当前位置: 仪器信息网 > 行业主题 > >

基因治疗

仪器信息网基因治疗专题为您整合基因治疗相关的最新文章,在基因治疗专题,您不仅可以免费浏览基因治疗的资讯, 同时您还可以浏览基因治疗的相关资料、解决方案,参与社区基因治疗话题讨论。

基因治疗相关的资讯

  • 基因治疗,如何走出泥潭
    基因本身是无法自己进入到细胞体内的,必须依靠一定的载体才行,而病毒就是最好的选择,因为病毒可以侵入人体。可是病毒插入染色体后的位置是随机的,谁也无法保证它不会突然触碰到某些癌基因,治病不成,反把它们给激活了。   ①将修饰的DNA注入载体   ②载体结合到细胞膜   ③载体通过囊泡进入细胞   ④囊泡解体释放出载体   ⑤载体将新基因导入细胞核内   ⑥细胞利用新基因表达蛋白   图片来源:百度图片   距离基因治疗的第一例人体试验已经过去二十多年了,然而,这项曾被寄予厚望的治疗手段至今难以真正在临床上实现应用,人们也经历了从开始的盲目乐观与热情到意识到其副作用时的失望与怀疑。也许,回归理性并坚持走下去,基因治疗才有前途。   据2012年12月24日BBC报道,英国科学家分析了20个具有肠癌家族遗传史的人的基因组,发现了两处会引起肠癌发病率显著升高的基因变异,分别是POLE和POLD1。POLE 和 POLD1是负责DNA损伤修复的基因,这两个基因功能异常会导致损伤的DNA积累,从而有可能引起肠癌。而这一结果也被认为有助于医生识别出肠癌高危人群,进行早期诊断和治疗。   事实上,从2000年“人类基因组计划”宣布有史以来的第一个人类基因组草图完成,到2012年“千人基因组计划”公布1092个高分辨率人类基因组遗传变异整合图谱,人类谱写的生命“天书”越来越精细,科学家们也试图从中读出遗传和致病的密码。然而,截至目前,美国FDI尚未批准任何一种用于临床的基因治疗药物或者方法,基因治疗并非如大众希望的那样可以成为一种常态化的治疗手段。   副作用让基因治疗跌入谷底   所谓基因治疗,就是把一个具有治疗作用的基因放到病人的细胞中,借此替换缺失和功能异常的基因,或者,借此过度表达好的基因,把坏的基因遮蔽住,最终达到治疗某种疾病的方法。   医生可以选择体内或者体外治疗,前者是直接将携带基因的载体注射到受损细胞所在区域,后者则是抽取病人的血液或者骨髓,分离出未成熟的细胞,接着将基因送入这些细胞,再重新注射到病人的血液中。这些细胞会移动到骨髓,在那边成熟并大量增殖,最终替换掉那些受损的细胞。   基因治疗在1990年第一次进行了人体试验,截至2004 年6月底,全世界范围内基因治疗的临床试验方案已有987 个。“基因治疗一度在欧美掀起了一股研究热潮。”中科院北京基因组研究所副研究员聂凌虎说。   可正当研究人员信心满怀之时,几起因基因治疗而诱发的事故顿时让这股热潮跌入冰点。   自2000 年以来,法国巴黎内克尔医院Fischer 教授对17 名患有严重联合免疫缺陷病的儿童实施基因疗法,正常的基因植入到患儿体内,修复有缺陷的免疫系统,当时疗效很显著,但是从2003 年开始,其中5名患者出现了类似白血病症状,后有一名患病儿童死亡。   至此,美国FDA开始意识到基因治疗可能具有潜在的、长期的副作用。大量基因治疗临床试验被搁浅,人们对于基因治疗的期望也跌入谷底。   基因载入不可控,一不小心搞破坏   其实,基因治疗产生副作用的“罪魁祸首”就是输送治疗基因到达致病靶点的载体。   基因本身是无法自己进入到细胞体内的,必须依靠一定的载体才行,而病毒就是最好的选择,因为病毒可以侵入人体。   理想的基因治疗应该能根据病变的性质和严重程度的不同,调控治疗基因在适当的组织器官内和以适当的水平或方式表达。可是,目前,科学家还不具备这样的掌控力。   聂凌虎说,病毒插入染色体后的位置是随机的,谁也无法保证它不会突然触碰到某些癌基因,治病不成,反把它们给激活了。   “因为癌基因被激活的原理之一就是外源DNA插入过程中破坏了其本身的结构。”复旦大学生命科学学院教授李瑶解释。   而让李瑶始终不看好基因治疗的,还在于肿瘤疾病几乎都是多基因疾病,致病机制非常复杂。   在肿瘤领域,p53被视为最有分量的抑癌基因,50%以上的肿瘤疾病都与这个基因的功能缺失有关。2004年,深圳赛百诺基因技术有限公司推出了p53 抗癌注射液(又名“今又生”),由我国SFDA批准上市,它也成为了全世界第一个正式用于临床基因治疗的药物。   但聂凌虎告诉记者,此后,因其疗效得不到业内的一致认可,开发者又陷入专利和股权官司,“今又生”并没有获得预想的口碑和经济收益。   “p53的重要性毋庸置疑,但癌症并不是一股只有单个决口的洪流,一旦发病就是诸多关口一齐崩溃,拦得住p53,也很难拦住所有。”他表示。   推进基因治疗,攻克“载体”难题是关键   目前,在基因治疗领域,学界主要攻克的对象就是载体,通过改造使其提高安全性和效率。其中,非病毒载体就是一种新的研究方向。   非病毒载体最初在基因治疗临床试验中的使用率很低,但它的生物安全性显然要高于病毒载体。随着脂质体、多聚物,以及它们的复合物等载体的出现,结合电脉冲、超声等技术,一定程度上可以提高导入效率和靶向性。因此,聂凌虎认为,很难说,现在的小众产品未来就不会超越主流的病毒载体。   而目前被认为最为理想的是一种被称为腺相关病毒(AAV)的载体,它没有毒性,不致病,宿主范围广,稳定性好。   美国费城儿童医院和霍华德休斯医学研究所以及宾夕法尼亚大学联合组成的一个研究小组已经在12名年龄介于8岁到44岁之间的利伯氏先天性黑内障(LCA)病人身上,使用了以这种无毒性小病毒为载体的基因疗法。   研究人员将正常的基因RPE65植入眼部,在眼球后面产生感光色素,取代了那些因病丧失的色素,从而恢复眼部的光敏性。尽管该疗法并没有让所有病人恢复正常视力,但是,有一半的人重见了光明。   不过,据聂凌虎介绍,国外还存在一种新的思路,那就是通过移植基因来改良造血干细胞。造血干细胞属于骨髓细胞,它可以产生血液和免疫系统中所有的细胞,被改良造血干细胞可以使宿主产生新的免疫系统,从而让肿瘤消失,这与直接移植造血干细胞的效果相似。同时,造血干细胞是悬浮的,即使是病毒载体进入,在整个循环系统里面,它们也能相对均匀地接触这些悬浮的细胞,避免冲撞到“要命”的细胞而产生副作用。   美国印第安纳州大学医学院研究人员在动物实验中就用通过改良的慢病毒载体将抗黑色素瘤T细胞受体基因插入到小鼠的造血干细胞中,并最终完全消除了肿瘤。   “基因治疗的突破也许会从造血干细胞开始。”他认为。   基因诊断更成熟,治疗主要靠引导   从开始的盲目乐观与热情到意识到副作用时的失望与怀疑,对于基因治疗,人们正在回归理性。正如李瑶说的,基因治疗的确有一定价值,尤其在一些单基因遗传病以及某些肿瘤疾病上,但它并不是万能的,在当前的认识和技术水平下,大多还在Ⅰ/Ⅱ期临床试验阶段,距离应用还差得很远。   不过,专家们一致认为,相较于基因治疗,基因诊断技术则要现实和成熟许多。据美国国家疾病控制中心基因检测部公开的数据显示,目前已存在1000多种疾病的基因诊断技术。   在那些已知致病基因的疾病诊断中,可以通过个人DNA的检测,观察是否存在染色体异常、对应基因有突变,或者基因表达程度问题,从而判断疾病是否发生。   目前应用非常广泛的应该是对新生儿单基因遗传病以及染色体异常的筛选,比如地中海贫血、唐氏综合症、色盲等等。   此外,对于成年人来说,还有例如线粒体基因突变糖尿病、镰刀型贫血症、老年性痴呆等等,当然还有人们熟悉的一些癌症,比如结肠癌、乳腺癌等等。   而在聂凌虎看来,乳腺癌的基因诊断和治疗模式是当前个体化基因医疗的一个理想模式。   BRCA1和BRCA2被称为是乳腺癌的易感基因,一个女性如果发现携带这种基因,在70岁以前她有65%的几率患乳腺癌,BRCA1和BRCA2基因检测在发达国家作为一项预防乳腺癌的手段早已进行。有意思的是,它们虽然“凶猛”,BRCA1突变者对化疗的临床反应率为100%,可以说非常敏感,化疗的治愈效果自然很好。   “这种模式,即通过基因诊断先使疾病层层分型,再针对每种类型进行对应的引导治疗。”聂凌虎坦言,单指基因治疗,目前在临床应用上也只能做到引导用药、治疗。
  • 基因治疗市场成“新宠”,8项“突破进展”大盘点
    p   基因治疗是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异常引起的疾病,以达到治疗目的。根据GlobalData的研究数据,全球基因治疗市场的总交易数从2013 年的16例增长到2014年的36例,同一时期,交易的综合价值从1.228 亿美元猛增到49亿美元,这代表40倍的增长。 /p p   自2006年以来,基因治疗在科研领域取得很多进展,重要成果均发表在国际顶级期刊上,该技术逐渐成熟并受到学术界的认可。从临床实验的统计来看,基因治疗的安全性和有效性有了很大的进步。 /p p   欧盟EMA于2012年率先批准了基因治疗Glybera上市销售,使之成为第一个在西方国家被批准上市的基因治疗产品。美国FDA虽然至今为止还没有批准一项基因治疗的产品上市销售,但在其生物制品评价与研究中心专门成立了新部门帮助指导相关产品的评估。 /p p   早在2003年,我国就已批准了第一个基因治疗药物,即深圳市赛百诺基因技术有限公司的“重组人p53腺病毒注射液”(商品名“今又生”)。据魏于全院士介绍,目前,我国有二十几个团队从事相关的基础研究工作,每年发文量占世界总发文量的1/4,其中肿瘤相关的文章最多。 /p p    span style=" FONT-SIZE: 18px" strong 基因治疗市场前景广阔,制药巨头争相布局 /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 18px" img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201508/uepic/a3785f61-4252-4f77-b122-ae5a43ea6bf8.jpg" / /span /p p   在海外市场中,越来越多的企业开始看到基因治疗市场的价值。除了像蓝鸟(Bluebird)一样的新贵外,Celgene、Bayer、Pfizer等大药厂也通过合作研发或者市场权利买断等方式向基因治疗领域投资,并且越来越多的制药巨头加入到了该市场的争夺中。 /p p   2月11日,赛诺菲旗下的美国健赞制药拟斥资8.45亿结盟基因疗法公司Voyager Therapeutics。Voyager将主导合作项目中针对帕金森症、遗传性脊髓性共济失调症、亨廷顿氏舞蹈症以及其他中枢神经系统失调症,其领衔候选产品VY-AADC01已经在帕金森症进入了临床试验。 /p p   4月份,百时美施贵宝(BMS)与基因治疗领域的领导者——荷兰生物技术公司uniQue签署了一份高达10亿美元的独家合作协议,获得了uniQue公司的基因治疗技术平台,开发基因疗法用于心血管疾病领域多达10个靶标。 /p p   5月5日,葛兰素史克公司(GSK)正式向欧盟药监局(EMA)提交了ADA-SCID(腺苷脱氨酶缺陷所致重症联合免疫缺陷症)基因治疗方法的上市申请。上市申请是基于此前18例患者的治疗结果,全部患者均生存至今,最早的治疗患者到今天已存活超过11.5年。92%患者治疗取得效果。 /p p    span style=" FONT-SIZE: 18px" strong 基因治疗领域“八大”突破研究 /strong /span /p p   事实上,尽管如此多的公司积极投入到基因治疗领域,但距离该技术在临床领域的广泛应用还有一定的距离。因此,在科研领域,依然有一批科学家致力于相关的科学研究,并且也取得了一些突破性的成果。以下,为大家列举近期在顶级期刊上发表的基因治疗领域突破进展。 /p p    strong Nature:科学家迈出线粒体疾病基因疗法的第一步(7月15日) /strong /p p style=" TEXT-ALIGN: center" img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201508/uepic/08e0ffc9-c1e6-40e3-b4cb-e17075069783.jpg" / /p p   线粒体几乎遍布身体的每个细胞,可将食物转换为能量。每6500名婴儿中就有1名患有严重的线粒体疾病,该疾病使人体缺乏能量、肌肉无力、失明、心脏缺陷甚至死亡。7月15日,发表在《自然》杂志上的一项研究中,美国科学家称他们在线粒体疾病的治疗上已经迈出了第一步。 /p p   这项最新突破克服了利用人类干细胞治疗疾病长期存在绊脚石。为了进行研究,科学家收集了受试者的皮肤细胞,这些受试者主要包括有线粒体缺陷的儿童和少许中年男性。第二步是获取这些皮肤细胞的细胞核,并植入健康供体细胞的细胞质中。通过这种技术研究人员创造出健康的线粒体胚胎干细胞。 /p p    strong Science子刊:基因疗法让失明者重获视觉(7月15日) /strong /p p   在过去的几年里,一种基因疗法即向眼部注入健康基因以修复突变已成为先天性和退行性失明的最具潜力的治疗途径。基因疗法治疗失明的首例试验在2007年,受试对象为10个患有雷伯氏先天性黑内障的志愿者。 /p p   研究试验将一种无害的病毒注入受试者眼中,该病毒载体携带RPE65正常拷贝的基因。接受治疗之后,一些受试者开始看清他们眼前挥动的手指,甚至能阅读图表上的六行信息,另外一些受试者能在昏暗的灯光下进行越障训练。相关研究发表在7月15日的《科学转化医学》(Science Translational Medicine)杂志上。 /p p    strong Science子刊:基因疗法新突破,成功恢复耳聋小鼠听力(7月8日) /strong /p p   7月8日,在线发表在《科学转化医学》(Science Translational Medicine)杂志上的一项研究中,来自波士顿儿童医院和哈佛医学院的科学家们使用基因疗法成功修复了耳聋小鼠的听力。目前,这些被治疗的小鼠已经保持听觉能力超过2个月。 /p p    strong Lancet子刊:基因疗法治疗囊肿性纤维化新突破(7月3日) /strong /p p style=" TEXT-ALIGN: center" img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201508/uepic/862d7305-dc81-41a8-9416-622067dad348.jpg" / /p p   囊肿性纤维化CF可能会影响身体多处,其中以肺部和消化系统所受的影响最为严重。而且这是遗传疾病,目前仍未有治疗的方法。但近期一组研究人员发现给囊肿性纤维化患者补充回正常的突变疾病基因,相比于对照,这些患者会出现较少的症状,这一基因治疗II临床实验结果发表在7月3日Lancet Respiratory Medicine杂志上。 /p p    strong Nature子刊:基因疗法或可代替心脏起搏器(6月22日) /strong /p p   借助以色列研究人员研发的一项基因技术,心脏病患者或将不再需要心脏起搏器来保持心脏的跳动,而是用注射进心脏的光敏基因代替电子设备,利用蓝色光束起搏心脏。 /p p   这项新型心脏起搏及心脏再同步化治疗技术由以色列理工学院拉帕波特药学院和Rambam医疗中心的利奥.格普斯坦教授和尤迪.纽辛诺维奇博士研发。该技术其中一项研究的结果发表于6月22日的《自然生物技术》杂志上。 /p p    strong Oncotarget:基因疗法新突破,有望根治前列腺癌(5月12日) /strong /p p   即便用最好的治疗方法,患有转移性激素难治性前列腺癌的患者中位生存期也只有2-3年。为了能够更好的治疗这些患者,来自VCU Massey癌症中心和VCU分子医学研究所(VIMM)的科学家们已经开发出一种独特的疗法,使用微气泡将病毒基因疗法结合的靶向驱动癌症发展的特定基因的试验药物直接呈递到患者癌症部位。相关研究发表在5月12日《Oncotarget》杂志上。 /p p    strong Science:开启新型癌症基因疗法的大门(4月16日) /strong /p p style=" TEXT-ALIGN: center" img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201508/uepic/ac1f0d84-88fa-41b9-9b27-87158acda30f.jpg" / /p p   科学家们发现一种蛋白可以增强对病毒和癌症的免疫,从而为新的疗法打开了大门。一些小鼠和人类细胞实验表明,这一蛋白促进了细胞毒性T细胞的增殖,后者可以杀死癌细胞和病毒感染细胞。这是一个出人意外的研究发现,因为新蛋白并不具有任何已知的功能,也不像任何其他的蛋白。 /p p   领导这一研究的是来自伦敦帝国理工学院的研究人员,现在他们正在开发一项基因疗法旨在增强这些抗感染细胞,并希望在三年之内能够启动人类试验。相关论文发表在4月16日的《科学》(Science)杂志上。 /p p    strong Blood:干细胞基因疗法有望用于治疗镰刀型贫血(3月2号) /strong /p p   来自UCLA Eli and Edythe Broad 再生医学和干细胞研究中心的Donald Kohn博士,在3月2号的《Blood》杂志上发表了一种方法,这种方法可以纠正引起镰刀型细胞贫血症的突变基因。这是首次利用基因修正的方法,来生成正常的红细胞。 /p p   以上说的基因治疗领域的好消息,但事实上,它也是备受争议的技术之一。此前,顶级期刊《新英格兰医学》上的两篇文章表明,被寄予厚望的基因疗法可能无法像人们预想的那样彻底解决问题,旨在恢复视力的基因疗法会在几年内失效。当然,这也算不上毁灭性的“负面新闻”,毕竟每个技术的成熟都有一个成长的过程。 /p
  • PNAS主编Inder Verma教授谈基因治疗
    p   2017年12月4日到8日由冷泉港亚洲举办的LiverBiology, Diseases & amp Cancer学术会议在苏州举办。Inder Verma教授作为嘉宾在会议上做了主题演讲,并在会后接受了我们的采访。 /p p style=" text-align: center " img title=" QQ图片20171219183026.png" src=" http://img1.17img.cn/17img/images/201712/insimg/7390f8a2-80c3-4d9a-add3-9e5dcd5857d9.jpg" / /p p   1、改造HIV病毒做载体 /p p   Verma教授是第一位对HIV进行改造并用于将外源基因导入靶细胞的科学家。这些转染后接受新基因的细胞可以被移植回体内,产生具有正常功能的蛋白,以弥补自身基因的缺失或异常,从而达到治疗疾病的效果。现在,这种逆转录病毒载体技术是分子生物学实验室和临床试验中常用的工具。 /p p   因此在我们的专访中,一开始就请Verma教授介绍了他们是如何改造HIV的。 /p p   Verma教授告诉我们,在1992年,当时所研究的载体只能把基因转入能够分裂的细胞中去。而研究工作的开展需要找到一种载体也能将基因递送到不能分裂的细胞中去,比如脑细胞、神经细胞和肝脏细胞。 /p p   不久,他们意识到HIV反转录病毒可以将基因导入到神经和其它不分裂的细胞。问题是如果利用HIV病毒,去除会引起疾病的所有其它组分换入想要递送的目标基因,那么这个病毒载体是否还能转染不分裂的细胞而又不引起疾病呢? /p p   HIV有9到10个基因,但实际上只需要其中两个用于复制和整合。所以他们利用HIV病毒能够感染不分裂的细胞并且能整合到细胞的基因组的特点,去除了几乎百分之九十的HIV基因组,构建了一个能转染不分裂的细胞而又不会引起疾病的递送体系。 /p p   Verma教授表示,即使到现在,在癌症CAR-T细胞治疗中的基因转导所用的载体和他们当年开发的基本一样,没有什么改变。因为百分之九十的基因组已经剔除了,没有更多的序列可以再删除,其它人所做的就是加入各自感兴趣的目标基因。主要载体构建机制还是和1996年时他们所开发出来的一样。 /p p   2、理想的基因治疗载体 /p p   要做好基因治疗,载体是最关键的。于是我们询问了Verma教授理想的载体应该是什么样的?教授无不幽默地说,“完全理想的是我们曾经在纸上设计的载体”。 /p p   他进一步指出,理想的载体应该可以大规模生产 能够顺利转染能分裂或不再分裂的细胞 进入细胞后能在基因组中安全的位点整合,而不插入错误的位点 具备调节蛋白表达的功能,当你在想运用它的时候能够顺利开启,不用的时候顺利关闭,并且能控制在哪里表达和表达的量 不能有免疫上的副作用,否则机体会将其排斥。这样的病毒载体才是能顺利应用于基因治疗的理想载体。 /p p   简化版HIV载体已经拥有很多上面所说的优点了,虽然还不能满足所有的要求,比如他们还不能完全随意开启和关闭,但是他们可以控制它整合到基因组的位点。因此,除了不能调控开启和关闭的问题,简化版HIV载体基本上是一个几近完美的载体了。 /p p   3、肝脏方面的基因治疗研究 /p p   Verma教授的研究小组在脑瘤和肺部疾病方面都做出过卓越的成效,这次冷泉港亚洲会议的议题是关于肝脏的,我们很好奇的是Verma教授是不是有计划要研究肝癌? /p p   Verma教授解释说他们并不直接研究肝癌,而是将肝脏作为研究手段起作用的场所——产生蛋白质的器官。比如血友病A是缺乏凝血因子Ⅷ,血友病B是缺乏因子Ⅸ而造成凝血障碍。他们运用病毒递送凝血因子的基因,或者用纳米粒子将凝血因子的mRNA引入实验动物或人的肝脏细胞。也许将来他们会进入肝癌的研究领域,但目前是在肝脏中运用基因治疗生产疾病所缺乏的蛋白。 /p p   说到肝脏的基因治疗,我们也很想知道和在肝脏中做基因治疗相比其它器官是难些还是容易一些。 /p p   对此,Verma教授告诉我们,在基因治疗方面,最简单的是在循环系统的血细胞中。人体每天制造百亿个新的血细胞,因为身体内的造血干细胞能够保持制造新的血细胞。所以将制造血细胞的骨髓干细胞取出并导入基因后再放回去,改造过的干细胞产生的新的血细胞就会到达身体各处。 /p p   但是对于肝脏、肺、脑等就不能同样操作了,递送基因仍然是个问题。不过相对其他器官来说,肝脏要相对简单一点。首先肝脏是一个很大的器官,而且血管丰富,引入基因相对来说还不算太难。另外在基因治疗的效率方面,如何递送基因进入大量的细胞还是个难题。在肝脏组织里少量的细胞中表达新的蛋白不算难,但是在大部分肝脏组织中做基因治疗,现在虽然有一些进展,但还很是一件很难的工作。 /p
  • 天津-牛津基因治疗联合实验室成立
    6月30日,天津-牛津基因治疗联合实验室(Tianjin – Oxford Joint Laboratory of Gene Therapy)揭牌成立,联合实验室由天津医科大学天津市基础医学研究中心神经肌肉失调症基因治疗实验室和英国牛津大学生理、解剖和遗传学系分子神经学重点实验室联合组建,首先以杜兴肌肉萎缩症作为第一个疾病模型,研究发展和推广新型的基因治疗方法及基因药物运输平台,并不断拓展该基因治疗方法的在其他相关疾病上的应用空间。   天津医科大学天津市基础医学研究中心神经肌肉失调症基因治疗实验室尹海芳教授与英国牛津大学生理、解剖和遗传学系的分子神经学重点实验室主任Matthew Wood教授进行联合实验室签约仪式。   据介绍,联合实验室将开展中英科学家联合攻关,开发和推广新的寡核苷酸药物和基因药物运输方法,力求使天津在相关基因药物的研究和转化处于国际前沿。据了解,由于基因治疗领域的潜在的巨大医学价值和商业利益,目前国际上政府和私人的投资额逐年增加。
  • 上海大动作!研究加快合成生物、基因治疗产业发展
    8 月 16 日,上海市委副书记、市长龚正主持召开市政府常务会议。其中,会议原则同意加快合成生物创新策源、打造高端生物制造产业集群,以及促进基因治疗科技创新和产业发展相关行动方案。该会议指出,要增强优势领域竞争力,强化顶层设计,突出重点靶向攻坚,攻关高精尖关键技术,打造产业发展 " 核爆点 "。▌市场:企业频频获融资上述会议还明确,要激发科研主体创新力,统筹科研资源,聚珠成链、拓链成群,大力引进综合性、高层次、领军型人才,建设高水平新型研发机构,培育高增长科技企业,加强源头创新至产业落地的全链条衔接;要提升发展环境软实力,做好前瞻性政策研究,加速产品研发上市和产业化应用,同时完善监管制度规则,构建高质量规范体系。合成生物与基因治疗均属前沿技术领域,具有高度的产业发展潜力。合成生物即利用工程学思路,模块化改造或创造生物细胞,使其具备合成化合物的能力,其在医疗行业的主要应用包括 RNA 药物、基因编辑治疗、体外检测等方面。而基因治疗作为能够修饰或操纵基因表达的先进疗法,能被应用于遗传病、恶性肿瘤、心血管疾病等难治疾病。值得一提的是,除医疗健康,合成生物还可应用于化工、农业、食品等场景,其可用于生产具有高附加值、通过传统方法化学生产成本较高、碳排放较大或难以大量获得的产品。根据 CB Insights 分析预测,全球合成生物学市场规模预计到 2024 年将达 189 亿美元,年复合增长率为 28.8%。而弗若斯特沙利文(Frost&Sullivan)调研数据显示,2021 年,全球基因治疗产业市场规模为 37.8 亿美元,预计到 2025 年将达 305.4 亿美元,2016 至 2025 年均复合增长率为 104%。据不完全统计,2023 年初至 7 月底期间,国内有超过 60 家合成生物学企业完成融资进展,而于今年上半年获融的细胞和基因疗法领域相关企业,也有近 40 家。▌城市:除上海外,国内多个城市进行政策引导上海始终将合成生物学技术、基因治疗列为重点发展先导产业。在近期出台的《上海市推动制造业高质量发展三年行动计划(2023 — 2025 年)》中,曾提出布局生物医药基因和细胞治疗、合成生物学等前沿领域,建设医企协同研究创新平台、产医融合创新基地。在今年 6 月举行的第 25 届上海国际生物技术与医药研讨会开幕式上,上海市科委副主任朱启高表示,上海去年出台了促进细胞治疗科技创新与产业发展行动方案,今年还将出台基因治疗的行动方案。除上海,近年国内个多城市相继出台一系列政策支持,对合成生物、基因治疗等前沿领域予以关注。比如:2023 年 2 月,由浙江省政府办公厅印发的《关于培育发展未来产业的指导意见》,其中表示将优先发展包括合成生物、未来医疗在内的 9 个产业。河北省政府办公厅印发的《加快河北省战略性新兴产业融合集群发展行动方案(2023 — 2027 年)》则指出,要支持引导石家庄、秦皇岛等相关地区聚焦、攻关基因组学新技术,加快推进细胞与基因治疗药物的开发和商业化进程,在关键工艺、上下游核心材料、产品开发等方面形成产业集聚和协同。去年 6 月,深圳市政府发布了 "20+8" 政策,计划打造 20 个战略性新兴产业和 8 个未来产业的产业集群,合成生物就是 8 个未来产业之一。实际上,在国家发改委 2022 年印发的《" 十四五 " 生物经济发展规划》中,已经明确包括合成生物学在内的生物经济是未来中国经济转型的新动力,这也是中国首部生物经济五年规划。近日,国务院发布的《关于进一步优化外商投资环境 加大吸引外商投资力度的意见》也明确:鼓励外商投资企业依法在境内开展境外已上市细胞和基因治疗药品临床试验,优化已上市境外生产药品转移至境内生产的药品上市注册申请的申报程序。▌产业:研发 + 下游要打通据悉,《上海市合成生物创新策源、打造高端生物制造产业集群行动方案(2023-2025 年)》由上海经信委牵头起草。近日,上海市经委召开 2023 年度第 8 次主任办公会议,邀请中国科学院分子植物学卓越创新中心研究员王勇、弈柯莱生物科技(上海)股份有限公司副总经理田振华和上海智峪生物科技有限公司董事长兼 CEO 王晟等 3 位专家列席,参与审议该行动方案。王晟表示,行动方案整体脉络清晰,对行业发展提供了有力支撑。其中提出的对合成生物学平台建设工作,要突出解决行业所面临的选品难和放大难的问题,要在研发方向上提供更多的与下游产业交流的机会,在生产上提供更多的便利,帮助企业解决选品和生产的核心问题;要在产业政策上更多支持中小企业,尤其是对初创企业和团队加大扶持。弈柯莱生物科技(上海)股份有限公司副总经理田振华表示,关于方案中提到的对新增合成生物医学企业上市的支持,由于目前上市要求对企业的连续性和盈利指标都还有比较严格的标准,且评审周期比较长,建议在 2025 年支持 3至 5 家达标上市企业。弈柯莱是国内合成生物赛道龙头公司之一,其曾冲刺科创板 IPO,公司表示,未来还会继续对资本市场路径进行研判规划,将择机重新启动上市计划。公开资料显示,弈柯莱目前已建有包括转氨酶在内的 21 类工业常用酶的酶库,并建成了酶的高效设计平台,能够根据催化反应需求利用机器学习预测和筛选酶,通过高通量筛选与测试对酶进行快速人工进化,创造出更好的乃至全新的酶突变体。目前,合成生物学相关上市公司主要有:凯赛生物(688065.SH)、华恒生物(688639.SH)等;基因治疗相关上市公司有:和元生物(688238.SH)、药明巨诺(02126.HK)等。
  • GE医疗细胞与基因治疗亚洲技术中心盛大开幕
    打造GE医疗亚洲首个细胞及基因治疗实验室,赋能中国精准医疗新发展中国上海(2018年7月19日) — 为加速细胞治疗与基因治疗的临床转化流程、推进全产业链的商业化进程,GE医疗今日宣布在位于其上海浦东张江的中国研发中心建设成立全新的细胞与基因治疗亚洲技术中心。该中心的成立标志着GE医疗在深耕精准医疗探索、推进治疗技术创新和扩大细胞与基因治疗产业化平台建设领域进入了崭新的里程碑。据悉,技术中心将通过构建全面的自动化及数字化生态系统,采用先进的细胞与基因治疗科研及生产制备设备、产业解决方案和全方面的技术服务加速行业的标准化整合,为推动整个大健康产业的深入发展提供新动能。GE医疗生命科学事业部全球首席执行官Emmanuel Ligner先生、GE医疗生命科学事业部细胞治疗业务全球总经理Ger Brophy博士、GE医疗生命科学事业部大中华区总经理李庆先生携众多嘉宾出席了当天的开幕仪式。GE医疗细胞与基因治疗亚洲技术中心启动仪式随着全新的技术中心落成, GE医疗具备了符合BSL2标准的细胞治疗与基因治疗专用实验室,在细胞治疗方面开发了细胞收集、细胞分离、扩增以及储存运输的解决方案,同时建立了广泛使用在细胞治疗流程中的质粒和慢病毒的制备生产平台;在基因治疗方面具备了多种病毒载体的生产流程,采用了一次性上游培养技术,并配备了良好放大性的下游纯化技术,最大培养规模可达到200L。为了更好地支持细胞与基因治疗工艺开发,GE医疗还建立了相关的分析技术配置,涵盖了包括流式细胞仪、荧光显微镜、HPLC、Qpcr和电泳设备等在内的先进检测仪器设备。“得益于得天独厚的地理优势,张江药谷聚集了许多生物技术与现代医药产业领域的创新企业,通过一定规模的集群效应,有助于加快生物技术与现代医药产业的新兴科技产业战略步伐。依托张江药谷强有力的发展机遇,GE医疗将构筑多点、多维的企业生态圈,拓宽细胞免疫治疗产品研发布局,在良性的集群创新政策下,推动中国精准医疗的快速发展。”GE医疗生命科学事业部大中华区总经理李庆表示,“GE医疗始终践行‘关爱先行’理念,以患者健康和满意度为中心,助力应对重大健康难题和医疗挑战。今后,我们将充分利用技术中心和应用专家团队,携手更多的合作伙伴进行新工艺研发、建立完善的标准化操作规程和进行临床应用的探索,帮助中国制药企业加速细胞与基因治疗产品临床转化及商业化进程,以实现更精准的疾病诊断及疗效评估,造福更多患者。” 全新的细胞与基因治疗亚洲技术中心坐落于GE医疗在上海的生物工艺中国技术培训中心(以下简称“Fast Trak中国”)内。目前,GE医疗在全球拥有五个Fast Trak中心,分别位于瑞典乌普萨拉、美国波士顿、印度班加罗尔、韩国首尔和中国上海。Fast Trak中国自2006年开始为中国和亚洲市场提供技术服务,服务范围包括生物制药、基因组学和细胞研究,并在临床科研、生物制药研发和产业化以及生物产业人才培养等方面取得了诸多显著成果。目前,Fast Trak中国已完成了超过40项生物药工艺开发项目和8个生物药临床申报项目,其中涵盖重组蛋白、血液制品、疫苗和单克隆抗体等多个领域。与此同时,Fast Trak中国还为终端用户提供了3000人次以上的培训服务已帮助他们建立更好的技术能力。为了提供全面的技术服务,Fast Trak中国已经建立1800平方米的了四大技术平台,包括人才培训平台、工艺开发平台、中试报批生产平台以及细胞和基因治疗平台。所有这些技术平台都采用了最先进的一次性技术平台来进行客户工艺开发和中试生产服务。全新的扩建将进一步加大GE医疗在药物研发平台、应用开发平台以及人才培养等方面的投入,助力中国生物制药企业和科研机构实现"产、学、研"一体化的综合跨越,并为缩短商业化进程和推动中国生物制药产业的国际化进程贡献力量。开幕典礼当天,GE医疗还宣布与国内新兴的细胞治疗研发与服务平台公司亘喜生物(Gracell Bio)就细胞基因治疗生产项目达成战略合作意向。GE医疗会为后者提供细胞和基因治疗企业解决方案,共同开发应用于血液和实体瘤治疗的通用型CAR-T和其它新型细胞治疗产品的生产工艺,提高生产流程的设计灵活性、封闭性和自动化,并进一步加速其产业化的过程。GE医疗与亘喜生物签署战略合作意向书 关于GE医疗GE医疗集团是GE公司(NYSE: GE)旗下的医疗健康业务部门,年营收达190亿美元。作为领先的医学成像、监护、生物制造以及细胞和基因治疗技术提供商,GE医疗通过提供智能设备、数据分析、软件应用和服务,实现从疾病诊断、治疗到监护全方位的精准医疗。GE医疗拥有100多年的悠久历史,在全球拥有5万多名员工。公司致力于帮助全球各地的患者、医疗服务提供商、科研人员和生命科学企业更为有效地改善医疗服务成果。如需了解GE医疗集团的最新信息,请关注GE医疗中国微信、微博,或登录GE医疗中国官网。
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 40)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attribute
  • 20亿美元 谁在切分细胞与基因治疗实验室工具市场的蛋糕?
    细胞与基因治疗是生物制药市场中增长最快的细分领域之一,也是除抗体药物领域外,另一个备受资本市场追捧的赛道,虽然一度受2016年的魏则西事件所影响,但仍阻挡不住各方对这一领域的看好和投入,近些年,国内不断涌现出专注于细胞与基因治疗产品的企业,到2024年,预计全球细胞与基因治疗市场规模将达437亿美元。有人说,细胞与基因治疗正在开创一个新的医疗时代。近几年,细胞与基因治疗研发投入在急剧增加,而这一过程必然离不开相关的技术和实验室工具,用于基因操作、细胞生长和维持,目前,许多现有实验室工具和新的技术正被应用于细胞与基因治疗产品研发、质量控制和生产制造过程中。2021年最新调研数据显示,细胞与基因治疗的实验室工具市场规模超过20亿美元,其中许多技术和产品呈双位数增长,随着这一领域的快速发展,相关的实验室产品市场也将水涨船高,目前,已有众多规模不一的仪器供应商加快了该领域的布局。细胞与基因治疗研发生产所用的仪器和耗材可简单分为六个部分:通用技术、基因治疗工具、转导与转染、细胞富集、细胞培养与扩增和冷冻保存。每一部分都包括一套广泛用于细胞与基因治疗开发制造的技术,包括仪器和消耗品。其中有成熟的实验室技术和产品,如PCR和流式细胞仪,还有较新的技术,如CRISPR和自动细胞处理系统。微流控、实时监测和生物信息学相关分析技术主要用于细胞与基因治疗确保产品产品的安全性和法规依从性,以及解决生产效率的问题,这些问题正是细胞与基因治疗走向市场所面临的挑战。细胞与基因治疗 实验室工具清单类别产品通用技术PCR细胞分析细胞计数基因治疗工具CRISPR质粒提取纯化转导与转染病毒载体转座子电穿孔细胞富集细胞分离细胞分选仪自动化细胞处理系统细胞培养与扩增乳细胞培养若血清补充剂GMP细胞培养基GMP血清及补充剂常规生物反应器一次性悬浮生物反应器一次性附着生物反应器冷冻保存冷冻介质和保护剂冷冻袋和冷冻瓶据悉,细胞培养和扩增产品在细胞与基因治疗工具市场中占比最高,最常用的消耗品是细胞培养基和血清,在细胞扩增领域的仪器方面,一次性生物反应器的需求正在快速增长。与传统反应器相比,一次性生物反应器具有更加灵活和节省时间的优越性。这一市场的规模也一定程度上反映了细胞疗法的高成本。上面所说的细胞培养和扩增细分市场占比最高,不包括按市场规模划分的两个最大的单个技术细分市场,主要是归类到通用技术和基因治疗工具市场中,这两类市场也是细胞与基因治疗领域非常具有代表性的市场,同样由耗材产品驱动,其中通用技术贯穿与整个实验室工作流。在细胞与基因治疗领域,赛默飞、默克生命科学是两大领先的实验室产品供应商,他们可提供的产品范围十分广泛,并且在细胞培养和扩增市场占有重要地位,此外,Cytiva、赛多利斯、BD和康宁公司也是这一领域主要的实验室产品供应商。除以上主要的工艺产品供应商外,还有一些特定技术的供应商,包括艾本德、贝克曼库尔特、Miltenyi Biotec和STEMCELL Technologies等。随着全球越来越多的细胞与基因治疗产品获得监管部门的批准,逐步形成标准化的研发流程和生产流程,细胞与基因治疗实验室工具将伴随着这一领域的发展而前景广阔。
  • 基因治疗手术首次应用于常见眼病
    p style=" text-indent: 2em text-align: justify " 牛津大学近日宣布,该校眼科教授罗伯特· 麦克拉伦在英国国家健康研究所牛津生物医学研究中心的支持下,完成了世界第一例解决老年性黄斑变性(AMD)视力下降问题的基因治疗手术。 /p p style=" text-indent: 2em text-align: justify " 老年性黄斑变性眼疾是造成英国人视力丧失的主要原因。干性AMD是指一种黄斑细胞的慢性退化,它会给病人视觉中心部分造成间隙或影像斑点,导致病人日常生活中出现阅读和识别困难。接受第一例手术的是牛津大学年高80岁的奥斯本夫人。像许多AMD患者一样,她的双眼都有这种疾患,但左眼情况更为严重,中心视觉已经恶化,视力非常模糊。她说自己参与试验的目的是为了给那些AMD患者带来帮助。 /p p style=" text-indent: 2em text-align: justify " 导致AMD的一个关键因素是补体系统,其是人体免疫系统中与细菌作斗争的一个蛋白质系统。在发生黄斑变性时,这些蛋白质过度活跃并攻击视网膜细胞,其方式与其攻击细菌的方式相似。而基因治疗的原理就是“停用”补体系统。 /p p style=" text-indent: 2em text-align: justify " 手术包括分离视网膜和向眼底注射含有病毒的溶液。该病毒带有一种经过修饰的DNA序列,可以感染视网膜色素上皮(RPE)细胞,并可以纠正导致AMD的遗传缺陷。因效果被认为是持久的,理想情况下,基因治疗只需进行一次。 /p p style=" text-indent: 2em text-align: justify " 麦克拉伦解释说:“利用病毒这种天然存在的生物体,将DNA传递到病人的细胞中。当病毒在视网膜细胞内打开时,会释放出经过克隆的DNA,细胞开始制造可以改变疾病的蛋白质,来纠正由补体系统造成的炎症。”他希望随着医疗器械和相关基因治疗技术的发展,在未来几年内,患有干性AMD眼疾的人能够得到有效治疗。 /p p style=" text-indent: 2em text-align: justify " 总编辑圈点 /p p style=" text-indent: 2em text-align: justify " 老年性黄斑变性作为退行性疾病的一种,困扰的绝对不只是老年人本身。与所有退行性疾病一样,病患的护理成本升高、未知的意外风险及家庭幸福指数下降,都是此类疾病带来的消极影响。这例手术成功的意义,足可以给所有逐渐陷入黑暗的人们带来光亮。惟愿技术成熟的再快些,受益的人再多些。 /p p br style=" text-indent: 2em text-align: left " / /p
  • IGC 2021第五届中国国际免疫&基因治疗论坛
    作为免疫基因及细胞治疗领域年度品牌盛会,IGC 2021第五届中国国际免疫基因及细胞治疗论坛,将于10月11-12日于北京朝阳悠唐皇冠假日酒店盛大开幕。来自国际权威监管、科研院所及全球领先IO/GCT技术的开发者、院士及企业领袖等80余位嘉宾代表、1000余位专业听众将出席IGC论坛,共探前沿疗法“从创新到转化,从实验室到临床”的切实路径。论坛时间:2021年10月11-12日论坛地点:北京朝阳悠唐皇冠假日酒店主办单位:中国生物工程学会、商图Biomap支持单位:中国医学科学院血液病医院(血液学研究所)、陆道培医疗集团、美国华人生物医药协会(CBA)、北京免疫学会、中国细胞生物学会免疫细胞分会、中国生物物理学会材料生物学与精准治疗分会、蔻德罕见病中心(CORD)前沿免疫治疗研发与联合 专场10月11日(Day1)肿瘤免疫创新品类研发:下一代免疫检查点药物及其他09:00-09:30肿瘤免疫生态的冷热调节与新一代免疫疗法探索宋尔卫,中国科学院院士,中山大学孙逸仙纪念医院院长09:30-10:00新的免疫检查点: 从发现到临床试验臧星星,美国爱因斯坦医学院Louis Goldstein Swan终身讲席教授10:00-10:30话题待定金斯瑞10:30-11:00茶歇11:00-11:30下一代双特异性融合蛋白: 靶向肿瘤细胞 or免疫细胞傅阳心,美国德州大学西南医学中心病理学特聘教授11:30-12:00免疫检查点分子发现与验证解决方案韦华冕,Bio-Techne现场应用专家12:00-12:30免疫治疗新药靶点的选择考量夏谷良,罗氏研发(中国)有限公司(Roche) 免疫新药发现负责人12:30-13:30午餐肿瘤/自身/炎症免疫创新品类研发:免疫调控与免疫学前沿治疗13:30-14:00自身免疫疾病致病机制和药物研发进展陈波,齐鲁制药创新药物研究院副院长、免疫炎症研究部负责人14:00-14:30靶向自身免疫疾病-补体治疗药物的研发与转化刘恒,天辰生物总经理14:30-15:00话题待定集萃药康15:00-15:30茶歇15:30-16:00IL-2与IL-15的细胞因子免疫治疗药物的研究进展陈凯,北京志道生物科技有限公司副总裁/合伙人16:00-16:30话题待定10x Genomics16:30-17:00TGF-Beta拮抗剂的挑战和机会:从生物学,生物标志物到临床适应症凌虹,维立志博资深副总裁&CSO17:00-17:30自主原创肿瘤免疫调节激动剂疗法的创新研发高新,免疫方舟医药CEO17:30-18:15圆桌讨论:下一代免疫治疗的新靶点和组合的思考肿瘤;自身免疫;炎症王亚宁,鑫康合生物医药CEO朱祯平,三生国健总裁兼CSO方磊,乐普生物副总裁及乐普创一总经理滕宇航,高特佳投资执行合伙人徐刚,康诺亚生物联合创始人10月12日(Day2)免疫组合疗法研发:从早期发现到转化09:00-09:30以临床价值为导向的抗肿瘤药物临床研发解析CDE临床一部09:30-10:00淋巴瘤免疫治疗药物临床研究-北肿经验分享宋玉琴,北京大学肿瘤医院院长助理,淋巴瘤科副主任10:00-10:30单细胞功能蛋白质组学分析加速精准免疫治疗开发李倩,IsoPlexis亚太区应用经理10:30-11:00茶歇 11:00-11:30大小分子药物联合治疗在肿瘤免疫中的布局与发展思考单波,德琪医药CSO11:30-12:00新思路下CTLA-4、CD40等肿瘤免疫治疗靶点药物研发的新突破陈兆荣,百奥赛图副总经理,兼祐和医药CMO12:00-12:30肿瘤免疫治疗领域的全球竞争格局(拟)郭雷,药渡咨询部总监12:30-13:30午餐肿瘤免疫创新品类研发:肿瘤疫苗及新型递送系统下的免疫疗法13:30-14:00基于肿瘤新抗原的个性化癌症疫苗设计与开发胡兰靛,安达生物董事长、中科院上海生命科学研究院研究员14:00-14:30溶瘤病毒疫苗的合成生物学创新设计与转化开发秦晓峰,苏州奥特铭医药创始人、首席科学家,中国医学科学院北京协和医学院苏州系统医学研究所教授14:30-15:00基于纳米技术的新型抗肿瘤疫苗聂广军,国家纳米科学中心研究员,中科院特聘研究员,国科大特聘教授15:00-15:30茶歇15:30-16:00药物体内分布与免疫调控-新型免疫治疗药物研发徐宇虹,高田生物创始人兼首席科学家16:00-16:30脑胶质母细肿瘤治疗性mRNA疫苗的研发策略和临床探索栗世铀,启辰生生物首席技术官基因疗法创新与研发 专场10月11日(Day1)基因治疗监管与领先实践09:00-09:30AAV 基因治疗的免疫原性——挑战和缓解策略高光坪,美国麻省大学医学院终身讲席教授、美国国家发明家科学院院士和美国微生物科学院院士(online)09:30-10:00基因治疗临床前药理评价的审评进展CDE药理毒理学部10:00-10:30AAV基因治疗:从研发到生产徐琦,上海碧博生物医药工程有限公司研发和质量高级副总裁10:30-11:00茶歇11:00-11:30AAV基因治疗在特定适应症下的临床转化设计与开发分享李秋棠,纽福斯生物CSO、美国路易斯维尔大学医学院眼科和视觉科学系终身教授11:30-12:00基因治疗产品临床阶段到商业化的质量管理要点贾国栋,和元生物总经理12:00-12:30基因治疗药物的CMC挑战和策略讨论高杨,邦耀生物高级副总裁&首席战略官、前CDE技术审评员12:00-13:30午餐13:30-14:00基因治疗药物质量控制研究与相关法规要求饶春明,中国食品药品检定研究院生检所重组药物室原主任14:00-14:30EMA经验:基因治疗临床前审评监管考量Sol Ruiz,欧洲药品管理局EMA CAT前沿治疗专委会主席(online)从设计到转化:病毒载体下的基因治疗研发14:30-15:00话题待定宜明细胞15:00-15:30茶歇 15:30-16:00AAV介导的神经再生型基因疗法陈功,暨南大学国家海外重点人才计划教授,NeuExcell Therapeutics创始人16:00-16:30话题待定金斯瑞16:30-17:00腺相关病毒载体肿瘤基因治疗凌晨,复旦大学研究员,基因治疗研究室PI、教授17:00-17:30基因治疗产品非临床评价关注要点张冬霞,昭衍生物毒理部主任17:30-18:00从临床终点看眼科基因治疗产品创新的挑战汪枫桦,朗信生物创始人,上海市眼视觉与光医学工程技术研究中心主任18:00-18:30AAV基因治疗在血液疾病中的探索和临床前研究吴凤岚,华毅亮健生物COO18:30-19:15圆桌讨论:中国基因治疗的创业投融资机会与开发策略赵春林,安龙基金合伙人/创始人,安龙生物创始人董飚,至善唯新董事长兼总经理何幸,弘晖资本高级董事总经理10月12日(Day2)递送技术突破在基因治疗与基因编辑治疗中的前沿应用08:30-09:00用于传统基因转移和基因组编辑的新型AAV载体Mark A. Kay,美国斯坦福大学医学院人类基因治疗学系主任,斯坦福大学讲席教授(online)09:00-09:30基因编辑:从实验室到临床应用袁鹏飞,博雅辑因CTO09:30-10:00基因治疗载体CDMO的发展与挑战李华鹏,广州派真生物技术有限公司董事长10:00-10:30基因与细胞治疗产品生产工艺中的质控技术应用徐玲丽,丹纳赫生命科学市场部应用科学家10:30-11:00茶歇11:00-11:30类病毒mRNA载体在新一代基因治疗中的应用开发与药物设计蔡宇伽,本导基因创始人11:30-12:00基因创新药物成功的关键因素考量与工艺策略董小岩,五加和董事长12:00-12:30检测标准在确保基因治疗产品质量中的应用Diane McCarthy,美国药典委员会生物制品管线总监(online)12:30-13:30午餐13:30-14:00RNA编辑介导的基因治疗姚璇,辉大(上海)生物科技有限公司创始人、CEO14:00-14:30基于AAV和基因编辑疗法的基因治疗药物申报案例分享姜儒鸿,ASC Therapeutics创始人、董事长、CEO基因疗法之罕见病/孤儿药专题:从市场准入到立项研发14:30-15:00AI助力罕见病基因治疗韩蓝青,赛业生物科技董事长,清华珠三角研究院人工智能创新中心主任15:00-15:30茶歇15:30-16:00罕见病创新药市场准入现状与趋势分析黄如方,罕见病发展中心主任16:00-16:30针对骨骼肌肉罕见病的基因治疗创新研发柯玉雄,北海康成临床开发及医学事务副总裁16:30-17:00遗传性眼病基因治疗研究进展杨丽萍,北京中因科技有限公司首席科学家17:00-17:30基因治疗药物临床试验的机会和挑战李新燕,方拓生物联合创始人、董事、总裁细胞免疫治疗创新与研发 专场 10月11日(Day1)对抗实体瘤:从靶点机制、设计到转化突破09:00-09:30新型嵌合STAR受体T细胞治疗以对抗实体瘤林欣,清华大学医学院教授,基础医学系主任09:30-10:00双靶点CAR-T细胞疗法在实体瘤中的研发(拟)钱程,精准生物首席科学家、重庆市肿瘤研究所肿瘤精准医学研究中心主任10:00-10:30话题待定西美杰10:30-11:00茶歇11:00-11:30TCR-T靶点选择及风险控制张毓,北京大学基础医学院教授、永泰生物首席科学家11:30-12:00话题待定伯乐12:00-12:30细胞治疗实体肿瘤的“液体化”思维——科学探索细胞治疗在实体肿瘤中三个关键挑战王军,天科雅生物CMO12:30-13:30午餐同种异体/通用型细胞免疫治疗:寻找更安全有效疗法13:30-14:00新型异体现货型CAR-NK细胞注射液的开发分享刘红,国亦生命科技(广州)有限公司董事、总经理;国健呈诺生物科技(北京)有限公司董事、总经理14:00-14:30iPSC来源的工程化iMac和iNK免疫细胞疗法的研发张进,赛元生物联合创始人/浙江大学医学院PI14:30-15:00细胞治疗关键蛋白酶原料的国产化谢宏林,恺佧生物科技(上海)有限公司客户应用总监15:00-15:30茶歇 15:30-16:00脂代谢与免疫治疗:基于γδT细胞疗法的机遇与挑战张永辉,清华大学药学院研究员、清北联合生命中心研究员、博士生导师16:00-16:30利用血浆白蛋白高效扩增T细胞孔令洁,博腾生物首席技术官16:30-17:00T细胞恶性肿瘤的CD7-CAR-T临床开发与转化研究孟会敏,博生吉医药医学总监17:00-17:45圆桌讨论:自体VS通用/异体,下一代细胞免疫治疗研发的机遇与挑战梁健霖,华卫恒源(北京)生物医药科技有限公司创始人,董事长童建松,晟临生物CTO任江涛,北恒生物CSO张长风,丽珠生物医药细胞治疗部总监谷为岳,北京卡替医疗技术有限公司CEO10月12日(Day2)从IND 到加速细胞治疗临床转化:新型细胞免疫治疗08:30-09:00细胞治疗非临床研究和临床试验技术的评估与指导原则解析CDE专家09:00-09:30血液肿瘤的免疫治疗——从新靶点发现到新型抗体与细胞治疗转化王建祥,中国医学科学院血液学研究所血液病医院副所长09:30-10:00细胞疗法创新药物的国际IND申报策略(美国监管视角)范勇,科济生物全球注册事务高级副总裁(online)10:00-10:30加速转化:生物标志物检测下的精准细胞治疗开发案例分享10:30-11:00茶歇11:00-11:30CAR-T细胞治疗NDA申报领先实践复星凯特11:30-12:00话题待定凯诺12:00-12:30新型细胞免疫治疗的临床转化经验陆佩华,陆道培医院医疗执行院长,清华大学(医学院)-北京陆道培血液病研究院院长12:30-13:30午餐13:30-14:00新型细胞免疫治疗临床试验创新设计与起始剂量选择罗永鑫,南京传奇临床开发副总裁新型技术下的细胞治疗创新与研发14:00-14:30具有优势的细胞免疫治疗适应症的选择与开发策略韩为东,解放军总医院分子免疫学研究室主任14:30-15:00基因改造/基因编辑下的通用型CAR-T细胞治疗临床转化Allogene Overland Biopharm15:00-15:30茶歇 15:30-16:00从BCMA到更多,CAR-T治疗在肿瘤与自免的探索突破郑彪,驯鹿医疗CSO16:00-16:30基因编辑NK细胞治疗技术研发徐天宏,珠海贝斯昂科创始人、CEO16:30-17:00安全型CART疗法的探索与临床应用胡璧梁,湖南思为康医药有限公司创始人* 部分话题文字变动,请以论坛现场为准4人及以上注册,可享75折团购优惠。欢迎联系组委获取注册优惠码:180 1793 9885(同微信)。扫码查看官网欢迎联系组委会,获取更多会议信息!电话:+86 180 1793 9885邮箱:igc@bmapglobal.com网址:www.bmapglobal.com/igc2021
  • 【日程一览】基因治疗药物研究和研发 论坛
    2022年7月26日9:00-17:00,仪器信息网联合Cytiva将共同举办“2022转化医学系列讲座之基因治疗药物研究和研发新进展专场”,与您共同探讨基因治疗热门方向基因治疗药物、Cytiva基因治疗、CRISPR技术、RNA治疗、mRNA药物、器官靶向性脂质纳米颗粒及其相关基因治疗的新进展和新技术。大会亮点1. 专家从高校、研究院到生物公司,主题从方案制定到技术开发全覆盖2. 2大分会场:从科研到应用,国内外多种最新技术进展齐聚日程一览时间报告主题及嘉宾9:00基因冶疗药物研究与应用黄文林(广州达博生物制品有限公司 董事长)9:40Cytiva基因治疗解决方案杨旻晔(Cytiva 应用专家)10:20CRISPR技术开发与基因治疗王永明(复旦大学生命科学学院 研究员)11:00RNA therapeutics Going beyond the liver: From gene silencing to gene editingDan Pier(Tel Aviv大学教授,实验室主任)14:00基因治疗乙肝病毒载体平台和根治乙肝王子元(湖景(苏州)生物制药有限公司 创始人 首席科学家)14:40基因治疗病毒载体层析纯化方案李颖(Cytiva 实验室级别AKTA产品专家)15:20mRNA 药物研发的一些新进展王鹏(南方科技大学 讲席教授 / 教授)16:00器官靶向性脂质纳米颗粒及其在mRNA递送中的应用邱敏(复旦大学人类表型组研究院 青年研究员)
  • 默克携手金斯瑞加速中国细胞和基因治疗的产业化进程
    加快生物制药的研发速度 默克为金瑞斯提供全方位的产品、服务和培训,助力其平台建设默克工艺解决方案副总裁兼亚太区负责人贝努瓦(Benoit Opsomer)先生致辞德国达姆施塔特,2019年3月19日——全球领先的科技公司默克宣布与中国生物科技公司南京金斯瑞生物科技有限公司(以下简称“金斯瑞”)签署合作备忘录,建立专注于质粒和病毒载体生产的战略联盟。“生产高质量的质粒和病毒载体是细胞和基因治疗商业化过程中的关键环节,”默克执行董事会成员、生命科学首席执行官吴博达(Udit Batra)表示,“默克是全球最大的病毒载体制造商之一,这项合作将使金斯瑞获得我们在基因和细胞治疗生产方面近30年的经验支持。“默克工艺解决方案中国区总经理王慕阳女士致辞 金斯瑞生物药事业部运营副总裁汪东亮也展望了此次合作的乐观前景,他表示:“对于这次战略合作,我们感到非常振奋。金斯瑞通过与默克强强联合所打造的cGMP生产平台将更好地服务于本地和海外客户,加快药物研发的商业化进程。” 金斯瑞生物药事业部运营副总裁汪东亮先生致辞双方就加速中国细胞和基因治疗的产业化和商业化达成了联盟。金斯瑞是一家总部位于中国南京的领先生物技术公司,致力于在中国建立符合全球标准的质粒和病毒生产服务平台。默克将为金斯瑞提供全面的产品、培训和咨询服务,涵盖从实验室开发到大规模GMP生产环节中的工艺设计、厂房设施概念设计到质量管理体系建立等各个方面。默克是为数不多的几家拥有工业化生产病毒载体工艺的制造商之一。为支持个性化的治疗产品的研制,基因往往需要通过病毒载体被输送到免疫细胞中,如默克生产的病毒载体。作为一家病毒载体代工生产服务商和生物工艺设备及耗材制造商,默克能为客户提供独一无二的整体服务。 中国细胞基因治疗行业的迅猛发展,以及随之而来对于细胞基因治疗大规模工业化生产的市场需求,已经成为了默克为中国企业输出相关专业技术经验的重要推动力。根据clinicaltrials.gov的数据显示,中国在基因修饰细胞疗法临床试验的开展方面处于世界领先地位。如今,中国有130多家企业正在研发细胞和基因疗法,范围从CAR-T/TCR-T、AAV到溶瘤病毒1。此外,在2017年12月至2018年12月期间,中国企业共已提交了28项细胞与基因治疗新药临床研究申请(IND)2,其中超过三分之一已获批准进行临床试验。默克计划为金斯瑞提供全方位的工艺产品、服务和员工培训,支持其构建世界一流的质粒和病毒载体生产平台,从而加快中国细胞和基因治疗的产业化进程。 关于默克工艺解决方案默克工艺解决方案是默克生命科学三大事业部之一,致力于为生物制药、化学制药企业提供产品开发、商业化生产所需全系列工具,已成为预过滤、无菌过滤、除病毒过滤、超滤、层析纯化、一次性生产、培养基、生物反应器、缓冲液、药用原辅料、工程技术及验证领域的全球领导者。默克工艺解决方案的成功源于对高质量产品、先进监管技术的不懈追求以及致力于帮助客户实现其需求的精神。 关于南京金斯瑞生物科技有限公司金斯瑞是中国领先的医药研发合同外包服务机构(CRO) ,拥有基因合成、多肽合成、抗体开发、蛋白表达等生物试剂定制平台和一站式生物药研发平台。金斯瑞拥有一站式抗体药开发解决方案,涵盖抗体药发现(杂交瘤技术、噬菌体展示技术、全人源技术、双特异抗体技术)、抗体工程(人源化、成药性评价与优化、亲和力成熟)等抗体药发现服务。金斯瑞的细胞治疗整体解决方案涵盖了IND申报资料撰写,临床样本生产和商业化生产。生产工艺的开发控制确保了合规性,记录真实完整确保可追溯性,所有的试验偏差都被严格研究及记录。金斯瑞始终以“提供最好的质量给客户,为客户的利益服务”为理念,致力于帮助客户缩短生物创新药进入临床的时间,并显著降低客户研发的成本,加速医药转化,共建健康未来,助力2025医药行业“中国制造”。
  • 赛多利斯与五加和基因科技达成战略合作,共建基因治疗病毒载体生产平台
    仪器信息网讯 2021年6月18日,国际领先的生物工艺完整解决方案提供者赛多利斯与国内基因治疗先行者五加和基因科技于北京大兴生物医药产业基地举行战略合作签约仪式。双方将展开深度技术合作,共同搭建高效、具有成本优势且符合GMP要求的基因治疗病毒载体生产平台。双方将携手推出面向行业从业者的工艺技术培训项目,为高速发展中的中国基因治疗行业培养更多优质人才,推动基因治疗产业在中国的商业化和长期发展。内容提要:双方将展开深度合作,整合技术优势,共同开发并优化高效、具有成本优势且符合GMP要求的基因治疗病毒载体生产平台,为客户降本增效;双方将携手推出面向基因治疗从业者的工艺技术培训,旨在为高速发展的本土基因治疗行业输出更多人才,完善行业生态;这项合作致力于赋能本土基因治疗赛道,加速中国基因治疗商业化,早日惠及更多患者,让基因药“治得好,用得起”。“国内基因治疗行业在积累多年后正式进入发展快车道。五加和在病毒载体领域深耕多年,跟赛多利斯有悠久的合作历史。此次的合作有助于加速本土基因药物的上市速度和成本降低,最终使药物研发团队和患者受益。”五加和基因科技创始人兼董事长董小岩先生表示:“国内基因治疗药物受众群体巨大,‘没得治’和‘用不起’是患者面临的首要问题。我们的最终目的是让中国老百姓都能用上基因药。不但要‘治得好’,还要‘用得起’。”“本次合作是基于长期的相互信任。作为生物工艺完整解决方案领导者,我们高度重视细胞和基因治疗在中国的快速发展,正在持续加大投入。” 赛多利斯生物工艺及解决方案事业部中国区负责人王旭宇女士表示,“赛多利斯的技术和产品在基因治疗领域拥有独特的创新优势:高通量的ambr® 平台结合MODDE® 的DoE实验设计方法可有效加速上游工艺开发速度;CIMmultus® 整体柱在提高AAV(腺相关病毒)的纯化收率的同时有效去除空壳病毒,从而提高生产效率。五加和基因科技是深耕病毒载体基础研究的专家——本次合作将充分结合双方的优势。不但要为国内的基因治疗企业提高工艺效率,还要从长期考虑,为行业输出更多人才,加速基因治疗在中国的商业化进程。”关于赛多利斯赛多利斯是国际领先的生命科学研究和生物制药行业合作伙伴。集团的实验室产品及服务板块为生物制药企业以及各类科研机构提供创新的实验室设备及产品,以满足客户开展高端科研实验和严苛的质控需求。集团的生物工艺解决方案板块提供全套的生物制药设备,并专注于一次性解决方案,帮助客户安全高效地生产生物药品和疫苗。集团营业额保持着两位数的年均增长率,并通过收购互补性技术不断扩大我们的业务范围。2020财年,集团销售额达23.4亿欧元。截止2020年,集团拥有约11,000名员工,60多个生产和销售基地,服务于全球用户。关于五加和基因科技五加和基因科技为客户提供从药物设计到商业化⽣产的⼀体化CDMO解决⽅案。公司技术团队在病毒载体领域潜心耕耘20余年,拥有AAV(腺相关病毒)、HSV(单纯疱疹病毒)、AdV(腺病毒)、LV(慢病毒)等多种临床级病毒载体制备经验。五加和基因于北京建有两个中试与研发基地共7000多平⽶,CDMO服务范围包括科研服务、符合GMP要求的中试和临床级制品的制备服务、质量研究服务和注册申报服务,满⾜客户从早期研发、新药临床试验申报和I/Ⅱ/Ⅲ期临床试验的要求。
  • 【解决方案】如何高效表征基因治疗中腺相关病毒载体?
    基因治疗是通过将修饰的基因传递至靶细胞中,从而把患者体内的突变基因替换为相对应的健康基因拷贝来实现治疗或者预防疾病的目的。与传统的药物治疗相比,基因治疗是从根本上对疾病进行控制,所以有着非常好的发展前景,在世界范围内得到越来越多医药行业的关注和投入。 将正常基因(外源)导入生物细胞内必须借助一定的技术方法或载体,基因转移的方法分为生物学方法、物理方法和化学方法。 病毒越来越多的用作载体,用于传递基因治疗的遗传物质和疫苗应用。重组腺相关病毒(recombinant Adeno-Associated Viruses, rAAV)是基因治疗最为常用的病毒载体之一。 一、如何开发高效安全的 rAAV 疗法?为了开发通过受控和经济的制造工艺生产的高效的 rAAV 疗法,需要解决从病毒衣壳设计到确定最佳工艺和配方条件,再到全面质量控制的多重挑战。应对这些挑战,需要针对 rAAV 样品下列属性进行量身定制的分析表征: Ø 测定衣壳蛋白或者颗粒滴度(capsidor particle titer)Ø 完整 rAAV 颗粒的百分比Ø 空-载比(Full-empty ratio)Ø 颗粒的粒径Ø 聚集体形成(aggregate formation)Ø 热稳定性(Thermal stability)Ø 基因组释放(genome release)Ø 衣壳电荷(capsid charge)等 而所有这些都可能影响最终产品的关键质量属性(CQA)。 通常,rAAV 滴度和病毒载量是使用酶联免疫吸附试验(ELISA)、定量聚合酶链式反应(qPCR)、液滴数字聚合酶链式反应(ddPCR)、分析超速离心(AUC)和电子显微镜(EM)的技术组合测定的。这些方法通常既费时又费力,而且其准确性和精确性也值得怀疑[1]。因此,业内越来越需求一种不依赖于使用专用试剂和昂贵的参考标准品的快速分析解决方案。 动态光散射(DLS)、多角度动态光散射(MADLS)、电泳光散射(ELS)、尺寸排阻色谱-多角度光散射(SEC-MALS)、纳米颗粒跟踪技术(NTA)、等温滴定量热法(ITC)和差式扫描量热法(DSC)可以提供有关病毒载体的关键分析和质量属性的重要信息,从而能够对多种参数进行表征、比较和优化。 样品关键参数马尔文帕纳科的技术方案衣壳蛋白尺寸DLS、NTA衣壳蛋白及转基因的绝对分子量SEC-MALS (OMNISEC)衣壳滴度或颗粒计数MADLS, SEC-MALS(OMNISEC), NTA含基因病毒颗粒百分比分析SEC-MALS (OMNISEC)聚集形成分析DLS, MADLS, SEC-MALS (OMNISEC), NTA碎片化分析SEC-MALS (OMNISEC)热稳定性分析DLS, DSC高级结构分析DSC血清型鉴定DSC衣壳解聚及基因组注入DLS, DSC衣壳蛋白尺寸ITC电荷分析ELS表1 总结了病毒载体研究中各种重要的关键属性(CQA),以及马尔文帕纳科可以对应提供表征此类信息的各项技术。 DLS、MADLS、SEC-MALS、NTA、ITC和DSC属于无标记的生物物理技术,需要最少程度的方法开发,并且可以很容易的应用于各个阶段,强化了基因治疗开发的分析工作流程。 二、高效的表征技术概念解读动态光散射(DLS)动态光散射(DLS)是一种非侵入式技术,可以测量由颗粒分散体系或分子溶液引起的散射光强度随时间的波动。由于进行布朗运动的颗粒或者分子的随机运动,散射光的强度会随之发生波动。使用自相关算法分析这些强度波动可以确定平移扩散系数,随后根据斯托克斯-爱因斯坦方程确定流体力学尺寸。多角度动态光散射(MADLS)多角度动态光散射(MADLS)通过使用三个不同的检测角度(背面、侧面和正面)并将获取的光散射信息组合成一个与角度无关(Angular-Independent)的粒径分布,从而可以对多模态的样品进行更高分辨率的尺寸测定。应用MADLS技术的扩展还可以测量出颗粒浓度(Concentration)。电泳光散射(ELS)电泳光散射(ELS)测定来自在电场中进行电泳的颗粒或者分子的散射光的频移(Frequency Shift),并能够计算出Zeta电位。颗粒的Zeta电位是颗粒在特定介质中获得的总电荷,可用于预测分散体系的稳定性并深入了解所研究的颗粒的表面化学。尺寸排阻色谱(SEC)尺寸排阻色谱(SEC)是一种分离技术,可根据分子进出柱中多孔凝胶基质的流体力学半径来分离分子。搭配一系列先进的检测器,如光散射(LS)、UV、RI和粘度,可以测量绝对分子量、分子大小、特征粘度、支化和其他参数。差式扫描量热法(DSC)差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 案例研究 | 综合使用多种技术表征 rAAV性状:衣壳分子量、聚集状态、滴度、稳定性… … 1,空 rAAV5 衣壳分析SEC-MALS (OMNI-SEC)测量产生的关键数据是绝对分子量,与柱保留时间或用于校准系统的任何标准无关。在空rAAV的情况下(Fig.1 和表2),主要单体的Mw为3.84 x 106 g/mol。空衣壳蛋白的理论分子量为3.8 x 106 g/mol,证实该分析结果符合预期。 图1 rAAV5 空壳三重色谱图表2 rAAV5空壳的定量参数 Mw/Mn 描述样品的分散性,接近1的值表示峰中有单个群体,远高于1的值表示峰内有多个群体。在空 rAAV 的情况下,单体和二聚体的 Mw/Mn 值接近1,表明是单一群体。聚集体和碎片 Mw/Mn 值显著高于1,表明单个峰内具有不同分子量的多个群体(表2)。 样品的分数(Fraction of Sample)描述了样本在群体之间的分布情况,在这种情况下,84.7% 的样品是单体。蛋白质分数(Fraction of Protein)表示样品中衣壳的百分比;在这种情况下,单体是99.8%的衣壳。这证实样品是空的 rAAV5 。从这种单一分析方法中获得的另一个关键信息是样品滴度;在这种情况下,对于空的 rAAV5,测得的滴度为 5.91x1013 vp/mL。 2,完整 rAAV5 衣壳分析完整 rAAV5衣壳的SEC-MALS (OMNISEC) 分析如图2和表3所示。对于主要的单体峰,计算出的符合Mw为4.49 x 106 g/mol,其中86%为衣壳。这样,完整的rAAV5的蛋白质组分的Mw为3.86 x 106 g/mol,与表2中的空rAAV5衣壳生成的数据一致。单体部分占比93%,样品具有总滴度7.48 x 1013 vp/mL。 图2 完整 rAAV5 的三重色谱图表3 完整 rAAV5 的定量参数 3,rAAV5 稳定性研究病毒衣壳的稳定性和功能是一种平衡行为。病毒衣壳必须足够稳定以包含和保护其中的基因组,与宿主细胞表面结合,它们必须提供足够的构象稳定性以在复制位点释放基因货物。 AAV载体脱壳的机制仍然知之甚少。衣壳脱壳和基因组释放似乎需要结构变化。基于差示扫描荧光法和差示扫描量热法(DSC)收集的AAV热稳定性已发表数据,AAV热转变的Tm值与衣壳解聚过程有关,可作为AAV血清型的鉴定指标;一种血清型的空AAV衣壳和完整AAV衣壳的Tm值通常非常相似,并且它们与衣壳动力学、衣壳脱壳和基因组释放没有明显的相关性。 图3 空rAAV5 和完整 rAAV5的DSC数据比较,扣除空白和基线的DSC数据。垂直方向标记的区域具有明显不同的热转变过程。表4 从DSC获得的空 rAAV5 和完整 rAAV5 样品的热稳定性结果 文章中记录的完整和空 rAAV5 样品的DSC曲线叠加(图3),根据空 rAAV5 和完整rAAV5 样品的整体 DSC 图谱差异以及热稳定性参数(如 Tonset 和 Tm2,表 4),可以在图 3 中 DSC 曲线上识别出四个不同的区域,它们可以暂且归因于以下几点:#1■ 仅在完整的 rAAV5 中出现的区域,从50℃一直延展至 75℃,这个过程大约 30 分钟。这可能归因于热应激下衣壳蛋白结构和稳定性变化导致的 ssDNA 的动力学控制下的注射;#2■在空 rAAV5 中出现的最明显的预转变过程;#3■ 主要转变过程,即协同的 rAAV5 衣壳蛋白发生解组装,这由具有血清型特异性的 Tm 值所决定;#4■ 仅在完整 rAAV5 中出现的另外的转变过程,很可能归因于 ssDNA 的解链。结论:以上几例是综合应用马尔文帕纳科多种互补技术对基因治疗常用的AAV载体一些关键属性的表征,这些无标记生物物理技术需要最少的方法开发,可以从衣壳设计阶段到开发、配方开发和药物原料和产品进行深入表征,加强体内基因治疗开发的分析工作流程。 详细内容可参文献 (Pharmaceutics 2021, 13(4), 586 https://doi.org/10.3390/pharmaceutics13040586)[1] Burnham, B. Nass, S. Kong, E. Mattingly, M. Woodcock, D. Song, A. Wadsworth, S. Cheng, S.H. Scaria, A. O’Riordan, C.R. Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Hum. Gene Ther. Methods 2015, 26, 228–242 三、纳米粒度及电位分析仪:DLS/ ELS/ MADLS 马尔文帕纳科 Zetasizer Ultra 纳米粒度及Zeta电位分析仪具有真正的多角度动态光散射技术(MADLS® ),提供更高的粒度测量分辨率,及与角度无关的粒度结果,并能够测量颗粒浓度。图4 Zetasizer Ultra纳米粒度及Zeta电位分析仪 四、OMNISEC 凝胶渗透色谱仪:GPC/SEC马尔文帕纳科OMNISEC凝胶渗透色谱仪是一套完整的凝胶渗透/尺寸排阻色谱(GPC)/(SEC),有前端色谱分离系统、检测器和软件组成,是灵敏准确的多检测器GPC/SEC 系统,可以准确测定:Ø 绝对分子量和分子量分布Ø 特性粘度和分子结构Ø 样品浓度Ø 以及其他多种关键参数图5 OMNISEC凝胶渗透色谱仪 五、PEAQ-DSC 微量热差示扫描量热仪:DSC 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简洁、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。图6 MicroCal PEAQ-DSC 微量热差示扫描量热仪 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 注册启动丨第四届金斯瑞细胞基因治疗产业发展与合作论坛邀您共探细胞/基因治疗商业化破局之路
    伴随着“生物经济”时代的到来!我国首部生物经济顶层设计《“十四五”生物经济发展规划》应势出炉,它不仅将开创性“生物经济”这个新名词带给了大众,也正式开启了生物科技引领新一代产业革命的时代。生物科技企业守正初心、夯实前行,为人类社会进步做出贡献的时代到来了。旨于促进细胞/基因治疗产业进一步融合,打造业内优质交流平台,金斯瑞一直在行动。从大洋彼岸的旧金山到繁华蓬勃的大上海,再到“六朝古都”文学之都的南京,金斯瑞一路走来风尘仆仆却也落地有声,从国际视角前瞻细胞基因产业未来,金斯瑞让更多行业参与者站得更高,看得更远。图丨2020年于美国旧金山举办的金斯瑞生物科技全球产业论坛盛况:中外细胞/基因治疗领域投资人、企业家,包括美国FDA前局长在内的顶级专家们齐聚论坛图丨2020及2021年分别于上海和南京举办GCT主题论坛盛况:9位中外院士领衔,联动产学研资政各界业内专家倾囊相授,齐聚盛会一届论坛,机遇无限。2022年9月金斯瑞再次扬帆起航,将于北京举办第四届金斯瑞细胞基因治疗产业发展与合作论坛。在风起浪涌的生物经济狂澜下,谁能在万亿市场中笑傲江湖?推动社会高质量发展的源动力是否由细胞基因来引擎?如何把握细胞基因商业化产业化的绝佳窗口期?在这里,有行业政策与前沿动向的指引,技术交流与投资策略的探讨,还有同道者的相互切磋与指点迷津。本届论坛将聚力线上线下500+行业精英人士,包括国内外监管部门代表、Biotech公司C-Level人物、权威科研工作者、明星企业、投资机构等各界领军者汇聚一堂,分享成功经验,共促产业繁荣,只为细胞基因技术——未来疾病治愈的新希望而来。热点话题一:FDA视角—— CAR-T细胞治疗审批政策与最新监管趋势“理想很丰满,现实很骨感”,大概说的就是CAR-T的“行路难”了。随着FDA已获批的6款CAR-T上市,细胞免疫治疗再次获得空前发展,但大家的关注点却逐渐从“抗癌神药”过渡到了“产业化瓶颈”,CAR-T治疗商业化如何破局?忽略研发技术难、生产成本高、治疗标准化程度低这些硬性条件不谈,国内的审批程序、监管政策等同样是瓶颈之路上的羁绊。而在美国,FDA指南中已经明确了加速审评审批的程序,包括快速通道,优先审评,加速审批,以及突破性疗法认定等等,都是为了消除瓶颈,推动更多细胞基因疗法问世的关键。纵观全球,监管框架的分歧给细胞基因疗法的开发带来了挑战,那么,从已获批产品的审批过程回看现有的监管框架如何与细胞基因治疗产品的发展现状相适应?未来更多CAR-T产品或适应症的研发及审批是否有望得到提速?对监管框架的哪些调整可能会进一步促进临床开发及产业发展?对中国的监管政策的持续完善又有哪些借鉴意义?图丨FDA生物制品评估和研究中心(CBER)主任Peter Marks博士FDA生物制品评估和研究中心(CBER)主任Peter Marks博士,届时将通过“云直播”形式,隔空带来他的最新解读与专业分析,以FDA视角分享就指南中有关细胞基因疗法的更多观点及个人的监管新思路,洞悉未来国际、国内监管新动向。热点话题二:从GCT商业化实战看创新药破局盈利之路2021年是一个分水岭,国内两款CAR-T产品的上市开启了我国商业化元年,细胞基因疗法不仅从萌芽阶段进入了快速发展期,也开始逐步向产业化转化。与此同时,来自于研发技术、产品质量、生产工艺、商业化、供应链稳定等方面的挑战也随之而来。如何降本增效以扩大可触及的人群,药物的安全性和有效性如何进一步优化?如何借助全球优势资源推进中国基因与细胞治疗产业化进程及取得商业化成功?能否创造商业“传奇”,最终的盈利之道还需探索。“实干出真知”,创新药如何破局盈利之路,还要看“实干家”们怎么看。本届论坛我们特邀复星凯特、药明巨诺与传奇生物三大企业CEO齐聚首,他们的世纪同台会擦出怎样不一样的火花?又会记录下如何不一样的“传奇”故事?满满的干货+实战经验分享,毫无保留地倾囊相授,尽在第四届金斯瑞细胞基因治疗产业发展与合作论坛,期待您的参与。热点话题三:“天价药”如何惠及更多患者,支付模式创新迫在眉睫CAR-T上市除了与之相伴的商业化难题,还有它的“天价药”标签。无论是企业还是医保的角度,CAR-T产品的降价空间都相对有限,如何提升CAR-T产品的可及性和可支付性成为了亟待解决的难题,这有赖于多方携手,共同助力,而创新支付有待探索并成为新希望。如何通过相关法规和报销政策,鼓励多层次医疗保障体系和创新的医疗支付方式?社会资本贡献力量,联合药企与保险公司来提升治疗的可及性是否可行?从CAR-T已获上市的国家推行医疗支付措施中,是否有迹可循?在本届论坛上你将找到答案,众多保险、投资界精英人士,企业权威人物将现身说法,站在他们各自不同的角度剖析可能的解决方案,第四届金斯瑞细胞基因治疗产业发展与合作论坛蓄势待发,邀您一同探寻答案。细胞基因治疗差异化竞争路指何方?细胞治疗攻克实体肿瘤还有多远的路要走?资本热潮下GCT商业化落地困境何解?… … 更多你所关心的细胞基因当下热点议题也都是本届论坛的“重磅戏”,金斯瑞希望携手这些优秀企业家、行业精英领袖、科研专家们,共同推动全球基因与细胞治疗产业的快速发展,我们期待您的加入。免费注册时间截止到7月31日, 更多精彩持续更新中,这个9月,我们与您相约北京,不见不散!注册通道开启:https://www.wenjuan.com/s/UbuQZjs/# 联系我们:Tel: 025-58895776- 6313 Email:event@genscript.com
  • 从基因治疗法规看AAV生产中的关键质量分析
    AAV载体因其感染效率高、宿主细胞范围广、免疫源性低等优势一直以来备受基因疗治领域青睐,截至日前,国内已有近20项AAV基因疗法申请或已获批临床试验。随着越来越多的AAV基因治疗产品步入IND,AAV生产的CMC(Chemistry, Manufacturing and Controls)也倍受关注,如何确保产品的安全性和有效性始终是质量控制的核心,也是监管机构审核的重心。2022年5月,国家药品监督管理局药品审评中心(CDE)发布了《体内基因治疗产品药学研究与评价技术指导原则(试行)》(以下简称《指导原则》),对基因治疗产品的质量属性分析给出了系列指导,鼓励基于“质量源于设计”(QbD)的研发理念,建立全过程的质量控制体系和全生命周期的管理理念;通过全面的质量研究确认产品的关键质量属性(Critical quality attributes, CQA),同时采用原理互补的不同分析方法进行研究。常见的质量研究项目包括(但不限于):鉴别、结构分析、生物学活性、纯度、杂质、含量、感染效率、一般理化特性等。本文将结合以上《指导原则》,对AAV生产过程中的CQA以及常用表征分析方法进行系统介绍。鉴别与结构分析对AAV载体的鉴别可以从AAV基因组序列、衣壳蛋白鉴定以及完整病毒颗粒鉴定等不同水平进行。• 限制性内切酶本酶切图谱分析、聚合酶链式反应(PCR)、逆转录-聚合酶链反应(RT-PCR)和核酸序列测定可用于确认病毒基因组、目的基因和相关的调控序列;同时要注意观察突变位点对遗传稳定性的影响;• 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白免疫印迹(western blot)可用于对衣壳蛋白VP1/2/3进行鉴定;• 镜下结构分析、颗粒大小分布、折光度分析等方法可用于对结构蛋白的表达和病毒颗粒的组装进行确认。含量与生物学活性产品含量即病毒数量,统一用“滴度”作为指标,包括病毒颗粒滴度(总颗粒数)、基因组滴度(基因组拷贝数)、结构蛋白含量、感染性滴度(感染性颗粒数)等不同类型。最终产品的规格或剂量一般以病毒颗粒滴度或基因组滴度表示,同时通过控制感染性滴度以及感染性颗粒的比率保证活性病毒颗粒的数量,从而在保证产品疗效的同时能有效控制产品的免疫原性风险。病毒颗粒滴度,也称为衣壳滴度,是以AAV颗粒作为计量单位,其中不免会存在空壳AAV颗粒,所以在生产工艺中对空衣壳进行有效分离与纯化是必不可少的关键步骤。酶联免疫吸附试验(ELISA)、透射电镜(TEM)、高效液相色谱(HPLC)、分析型超速离心技术(AUC)等是常见的测定方法,其中TEM与AUC一般只用来检测空壳AAV颗粒滴度与实心AAV颗粒滴度的比值。基因组滴度测定的是含目标基因组的AAV浓度,理论上应该与感染性滴度呈线性关系,主要的测定方法有有PCR法、点杂交法(Dot-blot)和分光光度法等。对病毒物理滴度的测定也是反映产品生物活性的方法之一,除此之外,还需用敏感细胞或靶向细胞测定其感染能力和目标产物表达能力以表征产品效力。感染性滴度用于确定AAV目的基因组是否转移到细胞核并进行复制,这是AAV成功表达基因治疗产物的前提,也是反映产品质量和临床有效性的重要指标。目前最广泛使用的测定方法是采用半数组织培养感染剂量法(TCID50)来进行细胞体外感染。但是该方法精密度差,变异系数大,其中辅助病毒的稳定性、细胞类型、细胞数量、PCR引物体系、实验人员的操作等众多因素都会影响其定量数据,因此,对实验环境、实验参数控制等要求较高,所以目前国内大多数AAV基因治疗研发企业并不具备用TCID50进行感染滴度检测的能力。作为致力于基因治疗技术的开发和应用的CDMO服务商, 宜明细胞不仅拥有TCID50检测技术,并且不断优化完善,迄今为止已成功助力多家企业完成AAV产品批放行检测,用于IND申报以及(研究者发起的临床试验研究用的)临床级别AAV产品放行。纯度与杂质在AAV生产下游,通常会有一系列纯化工艺对AAV载体原液中可能包含的各类杂质与污染物进行层层过滤与清除。这些杂质大体来自三个方面:产品相关杂质、工艺相关杂质以及其他微生物或相关组分。为控制产品质量,除纯化工艺之外,还需对其中会影响产品安全性和有效性的CQA进行表征分析,以保证其在限定范围内。在产品相关杂质中,《指导原则》特别指出需关注“可复制型病毒”对产品安全性的潜在风险,并建议将可复制型腺病毒 (Replication-Competent Adenovirus,RCA)控制在 1 RCA/3 ×1010VP (Viral particals)以内。复制型腺相关病毒(rcAAV)是AAV生产过程中的一项产品相关杂质,属于一种错误包装的病毒,其形成主要源自于AAV载体质粒和辅助质粒间发生了同源/非同源重组,其在辅助病毒存在的条件下可以进行复制扩增。目前,rcAAV常见的检测方法是在辅助病毒存在下使用敏感细胞进行多轮感染扩增,细胞裂解后再进行基因组提取,最后采用DNA免疫印迹法(Southern blot)和qPCR法测定rep(调节基因) 或cap(结构基因) 。在现阶段,使用qPCR法检测rcAAV限度值的居多。宜明细胞采用qPCR法并已建立了完善的rcAAV检测体系,目前已完成了多种血清型的检测方法开发,rcAAV含量检测结果均低于控制标准。▲ 不同血清型rcAAV含量检测结果除rcAAV外,空壳病毒颗粒是众所周知的一项重要的产品相关杂质,它不仅影响AAV产品的效力,并且会在患者体内产生免疫原性,可能带来致命风险。因此,除了纯化方法,AAV空壳率的表征检测技术也十分关键。AAV空壳率的常见表征技术包括分析超速离心技术(AUC)、阴离子交换色谱法(AEC)、TEM、毛细管凝胶电泳、qPCR、酶联免疫吸附试验(ELISA)、光密度法(OD)等常用技术。TEM常用于检测AAV样品空壳率、聚集和纯度等指标。这一方法样品制备简单,结果直观。但是TEM因其低通量、周转时间长以及具有挑战性的图像分析而受限。因此,在宜明细胞,TEM的结果常用于参考数据,与其他正交验证方法 (AEC、AUC等)一起评估。AEC基于不同衣壳亚型的等电点差异,可以分离多种血清型空衣壳颗粒和完整衣壳颗粒。AEC具有较高的重复性以及中等精确度,其高通量和可重复性非常适于在大规模工艺开发中常规使用。▲AEC:分离空壳与完整衣壳(数据源自:宜明细胞)其中AUC因其远高于其他技术手段的分辨率,被业界视为检测空壳率的金标准,是测定聚合物,量化空衣壳、部分完整衣壳和完整衣壳相对含量的重要手段。▲ Optima AUC(图片源于宜明细胞)但是考虑到AUC的低通量、周转时间长以及对测试样品的量和纯度要求高等原因,AUC更适合作为正交方法来验证其它更快但是分辨率较低的方法,比如AEC。宜明细胞的空壳率检测平台可完成AAV一站式自主检测,可高精准度、全面地(可覆盖各个血清型)表征AAV的空壳产品,大幅度提高空壳率方法学验证能力和放行检测的速度,确保高品质AAV产品的持续稳定供应,同时也可以为业内类似产品提供检测服务。▲AAV样品的AUC沉降系数分布(数据A源自:DOI: 10.1016/j.omtm.2019.09.006 数据B源自: 宜明细胞)。图中各字母代表含义:E,空衣壳60s;P,部分完整衣壳60-100s F,完整衣100s;X,不明物此外,宜明细胞还使用毛细管凝胶电泳结合激光诱发的荧光检测方法来检测AVV生产过程中的残留物,这种方法组合可以看到非常微量的残留片段的大小,与相应标准的标准品进行对照具有很好的检测限。另外,在AAV制造和纯化过程中还容易出现病毒聚集体,聚集体可能会降低病毒的感染滴度,从而降低产品功效,同时还会增加免疫原性风险。常用的检测方法包括A320/A260比值、动态光散射(DLS)、电子显微镜、场流分离-多角度激光光散射、差分离心沉降法(DCS)、纳米颗粒跟踪分析等。在工艺相关杂质中,宿主细胞DNA是一项关键的质量分析对象,需对其残留量和残留片段大小进行控制。根据《指导原则》建议,尽量将残留 DNA 控制在10ng/剂以内,DNA残留片段的大小控制在200bp以下。常用的检测方法有Southern blot、PicoGreen染色和定量PCR等,如果基因载体和宿主细胞DNA有同源序列,则建议使用特异性更好的定量PCR法。总而言之,产品纯度与产品的安全性息息相关,也是监管机构在审批过程的重点关注对象。对企业来说,一方面要不断优化生产工艺,基于风险控制来设计和选择工艺技术与生产原料,同时另一方面建立灵敏有效的CQA表征分析方法与相应的质量标准,进而对影响这些质量属性的关键工艺参数进行把控。鉴于生物药物的复杂性,对于同一质量属性,通常需要至少三种基于不同原理的方法进行交叉验证,以确保数据的准确性和可靠性,并且建议尽量在临床试验开展前完成方法学的开发和验证。总结AAV生产的质量控制贯穿于整个产品生命周期。临床申报阶段、临床试验阶段以及上市申请阶段,对工艺开发与产品质量属性都有不同侧重的要求,即使上市后生产工艺依然需要持续验证和优化,以更好地保证产品质量及质量稳定性。与专注于药物研发的生物制药公司相比,成熟的CDMO企业无论是在工艺开发与设计、产品质量控制,还是申报材料的准备与沟通上,都具备更充足的资源与更丰富的经验。宜明细胞作为一站式基因治疗药物CDMO服务平台,配置有严谨的质量保证与专业的质量控制团队,能够满足所有GMP AAV项目的检测要求。在宜明细胞服务的客户中,既有处于临床前研究阶段的,也有在进行新药临床试验申请的,或是进行临床1-2期生产的,宜明细胞均可根据客户需求提供定制服务,包括细胞库建库、工艺开发、方法学开发、稳定性研究,中试批生产等。宜明细胞在其质量管理体系中搭建了完整的文件管理体系,GMP文件数量超过千份,包含详细的技术标准资料、标准管理规程、标准操作规程和系统的记录性文件,用以保证生产过程的均一性、可复制性和可追溯性,这也是宜明细胞能够快速协助基因药物企业获得临床审批的重要原因之一。
  • 强化细胞基因治疗|赛多利斯已完成收购Polyplus
    前情提要:26亿美元!赛多利斯拟收购Polyplus|加注CGT疗法生命科学集团赛多利斯通过其法国上市子公司Sartorius Stedim Biotech成功完成对法国公司Polyplus的收购。该交易于2023年7月18日完成,获得了所需的监管批准。Polyplus是细胞和基因治疗创新技术的领先提供商。Polyplus开发和生产的转染试剂是制造病毒载体的关键原料。该公司通过收购质粒构建、蛋白和质粒生产等相邻技术,扩大了其在基因治疗和基因修饰细胞治疗领域的产品组合。关于赛多利斯赛多利斯集团是生命科学研究和生物制药行业的领先国际合作伙伴。该集团的实验室产品与服务板块提供创新型实验室仪器和耗材,致力于满足制药和生物制药公司以及学术研究机构旗下科研和质量控制实验室的需求。生物工艺解决方案板块推出了广泛的产品组合,专注于一次性解决方案,帮助客户安全高效地制造生物技术药物和疫苗。集团总部位于德国哥廷根,拥有约60个制造和销售基地遍布全球。集团自身业务增长显著,并通过不断收购互补性技术以扩展其产品组合。2022财年集团销售收入约为42亿欧元。截至2022年底,约16,000名员工为全球客户提供服务。
  • 第六届IGC 2022定档8月北京,基因治疗、细胞免疫及干细胞治疗等多元化前沿技术荟萃!
    作为免疫、基因及细胞治疗领域产学研医转化影响力最高的年度品牌盛会之一,IGC 2022第六届免疫基因及细胞治疗大会将于8月30-31日在北京盛大召开。• 对于前沿疗法的申报、技术评价、伦理遗传资源的政策与监管有哪些最新要求?• 基因治疗细胞治疗的非临床药理毒理、CMC该如何评价?动物及替代模型该如何选择?• 推进临床,IIT/IND该如何满足申报要求?首次人体试验我们该怎么进行剂量的爬坡、试验的设计?• 国内不同载体递送(AAV及其他病毒、纳米颗粒LNP-mRNA、外泌体等)技术、基因编辑技术、通用型细胞治疗技术、iPSC干细胞技术、再生医学基因治疗等的前沿研发与药物转化将有哪些突破与融合?如何应对CMC产业化挑战?• 应对实体瘤挑战,细胞免疫联合治疗将有哪些布局以及组合可能?临床前与临床进展几何?• … … 面对前沿创新疗法的成药性与监管挑战,IGC 2022全新升级启航!IGC将从4大会场14大细分专题出发,解析国内外免疫细胞治疗、基因治疗、干细胞治疗最新的政策与监管趋势,探讨国内外AAV及其他病毒载体基因治疗、非病毒载体基因治疗(纳米颗粒核酸递送、外泌体等)、体内基因编辑治疗、通用型细胞免疫治疗、实体瘤细胞免疫治疗与联合、干细胞基因治疗、iPSC与MSC干细胞治疗等的新研究、新技术、新产品的领先突破,促进国家产学研医的深入交流与合作,加快中国免疫基因及细胞治疗的产业转化!感恩回馈!老客户专享!6月17日前,5人组团注册报名,立减¥1380 起!更有限时早早鸟特惠!为感谢行业同仁对IGC一直以来的大力支持,特面向IGC的往届参会嘉宾与参展企业,开放惊喜参会/参展折扣!详情欢迎联系组委咨询:180 1793 9885(同微信)全新升级 | 大会结构百家争鸣:基因治疗技术创新与研发• 专题:基于病毒载体的下一代基因治疗研发• AAV 基因治疗• 其他病毒载体下的基因治疗• 专题:基因编辑疗法与新型非病毒递送下的基因疗法• 体内基因编辑技术与疗法研发• 新型非病毒递送系统下的基因疗法-纳米颗粒、外泌体等• 专题:基因治疗热点聚焦• 基因治疗IIT/IND申报与非临床评价• 基因治疗临床需求、申报及研发领先实践强强联合:下一代细胞免疫治疗与联合治疗• 异体通用型细胞免疫治疗监管与评价• 通用型细胞免疫治疗创新研发• 实体瘤免疫细胞治疗及联合治疗• 非肿瘤细胞免疫治疗时代已来:干细胞治疗研发与产业化• 干细胞治疗监管与评价• 再生医学干细胞基因治疗前沿• iPSC诱导多功能干细胞治疗研发• 下一代MSC干细胞治疗研发-外泌体、同种异体等精英荟萃 | 谁将参加?工业界药物发现、研发、药理毒理、临床部1. 细胞免疫治疗2. AAV及其他病毒载体基因治疗3. 基因编辑治疗4. 非病毒载体基因治疗、核酸疗法5. 干细胞治疗、干细胞基因治疗6. 从事肿瘤联合治疗:免疫检查点抗体/溶瘤病毒/肿瘤疫苗科研院校研究员/学者医学院、生命科学、药学院、免疫所医院临床医生/研究员肿瘤科血液科生物治疗科眼科神经科其他上游供应商原料、耗材、仪器、设备、软件解决方案CRO/CDMO/法规/市场服务提供商政府/监管机构… … 百家争鸣 | 往届嘉宾盛况(列举)高福,中国科学院院士、中国疾病预防控制中心主任Jonathan Sprent,美国科学院、澳大利亚科学院双院士罗建辉,国家药审中心生物制品药学部部长宾夕法尼亚大学细胞免疫治疗产品开发实验室Joseph Melenhorst,宾夕法尼亚大学细胞免疫治疗产品开发实验室主任袁宝珠,前中国食品药品检定研究院细胞资源储藏及研究中心主任Michael G. Covington,Juno首席CMC法规政策和战略负责人颜光美,中山大学药理学教授,中山大学原副校长石远凯,国家癌症中心副主任,中国医学科学院肿瘤医院副院长韩为东,解放军总医院分子免疫学研究室主任蒋海燕,Editas Medicine临床前科学副总裁田志刚,中国工程院院士,医学免疫学家,中国科学技术大学生命科学学院教授,免疫学研究所所长Saar Gill,宾夕法尼亚大学医学助理教授、Carisma Therapeutics联合创始人饶春明,前中检院生验所重组药物室主任,国家药典执行委员孟淑芳,中国食品药品检定研院生物制品检定所细胞室研究员张叔人,中国医学科学院肿瘤医院教授高光坪,美国麻省大学医学院医学院终身讲席教授、美国国家发明家科学院院士和美国微生物科学院院士于雷,中国食品药品检定研究院重组药物室副研究员Sol Ruiz,EMA生物制品工作组主席、EMA CAT前沿治疗委员会西班牙主席、西班牙药监局生物药与前沿疗法负责人Mark A. Kay,斯坦福大学医学院人类基因治疗学系主任,前美国基因与细胞治疗学会顾问委员会主席王建祥,中国医学科学院血液学研究所血液病医院副所长林欣,清华大学医学院教授,基础医学系系主任Joe Fraietta,宾夕法尼亚大学助理教授与科学总监、DeCART Therapeutics联合创始人范勇,科济生物全球注册事务高级副总裁,前FDA、CBER药学审评员,国际细胞与基因治疗学会(ISCT)孔祥银,安达生物首席科学家,中科院肿瘤与微环境重点实验室主任、分子遗传学课题组组长李秋棠,纽福斯CSO、美国路易斯维尔大学医学院眼科和视觉科学系终身教授刘卫平,北京大学肿瘤医院移植与免疫治疗病区副主任… … *更多往届嘉宾阵容及会后报告,欢迎联系组委:180 1793 9885(同微信)6月17日前,5人组团注册报名,立减¥1380 起!更有限时早早鸟特惠!扫码咨询共促发展 | 招展/论坛组织工作全面启动IGC 2022第六届免疫基因及细胞治疗大会的招展/论坛组织工作现已全面启动。• 多种合作形式火热开放中!基于IGC在业界的品牌影响和优质口碑,现已与30余家免疫基因及细胞治疗领军供应商企业达成参展意向。🔥主题演讲、包袋赞助、独家冠名等多种合作形式火热开放中!名额有限,详情咨询:180 1793 9885(同微信)• IGC 2022 演讲嘉宾火热征集中!演讲摘要/论文投稿,经组委评估并确认的嘉宾将享受以下福利:• 获得一张免费全程参会证;• 会议期间午餐券、嘉宾招待晚宴;• 在会议期间专享演讲嘉宾休息室;• 组委会官方宣传与推广。投稿邮箱:igc@bmapglobal.com 扫码查看官网赞助 / 演讲 / 媒体合作事宜,欢迎联系组委会电话:+86 180 1793 9885邮箱:igc@bmapglobal.com网址: www.bmapglobal.com/igc2022
  • 解析:基因治疗作用机制、技术路径与行业发展趋势
    一如大家所知,生命科学的中心法则是所有生命活动遵循的基石,DNA双螺旋结构发现者之一Francis Crick在1958年提出的这一规则为现代分子生物学乃至整个生命科学领域奠定了最坚实的科学基础,也为生物医药领域,特别是近年来愈发明显的新型modality、多学科融合的新型疗法、不断涌现的生物技术新范式提供了底层科学上的指导。倚锋资本投资团队遵循这一科学法则,尝试探讨行业发展趋势与其中存在的投资机会。题为“生命科学中心法则系列”,本篇为第一期“基因治疗”,作为开篇,期待讨论与交流。基因治疗的定义基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,进而达到治疗的目的。基因治疗是一种根本性的治疗策略,有望从根本上治愈一些现有常规疗法不能解决的疾病。导入的基因可以是与缺陷基因对应、在体内表达具有特异功能的同源基因,也可以是与缺陷基因无关的治疗基因。按照导入基因的策略,可分为三种类型:基因增补、基因抑制、基因编辑。图片来源:Nature,兴业证券研究所基因治疗的三种策略从源头而言,大多数疾病的发生都是基因层面出了问题,根据基因变异类型的不同,大致可分为两类:1)基因突变导致其指导合成的蛋白质功能异常,表现为蛋白质没有功能、功能变弱或过强,甚至产生有害蛋白;2)基因表达强度异常,表现为不该表达的基因表达、应该表达的基因不表达、基因表达的强度过强或过弱等。基因增补:将外源基因导入表达靶细胞(如肝脏细胞),其表达产物能修饰缺陷细胞的功能,是目前已上市和在研基因疗法的最主要策略。简而言之,就是“缺啥补啥”,也是迄今理论基础最清晰、最容易成药的策略。基因抑制:使无法正常工作的致病基因减弱或沉默,实现方式有些类似于基因编辑,难度较大。相比之下,小核酸干扰机制(RNAi)反而更适用于该策略。基因编辑(以CRISPR/Cas9为代表):切割靶基因,并对其进行精确编辑(删除、插入、替换等),实现对患者基因组“错误”基因的修正,基因编辑可以认为是基因治疗的终极手段,其涉及的治疗过程比基因增补复杂、潜在风险也更大、技术挑战也更高,目前发展阶段不如基因增补成熟。基因治疗的作用机制:中心法则生命科学的中心法则:在生物体内,遗传信息沿着“DNA-RNA-蛋白质”的方向逐级传递,蛋白质是遗传信息的表现形式,亦是一切有机生命体的表现形式,因此疾病发生时多表现为蛋白质层面的异常;DNA、RNA、蛋白质三个层面,传统的小分子(如靶向药)、大分子(单抗,重组蛋白等)都是针对蛋白质层面的治疗策略,基因治疗是针对源头(DNA)的治疗策略,RNAi、mRNA是针对中间过程的治疗策略。图片来源:Nature;倚锋资本投资团队绘制;网络根据中心法则,每一个生理过程都可以理解为特定的基因在特定的时间和空间里表达的结果,平衡被打破就会诱发疾病。几乎所有疾病的发生理论上都可以在DNA水平进行解释,这也是基因治疗的理论基础。根据基因变异类型的不同,导致疾病发生的基因异常大致可分为两类:1)基因突变导致基因指导合成的蛋白质功能异常,表现为蛋白质没有功能、功能变弱或功能过强,甚至产生有害蛋白;2)基因表达强度异常,表现为不该表达的基因表达、应该表达的基因不表达、基因表达的强度过高或过低等。然而,疾病的发生往往涉及多个基因,对应的蛋白质之间的相互作用形成了一个庞大的调控网络,仅对某一个或几个基因进行调节难以达到治疗疾病的目的。目前对人体基因功能和疾病发生机制的研究仍然非常有限,存在大量未被发现的新基因和信号网络。基因和疾病太多的不确定性极大地限制了基因治疗的应用领域,故而基因治疗目前只适用于少数致病机制或治疗方案非常明确的疾病,其中以单基因遗传病为代表。资料来源:倚锋资本团队整理基因治疗与传统药物的成药机制比较小分子(以靶向药、小分子抑制剂为代表)、大分子(以单克隆抗体为代表)大多作用在蛋白质层面,基本作用机制是抑制或激活特定蛋白的活性 基因治疗从DNA的层面介入,可以从源头上解决疾病的发生。图片来源:researchgate.net资料来源:倚锋资本团队整理基因治疗的分类体内&体外根据给药方式和治疗流程的不同,基因治疗可分为“体内”治疗和“离体”治疗(体外)两大类:“体内”基因治疗的操作流程相对简单,大致可分为3个步骤:1)利用基因工程的方法将正常基因插入到 病毒载体的DNA上;2)将重组后的病毒DNA体外包装产生具有感染能力的完整工程病毒;3)把重组后的病毒直接注入病人体内,病毒感染病变细胞并将正常基因带到靶细胞中,实现疾病的治疗。“体外”基因治疗可分为6个步骤:1)将正常基因插入到病毒载体的DNA上;2)将重组后的病毒DNA体外包装产生具有感染能力的完整工程病毒;3)获取病人的体细胞,如造血干细胞等,体外培养扩增;4)用重组后的病毒感染获取的病人细胞,病毒把正常基因导入靶细胞中;5)对携带正常基因的重组细胞体外 培养扩增;6)将携带正常基因的重组细胞回输到病人体内,实现疾病的治疗。图片来源:Proceedings Biological Sciences,华金证券研究所细胞与基因治疗(Cell Gene Therapy)细胞治疗是指利用某些具有特定功能的细胞的特性,采用生物工程的方法获取和/或通过体外扩增、特殊培养等处理后,产生的特异性功能强大的细胞,回输体内后,从而达到治疗疾病的目的。细胞治疗和基因治疗并不容易划分清楚,为了更好的概括,有一种方法是将细胞和基因治疗合称细胞和基因治疗(cell and gene therapy,CGT);另外一种是分为广义、狭义的区分,按照技术类别来分,这种方法更容易区分。狭义的基因治疗只是基因递送,不包括CAR-T/TCR-T和溶瘤病毒治疗,广义的基因治疗则包含了基因递送和 CAR-T/TCR-T、溶瘤病毒。图片来源:The source, harvesting procedure, culture and several potential uses of stem cells,兴业证券研究所基因治疗的技术路径分类(FDA)FDA将基因治疗产品按照技术方式分为五类(载体方式):质粒DNA基因治疗:是指基因工程化的、能够将治疗性基因导入人类细胞的环形DNA分子。通常是分离/扩增目的基因后将其导入到质粒中,然后转染细菌进行质粒的增殖,以生产用于治疗的质粒产品,质粒进入细胞核后可转录出mRNA从而表达目标蛋白。比如2019年3月在日本获批的Collategene,即为搭载肝细胞生长因子 (HGF)的质粒,用于治疗外周动脉闭塞性疾病。病毒载体基因治疗产品:对病毒进行改造(比如删去复制基因)去除其引发传染性疾病的能力,再将目的基因通过质粒共培养的方式装载到病毒颗粒中,病毒感染细胞进入细胞核后释放目的基因并转录表达。比如于 2019年5月由FDA批准上市的诺华公司的Zolgensma,即为搭载SMN1基因的改造AAV9病毒,递送到神经系统后可表达出SMN蛋白从而可以治疗脊髓性肌肉萎缩症(SMA),曾经为史上最昂贵的药,售价为210万美元。(Bluebird的Zynteglo在2022年8月17号于FDA获批,高达280万美元/1900万人民币,刷新了世界最昂贵药物的记录。但是在短短一个月后,2022年9月16日Bluebird又再一次官方宣布FDA已加速批准基因治疗药物Skysona上市,用于减缓4-17岁早期活动性脑肾上腺脑白质营养不良(CALD)男孩神经功能障碍的进展,Skysona在美国的定价为300万美元,这意味着全球最贵药物的记录在短短30天内再次被打破,最新的天价药王诞生)。细菌载体基因治疗:通过改造去除细菌(如沙门氏菌)引发传染性疾病的能力但仍然保留其对某些组织(如肿瘤)的亲和性,再将目的基因/寡聚核苷酸导入细菌,给药后即可感染靶细胞并释放基因改造材料。暂无该类药物上市,在研的包括癌基因沉默的产品、提高癌抗原表达的产品。基因编辑治疗:能够精确对生物体基因组的特定目标基因进行修饰,从而达到破坏有害基因或者修复变异基因的目的。基因编辑技术包括同源重组、锌指核酸酶(ZFNs)技术、转录激活样效应因子核酸酶(TALEN)技术和获得2020年诺贝尔化学奖的CRISPR/Cas9技术。目前暂无药物上市。细胞基因治疗产品:从患者提取细胞后,经过基因改造(通常使用病毒载体)后返输回患者体内。比如于2017年获批的Kymriah,即是将患者的T细胞取出,通过慢病毒将CD19抗体基因转染到T细胞中,该基因可在T细胞表面表达出CD19抗体,经筛选增殖后回输患者体内,实现对B细胞淋巴瘤的杀伤。图片来源:FDA,The promise and challenge of therapeutic genome editing,兴业证券研究所基因治疗的核心因素核酸序列的设计。1)直接影响目标蛋白的表达,以及分泌效率;2)DNA序列决定了蛋白的表达,同时也决定了表达蛋白的二级、三级结构(蛋白的折叠与空间构象,是生命科学的最重要话题之一);3)蛋白的二级与三级结构又直接会影响到从靶细胞(如肝脏细胞)向血液中的分泌能力。这是决定药物剂量的第一个因素。将核酸序列递送至靶细胞中,即:递送问题。如何更加有效的将核酸序列递送至靶细胞,取决于载体的递送效率、载体的制备质量、对靶细胞的转染效率。这是决定药物剂量的第二个因素。工业化生产(CMC,临床转化)。基因治疗的CMC(关键化学、制造和控制)不同于传统的化学药,在整个IND临床报批、上市后稳定生产供应要求更高,而且有一点非常关键:基因治疗是新兴技术,获批上市的产品为数尚少,不像传统的小分子与大分子药,没有大范围的可遵循的IND、BLA(NDA)、CMC固定行业标准,所以企业与监管机构的有效沟通显得格外重要。一款优秀的基因治疗产品,从科学到临床的几个要素第一个要素是致病基因。比如DMD,序列改造很重要,将改造后的序列装进容量有限的AAV里面做成药,是几乎所有基因治疗产品都要面对的首要核心话题 又譬如血友病A,删除B Domain,如何保留序列、如何引入外源序列、增强分泌,亦是一个核心的science话题。所以,在第一个层面上的设计,将会很大程度上影响后续的研发与推进;第二个要素是基因表达的系统。病毒的瞬时作用元件,首要是启动子,天然抑或是人工改造的启动子,在基因药物的设计中非常重要,不同的启动子;还有在表观遗传学里面,增强子起到至关重要的调控作用;第三个要素是基因载体。以AAV为例:复制的起点、包装的信号、末端的序列,AAV的自身天然序列ITR,外壳蛋白的CAP序列 第四个要素是基因导入系统。转入到特定的组织细胞里面,AAV不同血清型、突变型、人工改造型,决定了基因药物的有效性、副作用;优化AAV的设计,使其具备更好的组织靶向性、器官靶向性,将会有效的降低剂量、降低毒副作用;第五个要素是在临床用药的实施。不同的给药方式,如静脉、肌肉、鞘内注射、玻璃体/脉络膜上腔注射的具体选择,对于不同的产品、患者群体、以及不同的适应症,是一个非常重要的课题,Zolgensma在国外是静脉注射,在国内报批的临床是鞘内注射(2022年6月开启,北大一院儿科熊晖教授)。核酸序列设计针对翻译后蛋白合成过程进行优化,特异性启动子,蛋白折叠、适量表达等多种因素;启动子效果不能太强、也不能太弱,根据具体的治疗蛋白需求,设计恰到平衡的启动子是关键之一;针对蛋白质分泌过程进行优化,增加目标蛋白向血液中的分泌效率(外泌率)、提高目标蛋白的活性 譬如,如何让肝脏细胞把蛋白快速分泌到血液循环中,真正起到治疗效果;如果生产的蛋白不能正确的折叠、不能有效的分泌出细胞膜,而是“憋”在细胞里面,就会造成毒性。上述两点使得治疗效果得以改善,同时可以降低治疗剂量,这对于基因治疗是关键制约因素之一。序列设计往往在过分强调载体优化的大背景下被忽略。从投资的角度而言,或许是一个差异化的机会。图片来源:网络递送载体现有基因治疗载体的核心话题是基因到达靶细胞的效率,理想状态下只要能把基因递送到指定的细胞上,许多疾病基本可以治疗,但实现起来有诸多困难。比如,肝脏疾病只有40%的传递效率,眼科疾病20-40%,脑科疾病甚至低于10%(由于血脑屏障);理想的基因治疗载体特性:1)具有靶向特异性,能靶向特定的器官、组织、细胞,且可以高效转导、长期稳定表达转基因;2)有足够的空间来容纳和递送大片段的治疗基因;3)具有高转导效率,能感染分裂和非分裂的细胞;4)缺乏自动复制载体自身的能力,具有较低的免疫原性的或致病性,不会引起炎症;5)高度稳定、易制备、可浓缩和纯化,具备大规模生产的能力。其中:对于靶细胞的转染效率与安全性(毒性)直接相关,因为较高的转染效率意味着较低的使用剂量,直接降低了细胞毒性,最典型的就是肝毒性。图片来源:Nature Reviews Drug Discovery载体的分类非病毒载体:主要有裸露的DNA、质粒、脂质体、微球粒,以及内源性的物质如外泌体、红细胞及囊泡、血小板。该类载体具有低免疫原性、可以多次给药等优点,但目前工程化、量产化的CMC、纯化等工艺问题还存在不少瓶颈;病毒载体:包括腺相关病毒(AAV)、慢病毒(LV)、腺病毒(AdV)和逆转录病毒(RV)等,相比于腺病毒和逆转录病毒来说,腺相关病毒(AAV)与慢病毒载体(LV)安全性较好,两者所占临床试验的比例近年来也在逐步增加,其中AAV载体已经成为基因治疗的首选载体;当前大部分CGT治疗项目为病毒载体,使用非病毒载体的项目大约仅占项目总数的28.3%。几种载体的对比资料来源:倚锋资本团队整理基因治疗的首选载体:AAV - 自然进化的礼物腺相关病毒(adeno-associatedvirus,AAV)是一种大小约为26nm,只包含一条单链线状DNA基因和蛋白质衣壳的无包膜病毒,最早在恒河猴肾细胞的培养物中首次发现;AAV是目前发现的一类结构最简单的单链DNA缺陷型病毒,所以无自主复制能力,需要与辅助病毒(腺病毒或疱疹病毒)进行共感染以便复制,需要辅助病毒(通常为腺病毒)参与复制。目前的科学界共识是AAV不会导致任何人类疾病,大多数成年人都感染过AAV病毒,但尚未发现该病毒是任何疾病的致病因素。图片来源:Semantic Scholar作为基因疗法载体的重组腺相关病毒(rAAV)携带的蛋白衣壳与野生型AAV几乎完全相同,然而衣壳内的基因组中编码病毒蛋白的部分被删除,取而代之的是治疗性转基因(transgene)。AAV基因组中唯一被保留的部分是ITRs,它起到指导基因组的复制和病毒载体组装的作用。将编码病毒蛋白的部分完全删除的优点是:一方面可以最大化重组AAV携带转基因的容量,另一方面减小体内递送转基因时产生的免疫原性和细胞毒性。AAV作用机制重组AAV颗粒通过与宿主细胞表面表达的糖化受体相结合,通过网格蛋白(clathrin)介导的内吞作用进入细胞。在内吞形成的内体(endosome)酸化之后,病毒衣壳的VP1/VP2部分构象发生变化,导致病毒从内体中脱离,并且通过核孔进入细胞核。进入细胞核后,单链DNA从衣壳中释放出来。这时单链DNA还不能进行转录,它们需要变成双链DNA。单链DNA可以利用宿主细胞的DNA聚合酶来 合成互补链,或者两条从不同AAV颗粒中释放的互补链退火(annealing)形成双链DNA。双链形式的AAV基因组然后利用ITRs进行分子内或分子间基因组重组,这一过程让AAV基因组成为稳定的游离DNA(episomal DNA),导致基因组能够在不再进行有丝分裂的细胞中持续进行基因表达。图片来源:Nature Reviews Drug DiscoveryAAV血清型的靶向性目前已发现12种AAV血清型和100多种突变体,不同血清型的区别在于衣壳蛋白,因此导致不同血清型AAV对各组织或细胞感染效率不同(靶向性)。多数基因疗法的靶向组织是肝脏、横纹肌和中枢神经系统,几乎所有天然AAV能够在肝脏中转染,因此重组AAV为靶向肝脏提供了优良的基因递送平台,包括A型和B型血友病、家族性高胆固醇血症等疾病。AAV8和AAV9衣壳蛋白能够靶向身体中的多种肌肉类型,这让AAV介导的基因疗法能够用于治疗多种肌肉疾病,其中包括杜氏肌营养不良症(DMD)。值得一提的是,肌肉可以作为生成治疗性分子的“体内工厂”,因此靶向肌肉组织的基因疗法可以用于治疗非肌肉疾病。AAV递送的另一个重要方向是中枢神经系统(CNS),包括眼睛和大脑。眼睛是一个相对隔离的环境,直接进行眼内注射递 送AAV基因疗法能够达到治疗多种遗传性眼病的效果。Spark公司开发的获批疗法Luxturna就是治疗由于RPE65基因突变而导致失明的患者。资料来源:NatureReviews Drug DiscoveryAAV载体面临的一些问题预存免疫(pre-existing anti-AAV antibody):据传染病学统计,40-80%的人体内携带针对AAV的抗体。这可能导致AAV作为基因疗法载体在未递送转基因时就被免疫系统摧毁,降低转基因的表达水平。解决策略包括使用从非人灵长类中分离的AAV衣壳,AAV载体的理性设计与定向进化。提高AAV载体对于组织的特异性:几乎所有天然AAV衣壳蛋白能够在肝脏中引发有效的转基因表达;AAV8和AAV9衣壳蛋白能够靶向身体中的多种肌肉类型;AAV9和AAVrh.10能够穿越血脑屏障。通过载体设计优化得到更多组织特异性更佳的AAV载体也是当前的方向。装载容量的问题:AAV载体的容量只有约4.7kb,对于很多较大的基因,需要选择其截断的有功能的区域,如递送凝血八因子FVIII时去除了其B-domain,递送DMD基因时,选择了micro-DMD基因。核心解决策略在于优化治疗基因序列的设计。图片来源:Nature Reviews Drug DiscoveryAAV基因治疗的发展现状2016-2019年临床以AAV为载体的基因治疗试验数量增长迅猛,从不足10个增加到了接近45个 临床试验中所用最多的是基于AAV2血清型载体,但是新的血清型如AAV8、AAV9、AAV10也在不断被用于临床试验 以AAV为载体的基因治疗主要靶向眼、肝、肌肉和脑部,其中尤以靶向眼部疾病的临床试验数量为多,大多进行I/II期临床试验。图片来源:NatureReviews Drug Discovery基因治疗的适应症主要包括:眼部疾病、血液疾病、神经退行性疾病以及其它遗传类疾病。目前全球已发现7000多种已确定的罕见病,超过80%的罕见病具有已知的单基因致病机理。从基因治疗MOA的角度而言,最佳的适应症范围即为单基因致病机理的遗传疾病。比如,眼科适应症在基因治疗中具有以下优势:1)相对的免疫豁免;2)两只眼睛,其中一只可以做control;3)相对安全;4)AAV的用量相对较少;5)20%的遗传疾病都发生在眼睛上,可选择疾病种类较多。基因治疗的获批上市产品体内基因治疗获批三款:Glybera(已退市,UniQure)、Luxturna(Spark)、Zolgensma(诺华)资料来源:兴业证券研究所Spark,Luxturna,FDA首款2017年12月,FDA批准了Spark公司的Luxturna上市,用于治疗双等位RPE65基因突变导致的II型先天性黑蒙症 (LCA,Leber’s congenital amaurosis),Luxturna是FDA历史上第一个基因治疗药物。已有研究发现了19个与LCA相关的致病基因,其中由RPE65基因突变导致的LCA称为LCA II型,约占LCA的16%。RPE65基因突变导致RPE65蛋白失去异构酶活性,从而造成光感受器细胞不能对光发生反应,最终导致视力丧失。Luxturna采用了AAV2载体,递送RPE65基因,直接注射到视网膜色素上皮(RPE)细胞中。在患者细胞表达RPE65蛋白后,细胞内的视黄醛循环得以继续,从而渐渐获得感光的视觉能力。图片来源:Spark公司官网;网络罗氏在2019年12月完成了48亿美元收购企业Spark Therapeutics的交易,包括已上市的罕见眼科疾病药物Luxturna和处于III期阶段的B型血友病疗法SPK-9001等。Luxturna每只眼睛定价42.5万美元,双眼治疗价格在85万美元(眼科基因疗法的独特优势是:可以选择单眼治疗,也可选择双眼治疗)。其2018年共销售了75份,销售额达2700万美元。从Spark Therapeutics公司公布的III期临床试验数据来看,在接受治疗的29名患者中有27名患者的规力得到了显著改善,有效率高达93.1%,随访1年后,仍有21名患者保持良好的治疗效果。Leber氏先天性黑蒙症(LCA)是一组遗传性视网膜变性疾病,由至少18个不同基因的突变引起。它是儿童遗传性失明的最常见原因,10万名儿童中会有3人受到影响。该疾病一般出现在儿童时期,并导致严重的视力丧失和潜在的失明。LCA最常见形式为LCA10,约占所有患者的20%-30%,目前没有可用的治疗选择。全球首个上市的眼科基因疗法Luxturna的方法在LCA10患者中是不可能的,因为导致该病的突变基因太大,无法放入用作运送工具的灭活病毒中。目前正在临床中的做法是采用Crispr基因编辑策略。诺华,Zolgensma2019年,FDA批准了诺华公司研发的AAV基因疗法Zolgensma,用于治疗2岁以下患有存活运动神经元1(SMN1)等位突变导致的脊髓性肌萎缩症(SMA)的儿童患者。Zolgensma采用了AAV9载体,能够透过血脑屏障,将SMN1基因递送到中枢神经系统从而发挥功能。资料来源:FDA官网基因治疗的差异化投资方向1.病毒载体向非病毒载体的过渡,如LNP,特别是人体内源性物质如外泌体、红细胞及囊泡、血小板;未来的大方向是低免疫原性、可重复给药;2.序列设计的持续优化、差异化,从biology的角度降低AAV剂量;3.小分子诱导、转录因子based目标序列表达开关,即带有signal on/off机制的基因治疗;4.AAV的器官靶向优化,降低空壳率,进而降低AAV剂量与毒性;5.从罕见病向常见病的拓展,譬如眼内表达抗VEGF的蛋白(脉络膜上腔注射);6.明确的MOA(science),尚待改进的技术手段(technology)。
  • 赛默飞与锦斯生物签署战略合作,共建基因治疗联合基地推动行业发展
    2019年5月15日,上海——今日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与上海锦斯生物技术有限公司(以下简称:锦斯生物)签署了战略合作协议。根据此次协议,双方将在上海张江科学城(上海国际医学园区)共建基因治疗联合基地,依托赛默飞在细胞和基因治疗领域的产品、技术以及一体化服务的优势,共同推动基因治疗在中国的产业化及商业化发展。近年来,伴随着病毒载体安全性和有效性的不断提升、基因编辑等新技术的崛起,基因治疗热度渐升。2017年,两款CAR-T产品的问世更是让基因治疗在全球迎来了新一轮的高潮。然而在快速发展的同时,基因治疗目前仍然面临从小规模实验室研发到大规模工业化生产的挑战。此次战略合作,赛默飞将为锦斯生物提供全方位的病毒载体产业化技术产品支持,从实验室开发到大规模GMP生产,为锦斯生物GMP 生产基地配置赛默飞基因治疗集成式解决方案。通过配备赛默飞先进技术的一次性生物反应器、细胞培养和药物检测分析平台,到实验室设备仪器和配套试剂耗材,全面帮助锦斯生物在中国建立符合全球标准的病毒载体大规模制造和服务平台。此外,赛默飞还将为锦斯生物带来运营系统优化等一系列商业解决方案,帮助其打造精益运营体系,从而有效提升锦斯生物各个部门的流程效率和资产利用率、降低采购库存成本,实现产能优化以及物料补给优化。此次双方还将依托于共同建立的“基因治疗联合基地”,打通产业链上下游的沟通渠道,积极促进行业内的技术交流以及合作,共同探索符合中国和国际法规的创新性生产工艺流程,进一步推动基因治疗的本土研发和创新,加速中国基因治疗的产业化和商业化进程。“大规模工业化生产有助于基因治疗这样的新兴医学技术真正普惠大众。” 赛默飞中国区总裁艾礼德(Tony Acciarito)先生表示:“从研发到生产,赛默飞专注于基因治疗的每一个环节。秉持着‘扎根中国,服务中国’的发展战略,我们期待与锦斯生物的‘强强联手’,通过提供创新技术和集成式解决方案,推动基因治疗在中国的商业化进程,助力建设‘健康中国’。”锦斯生物公共事务总监张华先生指出:“此次非常荣幸与赛默飞达成战略合作,双方在基因治疗和细胞治疗领域有着共同的愿景和一致的合作愿望。锦斯生物具有深厚的病毒载体研发和产业化能力的积累,借助赛默飞的生物制药工艺集成式解决方案,以及培养基优化和生物安全分析检测服务的经验,有助于共同应对病毒载体工艺开发过程中的各种挑战,缩短产品开发周期,加速国内基因治疗技术的产业化。”关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过240亿美元,在全球拥有约70,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了7个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com关于锦斯生物锦斯生物成立于2016年,是一家专注于研发生产溶瘤病毒和基因治疗产品的高科技生物医药企业,公司位于上海张江科学城(上海国际医学园区),核心技术团队在相关领域拥有二十多年国际领先的专业经验,建设了符合BSL-2及GMP要求的溶瘤病毒和基因治疗病毒载体研发生产平台,可同时进行多品种/多任务的病毒载体产品的中试工艺研发及生产,研发具有国际先进水平的创新产品,并拥有完全自主的知识产权。公司核心技术团队曾负责研发出世界第一个溶瘤病毒药物: 安柯瑞(重组人5型腺病毒注射液H101),并完成产业化生产。锦斯生物专注于包括腺病毒、单纯疱疹病毒、慢病毒等各种重组病毒载体的GMP中试生产及质量控制。可以为客户提供最为齐备的溶瘤病毒及基因治疗病毒载体的工艺研发生产及质控的CDMO服务,旨在通过高性价比、高效率的服务帮助客户缩短新药研发时间,降低研发成本。公司的使命是:为人类健康, 做最好的基因治疗产品。目前,已经有国内外的多家创新研发公司与锦斯生物合作,利用锦斯生物的技术平台研发生产用于临床试验的病毒载体产品。
  • 基因治疗血友病重大突破!10名患者临床治愈
    血友病作为一种遗传性出血性疾病,由于基因突变导致患者体内凝血因子VIII活性(FVIII:C,血友病A)或因子IX活性(FIX:C,血友病B)显著降低,而产生终生自发出血倾向,关节肌肉反复出血最终导致患者终生残疾。血友病的临床标准治疗方式为凝血因子替代治疗,但需终生治疗,给患者、家庭以及社会带来沉重的经济负担。因此,如何治愈该疾病是世界科学家不懈追求的目标。目前,基因治疗成为治愈血友病的最前沿新技术。2022年5月19日,中国医学科学院血液病医院(中国医学科学院血液学研究所)张磊主任、杨仁池主任与华东理工大学肖啸教授团队合作开展的亚洲首个肝脏靶向腺相关病毒(AAV)血友病B基因治疗(clinicaltrial.gov:NCT041353000)研究成果——“Safety and activity of an engineered, liver-tropic adeno-associated viral vector expressing a hyperactive Padua factor IX administered with prophylactic glucocorticoids in patients with haemophilia B: a single-centre, single-arm, phase 1, pilot trial”,以FAST-TRACK Article(Original Research)发表于The Lancet Haematology期刊。该研究作为亚洲首个以肝脏靶向AAV为载体的血友病B基因治疗临床研究,纳入10例血友病B患者,通过一次静脉注射携带有凝血因子IX高活性突变体(FIX Padua)基因的AAV载体,实现患者的长期有效治疗。该研究证实,肝脏靶向AAV载体在中国患者中的安全性和有效性,使治愈“不可治愈的”血友病B从一种希望成为现实。基因治疗后一周内凝血因子水平变化新型载体拥有自主知识产权“工欲善其事必先利其器。”张磊介绍,治疗用载体为我国自主研发的腺相关病毒(AAV)载体,功能基因也做了高效能的优化。在基因治疗中,载体好比“货车”,新“货车”可以“精准定位”目的地,“跑偏”几率小。据介绍,治疗用载体由华东理工大学药学院肖啸教授团队研发、生产,并拥有知识产权。通过基因工程技术,肖啸团队开发出一种新型的AAV衣壳,让AAV具有了肝脏向性高的特点。“从临床上来讲,这种新型载体能让基因治疗适合更多的患者。”论文第一作者、血研所主任医师薛峰介绍,新载体选用的AAV血清型在人群中预先存在抗体的比例较其他一些野生型AAV低,可以理解为适合用这种载体治疗的患者更多。为了更进一步提高基因治疗效率,“货车”运送的基因也进行了优化设计。薛峰介绍,向肝细胞中递送的是可以表达高活性的因子IX突变体,这种被称为FIX Padua的高活性突变体,在与野生型FIX含量相同的情况下止血能力更佳。创新治疗策略能预防过度免疫基因治疗的“利器”研制好了,在临床治疗中能不能起作用呢?如果一切顺利,载体将基因递送到细胞核内后,基因将脱离载体成为环状DNA,肝细胞按照DNA中的“密码”生成凝血因子释放到血液中,提高患者体内的因子水平,达到治疗作用。但现实情况不会像想象地那样顺理成章。张磊解释,在以往的基因治疗临床研究中,部分患者会出现转氨酶升高、凝血因子上升后下降的情况,这是体内免疫系统对呈递病毒衣壳的肝细胞的免疫杀伤作用,导致肝细胞被破坏,疗效下降。“为了解决这个问题,我们创新治疗策略,在预防的同时提升了监测敏感度。”张磊解释,预防性使用糖皮质激素提前抑制患者的免疫反应,同时开展单细胞测序免疫监测研究,更敏感监测并适时应对出现的免疫增强反应。经临床试验注册后,研究团队对10名血友病患者开展了治疗,并进行了平均58周的随访。研究显示,患者的凝血因子水平从治疗前的2%以下提升到平均36.93%。“在临床上,凝血因子活性大于20%—30%时,患者基本上可以没有任何自发性出血,一般损伤后出血也不会过多,已经可以像正常人一样生活,一般不需要接受凝血因子替代治疗,这种我们也称之为临床治愈。”张磊说。继2012年首个基于AAV的基因治疗药物在欧洲获批上市以来,单基因缺失造成的遗传性疾病有了治愈的可能,科学家们已对包括血友病在内的多种疾病开启基因治疗临床研究。但在研发的过程中,由于受制于基因工具的自主性、有效性、优化平台等多方面因素,截至目前,血友病的高水平治疗技术仍由部分发达国家的医疗机构掌握。研究结果显示,该研究治疗效果达到国际水平,使我国具备了高水平基因治疗血友病的能力。
  • 基因领域2018盘点:融资69亿,基因治疗浪潮即将来袭...
    p style=" text-indent: 2em " 2018年,全球都在经历一场艰难的资本寒冬。募资难、融资难、估值缩水,这是许多投资人和创业者最深的体会。但尽管在这样艰难的岁月,基因领域依然创下了约9.86亿美元的高融资额,与2017年10亿美元相比基本持平。 /p p   这一年里,NMPA批准了首款基于NGS的肿瘤检测试剂盒,燃石医学喜提中国“肿瘤NGS第一证” 这一年里,消费级基因测序价格再度降低,消费级产品迎来“2字头”时代 这一年,基因治疗引起投资热潮....... /p p   按照旧例,动脉网结合2018年基因行业的投融数据、大事件、政策对行业做出盘点,不同的是,2018年我们加入了部分国外数据。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 1、融资总额69亿人民币,与去年基本持平 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cd4f02c7-46d1-4f89-8595-9333eb175e69.jpg" title=" 01.png" alt=" 01.png" / /p p style=" text-align: left text-indent: 2em " span style=" text-indent: 2em " 2018年,基因领域融资总额约9.86亿美元,与2017年相比基本持平。在这53家获得融资的企业中,平均融资额2404.04万美元。在资本寒冬中,投资机构募资相对困难,他们更谨慎的把资金投向了行业内技术领先、发展更为稳定的企业。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2bb42c35-419c-48aa-9ea8-e50c185d58ee.jpg" title=" 02.png" alt=" 02.png" / /p p style=" text-align: center" /p p style=" text-indent: 2em " span style=" color: rgb(127, 127, 127) " 备注:凡数百万按300万计算、数千万按3000万计算、数亿按1亿计算,下同 /span /p p   从数据中可以发现,在资本投下的资金中,51.26%被B轮和C轮以后的企业拿走。这些企业已经进入发展的中后期,相对稳定。当然,这些企业价值不菲。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4fb7a51e-d507-4880-b50a-6fdc783a38bd.jpg" title=" 03.png" alt=" 03.png" / /p p   这些企业占据亿元级别以上融资的大部分。当然,也有少数在A轮和A+轮的公司获得较大额度的融资,即便是在资本寒冬,好的技术依然值得买单。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/73937da1-3bc0-4f74-984a-9aaa458e2344.jpg" title=" 04.png" alt=" 04.png" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2、13亿元并购交易,B、C轮后期融资居多 /span /strong /p p   在9.86亿美元的交易金额中,有超过13亿人民币来自并购交易。其中,云健康基因、OriGene先后被北方大陆、中源协和收购,交易金额分别为数亿人民币和12亿人民币。另外,无锡青兰生物也于2018年7月被华大基因收购,交易金额暂时未透露。 /p p   对于大多数创业公司而言,除了企业市场的发展,他们也需要考虑投资机构的退出渠道。在华大基因、贝瑞基因相继上市之后,自然也有不少企业开始谋划上市之路。但并不是所有的企业都会最终上市,对于一部分企业而言,被大公司收购是不错的选择。 /p p   2014、2015年是基因领域的创业潮,而今这些企业大部分都已经到了B轮、C轮等后期阶段。或许,这个行业即将迎来上市和并购的热潮。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 3、3家测序仪企业获得融资,国产设备正在奋力直追 /span /strong /p p   2018年国内有4家从事仪器设备研发制造的公司获得融资,3家涉及测序仪研发。梅丽纳米科技科技是国内鲜有的纳米孔测序仪制造商,他们用纳米孔检测不同种类的肿瘤相关生物标记物。 /p p   牛津纳米孔在2018年3月宣布在最新一轮融资中获得了1亿英镑(约1.39亿美元),参与本轮募资的投资机构包括新加坡政府投资公司(GIC)、建银国际(CCBI)、澳大利亚养老金管理机构HostPlus基金公司,以及部分现有股东。 /p p   SBB新一代测序平台研发创新公司Omniome在2018年7月获得了6000万美元的B轮融资,投资方包括德诚资本、高瓴资本集团、Lam Research Capital和Nan Fung Life Sciences。Omniome成立于2013年,其创始人Kandaswamy Vijayan博士离开Illumina后,希望能够开发出新一代的测序平台,提高测序进度、降低测序时间和成本。 /p p   无独有偶,在上游测序仪领域,国内外的融资差异也有点雷同。这些企业还相对稚嫩,研发还在中早期。而国外,2018年融资的测序仪企业有两家,且已经非常成熟。 /p p   这一年中,上游领域最轰动的时间应该要数illumina对Pacific Biosciences的收购。 /p p   Illumina是二代测序的巨头,后者则是三代测序仪领域极具代表性的企业。 /p p   Pacific Biosciences的三代测序平台以其独特的SMRT(Single Molecule Real Time)技术能够分析单个DNA分子,以高准确度对DNA中较长的片段进行解码。 /p p   这一场交易使得Illumina在短读(short-read)测序技术以外,Pacific Biosciences的长读(long-read)测序技术又一次使得它如虎添翼。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 4、NMPA 5个月批准4个证,NGS肿瘤检测将被推向临床 /span /strong /p p   2018年,国内液体活检企业融资金额为24.52亿人民币。与2017年创下的10亿美元记录相差甚远,部分原因可能是受资本寒冬影响 并且2017年多家公司已经完成了大额融资。 /p p   尽管如此,液体活检领域仍然是获得融资最多的企业,一共有13家。 /p p   免疫治疗伴随诊断成热点 /p p   受到PD-1\PD-L1药物进入中国市场的影响,液体活检领域掀起了一股免疫治疗伴随检测的潮流。和瑞基因、仁东医学、臻和科技、裕策生物等一众企业都相继推出了免疫诊断产品。在2018年厦门的CSCO上,免疫治疗以及其伴随诊断已经成为一股潮流,不谈免疫似乎就out了。 /p p   Opdivo和Keytruda相继进入中国市场,意味着我国真正进入肿瘤免疫治疗时代。但众所周知,免疫抑制剂的应答率只有20%-30%,如果盲目用药,除了给患者造成经济压力以外,还有可能延误病情。 /p p   “现在国内的情况是,药物上市了,伴随诊断产品还没有。”一位创业者这样形容。 /p p   燃石医学喜提中国“肿瘤NGS第一证” /p p   不仅仅是免疫伴随诊断的液体活检产品,现在国内还没有任何一款基于液体活检产品获得批准。不过,从2018年的7月份起,NMPA 5个月批准4款肿瘤NGS试剂盒,给了行业很大的鼓舞和信心。 /p p   7月23日,国家药监局批准燃石医学“人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)”上市,成为我国首个获批的肿瘤NGS基因检测试剂盒,随后在接下来5个月内陆续批准了来自诺禾致源、世和基因和艾德生物的肿瘤NGS基因检测试剂盒。 /p p   这标志着NMPA对基于NGS的肿瘤基因检测产品正式打开闸门,尽管目前获批的都是小Panel产品,但审批速度高提升,也将极大的推广NGS肿瘤检测产品在临床的应用。 /p p   和瑞基因启动大规模前瞻性研究,GRAIL分享了CCGA研究的最新结果 /p p   液体活检的另一个应用研究方向便是肿瘤早筛,即在血液、外泌体中检测微量的ctDNA和CTC,在肿瘤早期的时候发现其踪迹。 /p p   甲基化测序技术一直被视为最有望实现癌症早筛的技术,鹍远基因创始人张鹍与高远共同开发了第一个大规模DNA甲基化靶向测序技术,该文章成为Nature Biotechnology封面文章。 /p p   在2016 Nature Biotechnology 刊登全球甲基化测序多中心比较文章中,张鹍甲基化测序技术综合排名第一。因此,鹍远基因也一直被视为国内、乃至国外肿瘤早筛玩家中的佼佼者。 /p p   鹍远基因在2018年3月完成了6000万美元的A+轮融资,投资方包括九州通、先锋医疗、松禾资本、礼来亚洲基金、景旭创投等专业投资机构和产业投资者。 /p p   优迅医学搭建了国内唯一的ctDNA& amp CTC液体活检双平台,同一管血即可完成ctDNA和CTC两项检测。基于这一平台,优迅医学可以实现“早期筛查诊断+个体化治疗指导+全程动态监控”的癌症精准诊断全业务线模式。 /p p   基于低深度WGS,优迅医学建立了一种低成本、泛癌种的CCeS三维泛肿瘤早筛分型方法。据透露,目前公司I期临床试验的数据已经证明使用低深度WGS进行肿瘤筛查的优越性和可行性。该技术已经申请国内和国际专利保护。 /p p   2017年末,贝瑞基因将原有的肿瘤事业部独立成立了和瑞基因。这家公司在2017年的11月获得了总计8亿元的投资。依托贝瑞基因的产业资源和知识产权,和瑞基因以极高的起点迅速成为肿瘤领域的种子选手。 /p p   2018年4月,和瑞基因投入1亿元人民币,并联合国家肝癌科学中心发起前瞻性万人队列项目。这是目前国内正在开展的最大的肝癌前瞻性队列研究项目,标志着中国肝癌防控开创性地进入到极早期防控和临床验证的阶段。 /p p   “离开了超大规模前瞻性队列研究,肿瘤早诊早筛就无从谈起。”国家肝癌科学中心的陈磊教授曾这样解释。 /p p   在发起大规模前瞻性研究之前,和瑞基因早就启动了前一步的先导性研究项目PreCar,项目招收了1500名志愿者入组,其中有500余名肝癌患者(HCC)、超过1000名非肿瘤高危/健康人群。 /p p   2018年9月,和瑞基因在CSCO大会上公布了先导试验的成果。数据显示,在特异性95%的情况下,肝癌检测灵敏度超过了90% 即使把特异性标准设置在99%,灵敏度也达到了87%。 /p p   另外,除了和瑞基因,美国的肿瘤早筛公司GRAIL也在前两年启动了两个大规模临床研究实验,分别是CCGA和STRIVE。GRAIL在4月份的AACR上公布了一项初步结果,通过对三种原型检测方法的试验数据进行分析,GRAIL研究团队证明,开发一种多癌种且具有99%以上特异性的早期癌症血液检测方法是可行的。 /p p   同年6月的ASCO上,GRAIL分享了CCGA研究的最新结果目前的这项研究针对127名肺癌患者,采用三种检测手段以实现癌症的早期筛查。这三种检测手段包括:靶向测序检测体细胞突变,如单核苷酸变异和小片段序列的插入和/或删除 全基因组测序(WGS)检测体细胞基因拷贝数的变化 全基因组亚硫酸氢盐测序(WGBS)用于检测异常的cfDNA甲基化模式(表观遗传变化)。 /p p   结果表明,在早期(I-IIIA期)肺癌患者中,检测率为38%~51%(98%特异性) 在晚期肺癌(IIIB-IV期)患者中,检测率为87%~89%,具体如下表所示: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d5e87da1-4026-4927-951a-35dfac151348.jpg" title=" 05.png" alt=" 05.png" / /p p   基于NGS的早筛产品离临床还有一段距离,但基于PCR检测技术却率先迈出了这一步。2018年11月,康立明自主研发人类SDC2基因甲基化检测试剂盒(荧光PCR 法)(商品名:“长安心”)通过NMPA审查,正式拿到三类医疗器械注册证。 /p p   康立明对标美国的Exact Sciences ,是一家外泌物的肿瘤早筛公司。此次获得NMPA审批的是基于粪便DNA的结直肠癌筛查产品,癌种的筛查产品也正在开发中。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 5、消费基因,向下探索模式开启 /span /strong /p p   2018年也是消费基因发展的大年,客单价的降低使得用户群体呈现出翻倍增长。据23魔方透露,在产品价格降低到299元以后,23魔方的销量实现了近4倍增长。 /p p   这一年里,消费基因领域两家龙头企业23魔方、微基因均相继完成融资。在2017年完成A轮和B轮融资后,23魔方2018年再度完成B+和B3轮融资,募资总额1.62亿人民币。微基因于2018年1月完成了B轮融资,投资方包括华大基因、奇迹之光等,但投资金额尚未透露。 /p p   2018年成立的Genebox也获得了来自大参林(个人投资)3600万人民币的天使轮融资。其创始人李智曾在华平投资担任VP,在瑞银投资银行香港办公室担任副董事。 /p p   Genebox以年轻人为目标用户,侧重互联网营销。另外,大参林药房拥有3600家门店和2800万活跃用户,门店和会员体系也将成为其获客渠道之一。 /p p   从2018年各家企业的动作来看,向下沉淀是消费级基因检测领域未来的大趋势。 /p p   水母基因在2018年共计完成了两轮融资。水母基因区别于其他消费级基因公司的一点就是,公司始终在强调让数据为健康赋能、让数据为用户所用。在产品的开发上,水母基因所推崇的也不是单纯数量上的丰富,而是在产品内容上,给到用户恰到好处的服务。 /p p   2018年年初,水母基因跨界联合《中国国家地理》杂志推出国内首创的“中国姓氏基因图谱绘制计划”,以及“生命图志& #8482 ”产品,开启了中国人的寻根问祖之旅,追溯不同姓氏背后的家族变迁故事。 /p p   “中国和美国不同。美国是一个移民国家。而中国是一个以汉族为主的相对同质性国家,5000多年来我们的祖先一直扎根在这里,但经历了多次民族融合与人口迁徙,因此人口迁徙地图绘制更加困难。”水母基因首席科学家赵南表示,“同时,中国的历史也更加久远,上下5000年的族系变化,这些要考究起来也远比一个祖源迁徙更加复杂。” /p p   另外一款产品“生命教练”则在国内首创“应用基因为用户设计健康生活方式”的概念。除了个人基因组检测、国际前沿的肠道菌群检测、无创疾病早筛以外,水母基因还建立了一支囊括医学、运动、营养、遗传等多领域专业人才的“生命教练”团队,根据用户基因情况,为用户量身提供健康知识、健康课程,精准推荐最适合用户需求的产品和服务。 /p p   当然,除了产品上的打磨,这家位于产业链中游的公司也在积极需求上游的扩展。2018年11月,水母基因与赛默飞世尔联合宣布:双方达成“核心战略合作伙伴关系”,未来将在基因检测领域进行广泛深入的合作。 /p p   此次的合作标志着双方关系进入了一个全新的阶段,除了引进赛默飞世尔全套基因芯片分析系统,水母基因也将引进Ion GeneStudio& #8482 S5 Plus 二代测序平台技术。 /p p   水母基因将基于此进行国产化,在国内研发、生产,面向各医疗机构临床检测中心推出该国产化设备,进行临床微生物方向的体外诊断,将基因检测数据与临床数据融合,从而更加全面的反映被检测者的健康状态。 /p p   不仅如此,独角兽企业碳云智能也在进行类似的探索。2018年7月,碳云智能和中粮营养健康研究院签署战略合作协议,携手在动态血糖管理研究及其相关应用领域进行合作。 /p p   随后,公司还和大成食品的全资子公司签署协议,双方成立了新的合资公司Better me,将依托碳云智能的技术支持,以生物科技和人工智能为基础,针对消费者对精准营养的需求定制核心检测指标并进行检测,进而输出与消费者个体情况相匹配的营养分析报告,并提供定制化的餐饮解决方案。 /p p   Better Me将依托碳云智能的技术支持,大成食品在原料采购、产品研发、供应链管理和完整销售渠道的全产业链优势,将精准营养餐饮解决方案转换为食品,并进行线上线下市场推广,从而形成产业闭环。 /p p   除了碳云智能,与中粮集团互动的还有微基因。最早,与霍尼韦尔口罩互动营销活动使得微基因获得了新的思路。在这之后,除了学习互联网公司卖起了月饼,微基因更大的向下探索是与中粮集团联合推出的基因定制轻体方案。 /p p   中粮集团引入哈佛、剑桥大学前沿营养学、联合CDC营养所等国内外知名院所专家,建立16个维度肥胖因素模型,进行多维度测评,并参考WeGene基因检测数据,为用户量身定制14天专属轻体方案。 /p p   整体方案中,除了包括微基因的测序产品、中粮集团出品的代餐组合以外,还包含了1对1的私人营养师服务。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 6、基因治疗浪潮即将来袭,筹谋抢占先机 /span /strong /p p   2017年12月,基因治疗领域的领头羊Spark Therapeutics的创新基因疗法Luxturna(voretigene neparvovec-rzyl)获得美国FDA批准上市,主要用于治疗患有特定遗传性眼疾的成人患者和儿童。这是首款在美国获批的靶向特定基因突变的“直接给药型”基因疗法,也是如此2018年被视为基因治疗元年。 /p p   从国外融资数据来看,基因治疗、基因编辑相当火热。我们统计的29家获得融资的企业中,有13家正在从事基因治疗业务,同时还有5家提供基因编辑服务。相比之下,2017年融资频发的液体活检领域仅7家企业获得融资。 /p p   在液体活检领域,Fondation Medicine早年便成功上市,并在2018年被罗氏收购 明星企业Guardant Health在2017年纳斯达克上市 GRAIL宣布C轮融资时,也曾一度传出上市消息。 /p p   简单来说,以美国为主的国外液体活检企业基本都已经进入发展后期,上市和并购热潮已经开启,融资频率相对较低 而基因治疗才是当下热门领域。 /p p   但在国内,液体活检仍然在融资事件中占据领导地位,基因编辑和基因治疗融资企业分别是5家和2家。 /p p   尽管如此,国内也还是涌现出了一批优秀的企业。美国eGenesis的原班人马(杨璐菡、George Church)于2017年在杭州创立了启函生物。这家公司与eGenesis为姊妹公司,团队希望建立新型的中美同步研发,互通有无的创业创新模式。 /p p   启函生物在7月份宣布A轮融资780万美元,由红杉资本中国基金领投,Arch Venture、北极光创投、 树兰医疗资本、Biomatics Capital Partners、Alta Partner等参与融资。接下来,启函生物将加快建立其基因修改平台,以推动异种器官移植的研发。 /p p   魏文胜于2015年创立了博雅辑因。除了是北京大学研究员,他还是遗传学会基因编辑分会副主任、CDE药品注册评审专家委员会专家。 /p p   经过三年的成长发展,博雅辑因已经围绕基因编辑技术、T细胞及干细胞工艺、以及高通量遗传筛选等平台积累了十余项专利技术,并获得了国家高新技术企业认证和中国专利优秀奖。2017年,博雅辑因又被生物技术顶级期刊Nature Biotechnology列为十家受资本青睐的技术密集型初创企业之一。值得一提的是,他们是其中唯一一家亚洲公司。 /p p   博雅辑因于2018年8月完成了亿元规模的Pre-B轮,参与的投资机构包括礼来亚洲、IDG资本、华盖资本等。 /p p   尽管在各个领域都会有结合本体情况的创新模式,但技术趋势仍然是由国外在引领。总体看来,国内基因领域在发展趋势上,仍然处于Follow阶段。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 7、华大环形投资,贝瑞纵向布局,二级市场不同的资本打法 /span /strong /p p   华大基因和贝瑞基因是目前唯一两家上市的NGS技术企业,在登陆资本市场之后,他们开始用资本手段进行产业布局。不过,两家的风格呈现巨大差异。 /p p   2018年,华大参与投资了4家企业,分别是菁良基因、GeneDock、裕策生物、WeGene。这几家公司中,裕策生物、WeGene创始团队均来自华大,GeneDock早在2017年便与华大建立了深厚的合作关系,而菁良基因本身也是华大集团旗下蓝色彩虹双创中心企业。 /p p   华大投资的这几家企业,涉及业务包括试剂耗材、液体活检、消费基因、和基因大数据。这些公司的业务范围基本围绕华大基因本身业务,呈现出环状布局。 /p p   贝瑞基因在2018年投资的只有一家公司——信念医药,这是一家从事基因治疗研究的初创公司。再加上2017年底对Bionano、基因大数据产业园、和瑞基因的投资活动,其投资逻辑除了围绕自己业务以外,更重要的一点其实是在做纵向布局。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/ce93cee8-4258-43b9-af65-4e42f6073b59.jpg" title=" 06.png" alt=" 06.png" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 8、未来趋势:大鱼吃小鱼、基因治疗、多组学数据整合...... /span /strong /p p   2018全球生物领域最炙手可热的技术是什么,单克隆抗体、CAR-T、还是液体活检?从资本数据来看,基因编辑、基因治疗才是新风向。这一领域也汇集了诸多生物技术大牛。 /p p   张锋、Emmanuelle Charpentier、Geoger Church、Jennifer Doudna、David Liu等一众大神都创立了自己的商业化公司。在技术成熟之后,基因编辑技术开始走向科研到医疗的转化之路。这些应用主要包括遗传性疾病、罕见病的治疗,异种器官移植等。 /p p   商业化行为还是后,资本的态度也影响着行业的发展。从今年的投融数据来看,基因编辑、基因治疗备受关注。 /p p   张锋、David Liu以及J. Keith Joung三位CRISPR领域的“大神级人物”联合创办的新公司Beam Therapeutics是全球首家利用单碱基编辑技术开发精准基因药物的创新公司,A轮融资便获得了8700万美元。Precision BioScience也获得了1.1亿美元的B轮融资,并获得了吉利德、安进等产业投资者青睐。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/093504dd-e924-4325-96ed-72ce8f27420b.jpg" title=" 07.png" alt=" 07.png" / /p p   谷歌风投、ARCH Venture、高瓴资本、F-Prime Capital、IDG资本等一众明星机构都开始布局基因编辑技术。在国内,尽管液体活检技术仍然占据主流,但目前国内生物技术还处于follow阶段,美国前沿的趋势变化必然也将随后在国内出现。 /p p   另外一个趋势就是基因大数据相关的数据库搭建、以及分析管理工具企业或许会获得关注。未来医疗领域的核心竞争力来自两个方面,一是技术突破,二是数据。 /p p   贝瑞基因在2017年便投资逾28亿元建设基因大数据产业园 致力于运用精准医学大数据改善人类健康的药明明码在2017年融资2.4亿美元后,2018年再度完成2亿美元的C轮融资,淡马锡、云锋基金、红杉资本中国持续参与。 /p p   中游测序是国内发展最为成熟的环节,几乎所有的大公司都聚集在这里。在这里,最有可能出现下一个上市公司,但也可能最先出现大鱼吃小鱼的现象。 /p p   罗氏在2018年进行了两笔大的收购:2月宣布将以19亿美元收购纽约的健康公司Flatiron Health 6月又以34.4亿美元收购Foundation Medicine。 /p p   这两家公司中,Flatiron Health主要是系统化的收集全美国的肿瘤医疗中心和其他医疗机构中的癌症临床数据,并建立肿瘤数据分析模型 Foundation Medicine是一家在癌症诊疗领域处于领先的公司,致力于通过深度了解每名癌症患者体内的遗传变异。 /p p   不少业内专家指出,这些收购将进一步扩大罗氏在癌症精准医学中的布局。一手临床数据、一手分子诊断,罗氏通过对两个公司的收购补齐了自己在临床和分子诊断数据的布局。 /p p   亿万富翁Eric Lefkofsky 和Groupon公司共同创立的Tempus希望通过临床和分子检测数据的整合来改善癌症治疗,公司从全国各地的医院收集分子检测数据和临床数据,并在一个数据库中对两者进行分析,目的是提高癌症患者的治疗水平。这家公司在2018年完成了1.1亿美元的E轮融资,其估值已经到达独角兽级别。 /p p   多组学数据的整合已经在国外形成趋势,这样的趋势势必也想影响国内行业。但这个趋势到来的时间不会很短,但想必也不会太长。 /p
  • Digital WB在基因治疗眼科疾病动物模型中应用
    眼部疾病基因治疗仍面临很多挑战,评估疗法的安全性风险,验证有效性,更好地支持临床试验研究开展,需要开展系统性地非临床研究。在药理学、药代动力学和毒理学等非临床研究中,选择合适的动物模型来检测目的基因表达和相关的生物学活性非常重要。本文介绍了转基因目的蛋白表达检测技术,详细说明了新技术Digital WB在不同临床前动物模型上应用进展。 近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。眼睛作为免疫豁免器官,视网膜感光细胞和视网膜色素上皮细胞是几种遗传性视网膜疾病基因疗法的重要靶细胞。遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。作为基因治疗的理想候选者,2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。如治疗色盲的CNGA/CNGB,治疗无脉络膜症的CHM/REP1,治疗Leber 先天性黑蒙的RPE65,治疗X连锁视网膜色素变性(x-linked retinitis pigmentosa)的RPGR。 尽管眼睛对其他器官有相对优势,但眼部疾病基因治疗仍然具有挑战性如基因疗法生产、临床试验设计和长期安全性方面。需系统地开展非临床研究来评估安全性风险,验证有效性机制,以支持临床试验研究。在体内和体外模型中研究产品与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。小鼠动物模型案例1:Digital WB检测小鼠眼角膜内转基因蛋白和相关蛋白表达水平 先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED)是一种罕见的原发于角膜内皮的常染色体隐性遗传病,临床特征为出生时或生命早期出现双侧弥漫性角膜水肿和混浊。由于膜转运蛋白 SLC4A11功能丧失而导致内皮细胞凋亡。本研究采用124只小鼠,53只Slc4a11+/+作为对照,71只眼前房注射AAV9- Slc4a11和空AAV载体。 为了测定病毒转导效率,即AAV9-HA-Slc4a11 转导至 Slc4a11-/- (KO) 动物的角膜内皮细胞效率,AAV9-Slc4a11具有血凝素(Hemagglutinin,HA)标签,通过Digital WB检测HA标签表达水平来反应转导水平。结果显示年轻和年老动物组都实现了AAV载体转导的蛋白质表达,而且水平相当。 Slc4a11-/- (KO)小鼠眼角膜乳酸流出减少,导致乳酸在基质中累积,随着年龄增长而进展。乳酸转运蛋白MCT1、2和4在角膜内皮细胞中具有活性。采用Digital WB(WES Immunoassay)检测小鼠眼角膜内皮层细胞蛋白质表达,在年轻动物中,观察到MCT1和2蛋白质表达水平轻微上调,而MCT4表达显著增加。在年长动物中,乳酸转运蛋白表达升高,但水平改变不显著。 综合多角度研究,揭示了在年轻动物组,AAV9- Slc4a11将CHED表型如角膜水肿、内皮细胞丢失、线粒体氧化应激、乳酸转运蛋白表达和角膜乳酸浓度逆转恢复到正常野生型动物水平。年长动物没有逆转表型,但是仍能阻止疾病进展。这些都表明了采用基因治疗可能对CHED表型进行功能性挽救,更重要的进行早期干预治疗。 本研究充分证明了,在AAV基因治疗小鼠眼角膜样本中,Digital WB可利用微量眼角膜样本准确定量角膜内皮细胞中蛋白质表达水平变化。案例2:Digital WB用于AMD小鼠模型RPE和视网膜中小分子量蛋白质表达分析 自噬(Autophagy)在年龄相关性黄斑变性(AMD)疾病进展中起着重要作用。靶向自噬在具有早期AMD特征的小鼠模型中可减缓功能障碍。研究表明,针对增强自噬途径具有治疗早期 AMD 潜力。采用野生型小鼠(WT)和缺乏APEO(载脂蛋白E)小鼠进行对比研究,APOE对照小鼠的视网膜功能降低,与早期AMD表型一致,可作为AMD研究模型。实验设计是5个月时,在饮用水中加入二甲双胍(0.4 g/kg/天)或海藻糖(3 g/kg/天)给WT 和 APOE小鼠,而对照组只接受饮用水。13 个月时,对 (A-B) RPE 和 (C-D) 视网膜样本,采用Digital WB分析LC3B 表达水平,GAPDH作为上样对照。作为溶酶体自噬过程中标志物,LC3-II:LC3-I 比率动态变化可反应自噬过程中生成和降解的动态过程。结果揭示了APOE 小鼠的 LC3-II:LC3-I 比率较高,表明自噬减慢。但用海藻糖或二甲双胍治疗的 APOE 动物中,LC3-II:LC3-I 比例恢复到 WT 水平,增强了自噬作用。参考下图: 免疫组织化学实验结果也显示光感受器和视网膜色素上皮 (RPE) 中 MAP1LC3B/LC3(微管相关蛋白1轻链-3β)和 LAMP1(溶酶体相关膜蛋白 1)标记减少,这与增加的LC3-II:LC3-I 比率和多个自噬途径中蛋白质表达改变相关,表明自噬减慢。用二甲双胍或海藻糖处理 APOE 小鼠可改善视网膜功能丧失,增强眼组织中 LC3 和 LAMP1 表达,并将 LC3-II:LC3-I 比率恢复到 WT 水平。 通过Digital WB检测小鼠RPE和视网膜中LC3-II和LC3-I蛋白表达水平变化。LC3-II和LC3-I是小分子蛋白质,由于带电基团修饰,分子量大的LC3-II在电泳分离时,会留在更小分子量处。由于两个蛋白分子量差异仅有2kD,传统WB分析有技术难点,采用Digital WB可分析微量样本和小分子量蛋白质的优势,满足视网膜样本中小分子量膜蛋白质分析需求。非人灵长类动物模型案例1:美国AGTC公司利用Digital WB检测NHP体内转基因目的蛋白表达水平 干性年龄相关性黄斑变性(Dry age-related macular degeneration, dAMD)约占AMD病例的80%~90%,主要有玻璃体疣和视网膜色素上皮异常改变,疾病进展相对缓慢。dAMD致病机制尚未明确,可能与炎症、细胞退化与萎缩、氧化应激、脂质代谢障碍等多种因素相关,其治疗方案极其有限。目前临床阶段研发药物主要以靶向补体系统、氧化应激和炎症反应相关机制为主。近年研究发现,编码关键补体调节因子CFH(The Complement factor H)和CFI (The Complement factor I)的基因遗传突变与干性AMD的发生和发展密切相关,这些蛋白质天然调节补体系统以维持平衡。CFH编码蛋白质H因子是补体旁路激活途径中起重要作用的负调控因子,可调控降低炎症反应减缓dAMD发展。 美国AGTC公司采用新颖设计,将编码CFH的20个短重复序列缩减为18个,这个新型CFH变异体称为tCFH,已在小鼠模型上完成概念验证,并在体外实验中证明了其具有与野生型CFH相同生物活性。在非人类灵长类动物(NHP)上进一步研究体内活性,采用Digital WB检测NHP模型上RPE和视网膜的CFH和tCFH表达水平,采用AAV载体携带变异体基因可在体内实验中实现缩短补体因子表达,本项目已在准备IND申报中。 美国Spark therapeutics公司发表了AAV载体基因治疗庞贝病(PD)临床前小鼠和非人灵长类动物(NHP)最新研究成果(Nature Communication, 2021),采用Digital WB检测血浆中hGAA转基因蛋白表达。Digital WB技术可用于非人灵长类动物模型中样本检测,评估眼科疾病基因治疗项目中转基因目的蛋白质表达水平,评估疗效。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料
  • 普和希携众新品深耕生命科学,重点布局细胞基因治疗前沿领域
    “PHCbi作为生命科学领域久负盛名的设备供应商,一直致力于为科研工作者提供高精度、可靠的实验仪器。在中国生命科学行业深耕多年,PHCbi见证了中国生命科学研究的蓬勃发展。随着生命科学领域的不断进展,PHCbi将不再局限于传统的生命科学通用设备,致力于积极拓展业务版图,进军细胞基因治疗这一前沿领域。”上月,普和希健康医疗器械(上海)有限公司(以下简称:PHCbi)在上海举办了盛大的新产品与新战略发布会。发布会上,古地康总经理以其独到的前瞻视角,向我们描绘了PHCbi即将迈入细胞基因治疗(CGT)领域的战略布局,展现了公司对全球医疗科技趋势的精准洞察与坚定创新的决心。随后,高桥思宏营业部长以扎实的数据支撑和生动的实例展示,深入剖析了PHCbi在未来五年内的CGT产品规划蓝图,传达出公司对于在生命科学领域持续探索的信念,让与会者深切感受到了PHCbi推动行业进步,带动技术创新的强大动能。发布会上,PHCbi正式推出了其在CGT领域的里程碑式产品——活细胞代谢分析系统LiCellMo,这是进军细胞基因治疗领域的首款力作,标志着公司在细胞基因治疗领域迈出了坚实的一步。这款仪器实现了细胞代谢的实时、动态、可视化分析,填补了市场空白,为细胞基因治疗等前沿领域提供了强有力的研究工具。此外,PHCbi在生命科学通用设备领域也已深耕多年,构建起坚实的经验积累与技术基础。发布会上,PHCbi向与会者详尽展示了2024年已经面市和即将推出的系列新品,旨在为用户提供更加高效便捷,精准智能的使用体验。作为实验室设备领域的头部企业,PHCbi将以LiCellMo为起点,不断推出更高精度、高性能的产品,深入细胞基因治疗领域相关设备的研究,为生命科学研究和医疗保健领域的发展注入新的活力,为全球人类健康做出积极贡献。
  • 投入超过640亿,发展“基因治疗”高端技术
    p   八月26日,《深圳国家自主创新示范区建设实施方案》(以下简称“《方案》”)在政府公报中亮相。109项具体“任务”,分别涉及到增强自主创新能力、打造创新型产业集群、优化综合创新生态体系、统筹规划空间布局和优化创新发展环境等六个方面,描绘了深圳以“创新驱动”建设现代化国际化创新型城市的美好愿景。 /p p    strong 研发投入640亿元以上 /strong /p p   去年5月13日,获国务院正式批复,深圳成为我国首个以城市为基本单元的国家自主创新示范区。去年11月,在深圳建设国家自主创新示范区部际协调小组第一次会议上,《深圳国家自主创新示范区空间布局规划(2015-2020年)》正式出台实施。 /p p   国家自主创新示范区是先进创新区域的典型代表,是国家创新体系的重要组成部分。而深圳获此“殊荣”可谓当之无愧。2014年深圳全社会研发投入640亿元以上,新增国家、省、市级重点实验室、工程实验室等创新载体138家,累计达1093家,PCT国际专利申请量增长15%达1.15万件,已连续十一年位居首位。 /p p    strong 目标:国家级高新技术企业达万家 /strong /p p   方案指出,到2020年,率先形成符合创新驱动发展的体制机制,建成一批具有国际先进水平的重大科技基础设施,掌握一批事关国家竞争力的核心技术,推动建立一批产业标准联盟,聚集一批具有世界水平的科学家和研究团队,拥有一批世界知名的科研机构、高等院校和骨干企业。 /p p   全社会研发投入占GDP比重达到4.25%,高新技术产业产值达到2.5万亿元,国家级高新技术企业数量达到10000家。每万人拥有发明专利76件以上。 /p p    strong 创新:探索创新产品政府购买制 /strong /p p   在增强自主创新能力方面,《方案》给各相关部门列出了19项任务。未来将组织实施促进创客发展的若干措施和行动计划,办好“深圳国际创客周”,举办主题论坛、创客大赛、创客马拉松等系列活动。 /p p   深圳还将实施“科技创新券制度”,支持创新主体向企业、高等院校、科研机构、科技服务机构以及创客服务机构购买科技服务。同时,将建立创新调查和创新报告制度,构建公开透明的科研资源管理和项目评价机制。方案提出将围绕全市经济社会发展重大战略需求和政府购买实际需求,探索试行创新产品与服务远期约定政府购买制度。 /p p   值得一提的是,《方案》表示深圳还将探索建设互联网金融服务专区,开展互联网股权众筹试点,促进小额创业融资等业务。 /p p    strong 布局:将建开放式“众创空间” /strong /p p   目前,可用土地趋于极限,产业发展缺少空间导致了产业空间集聚度不高等问题。对此,《方案》称将加快低密度功能区及零星地块土地整备,支持旧工业区实施城市更新,推进传统产业转型升级,建设绿色低碳产业园区。同时,还将构建一批低成本、便利化、全要素、开放式的“众创空间”。 /p p    strong 民生实惠 将试点推广个体化治疗 /strong /p p   在民生领域,深圳市民们也能享受到国家自主创新示范区所带来的智慧成果。从基因中“精准”寻找并治疗疾病的“个体化治疗”未来将在深圳试点推广。《方案》表示,未来深圳将发展干细胞治疗、肿瘤免疫治疗、基因治疗等个体化治疗和第三方医学检测等领域的高端技术、新型服务、新兴业态,加快建设高端医疗技术公共服务平台,打造以个体化治疗技术为核心的国际高端医疗产业集群。 /p p   值得一提的是,《方案》透露深圳未来还将开展数字化医疗工程技术研究,发展以电子病历、区域医疗资源整合为核心的健康档案信息和医疗技术共享平台。重点推广基因检测技术在遗传病筛查、重大肿瘤疾病早期诊断、区域高发病监测等方面的应用。 /p p    strong “IT重镇”打造“农业硅谷” /strong /p p   作为国家自主创新示范区,农业用地仅10万亩的全国“IT重镇”深圳,在现代育种产业和金融领域有着明显发展优势。昨日的《方案》进一步彰显了深圳打造“农业硅谷”的决心。《方案》称,深圳未来将建设深圳国际生物谷、深圳国家生物产业基地核心区、现代农业生物育种创新示范区等,着力培育生物育种及海洋生物产业。 /p p   目前深圳以基因组学研究、转基因抗虫棉和超级杂交水稻为代表的部分农业生物技术研究和产业化已进入国际先进行列。 /p
  • Digital WB在基因治疗眼部疾病细胞和类器官模型中应用
    遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。在非临床研究和临床研究中,检测转基因目的蛋白表达是基因疗法开发的一个关键方面。 目前,有多种技术可实现目的蛋白表达定量检测包括配体结合法(Ligand binding assay,LBA)如酶联免疫吸附方法(ELISA)、液相色谱-质谱(LC-MS)、流式细胞术、蛋白质免疫印迹(Western Blot)和组织染色技术。每种技术都有各自优势和局限,如目的蛋白为分泌性表达,可采用ELISA方法检测细胞培养上清液或体液系统中目标蛋白含量;如目的蛋白不能分泌表达,可采用Western Blot或质谱方法;如需要检测细胞膜蛋白,可采用流式细胞术;如要确定蛋白质在细胞和组织内分布,可采用免疫荧光检测。 在体内和体外模型中研究基因治疗产物与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。眼部疾病细胞模型案例1:iPSC衍生视网膜色素上皮细胞(RPE)中低丰度大分子量蛋白质表达检测 从三名Stargardt病人皮肤活检样本产生多个iPS细胞系,这些患者都携带一个致病性ABCA4基因变异。采用RNA-Sep和Digital WB分析正常对照和患者细胞衍生的RPE。这个细胞模型与活检组织相比,可用于评估难以检测的非表达变异体,患者来源的细胞可能更密切地反映患者体内发生的剪接和编辑事件,可用于病人药物敏感性研究,指导临床试验。采用全自动Digital WB技术分析pABCA4蛋白质表达,制备了20 μg 总蛋白 dRPE 细胞匀浆,阳性和阴性对照分别是20 μg野生型和 ABCA4 敲除小鼠视网膜匀浆。参考下图,小鼠视网膜(Mouse ret)在野生型(WT)中pABCA4表达丰度很高,敲除(KO)小鼠没有表达。人类对照(NHDF)具有比WT小鼠视网膜更高表观分子量,同时有更高的表达丰度。与对照相比,所有患者细胞系(H、J和S)中均可检测到pABCA4 ,但这些低丰度pABCA4蛋白可能被降解,作为截短蛋白或降解产品形式存在(除S2外)。与mRNA表达谱结果一致,S2细胞系具有相对正常的pABCA4表达水平和修饰后成熟膜蛋白的分子量。本研究利用了Digital WB对低丰度和大分子量蛋白质分析检测能力。案例2:眼角膜内皮细胞信号通路中多重蛋白质表达检测 本研究采用人源和鼠源细胞,分别是敲低了SLC4A11表达水平的原代人角膜内皮细胞(primary human corneal endothelial cells, pHCEnC),即SLC4A11 (SLC4A11 KD pHCEnC);还有Slc4a11+/+和Slc4a11-/-鼠角膜内皮细胞系(murine corneal endothelial cells, MCEnC),即 Slc4a11-/- MCEnC和Slc4a11+/+ MCEnC。比较转录组学分析揭示了SLC4A11 KD pHCEnC和Slc4a11-/- MCEnC中细胞代谢和离子转运功能抑制以及线粒体功能障碍,导致ATP生产减少。AMPK-p53/ULK1通路激活也表明线粒体功能障碍和线粒体自噬。稳态 ATP 水平降低和随后 AMPK-p53 通路激活提供了代谢功能缺陷和转录组改变之间的联系,以及 ATP 不足以维持 Na+/K+-ATPase角膜内皮泵的证据,这是 SLC4A11 相关角膜内皮营养不良特征性水肿的原因。所以SLC4A11缺陷角膜内皮中分子作用导致内皮功能障碍,是先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED) 和Fuchs 角膜内皮营养不良的主要特征。 下图结果表明SLC4A11缺陷角膜内皮中AMPK-p53 通路激活,采用Digital WB检测信号通路中各蛋白质表达水平。图B说明与 scRNA pHCEnC 对照相比,SLC4A11 KD pHCEnC 中 p53 Ser15 磷酸化水平增加,表明p53转录翻译后激活。图C在Slc4a11-/- MCEnC晚期传代中观察到相似结果(p53 Ser18磷酸化增加,对应于人p53 Ser15)。图C和D结果表明在Slc4a11-/- MCEnC 早期和晚期传代中总 p53 水平增加,代表p53转录激活。进一步研究磷酸化和p53转录激活的激酶,根据报道AMPK介导 Ser15(小鼠中Ser18)磷酸化和p53转录激活,图B和C实验结果也说明AMPKα的Thr172磷酸化增加,AMPKβ1的Ser182磷酸化没有变化。图E和F,与 scRNA pHCEnC 相比,AMPK 另一种下游底物 Unc-51 样自噬激活激酶 1 (ULK1) 在SLC4A11 KD pHCEnC中磷酸化水平(Ser555)增加。综合这些结果表明,ATP水平下降导致AMPK及其下游底物p53 和 ULK1 激活,分别导致转录组改变和线粒体自噬增加。同样,鉴于 SLC4A11 在预防氧化损伤中的作用,SLC4A11 缺失导致线粒体 ROS 产生增加,随后线粒体功能障碍和线粒体自噬增加。此发病机制支持使用Slc4a11-/-小鼠作为SLC4A11相关角膜内皮营养不良的模型,评估各种治疗方法的转化潜力。 基于Digital WB技术的全自动蛋白质表达分析系统Jess可实现化学发光和荧光两种检测模式,是多重蛋白质表达分析有力工具。2022年,ProteinSimple发布了Stellar全自动双色荧光蛋白质表达检测方案,特别适合同步分析细胞信号通路磷酸化蛋白和总蛋白表达,将细胞信号通路研究工具带到一个新高度。iPSC衍生视网膜类器官模型案例1:Digital WB检测iPSC衍生的视网膜类器官中视紫红质表达含量 美国NIH研究人员利用成纤维细胞重编程获得诱导多能干细胞(iPSC),再分化产生视网膜类器官。通过转录组学分析,确定了视网膜类器官发育过程中调节信号,在体外生成了更成熟视网膜,可促进疾病建模和基因治疗研究。本研究采用Digital WB技术揭示了不同培养条件下类器官培养物种视紫红质(Rhodopsin)表达差异。下图结果表明,DHA处理的类器官在32天时视紫红质表达增加了30%,而亚油酸(LA)处理类器官视紫红质表达降低,这表明DHA处理的类器官中视紫红质表达增加不是脂肪酸添加带来的。案例2:AAV基因治疗的RetGC-GUCY2D视网膜类器官疾病模型 Leber先天性黑蒙可由多种不同突变基因导致包括RPE65、CEP29、GUCY2D和CRX等。其中Leber先天性黑蒙1型由GUCY2D基因突变导致,可导致严重视力损害或失明。GUCY2D基因正常拷贝编码了一种鸟苷酸环化酶(RetGC),其是感光器生理学中关键酶之一,视网膜中光敏杆状细胞和视锥细胞使用该酶将光转换为电化学信号。 英国MeiraGTx公司研究人员利用CRISPR/CAS9 技术生成 RetGC 敲除 (RetGC KO) 视网膜类器官,iPSC衍生视网膜类器官分化后,将RetGC KO 视网膜类器官与同一细胞系的野生型类器官进行对比研究。总共设计了四种 AAV 载体来测试RetGC 蛋白在光感受器中的恢复情况,所有载体采用AAV7递送。CMV 和视紫红质激酶 (RK) 两个启动子,并评估了WoodChuck肝炎病毒翻译后调控元件 (WPRE) 影响。采用Digital WB检测6组类器官中RetGC蛋白表达水平。实验结果揭示,与非转导样本组比,所有载体设计均以不同效率产生RetGC蛋白。加入WPRE似乎显示出效力降低趋势,通过其他量化指标验证了这个趋势。 Digital WB相比传统Western blot,只需要几十分之一样本量就可实现类器官等珍贵样本中蛋白质定量检测,而且重复性更高和速度更快,非常适合眼部疾病类器官模型的转基因目的蛋白及相关通路蛋白表达分析。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料参考文献:
  • 新药无止境,创新不落幕 | 新品助力基因治疗药物的表征
    新药无止境,创新不落幕 | 新品助力基因治疗药物的表征史俊霞★ 2020年12月11日,治疗高血脂的inclisiran在欧洲获批上市,不同于罕见病的治疗,而是用于治疗高血脂这类大众疾病的rna药物就格外耀眼了,新冠疫情的肆虐也使得mrna一举成名,未来基因治疗药物开发的潜力是无限的!“基因治疗药物关键考虑因素有哪些?寡核苷酸药物和以mrna为代表的核酸药物研发和生产过程中,如何快速高效表征?辅料的质控如何去做?自动化的smart digest rna酶如何助力质谱完成mrna序列测定?快快参与直播跟专家面对面交流吧!报名参会更有惊喜礼品相送! 扫描二维码免费报名学习 惊喜礼品 旅行茶具电热水杯塑料储存盒 报告详细介绍 automated workflow for mrnasequencing by high resolution lcms2021.10.21 下午4:00-下午5:00 mrna序列测定的挑战 得到正确的mrna序列的tips smart digest rnase t1 mag bulk 酶切mrna实例分享ken cook,ph.d.thermo fisher scientificeu biopharma expert dr. ken cook has 30 years of experience supporting liquid chromatography and mass .previously dr. cook was a lecturer in biochemistry at the university of newcastle-upon-tyne, uk where he focused on protein biochemistry液相色谱耗材技术在基因治疗和预防药物中的表征2021.10.21 下午5:00-下午6:00 基因治疗药物的概况和药物生产考虑的关键因素 核苷和寡核苷酸药物生产中色谱分析案例分享 核酸药物生产中色谱分析案例分享 药物载体的表征史俊霞赛默飞世尔科技中国有限公司高级产品专家 生物制药领域从业12年,擅长蛋白,抗体,多肽,核酸,疫苗等治疗性药物的表征。主要负责生物色谱柱,微升色谱柱以及纳升色谱柱的应用方案开发.
  • 艾万拓开展新冠肺炎疫情下细胞与基因治疗的生产趋势的讨论
    p style=" text-indent: 2em " 艾万拓(NYSE:AVTR),是一家全球性的制造商和分销商,为生命科学、先进技术和应用材料行业的专业人士提供高质量的产品、服务和解决方案。其高管在美国宾夕法尼亚州拉德纳,2020年11月2日召开的细胞与基因治疗的生物工艺和商业化线上会议上提供了许多专业见解。细胞与基因治疗是推动生物制药行业发展的两大最具革命性应用。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   艾万拓生物制药生产执行副总裁,Ger Brophy博士和艾万拓商业发展和商业运营高级副总裁Claudia Berró n,分别与其他全球行业领袖展开了分组讨论,分享了生物制药行业面临的新挑战和自己的见解,包括新冠肺炎疫情带来的影响。他们强调了创新的重要性,创新可以驱动改变生命且个性化的细胞与基因疗法实现突破与商业化。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   在关于细胞与基因治疗的演变以及这些疗法的规模扩大和商业制造的讨论会上,Brophy博士分享了自己关于生物工艺行业中日益增长的需求的观点。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   Brophy博士说:“我们正在有效治疗和控制疾病的长期斗争中取得真正的进展。细胞和基因疗法将有助于开辟医学的新领域。我们开始更了解需要解决的问题,并且知道,如果要扩大产品规模,让全世界的患者更容易获得相关资源,就必须提高运营效率。自动化是必需的,因为自动化既能提高稳定性,又能提高流程效率。艾万拓随时都可为行业领先的、正在治疗患者的公司提供必要的材料和技术。创新和灵活性可以帮助我们更好地与业界合作解决这些问题。” /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   在另一个小组讨论会中,Berró n女士着重讲解了行业正在如何应对新冠疫情带来的挑战和影响,从供应链碎片化到临床试验的中断。 /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   Berró n女士说:“现在这个时候对于整个行业和全球人民都至关重要,细胞与基因治疗界的领袖们应该比以往任何时候都要团结,共同制定战略并分享想法。艾万拓正积极与世界领先的制药和生物技术公司合作,加快投产新疗法。我们的总体目标是共同解决所面临的挑战,无论是最初的科学发现,还是最终的治疗过程,无一例外。” /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "   艾万拓为生物制药生产流程提供相关产品,包括细胞与基因治疗产品。在浏览器中搜索“艾万拓生物制药 /p
  • 细胞和基因治疗市场潜力巨大 仪器公司纷纷布局
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" text-indent: 2em " 近年来,细胞和基因疗法的发展已成为癌症和遗传疾病研究与治疗的重要组成部分,全球细胞和基因疗法的监管批准项目开始大量增加,且相关研究已扩展到医学其他领域,如自身免疫治疗和皮肤病的治疗。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 2020年4月,国外某知名调研机构发布了“细胞和基因治疗市场”市场调研报告,该报告概述了该行业的市场现状。具体而言,报告详细介绍了市场前景、研发趋势、部分选定产品的开发情况以及关于市场整体状况和在五个医学分支——皮肤病学、肿瘤学、眼科学、心血管和血液学以及肌肉骨骼疾病研究中应用的更多信息,这些疾病正在发展基于细胞和基因治疗的方法和药物。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 2020年销售额预计达38亿美元 后将以2位数增长 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告显示,到2020年,细胞和基因疗法的销售额预计将达到38亿美元,到2025年将达到129亿美元,到2030年将达到299亿美元。 /strong 细胞疗法市场在所有销售额中占比更高,但基因疗法的使用预计未来几年将大幅增加。未来,肿瘤和遗传疾病的治疗或将占细胞和基因治疗的大多数销售额,心血管和血液研究以及肿瘤学研究预计将是上述五个疾病领域中增长最快的两个市场,到2030年,这两个领域的销售额都将以两位数速度增长。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 心血管和血液疾病是全球死亡的主要原因之一。结果,在美国和欧洲的监管批准引起了对用于这些医疗状况的治疗和药物的需求。血液疾病是细胞和基因治疗市场的主要收入来源,而干细胞是最常用的研究方法。然而,预计基因疗法在未来几年将越来越流行。细胞和基因疗法的领先供应商包括Alnylam制药,三菱田边,AngES和BioCardio。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 由于影响全球人口的100多种不同的癌症类型,肿瘤学领域的药物开发和治疗需求也有所增长。从地理位置上讲,美国是最大的市场。根据癌症类型,血液癌症被认为是大多数研究和药物开发的重点。对于肿瘤学,预计到2030年,细胞疗法,尤其是细胞免疫疗法将成为细胞和基因疗法肿瘤学市场的主要收入来源。该市场的顶级提供商包括Gilead Sciences,诺华等。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 潜力巨大 挑战相随,科学仪器公司闻风而动 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 尽管前景光明,但同时也面临的一些挑战。总体而言,细胞和基因治疗公司面临着诸如时间紧迫,人才匮乏以及缺乏用于药品研发制造的高质量科学仪器和实验室产品之类的难题。关于人员配备,各该领域的企业始终在努力寻找专门技术人才,甚至要从其他行业招聘人才。另一个障碍是航运物流的简化,以便更好的进行治疗。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 企业合并和收购已成为细胞和基因疗法市场销售增长的重要组成部分。在意识到细胞和基因治疗市场的潜力后,制药和生物技术公司已开始收购规模较小的公司。频频发生的收并购活动 span style=" text-indent: 2em " 进一步刺激了各大制药企业对细胞和基因疗法研究与生产解决方案的需求。因此,科学仪器公司也纷纷通过内部投资和收购扩大了在该领域的投入及专业知识培训。& nbsp /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" text-indent: 2em " 2019年,生命科学研究耗材制造商Bio-Techne收购了B-MoGen Biotechnologies,收购金额未公开,以使其基因编辑和交付产品组合多样化。同样在2019年,由于Brammer专业从事生物加工和基因转移,赛默飞以17亿美元的价格购买了病毒载体生产商Brammer Bio。另外,默克公司、Cytiva等领先的生命科学公司也开始纷纷在该领域推出解决方案。除了科学仪器公司,2019年,制药公司百时美施贵宝(BMS)收购了生物技术公司Celgene,该公司专门开发用于治疗癌症和炎症性疾病的药物。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 329px height: 335px " src=" https://img1.17img.cn/17img/images/202005/uepic/3d55f2ac-b0c3-4d08-8735-35b3865e2a27.jpg" title=" logo.png" alt=" logo.png" width=" 329" height=" 335" / /p
  • 科学家定向开发新的基因递送载体用于基因治疗
    近日,发表在《Cell》上的一项题为“Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species”的研究中,来自美国布罗德研究所和哈佛大学等研究机构的研究人员开发出一个新的腺相关病毒(AAV)家族作为基因递送载体用于基因治疗。  重组腺相关病毒(rAAV)是最常用于体内基因替代治疗和基因编辑的载体,但全身递送后特定组织的选择性转导仍然是一个挑战。遗传性肌肉疾病会导致进行性肌肉萎缩,治疗选择很少且无法治愈。基因疗法已在临床试验中显示出治疗肌肉萎缩症的希望,但需要高剂量的携带基因的病毒才能到达全身肌肉,而这些试验中使用的病毒通常更多地进入肝脏而不是肌肉,进而导致一系列严重的问题。  研究人员建立了一种体内策略来进化和严格选择AAV的衣壳变体,这些变体能够有效地递送到所需的组织。使用这种方法,研究人员确定了一类含有RGD基序的衣壳,在小鼠和灵长类动物体内定向进化出一种工程化改造的AAV载体—MyoAAV,研究显示这种载体能够高效靶向肌肉组织,递送到肌肉组织的效率是传统病毒载体的10倍以上。同时,与传统递送载体相比,该载体在遗传性肌肉疾病中的治疗剂量降低大约100到250倍,这一研究成果极大地减少了肝脏损伤和其他严重副作用的风险。   论文链接:  https://www.cell.com/cell/fulltext/S0092-8674(21)01002-3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制