,基因编辑婴儿事件是南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。该事件性质恶劣,科技部对此坚决反对,已全面暂停相关人员的科技活动,并将依据调查事实和事件定性,支持配合相关部门对涉事人员及机构依法依规进行严肃处理。下一步,科技部将与有关部门一道,共同推动完善相关法律法规,健全包括生命科学在内的科研伦理审查制度。同时,科技部将一如既往地鼓励和支持广大科研人员在合法合规前提下开展科学研究探索,使科学技术成果持续造福人类发展。 /p
  • 人类胚胎基因编辑实验首获许可
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 2月1日,英国人工授精与胚胎学管理局(HFEA)首次批准了“在人类胚胎上使用基因编辑技术”的实验。研究人员将能深入了解健康的人类胚胎发育过程中出现的各种变化,并在此基础上改善体外人工授精培养的胚胎的发育质量,为不孕患者提供更好的治疗方法。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据物理学家组织网报道,HFEA在一份声明中称,“我们的伦理委员会已经批准伦敦弗兰西斯· 克里克研究所凯茜博士更新其实验室有关研究的许可证,包括胚胎的基因编辑。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜花了数十年时间研究人类胚胎的发育过程,试图去了解最开始的那7天:一个受精卵如何发育成包含200到300个细胞囊胚。她说:“这些研究如此重要的原因是,流产和不孕非常常见,但具体原因尚不清楚。弄清楚这一过程中究竟发生了什么及哪里出了错,将对人类生命早期发展有更深入了解,或将提高体外受精成功率。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜博士打算使用CRISPR/Cas9技术对人类胚胎进行编辑,以减少研究中所需要的胚胎数量。CRISPR技术已经被证实比同类方法更加高效,她相信其团队能够使用该技术成功编辑10个胚胎中的8个。其研究使用的是生育诊所中体外受精后剩下的、捐赠于科学研究的人类胚胎。在经过研究后,这些胚胎会发育到7日后被销毁。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 此举可能会再度引发伦理问题,因为从去年4月开始,基因编辑人类胚胎在全球科学界就引起很大争议。爱丁堡大学动物生物技术教授布鲁斯· 怀特洛说,该项目应该可以“帮助不孕夫妇和减少流产的痛苦”。这所大学人口健康科学信息研究所的莎拉· 陈(音译)则指出,这项研究“触及到一些敏感性问题,因此,HFEA应仔细考虑到研究中的伦理问题。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 总编辑圈点 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 去年,中山大学科学家利用CRISPR技术,修改了几个胚胎的地中海贫血基因,引发广泛关注,成为去年最大科学事件之一。CRISPR这一利器用于人类,引发伦理争议,看来是无可避免了。科学家在何种情况下能被允许操作人类胚胎,还会有长期的讨论交锋。但就像干细胞研究显示的,即使胚胎实验受阻,仍会有别的办法推进基因编辑技术在人体应用。 /p p br/ /p
  • 会议邀请 I 瀚辰光翼邀您参加第八届全国生物技术与产业化大会暨基因编辑技术与应用专题研讨会
    第八届全国生物技术与产业化大会暨基因编辑技术与应用专题研讨会将于9月23日-25日在山东青岛召开。会议由中国植物生理与植物分子生物学学会植物生物技术及其产业化分会主办,山东大学承办。大会将邀请国内相关研究领域具有重要学术影响的专家学者及优秀青年科学家做特邀报告,展示我国基因编辑领域的最新成果和进展,加强相关领域科研人员之间的交流与合作,促进研究成果转化和应用。瀚辰光翼参加此次大会并设立展位,诚邀各位专家学者莅临交流指导!会议信息大会主题 ▼基因编辑技术与生物育种产业的发展与机遇时间地点 ▼9 月23-25日主办单位▼中国植物生理与植物分子生物学学会植物生物技术及其产业化分会大会专题▼基因编辑工具开发基因编辑衍生工具开发利用基因编辑在生物育种中的应用基因编辑安全评价与产业化青年论坛期刊论坛瀚辰光翼展位展位号:7大会日程详情
  • 国家卫健委、科技部、中国科协、基因编辑国际峰会、NIH回应“基因编辑婴儿”事件
    p   span style=" text-indent: 2em " “基因编辑婴儿”事件一经公布,引起学界和社会广泛关注,特别引发了法律和伦理方面的争议。29日,国家卫生健康委员会、科学技术部、中国科学技术协会、基因编辑国际峰会、NIH、等部门负责人接受采访表示:此次事件性质极其恶劣,已要求有关单位暂停相关人员的科研活动,对违法违规行为坚决予以查处。以下为回应详细内容: /span /p p    span style=" color: rgb(0, 112, 192) " strong 国家卫健委 /strong /span :对违法违规行为坚决予以查处 /p p   国家卫健委高度关注近期有关“免疫艾滋病基因编辑婴儿”的信息,第一时间派出工作组赴当地和当地政府共同认真调查核实。 /p p   国家卫健委副主任曾益新在接受记者采访时表示,我们始终重视和维护人民的健康权益,开展科学研究和医疗活动必须按照有关法律法规和伦理准则进行。 /p p   “目前媒体所报道的情况,严重违反国家法律法规和伦理准则,相关部门和地方正在依法调查,对违法违规行为坚决予以查处。”曾益新说。 /p p   曾益新呼吁,当前科学技术发展迅速,科学研究和应用更要负责任,更要强调遵循技术和伦理规范,维护人民群众健康,维护人类生命尊严。 /p p    span style=" color: rgb(0, 112, 192) " strong 科技部 /strong /span :已要求有关单位暂停相关人员的科研活动 /p p   科技部副部长徐南平在接受记者采访时表示,开展以生殖为目的的人类胚胎基因编辑临床操作在中国是明令禁止的,此次媒体报道的基因编辑婴儿事件,公然违反国家相关法规条例,公然突破学术界伦理底线,令人震惊,不可接受,我们坚决反对。 /p p   徐南平介绍,科技部已要求有关单位暂停相关人员的科研活动。 /p p   “下一步,科技部将在全面客观调查事件真相的基础上,会同有关部门依法依规予以查处。”徐南平说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国科协 /span /strong :取消贺建奎第十五届“中国青年科技奖”参评资格 /p p   日前,中国遗传学会、中国细胞生物学会、中国科协生命科学学会联合体以及一批科技工作者已相继发出严正声明,表明中国科技界的鲜明立场和坚定态度,反对挑战科学伦理的任何言行。 /p p   中国科协党组书记、常务副主席怀进鹏在接受记者采访时表示,此次事件性质极其恶劣,严重损害了中国科技界的形象和利益。我们对涉事人员和机构公然挑战科研伦理底线、亵渎科学精神的做法表示愤慨和强烈谴责。 /p p   “中国科技界坚决捍卫科学精神和科研伦理道德的意志决不改变,坚决捍卫中国政府关于干细胞临床研究法规条例的决心决不改变,坚守科技始终要造福人类、服务社会持续健康发展的初心决不改变。”怀进鹏说。 /p p   据悉,中国科协将进一步加大面向科技界的科研伦理道德的教育力度,以“零容忍”的态度处置严重违背科研道德和伦理的不端行为,取消贺建奎第十五届“中国青年科技奖”参评资格。 /p p   “我们将继续加大在全社会弘扬科学家精神工作力度,为科技创新的持续健康发展和创新型国家建设营造良好的文化和生态环境。”怀进鹏说。 /p p    strong span style=" color: rgb(0, 112, 192) " 中国医学科学院的声明 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/6f37ae99-063c-4f6a-b9dc-a1d1156fdcc7.jpg" title=" 医学科学院声明.png" alt=" 医学科学院声明.png" / /p p style=" text-indent: 2em " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 基因编辑国际峰会宣读组委会关于人类基因编辑声明 /strong /p p style=" text-indent: 2em " 声明第一部分 /p p   在2015年12月,美国国家科学院、美国国家医学院、英国皇家学会和中国科学院在美国华盛顿举办了一次国际峰会,峰会上讨论了人类基因编辑的科学、伦理和处理方法的问题。峰会组委会发表了一项声明,明确了能在现有规章和管理协议下进行的研究和临床应用领域。组委会同时强调,对任何可遗传的“生殖系”编辑进行临床使用都是不负责任的。另外,组委会也呼吁,对待这项飞速更新的技术,国际社会应该就它的益处、风险、前景进行更多的交流和讨论。 /p p   以在人类基因组编辑领域促进深刻的国际讨论为己任,香港科学院,英国皇家学会、美国国家科学院及美国国家医学院在香港举办了第二届人类基因组编辑国际峰会,以评估正在持续变化的科学前景、可能发生的临床应用,以及随之而来的、对人类基因组编辑的社会反响。作为第二届峰会的组织委员会,我们一方面为体细胞基因编辑进入临床试验阶段的飞速突破而喝彩,另一方面则继续认为任何将生殖系编辑引入临床应用的举措在目前仍是不负责任的。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " NIH对于贺建奎事件的声明 /span /strong /p p style=" text-indent: 2em " 美国国立健康研究院对贺建奎博士在香港举行的第二届人类基因组编辑国际峰会上刚刚提出的科研工作深表关注,他描述了在人类胚胎中使用CRISPR-Cas9来敲除CCR5基因。他声称这两个被编辑后的胚胎随后被植入母体,并且女婴双胞胎已经出生。这项科研工作表明了贺建奎博士及其团队在研究过程中对国际伦理规范的有意忽视,这种行为是非常令人不安的。该科研项目主要是秘密进行的,在这些婴儿中抑制CCR5基因的必要性完全不能令人信服,知情同意过程似乎也非常值得怀疑,并且破坏脱靶效应的可能性也没有得到充分的考虑和探讨。非常不幸的是,这种强有力的技术首次明显应用于人类生殖细胞系却是如此不负责任。 /p p   目前正在香港进行迫切讨论,是否需要就此类研究的限制制定具有约束力的国际共识。如果没有这种限制,世界将面临大量同样考虑不周和不道德的科研项目带来的严重风险。如果这种史诗般的科学不幸事件继续发生,那么对于预防和治疗疾病具有巨大潜力的技术将会被无可非议的公愤,恐惧和厌恶所掩盖。 /p p   为了避免出现任何疑问,正如我们之前所说,NIH不支持在人类胚胎中使用基因编辑技术。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 贺建奎临时不参与29号的报告 /span /strong br/ /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " 11月28日晚23点24分左右,基因编辑国际峰会给参会者发送邮件,贺建奎将不会出席29日下午的会议。 /span /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/033e75d9-33a9-46a0-ab95-6d300d4d9414.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 289" height=" 510" style=" width: 289px height: 510px " / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9058cbad-060e-458d-a820-90023ee6d8be.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Science将基因编辑宝宝剔出2018年重大突破的评选 /span /strong /p p style=" text-indent: 2em " 2018年11月28日上午,Science评选了2018年重大突破的科研进展。基因编辑“中国宝宝& #39 强势入围,这也是众多参选的一匹大黑马。此消息一出,也是引来众多舆论,一时间满城风雨。11月29号上午,Science也悄悄把基因编辑宝宝剔出2018年重大突破的评选活动,并附上一则说明:“我们最初把基因编辑婴儿列为候选名单 现在我们删除了它,以避免给人一种错误的印象,认为Science杂志认可了这一有悖道德科学研究工作。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/ef1b2618-c7c0-4cc1-b9ba-4b8028c8b166.jpg" title=" 3.jpg" alt=" 3.jpg" / span style=" text-indent: 2em " /span /p
  • 一图解读:基因编辑原来如此
    p   11月26日,来自深圳的科学家贺建奎宣布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。由于这对双胞胎的一个基因被编辑,她们出生后即能抵抗艾滋病。不过,“基因编辑婴儿”一事宣布后引来多方质疑,质疑的内容集中于该项研究涉及的伦理问题、必要性和安全性。 /p p    strong 截至目前各关联方回应汇总: /strong /p p   原稿《世界首例免疫艾滋病的基因编辑婴儿在中国诞生》:文章已检索不到 /p p   深圳和美妇儿科医院:没做过此项目 /p p   深圳医学伦理委:试验未经医学伦理报备,已启动事件调查 /p p   伦理审查文件“签字”者:不知情、未参会、没签字 /p p   南方科技大学:贺建奎已停薪留职,该研究未向学校报告。据中青报调查,贺建奎企业有南科大股份,临床试验获注册 /p p   超百位科学家联合声明:危害不可估量,强烈谴责 /p p   国家卫健委:高度重视,立即要求广东省卫生健康委认真调查核实。 /p p   贺建奎在一段团队视频中曾回应争议:我知道会有争议,但我愿意为有需要的家庭接受指责。 /p p   两家专业学会(中国遗传学会基因编辑研究分会和中国细胞生物学会干细胞生物学分会)联合发声:对这一严重违反中国现行的法律法规,违背医学伦理和有效知情同意的违规临床应用表示强烈反对并予以严厉谴责。 /p p    strong 一图解读:基因编辑原来如此 /strong /p p   虽然事件本身在网络上引起热烈讨论,但很多网友对基因编辑的原理或许并不熟悉。基因编辑抵抗艾滋病究竟是如何实现的?为什么伦理问题如此受到关注?在遥远的未来,基因编辑能为人类的生活作出贡献吗?看完下面这张图,你就了解了。 /p p style=" text-align: center " img width=" 468" height=" 1400" title=" 111.webp.jpg" style=" width: 521px height: 1403px " src=" https://img1.17img.cn/17img/images/201811/uepic/c5a8ccbb-19d5-49d8-a7d1-d69ca702b9b7.jpg" / /p p style=" text-align: center " img width=" 599" height=" 983" title=" 640.webp.jpg" style=" width: 520px height: 978px " src=" https://img1.17img.cn/17img/images/201811/uepic/3f3032f4-7a98-4b8b-9f60-55ad3e845a88.jpg" / /p p style=" text-align: center " img title=" 2222222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e4110a92-2f64-44a1-88c5-ac78c97c7ad8.jpg" / /p p   实际上,目前人类对于基因的了解还很有限,没有几种人类疾病可以清晰明了地归咎于某一种基因。多数情况下,疾病通常是由两个或多个基因相互耦合的结果。未来,基因编辑需要探索与挑战的东西,还有很多。 /p p style=" text-align: center " /p p style=" text-align: center " /p p /p
  • 我国首个植物基因编辑安全证书下发
    近日,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,其原理等同于常规诱变育种,培育出的品种也与常规育种培育出的品种无异。  “目前国际上诸如美国、日本、印度等地对于没有外源基因的编辑作物不是按照转基因作物管理,而是按照传统作物来对待。因为基因编辑的原理跟传统的诱变育种是一样的,和诱变作物相比,基因编辑产品并没有增加环境安全和食品安全风险。”中国科学院院士、著名水稻育种家刘耀光表示,“《细则》的发布和第一个安全证书的发放让我们看到了基因编辑作物产业化的希望。”  刘耀光院士提及的《细则》是指农业农村部刚发布的《农业用基因编辑植物评审细则(试行)》,进一步明确基因编辑植物的分类标准和简化评审的细则。  “基因编辑育种有着先天的优势,可以快速培育出高产高附加值的优良品种。”得知舜丰生物获得全国首个植物基因编辑安全证书,中国科学院院士许智宏表示,“《细则》的发布和第一个基因编辑安全证书的下发,让我们看到了民族种业振兴的希望。”  美国科学院院士、南方科技大学前沿生物技术研究院院长,舜丰生物首席专家顾问朱健康向记者表示:“此次《细则》的发布是继2022年《农业用基因编辑植物安全评价指南(试行)》发布后的又一个里程碑事件,它从分子特征、环境安全、食品安全三个方面界定评审细则,将已有文献或产业数据表明对环境安全和食品安全没有风险的基因编辑产品,予以简化安全评估流程,这无疑会加速基因编辑的产业化进程。”
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 基因编辑先驱杜德纳给“基因魔剪”安“刹车”:避免伤及无辜
    p   受热捧的基因编辑技术CRISPR-Cas9并非完美,它犹如一辆没有刹车装置的汽车,可能失控伤及无辜,即产生脱靶效应——编辑了不该编辑的基因片段。从去年12月开始,科学家们争先恐后地开启为CRISPR安上“刹车”的研究,他们试图从自然界,找出这个“刹车”。 /p p   美国生物学家、最先提出CRISPR-Cas9可以进行基因编辑的詹妮弗· 杜德纳(Jennifer Doudna)也是其中的一员。当地时间8月24日,她与同事的相关论文发表在顶级期刊《细胞》(Cell)杂志,揭示了两个可以为CRISPR的基因编辑画上停止键的蛋白质是如何发挥作用的。此外,这两个抑制蛋白具有广谱性,也就是说可以适用不同的CRISPR系统。 /p p   CRISPR系统应用于基因编辑,是科学家从细菌身上取得的“经”。为了对付“杀手”噬菌体,细菌的免疫系统经过漫长的时间,进化出CRISPR系统。一旦有噬菌体入侵细菌,细菌的免疫系统会抓取一段噬菌体的DNA作为备份。等到下一次噬菌体再次来袭,细菌就可以根据备份,做出识别。识别成功时,细菌的Cas9蛋白会切断噬菌体的DNA。这套系统为人类所用时,可以高效地对目标基因进行切割、添入等编辑。由于其高效,在业界有“基因魔剪”之称。 /p p   尽管CRISPR系统被广泛验证其有效性,成为全球各大生物实验室的宠儿,也有一些人体临床试验已经开展。但CRISPR的脱靶性问题尚未得到完全解决。一旦CRISPR系统进入工作模式,科学家们此前一直没有办法干预其过程,只能任其操作至自然结束,其中可能会发生错误编辑非目标基因的情况,带来安全性隐患。 /p p   可喜的是,科学家们发现,求生的本能同样让噬菌体想出对策,进化出了针对细菌CRISPR系统的抑制蛋白,用来逃避细菌免疫系统的攻击。这些抑制蛋白被称为ACR蛋白。 /p p   杜德纳与同事此次研究的AcrIIC1 和AcrIIC3便是其中两种。 /p p   AcrIIC1 和AcrIIC3是通过什么方式来对付难缠的CRISPR系统呢?杜德纳和同事发现,当AcrIIC1和Cas9蛋白相遇时,AcrIIC1会紧紧结合Cas9用来抓取DNA的位置,从而使得Cas9无法捣乱。打个比方,这相当于给Cas9这把锋利的剪刀套上了外壳,无法再做出“剪”的行为。 /p p   不仅如此,AcrIIC1可以抑制多种Cas9蛋白,具有广谱性。 /p p   相比之下,AcrIIC3能发挥作用的范围要小,只能抑制一种Cas9蛋白。而且,和AcrIIC1不同,AcrIIC3不结合Cas9蛋白,而是将两个Cas9蛋白拉拢在一起,改变它们的结构,从而使得Cas9对DNA无计可施。 /p p   值得一提的是,杜德纳并不是第一个发现 CRISPR系统“关闭开关”的人。 /p p   在2016年12月,来自加拿大多伦多大学和美国马萨诸塞大学的科学家们首次发现了自然界隐藏的这类“关闭开关”。但当时,科学家们还不清楚,这些抑制蛋白是如何发挥“关闭开关”作用的。 /p p   数个月后,来自不同国家的两个科研小组先后通过解析蛋白结构是什么样的,来揭示抑制蛋白防守CRISPR系统的机制。其中就包括哈尔滨工业大学教授黄志伟的课题组。但他们所解析的和杜德纳此次解析的都为不同种类的抑制蛋白。 /p p   不久的将来,科学家或许就能找到最合适的“关闭开关”,不由CRISPR系统任性,为其安全性“保驾护航”。 /p p /p
  • 两会声音——基因编辑立法箭在弦上
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 基因编辑婴儿事件让两会上基因编辑立法的呼声更高。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " “现阶段基因编辑在什么上能做,在什么上不能做,应该是法律要规范和解决的关键问题。”全国人大代表、山西医科大学第二医院血液科主任杨林花说,如果因为某个不良事件,将所有关于基因编辑的工作都叫停,那是不可取的。 /span br/ /p p style=" text-align: justify "   基因编辑仅仅是一种工具,不能因为它砍坏了一棵树就放弃它,而应善加利用得到整片森林。杨林花忧心,如果“一刀切”造成整个领域研究的停滞,未来我国新型医疗技术和产品的研发或许又会落后于其他国家很多年。 /p p style=" text-align: center " strong 基因编辑法规制度建设正稳步推进 /strong /p p style=" text-align: justify "   “应用上不太成熟的新兴技术一定要严格标准、依法管控,规范科研和临床行为。”全国人大代表、中国工程院院士、山东省肿瘤医院院长于金明在接受科技日报记者采访时也表示,基因编辑研究与临床应用相关立法很有必要。 /p p style=" text-align: justify "   此前,相关法规制度的建设正稳步推进。2月26日,国家卫健委发布《生物医学新技术临床应用管理条例(征求意见稿)》向全社会公开征求意见。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/121c6ccf-adbc-4e2d-acaa-6676ea08bc37.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify "   杨林花介绍,基因编辑被业界称为“神剪”,用它在体细胞中将突变基因剪掉,替换为正常基因。目前比较明确的单基因遗传病完全有可能就会被治好,CAR-T在国外也已经被批准临床了。 /p p style=" text-align: justify "   杨林花认为,对包括基因编辑技术等立法应体现对生殖细胞的基因编辑的管控,而对体细胞基因编辑、免疫细胞等的基因编辑(CAR-T治疗)应鼓励其规范应用。 /p p style=" text-align: justify "   在国家卫健委的征求意见稿中,将生物技术进行了分级,基因编辑被列为高危生物技术,将采用相应的管理。但并未对该技术的应用范围进行更细化的分类。 /p p style=" text-align: justify "   善加利用,意味着更细化、更多角度的法条、规则。“分级管理的思路是正确的。”于金明说。除了技术上的分级,还可以对试验申请单位实施分级:例如一个研究单位临床数据可信度一直非常高、有威信度高的专家参与,评级高一点 而如果经验不足、水平有限,需要降低评级,通过严格审查督促基因编辑临床试验的规范。 /p p style=" text-align: center " strong 立法前要充分吸纳专业意见 /strong /p p style=" text-align: justify "   如何做到在制定法律时,制定更细化、更有适应性的条款? /p p style=" text-align: justify "   “我对从事立法工作的专家说,一定要邀请这个行业资深的专家来参与法律的制定。”杨林花说,法律是“准绳”,必须要根据实际情况“划线”,需要充分地调研。 /p p style=" text-align: justify "   立法委员会掌握专业的生物学知识是非常必要的。人们对基因认知的深度也会左右“准绳”的位置。例如,人们最初认为对细胞线粒体DNA的编辑,不会遗传,但后来的研究表明,线粒体DNA的编辑也会遗传,进入人类基因库。因此基因编辑立法也会包括对线粒体基因的编辑。 /p p style=" text-align: justify "   “这个技术本身没有这么简单,催生出的研究领域就更加复杂,让专业的人参加,从专业角度上进行把关,帮助法律逐步完善、更符合实际,既规范了研究应用,又发挥了基因编辑工具的优越性。”杨林花说。 /p p style=" text-align: justify "   此外,也应该在广泛争取医学科研人员专业意见的基础上再出台,他们如果有合理的建议应该吸纳。杨林花表示:“征求意见截止前,我一定会抽出时间好好看一下征求意见稿,并提出自己深思熟虑的意见。” /p p style=" text-align: center " strong 伦理制度是立法“着力点” /strong /p p style=" text-align: center " strong 全国统管可能有难度 /strong /p p style=" text-align: justify "   没有把好“伦理关”是基因编辑婴儿事件最受诟病的地方。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/91468831-2eee-4e1e-a7dc-17e731bbd5d1.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify "   “现在有些伦理委员会的成员设置有些没有做过临床试验或基本知识的人也在内。没有科研基础的人员进入伦理委员会,不了解审查的内容究竟是什么,把关就有问题。”杨林花说,虽然对伦理委员会的设置有成员组成规定,但各地掌握的政策并不严格。 /p p style=" text-align: justify "   按照现在的法规,通过伦理审查,就能进行医学探索的临床研究,那么谁来监督伦理审查是否合规、合法呢? /p p style=" text-align: justify "   为此,在国家卫健委的征求意见稿中规定,由省级人民政府卫生主管部门完成低风险生物技术临床的学术审查和伦理审查,而高风险的将由省级初审后,交由国务院卫生主管部门60天内完成审查。 /p p style=" text-align: justify "   杨林花认为,如果全国的所有相关实验都要上报,可操作性就没有保障了。“全国目前约有100多家公司在做CAR-T,按每个公司相关项目计算,短时间完成审查工作也有一定困难。”杨林花说,CAR-T还仅仅是基因编辑应用中一个很细分的领域,全国会有多少的相关临床研究,全部由国家一级进行伦理审查,60天如何完成审核任务。 /p p style=" text-align: justify "   相关专家表示,政府部门应转变思路,坚持“放管服”,着力进行监督和检查工作。 /p p style=" text-align: right " strong span style=" color: rgb(127, 127, 127) " 科技日报记者 张佳星 /span /strong /p
  • 中美科学院院长就基因编辑准则在《科学》发文
    p style=" text-indent: 2em text-align: justify " 近日,中国科学院院长白春礼联合美国国家医学院院长Victor J. Dzau、美国国家科学院院长Marcia McNutt在《科学》上发表一篇题为《来自香港的警示》社论,呼吁全球各国科学院携起手来,就基因编辑研究及临床应用所应遵循的准则达成广泛的国际共识。 /p p style=" text-indent: 2em text-align: justify " 上月,在香港举办的第二届国际人类基因组编辑峰会引起了轩然大波。一名来自南方科技大学的研究者贺建奎爆出,他对一对健康胚胎进行了基因编辑,使其能抵抗艾滋病,并使这对基因编辑的双胞胎出生。 /p p style=" text-indent: 2em text-align: justify " 事件发生后,中科院学部科学道德建设委员会迅速发出声明称,坚决反对任何个人、任何单位在理论不确定、技术不完善、风险不可控、伦理法规明确禁止的情况下开展此类的临床应用。 /p p style=" text-indent: 2em text-align: justify " 社论作者在文章中指出,尽管峰会主办方、各国科学院以及有声望的科学领袖都在普遍谴责这项研究“令人深感不安”以及“不负责任”,中国也已启动了对该研究者行为的调查,但很显然,使用CRISPR-Cas9技术来编辑人类基因组,已经跑在了科学、医学共同体为应对复杂伦理及管理问题所进行的努力的前面。 /p p style=" text-indent: 2em text-align: justify " “当前,人类生殖系基因组编辑的指导方针和原则是基于充分的科学研究和伦理原则的。”社论称,“然而,此次事件突显出一种紧迫的需求,那就是我们需要加倍努力,赶在人类生殖系基因组编辑被认为是一件可容许的事之前,就更加明确的准则及标准达成国际共识。” /p p style=" text-indent: 2em text-align: justify " 文章作者呼吁,各国科学院应迅速召集国际专家及利益相关者形成一份快速报告,来推动完善用于生殖目的的人类胚胎所必须遵循的准则及标准。作者认为,在召集国际专家、推动就负责任的基因编辑研究及临床应用达成广泛科学共识方面,国家科学院具有很大的优势。 /p p style=" text-indent: 2em text-align: justify " “我们坚信,建立基因编辑标准的国际共识是十分重要的,这些标准能够避免研究者为从事危险和有违伦理的实验寻求借口,或寻找方便的实验场所。”文章作者同时强调,国际科学标准的建立,并不打算去替代各国的规章制度,反而可能会使各国的规章制度更加充实。 /p p style=" text-indent: 2em text-align: justify " 社论称,基因编辑有朝一日是能够治疗或预防疾病的,但想要维持公众对这一问题的信任,学术共同体现在就要采取措施,来证明这种新的工具可以在具备能力、正当及善行的前提下被使用。但不幸的是,此次基因编辑事件恐怕在各个方面都已失败,鲁莽而草率的行为,会置人类生命于危险之中。 /p p style=" text-indent: 2em text-align: justify " 作者认为,仅仅建立标准还不够,人们还需要建立一种国际机制,让科学家能够对不符合原则和标准的研究更加重视。他们提出了一系列政策建议,例如加快管理科学的发展、提供一个管理方案的“信息交换所”、致力于共同监管标准的长期发展,以及对计划及进行中的研究及临床应用实验,可以通过国际注册制度提升协调能力等。 /p p style=" text-indent: 2em text-align: justify " 文章最后援引了著名的阿希洛马会议案例。40多年前,当DNA重组还是一项革命性的生物医学新技术时,其安全性和效果也曾引发关注,为此科学家召开了阿希洛马会议。在那次会议上,科学家就这些问题进行了公开的讨论和辩论,最终,他们就一系列研究指导原则达成了共识,这些原则最终成为政府制定政策的基石。 /p p style=" text-indent: 2em text-align: justify " “阿希洛马会议至今仍能为我们带来重要的启示。”白春礼等人强调,人们需要就人类生殖系基因组编辑的研究和临床应用的具体标准及准则达成广泛的共识。并且,这种共识不仅涵盖科学和临床医学的共同体,也应当将全社会囊括进来。 /p p style=" text-indent: 2em text-align: justify " 在这篇文章中,统领美国国家科学院、国家工程院、国家医学院及国家科学研究委员会四大学术机构的美国国家学院(美国最高学术团体)也表态称,愿意牵头为推动此事作出贡献。 /p p style=" text-indent: 2em text-align: justify " 据了解,2015年12月,由美国国家科学院、美国国家医学院、英国皇家学会、中科院联合组织的人类基因编辑峰会在美国召开首次峰会。会后,包括中科院广州生物医药与健康研究院研究员裴端卿在内的22名学者组成了人类基因编辑研究委员会,历经14个月研究后,向全球发布了人类基因编辑基本原则。 /p p style=" text-indent: 2em text-align: justify " 其中,可遗传的生殖系基因组编辑的原则描述如下:有令人信服的治疗或者预防严重疾病或严重残疾的目标,并在严格监管体系下使其应用局限于特殊规范内,允许临床研究试验;任何可遗传的生殖系基因组编辑应该在充分的持续反复评估和公众参与条件下进行。委员会还特别就可遗传生殖系基因组编辑提出了10条规范标准。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制