当前位置: 仪器信息网 > 行业主题 > >

乙二醇单丁醚

仪器信息网乙二醇单丁醚专题为您整合乙二醇单丁醚相关的最新文章,在乙二醇单丁醚专题,您不仅可以免费浏览乙二醇单丁醚的资讯, 同时您还可以浏览乙二醇单丁醚的相关资料、解决方案,参与社区乙二醇单丁醚话题讨论。

乙二醇单丁醚相关的资讯

  • 电位循环策略优化乙二醇电化学转化!
    【研究背景】随着可再生能源需求的增加,乙二醇(EG)作为一种重要的有机化学品,其高效氧化反应(EGOR)引起了广泛关注。EG广泛用于聚酯和其他化学品的合成,但其氧化过程中的低反应效率和选择性成为了研究中的主要挑战。因此,开发高效、稳定的催化剂以提升EGOR性能显得尤为重要。在此背景下,研究者们探索了贵金属催化剂的潜力,尤其是钯(Pd)催化剂在电化学氧化反应中的应用。近期的研究表明,使用钯基催化剂(如Pd/NF)在电流和电位循环策略下,能够显著提高EG的转化率和选择性。为了解决催化剂在反应过程中的失活问题,上海交通大学物质科学原位中心陈立桅课题组以及化学化工学院徐鹏涛、Xi Liu等人携手采用了电位循环和原位表面增强拉曼光谱(SERS)等技术,深入探讨了催化剂表面的变化及其影响。实验结果显示,优化的电化学条件不仅改善了催化剂的稳定性,还增强了反应的法拉第效率。进一步的表征分析,如X射线光电子能谱(XPS)和X射线吸收精细结构(XAFS),揭示了催化剂在反应过程中结构和电子特性的演变。这些研究不仅为EG的高效氧化反应提供了新的理论基础和技术路径,也为其他有机化合物的电化学转化研究提供了借鉴,推动了绿色化学的进步。【表征解读】本文通过多种先进的表征手段对Pd/NF的结构特性及其在电化学氧化反应中的表现进行了深入分析,揭示了其在乙二醇氧化反应中的优异性能。具体而言,使用日立HF5000显微镜获取的扫描透射电子显微镜(STEM)图像,展现了Pd/NF的纳米结构特征,这为理解其高催化活性提供了重要依据。此外,利用克拉托斯Axis Ultra DLD进行的X射线光电子能谱(XPS)分析,确定了Pd/NF表面的化学状态和组成,进一步揭示了其催化反应中的反应位点。针对Pd/NF在电化学反应中表现出的优异催化特性,本文通过原位表征手段揭示了电化学氧化反应(EGOR)的微观机理。高效液相色谱(HPLC)分析了乙二醇的电化学氧化产物,提供了催化过程中的关键反应路径数据。这一过程的研究,揭示了Pd/NF在不同电位下催化反应的选择性和效率,为设计更高效的催化剂提供了理论基础。在此基础上,结合扫描电子显微镜(SEM)和能谱分析(EDS),对Pd/NF电极在不同电化学条件下的表面形态变化进行了观察。结果显示,在电位循环和持续电流的作用下,Pd的表面结构发生了显著变化,这与其催化性能的衰退密切相关。这一发现为理解贵金属催化剂的失活机制提供了新的视角,有助于开发更为稳定的电催化材料。【图文速递】图1:Pd/NF的结构特征及其在恒电位下的EGOR性能。图2:贵金属在CP-EGOR下的失活机制。图3:Pd/NF在电位循环策略下的EGOR性能。图4:EPC-EGOR下贵金属表面的演变。图5:EPC-EGOR的参数控制与稳定性。图6:流动池系统中CP模式与EPC模式下的EGOR比较。【科学启迪】本文的研究为电化学氧化反应(EGOR)提供了新的思路,展示了在催化剂设计与性能优化方面的重要进展。通过对Pd/NF电极的表征与性能评估,揭示了其在乙二醇氧化过程中的优越表现,并分析了不同电化学条件对催化活性的影响。这些发现不仅有助于理解贵金属催化剂的去活化机制,也为提高电催化效率提供了指导。特别是在采用循环电位策略(EPC)时,Pd/NF显示出显著的稳定性与可逆性,表明优化电化学条件能够有效延长催化剂的使用寿命。此外,本文通过高效液相色谱(HPLC)和原位表面增强拉曼光谱(SERS)等先进技术,实现了对反应产物的精准分析,进一步深化了对反应机制的认识。整体而言,研究不仅为贵金属催化剂在能源转化领域的应用提供了新思路,也为未来的催化剂设计与优化提供了理论基础,推动了电化学领域的进一步发展。参考文献:Zhao, G., Lin, J., Lu, M. et al. Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals. Nat Commun 15, 8463 (2024). https://doi.org/10.1038/s41467-024-52789-2
  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 欧盟化妆品指令限用五种物质
    近日,欧盟新发布化妆品指令,对化妆品中的五种物质作出明确的禁用或有条件使用规定。   根据法规要求,将在化妆品中禁止维生素K1的使用;允许二甘醇微量使用,但不得超过0.1%;规定甲苯在指甲产品中的最高允许浓度为25%,但产品须附有警告标签,说明须存放于儿童接触不到的地方并且只供成人使用;规定二乙二醇单丁醚的最高浓度上限为9%;用作染发料溶剂的乙二醇单丁醚须符合氧化染发产品为4%和非氧化染发产品为2%的浓度上限。   欧盟化妆品指令的产品影响范围广,涉及乳霜、乳液、化妆水、凝胶及润肤剂、肥皂、防臭剂、香水、头发或指甲护理产品、美白和抗皱护肤品,以及口腔护理等,不符合规定的化妆品不得在欧盟任一成员国销售。   检验检疫部门提醒,化妆品的人身安全性特征要求生产企业在检验标准、标签检验、来料加工、后续监管检疫等具体业务都应慎重关注安全细节。一方面对化妆品的生产、加工、储存过程中的产品质量要进行自检,对原辅料、添加剂、半成品和成品中有毒有害物质的控制和溯源进行监督。另一方面,要加强原料选择和成品检测,尽量减少限用物质的使用,寻找替代物质,开展自主创新。   检验检疫机构将重点加强禁限用物质的检测,强化风险分析和控制,会同政府有关部门加强协作,力促化妆品出口新格局。
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 美国俄亥俄州列车脱轨事故持续发酵,民众担忧污染危害
    2月初,一列载有有毒化学品的火车在美国俄亥俄州东巴勒斯坦发生脱轨事故,造成不明数量的有毒物质和气体泄漏。该事件引发了对该地区空气、土壤和水污染的担忧。脱轨列车被曝载有更多种有毒化学品美国媒体13日报道称,涉事公司公布的数据显示,除已知化学品外,列车上还装载有其它有毒化学品。当地居民:这可不是乌云!他们烧了有害物质!他们在东巴勒斯坦烧了有害物质!这可不是乌云!好好看看!你们居然如此没有耐心!你们本可以冷却车厢!你们用不着引爆!美国广播公司13日报道称,脱轨列车的运营商诺福克南方公司公布了新的数据,列出了脱轨列车上装载的有毒化学品的种类。除了此前公布的氯乙烯外,脱轨列车上还装载有乙二醇单丁醚,丙烯酸异辛酯,异丁烯等有毒化学品。视频显示列车脱轨前已起火出事列车由美国诺福克南方铁路公司运营,本月3日晚行至俄亥俄州东部邻近宾夕法尼亚州的东巴勒斯坦城时脱轨,其中10节车厢装载有毒化学品,包括易燃且致癌气体氯乙烯。而根据美国媒体公布的视频显示,列车在脱轨前大约32公里处就已经起火,但不确定是否引起了工作人员的注意。本月6日,诺福克南方公司曾对5节车厢进行所谓“受控释放”操作,把车厢内装载的氯乙烯排入一个事先准备好的坑道内引爆,产生了很多有毒气体。两天后,当地官员就宣布,事故区域及附近居民区空气质量符合安全标准,疏散居民“可以安全回家”,但不少居民对此疑虑重重。列车脱轨事发地附近居民:这里的水肯定有问题。我不知道撤离令解除后我还想不想回家。列车脱轨事发地附近居民:我起身出来,闻到一股非常非常浓的油漆稀释剂的味道,然后看到我儿子眼睛充血、开始咳嗽。(我)非常焦虑,担心我身体是不是正常,清理得够不够,清理方式是不是正确。我们是不是需要做更多的清理工作?我们是不是要把东西都扔了,换新的?有毒物质泄漏 民众担忧生存环境遭污染列车脱轨导致有毒气体扩散后,周边居民对生活环境可能遭受污染的担忧与日俱增。在俄亥俄州的莱斯利河,可以看到很多死掉的鱼类漂浮在水中。对此,俄亥俄州环境保护署表示,他们已获知这一情况,不过当地居民“不必对此感到担心”,因为“水质是安全的”。这样的说法显然无法让当地居民信服。当地居民 凯茜里斯:别告诉我这是安全的。鱼都漂在河水里,一定有什么事发生了。琳达墨菲的家距离列车脱轨事故地大约不到5公里,自从脱轨事故发生导致有毒化学品泄漏后,她非常担心家附近的水源是否已经遭到污染。当地居民 琳达墨菲:很多死鱼漂浮在河水多段。我们的洗澡水、饮用水、做饭用的水,都来自这条河,但他们无法向我保证水可以安全饮用。丽莎索普科的牧场距离东巴勒斯坦城只有大约10分钟的车程,这两天,她带着自家的80头动物返回了牧场。为了保证安全,丽莎请独立检测机构对当地的空气质量进行了检测,但是更令她担忧的是水质和土壤。当地养殖户 丽莎索普科:我现在最担心的是水,还有可能渗入土壤中的东西(有毒物质) 。未来我们只能一直检测,一直检测,一直检测。当地居民 凯茜里斯:我们已经打电话要求检测我们的井水,但是还没有得到任何回复。对方说,我们要等他们明确到底要检测什么。曾经参与美国太平洋天然气和电力公司地下水污染案的美国知名环境活动家艾琳布劳克维奇也关注了本次有毒气体扩散事件。她表示,自己无法相信环境保护署的检测结果,建议事发地附近居民将自己看到的一切异常情况都拍摄下来。环境活动家 艾琳布劳克维奇:这可是氯乙烯,它就在空气里,鱼类在死亡!你会放心地认为自己应该留在这片地区吗,我觉得不会。更让当地居民担忧的是空气中可能弥漫的有毒物质。氯乙烯燃烧时可产生光气和氯化氢。光气是一种剧毒气体,可致人呕吐和呼吸困难。美国国家癌症研究所称,接触氯乙烯会增加患肝癌、脑癌和肺癌以及淋巴瘤和白血病的风险。有害物质研究专家 席尔拉多卡吉亚诺:有很多假设情况,接下来5年、10年、15年、20年,我们都会关注事故带来的影响,琢磨着会不会出现很多癌症病例。
  • 氯丙二醇兴风作浪,岛津方案让您一招全搞定
    导读近日有媒体报道,香港婴儿配方奶粉检出致癌物氯丙二醇(3-MCPD)及可致癌的环氧丙醇,其中不乏有惠氏、美赞臣、雅培、meiji等知名品牌。此事牵动着广大宝妈对婴幼儿奶粉质量安全及婴儿身体健康等的担忧。当晚,香港食安中心在专页澄清指出,根据联合国粮农组织及世界卫生组织专家委员会的相关参考值,全部奶粉均无超标,市民可放心按奶粉建议食用分量给婴儿食用。这使得宝妈悬着的心又一次平静下来。但此事也反映了广大民众对食品安全质量的又一次警钟长鸣。 什么是氯丙二醇类物质 氯丙二醇类物质是包括3-MCPD(3-氯丙二醇)、2-MCPD(2-氯丙二醇)、3-MCPDE(3-氯丙二醇脂肪酸酯)、2-MCPDE(2-氯丙二醇脂肪酸酯)以及GE(缩水甘油脂肪酸酯)。其中氯丙醇酯是氯丙醇在食品中与各种脂肪酸形成的一大类物质的总称,主要为3-MCPDE及2-MCPDE。缩水甘油又称环氧丙醇,是一种环氧化合物,在食品中与脂肪酸结合形成较为稳定的缩水甘油酯(GE)。这类物质中3-MCPD毒性最大,对人体的肝、肾、神经系统及血液循环系统会造成毒害,具有潜在致癌性,国际癌症研究机构(IARC)将其定2B级,即“可能的人类致癌物”。 表1 氯丙二醇类物质相关信息 氯丙二醇类物质属于是食品原料中带入的一种污染物,目前还无法完全避免。食品在加工生产过程中,酸水解植物蛋白或者高温油脂精炼过程中,均会产生氯丙二醇及相关污染物。婴幼儿配方奶粉脂肪含量大约为25%,添加的多数为精炼油脂,因此受到了氯丙二醇污染。同时媒体报道的奶粉中可疑致癌物环氧丙醇,在食品中以缩水甘油脂肪酸酯(GE)的形式存在。 因氯丙二醇类物质的致癌性,各国也推出了其建议的限量要求。 FAO/WHO及欧盟建议3-MCPD的最高日允许摄入量为2μg/Kg体重。美国FDA建议食品所含3-MCPD不应超过1mg/kg干物质;欧盟食品污染限量法规(EC)规定:酱油、水解植物蛋白(干物质含量为40%的液体产品)最大限量要求为20μg/Kg;干物质产品为50 μg/Kg。我国GB 2762-2017《食品安全国家标准 食品中污染物限量》中规定了3-MCPD的限量为:添加酸水解蛋白的液态调味品≤0.4 mg/Kg;固态调味品≤1.0 mg/Kg。 氯丙二醇类物质检测方法 目前对氯丙二醇类物质的检测国际上没有统一的标准,采用较多的为AOCS(美国油脂化学协会)官方方法 cd 29a-13;我国国标GB 5009.191-2016、SN/T 5220-2019也对氯丙二醇类物质规定了检测方法。以上标准均采用气相色谱-单四极杆质谱法(GC-MS)进行测定,但会出现复杂样品杂质干扰大的缺点,从而影响结果的准确定性定量;同时为了提高灵敏度需要复杂的样品前处理及净化过程。而采用气相色谱-三重四极杆质谱法(GC-MS/MS)的多反应监测模式(MRM)检测,定量目标物更加准确,是目前复杂基质中微量化合物最有效的检测手段,也是氯丙二醇类物质测定的最佳选择。 岛津整体解决方案 岛津公司秉承以“为了人类及地球的健康”的公司理念,结合自身仪器特点,在氯丙二醇事件发生后,快速应对,为食品中氯丙二醇类物质的检测提供完整的解决方案。在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪 氯丙醇的检测方法 使用岛津公司独有的在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪(GPC-GCMS-TQ8040),食品样品简单的提取后,经在线GPC净化去除掉样品中的脂肪、蛋白等大分子干扰物,采用GC-MS/MS的MRM方式无需衍生的条件下分析食品中的氯丙醇含量,同时采用氘代同位素内标法进行校正。相关MRM条件及色谱图如下 表2 氯丙醇类化合物MRM参数 图1 氯丙醇及氘代同位素内标溶液色谱图 在0.005~1 mg/L范围内,通过同位素内标法得到的线性其相关系数R均大于0.999,其各物质的检出限及定量限见下表所示: 表3 氯丙醇类化合物线性相关系数、检出限、定量限 注:以上数据来源于易青,苗虹,吴永宁,《在线凝胶渗透色谱-气相色谱-串联质谱非衍生化法测定食品中氯丙醇》,分析化学研究报告,2016,5(44):678~684. 气相色谱-三重四极杆质谱联用仪(GCMS-TQ8040 NX) 氯丙醇酯及缩水甘油酯的检测方法 食品中的脂肪经溴代反应后,其中的缩水甘油酯转变成溴丙醇酯;溴丙醇酯以及样品中的氯丙醇酯在酸性条件下发生酯交换反应,并被水解为相应的氯丙醇,同时经基质分散固相萃取净化后,氮吹并经七氟丁酰基咪唑(HFBI)衍生后,上GC-MS/MS仪器进行分析,采用同位素内标法定量,可一次性同时测定样品中的3-MCPDE、2-MCPDE和GE的含量。相关MRM条件及色谱图如下: 表4 氯丙醇酯类化合物MRM参数 图 2. 氯丙醇酯及缩水甘油酯标准色谱图(100 ng/mL) 在0.01~0.3 mg/L范围内,通过同位素内标法得到的线性相关系数(R2)均大于0.997,其各物质的检出限及定量限见下表所示: 表5 氯丙醇类化合物线性相关系数、检出限、定量限 结论 岛津公司提供全面应对食品中氯丙二醇类致癌物质检测的整体解决方案,结合自身独有技术特点,方便、快捷地让您轻松应对食品污染物分析,在婴儿奶粉氯丙二醇事件中乘风破浪!
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。   该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • 国标委下发2016第二批国标制修订计划 又一批检测标准将出台
    9月20日,国家标准化管理委员会下达2016年第二批国家标准制修订计划(见附件)。本批计划共计224项,其中制定183项,修订41项 推荐性标准223项,指导性技术文件1项。  在这224项标准中,有数十条涉及仪器检测,包括质谱、高效液相色谱-质谱联用法、高效液相色谱法、电感耦合等离子体原子发射光谱、X射线衍射、扫描电镜等检测方法,仪器信息网摘取部分供参考。 计划编号 项目名称 标准性质 制修订 主管部门 归口单位 20161229-T-608纺织品 消臭性能的测定 第3部分:气相色谱法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161231-T-608纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161232-T-608纺织品 苯并三唑类物质的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161233-T-608纺织品 定量化学分析 氨纶与某些其他纤维的混合物推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161234-T-608纺织品 过滤性能 最易穿透粒径的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161237-T-608纺织品 消臭性能的测定 第1部分:通则推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161238-T-608纺织品 抗真菌性能的测定 第2部分:平皿计数法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161240-T-608纺织品 抗真菌性能的测定 第1部分:荧光法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161323-T-606肥料中植物生长调节剂的测定 高效液相色谱法推荐制定中国石油和化学工业联合会全国肥料和土壤调理剂标准化技术委员会20160920-T-609超薄玻璃硬度和断裂韧性试验方法-显微维氏硬度压痕法推荐制定中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会20161327-T-606光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 萃取值测定方法推荐制定中国石油和化学工业联合会全国光学功能薄膜材料标准化技术委员会20161295-T-469粒度分析 液体重力沉降法 第4部分:天平法推荐制定国家标准化管理委员会全国颗粒表征与分检及筛网标准化技术委员会20161283-T-469喷气燃料中芳烃总量的测定 气相色谱法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161284-T-469汽车手动变速箱同步器用润滑剂摩擦磨损性能测定 SRV试验机法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161285-T-469石油和液体石油产品 储罐中液位和温度自动测量法 第2部分:油船舱中的液位测量推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161303-T-607玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推荐制定中国轻工业联合会全国玩具标准化技术委员会20161310-T-606硫化橡胶 样品和试样的制备 化学试验推荐修订中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161314-T-606炭黑 第26部分:炭黑原料油中碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161315-T-606橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161316-T-606炭黑 第25部分:碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161346-T-306同位素组成质谱分析方法通则推荐制定科学技术部全国仪器分析测试标准化技术委员会20161347-T-306水中锶同位素丰度比的测定推荐制定科学技术部全国仪器分析测试标准化技术委员会20161348-T-306晶体材料X射线衍射仪旋转定向测定方法推荐制定科学技术部全国仪器分析测试标准化技术委员会20161361-T-334琥珀鉴定分类推荐制定国土资源部全国珠宝玉石标准化技术委员会20161363-T-334珠宝玉石 鉴定推荐修订国土资源部全国珠宝玉石标准化技术委员会20161226-T-608化学纤维 微观形貌及直径的测定 扫描电镜法推荐制定中国纺织工业联合会中国纺织工业联合会20161227-T-608化学纤维 热分解温度试验方法推荐制定中国纺织工业联合会中国纺织工业联合会20161228-T-608化学纤维 二氧化钛含量试验方法推荐制定中国纺织工业联合会中国纺织工业联合会
  • 超临界液相二氧化碳输液泵的使用注意
    导 读随着超临界液相应用的逐渐普及,使用中特别是超临界液相独有的二氧化碳输液泵的注意事项显得尤为重要,本篇就和小编一起看一下吧。01二氧化碳钢瓶气的使用注意二氧化碳钢瓶气纯度至少99.9%且带有虹吸管。除了常规液相使用的试剂,还需要乙二醇用于二氧化碳输液泵的泵头冷却。二氧化碳钢瓶气的送液原理钢瓶中的上层气态二氧化碳从上往下施加压力,使得底部液态二氧化碳能够通过虹吸管排放出正常的液态,二氧化碳输液泵维持住5摄氏度低温继续维持二氧化碳液态状态,能够正常通过输液泵输送。国标40L/40kg的二氧化碳钢瓶气通常可以使用10个工作日。在使用一瓶新的钢瓶气气体充盈的情况下,打开钢瓶气总开关,在只打开二氧化碳输液泵截止阀shutoff valve的情况下(点击如图valve按钮),一瓶新的钢瓶气的瞬时压力读数夏天为6.5MPa。冬天因为环境温度较低,热胀冷缩原因,高压充进钢瓶的液态二氧化碳汽化困难,正常为4.5MPa。若上述操作二氧化碳输液泵的瞬时压力读数低于4.5MPa,即表明钢瓶气不够,不足以维持稳定输液,需要更换钢瓶气。针对冬季环境温度较低,钢瓶内压力较低,造成二氧化碳流出不畅的问题,可以将钢瓶放置在有暖气的房间里(环境温度维持在20-30摄氏度),或者在安全使用的前提下通过钢瓶底部加热的方式(底部包裹电热毯、放置取暖器直照),达到提高钢瓶温度增加钢瓶内部压力的目的,易于二氧化碳钢瓶气的充分使用。(注意钢瓶温度不能超过50摄氏度)。02使用环境要求及废液管路处理方式若环境温度高于28摄氏度,安装环境将影响二氧化碳输液泵的冷却,导致性能下降。所以必须保持环境温度低于26摄氏度,周边远离可能产生高温的设备,远离墙壁角落,防止散热不良。由于二氧化碳输液泵泵头冷却长期默认设置为5摄氏度低温状态,在环境湿度较大时,更容易产生冷凝水附着在冷却液循环管路外壁、泵头温度传感器等位置,影响整体冷却效果,导致温度传感器误报警等情况。所以必须保持环境湿度低于60%,同时在如图位置正确连接废液管路,以便于冷凝水的正常排出。03二氧化碳钢瓶气的使用注意若乙二醇水溶液浓度过低,乙二醇接近冰点,容易低温结晶,不易于冷却液循环泵正常输送冷却循环液。若乙二醇水溶液浓度过高,乙二醇粘度过大,增加冷却液循环泵的负载,影响循环泵的运作寿命。所以冷却液要求严格配比30%乙二醇水溶液。如果还需要其它帮助的话,欢迎致电岛津客服热线中心前来咨询,咨询电话:400-650-0439。
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • pvc(糊树脂)难溶甲醇,听听禾工技术员怎么说
    pvc糊树脂是一种特殊的pvc,外观为白色细微粉末,主要用于制造人造革、纱窗、汽车胶、壁纸、地板卷材、玩具等。生产过程中,pvc糊树脂中水分含量是一项重要的测量指标,对生产具有重要的指导意义。 国家标准GB-T2914-20008《塑料 氯乙烯均聚合共聚树脂挥发物(包括水)的测定》方法中主要测定树脂本身所含有的水分及挥发性有机杂质,这些组分在加工过程中将成为气泡含于制品中,影响制品的强度、外观等性能,是衡量糊树脂产品质量的一项重要指标。但是由于国家标准分析方法采用烘箱法,且糊树脂具有颗粒小、质量轻、有静电等特点,所以环境条件和设备条件对分析结果影响很大,分析结果准确度和可靠度不高。卡尔费休法在测定物质水分的各类化学方法中,是世界公认的测定物质水分含量的最为专一和准确的经典方法。使用卡尔费休水分测定仪可快速的测出糊树脂中的水分含量,但是由于糊树脂不溶于甲醇,不能直接与卡尔费休试剂反应,因此我们需要卡尔费休水分测定仪与卡式加热炉一起使用。使用禾工AKF-PL2015C卡氏水分仪(配有卡式加热炉)把糊树脂样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析。 使用禾工AKF-PL2015C卡氏水分仪的优势:AKF-PL2015C塑料粒子专用水分测定采用瓶式加热技术,既能避免反应杯和加热炉膛污染问题,也能减少载气消耗。无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结 操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。 塑料粒子(树脂)含水量专用卡尔费休水分测定仪测定范围: 适用多种塑料粒子的生产及注塑,实现塑料粒子的水分含量检测。可测定abs、聚丙烯酰胺(pam)、聚酰胺(pa)、聚氯乙烯(pvc)聚碳酸酯(pc)、聚乙烯(pe)。聚对苯二甲酸乙二醇酯(pet)、聚甲基丙烯酸甲酯(亚克力、pmma)、聚丙烯(pp)、聚苯乙烯(ps)、聚乙烯醇缩丁醛(pvb)、硅橡胶塞等等。禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!您得到的不仅仅是一份报告,更可能是一份行业专业的解决方案!
  • 药用辅料公示稿应对专题|药用辅料应用合集第二期
    辅料更新?岛津搞定!ICH协调背景下,辅料品种的标准更新频率非常高,今年药典委网站公示的标准草案中,聚山梨酯类修订了5个品种,淀粉类也更新了4个品种。本期辅料系列单页主要针对公示稿更新品种,岛津在重现公示稿方法过程中,明确了公示稿没有规定的参数,粉丝们直接Ctrl+C&Ctrl+V就可以啦!由于篇幅有限,今天只分享聚山梨酯系列,更多公示稿方案大家可以文末直接下载应用方案!聚山梨酯系列 今年药典委网站更新了一系列聚山梨酯公示稿,包括聚山梨酯20、40、60、80及80(Ⅱ),主要更新内容为新增甲醛和乙醛标示项以及将乙二醇、二甘醇放至标示项 。除更新内容外,聚山梨酯系列还涉及环氧乙烷和二氧六环、脂肪酸组成等检查项的理化测定。环氧乙烷和二氧六环岛津方案重现过程中,对于环氧乙烷和二氧六环,峰型容易拖尾,经过条件参数的调整, 采用SH-1 (30mx0.32mmx1μm;P/N:227-75725-30)色谱柱可以达到峰型对称效果。灵敏度溶液中环氧乙烷和二氧六环信噪比大于10,乙醛峰和环氧乙烷峰的分离度大于2.0,对照溶液和供试品溶液重现性良好,满足检测要求。脂肪酸组成对于脂肪酸组成检查项,采用色谱柱SH-PolarWax分析聚山梨酯60的脂肪酸组成,各脂肪酸甲酯峰形对称,重现性好,理论塔板数按硬脂酸甲酯峰计算远高于10000,满足检测要求。乙二醇和二甘醇对于标示项乙二醇和二甘醇分析,方案中乙二醇和二甘醇无杂质干扰,峰形和重现性良好,满足检测要求。此方法可为聚山梨酯60中乙二醇和二甘醇的测定提供参考。完整方案请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/D2MElGgMrNkEmlsXo8HhsQ 方案下载点击查看“药用辅料应用系列第二期”点击或扫码下载“完整辅料应对方案PDF”点击立即查看最新药斯卡排行榜
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 如何实现纳米药物的靶向递送?
    脂质体及聚合物作为纳米药物的常用载体,在药物合成方面已取得了巨大的成功,但在靶向递送方面,仍存在着诸多挑战,纳米药物该如何实现靶向递送呢?在谈论靶向之前,先要了解一个关键的药理学概念,以器官靶向为例:器官靶向药物输送不是将所有给药剂量都输送到目标器官,而是提供足够的剂量以达到所需的生物效果,同时限制脱靶积累的毒性;即使大部分注射剂量没有到达目标器官,也应该足以引起生理效应并为患者提供益处。靶向方式分类纳米药物靶向的方式多种多样,总的来讲,可以分为三大类(如图1)。图1. 靶向方式归类图被动靶向被动靶向依赖于调整纳米颗粒的物理性质,如大小、形状、硬度和表面电荷,使其与解剖学及生理学相结合。例如,调节纳米颗粒的大小可以确定纳米颗粒从不连续的血管(如肝脏和脾脏中的血管)外渗的趋势。主动靶向主动靶向包括用化学或生物的方法修饰纳米颗粒的表面,使其特异性地与靶器官高度表达的受体或其他细胞因子相结合。例如,用单克隆抗体修饰纳米颗粒,以使核酸传递到难以转染的免疫细胞中。内源性靶向内源性靶向包括设计纳米颗粒的组成,使其在注射时与血浆蛋白的一个不同的亚群结合,从而将其引导到目标器官并促进特定细胞的摄取。例如,参与体内胆固醇运输的蛋白质已被证明是脂质纳米颗粒有效的肝细胞传递所必需的。对比而言,被动靶向和内源性靶向的设计度与可控性相对较低,主动靶向自然成为了靶向递送的研究焦点。在肝外靶向的研究中,就涉及了较多的主动性靶向,表1也列出了多种肝外给药的纳米颗粒组合物。表1. 用于肝外给药的纳米颗粒组合物靶向修饰方法药物靶向本质上为官能团之间的相互作用,即纳米药物表面的核心基团与受体部位的基团进行化学结合。以脂质纳米颗粒为例,载体组分中的PEG脂质多位于颗粒表面且本身易于修饰,因此,可以在PEG脂质上加载受体部位的结合基团以实现靶向目的。以下列举了几种常见的PEG脂质修饰方法。马来酰亚胺修饰使用DSPE-PEG2000-马来酰亚胺作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过其取代的羧基端半胱氨酸直接与肽偶联,可以形成肽靶向的纳米粒子。再如SS-31,一种线粒体靶向的四肽,具有巯基,只需与马来酰亚胺标记的脂质纳米颗粒孵育,即可进行硫酰马来酰亚胺偶联。NHS修饰NHS酯通常用于标记胺基生物分子。NHS酯与胺基的反应具有pH依赖性,结合的较佳pH值与生理环境的pH值相同。使用DMG-PEG-COOH-NHS作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过在C端添加赖氨酸修饰MH42,并通过其侧链的伯胺偶联,可以形成肽靶向的纳米粒子。同样,许多具有胺基的抗体和靶向肽也可通过该反应偶联到脂质纳米颗粒上:乳铁蛋白可特异性结合活化的结肠巨噬细胞上的LRP-1,实现细胞靶向抗炎治疗;还有较为熟知的程序性死亡配体1单克隆抗体的应用。氨基修饰氨基有利于醛酮分子的化学选择性附着。甘露聚糖还原端醛基与氨基羧基修饰的脂质之间肟偶联反应的正交特性保证了脂质纳米颗粒表面多糖分子的取向。甘露聚糖受体靶向脂质体既可以作为抗菌药物递送的载体,也可以作为用于免疫治疗的重组疫苗的载体。DBCO修饰DBCO标记可促进巯基-炔反应,并可选择性偶联荧光探针、亲和标记和细胞毒性药物分子。例如,抗体scFv-N3可被有效地偶联到DBCO修饰的脂质纳米颗粒上。研究发现,抗体修饰的脂质纳米颗粒可穿越血脑屏障,并诱导脑特异性积累,以治疗中枢神经系统疾病。结论:人体复杂的生化环境给纳米药物的靶向递送制造了诸多阻力。在实际探索中,被动靶向,主动靶向和内源性靶向,可作为靶向设计的联合工具,在寻找绝对的靶向位点、真实的靶向机理与达到实际的靶向效果之间寻求平衡。在此当中,主动性靶向的尝试值得支持,正如文中所讲PEG脂质的各种修饰方式,大量的设计性尝试定能排除越来越多的靶向干扰因素,朝靶向机理的挖掘处更深一步。参考文献:1. Menon, Ipshita et al. “Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.” Materials Today Advances (2022): n. pag.2. Dilliard, S.A., Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater (2023).3. Herrera-Barrera, Marco et al. “Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.” Science Advances 9 (2023): n. pag.应用范围:纳米药物制备系统:
  • 国际首次!二氧化碳一步转化为乙醇
    记者16日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队创新性地采用结构封装法,构筑了纳米“蓄水”膜反应器,在国际上首次实现了二氧化碳在温和条件下一步近100%转化为乙醇。相关研究成果发表于《美国化学会催化》。江南大学供图近年来,科学家已经开发了多种途径将二氧化碳转化为乙醇,比如光催化、电催化以及间歇釜热催化。相较于上述技术途径,在连续流固定床反应器中,由于便捷的物质流和能量流管理,更容易实现工业应用。但目前的技术无法实现可控精准增碳定向生成乙醇,易产生大量低价值的副产物。江南大学供图该科研团队构筑的纳米“蓄水”膜反应器,合成的催化剂结构类似于一个胶囊,内部封装了二氧化铈载体分散的双钯催化剂。刘小浩介绍,胶囊的壳层具有高选择性,疏水修饰后,保证内部生成的水富集而产物乙醇可以溢出。其中的水环境可以稳定双钯活性位点,该催化剂能够实现温和条件下(3MPa,240℃)二氧化碳近100%选择性高效稳定转化为乙醇。值得一提的是,这项研究构筑的双钯活性位点具有独特的几何和电子结构,可实现二氧化碳加氢定向生成单一高价值产物乙醇。“催化剂合成工艺和催化反应路线简单,有大规模工业化应用前景。”刘小浩表示。
  • 我国将制定23项石油化工产品检验新国标
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国石油和化学工业联合会和国家标准化管理委员会将主管制定23项石油化工产品检验新国标,涉及原油、肥料、染料、颜料、涂料、橡胶、胶黏剂、化学试剂、化学化工原料等产品的检测。另外还将修订4项石油化工产品检测标准。 2014年第一批国家标准制修订计划之石油化工产品检验标准   《化学试剂 离子色谱测定通则》   化学试剂是科研条件的重要组成部分,是开展科研开发和现代工业所必须的重要支撑条件,是工业的&ldquo 味精&rdquo 、科学的&ldquo 眼睛&rdquo 和质量的&ldquo 标尺&rdquo 。因此本次离子色谱通则制定将做到最大限度地与国外相关标准相一致,以达到离子色谙分析方法与国外要求的一致性。   主要用于化学试剂中氯化物、硫酸盐、磷酸盐、硝酸盐、亚硝酸盐、溴酸盐、铬酸盐等阴离子,钾、钠、钙、镁、锂、铵等阳离子,糖类以及有机酸的质量评估,本标准规定了离子色谱定义、方法原理、试剂和材料、仪器、样品处理和测试方法。   《原油残炭的测定 第2部分:微量法》   本标准修改采用JIS K 2270-2-2009《原油及石油产品残炭含量测定 第二部分 康氏法》,微量法操作简易、样品量少、精密度好等特点,体现了技术进步,而且与康氏法的测定区间和结果等效,因此将&ldquo 原油残炭的测定 微量法&rdquo 纳入到国家标准中,是对原油残炭标准的一个有益的补充和完善,有较为积极的意义。   《中间馏分油中总污染物含量测定法》   总污染物含量是反映中间馏分油清洁度程度的重要指标。柴油中污染物一般包括尘土、水、微生物、碎屑、蜡等。柴油的清洁程度对发动机过滤系统非常重要,污染物的存在会影响燃料的快速过滤,严重时造成滤网堵塞,供油不畅,使发动机不能正常工作。柴油中污染物含量在国外产品标准中有严格限制,受到国际相关部门的重点关注,但目前我国柴油污染物检测方法很少,相关研究也很少。 本标准规定了中间馏分油中总污染物的检测方法。   《肥料中邻苯二甲酸酯含量的测定 气相色谱-质谱法》   邻苯二甲酸酯(PAEs)是环境中的一类常见有机污染物,具有内分泌干扰毒性和生物累积性。本标准针对含有PAEs的肥料施入土壤后存在着被农作物吸收而污染农产品的极大风险,通过对国内外PAEs相关分析方法的查询和研究,以美国EPA确定的6种PAEs优控污染物为对象,研究一种适合定性、定量检测肥料中PAEs的气相色谱-质谱法(GC-MS),为保障食用农产品质量安全提供技术支撑。   《光学功能薄膜 三醋酸纤维素酯(TAC)薄膜 相延迟测试方法》   工业化生产的光学薄膜在不同光学轴方向可能存在各相异性,光线通过时会产生相延迟。普通光学环境中薄膜的存在相延迟通常没有什么影响。光学性能可只测量透过率、雾度。随着液晶显示器(LCD)的应用,偏光系统的中存在相延迟就不可忽视了。在彩色显示领域可能引起较明显的颜色变化。为此,LCD中使用的TAC薄膜需要控制相延迟。尤其是沿显示器光轴方向(Z轴),为此需建立此标准。   《光学功能薄膜 涂层密着性的测定方法》   光学功能偏光片是目前业界投资最为热门的行业之一,偏光片的制造技术一直被日本、韩国、中国台湾等国家和地区所垄断,大陆企业生产TFT 型偏光片在技术上非常困难,因而发展偏光片项目对完善我国液晶上游产业链,降低产品成本,提高市场竞争力有着重要意义。在提高偏光片产品质量,改善和提高偏光片光学性能方面,膜材的涂层起到重要作用。涂层的密着性是对涂层评估的一个重要方面,它影响到偏光片的光学性能与质量。   此标准的制定将统一规范液晶显示器用偏光片及其相关的光学薄膜之涂层密着性的测试方法要求,提高偏光片的质量及光学性能。   《胶乳制品中重金属含量的测定 电感耦合等离子体原子发射光谱法》   胶乳制品广泛应用于人们的日常生活中,目前在胶乳制品中重金属检测国内没有试验方法标准。 本标准将规定用电感耦合等离子体原子发射光谱仪测定胶乳制品中重金属铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、锌(Zn)、铁(Fe)、砷(As)、汞(Hg)、铝(Al)10种元素的总量方法。本标准适用于胶乳材料及其制品。   《胶鞋 苯乙酮含量试验方法》   苯乙酮对眼和皮肤有刺激作用,可引起皮肤局部灼伤和角膜损伤。德国等欧盟发达国家已注意到这类溶剂对人体健康的影响,它们国内的采购商也已开始要求全球各地的供应商检测材料中苯乙酮的含量,超过限量的产品将被拒绝进入他们国内的高端市场。因此,建立胶鞋中苯乙酮标准检测方法,对保障人体健康安全、提升产品质量破除贸易技术壁垒具有重要意义及紧迫性。本标准的制定填补了胶鞋中苯乙酮检测方法的空白,为控制、分析胶鞋所含的对人体有害的溶剂及限量提供了依据。   《胶鞋 烷基酚含量试验方法》   烷基酚为一种仿雌激素,也是已知的内分泌干扰素。具有持久性以及生物蓄积,在胶鞋生产中广泛应用, 极易残留在材料中。也就是说,它一旦被排入的环境中,它会在环境中存在很长时间,而且它可以进入食物链,并且通过食物链逐级放大。同时,它还具有模拟雌激素的作用,因此它一旦进入生物体内之后,就会影响生物体正常的生殖和发育。本标准的制定填补了胶鞋中烷基酚检测方法的空白,为控制、分析胶鞋所含的对人体有害的酚类及限量提供了依据。   《胶印版材用高聚物中乙二醇单乙醚不溶物含量的测定 过滤法》   胶印版材用高聚物中的不溶物,主要来源于聚合物在制备过程中产生的&ldquo 超高分子量聚合物&ldquo 、或者是反应过程中发生了交联、氧化等,甚至是在处理过程中(析出、干燥等)不慎引入的其它不溶性物质。这些不溶物的量的多少,会影响高聚物的使用。由于目前几乎所有胶印版材涂布液使用的主要溶剂成分都是乙二醇单乙醚,因此以乙二醇单乙醚不溶物来确定高聚物不溶物的指标是非常合适的。 本标准规定了用过滤法来测定胶印版材用高聚物中乙二醇单乙醚不溶物的含量。   《胶粘带动态剪切强度的试验方法》   胶粘带动态剪切强度用于表征在动态拉伸过程中胶粘带所能承受的最大剪切力。该性能对于胶粘带在剪切作用下的粘接效果的测试与判定具有重要意义。目前一般用持粘性来表征胶粘带的静态剪切力。 本方法表征在动态拉伸过程中胶粘带所能承受的最大剪切力,是对胶粘带剪切性能的完善和补充。   《硫化染料产品中硫化钠含量的测定》   硫化染料是我国染料行业很重要的一染料类别,在出口染料中也占有很大的比例。由芳胺类、酚类或硝基物与硫磺或多硫化钠硫化反应而生成。硫化钠是腐蚀性物质,与皮肤和粘膜接触有强烈的刺激性和腐蚀性,与酸类反应,产生剧毒和易燃的硫化氢。国内外用户对硫化染料中硫化钠的含量都有提出限制的要求,尤其是产品出口到发达的国家和地区要求格外严格。而国内目前还没有硫化染料中硫化钠含量测定的统一标准。因此,为填补标准上的空白,丰富我国染料行业方法标准体系,制定本方法标准是十分必要。   《车用汽油中总硅含量的测定 电感耦合等离子体发射光谱法》   车用汽油中硅含量过高会导致汽油火花塞堵塞、三元催化转化器中催化剂中毒等现象发生,对汽车本身性能造成较大的损害。例如2010年5月岳阳中石化&ldquo 问题汽油&ldquo 致上千辆汽油火花塞堵塞事件,事故原因分析即可能与硅含量异常有关。对车用汽油中总硅含量的检验鉴定技术研究,开发快速准确的检验方法,制定相关的检验标准,将一方面有利于对我国成品油市场进行有效的质量监管,减少和避免因成品油质量问题引发的群体性质量事故而造成消费者的人身安全事故和经济损失,具有较为显著的经济效益和社会效益。   《硫化橡胶 恒定形变压缩永久变形的测定方法》   本标准规定了将硫化橡胶试样压缩到规定高度下,经一定温度和时间,或经介质浸润后,测定试样压缩永久变形率的方法。本试验方法是橡胶物理性能试验中最常用的方法,试验设计简单易行,可直观的反应橡胶的硫化程度,因此得到国内外众多试验室普遍采用。本标准的前身是GB/T 1683《硫化橡胶恒定形变压缩永久变形的测定方法》,于1981年修订至今得到广泛使用。但是在国标清理整顿时,该标准在国家标准目录库中丢失,因此现急需补充制定。   《硫化橡胶或热塑性橡胶 耐臭氧龟裂 测定试验箱中臭氧浓度的试验方法》   臭氧是橡胶老化失效的重要因素之一,考察橡胶耐臭氧老化的性能时,臭氧浓度是影响臭氧老化试验结果的重要影响因素。目前国内尚无专门测量臭氧浓度的方法标准,导致国内橡胶耐臭氧相关试验方法标准测试结果没有可比性,因此亟需制订相应的国家标准。 本次国家标准制定建议等同采用ISO 1431-3:2000。   《氯化聚氯乙烯树脂 残留氯含量的测定 电位滴定法》   氯化聚氯乙烯树脂(CPVC)是由聚氯乙烯经氯化而制得的改性高分子化合物,是一种新型工程塑料原料,其耐热性及耐酸碱、盐、氧化剂腐蚀的性能十分优异,综合性能远高于聚氯乙烯树脂。残余氯含量是评判CPVC质量优劣的一项重要技术指标。本标准作为试验方法标准,拟在氯化聚氯乙烯树脂产品标准中被引用。   《毛用反应染料 色光和强度的测定》   毛用反应染料是近年来快速发展的一类产品,相比传统的羊毛用酸性等染料,因反应染料与纤维产生共价键结合而具有无法比拟的优异色牢度和应用性能,在行业内备受推崇。随着毛用反应染料的不断开发成功和面市,其生产企业越来越多,应用也越来越据活跃,商品化产品在国内外贸易也越来越频繁,而考核这类染料染色性能和质量要求的最重要指标(色光和强度)的测定还没有有一个统一的测试方法标准。为完善我国染料领域的标准体系建设,提高反应染料产品质量、规范生产,保证产品国内外贸易的顺利进行,制定本标准是十分必要的。   《木材胶粘剂拉伸剪切强度的试验方法》   木材粘接的使用条件各不相同。粘接后性能的表征可按受力方向的不同,分为拉伸剪切和压缩剪切。本标准提供了在给定环境条件下,利用标准试件进行拉伸载荷,测定木材与木材粘接剪切强度的方法。本标准完善了木材用胶粘剂剪切强度的试验方法,完整地反映了胶粘剂在木材上的粘接性能。   《色漆和清漆 电导率和电阻的测定》   虽然目前有许多涂料品种需求了解其电导率或电阻参数,但国内仅有产品标准HG/T 3952-2007 《阴极电泳涂料》涉及了涂料产品的电导率的测定方法,但该产品标准中对测试仪器和装置无规定,试验步骤比较简单,因此试验误差较大。对于涂料的电阻测定则无相关方法,国内一些企业各自建立了试验方法,但由于对试验仪器、操作步骤规定不科学和过于简单,造成较大的结果偏差,且不同企业之间产品难以相互比较。因此,制定准确测定涂料的电导率和电阻的标准对于涂料配方设计、指导施工、性能检测都具有十分重要意义。   《涂料中石棉的测定》   涂料是一类与人们生活息息相关的产品,为改善其性能有时需加入一些天然矿物(常会掺杂有石棉纤维的伴生物)或石棉物质。 石棉纤维对人体健康有不良影响,进入人体内的石棉纤维具有致病可能。国际癌症研究组织(IARC)已经宣布石棉是A类致癌物。随着各类石棉控制或禁用法规的实施,涂料就成为无法规避的被检材料。目前国内外关于涂料中石棉的检测还没有统一的标准 ,制定涂料中石棉的检测方法标准势在必行。   《颜料和体质颜料 灼烧损失和灼烧残余物的测定》   颜料和体质颜料是涂料、油墨等生产的重要原材料之一,灼烧损失和灼烧残余物的测定是许多颜料生产厂及用户很重视的项目之一,其测定方法应用频率较高。灼烧损失和灼烧残余物的测定结果对于颜料和体质颜料样品分析有着重要的意义,可用于了解和判定样品成分组成等信息。目前国内、国际尚没有颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准,仅在相关产品标准中作具体描述。因此尽快制定统一的颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准十分必要。   《液体酸性染料 色光和强度的测定》   液体酸性染料作为色素最基本的应用性能指标就是其色光和强度,由于其下游应用的特殊性,其色光和强度的测定不同于传统的粉剂染料的测定,目前还没有形成统一的测定方法标准,不利于国内外产品贸易和产品技术进步。为促进产业结构调整,推动清洁生产工艺技术深入,为保证产品下游应用的顺利开展,制定该方法标准是非常必要的。   《异丁烯-异戊二烯橡胶(IIR)不饱和度的测定 第1部分:碘量法》   自1999年国内第一套丁基橡胶生产装置开车以来,丁基橡胶的生产工艺和质量水平都有了较大的提高,2012年完成丁基橡胶产品国家标准的制定。不饱和度是产品标准中一项重要检测项目,直接影响橡胶的加工和应用性能,有必要单独针对其制定方法标准。目前国际标准中也没有不饱和度方法标准,本项目将填补此项空白。本次制定丁基橡胶不饱和度的测定方法,分为两个部分:第1部分 碘量法 第2部分 核磁共振氢谱法,保证了方法的配套性,同时满足不同用户的需要。
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 多种仪器入选《外商投资产业指导目录(2007年修订)》
    近日,国家发改委就《外商投资产业指导目录(2007年修订)》征询意见,质谱仪、能谱仪、拉曼光谱仪、环境监测仪器等多种仪器入选该目录,相关产业将来或许成为国家鼓励外商投资的产业。详细公告请参见如下:《外商投资产业指导目录(修订征求意见稿)》公开征求意见  根据《国务院《外商投资产业指导目录(2007年修订)》关于进一步做好利用外资工作的若干意见》(国发[2010]9号),为优化利用外资结构,国家发展改革委会同商务部等部门对《外商投资产业指导目录(2007年修订)》(以下简称《目录》)进行了修订,形成《目录》修订征求意见稿(见附件),现向社会公开征求意见。  公众可在2011年4月30日前,通过以下方式提出意见:  一、通过信函方式寄至:北京市西城区月坛南街38号国家发展改革委利用外资和境外投资司(信封上请注明“目录征求意见”),邮政编码100824   二、通过电子邮件方式发送至:yuanf@ndrc.gov.cn。  附件: 《目录》修订征求意见稿  外商投资产业指导目录  (修订征求意见稿)  鼓励外商投资产业目录  一、农、林、牧、渔业  1. 木本食用油料、调料和工业原料的种植及开发、生产  2. 绿色、有机蔬菜(含食用菌、西甜瓜)、干鲜果品、茶叶栽培技术开发及产品生产  3. 糖料、果树、牧草等农作物栽培新技术开发及产品生产  4. 花卉生产与苗圃基地的建设、经营  5. 橡胶、油棕、剑麻、咖啡种植  6. 中药材种植、养殖(限于合资、合作)  7. 农作物秸秆还田及综合利用、有机肥料资源的开发生产  8. 林木(竹)营造及良种培育、多倍体树木新品种培育  9. 水产苗种繁育(不含我国特有的珍贵优良品种)  10. 防治荒漠化及水土流失的植树种草等生态环境保护工程建设、经营  11. 水产品养殖、深水网箱养殖、工厂化水产养殖、生态型海洋增养殖  二、采矿业  1. 煤层气勘探、开发和矿井瓦斯利用(限于合资、合作)  2. 石油、天然气的风险勘探、开发(限于合资、合作)  3. 低渗透油气藏(田)的开发(限于合资、合作)  4. 提高原油采收率及相关新技术的开发应用(限于合资、合作)  5. 物探、钻井、测井、录井、井下作业等石油勘探开发新技术的开发与应用(限于合资、合作)  6. 油页岩、油砂、重油、超重油等非常规石油资源勘探、开发(限于合资、合作)  7. 铁矿、锰矿勘探、开采及选矿  8. 提高矿山尾矿利用率的新技术开发和应用及矿山生态恢复技术的综合应用  9. 页岩气、海底天然气水合物等非常规天然气资源勘探、开发(限于合作)  三、制造业  (一)农副食品加工业  1. 生物饲料、秸秆饲料、水产饲料的开发、生产  2. 水产品加工、贝类净化及加工、海藻保健食品开发  3. 蔬菜、干鲜果品、禽畜产品的储藏及加工  (二)食品制造业  1. 婴儿、老年食品及保健食品的开发、生产  2. 森林食品的开发、生产  3. 天然食品添加剂、食品配料生产  (三)饮料制造业  1. 果蔬饮料、蛋白饮料、茶饮料、咖啡饮料、植物饮料的开发、生产  (四)烟草制品业  1. 二醋酸纤维素及丝束加工(限于合资、合作)  (五)纺织业  1. 采用非织造、机织、针织,及其复合工艺技术的轻质、高强、耐高/低温、耐化学物质、耐光等多功能化的产业用纺织品生产  2. 采用先进节能减排技术和装备的高档织物面料的织染及后整理加工  3. 符合生态、资源综合利用与环保要求的特种天然纤维(包括山羊绒等特种动物纤维、麻纤维、蚕丝、彩色棉花等)产品加工  4. 采用计算机集成制造系统的服装生产和功能性、绿色环保及特种服装生产  5. 高档地毯、刺绣、抽纱产品生产  (六)皮革、皮毛、羽毛(绒)及其制品业  1. 皮革和毛皮清洁化技术加工  2. 皮革后整饰新技术加工  3. 高档皮革(沙发革、汽车坐垫革)的加工  (七)木材加工及木、竹、藤、棕、草制品业  1. 林业三剩物,“次、小、薪”材和竹材的综合利用新技术、新产品开发与生产  (八)造纸及纸制品业  1. 按林纸一体化建设的单条生产线年产30万吨及以上规模化学木浆和单条生产线年产10万吨及以上规模化学机械木浆以及同步建设的高档纸及纸板生产(限于合资、合作)  (九)石油加工、炼焦及核燃料加工业  1. 针状焦、煤焦油深加工  (十)化学原料及化学制品制造业  1. 年产100万吨及以上规模乙烯生产(中方相对控股)  2. 钠法漂粉精、聚氯乙烯和有机硅新型下游产品开发与生产  3. 合成材料的配套原料:过氧化氢氧化丙烯法环氧丙烷、甘油法环氧氯丙烷、聚萘二甲酸乙二醇酯(PEN)的原料萘二甲酸二甲酯(NDC)、聚对苯二甲酸环已二甲醇(PCT)和二甲醇改性聚对苯二甲酸乙二醇酯(PETG)的原料1,4-环乙烷二甲醇酯(CHDM)生产  4. 合成纤维原料:己内酰胺、尼龙66盐、熔纺氨纶树脂、1,3-丙二醇生产  5. 合成橡胶:丁基橡胶、异戊橡胶、聚氨酯橡胶、丙烯酸橡胶、氯醇橡胶、乙丙橡胶,以及氟橡胶、硅橡胶等特种橡胶生产  6. 工程塑料及塑料合金:非光气法聚碳酸酯(PC)、聚甲醛(POM)、工程塑料尼龙11和尼龙12、聚苯硫醚、聚醚醚酮、聚酰亚胺、聚砜、聚芳酯(PAR)、液晶聚合物等产品生产  7. 精细化工:催化剂新产品、新技术,染(颜)料商品化加工技术,电子化学品和造纸化学品,食品添加剂、饲料添加剂,皮革化学品(N-N二甲基甲酰胺除外),油田助剂,表面活性剂,水处理剂,胶粘剂,无机纤维、无机纳米材料生产,颜料包膜处理深加工  8. 环保型印刷油墨、环保型芳烃油生产  9. 天然香料、合成香料、单离香料生产  10. 高性能涂料、水性汽车涂料及配套水性树脂生产  11. 氟氯烃替代物生产  12. 高性能氟树脂、氟橡胶、氟膜材料,医用含氟中间体,环境友好型制冷剂和清洁剂  13. 从磷化工、铝冶炼中回收氟资源生产  14. 年产规模300万吨以上的煤制油、100万吨以上的煤制甲醇和二甲醚、60万吨以上的煤制烯烃(中方控股)  15. 林业化学产品新技术、新产品开发与生产  16. 烧碱用离子膜、无机分离膜、功能隔膜生产  17. 环保用无机、有机和生物膜开发与生产  18. 新型肥料开发与生产:生物肥料、高浓度钾肥、复合肥料、缓释可控肥料、复合型微生物接种剂、复合微生物肥料、秸杆及垃圾腐熟剂、特殊功能微生物制剂  19. 高效、安全、环境友好的农药新品种、新剂型、专用中间体、助剂的开发与生产,以及相关清洁生产工艺的开发和应用(甲叉法乙草胺、胺氰法百草枯、水相法毒死蜱工艺,草甘膦回收氯甲烷工艺、定向合成法手性和立体结构农药生产、乙基氯化物合成技术)  20. 生物农药及生物防治产品开发与生产:微生物杀虫剂、微生物杀菌剂、农用抗生素、昆虫信息素、天敌昆虫、微生物除草剂  21. 废气、废液、废渣综合利用和处理、处置  22. 有机高分子材料生产:飞机蒙皮涂料、稀土硫化铈红色染料、无铅化电子封装材料、彩色等离子体显示屏专用系列光刻浆料、小直径大比表面积超细纤维、高精度燃油滤纸、锂离子电池隔膜  (十一)医药制造业  1. 新型化合物药物或活性成份药物的生产(包括原料药和制剂)  2. 氨基酸类:发酵法生产色氨酸、组氨酸、饲料用蛋氨酸等生产  3. 新型抗癌药物、新型心脑血管药及新型神经系统用药生产  4. 采用生物工程技术的新型药物生产  5. 艾滋病疫苗、丙肝疫苗、避孕疫苗及宫颈癌、疟疾、手足口病等新型疫苗生产  6. 生物疫苗生产  7. 海洋药物开发与生产  8. 药品制剂:采用缓释、控释、靶向、透皮吸收等新技术的新剂型、新产品生产  9. 新型药用辅料的开发及生产  10. 动物专用抗菌原料药生产(包括抗生素、化学合成类)  11. 兽用抗菌药、驱虫药、杀虫药、抗球虫药新产品及新剂型生产  12. 新型诊断试剂的生产  (十二)化学纤维制造业  1. 差别化化学纤维及芳纶、碳纤维、高强高模聚乙烯、聚苯硫醚(PPS)等高新技术化纤生产  2. 纤维及非纤维用新型聚酯生产:聚对苯二甲酸丙二醇酯(PTT)、聚葵二酸乙二醇酯(PEN)、聚对苯二甲酸环已二醇酯(PCT)、二元醇改性聚对苯二甲酸乙二醇酯(PETG)  3. 利用新型可再生资源和绿色环保工艺生产生物质纤维,包括新溶剂法纤维素纤维(Lyocell)、以竹、麻等为原料的再生纤维素纤维、聚乳酸纤维(PLA)、甲壳素纤维、聚羚基脂肪酸酯纤维(PHA)、动植物蛋白纤维等  4. 单线生产能力日产150吨及以上聚酰胺生产  5. 子午胎用芳纶纤维及帘线生产  (十三)塑料制品业  1. 新型光生态多功能宽幅农用薄膜开发与生产  2. 废旧塑料的消解和再利用  3. 塑料软包装新技术、新产品(高阻隔、多功能膜及原料)开发与生产  (十四)非金属矿物制品业  1. 节能、环保、利废、轻质高强、高性能、多功能建筑材料开发生产  2. 以塑代钢、以塑代木、节能高效的化学建材品生产  3. 年产1000万平方米及以上弹性体、塑性体改性沥青好防水卷材,宽幅(2米以上)三元乙丙橡胶防水卷材及配套材料,宽幅(2米以上)聚氯乙烯防水卷材,热塑性聚烯烃(TPO)防水卷材生产  4. 新技术功能玻璃开发生产:屏蔽电磁波玻璃、微电子用玻璃基板、透红外线无铅玻璃、电子级大规格石英玻璃制品(管、板、坩埚、仪器器皿等)、光学性能优异多功能风挡玻璃、信息技术用极端材料及制品(包括波导级高精密光纤预制棒石英玻璃套管和陶瓷基板)、高纯(≥99.998%)超纯(≥99.999%)水晶原料提纯加工  5. 薄膜电池导电玻璃、太阳能集光镜玻璃  6. 玻璃纤维制品及特种玻璃纤维生产:低介电玻璃纤维、石英玻璃纤维、高硅氧玻璃纤维、高强高弹玻璃纤维、陶瓷纤维等及其制品  7. 光学纤维及制品生产:传像束及激光医疗光纤、超二代和三代微通道板、光学纤维面板、倒像器及玻璃光锥  8. 陶瓷原料的标准化精制、陶瓷用高档装饰材料生产  9. 水泥、电子玻璃、陶瓷、微孔炭砖等窑炉用环保(无铬化)耐火材料生产  10. 氮化铝(AIN)陶瓷基片、多孔陶瓷生产  11. 无机非金属材料及制品生产:复合材料、特种陶瓷、特种密封材料(含高速油封材料)、特种摩擦材料(含高速摩擦制动制品)、特种胶凝材料、特种乳胶材料、水声橡胶制品、纳米材料  12. 有机-无机复合泡沫保温材料  13. 高技术复合材料生产:连续纤维增强热塑性复合材料和预浸料、耐温300℃树脂基复合材料成型用工艺辅助材料、树脂基复合材料(包括高档体育用品、轻质高强交通工具部件)、特种功能复合材料及制品(包括深水及潜水复合材料制品、医用及康复用复合材料制品)、碳/碳复合材料、高性能陶瓷基复合材料及制品、金属基和玻璃基复合材料及制品、金属层状复合材料及制品、压力≥320MPa超高压复合胶管、大型客机航空轮胎  14. 精密高性能陶瓷原料生产:碳化硅(SiC)超细粉体 (纯度99%,平均粒径1μm)、氮化硅(Si3N4)超细粉体 (纯度99%,平均粒径1μm)、高纯超细氧化铝微粉(纯度99.9%,平均粒径0.5μm)、低温烧结氧化锆(ZrO2)粉体(烧结温度1350℃)、高纯氮化铝(AlN)粉体(纯度99%,平均粒径1μm)、金红石型TiO2粉体(纯度98.5%)、白炭黑(粒径100nm)、钛酸钡(纯度99%,粒径1μm)  15. 高品质人工晶体及晶体薄膜制品开发生产:高品质人工合成水晶(压电晶体及透紫外光晶体)、超硬晶体(立方氮化硼晶体)、耐高温高绝缘人工合成绝缘晶体(人工合成云母)、新型电光晶体、大功率激光晶体及大规格闪烁晶体、金刚石膜工具、厚度0.3mm及以下超薄人造金刚石锯片  16. 非金属矿精细加工(超细粉碎、高纯、精制、改性)  17. 超高功率石墨电极生产  18. 珠光云母生产(粒径3-150μm)  19. 多维多向整体编制织物及仿形织物生产  20. 利用新型干法水泥窑无害化处置固体废弃物  21. 建筑垃圾再生利用  22. 工业副产石膏综合利用  23. 非金属矿山尾矿综合利用的新技术开发和应用及矿山生态恢复  (十五)有色金属冶炼及压延加工业  1. 直径200mm以上硅单晶及抛光片生产  2. 高新技术有色金属材料生产:化合物半导体材料(砷化镓、磷化镓、磷化锢、氮化镓),高温超导材料,记忆合金材料(钛镍、铜基及铁基记忆合金材料),超细(纳米)碳化钙及超细(纳米)晶硬质合金,超硬复合材料,贵金属复合材料,散热器用铝箔,中高压阴极电容铝箔,特种大型铝合金型材,铝合金精密模锻件,电气化铁路架空导线,超薄铜带,耐蚀热交换器铜合金材,高性能铜镍、铜铁合金带,铍铜带、线、管及棒加工材,耐高温抗衰钨丝,镁合金铸件,无铅焊料,镁合金及其应用产品,泡沫铝,钛合金带材及钛焊接管,原子能级海绵锆,钨及钼深加工产品  (十六)金属制品业  1. 航空、航天、汽车、摩托车轻量化及环保型新材料研发与制造(专用铝板、铝镁合金材料、摩托车铝合金车架等)  2. 建筑五金件、水暖器材及其五金件开发、生产  3. 用于包装各类粮油食品、果蔬、饮料、日化产品等内容物的金属包装制品(厚度0.3毫米以下)的制造及加工(包括制品的内外壁印涂加工)  4. 节镍不锈钢制品的制造  (十七)通用设备制造业  1.高档数控机床及关键零部件制造:五轴联动数控机床数控座标镗铣加工中心、数控座标磨床、五轴联动数控系统及伺服装置、精密数控加工用高速超硬刀具  2. 1000吨及以上多工位墩锻成型机制造  3. 报废汽车拆解、破碎及后处理分选设备制造  4. FTL柔性生产线制造  5. 垂直多关节工业机器人、焊接机器人及其焊接装置设备制造  6. 特种加工机械制造:激光切割和拼焊成套设备、激光精密加工设备、数控低速走丝电火花线切割机、亚微米级超细粉碎机  7. 300吨及以上轮式、履带式起重机械制造(限于合资、合作)  8. 工作压力≥35MPa高压柱塞泵及马达、工作压力≥35MPa低速大扭矩马达的设计与制造  9. 工作压力≥35MPa的整体式液压多路阀,电液比例伺服元件制造  10. 阀岛、功率0.35W以下气动电磁阀、200Hz以上高频电控气阀设计与制造  11. 静液压驱动装置设计与制造  12. 压力10MPa以上非接触式气膜密封、压力10MPa以上干气密封(包括实验装置)的开发与制造  13. 汽车用高分子材料(摩擦片、改型酚醛活塞、非金属液压总分泵等)设备开发与制造  14. 第三、四代轿车轮毂轴承(轴承内、外圈带法兰盘和传感器的轮毂轴承功能部件),高中档数控机床和加工中心轴承(加工中心具有三轴以上联动功能、定位重复精度为3-4μm),高速线材、板材轧机轴承(单途线材轧机轧速120m/s及以上、薄板轧机加工板厚度2mm及以上的支承和工作辊轴承),高速铁路轴承(行驶速度大于200km/h),振动值Z4以下低噪音轴承(Z4、Z4P、V4、V4P噪音级),各类轴承的P4、P2级轴承制造,风力发电机组轴承(1.5兆瓦以上风力发电机组主轴轴承、增速器轴承、发电机轴承等),航空轴承(航空发动机主轴轴承、起落架轴承、传动系统轴承、操纵系统轴承等)  15. 高密度、高精度、形状复杂的粉末冶金零件及汽车、工程机械等用链条的制造  16. 风电、核电、高速列车用齿轮变速器、船用可变浆齿轮传动系统,大型、重载齿轮箱的制造  17. 耐高温绝缘材料(绝缘等级为F、H级)及绝缘成型件制造  18. 蓄能器胶囊、液压气动用橡塑密封件开发与制造  19. 高精度、高强度(8.9级以上)、异形、组合类紧固件,微型精密传动联结件(离合器)、大型轧机连接轴制造  20. 机床、工程机械、铁路机车装备等机械设备再制造及汽车零部件再制造  (十八)专用设备制造业  1. 矿山无轨采、装、运设备制造:200吨及以上机械传动矿用自卸车,移动式破碎机,5000立方米/小时及以上斗轮挖掘机,8立方米及以上矿用装载机, 2500千瓦以上电牵引采煤机设备等  2. 物探、测井设备制造:MEME地震检波器,数字遥测地震仪,数字成像、数控测井系统,水平井、定向井、钻机装置及器具,MWD随钻测井仪  3. 石油勘探、钻井、集输设备制造:工作水深大于500米的浮式钻井系统和浮式生产系统,工作水深大于600米的海底采油、集输设备  4.口径2米以上深度30米以上大口径旋挖钻机、直径1.2米以上顶管机、回拖力300吨以上大型非开挖铺设地下管线成套设备、地下连续墙施工钻机制造  5. 520马力及以上大型推土机设计与制造  6. 100立方米/时及以上规格的清淤机、1000吨及以上挖泥船的挖泥装置设计与制造  7. 防汛堤坝用混凝土防渗墙施工装备设计与制造  8. 水下土石方施工机械制造:水深9米以下推土机、装载机、挖掘机等  9. 公路桥梁养护、自动检测设备制造  10. 公路隧道营运监控、通风、防灾和救助系统设备制造  11. 铁路大型施工、铁路线路、桥梁、隧道维修养护机械和检查、监测设备及其关键零部件的设计与制造  12. (沥青)油毡瓦设备、镀锌钢板等金属屋顶生产设备制造  13. 环保节能型现场喷涂聚氨酯防水保温系统设备、聚氨酯密封膏配制技术与设备、改性硅酮密封膏配制技术和生产设备制造  14. 高精度带材轧机(厚度精度10微米)设计与制造  15. 多元素、细颗粒、难选冶金属矿产的选矿装置制造  16. 100万吨/年及以上乙烯成套设备中的关键设备制造:年处理能力40万吨以上混合造粒机,直径1000毫米及以上螺旋卸料离心机,小流量高扬程离心泵  17. 大型煤化工成套设备制造(限于合资、合作)  18. 金属制品模具(如铜、铝、钛、锆的管、棒、型材挤压模具)设计、制造  19. 汽车车身外覆盖件冲压模具,汽车仪表板、保险杠等大型注塑模具,汽车及摩托车夹具、检具设计与制造  20. 汽车动力电池专用生产设备的设计与制造  21. 精密模具(冲压模具精度高于0.02毫米、型腔模具精度高于0.05毫米)设计与制造  22. 非金属制品模具设计与制造  23. 6万瓶/时及以上啤酒灌装设备、5万瓶/时及以上饮料中温及热灌装设备、3.6万瓶/时及以上无菌灌装设备制造  24. 氨基酸、酶制剂、食品添加剂等生产技术及关键设备制造  25. 10吨/小时及以上的饲料加工成套设备及关键部件制造  26. 楞高0.75毫米及以下的轻型瓦楞纸板及纸箱设备制造  27. 对开单张纸多色平版印刷机印刷速度大于16000对开张/时(720×1020毫米)、全张幅单张纸多色平版印刷机印刷速度13000对开张/时(1000×1400毫米)制造  28. 单幅单纸路卷筒纸平版印刷机印刷速度大于75000对开张/时(787×880毫米)、双幅单纸路卷筒纸平版印刷机印刷速度大于170000对开张/时(787×880毫米)、商业卷筒纸平版印刷机印刷速度大于50000对开张/时(787×880毫米)制造  29. 速度300米/分钟以上、幅宽1000毫米以上多色柔版印刷机,速度100米/分钟以上、幅宽450毫米以上生产型高速数字(数码)印刷机制造  30. 计算机墨色预调、墨色遥控、水墨速度跟踪、印品质量自动检测和跟踪系统、无轴传动技术、速度在75000张/时的高速自动接纸机、给纸机和可以自动遥控调节的高速折页机、自动套印系统、冷却装置、加硅系统、调偏装置等制造  31. 电子枪自动镀膜机制造  32. 平板玻璃深加工技术及设备制造  33. 新型造纸机械(含纸浆)等成套设备制造  34. 皮革后整饰新技术设备制造  35. 农产品加工及储藏新设备开发与制造:粮食、油料、蔬菜、干鲜果品、肉食品、水产品等产品的加工储藏、保鲜、分级、包装、干燥等新设备,农产品品质检测仪器设备,农产品品质无损伤检测仪器设备,流变仪,粉质仪,超微粉碎设备,高效脱水设备,五效以上高效果汁浓缩设备,粉体食品物料杀菌设备,固态及半固态食品无菌包装设备,碟片式分离离心机  36. 农业机械制造:农业设施设备(温室自动灌溉设备、营养液自动配置与施肥设备、高效蔬菜育苗设备、土壤养分分析仪器),配套发动机功率120千瓦以上拖拉机及配套农具,低油耗低噪音低排放柴油机,大型拖拉机配套的带有残余雾粒回收装置的喷雾机,高性能水稻插秧机,棉花采摘机及棉花采摘台,适应多种行距的自走式玉米联合收割机(液压驱动或机械驱动),油菜籽收获机、甘蔗收割机,甜菜收割机  37. 林业机具新技术设备制造  38.农作物秸秆收集、打捆及综合利用设备制造  39. 农用废物的资源化利用及规模化畜禽养殖废物的资源化利用设备制造  40. 节肥、节(农)药、节水型农业技术设备制造:各种喷灌机、带有飘逸雾粒回收装置的喷雾机、农业土壤肥力(多种土壤元素)快速测定装置等  41. 机电井清洗设备及清洗药物生产设备制造  42. 电子内窥镜制造  43. 眼底摄影机制造  44. 医用成像设备(成像设备、X线计算机断层成像设备、数字化彩色超声诊断设备等) 关键部件的制造  45. 医用超声换能器(3D)制造  46. 硼中子俘获治疗设备制造  47. 图像引导适型调强放射治疗系统制造  48. 血液透析机、血液过滤机制造  49. 全自动酶免系统(含加样、酶标、洗板、孵育、数据后处理等部分功能)设备制造  50. 药品质量控制新技术、新设备制造  51. 天然药物有效物质分析的新技术、提取的新工艺、新设备开发与制造  52. 非PVC医用输液袋多层共挤水冷式薄膜吹塑装备制造  53. 新型纺织机械、关键零部件及纺织检测、实验仪器开发与制造  54. 电脑提花人造毛皮机制造  55. 太阳能电池生产专用设备制造  56. 大气污染防治设备制造:耐高温及耐腐蚀滤料、低NOX燃烧装置、烟气脱氮催化剂及脱氮成套装置、工业有机废气净化设备、柴油车排气净化装置、含重金属废气处理装置  57. 水污染防治设备制造:卧式螺旋离心脱水机、膜及膜材料、50kg/h以上的臭氧发生器、10kg/h以上的二氧化氯发生器、紫外消毒装置、农村小型生活污水处理设备、含重金属废水处理装置  58. 固体废物处理处置设备制造:污水处理厂污泥处置及资源利用设备、日处理量500吨以上垃圾焚烧成套设备、垃圾填埋渗滤液处理技术装备、垃圾填埋场防渗土工膜、建筑垃圾处理和资源化利用装备、危险废物处理装置、垃圾填埋场沼气发电装置、废钢铁废汽车处理设备、污染土壤修复设备  59. 铝工业赤泥综合利用设备开发与制造  60. 尾矿综合利用设备制造  61. 废旧塑料、电器、橡胶、电池回收处理再生利用设备制造  62. 废旧纺织品的回收处理设备制造  63. 废旧机电产品再制造设备制造  64. 废旧轮胎综合利用装置制造  65. 水生生态系统的环境保护技术、设备制造  66. 移动式组合净水设备制造  67. 非常规水处理、重复利用设备与水质监测仪器  68. 工业水管网和设备(器具)的检漏设备和仪器  69. 日产10万立方米及以上海水淡化及循环冷却技术和成套设备开发与制造  70. 特种气象观测及分析设备制造   71. 地震台站、台网和流动地震观测技术系统开发及仪器设备制造  72. 三鼓及以上子午线轮胎成型机制造  73. 滚动阻力试验机、轮胎噪音试验室制造  74. 供热计量、温控装置新技术设备制造  75. 氢能制备与储运设备及检查系统制造  76. 新型重渣油气化雾化喷嘴、漏汽率0.5%及以下高效蒸汽疏水阀、1000℃及以上高温陶瓷换热器制造  77. 海上溢油回收装置制造  78. 低浓度煤矿瓦斯和乏风利用设备制造  (十九)交通运输设备制造业  1. 汽车发动机制造及发动机研发机构建设:升功率不低于55千瓦的汽油发动机、升功率不低于45千瓦的排量3升以下柴油发动机、升功率不低于35千瓦的排量3升以上柴油发动机、燃料电池和混合燃料等新能源发动机制造  2. 汽车关键零部件制造及关键技术研发:双离合器变速器(DCT)、电控机械变速器(AMT)、汽油发动机涡轮增压器、粘性连轴器(四轮驱动用)、自动变速器执行器(电磁阀)、液力缓速器、电涡流缓速器、汽车安全气囊用气体发生器、燃油共轨喷射技术(最大喷射压力大于2000帕)、可变截面涡轮增压技术(VGT)、可变喷嘴涡轮增压技术(VNT)、达到中国Ⅴ阶段污染物排放标准的发动机排放控制装置、智能扭矩管理系统(ITM)及耦合器总成、线控转向系统、柴油机颗粒捕捉器、低地板大型客车专用车桥、吸能式转向系统、大中型客车变频空调系统、汽车用特种橡胶配件,以及上述零部件的关键零件、部件  3. 汽车电子装置制造与研发:发动机和底盘电子控制系统及关键零部件,车载电子技术(汽车信息系统和导航系统),汽车电子总线网络技术(限于合资),电子控制系统的输入(传感器和采样系统)输出(执行器)部件,电动助力转向系统电子控制器(限于合资),嵌入式电子集成系统(限于合资、合作)、电控式空气弹簧,电子控制式悬挂系统,电子气门系统装置,电子组合仪表,ABS/TCS/ESP系统,电路制动系统(BBW),变速器电控单元(TCU),轮胎气压监测系统(TPMS),车载故障诊断仪(OBD),发动机防盗系统,自动避撞系统,汽车、摩托车型试验及维修用检测系统  4. 新能源汽车关键零部件(外资比例不超过50%):能量型动力电池(能量密度≥110Wh/kg,循环寿命≥2000次),电池正极材料(比容量≥150mAh/g,循环寿命2000次不低于初始放电容量的80%),电池隔膜(厚度15-40μm,孔隙率40%-60%) 电池管理系统,电机管理系统,电动汽车电控集成 电动汽车驱动电机(峰值功率密度≥2.5kW/kg,高效区:65%工作区效率 ≥80%),车用DC/DC(输入电压100V-400V),大功率电子器件(IGBT,电压等级≥600V,电流≥300A) 插电式混合动力机电耦合驱动系统 电动空调、电制动、电助力转向 怠速起停系统 轮毂电机系统、燃料电池堆及其零部件、车用储氢系统、车载充电器、非车载充电设备等  5. 大排量(排量250ml)摩托车关键零部件制造:摩托车电控燃油喷射技术(限于合资、合作)、达到中国摩托车Ⅲ阶段污染物排放标准的发动机排放控制装置  6. 轨道交通运输设备(限于合资、合作):高速铁路、铁路客运专线、城际铁路、干线铁路及城市轨道交通运输设备的整车和关键零部件(牵引传动系统、控制系统、制动系统)的研发、设计与制造 高速铁路、铁路客运专线、城际铁路及城市轨道交通乘客服务设施和设备的研发、设计与制造,信息化建设中有关信息系统的设计与研发 高速铁路、铁路客运专线、城际铁路的轨道和桥梁设备研发、设计与制造,轨道交通运输通信信号系统的研发、设计与制造,电气化铁路设备和器材制造、铁路噪声和振动控制技术与研发、铁路客车排污设备制造、铁路运输安全监测设备制造  7. 民用飞机设计、制造与维修:干线、支线飞机(中方控股),通用飞机(限于合资、合作)  8. 民用飞机零部件制造与维修  9. 民用直升机设计与制造:3吨级及以上(中方控股),3吨级以下(限于合资、合作)  10. 民用直升机零部件制造  11. 地面、水面效应飞机制造(中方控股)  12. 无人机、浮空器设计与制造(中方控股)  13. 航空发动机及零部件、航空辅助动力系统设计、制造与维修(限于合资、合作)  14. 民用航空机载设备设计与制造(限于合资、合作)  15. 航空地面设备制造:民用机场设施、民用机场运行保障设备、飞行试验地面设备、飞行模拟与训练设备、航空测试与计量设备、航空地面试验设备、机载设备综合测试设备、航空制造专用设备、航空材料试制专用设备、民用航空器地面接收及应用设备、运载火箭地面测试设备、运载火箭力学及环境实验设备  16. 航天器光机电产品、航天器温控产品、星上产品检测设备、航天器结构与机构产品制造  17. 轻型燃气轮机制造  18. 豪华邮轮及深水(3000米以上)海洋工程装备的设计(限于合资、合作)  19. 海洋工程装备(含模块)的制造与修理(中方控股)  20. 船舶低、中速柴油机及其零部件的设计(限于合资、合作)  21. 船舶低、中、高速柴油机及其零部件的制造(中方相对控股)  22. 船舶舱室机械的设计与制造(中方相对控股)  23. 船舶通讯导航设备的设计与制造:船舶通信系统设备、船舶电子导航设备、船用雷达、电罗经自动舵、船舶内部公共广播系统等  24. 游艇的设计与制造(限于合资、合作)  (二十)电气机械及器材制造业  1. 100万千瓦超超临界火电机组用关键辅机设备制造(限于合资、合作):安全阀、调节阀  2. 百万千瓦级核电站用关键设备制造(限于合资、合作):核Ⅰ级、核Ⅱ级泵和阀门  3. 燃煤电站、钢铁行业烧结机脱硝技术装备制造  4. 核电、火电设备的密封件设计、制造  5. 核电设备用大型铸锻件制造  6. 输变电设备制造(限于合资、合作):非晶态合金变压器、500千伏及以上高压开关用操作机构、灭弧装置、大型盆式绝缘子(1000千伏、50千安以上),500千伏及以上变压器用出线装置、套管(交流500、750、1000千伏,直流所有规格)、调压开关(交流500、750、1000千伏有载、无载调压开关),直流输电用干式平波电抗器,±800千伏直流输电用换流阀(水冷设备、直流场设备),符合欧盟RoHS指令的电器触头材料及无Pb、Cd的焊料制造  7. 新能源发电成套设备或关键设备制造(限于合资、合作):光伏发电、地热发电、潮汐发电、波浪发电、垃圾发电、沼气发电、3兆瓦及以上风力发电设备  8. 额定功率350MW及以上大型抽水蓄能机组制造(限于合资、合作):水泵水轮机及调速器、大型变速可逆式水泵水轮机组、发电电动机及励磁、启动装置等附属设备的系统集成设计及仿真  9. 斯特林发电机组制造  10. 直线和平面电机及其驱动系统开发与制造  11. 高技术绿色电池制造:动力镍氢电池、锌镍蓄电池、锌银蓄电池、锂离子电池、太阳能电池、燃料电池等  12. 电动机采用直流调速技术的制冷空调用压缩机、采用CO2自然工质制冷空调压缩机、应用可再生能源(空气源、水源、地源)制冷空调设备制造  13. 太阳能空调、采暖系统、太阳能干燥装置制造  14. 生物质干燥热解系统、生物质气化装置制造  15. 交流调频调压牵引装置制造  (二十一)通信设备、计算机及其他电子设备制造业  1. TFT-LCD、PDP、OLED等平板显示屏、显示屏材料制造(6代及6代以下TFT-LCD玻璃基板除外)  2. 大屏幕彩色投影显示器用光学引擎、光源、投影屏、高清晰度投影管和微显投影设备模块等关键件制造  3. 数字音、视频编解码设备,数字广播电视演播室设备,数字有线电视系统设备,数字音频广播发射设备,数字电视上下变换器,数字电视地面广播单频网(SFN)设备,卫星数字电视上行站设备,卫星公共接收电视(SMATV)前端设备制造  4. 集成电路设计,线宽0.18微米及以下大规模数字集成电路制造,0.8微米及以下模拟、数模集成电路制造,MEMS及化合物半导体集成电路制造及BGA、PGA、CSP、MCM等先进封装与测试  5. 大中型电子计算机、百万亿次高性能计算机、便携式微型计算机、每秒一万亿次及以上高档服务器、大型模拟仿真系统、大型工业控制机及控制器制造  6. 计算机数字信号处理系统及板卡制造  7. 图形图像识别和处理系统制造  8. 大容量光、磁盘驱动器及其部件开发与制造  9. 高速、容量100TB及以上存储系统及智能化存储设备制造  10. 计算机辅助设计(三维CAD)、辅助测试(CAT)、辅助制造(CAM)、辅助工程(CAE)系统及其他计算机应用系统制造  11. 软件产品开发、生产  12. 电子专用材料开发与制造(光纤预制棒开发与制造除外)  13. 电子专用设备、测试仪器、工模具制造  14. 新型电子元器件制造:片式元器件、敏感元器件及传感器、频率控制与选择元件、混合集成电路、电力电子器件、光电子器件、新型机电元件、超级电容器和无源集成元件、高密度互连积层板、多层挠性板、刚挠印刷电路板及封装载板  15. 触控系统(触控屏幕、触控组件等)  16. 发光效率100lm/W以上高亮度发光二极管、发光效率1001m/W以上发光二极管外延片(蓝光)、发光效率1001m/W以上且功率200mW以上白色发光管制造  17. 高密度数字光盘机用关键件开发与生产  18. 只读类光盘复制和可录类光盘生产  19. 民用卫星设计与制造(中方控股)  20. 民用卫星有效载荷制造(中方控股)  21. 民用卫星零部件制造  22. 卫星通信系统设备制造  23. 卫星导航定位接收设备及关键部件制造  24. 光通信测量仪表、速率10Gb/s及以上光收发器制造  25. 超宽带(UWB)通信设备制造  26. 无线局域网(广域网)设备制造  27. 40Gbps及其以上速率时分复用设备(TDM)、密集波分复用设备(DWDM)、宽带无源网络设备(包括EPON、GPON、WDM-PON等)、下一代DSL芯片及设备、光交叉连接设备(OXC)、自动光交换网络设备(ASON)、40G/sSDH以上光纤通信传输设备制造  28. 基于IPv6的下一代互联网系统设备、终端设备、检测设备、软件、芯片开发及制造  29. 第三代及后续移动通信系统手机、基站、核心网设备以及网络检测设备开发制造  30. 高端路由器、千兆比以上网络交换机开发、制造  31. 空中交通管制系统设备制造(限于合资、合作)  (二十二)仪器仪表及文化、办公用机械制造业  1. 工业过程自动控制系统与装置制造:现场总线控制系统,大型可编程控制器(PLC),两相流量计,固体流量计,新型传感器及现场测量仪表  2. 大型精密仪器开发与制造:电子显微镜、激光扫描显微镜、扫描隧道显微镜、电子探针、大型金相显微镜,光电直读光谱仪、拉曼光谱仪,质谱仪、色谱-质谱联用仪、核磁共振波谱仪、能谱仪、X射线荧光光谱仪、衍射仪,工业CT、450KV工业X射线探伤机、大型动平衡试验机、在线机械量自动检测系统、三座标测量机、激光比长仪,电法勘探仪、500m以上航空电法及伽玛能谱测量仪器、井中重力及三分量磁力仪、高精度微伽重力及航空重力梯度测量仪器,栅尺、编码器  3. 高精度数字电压表、电流表制造(显示量程七位半以上)  4. 无功功率自动补偿装置制造  5. 安全生产新仪器设备制造  6. VXI总线式自动测试系统(符合IEEE1155国际规范)制造  7. 煤矿井下监测及灾害预报系统、煤炭安全检测综合管理系统开发与制造  8. 工程测量和地球物理观测设备制造:数字三角测量系统、三维地形模型数控成型系统 (面积1000×1000mm、水平误差1mm、高程误差0.5mm)、超宽频带地震计(φ5cm、频带0.01-50Hz、等效地动速度噪声10-9m/s)、地震数据集合处理系统、综合井下地震和前兆观测系统、精密可控震源系统、工程加速度测量系统、高精度GPS接收机(精度1mm+1ppm)、INSAR图像接收及处理系统、INSAR图像接收及处理系统、精度1微伽的绝对重力仪、卫星重力仪、采用相干或双偏振技术的多普勒天气雷达、能见度测量仪、气象传感器(温、压、湿、风、降水、云、能见度、辐射、冻土、雪深)、防雷击系统、多级飘尘采样计、3-D 超声风速仪、高精度智能全站议、三维激光扫描仪、钻探用高性能金刚石钻头、无合作目标激光测距仪、风廓线仪(附带RASS)、GPS电子探控仪系统、CO2/H2O通量观测系统、边界层多普勒激光雷达、颗粒物颗粒经谱仪器(3nm-20μm)、高性能数据采集器、水下滑翔器  9. 环境监测仪器制造:SO2自动采样器及测定仪、NOX及NO2自动采样器及测定仪、O3自动监测仪、CO自动监测仪、烟气及Pm2.5粉尘采样器及采样切割器、便携式有毒有害气体测定议、空气中有机污染物自动分析仪、COD自动在线监测仪、BOD自动在线监测仪、浊度在线监测仪、DO在线监测仪、TOC在线监测仪、氨氮在线监测仪、辐射剂量检测仪、射线分析测试仪、重金属在线监测设备、在线生物毒性水质预警监控设备  10. 水文数据采集、处理与传输和防洪预警仪器及设备制造  11. 海洋勘探监测仪器和设备制造:中深海水下摄像机和水下照相机、多波束探测仪、中浅地层剖面探测仪、走航式温盐深探测仪、磁通门罗盘、液压绞车、水下密封电子连接器、效率90%的反渗透海水淡化用能量回收装置、海洋生态系统监测浮标、剖面探测浮标、一次性使用的电导率温度和深度测量仪器(XCTD)、现场水质测量仪器、智能型海洋水质监测用化学传感器 (连续工作3~6个月)、电磁海流计、声学多普勒海流剖面仪(自容式、直读式和船用式)、电导率温度深度剖面仪、声学应答释放器、远洋深海潮汐测量系统(布设海底)  12. 1000万像素以上数字照相机制造  13. 办公机械制造:彩色多功能一体机,彩色打印设备,精度2400dbi及以上高分辨率彩色打印机机头,感光鼓  14. 电影机械制造:2K、4K数字电影放映机,数字电影摄像机,数字影像制作、编辑设备  (二十三)工艺品及其他制造业  1. 洁净煤技术产品的开发利用及设备制造(煤炭气化、液化、水煤浆、工业型煤)  2. 煤炭洗选及粉煤灰(包括脱硫石膏)、煤矸石等综合利用  3. 全生物降解材料的生产  4. 废旧塑料、电器电子产品、汽车、机电设备、橡胶、金属、电池回收处理  四、电力、煤气及水的生产及供应业  1. 采用整体煤气化联合循环(IGCC)、30万千瓦及以上循环流化床、10万千瓦及以上增压循环流化床(PFBC)洁净燃烧技术电站的建设、经营  2. 背压型热电联产电站的建设、经营  3. 发电为主水电站的建设、经营  4. 核电站的建设、经营(中方控股)  5. 新能源电站(包括太阳能、风能、地热能、潮汐能、波浪能、生物质能等)建设经营  6. 海水利用(海水直接利用、海水淡化)、工业废水处理回收利用产业化  7. 供水厂建设、经营  8. 再生水厂建设、运营  9. 机动车充电站、电池更换站建设、经营  五、交通运输、仓储和邮政业  1. 铁路干线路网的建设、经营(中方控股)  2. 支线铁路、地方铁路及其桥梁、隧道、轮渡和站场设施的建设、经营(限于合资、合作)  3. 高速铁路、铁路客运专线、城际铁路基础设施综合维修(中方控股)  4. 公路、独立桥梁和隧道的建设、经营  5. 公路货物运输公司  6. 港口公用码头设施的建设、经营  7. 民用机场的建设、经营(中方相对控股)  8. 航空运输公司(中方控股)  9. 农、林、渔业通用航空公司(限于合资、合作)  10. 定期、不定期国际海上运输业务(中方控股)  11. 国际集装箱多式联运业务  12. 输油(气)管道、油(气)库的建设、经营  13. 煤炭管道运输设施的建设、经营  14. 运输业务相关的仓储设施建设、经营  六、批发和零售业  1. 一般商品的共同配送、鲜活农产品低温配送等现代物流及相关技术服务  2. 农村连锁配送  七、租赁和商务服务业  1. 会计、审计(限于合作、合伙)  2. 国际经济、科技、环保、物流信息咨询服务  3. 以承接服务外包方式从事系统应用管理和维护、信息技术支持管理、银行后台服务、财务结算、人力资源服务、软件开发、离岸呼叫中心、数据处理等信息技术和业务流程外包服务  4. 创业投资企业  5. 知识产权服务  八、科学研究、技术服务和地质勘查业  1. 生物工程与生物医学工程技术、生物质能源开发技术  2. 同位素、辐射及激光技术  3. 海洋开发及海洋能开发技术、海洋化学资源综合利用技术、相关产品开发和精深加工技术、海洋医药与生化制品开发技术  4. 海洋监测技术(海洋浪潮、气象、环境监测)、海底探测与大洋资源勘查评价技术  5. 综合利用海水淡化后的浓海水制盐、提取钾、溴、镁、锂及其深加工等海水化学资源高附加值利用技术  6. 海上石油污染清理与生态修复技术及相关产品开发,海水富营养化防治技术,海洋生物爆发性生长灾害防治技术,海岸带生态环境修复技术  7. 节能技术开发与服务  8. 资源再生及综合利用技术、企业生产排放物的再利用技术开发及其应用  9. 环境污染治理及监测技术  10. 化纤生产及印染加工的节能降耗、三废治理新技术  11. 防沙漠化及沙漠治理技术  12. 草畜平衡综合管理技术  13. 民用卫星应用技术  14. 研究开发中心  15. 高新技术、新产品开发与企业孵化中心  九、水利、环境和公共设施管理业  1. 综合水利枢纽的建设、经营(中方控股)  2. 城市封闭型道路建设、经营  3. 城市地铁、轻轨等轨道交通的建设、经营(中方控股)  4. 污水、垃圾处理厂,危险废物处理处置厂(焚烧厂、填埋场)及环境污染治理设施的建设、经营  十、教育  1. 高等教育机构(限于合资、合作)  2. 职业技能培训  十一、卫生、社会保障和社会福利业  1. 老年人、残疾人和儿童服务机构  十二、文化、体育和娱乐业  1. 演出场所经营(中方控股)  2. 体育场馆经营、健身、竞赛表演及体育培训和中介服务  限制外商投资产业目录  一、农、林、牧、渔业  1. 农作物新品种选育和种子生产经营(中方控股)  2. 珍贵树种原木加工(限于合资、合作)  3. 棉花(籽棉)加工  二、采矿业  1. 特殊和稀缺煤种勘查、开采(中方控股)  2. 重晶石勘查、开采(限于合资、合作)  3. 贵金属(金、银、铂族)勘查、开采  4. 金刚石、高铝耐火粘土、硅灰石、石墨等重要非金属矿的勘查、开采  5. 磷矿、锂矿和硫铁矿的开采、选矿,盐湖卤水资源的提炼  6. 硼镁石及硼镁铁矿石开采  7. 天青石开采  8. 大洋锰结核、海砂的开采(中方控股)  三、制造业  (一)农副食品加工业  1. 大豆、油菜籽、花生、棉籽、油茶籽等各类食用油脂加工(中方控股),玉米深加工  2. 生物液体燃料(燃料乙醇、生物柴油)生产(中方控股)  (二)饮料制造业  1. 黄酒、名优白酒生产(中方控股)  (三)烟草制品业  1. 打叶复烤烟叶加工生产  (四)印刷业和记录媒介的复制  1.出版物印刷(中方控股)  (五)石油加工、炼焦及核燃料加工业  1. 1000万吨/年以下常减压炼油、150万吨/年以下催化裂化、100万吨/年以下连续重整(含芳烃抽提)、150万吨/年以下加氢裂化生产  (六)化学原料及化学制品制造业  1. 纯碱、烧碱以及规模以下或采用落后工艺的硫酸、硝酸、钾碱生产  2. 感光材料生产  3. 联苯胺生产  4. 易制毒化学品生产(麻黄素、3,4-亚基二氧苯基-2-丙酮、苯乙酸、1-苯基-2-丙酮、胡椒醛、黄樟脑、异黄樟脑、醋酸酐)  5. 氟化氢等低端氟氯烃或氟氯化合物生产  6. 丁二烯橡胶、乳液聚合丁苯橡胶、热塑性丁苯橡胶生产  7. 乙炔法聚氯乙烯以及规模以下乙烯和后加工产品生产  8. 采用落后工艺、含有有害物质、规模以下颜料和涂料生产  9. 硼镁铁矿石加工  10. 资源占用大、环境污染严重、采用落后工艺的无机盐生产  (七)医药制造业  1. 氯霉素、青霉素G、洁霉素、庆大霉素、双氢链霉素、丁胺卡那霉素、盐酸四环素、土霉素、麦迪霉素、柱晶白霉素、环丙氟哌酸、氟哌酸、氟嗪酸生产  2. 安乃近、扑热息痛、维生素B1、维生素B2、维生素C、维生素E、多种维生素制剂和口服钙剂生产  3. 纳入国家免疫规划的疫苗品种生产  4. 麻醉药品及一类精神药品原料药生产(中方控股)  5. 血液制品的生产  (八)化学纤维制造业  1. 常规切片纺的化纤抽丝生产  2. 粘胶短纤维生产  (九)有色金属冶炼及压延加工业  1. 钨、钼、锡(锡化合物除外)、锑(含氧化锑和硫化锑)等稀有金属冶炼  2. 电解铝、铜、铅、锌等有色金属冶炼  3. 稀土冶炼、分离(限于合资、合作)  (十)通用设备制造业  1. 各类普通级(P0)轴承及零件(钢球、保持架)、毛坯制造  2. 500吨以下轮式起重机、600吨以下履带式起重机械制造(限于合资、合作)  (十一)专用设备制造业  1. 一般涤纶长丝、短纤维设备制造  2. 320马力及以下推土机、30吨级及以下液压挖掘机、6吨级及以下轮式装载机、220马力及以下平地机、压路机、叉车、135吨级及以下非公路自卸翻斗车、沥青混凝土搅拌与摊铺设备和高空作业机械、园林机械和机具、商品混凝土机械(托泵、搅拌车、搅拌站、泵车)制造  (十二)交通运输设备制造业  1. 船舶(含分段)的修理、设计与制造(中方控股)  (十三)通信设备、计算机及其他电子设备制造业  1. 卫星电视广播地面接收设施及关键件生产  四、电力、煤气及水的生产和供应业  1. 西藏、新疆、海南等小电网范围内,单机容量30万千瓦及以下燃煤凝汽火电站、单机容量10万千瓦及以下燃煤凝汽抽汽两用机组热电联产电站的建设、经营  2. 电网的建设、经营(中方控股)  3. 城区100万以上人口城市燃气、热力和供排水管网的建设、经营(中方控股)  五、交通运输、仓储和邮政业  1. 铁路货物运输公司  2. 铁路旅客运输公司(中方控股)  3. 公路旅客运输公司  4. 出入境汽车运输公司  5. 水上运输公司(中方控股)  6. 摄影、探矿、工业等通用航空公司(中方控股)  7. 电信公司:增值电信业务(外资比例不超过50%),基础电信业务(外资比例不超过49%)  六、批发和零售业  1. 直销、邮购、网上销售  2. 粮食收购、储存,粮食、棉花、植物油、食糖、药品、烟草、原油、农药、农膜、化肥的批发、零售、配送(设立超过30家分店、销售来自多个供应商的不同种类和品牌商品的连锁店由中方控股)  3. 音像制品(除电影外)的分销(限于合作)  4. 船舶代理(中方控股)、外轮理货(限于合资、合作)  5. 成品油批发及加油站(同一外国投资者设立超过30家分店、销售来自多个供应商的不同种类和品牌成品油的连锁加油站,由中方控股)建设、经营  七、金融业  1. 银行、财务公司、信托公司、货币经纪公司  2. 保险公司(寿险公司外资比例不超过50%)  3. 证券公司(限于从事A股承销、B股和H股以及政府和公司债券的承销和交易,外资比例不超过1/3)、证券投资基金管理公司(外资比例不超过49%)  4. 保险经纪公司  5. 期货公司(中方控股)  八、房地产业  1. 土地成片开发(限于合资、合作)  2. 高档宾馆、高档写字楼和国际会展中心的建设、经营  3.房地产二级市场交易及房地产中介或经纪公司  九、租赁和商务服务业  1. 法律咨询  2. 市场调查(限于合资、合作)  3. 资信调查与评级服务公司  十、科学研究、技术服务和地质勘查业  1. 测绘公司(中方控股)  2. 进出口商品检验、鉴定、认证公司  3. 摄影服务(含空中摄影等特技摄影服务,但不包括测绘航空摄影,限于合资)  十一、教育  1. 普通高中教育机构(限于合作)  十二、文化、体育和娱乐业  1. 广播电视节目、电影的制作业务(限于合作)  2. 电影院的建设、经营(中方控股)  3. 大型主题公园的建设、经营  4. 演出经纪机构(中方控股)  5. 娱乐场所经营(限于合资、合作)  十三、国家和我国缔结或者参加的国际条约规定限制的其他产业  禁止外商投资产业目录  一、农、林、牧、渔业  1. 我国稀有和特有的珍贵优良品种的研发、养殖、种植以及相关繁殖材料的生产(包括种植业、畜牧业、水产业的优良基因)  2. 转基因生物研发和转基因农作物种子、种畜禽、水产苗种生产  3. 我国管辖海域及内陆水域水产品捕捞  二、采矿业  1.钨、钼、锡、锑、萤石勘查、开采  2.稀土勘查、开采、选矿  3. 放射性矿产的勘查、开采、选矿  三、制造业  (一)饮料制造业  1. 我国传统工艺的绿茶及特种茶加工(名茶、黑茶等)  (二)医药制造业  1. 列入《野生药材资源保护条例》和《中国珍稀、濒危保护植物名录》的中药材加工  2. 中药饮片的蒸、炒、灸、煅等炮制技术的应用及中成药保密处方产品的生产  (三)有色金属冶炼及压延加工业  1. 放射性矿产的冶炼、加工  (四)专用设备制造业  1. 武器弹药制造  (五)电气机械及器材制造业  1. 开口式(即酸雾直接外排式)铅酸电池、含汞扣式氧化银电池、含汞扣式碱性锌锰电池、糊式锌锰电池、镉镍电池制造  (六)工业品及其他制造业  1. 象牙雕刻  2. 虎骨加工  3. 脱胎漆器生产  4. 珐琅制品生产  5. 宣纸、墨锭生产  6. 致癌、致畸、致突变产品和持久性有机污染物产品生产  四、电力、煤气及水的生产和供应业  1. 西藏、新疆、海南等小电网外,单机容量30万千瓦及以下燃煤凝汽火电站、单机容量10万千瓦及以下燃煤凝汽抽汽两用热电联产电站的建设、经营  五、交通运输、仓储和邮政业  1. 空中交通管制公司  2. 邮政公司、信件的国内快递业务  六、租赁和商务服务业  1. 社会调查  七、科学研究、技术服务和地质勘查业  1. 人体干细胞、基因诊断与治疗技术开发和应用  2. 大地测量、海洋测绘、测绘航空摄影、行政区域界线测绘、地形图和普通地图编制、导航电子地图编制  八、水利、环境和公共设施管理业  1. 自然保护区和国际重要湿地的建设、经营  2. 国家保护的原产于我国的野生动、植物资源开发  九、教育  1. 义务教育机构,军事、警察、政治和党校等特殊领域教育机构  十、文化、体育和娱乐业  1. 新闻机构  2. 图书、报纸、期刊的出版业务  3. 音像制品和电子出版物的出版、制作业务  4. 各级广播电台(站)、电视台(站)、广播电视频道(率)、广播电视传输覆盖网(发射台、转播台、广播电视卫星、卫星上行站、卫星收转站、微波站、监测台、有线广播电视传输覆盖网)  5. 广播电视节目制作经营公司  6. 电影制作公司、发行公司、院线公司  7. 新闻网站、网络视听节目服务、互联网上网服务营业场所、互联网文化经营(音乐除外)  8. 高尔夫球场、别墅的建设、经营  9. 博彩业(含赌博类跑马场)  10. 色情业  十一、其他行业  1. 危害军事设施安全和使用效能的项目  十二、国家和我国缔结或者参加的国际条约规定禁止的其他产业  注:1.《内地与香港关于建立更紧密经贸关系的安排》及其补充协议、《内地与澳门关于建立更紧密经贸关系的安排》及其补充协议、《海峡两岸经济合作框架协议》及其补充协议、我国与有关国家签订的自由贸易区协议另有规定的,从其规定。  2.国务院专项规定或产业政策另有规定的,从其规定。
  • 国家市场监督管理总局对《动植物油脂 甘油一酯、甘油二酯、甘油三酯和甘油的测定 高效体积排阻色谱法(HPSEC)》等339项拟立项国家标准项目公开征求意见
    各有关单位:经研究,国家标准委决定对《聚对苯二甲酸乙二醇酯纤维及切片的相对分子质量及其分布的测定高效聚合物色谱-多角度激光光散射法(APC-MALLS)》等339项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年10月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001379,查询项目信息和反馈意见建议。2023年9月4日相关标准如下:#项目中文名称制修订截止日期1动植物油脂 甘油一酯、甘油二酯、甘油三酯和甘油的测定 高效体积排阻色谱法(HPSEC)制定2023-10-042橄榄油和橄榄果渣油中脂肪醇和三萜醇含量的测定 毛细管气相色谱法制定2023-10-043粮油储藏 就仓干燥技术规范修订2023-10-044粮油储藏技术规范修订2023-10-045粮油机械 大米色选机修订2023-10-046塑料平托盘修订2023-10-047塑料制品碳足迹核算通则制定2023-10-048碳排放核算与报告要求 第XX部分:日用陶瓷企业制定2023-10-049小麦和小麦粉 面筋含量 第1部分:手洗法测定湿面筋修订2023-10-0410小麦硬度测定 硬度指数法修订2023-10-0411溴敌隆母药修订2023-10-0412溴敌隆原药修订2023-10-0413溴甲烷原药修订2023-10-0414溴鼠灵母药修订2023-10-0415溴鼠灵原药修订2023-10-0416药品冷链物流追溯管理要求制定2023-10-0417一次性托盘修订2023-10-0418医药产品冷链物流温控设施设备验证 性能确认技术规范修订2023-10-0419标准化教育课程建设指南 药学标准化制定2023-10-0420电子商务平台交易信息监测指南制定2023-10-0421电子商务平台适老化通用要求制定2023-10-04
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 涉及上百台仪器,晶瑞光刻胶研发工艺曝光
    IC光刻胶开发一般来说会涉及研发设备和测试设备,其中研发设备主要就是以混配釜和过滤设备为主,此类设备需考虑纯度控制,设备内一般使用PFA内衬或PTFE涂层,避免金属离子析出。测试设备(必备的)ICP-MS、膜厚仪、旋涂机、显影器、LPC、质谱、GPC,另外关于光刻机也是核心部分。光刻胶是半导体产业重要的耗材,而有这样一家企业从事光刻胶研发多年,去年却因采购光刻机投入了人们的视野,登上了风口浪尖。苏州晶瑞化学股份有限公司(已更名为“晶瑞电子材料股份有限公司”)是一家微电子化学品及其它精细化工品生产商,公司的产品主要包括超净高纯试剂、光刻胶、功能性材料以及锂电池粘结剂等,可应用于半导体、光伏太阳能电池、LED等相关行业,具体应用到下游电子信息产品的清洗、光刻、制备等工艺环节。其采购光刻机主要用于晶瑞化学集成电路用高端光刻胶研发项目。近日,仪器信息网从公开文件了解到该项目的相关信息,涉及工艺流程和仪器配置等信息,详情如下:项目主体工程研发方案建设项目工程一览表本项目主要生产设备一览表营运期工艺流程及产污分析:工艺流程及简述:本项目通过小试实验为晶瑞化学股份有限公司生产提供技术支撑,不产生具体产品,实验室在进行实验后得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料作为危险废物委托有资质单位处理,不作为产品销售或外卖。1. 研发工艺流程图因研发中心项目每次开发过程中所使用的化学原料、可能发生的化学反应等均具有不确定性,因此研发中心项目的流程以实验研发中心为单元进行表示如下:本次研发中心项目工作流程图工艺流程描述研发中心项目具体操作流程如下:a、实验前风险评估:在此阶段科学家将对需进行的研究进行预研发风险分析,并通过相关的安全分析得出需研究项目的试验安全等级,确定试验过程中需采取的安全和环保措施。b、风险评估通过后将进入研发小试实验阶段:因研发中心项目每次实验需用到的物料和用量均无法事先设定,需根据具体的研发方向和实验要求来确定,因此研发中心项目的物料使用种类和使用量具有不确定性。但公司从环保角度考虑,研发中心项目各实验室均按标准化实验室进行建设,本次研究实验除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实验室通风橱内进行,通风橱收集率为 90%,光刻机为密闭系统,产生的废气由单独的管道收集,收集率为 98%。收集后的废气经一套“蜂窝活性炭+袋式活性炭”两级活性炭处理装置处理后由 30m 高排气筒 P4 排放。研发中心项目实验过程得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料均收集后作为危废委外处理,有妥善的处理处置方式。具体研发实验工艺:1、树脂合成工艺:树脂合成工艺流程树脂合成工艺流程简述如下:除氧:常温、常压下,向搭载机械搅拌、冷凝管和温度计的四口烧瓶中持续通入氮气,除去反应瓶中的氧气,氮气作为保护气体,可以保护后续反应不受氧气干扰。聚合反应:除氧后向四口烧瓶中依次加入反应所需单体,引发剂及适量溶剂后,将四口烧瓶置于油浴锅(加热辅材为硅油)中使用机械搅拌器搅拌至四口烧 瓶中的物料搅拌成透明均一的溶液,于设定温度条件下油浴锅加热反应,红外监测反应进程。油浴加热为间接加热,使用硅油作为加热辅材,硅油的沸点高于100摄氏度,油浴加热所需的加热温度为 20~60 摄氏度,该温度下硅油几乎不产生油雾,反应在通风橱中进行。引发剂和溶剂的添加种类与添加量,单体的配比等根据设定的工艺路线及实验的测试结果进行优化。该过程使用的单体有:(A)丙烯酸酯类单体(甲基丙烯酸 5-氧代四氢呋喃 -3-基酯,2-甲基 2-金刚烷基甲基丙烯酸酯,丙烯酸叔丁酯);(B)马来酸酐;(C)降冰片烯;加入的溶剂为二氧六环;引发剂为:对甲基苯磺酸、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁腈、过氧化苯甲酰,以及氨水。反应过程中无废液产生,反应装置使用自来水间接冷却。该反应过程产生 G1-1 有机废气、G1-2 氨气。聚合反应方程式一次清洗、过滤、干燥:使用滴液漏斗将树脂溶液用丙酮稀释,通过滴液漏斗缓慢滴加到 5 倍用量纯水中,将上述混合物倒入布氏漏斗,并用真空泵抽滤,得到白色粉末产物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止)。树脂沉淀过滤过程中,产生 S1-2 废滤材及 S1-2 清洗废液,均作为危废委托有资质单位进行处理。干燥过程产生 G1-2 有机废气。金属离子去除:将离子交换树脂填充到离子交换柱中。将醋酸丁酯和聚合物 粉末于烧杯中溶解,并调节体系固含至 15-20 wt%。将树脂溶液直接倒入离子交 换柱中,流经离子交换树脂,循环多次,ICP-MS 金属离子浓度低于 10 ppb。该过程产生固体 G1-3 有机废气、S1-3 离子交换树脂。二次清洗、过滤、干燥:将树脂溶液缓慢滴加到去 5 倍用量的纯水中(1L 废水量),抽滤得到白色粉末状聚合物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止),产生 S1-4 废液、S1-5 废滤材、G1-4 有机废气。水分测试:加入卡尔菲休试剂,使用水分仪检测水分含量至 2000ppm,该过程产生 G1-5 有机废气,S1-6 测试废液。理化性质测试:树脂经过真空干燥后,在测试实验室中使用四氢呋喃、DMF、四氢呋喃、重水、氘代丙酮、氘代氯仿、DMSO-d6、甘油、丙二醇甲醚醋酸酯、乙腈、丙酮、溴化钾、硝酸钾等溶剂对树脂的理化性质进行测试。通过核磁测试聚合物结构,通过凝胶渗透色谱测定聚合物分子量大小,该过程产生 G1-6 有机废气以及 S1-7 测试废液。2、光产酸剂制备工艺:光产酸剂制备工艺流程生产工艺流程简述如下:备料:光产酸剂制备研发实验常用的原料包括:对羟基苯磺酸钠、十二烷基苯磺酸、樟脑坤磺酸钠、和三苯基氯化硫鎓盐,二苯基氯化碘鎓盐、醋酸酐、间苯二酚等;溶剂包括:纯水、甲醇等;该工序产生 G2-1 有机废气。合成:将光产酸合成所需原料钠盐加入到搭载机械搅拌的四口烧瓶中,用水溶解。光产酸剂合成反应方程式萃取:通过滴液漏斗向烧瓶中缓慢滴加鎓盐溶液,于室温下反应 3-5 个小时。静止分层,除去上层水溶液,并继续用水洗涤 3 次,用甲醇萃取产物,该工序产生 S7 废液。该工序产生 S2-1 废液以及 G2-2 有机废气。干燥、过滤:用无水硫酸钠干燥甲醇萃取液 24h,然后过滤。该工序产生 S2-2 硫酸钠以及 S2-3 废滤材。旋蒸:使用旋转蒸发仪将滤液旋蒸后得到产物光产酸剂。该过程产生 G2-3 有机废气。3、光刻胶制备与测试:光刻胶制备与测试工艺流程该工艺全部在光刻机中进行,工艺流程简述如下:样品制备与测试:样品制备所用树脂为实验室自主研发合成,光致产酸剂为自主研发合成;所用溶剂包括:丙二醇甲醚醋酸酯、乳酸乙酯、二甲苯、γ -丁内酯、丁酮、丙二醇单甲醚、醋酸丁酯、石油醚、二甘醇单丁醚、甲基异丁基酮、DMAC、NMP等。调制时根据设定的工艺路线或前次的测试结果选择加入不同的树脂和溶剂。将所用的树脂与光致产酸剂、碱性添加物三辛胺等和溶剂按照一 定的比例混合、溶解。样品调制用树脂主要包括:酚醛树脂、重氮萘醌磺酸酯、叠氮类化合物、甲醚化三聚氰胺等。光产酸剂有:三苯基硫鎓盐、二苯基碘鎓盐、三嗪类化合物等。样品制备过程中无化学反应发生,不产生污染物。过滤:使用漏斗等过滤仪器将样品过滤,该工序产生 S3-1 废滤材。光刻胶成膜、烘干:使用匀胶显影涂布机将调制好的光刻胶涂布在硅片上, 涂布好的硅片用100℃热板烘干。涂布、烘干过程中光刻胶中的有机溶剂挥发产生 G3-1 有机废气;剩余的光刻胶报废处理,产生 S3-2 废光刻胶。冷却:将涂布、烘干后的硅片冷却至室温,该工序产生 G3-2 有机废气。光刻胶曝光显影:将冷却至室温的硅片放入曝光机内曝光。曝光结束后将硅片放入显影液中显影,显影后使用纯水清洗硅片即可得到微米或纳米级别图案。实验室常用的显影液包括:四甲基氢氧化铵、氢氧化钾、氢氧化钠溶液等,该工序产生 S3-3 碱性废液。成像测试:主要通过显微镜、椭偏仪等仪器观察光刻胶图形的成像效果。测试后产生 S3-4 废硅片。4、仪器清洁:仪器清洗工艺流程工艺流程简述如下:残余物溶解:加丙酮溶解仪器内残留的光刻胶或树脂,产生溶解废液 S4-1,丙酮挥发产生有机废气 G4-1;清洗溶剂:加少量纯水,清洗仪器内残留的废液,产生含有机溶剂的清洗废液 S4-2,丙酮挥发产生有机废气 G4-2;擦拭:使用无尘布蘸取少量丙酮擦拭干净仪器内壁,产生有机废气 G4-3。润洗:待仪器干燥后,使用纯水对仪器进行润洗,产生的 W1 润洗水排入污水管网;干燥:仪器清洗干净后放在置物架自然晾干或放入烘箱烘干。上述流程除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实 验室通风橱内进行。5、设备清洗设备清洗工艺流程使用纯水对设备进行清洗,使用的工段有:(1)显影工艺中对硅片进行喷淋清 洗;(2)湿法曝光工段中作为镜头与硅片间的浸没液体;该工序产生清洗废液,作为危废委托有资质单位进行处理。 纯水使用情况详情见下表:设备清洗用水汇总
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E,Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制