当前位置: 仪器信息网 > 行业主题 > >

基因重组

仪器信息网基因重组专题为您整合基因重组相关的最新文章,在基因重组专题,您不仅可以免费浏览基因重组的资讯, 同时您还可以浏览基因重组的相关资料、解决方案,参与社区基因重组话题讨论。

基因重组相关的论坛

  • 基因重组中的关键反应和机制讲解【图文并茂版】

    300 kbDNA片段。http://img.dxycdn.com/trademd/upload/asset/meeting/2013/08/27/A1377590386.gif 2. 噬菌体PI载体和PACPI噬菌体与噬菌体一样,外有蛋白质壳。内含相当大的(110~115 kb)线性DNA,并在体外包装于PI壳内。PI进入宿主细胞后环化,扩增。1994年,有人将PI和F因子克隆结合产生PI人工染色体克隆系统-----PAC。3. 酵母人工染色体(yeast artificial chromosome, YAC)YAC 的主要功能成份有三:(1)着丝粒:mitosis姊妹染色单体和减I同源染色体分离之必需。(2)端粒:保护染色体末端免受核酸酶的侵袭。(3)自主复制序列(ARS)元件:是染色体自主复制的复制起点。构建YAC需要4个短序列:2个端粒,着丝粒,ARS元件,与外源DNA连接成线性DNA分子,导入酵母细胞克隆。三、DNA重组与分子克隆化为获得所需的基因或特异序列,需从细胞中分离得到目的基因与载体DNA重组,并用适当方法在宿主细胞中表达,扩增得到大量相同的DNA片段,称为DNA克隆,亦称分子克隆。

  • PNAS:利用转基因水稻规模化生产重组人血清白蛋白

    由武汉大学生命科学院教授、武汉禾元生物科技有限公司董事长杨代常领衔的研发团队从2006年开始进行植物源替代血浆来源的医药蛋白的研究与开发,现已取得突破性进展并已跨入规模化生产的阶段,填补了国际上此项技术空白。相关论文“Large-scale production of functional human serum albumin from transgenic rice seeds ”(利用转基因水稻规模化生产重组人血清白蛋白)于2011年10月31日在线发表于《美国科学院院报》( PNAS ) 。该论文在线之际,受到国外Scientist , Nature news , The Australian , Thomson Reuters, Fox News , Agence France Presse (AFP法新社) 等美国、英国、俄罗斯、德国、巴西、印度各专业杂志及媒体的广泛关注和报道。该研究表明由转基因水稻种子生产的重组人血清白蛋白(OsrHSA)在生理生化性质、物理结构,生物学功能、免疫原性与血浆来源的人血清白蛋白一致;并建立了大规模生产重组人血清白蛋白的生产工艺,获得了高纯度和高产量重组人血清白蛋白产品。利用大量数据证明了转基因水稻种子可取代现有基于发酵的表达技术来生产重组蛋白质是经济有效的。正如PNAS 审稿人对该文章的评价:“这篇文章解决了在科学上振奋人心、在经济上都非常重要的议题--即用转基因植物生产血浆产品或其他蛋白产品的技术平台,可代替其他基于发酵的表达技术,其重要性也不言而喻……这篇文章近乎完美地证实了植物生产的医药蛋白和批准临床使用的血浆来源医药蛋白是完全相同的,并提供了翔实数据证明植物系统规模化容易和成本优势。”目前,人血清白蛋白(human serum albumin)广泛应用于临床治疗和细胞培养领域。常见的人血清白蛋白大多数从人的血浆中提取,这样的生产方式不仅受到血浆供应的限制,而且还具有携带病毒传播的高风险性。国际上以重组人血白蛋白替代血源产品的应用已成为趋势,国内市场需求也逐年扩大,2010年已达150吨。尽管市场广阔,但高纯度重组人血白蛋白的规模化生产技术和质量控制技术却是世界性难题。武汉禾元历经多年的技术攻关,利用水稻胚乳表达技术平台,研发出国际先进水平的重组人血白蛋白产品生产技术,并成功实现重组人血白蛋白规模化和产业化,完全摆脱了相关制约,具有纯度更高、无动物组分、安全、高效、绿色环保、廉价、无限量供应等优势。随着植物源重组人血清白蛋白的发展,我国人血清白蛋白日益紧张的局面必将得到缓解。详细论文,请点击下载:http://www.oryzogen.com/category/22/2011-11-01/93315359.html注:《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, 缩写 PNAS,ISSN:0027-8424)是被引用次数最多的综合学科文献之一。它是美国科学院的院刊。自1914年创刊至今,PNAS提供具有高水平的前沿研究报告、学术评论、学科回顾及前瞻、学术论文以及美国国家科学学会学术动态的报道和出版。PNAS收录的文献涵盖生物、物理和社会科学,2008年的影响因子为9.38,2009年影响因子为9.432, 2010年影响因子为9.771。在SCI综合科学类排名第三位,因而已成为全球科研人不可缺少的科研资料。

  • 【转帖】用sj TRECS,T细胞基因重组产物分析法测量杀手年龄————刑侦新思路

    New 'CSI style' crime blood test 'could help police pinpoint suspect's age'http://www.telegraph.co.uk/science/8153033/New-CSI-style-crime-blood-test-could-help-police-pinpoint-suspects-age.html?sms_ss=facebook&at_xt=4cee72c48b4bb884%2C0By Andrew Hough 7:30AM GMT 23 Nov 2010Using current DNA techniques, researchers found they could narrow a person’s age to within nine years.Experts said the new test, which can work on dried bloodstains that are several years old, could lead to a major breakthrough for crime scene investigators and offer new hope to “cold cases”.Existing methods rely on teeth, bones or other body parts to establish the age of a suspect.But scientists at Erasmus University Medical Centre in Rotterdam, the Netherlands have used a characteristic of immune cells, known as T cells which recognise foreign invaders, to calculate an age.Their study, reported online in the journal Current Biology, says their test provides better results than previous attempts to pinpoint ages through DNA testing.“We have demonstrated that human age can be estimated from blood with reasonable accuracy using a simple, robust, and sensitive test assay,” said Dr Manfred Kayser, who led the study.“Our method is applicable in situations where only bloodstains are available, which covers a large proportion of crime cases.“I wouldn't be surprised if it could be used on historical blood stains that are decades or 100s of years old.”T cells contain tiny loops of DNA known as “single joint TCR excision circles” or sj TRECS for short.The scientists said the number of these loops of DNA declines at a constant rate with age.Dr Kayser said the number of these molecules in a blood sample is counted against a reference gene not affected by age, which allows them to calculate the total amount of DNA in the sample."You have a problem because normally your DNA does not change with age," said Dr Kayser."What does change is the activity of certain genes over a lifetime, but that is at the RNA level, and crime labs aren't ready for that. So we really had to look for another approach."The test estimates an age with an error range of approximately nine years.The study also suggests that the test would be accurate in placing suspects into generational categories spanning over two decades.Mark Jobling, a geneticist at the University of Leicester told Nature that the "correlation is pretty impressive"."How useful it will be in practice as a forensic tool remains to be seen, although there will certainly be forensic cases where it will help as an investigative tool," he added.我的评1sj TRECS, single joint TCR excision circles TRECs在等位基因上完全切除,并在外周组织中的T细胞中稳定存在,它不参与细胞染色体DNA的复制,并随着细胞分裂被逐代稀释。自从Douek研究小组通过此法发现TRECs水平随年龄增长呈递减趋势,这个分子用于胸腺依赖的T细胞发育分化的研究热点。特别是当人们发现感染HIV病毒的患者,TRECs水平即迅速下降。让人们意识到,胸腺在成人的免疫发育中可能起相当重要的免疫重建相关的作用_____尽管具体的机制还不明确。2这个消息看到我的第一反应是,9年的误差率,这个有任何意义么?那难道我要对一个实际犯罪年龄24岁的杀手,检测出一个疑犯13岁到33岁的结果?前后就是其他影响因素分析,比如,一个胸腺切除的患者/犯人?一个血干细胞移植的犯人?一个艾滋病的犯人(实际中非常常见)?3不过是个好思路,免疫分子的影响因素太多而不好控制,那么,端粒酶长度怎么样?Now you got it.http://i.0dxy.cn/images_new/smiles/smile.gif补充阅读T细胞基因重组产物分析法TCR基因表达为占绝大多数的αβTCR和占一小部分的γδTCR。位点δ位于α基因座,在Vα和Jα之间,TCRA和TCRB基因在重排中产生被切除DN***段的游离环,即T细胞受体基因重组环(TCR-rearrangement excision circles,TRECs)。TRECs在等位基因上完全切除,并在外周组织中的T细胞中稳定存在,它不参与细胞染色体DNA的复制,并随着细胞分裂被逐代稀释。因此,TRECS水平可以反映胸腺内TCR基因的重组活性以及胸腺外T细胞的增殖效率。TCR重排的多样性必将伴随TRECs的多样性。但在所有有功能的αβTCR基因重排中,必须发生TCRA座位中TCRD的切除,分别产生信号连结TREC——sjTREC(signal-joint TREC)和编码连结TREC——cjTREC(coding-joint TREC),可作为初生T细胞的普遍标记T细胞受体基因重组环(TCR-rearrangement excision circles,TRECs)。TRECs在等位基因上完全切除,并在外周组织中的T细胞中稳定存在,它不参与细胞染色体DNA的复制,并随着细胞分裂被逐代稀释。因此,TRECS水平可以反映胸腺内TCR基因的重组活性以及胸腺外T细胞的增殖效率。TCR重排的多样性必将伴随TRECs的多样性。但在所有有功能的αβTCR基因重排中,必须发生TCRA座位中TCRD的

  • 重组蛋白是什么?重组蛋白的生产、应用及选择

    [font=宋体][font=宋体]重组蛋白([/font][font=Calibri]recombinant protein[/font][font=宋体])是指应用重组 [/font][font=Calibri]DNA [/font][font=宋体]或重组 [/font][font=Calibri]RNA [/font][font=宋体]技术而获得的蛋白质。重组蛋白工程先应用基因克隆或化学合成技术获得目的基因([/font][font=Calibri]gene of interest[/font][font=宋体],[/font][font=Calibri]GOI[/font][font=宋体]),连接到适合的表达载体,导入到特定的宿主细胞,利用宿主细胞的遗传系统,表达出有功能的蛋白质分子。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体]其获得途径可以分为体外方法和体内方法。两种方法的前提都是应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体][b]当前重组蛋白的生产主要有四大系统[/b]:原核表达系统:最常用的大肠杆菌蛋白表达,真核表达系统如酵母,哺乳动物细胞蛋白表达(常用的细胞[/font][font=Calibri]CHO[/font][font=宋体],[/font][font=Calibri]HEK293[/font][font=宋体])及、昆虫细胞蛋白表达系统。重组蛋白的产生尚可利用转基因动物的乳腺或者植物产生,产生的重组蛋白作为生物制药的产物,在医学中作用显著。利用基因工程技术,可以使细胞或者动物本身变成“批量生产药物的工厂”。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]以利用转基因动物的乳腺表达重组蛋白为例:其方法是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。科学家已在牛和山羊等动物的乳腺生物反应器中表达出了抗凝血酶、血清白蛋白、生长激素和[/font][font=宋体]α[/font][font=Calibri]-[/font][font=宋体]抗胰蛋白酶等重要的医药产品。[/font][/font][font=宋体]重组蛋白在制药工业上主要是指表达获得的细胞因子、凝血因子或者人工设计的蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体]目前,重组蛋白试剂已被广泛应用于生物药、细胞免疫治疗及诊断试剂的研发和生产中。其中重组蛋白药物是生物药物的重要组成成分,常被被广泛应用于医疗领域[/font][font=Calibri],[/font][font=宋体]包括肿瘤治疗、免疫调节、神经保护、结缔组织疾病、肾病治疗等。包括细胞因子类、抗体治疗性疫苗、激素及酶等。[/font][/font][font=宋体] [/font][font=宋体]义翘神州致力于提供[url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白生产[/b][/url]、[url=https://cn.sinobiological.com/resource/protein-review/protein-expression][b]重组蛋白表达[/b][/url]及[url=https://cn.sinobiological.com/resource/protein-review/protein-production-systems][b]重组蛋白系统[/b][/url]详情的咨询与解决方案。为实验中特定的应用选择正确的表达系统是成功的关键所在。在选择表达系统时,蛋白溶解度、功能、纯化速度和产量通常是必须考虑的重要因素。此外,每个表达系统都有其独特的优势和挑战,这一点在选择时也需着重考虑。我们的专业团队将为您提供个性化的建议,以帮助您根据实验需求选择最合适的表达系统。[/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font][font=Calibri] [/font]

  • 重组蛋白技术的科学原理与实践应用

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白[/b][/url]([/font][font=Calibri]recombinant protein[/font][font=宋体])技术原理是现代生物技术的核心之一,它通过将目的基因插入到表达载体中,在宿主细胞中进行表达,从而获得所需的重组蛋白。这一技术的关键是选择合适的表达载体和宿主细胞,以确保目的基因的正确表达和蛋白质的正确折叠。重组蛋白技术的应用范围非常广泛,包括药物研发、疫苗生产、诊断试剂、生物治疗等领域。通过重组蛋白技术,我们可以快速、高效地获得具有特定结构和功能的蛋白质,为科学研究、医学和工业应用提供重要的工具和资源。[/font][/font][font=宋体] [/font][b][font=宋体] [/font][font=宋体]构建重组蛋白的技术路线主要包括以下几个步骤:[/font][/b][font=宋体] [/font][font=宋体]①目的基因的获取:根据所需蛋白质的氨基酸序列,设计并合成相应的基因片段,或者从基因文库中筛选出相应的基因。[/font][font=宋体]②表达载体的构建:将目的基因插入到表达载体中,常用的表达载体包括质粒、病毒等,它们可以在宿主细胞中进行复制和表达。[/font][font=宋体]③宿主细胞的选择:选择适合的宿主细胞,如细菌、酵母、昆虫、哺乳动物等,以确保目的基因的正确表达和蛋白质的正确折叠。[/font][font=宋体]④重组蛋白的表达:将构建好的表达载体转入宿主细胞,进行培养或诱导,使目的基因在细胞内表达,产生重组蛋白。[/font][font=宋体]⑤重组蛋白的纯化:通过各种分离纯化技术,如离心、过滤、沉淀、色谱等,将重组蛋白从细胞中提取出来,并进行纯化和精制。[/font][font=宋体]⑥重组蛋白的鉴定:通过各种检测技术,如质谱、免疫学检测等,对重组蛋白进行鉴定和质量控制。[/font][font=宋体]通过以上技术路线,可以构建出具有特定结构和功能的重组蛋白,为科学研究、医学和工业应用提供重要的工具和资源。[/font][font=宋体] [/font][b][font=宋体] [/font][font=宋体]重组蛋白技术应用:[/font][/b][font=宋体] [/font][font=宋体]一、药物研发与生产:[/font][font=宋体]靶点验证:在药物研发初期,可以使用重组蛋白来验证药物作用的靶点。[/font][font=宋体]抗体药物:利用重组蛋白技术可以生产人源化抗体,用于癌症治疗、自身免疫性疾病治疗等。[/font][font=宋体]直接药物:某些重组蛋白本身就是药物,如胰岛素、生长激素等。[/font][font=宋体]二、疫苗开发:[/font][font=宋体]基因工程疫苗:使用重组蛋白技术生产疫苗,例如针对乙肝、流感等疾病的疫苗。[/font][font=宋体]三、诊断试剂:[/font][font=宋体][font=宋体]免疫检测:重组蛋白可以用作抗原或抗体,用于各种免疫检测技术,如[/font][font=Calibri]ELISA[/font][font=宋体]、免疫荧光等。[/font][/font][font=宋体]四、生物治疗:[/font][font=宋体]细胞因子:重组蛋白技术可以生产各种细胞因子,用于促进细胞生长、分化、凋亡等。[/font][font=宋体]五、基础研究:[/font][font=宋体]结构生物学:利用重组蛋白研究蛋白质的结构与功能关系。[/font][font=宋体]信号转导研究:通过重组蛋白研究细胞内信号转导过程。[/font][font=宋体]六、其他应用:[/font][font=宋体]酶工程:生产具有特定性质的酶。[/font][font=宋体]七、农业应用:如生产抗虫作物或具有特定性状的动物。[/font][font=宋体]通过以上几个方面,重组蛋白技术在生物医药领域中发挥着越来越重要的作用,为疾病治疗、疫苗开发、基础研究等提供了有力的技术支持。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供重组蛋白纯化服务:[/font][font=Calibri]https://cn.sinobiological.com/services/recombinant-protein-expression-service[/font][/font][font=宋体][font=宋体]更多重组蛋白详情可以以关注义翘神州:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font][font=Calibri] [/font]

  • 【转帖】亚单位疫苗、基因重组疫苗等新型疫苗研究方兴未艾

    传统疫苗的研究是把原有的野生的病毒或细菌在实验室培养制备后,通过物理、化学的方式将其灭活,即为原始疫苗的主要成分,加上佐剂再通过注射或口服进行免疫,但这种方式也会带来比较大的毒副反应。因此,目前又进入到第三代亚单位或基因工程/多肽疫苗的研发。根据疫苗研发技术的发展,当前疫苗的种类可以分为亚单位疫苗、基因重组疫苗、合成多肽疫苗和免疫球蛋白载体疫苗。其中基因重组疫苗又分为重组DNA疫苗、重组活疫苗、杂交株活疫苗、基因缺失活疫苗,免疫球蛋白载体疫苗又可分为抗毒特性抗体疫苗、表位嵌合免疫球蛋白等。国内外疫苗研究在研发人士的努力之下取得了不少新进展。1、HPV基因工程疫苗人乳头瘤病毒(HPV)疫苗是预防宫颈癌的第一支防癌疫苗,目前研制成功的HPV疫苗是预防性疫苗,HPV治疗性疫苗还在研制中。它是由默克公司和葛兰素史克公司两家分别独立研制成功的,一个是四价,一个是两价,目前在数十个国家和地区广泛使用。在美国使用的价格大约是每人份360美元,这一价格在我国是很难被大多数人接受的,因此我国亟待研制自己的HPV疫苗。据悉,目前国内有两家HPV疫苗研究单位申报了临床试验,已有一家拿到了临床批件。2、基因工程幽门螺杆菌疫苗研究证实,幽门螺杆菌(Hp)是胃病发生的元凶。目前临床上主要是采用抑制胃酸分泌的药物联合多种抗生素治疗Hp引起的相关胃病,单一抗生素的根治率不超过30%,由于Hp一般隐藏于pH值很低的胃黏膜处,药物难以达到作用部位,耐药严重。第三军医大学国家免疫生物制品工程技术中心从1995年就开始了Hp疫苗的研制:(1)首先,创立了“Hp分子内佐剂黏膜疫苗”学说,并得到了实践的验证。(2)首次建立了高效筛选Hp疫苗组分的体系,成功构建了可用于生产的Hp疫苗工程菌株。研究建立了国内外第一份《Hp疫苗制造与检定质量标准》。(3)建立了Hp疫苗Ⅰ、Ⅱ、Ⅲ期人体临床试验所需的30多种技术规范、标准及实验检测技术。通过这些关键技术的发明与创立,按照国际标准完成临床试验,结果表明Hp胃病疫苗安全性良好,保护率为72.10%,达到口服类疫苗国际先进水平。该项目申请了15项专利,获得了8项授权。该疫苗目前已经成功进入产业化发展阶段。目前国际上也有很多机构也在对Hp疫苗进行研究,如诺华等一些公司,他们的疫苗目前还处在临床Ⅰ、Ⅱ期试验当中。3、人用禽流感疫苗和甲型H1N1流感疫苗我国在禽流感和甲流的控制、疫苗的研发方面走在了世界的前面。2008年4月2日,国家食品药品监管局(SFDA)正式批准了北京科兴生物制品有限公司生产的大流行流感疫苗,标志着我国成为继美国之后第二个具备人用禽流感疫苗制备技术和生产能力的国家,说明我国从疫情监测、病人发现、病毒分离鉴定、病毒培养改造、临床试验到工业化生产整个技术链条是完整的,实质性地完成了疫苗的技术储备,也具备了实物的储备条件。2009年9月3日,北京科兴生物制品公司研制的甲型H1N1流感疫苗获得SFDA药品生产注册。这是全球首个获得政府药品批准文号的甲型流感疫苗,命名为“盼尔来福.1”。整个疫苗研制周期仅用了87天。该疫苗一剂免疫后21天,儿童、少年和成人三个年龄组保护率均在81.4%~98.0%范围内,达到了国际公认的评价标准(保护率70%以上)。可用于3岁~60岁人群。4、“中国号”艾滋病疫苗我国目前研发了多个艾滋病疫苗,分别处于Ⅰ、Ⅱ期临床试验阶段。由中国疾病预防控制中心与北京生物制品所研制的“DNA――天坛疫苗复合型艾滋病疫苗”于2007年12月1日起进行Ⅰ期临床试验,现已经结束,开始进入Ⅱ期临床试验。另一个是由吉林大学孔维教授等人研制的艾滋病疫苗,目前正在进行临床试验。5、新型结核疫苗尽管结核病疫苗应用已经很长时间了,但是近年来结核病有增无减,控制情况不理想,主要原因还是与结核杆菌变异有很大关系。墨西哥研制出了可预防最常见的肺结核病的新疫苗。这种疫苗比目前使用的疫苗更有效,因为传统疫苗只针对高危性结核,但高危性结核仅占10%。据悉,新型疫苗还可以预防近几年出现的新型结核病。该疫苗已在动物实验上取得了理想效果,预计不久将进行人体试验。6、联合疫苗从现实使用需求来看,一剂多防的疫苗是未来的研究方向,由于存在免疫干扰现象,这一研究也是非常困难的,尽管难度很大,新型联合疫苗也在不断的研制中。新型联合疫苗的开发包括以DPT为基础的联合疫苗、以活疫苗为载体的联合疫苗和口服联合疫苗。为进一步减少免疫接种次数,国内外开展了几种联合疫苗同时接种的观察。目前现有的联合疫苗都是以DPT为核心,加上其他疫苗而组成的,例如DPT/Hib、DPT/IPV等。现有联合疫苗分为两大类:一是多疾病联合疫苗,它通常包含多种单个疫苗来预防多种病,组成这种联合疫苗的单个疫苗通常是分别开发在先,联合在后(无细胞百日咳除外);二是多价联合疫苗,包含了同一种细菌或病毒的不同亚型或血清型,这些在疫苗开发时就联合在一起,未曾分开。现有已经上市的联合疫苗有DTwcp/IPV、DTwcp/Hib、DTwcp/HB等,正在开发中的联合疫苗包括破伤风/狂犬病、黄热病/伤寒Vi疫苗等。另外,疫苗在接种手段上也在进行改进,目前绝大多数疫苗是采用注射方式接种,依存性相对较差,突发事件中大规模预防接种等情况,都希望采用非注射的方式进行接种,如黏膜接种或纳米透皮技术等。部分新近上市或进入临床试验的黏膜接种疫苗如Ty21a伤寒活疫苗,CVD103-HgR霍乱活疫苗,霍乱O1/O139/rCTB联合菌苗,四价恒河猴轮状病毒活疫苗,鼻内接种的三价冷适应流感活疫苗,减毒伤寒杆菌活载体疟疾黏膜疫苗(Ⅱ期临床)。7、治疗性疫苗传统观念认为,疫苗的作用是对疾病的预防,但近年来疫苗也正在慢慢改变着它的内涵和功能。治疗性疫苗的研究结果对传统发出了挑战:疫苗不仅能防病,还能通过加强或调整患者免疫功能而达到治病作用。例如幽门螺杆菌是一种慢性感染性疾病,由于免疫产生耐受,因此可以通过免疫手段强化细胞免疫功能或者是特殊的抗体功能达到一定的治疗效果,这一结果已经在动物实验和人体试验上得到了证实。目前国内有3个乙肝治疗性疫苗正在进行临床试验,如闻玉梅院士与天坛生物等首次研制开发的抗原-抗体复合物乙肝治疗性疫苗,已获得SFDA批准进入Ⅲ期临床试验。8、另类疫苗(非感染性疾病疫苗)非感染性疾病也可以通过疫苗进行预防或治疗。癌症疫苗已经不再是梦想。东京大学研制的几种癌症疫苗在日本10多个临床试验中取得了较好的疗效。在其他治疗手段已经不起作用的802名患者身上试验表明,有60%显现出癌症部位缩小或者在一定时期内病情不再恶化等良好疗效。他们从癌细胞中找到了可以引起强烈免疫反应的17种癌相关抗原,从而制成了这几种癌症疫苗。这几种癌症疫苗的对象包括食道癌、胰腺癌、大肠癌、膀胱癌等10多种癌症。高血压疫苗也取得了新进展。这种抗高血压疫苗能够产生一种能对血管紧张素Ⅱ产生作用的抗体。血管紧张素Ⅱ是一种机体产生的荷尔蒙,能够调节机体液体的压力,这种抗体能够关闭血管紧张素Ⅱ的接收器,从而防治高血压的产生。美国食品药品管理局(FDA)已批准一种糖尿病疫苗进入临床试验。Ⅰ型糖尿病的发病机理是来自免疫系统的T细胞移动到胰腺处,摧毁能制造胰岛素的β细胞。故可使用树突状细胞糖尿病疫苗保护胰岛细胞。老年性痴呆疫苗也取得了新进展。曼彻斯特大学用小白鼠免疫实验表明:该疫苗不仅能防止β淀粉样蛋白的积累,而且使脑中淀粉样变减少,认知能力提高,并没有脑水肿的迹象。专家认为,新研制的疫苗有望防止老年痴呆症。关节炎疫苗有望在5年内问世。英国纽卡斯尔大学研究的关节炎疫苗已在8名风湿性关节炎的志愿者身上进行了使用,并取得了良好的效果。该疫苗有望在5年内问世。乙肝纳米疫苗取得新进展。美国密歇根大学的科学家宣布,他们成功研制了鼻内喷雾使用的乙肝疫苗纳米乳,通过缓释和更加靶向的方式,有望成为现有乙肝疫苗的替代品。此新型疫苗无需冷藏,且不需要像目前的疫苗要在6个月内注射三次。此外,尼古丁/可卡因防成瘾疫苗、避孕疫苗也已处于研发之中。疫苗的研究作为生物制药领域的热点,一直是方兴未艾。如HIV疫苗、广谱流感疫苗、结核杆菌新疫苗、治疗性疫苗、生物反恐疫苗等,新型疫苗的蓬勃发展和传统疫苗的发扬光大,正是当今疫苗发展的时代写照与特征。(中国医药报)

  • 什么是重组抗体?重组抗体的优势介绍

    什么是重组抗体?重组抗体的优势介绍

    [font='calibri'][size=13px]什么是重组抗体?重组抗体的优势介绍[/size][/font]与传统抗体相比,重组抗体具有几个关键优势。这些包括良好的批次间一致性,持续供应以及对抗体工程的适应性. 因此,重组抗体在科学研究中的应用日益广泛,特别是作为解决持续存在的可重复性难题的一种手段。什么是重组抗体?传统的多克隆和单克隆抗体是正常 B 细胞发育和基因重组的产物。它们是通过用抗原免疫动物以引发免疫应答而产生的。多克隆抗体由许多不同的 B 细胞克隆分泌并识别多个抗原表位,而单克隆抗体则来自单个 B 细胞克隆,并且仅对单个表位具有特异性。重组抗体是单克隆抗体,但是其生产涉及体外遗传操纵。将抗体基因克隆到表达载体中后,将其转染到合适的宿主细胞系中进行抗体表达。哺乳动物细胞系最常用于重组抗体的生产,然而细菌、酵母或昆虫来源的细胞系也适用。①良好的批次间一致性由于重组抗体的生产涉及对抗体轻链和重链进行测序,因此这是一个高度可控且可靠的过程。相反,用于生产单克隆抗体的基于杂交瘤的系统容易发生遗传漂移和不稳定,从而增加了批次间变异或抗体表达缺失的可能性。重组抗体在批次之间高度一致,从而确保了可重复的实验结果。②可规模化体外生产抗体的方法适合大规模生产,这意味着抗体的可获得性不太可能成为限制因素。此外,由于重组抗体序列是已知的,因此确保了供应的连续性;如需将抗体用于大规模长期研究,这可能就是一个至关重要的因素。③顺应工程化了解抗体的肽序列为工程化提供了许多机会。这些包括同种型转换(也称为类转换)和种属转换,这两种方法都可以通过允许在实验中利用那个同种型或种属特定的二抗来增加多重实验的范围。工程学的进一步应用是使用体外抗体选择系统(例如抗体噬菌体展示)来改善抗体特异性。④无动物源性生产与传统的抗体生产方法不同,重组方法避免了使用动物的需要。多克隆抗体直接从免疫宿主血清中纯化,单克隆抗体从杂交瘤来源的组织培养上清液 (TCS) 或腹水中纯化,而重组抗体是从转染宿主细胞系的 TCS 中纯化。无论抗体是多克隆抗体、单克隆抗体还是重组抗体,在实验使用前都必须在预期应用中对其进行适当验证。在CST,我们遵守抗体验证标志,即在任何特定实验方法中的确定抗体特异性、敏感性和功能性的六个互补策略通过针对每种抗体产品精心定制这些策略,我们保证 CST 抗体适合用于帮助您获得可信赖的结果。[align=center][img=大规模重组抗体生产服务,690,191]https://ng1.17img.cn/bbsfiles/images/2023/05/202305241528536465_2058_5907840_3.png!w690x191.jpg[/img][/align]义翘神州已通过ISO9001认证,在规模化生产重组单克隆抗体方面积累了丰富的经验。我们拥有完善的大规模重组抗体表达生产平台,可提供从毫克级到公斤级重组抗体生产服务,满足客户高通量、大规模的生产要求。更多[url=https://cn.sinobiological.com/services/large-scale-antibody-production-service][b]大规模重组抗体生产服务[/b][/url]详情尽在:https://cn.sinobiological.com/services/large-scale-antibody-production-service

  • 重组蛋白是什么?融合蛋白和重组蛋白的区别

    [font=宋体][b]什么是重组蛋白?[/b][/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白[/b][/url]的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白和重组蛋白的区别[/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组蛋白[/font][/font][font=宋体]重组蛋白是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。[/font][font=宋体][font=Calibri]2. [/font][font=宋体]融合蛋白[/font][/font][font=宋体][font=宋体]融合蛋白是指通过重组[/font][font=Calibri]DNA[/font][font=宋体]技术将你要表达的目的蛋白基因同表达载体上融合蛋白基因相连,这样表达出的蛋白质就会是同时具有目的基因蛋白和融合基因蛋白两个部分的重组蛋白。[/font][/font][font=宋体][font=宋体]融合蛋白与重组蛋白不是一个层次上对立的概念,融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。融合蛋白又称标签([/font][font=Calibri]Tag[/font][font=宋体]),常用的[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体]总结:在生物制药领域,重组蛋白具有较高的活性和纯度,更易吸收,安全性也更高的特点。重组蛋白的利用率也更高。[/font][font=宋体] [/font][font=宋体]为了生产重组蛋白,基因被分离并克隆到表达载体中。重组蛋白的生产需要蛋白表达系统、蛋白纯化系统和蛋白识别系统。[/font][font=宋体] [/font][font=宋体][b]获取重组蛋白的基本步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]目标基因的扩增。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]插入克隆载体。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]亚克隆到表达载体中。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]转化到蛋白表达宿主中[/font][font=Calibri]([/font][font=宋体]细菌[/font][font=Calibri]([/font][font=宋体]大肠杆菌[/font][font=Calibri])[/font][font=宋体]、酵母细胞、哺乳动物细胞或杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞系统[/font][font=Calibri])[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]5.[/font][font=宋体]重组蛋白鉴定试验[/font][font=Calibri](Western blot[/font][font=宋体]或荧光[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]6.[/font][font=宋体]大规模生产。[/font][font=Calibri]([/font][font=宋体]大规模发酵[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]7.[/font][font=宋体]分离和纯化。[/font][/font][font=宋体] [/font][font=宋体]需要考虑多种因素:[/font][font=宋体][font=Calibri]1.[/font][font=宋体]选择哪个宿主系统?[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]如何分离和纯化重组蛋白?[/font][/font][font=宋体] [/font][font=宋体]选择适当的表达宿主或使用正确的纯化方法并不容易,应考虑目标重组蛋白的性质。下面列出了一些重要因素:[/font][font=宋体] [/font][font=宋体]? 膜结合[/font][font=宋体]? 溶解度[/font][font=宋体]? 单或多结构域[/font][font=宋体][font=宋体]? 大小[/font][font=Calibri]([/font][font=宋体]分子量[/font][font=Calibri])[/font][/font][font=宋体]? 表达位置[/font][font=宋体] [/font][font=宋体][font=宋体]对于大多数没有足够经验来表达和分离重组蛋白的人来说,重组蛋白的生产是非常耗时的。许多生物公司为各种不同规模的重组蛋白表达提供良好的服务,例如义翘神州[/font][font=Calibri]([/font][font=宋体]参考重组蛋白生产的详细服务清单)[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供重组蛋白和[url=https://cn.sinobiological.com/resource/protein-review/fusion-protein][b]融合蛋白[/b][/url]等相关信息,详情可以关注[/font][font=宋体][font=宋体]融合蛋白:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白生产:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 重组抗体的制备方法及过程分享

    [font='calibri'][size=13px]重组抗体的制备方法[/size][/font][font='calibri'][size=13px]及过程[/size][/font][font='calibri'][size=13px]分享[/size][/font]重组抗体,也称为基因工程抗体,是指通过DNA重组技术将抗体相应的基因序列根据需要进行改造和重组,并构建在质粒上,再通过蛋白外源表达技术将构建好的质粒转染/转化入适合的宿主细胞表达获得的抗体。重组抗体很好的解决了动物源抗体引起的人体排斥反应,使得抗体实现人源化,使抗体的效能更为完善抗体生产的三个阶段抗体广泛应用于疾病的诊断和治疗,是研究和应用领域最有价值的研究对象之一。抗体制备技术经历了三个阶段,第一阶段,通过抗原免疫高等动物,从动物的血清中纯化获得抗体,该抗体为多克隆抗体;第二阶段,杂交瘤技术问世,通过将无限增殖的骨髓瘤细胞与产生抗体的B淋巴细胞融合生产出针对单一抗原决定簇的单克隆抗体;第三阶段,通过基因工程技术改造动物生产的单克隆抗体的基因序列,使单抗性能更加符合应用需要,并能通过大规模细胞培养获得,该阶段抗体为重组抗体。重组抗体有哪些类型?重组抗体分为五大类:嵌合抗体、人源化抗体、全人源化抗体、小分子抗体、双特异性抗体嵌合抗体抗体的恒定区和可变区分别来源于不同的物种,常见的嵌合抗体是将动物源抗体的可变区与人源抗体的恒定区结合。嵌合抗体的特点:1. 抗体可变区为动物源区域,保留了抗体对抗原的特异性和亲和性 2. 抗体有近70%的部分是人源的,很大程度上降低了抗体的异源性,其中人源性Fc片段能有效介导ADCC(抗体依赖性细胞介导的细胞毒效应)和CDC(补体依赖的淋巴细胞毒效应)作用;3. 可以根据需要选择不同的抗体类型、亚型、大小、修饰位点等;4. 通过成熟的质粒构建体系及蛋白表达平台,可高效大量的获得目的抗体。嵌合抗体的生产方式:①免疫动物,获得杂交瘤细胞②杂交瘤细胞测序,获得抗体可变区序列③选择人源恒定去亚型④构建重组表达质粒⑤转入合适的宿主细胞表达⑥抗体纯化及检测人源化抗体将人抗体的CDR区域替换成动物源单抗的CDR,也称CDR嫁接抗体。CDR:即互补决定区(complementarity-determining regions),抗体每个可变区含有三个氨基酸顺序超变区,这些超变区是抗原的结合位点,与抗原决定簇结构互补,被称为CDR。可变区里其他氨基酸作为骨架支持部分,称为框架残基(Framework Residue)。人源化抗体特点:1. 人源化抗体在嵌合抗体的基础上将抗体中人源性区域进一步扩大,人源化比例可达80%-90%,使得抗体在应用过程中降低人体的异源排斥反应;2. CDR与抗原结合过程受到FR区域的影响,动物源CDR与人源Fr结合,可能会改变抗体原有CDR的空间结构,进而降低重组抗体与抗原的亲和力。在设计人源化抗体时,可将人源FR区域的关键性氨基酸残基更改为动物源FR,以减少对CDR结构域的影响。人源化抗体生产方式:重组抗体的类型及生产流程全人源化抗体采用基因敲出技术将动物抗体基因敲除,造成动物抗体基因缺失,将人类抗体基因通过转基因或转染色体技术,移至抗体基因缺失动物中,通过动物表达人类抗体,达到抗体完全人源化。采用动物基因敲除和插入的方式获得抗体,操作难度大,成本高,并且依然存在人体排斥反应,噬菌体展示技术应运而生。将人抗体的可变区基因插入到噬菌体外壳蛋白结构基因的适当位置,人抗体可变区随噬菌体外壳蛋白的表达而表达,同时,随噬菌体的重新组装而展示到噬菌体表面。再通过展示库筛选和细胞表达获得全人源抗体。重组抗体的载体如何选择?全人源化抗体特点:全人源化抗体对人体的免疫原性极小,是抗体药研发最重要的对象,在疾病和癌症的治疗中具备广泛的应用,非常具备研究和生产价值。全人源化抗体生产方式:重组抗体的类型及生产流程小分子抗体小分子抗体顾名思义是分子量较小的抗体,一般为完整Ig的一部分,现有的小分子抗体有Fab、Fv、 scFv、SdAb、微抗体、纳米抗体。重组抗体的类型及生产流程小分子抗体特点:小分子抗体分子量大小只有完整Ig大小的1/12~1/2,穿透性强,同时具备抗原亲和力,并且可通过基因工程系统来操作编辑,通过各种重组蛋白表达系统来大量生产。小分子抗体生产方式:重组抗体的类型及生产流程双特异性抗体具备两种特异性抗原结合位点的抗体,可同时与两种抗原结合,例如可同时结合靶细胞(癌症细胞)和效应细胞(T细胞),定向介导效应细胞对靶细胞的杀伤作用,是抗体药物领域的重要研究对象,在肿瘤治疗方面具有卓越的成效。双特异性抗体特点:1. 拥有两种特异性抗原结合位点,作为抗体药物,是治疗肿瘤的“抗体炸弹”,比普通的抗体药具有更强的导向性、更强的治疗效果,是最为理想的肿瘤治疗药物;2. 自然状态不存在,只能通过人工制备获得。双特异性抗体生产方式:[align=left][font='calibri'][size=13px]义翘神州推出[/size][/font][font='calibri'][size=13px]大规模重组抗体生产服务[/size][/font][font='calibri'][size=13px],服务周期大概在4-10周;[/size][/font][/align][size=13px]服务内容[/size][size=13px]可以查看:[/size][url=https://cn.sinobiological.com/services/large-scale-antibody-production-service][size=13px]https://cn.sinobiological.com/services/large-scale-antibody-production-service[/size][/url][size=13px] 里面有更详尽的内容服务。[/size]

  • 基因工程的操作步骤

    第一步:目的基因的制取: 用限制性内切酶直接对基因组DNA进行部分酶切,产生一系列大小不等的DNA片段。那里面含有一种或几种遗传信息的全套遗传密码。获取目的基因是基因工程操作的关键。基因工程的原料就是目的基因。所谓目的基因,是指已被或欲被分离、改造、扩增和表达的特定基因或DNA片段,能编码某一产物或某一性状。目前获取目的基因的方法主要有三种:反向转录法、内切酶切割分离法和人工合成法. 第二步:基因载体的选取: 用人工方法,取得目的基因的适宜的载体,即质粒(一种环状双链DNA)或病毒。载体一般带有必要的标志基因,以便进行检测。 基因克隆载体必须具备三个条件: a.具有能使外源DNA片段组入的克隆位点。 b.能携带外源DNA进入受体细胞,或游离在细胞质中进行自我复制,或整合到染色体DNA上随染色体DNA的复制而复制。 c.必须具有选择标记,承载外源DNA的载体进入受体细胞后,以便筛选克隆子。http://learn.gxtc.edu.cn/NCourse/swjs/gene/Images/bz1.jpg基因工程的基本过程(点击放大) 第三步:DNA的体外重组: 即用人工方法,让目的基因与运载体相结合,首先要用限制性内切酶和其他一些酶类,切割或修饰载体DNA和目的基因,然后用连接酶将两者连接起来,使目的基因插入载体内,形成重组DNA分子。这些工作都在生物体外进行,所以基因工程操作又叫体外DNA重组。 第四步:DNA重组体导入受体细胞: 将外源DNA片段与载体DNA连接形成DNA重组体,即重组DNA。 这种重组体连接的方法主要有: 粘性末端连接法:应用同一种限制性内切酶切割载体和外源DNA分子,可产生相同的粘性末端(接口处的碱基互补),进一步用DNA连接酶将断口连好,即可获得重组DNA分子。http://learn.gxtc.edu.cn/NCourse/swjs/gene/Images/zhuru.jpgDNA重组体导入受体细胞 钝性末端连接法:用化学合成法或逆转录法得到的外源DNA片段,均为钝性末端,这种末端也可以用特殊的连接酶连接,但效率太低。通常需要用人工方法加上粘性末端,再进行连接。第五步:受体细胞的繁殖扩增: 含重组DNA的活受体细胞,再在适当的培养条件下,并进行繁殖和扩增,使得重组DNA分子在受体细胞内的拷贝数大量增加。 第六步:克隆子的筛选和鉴定: 受体细胞经转化(传染)或传导处理后,真正获得目的基因并能有效表达的克隆子一般来说只是一小部分,而绝大部分仍是原来的受体细胞,或者是不含目的基因的克隆子。为了从处理后的大量受体细胞中分离出真正的克隆子,需要对克隆子进行筛选和鉴定。 第七步:目的基因的表达。

  • 重组蛋白表达:原理、系统、步骤及应用详解

    [font=宋体]在现代生命科学研究中,[url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白表达技术[/b][/url]扮演着至关重要的角色。通过将外源基因导入宿主细胞,并使其表达特定蛋白,我们能够获取大量高纯度的重组蛋白,为疾病治疗、药物研发和生物工程等领域提供了强有力的支持。本文将介绍重组蛋白表达的原理、表达系统、生产步骤以及应用前景。[/font][font=宋体][b]一、重组蛋白表达的原理[/b][/font][font=宋体][font=宋体]重组蛋白表达是利用[/font][font=Calibri]DNA[/font][font=宋体]重组技术,将目标基因(外源基因)导入宿主细胞中,并通过宿主细胞的生物机制使其表达出特定蛋白。其主要步骤包括:[/font][/font][font=宋体][font=宋体]基因克隆:将目标基因经过[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]扩增后,与表达载体连接,形成重组质粒。[/font][/font][font=宋体]转染或转化:将重组质粒导入宿主细胞中,可以使用化学方法、电穿孔或者嗜热菌等方式进行转染或转化。[/font][font=宋体]表达蛋白:重组质粒进入宿主细胞后,融合到宿主细胞的染色体中,随后遵循细胞的转录和翻译机制,表达出目标蛋白。[/font][font=宋体] [/font][b][font=宋体]二、常见的重组蛋白表达系统[/font][/b][font=宋体]大肠杆菌表达系统:大肠杆菌是常用的重组蛋白表达宿主细胞之一。其优点在于生长快速、易于培养,并且能够产生大量的蛋白。此外,大肠杆菌的遗传工具和代谢途径也被广泛研究,提供了便利。[/font][font=宋体]酵母表达系统:酵母表达系统包括酿酒酵母和毕赤酵母。这些酵母细胞具有真核细胞的特点,能够进行正确的蛋白折叠和修饰。同时,酵母细胞也可以进行大规模培养和高表达,适用于一些复杂蛋白的表达。[/font][font=宋体]昆虫细胞表达系统:昆虫细胞表达系统常用于大规模蛋白表达。昆虫细胞具有真核细胞的优势,能够对蛋白进行正确的折叠和修饰,适合于表达大量需求复杂结构的重组蛋白。[/font][font=宋体]哺乳动物细胞表达系统:哺乳动物细胞的表达系统可用于高效表达复杂蛋白和进行蛋白质研究。哺乳动物细胞具有真核细胞特点,能够进行正确的蛋白质修饰和折叠,并且在一些特殊情况下需要考虑到人类蛋白的免疫原性。[/font][font=宋体] [/font][font=宋体][b]三、重组蛋白生产步骤[/b][/font][font=宋体] [/font][font=宋体]细胞中有两个蛋白生产阶段:转录和翻译,被称为分子生物学的中心法则。换言之,转录和翻译步骤属于重组蛋白表达步骤。[/font][font=宋体] [/font][font=宋体]为了生产重组蛋白,基因被分离并克隆到表达载体中。重组蛋白的生产需要蛋白表达系统、蛋白纯化系统和蛋白识别系统。[/font][font=宋体] [/font][font=宋体][b]获取重组蛋白的基本步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]目标基因的扩增。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]插入克隆载体。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]亚克隆到表达载体中。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]转化到蛋白表达宿主中[/font][font=Calibri]([/font][font=宋体]细菌[/font][font=Calibri]([/font][font=宋体]大肠杆菌[/font][font=Calibri])[/font][font=宋体]、酵母细胞、哺乳动物细胞或杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞系统[/font][font=Calibri])[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]5.[/font][font=宋体]重组蛋白鉴定试验[/font][font=Calibri](Western blot[/font][font=宋体]或荧光[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]6.[/font][font=宋体]大规模生产。[/font][font=Calibri]([/font][font=宋体]大规模发酵[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]7.[/font][font=宋体]分离和纯化。[/font][/font][font=宋体] [/font][font=宋体]需要考虑多种因素:[/font][font=宋体][font=Calibri]1.[/font][font=宋体]选择哪个宿主系统?[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]如何分离和纯化重组蛋白?[/font][/font][font=宋体] [/font][font=宋体]选择适当的表达宿主或使用正确的纯化方法并不容易,应考虑目标重组蛋白的性质。下面列出了一些重要因素:[/font][font=宋体] [/font][font=宋体]? 膜结合[/font][font=宋体]? 溶解度[/font][font=宋体]? 单或多结构域[/font][font=宋体][font=宋体]? 大小[/font][font=Calibri]([/font][font=宋体]分子量[/font][font=Calibri])[/font][/font][font=宋体]? 表达位置[/font][font=宋体] [/font][font=宋体][font=宋体]对于大多数没有足够经验来表达和分离重组蛋白的人来说,重组蛋白的生产是非常耗时的。许多生物公司为各种不同规模的重组蛋白表达提供良好的服务:[/font][font=Calibri]https://cn.sinobiological.com/services/recombinant-protein-expression-service[/font][font=宋体],例如义翘神州[/font][/font][font=宋体] [/font][font=宋体][b]四、重组蛋白表达技术的应用前景[/b][/font][font=宋体]药物研发:重组蛋白表达技术被广泛应用于药物研发领域,用于生产重组蛋白药物。这些药物包括多肽类、蛋白类和抗体类药物,如生长因子、抗体药物和血液制剂等。通过重组蛋白表达技术,我们可以获得高效纯度的药物,满足临床上的需求。[/font][font=宋体]生物工程:重组蛋白表达技术被广泛应用于生物工程领域,用于生产特定的蛋白产品。这些产品可以应用于食品、化妆品、工业发酵等领域,如酶制剂、生物染料和生物材料等。[/font][font=宋体]疾病治疗:通过重组蛋白表达技术,我们能够合成特定的蛋白,用于疾病的治疗和诊断。例如,利用重组抗体技术,可以开发出用于癌症治疗和免疫治疗的抗体药物。[/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 重组蛋白资源常见问题解析

    [font=宋体][font=宋体]重组蛋白是由操作基因[/font][font=Calibri]-[/font][font=宋体]重组基因编码的蛋白,由特异性重组表达系统生产。重组基因是一种新的遗传组合,其中插入了来自不同分子或来自其他物种的一个或多个[/font][font=Calibri]DNA[/font][font=宋体]片段或基因。与天然蛋白相比,重组蛋白可以相对轻松地实现大量生产。[/font][/font][font=宋体] [/font][font=宋体]重组蛋白在细胞因子和生长因子的研究、酶和激酶的研究以及补体系统功能等生物过程方面发挥着重要作用。此外,重组蛋白被称为高效药物,不会产生脱靶副作用,比小分子药物的开发时间更短。[/font][font=宋体] [/font][b][font=宋体]下面是关于重组蛋白资源常见问题解析:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1%BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10%FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体][font=Calibri]1)[/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2)[/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。[/font][font=Calibri]3)IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4)[/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF,IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5)[/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体][font=宋体]载体蛋白如[/font][font=Calibri]HSA[/font][font=宋体]或[/font][font=Calibri]BSA[/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font][font=Calibri]0.1%BSA[/font][font=宋体]或[/font][font=Calibri]0.1%HSA[/font][font=宋体])分装保存,并在[/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]9.[/font][font=宋体]如何区分重组蛋白、融合蛋白和天然蛋白[/font][/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • 重组蛋白亲和层析分离纯化的方法

    目的要求(1)了解克隆基因表达的方法和意义。(2)了解重组蛋白亲和层析分离纯化的方法。实验原理克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在 37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。试剂和器材一、试剂 LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. 氨苄青霉素:100mg/mL 上样缓冲液:100 mM NaH2PO4, 10 mMTris, 8M Urea, 10 mM2-ME, pH8.0 Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH8.0 IPTG二、器材摇床,离心机,层析柱(1′10 cm)操作方法一、氯霉素酰基转移酶重组蛋白的诱导1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于-20℃或-70℃冰箱中。二、氯霉素酰基转移酶重组蛋白的分离、纯化1. NTA层析柱的准备:在层析柱中加入1mL NTA介质,并分别用8mL 去离子水,8mL上样缓冲液洗涤。2. 重组蛋白的变性裂解:在冰浴中冻融菌体沉淀,加入5mL上样缓冲液, 用吸管抽吸重悬,超声波破裂菌体,用振荡器等轻柔的混匀样品60min, 4℃ 12000rpm 离心 30 min, 将上清吸至一个干净的容器中,并弃沉淀。取10ul 上清样品用于SDS-PAGE 分析。3. 上清样品以10-15mL/h 流速上Ni2+-NTA柱,收集流出液,取10ul样品用于SDS-PAGE 分析。4. 洗脱杂蛋白:用Washing Buffer以10-15mL/h流速洗柱,直至OD280 = 0.01.分步收集洗脱液,约3-4h,取10ul洗脱开始时的样品用于SDS-PAGE 分析。5. 洗脱目标蛋白:用Elution Buffer洗柱,收集每1 mL 级分,分别取10ul样品用于SDS-PAGE 分析。

  • 一种新型的重组蛋白A柱

    一种新型的重组蛋白A柱

    http://simg.instrument.com.cn/bbs/images/brow/em09511.gif一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。http://cp00a3cee71b5f96adf6e669b5d7f56a9f11.jpg/http://C:\Documents and Settings\adim\桌面\001.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_632703_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg

  • 中国国药重组新冠病毒疫苗Ⅰ/Ⅱ期临床试验启动

    [font=&][size=16px][color=#333333]中国生物微信公号4月24日消息,今日,由国药集团中国生物研究院研发的重组新冠病毒疫苗Ⅰ/Ⅱ期临床试验在河南商丘启动。4月9日,中国生物研究院基因重组新冠疫苗获得国家药品监督管理局临床试验批件,成为中国生物第三个获批临床的新冠疫苗,唱响了全球首家三重奏。[/color][/size][/font]

  • 高通量重组蛋白表达技术在大肠杆菌中的应用

    [b][font=宋体]前言[/font][/b][font=宋体]在当今的生物技术领域,高通量重组蛋白表达技术在基础研究和商业应用中扮演着非常重要的角色。随着后基因组时代的到来,研究人员对大规模蛋白表达和纯化的需求日益增长,大肠杆菌因其易于遗传操作、低成本、生长迅速成为生产重组蛋白的首选微生物宿主。本文将综述大肠杆菌中高通量重组蛋白表达的现状和未来展望,探讨从目的基因获取到蛋白表达和纯化的先进技术,并讨论如何克服[/font][url=https://cn.sinobiological.com/resource/protein-review/protein-expression][u][font=宋体][color=#0000ff]重组蛋白表达[/color][/font][/u][/url][font=宋体]过程中的挑战。[/font][font=Calibri] [/font][b][font=宋体]高通量重组蛋白表达技术[/font][/b][font=宋体][font=宋体]高通量研究是一种能够同时检测数千个生物分子,使大规模重复成为可能的研究。[/font][font=Calibri]20[/font][font=宋体]世纪[/font][font=Calibri]90[/font][font=宋体]年代初,第一台[/font][font=Calibri]DNA[/font][font=宋体]测序仪被开发出来,人类基因组计划随之开启,高通量技术在[/font][font=Calibri]DNA[/font][font=宋体]、[/font][font=Calibri]RNA[/font][font=宋体]、蛋白质、脂质和代谢物检测的需求也急剧增加。自该技术提出以来,大肠杆菌中高通量重组蛋白表达和纯化已经得到了广泛的应用。[/font][/font][font=Calibri] [/font][font=Calibri]1. [/font][b][font=宋体]目的基因的制备[/font][/b][font=宋体][font=宋体]获取目的基因是重组蛋白表达的第一步。传统的方法是从[/font][font=Calibri]cDNA[/font][font=宋体]文库中直接克隆基因,但这种方法存在局限性,如从库中筛选基因较为费时以及难以添加融合标签等。高通量[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]技术是目前获取目的基因最常用的技术,设计引物并调整好参数后,即可在[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]仪中自动完成目的基因的制备。[/font][/font][font=Calibri] [/font][font=Calibri] [/font][font=Calibri]2. [/font][b][font=宋体]表达载体的高通量构建[/font][/b][font=宋体][font=宋体]研究人员开发了多种构建表达载体的克隆方法,包括基于限制性内切酶的克隆、重组克隆和不依赖于连接反应的克隆等。这些方法各有优势和局限性,但在近年来都有显著改进。例如,基于限制性内切酶的克隆因其简单、高效、通用和成本效益而备受关注。一个理想的大肠杆菌表达载体应具备选择标记、复制起点、转录启动子、[/font][font=Calibri]5'[/font][font=宋体]非翻译区([/font][font=Calibri]5'UTR[/font][font=宋体])和翻译起始位点。此外,融合标签的添加对于目的基因的转录和蛋白表达同样至关重要。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]3. [/font][b][font=宋体]大肠杆菌表达菌株的选择和细胞培养[/font][/b][font=宋体][font=宋体]为保证蛋白质表达成功及其表达质量,应选择合适的大肠杆菌菌株,如[/font][font=Calibri]BL21[/font][font=宋体]及其衍生菌株是较常用的重组蛋白生产菌株。培养大肠杆菌比较简单的方法是分批培养,但此方法对生长的控制比较有限。近年来,高通量培养技术使研究人员能够在一系列发酵条件下处理大量样品,大大加快了生产时间。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]4. [/font][b][font=宋体]高通量蛋白表达和纯化[/font][/b][font=宋体][font=宋体]高通量平台可以快速克隆基因、挑选菌落、分离质粒[/font][font=Calibri]DNA[/font][font=宋体]、转化细菌、表达和纯化蛋白质。这些平台虽然成本高昂,但为复杂的分子生物学实验操作提供了极大的便利。[/font][/font][font=Calibri] [/font][b][font=宋体]结论与展望[/font][/b][font=宋体]大肠杆菌中的[/font][url=https://cn.sinobiological.com/services/high-throughput-antibody-production-service][u][font=宋体][color=#0000ff]高通量重组蛋白表达技术[/color][/font][/u][/url][font=宋体][font=宋体]极大的推进了重组蛋白的表达进程。尽管存在挑战,但通过不断优化和创新,研究人员正在朝着更高效可靠的蛋白质生产系统改进。未来的发展方向包括进一步优化克隆方法、开发新的融合标签、改进表达载体和菌株,以及利用高通量技术实现从[/font][font=Calibri]DNA[/font][font=宋体]到大规模蛋白质生产的快速转变等。[/font][/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 2016 6(8):160196. doi:10.1098/rsob.160196[/font]

  • 【分享】基因工程原理与方法

    下载地址:http://www.instrument.com.cn/download/shtml/036497.shtml本书由数十位中青年医学分子生物学专家集体编著。详细系统的介绍了基因和基因工程概论、基因组的结构、基因的转移和重组、基因表达的调控、工具酶及其应用、基因工程载体及其选用、聚合酶链反应、基因的克隆及其进展、外源基因表达系统、转基因动物、基因诊断、基因工程抗体、基因工程药物、基因治疗及基因工程疫苗等,还收录了数10种常用的分子生物学试验方法。具有简明扼要、图文并茂、可操作性强等特点。希望大家尊重原创,并在引用时,注明出处。

  • 如何明辨重组蛋白、融合蛋白与天然蛋白:重组蛋白常见问题详解

    [font=宋体][b]重组蛋白、融合蛋白与天然蛋白的区别:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]重组蛋白常见问题解析:[/b][/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体] [/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1% BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10% FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体] [/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1) [/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2) [/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。 [/font][font=Calibri]3) IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4) [/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF, IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5) [/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]载体蛋白如[/font] [font=Calibri]HSA [/font][font=宋体]或 [/font][font=Calibri]BSA [/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font] [font=Calibri]0.1% BSA [/font][font=宋体]或 [/font][font=Calibri]0.1% HSA[/font][font=宋体])分装保存,并在 [/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • 【原创】一种新型的重组蛋白A柱

    【原创】一种新型的重组蛋白A柱

    [em09511]一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。[IMG]http://CP00A3CEE71B5F96ADF6E669B5D7F56A9F11.jpg[/IMG][URL=http://C:\Documents and Settings\adim\桌面\001.jpg]http://C:\Documents and Settings\adim\桌面\001.jpg[/URL][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187443_1672347_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg[/img]

  • 讨论基因治疗

    本文转自:《医药经济报》 基因药欧洲获准上市 基因产业冷冻十年再热   随着基因治疗药物即将在欧洲获准上市,将会有更多大药企开始关注基因治疗领域的进展和项目合作  西方世界第一个基因治疗药物有望不久之后在欧洲获准上市。日前欧洲监管机构建议批准由荷兰uniQure公司研制和申报的基因治疗药物Glyber。该药以AAV为载体,向患者体内注入LPL基因,适应症是严格限制脂肪饮食却仍然发生严重或反复胰腺炎发作的脂蛋白脂酶缺乏症(LPLD)。  欧洲药品管理局(EMA)通常会支持来自药品监管部门的推荐。此前EMA已3次拒绝Glybera的新药上市申请,导致uniQure公司的前身阿姆斯特丹分子治疗公司破产。值得庆幸的是,投资者很有眼光,公司很快完成重组,设立了新的uniQure公司。熬过黎明前的黑暗,坚持到最后,uniQure公司终于等到了好消息。

  • 重组抗体的类型有哪些?

    [font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/recombinant-antibody-overview][b]重组抗体[/b][/url],也被称为重组免疫球蛋白,是通过基因工程技术将抗体的基因在合适的宿主细胞中表达并生产出来的一类抗体。与传统的多克隆抗体和单克隆抗体相比,重组抗体具有更高的特异性和亲和力,并且可以针对特定的抗原表位进行设计和优化。[/font][font=宋体] [/font][font=宋体][font=宋体]重组抗体的类型包括嵌合抗体、双特异性抗体、抗体片段和[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白等。下面一起来看一下他们各种的应用:[/font][/font][font=宋体]①[url=https://cn.sinobiological.com/resource/antibody-technical/chimeric-monoclonal-antibody][b]嵌合抗体[/b][/url][/font][font=宋体][font=Calibri]1975[/font][font=宋体]年,杂交瘤技术的发现彻底改变了抗体研究和临床开发。然而,鼠源性抗体的疗效受到人抗鼠抗体([/font][font=Calibri]HAMA[/font][font=宋体])效应的限制,鼠源性单抗对人体具有异种蛋白的免疫原性 [/font][font=Calibri],[/font][font=宋体]在人体内半衰期较短。[/font][font=Calibri]1984[/font][font=宋体]年,研究人员通过基因工程构建了第一个嵌合抗体,也是公认的第一种重组抗体,以降低鼠源抗体在人体内的免疫原性。其中,约[/font][font=Calibri]30%-35%[/font][font=宋体]的分子来源于小鼠的抗体序列,约[/font][font=Calibri]65%-70%[/font][font=宋体]来源于人的抗体序列。所得嵌合抗体保留了亲代小鼠抗体的抗原结合能力。抗体嵌合是开发治疗性人源化抗体的第一步。义翘神州采用[/font][font=Calibri]CDR[/font][font=宋体]移植技术和计算机辅助分子建模,提供高质量的单克隆抗体人源化服务,成功率高,人源化程度[/font][font=Calibri]90%[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]②抗体片段[/font][font=宋体][font=宋体]每一个完整的免疫球蛋白([/font][font=Calibri]IgG[/font][font=宋体])分子包含通过二硫键连接的两条重链和两条轻链。抗体片段(如[/font][font=Calibri]Fab[/font][font=宋体]、[/font][font=Calibri]scFv[/font][font=宋体]和[/font][font=Calibri]VHH[/font][font=宋体])体积小,比其全长抗体具有更好的组织或肿瘤穿透力。因此,它们在免疫治疗方面具有巨大的前景,尤其是在实体瘤方面。此外,它们的半衰期也较短,可用作放射性显像剂。然而,由于缺乏[/font][font=Calibri]Fc[/font][font=宋体]区,它们不能引起[/font][font=Calibri]Fc[/font][font=宋体]介导的抗体效应功能,如抗体依赖性细胞毒性([/font][font=Calibri]ADCC[/font][font=宋体])和补体依赖性细胞毒性([/font][font=Calibri]CDC[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]起初采用酶解法对[/font][font=Calibri]IgG[/font][font=宋体]抗体进行片段化。胃蛋白酶作用于铰链区二硫键所连接的两条重链的近[/font][font=Calibri]C[/font][font=宋体]端,水解产生被称为[/font][font=Calibri]F(ab[/font][font=宋体]’[/font][font=Calibri])2[/font][font=宋体]的二价[/font][font=Calibri]Fab[/font][font=宋体]片段。然后,通过木瓜蛋白酶将该片段裂解为两个相同的[/font][font=Calibri]Fab[/font][font=宋体]片段。然而,酶解法限制了可制备的抗体片段类型,而且不适合工业化大规模生产和纯化。随着抗体工程技术的进步,这些问题可以通过重组生产抗体片段来解决。抗体基因克隆测序成功后,可通过瞬时转染在原核表达系统(如大肠杆菌)和哺乳动物系统([/font][font=Calibri]HEK293[/font][font=宋体]细胞)中表达抗体片段。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]凭借丰富的重组生产经验,义翘神州建立了高通量[/font][font=Calibri]VHH[/font][font=宋体]表达平台,交付了多个[/font][font=Calibri]VHH[/font][font=宋体]抗体生产项目,总体成功率超过[/font][font=Calibri]90%[/font][font=宋体]。除了常见的[/font][font=Calibri]VHH[/font][font=宋体]形式,我们还可以表达双特异和多特异[/font][font=Calibri]VHH[/font][font=宋体]。此外,义翘神州还可以表达其他各种高特异性和亲和力的抗体片段,如[/font][font=Calibri]scFv[/font][font=宋体]和[/font][font=Calibri]Fab[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]③[url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url][/font][font=宋体][font=宋体]与常规单克隆抗体不同,双特异性抗体([/font][font=Calibri]bsAb[/font][font=宋体])具有两个结合位点,可识别同一抗原上两个不同抗原或表位。由于这一特性,双特异性抗体备受研究者和制药业的关注。截止目前,美国食品药品监督管理局([/font][font=Calibri]FDA[/font][font=宋体])已批准了[/font][font=Calibri]4[/font][font=宋体]种双抗药物,而且[/font][font=Calibri]160[/font][font=宋体]多种双抗正在进行临床试验,用于治疗癌症、糖尿病、阿尔茨海默病和其他疾病。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]起初,双特异性抗体通过四源杂交瘤技术制备,但这对下游抗体生产和纯化构成了巨大的挑战。随着过去[/font][font=Calibri]20[/font][font=宋体]年重组[/font][font=Calibri]DNA[/font][font=宋体]技术的发展,出现了几种双特异性抗体形式,以适应所需的靶标[/font][font=Calibri]-[/font][font=宋体]产品特征。为了解决重链错配问题,[/font][font=Calibri]Genentech[/font][font=宋体]首先提出了“[/font][font=Calibri]knob-into-hole[/font][font=宋体]”([/font][font=Calibri]KiH[/font][font=宋体])技术,该技术通过对[/font][font=Calibri]CH3[/font][font=宋体]结构域进行改造,在每条重链中创建一个“[/font][font=Calibri]knob[/font][font=宋体]”或一个“[/font][font=Calibri]hole[/font][font=宋体]”,以诱导异源二聚化。同样地,研究人员也采用了[/font][font=Calibri]common light chain [/font][font=宋体]和[/font][font=Calibri]CrossMab[/font][font=宋体]等其他技术来解决轻链错配问题。表达双特异性抗体主要在哺乳动物细胞中进行。由于单克隆抗体和双特异性抗体之间的各种结构相似性,许多已建立的常规单抗纯化工艺也可适用于双特异性抗体。(参见另一篇文章:“双特异性抗体:抗体治疗中的新星”)[/font][/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b][font=Calibri]Fc[/font][font=宋体]融合蛋白[/font][/b][/url][/font][font=宋体][font=Calibri]Fc[/font][font=宋体]融合蛋白(又称[/font][font=Calibri]Fc[/font][font=宋体]嵌合融合蛋白、[/font][font=Calibri]Fc-Ig[/font][font=宋体]和[/font][font=Calibri]Fc[/font][font=宋体]标签蛋白)是一种同源二聚体,由免疫球蛋白的[/font][font=Calibri]Fc[/font][font=宋体]段与具有生物学活性的蛋白分子组成。虽然单克隆抗体是治疗性生物制剂开发的重点,但[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白也是一类成功的生物制药产品,至少有[/font][font=Calibri]13[/font][font=宋体]种药物获得了欧洲药品管理局([/font][font=Calibri]EMA[/font][font=宋体])和美国[/font][font=Calibri]FDA[/font][font=宋体]的批准。除治疗应用外,[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白还是基础研究中的检测试剂,包括流式细胞术、免疫组织化学和蛋白结合试验。事实上,与[/font][font=Calibri]Fc[/font][font=宋体]区的连接可以提高一些结合蛋白的溶解度和稳定性。鉴于其大小和对糖基化的需求(大多数是糖蛋白),[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白主要在哺乳动物表达系统中产生。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]目前,抗体工程技术取得了一定的进步,这极大地促进了各种形式重组抗体的开发,用于疾病治疗。[/font][font=Calibri]FDA[/font][font=宋体]已批准了[/font][font=Calibri]100[/font][font=宋体]多种抗体药物,目前有多种抗体处于临床后期开发阶段。此外,重组抗体还可用于许多研究应用:蛋白免疫印迹([/font][font=Calibri]WB[/font][font=宋体])、免疫组织化学([/font][font=Calibri]IHC[/font][font=宋体])、免疫荧光([/font][font=Calibri]IF[/font][font=宋体])、流式细胞术([/font][font=Calibri]FC[/font][font=宋体])和表面等离子体共振([/font][font=Calibri]SPR[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体]总之,重组抗体是基因工程技术的重要应用之一,其类型多样,具有广泛的应用前景。随着基因工程技术的发展,重组抗体的生产成本和安全性问题也将得到进一步优化,为临床治疗和科学研究提供更多有效的工具。同时,我们也应该认识到重组抗体的潜在风险和挑战,加强对其安全性和有效性的评估和监管,以确保其能够更好地服务于人类的健康事业。[/font][font=宋体] [/font][font=宋体][font=宋体]更多重组抗体详情关注:[/font][font=Calibri]https://cn.sinobiological.com/news/recombinant-antibodies-formats[/font][/font][font=宋体] [/font][font=Calibri] [/font]

  • 【原创】转基因食品及其安全性评价

    以重组DNA技术为代表的生物技术是21世纪最重要的高新技术之一。以转基因植物为先导的现代生物技术的产业化发展对于我国农业、农村和国民经济发展及社会稳定都具有重要作用。经过1980年以来20多年的努力,目前我国在这一领域的发展已处于发展中国家的前列,但与美欧先进国家相比还有相当大的差距,在对转基因技术及食品安全性的认识方面尤其如此。本文拟对转基因食品及其安全性评价做一简单介绍。 一、转基因食品的发展现状 在介绍转基因食品之前,首先要了解什么是基因和转基因技术。基因(DNA) 是控制生物性状遗传的结构和功能单位。DNA是脱氧核糖核酸的英文缩写,它编码各种遗传信息,产生不同的蛋白质。转基因技术主要是指利用重组DNA技术和物理、化学和生物学等方法把重组DNA分子导入生物体的技术。应用转基因技术构建的生物称为转基因生物,包括转基因植物、转基因动物和转基因微生物。因此,通俗地讲,转基因食品就是用转基因生物生产和加工的食品。与转基因植物、动物和微生物相适应,转基因食品也可以进一步分为转基因植物食品、动物食品和微生物食品。 以上三类转基因食品中,发展最快的是转基因植物食品。虽然中国、美国和加拿大都有快速生长的转基因鱼已经取得了突破性进展,但是,迄今为止,全世界还没有转基因动物食品批准上市。在国外,将转基因细菌和真菌生产的酶用于食品生产和加工已经比较普遍了,但是用于面包、啤酒、酸奶等食品和饮料的转基因酵母菌和其他微生物还没有获准进入市场应用。因此,目前市场上的转基因食品基本上只有转基因植物食品。 自1983 年世界上第一例转基因作物(烟草和马铃薯)问世以来,转基因植物的研究得到了迅速发展。1994年延熟保鲜转基因番茄在美国批准上市,从1996年开始,转基因作物商品化应用进入迅猛发展时期,2000年全球种植面积达到4,420万公顷,2001年在有激烈争议的情况下种植面积仍比上年增加19%,达到 5,260万公顷。其中,转基因大豆种植面积为3,330万公顷,占转基因作物总面积的63%;其次为玉米,980万公顷,占转基因作物总面积的19%;面积较大的还有棉花和油菜。种植的国家有13个,其中美国、阿根廷、加拿大分列前3位。各国已获准上市的转基因作物品种已达100多个(次),仅美国即达 53个(次),包括番茄、大豆、玉米、棉花、油菜、水稻、马铃薯、西葫芦、番木瓜、甜菜、菊苣、亚麻等12种作物。由转基因作物生产加工 的转基因食品和食品成分已达4000余种。其中,以大豆和玉米为原料的占90%以上。1997[size=4

  • 深入了解重组蛋白疫苗:基础原理、优势与局限

    [b][font=宋体][font=宋体]什么是重组蛋白疫苗[/font][font=Calibri]? [/font][/font][/b][font=宋体]即将某种病毒的目的抗原基因构建在表达载体上,将已构建的表达蛋白载体转化到细菌、酵母或哺乳动物或昆虫细胞中,在一定的诱导条件下,表达出大量的抗原蛋白,通过纯化后制备的疫苗。[/font][font=宋体] [/font][b][/b][font=宋体][font=宋体][b]重组蛋白疫苗的基本原理[/b]是将病毒表面的刺突蛋白或受体结合区([/font][font=Calibri]Receptor binding domain, RBD[/font][font=宋体])的一部分,与宿主细胞结合制成疫苗。通过结合重组蛋白和多种免疫素来增强免疫应答,促进抗体产生,从而诱导免疫系统产生高强度的识别位点,使人体具备更好的免疫抵抗力,并可迅速减轻症状,有效地预防和治疗传染病。[/font][/font][font=宋体] [/font][b][font=宋体]重组蛋白疫苗优势:[/font][/b][font=宋体]①不养活病毒,无需担心病毒外泄,对生产车间的生物安全等级要求低;[/font][font=宋体][font=宋体]②利用转基因技术生产病毒[/font][font=Calibri]S[/font][font=宋体]蛋白上的[/font][font=Calibri]RBD[/font][font=宋体]蛋白,能实现高产量、高纯度、低成本;[/font][/font][font=宋体][font=宋体]③重组蛋白疫苗只含[/font][font=Calibri]RBD[/font][font=宋体]蛋白,纯度高,安全性更好。[/font][/font][b][font=宋体] [/font][font=宋体]重组蛋白疫苗缺点:[/font][/b][font=宋体]①免疫原性较差:相比于一些其他类型的疫苗,重组蛋白疫苗的免疫原性可能较差。这意味着需要使用较高剂量的疫苗才能激发免疫反应,从而增加疫苗的成本和副作用的发生率。[/font][font=宋体]②需要辅助免疫刺激剂:重组蛋白疫苗通常需要添加辅助免疫刺激剂,如佐剂或载体,以增强免疫原性和免疫反应。这些辅助免疫刺激剂可能会增加疫苗的副作用和成本,并且有时可能会引起过敏反应。[/font][font=宋体]③需要多次接种:相对于一些其他类型的疫苗,重组蛋白疫苗需要进行多次接种,以达到充分的免疫效果。这可能会增加接种的难度和成本,并且需要较长时间才能建立起有效的免疫保护。[/font][font=宋体]④局部和全身反应:虽然重组蛋白疫苗的安全性较高,但含有佐剂的疫苗可能引起更多局部反应,如注射部位发红、肿胀,以及更多全身反应,如发热、寒战和身体疼痛。[/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白生产[/b][/url]详情可参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • “十二五”863计划昭示生物医药和基因工程新投资契机

    生物医药行业发展空间广阔从整体上看,本次“十二五”和863首批项目的启动,标志着生物医药将纳入到战略性新兴产业发展“十二五”规划,国内医药行业将获得国家更多的政策和资金支持。我们认为,即将出台的振兴规划高屋建瓴,将生命科学前沿、高新技术手段与传统医学优势结合起来,研发适应多发性疾病和新发传染病防治要求的创新药物,形成以创新药物研发为龙头的医药研发产业链,大幅度提升生物医药产业的国际竞争力。从基本面看,基因工程是生物工程的一个重要领域,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。国家鼓励创新,未来将会在基因药物、遗传工程药物、酶工程药物研发方面给予资金和政策的支持,这将使我国生物医药加速发展,行业具有一定的中期投资机会。基因重组和单克隆技术或成新宠近年来,我国单克隆抗体技术取得长足发展,目前部分药物已经上市,部分创新药物即将出炉。我们预计,在“十二五”规划和863项目出台后,单克隆抗体等先进技术将继续获得国家的大力支持,形成生物医药领域的重大突破。从基因重组的技术上看,我国已经能够做到从不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子,具体包括重组、位点特异重组、转座作用等。而我国主要的基因重组技术是基于细胞内或细胞间之间进行交换,并能在新的位置上复制、转录和翻译、基因表达等。目前,有代表性的药物有基因重组胰岛素、基因重组蛋白质药物等。我们注意到,近年来在行业资金和项目环境逐步成熟的背景下,我国已经把基因工程与单克隆抗体结合起来,形成威力强大的抗体“生物导弹”。这种单克隆抗体“导弹”具有高度选择性,对癌细胞命中率高,杀伤力强的优点。例如我国重点支持的原发性肝癌国家一类新药就是一种单克隆抗体,治疗晚期肝癌病人效果不错。单克隆抗体技术的应用,是我国生物医药行业发展当中的一次革命,打破了过去只能在体内产生抗体的方法,而成功地在体外用细胞培养的方法产生抗体,同时繁殖快,可以产生在体内达不到的高滴度和高专一性的水平,标志着我国生物医药行业发展上了一个新台阶。根据国家发改委相关文件,目前受到国家大力支持的有原发性肝癌的单克隆抗体、肿瘤坏死因子受体-抗体融合蛋白等,我们对与之相关的上市公司业绩总体持谨慎乐观态度。基因检测技术成熟可关注从全球角度看,基于基因重组技术的另一大领域是基因芯片和基因诊断。目前我国已经可以通过使用基因芯片分析人类基因组,找出致病的遗传基因;借助专业的检测试剂和基因芯片,诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染;利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。新技术医疗将从千篇一律的“大众医疗”时代进步到依据个人遗传基因而异的“定制医疗”时代。由于我国在基因诊断试剂和体外试剂方面相对成熟,其投资机会值得关注。数据显示,现在临床诊断试剂已发展成为一个拥有200亿美元的国际市场,年增长率约为5.5%的产业。全世界生产诊断试剂的公司估计在200家以上,行业龙头企业的诊断试剂年销售额在10亿美元以上。而国内市场的发展潜力显然大于国际市场。统计数据显示,目前,全国诊断试剂市场规模约为50亿~60亿元人民币,总的来说,目前在临床应用比较广泛、市场广阔的诊断试剂(如免疫试剂中的肝炎、性病和孕检系列,临床生化中的酶类、脂类、肝功、血糖、尿检等系列),国内主要生产厂家的技术水平已基本达到国际水平;基因检测中的PCR技术系列也已达到国际先进水平。1999年~2004年,我国诊断试剂复合年均增长率为15%左右,预计2008年~2012年国内临床诊断市场的年增长率将高达15%~20%,基因检测试剂子行业值得我们适当关注。最后,需要提醒的是,虽然医药行业发展态势良好,但最新公布的宏观经济指标增速放缓,PMI连续下跌,我们在投资生物医药时应注意宏观经济下行风险,在控制风险的基础上谨慎把握可能出现的机会。

  • 转基因水稻胚乳可提取血清白蛋白

    如果说一个人一次献血200ml,一亩转基因水稻产出的血清白蛋白量约等于300人献的血——转基因水稻胚乳可提取血清白蛋白——转基因水稻胚乳可提取血清白蛋白2012年09月01日 来源: 中国科技网 关注转基因 白蛋白供应紧张一直困扰着人类。我国每年需求150—160吨,全球每年需求量则高达500吨,由于血浆来源紧张,我国目前从血浆中提取量仅可供应1/3,其中2/3依赖进口。 2011年10月31日,武汉大学生命科学学院教授杨代常撰写的论文《利用转基因水稻规模化生产重组人血清白蛋白》在《美国科学院院报》发表,吸引了世界的目光。 文章用翔实的科学数据证明,植物来源的重组人血清白蛋白与临床使用的血浆来源血清白蛋白,无论是在生理生化性质,还是功能用途等方面,都具有高度的等同性。 为何这项研究引发种种关注?稻米血清白蛋白是否会危及生态及人身安全?其何时能用于临床治疗?……带着这些问题,记者采访了杨代常和他的团队。 “借腹生子”:从水稻胚乳中提取血清白蛋白 植物种子生物反应器,是将植物种子作为一个蛋白质“生产车间”,利用植物作为合成蛋白质的“机器”来合成人类所需的蛋白质。“通俗地解释,便是‘借腹生子’。”杨代常说。 国外从1989年已开始利用DNA重组技术生产血清白蛋白,但由于血清白蛋白产量低、纯化工艺复杂、生产成本远高于市场成本,始终无法进入市场。 杨代常带领研究团队,从水稻基因组数据入手,根据水稻种子储藏蛋白与血清白蛋白的生化性质差异,设计出从提取到纯化的一整套工艺方案,最大限度地提取血清白蛋白,最低限度去除种子的内源蛋白,成为一项原始创新的科研成果。 “具体来说,是由表达元件组成的载体,通过遗传工程整合到水稻基因组内,在种子特异性调控元件的指导下,水稻种子在成熟过程中也不断地合成和积累人血清白蛋白,然后通过规模化种植获得原料,再经过提取、纯化等步骤获得高纯度的血清白蛋白。”杨代常介绍,目前大约每亩水稻可以产生1.5—2公斤血清白蛋白,如果说一个人一次能献血200ml,一亩转基因水稻产出的血清白蛋白量约等于300人献血。 “天然屏蔽”:可杜绝肝炎、艾滋病毒等风险 植物源重组血清白蛋白优势明显,它来源于非动物,避免了各种病毒和病原菌的污染,并由于不受血浆供应限制,可无限量供应。但是转基因农业作物安全性向来争议不断,植物源血清白蛋白有望未来直接应用于人体中,有人担心会危及生态及人身安全。 对此,杨代常解释,首先,就人血清白蛋白本身安全性而言,血清白蛋白本就是人体的蛋白质,占血浆中蛋白的30%,是一种安全的蛋白质。目前,根据获取的数据,植物来源的人血清白蛋白从生物活性、分子结构和理化性质与血浆来源的人血清白蛋白完全一致,从水稻胚乳中提取的血清白蛋白可杜绝携带如肝炎病毒、艾滋病毒等风险。研究发现,人体对植物蛋白的耐受能力大于对细菌和酵母的耐受能力。从安全性考虑,已建立高纯度符合医药级别纯度的血清白蛋白。其次,就转基因生物安全而言,由于采取地理和时间双重隔离方法,要求比美国更为严格。第三,为杜绝进入食物链,在研究中采取了专用收割机、烘干机、稻米加工设备以及专用仓库等措施,建立了严格的监管规范,能做到可管可控和可追溯。 未来预期:进入临床需4至5年 从2005年始,杨代常自主研发的水稻胚乳细胞蛋白质高效表达技术平台,填补了国际上此项技术规模化生产的空白,已获美、日、欧盟以及我国的多项专利。 杨代常说,目前,植物源重组血清白蛋白的质量已达到非临床应用标准,可替代血源人血白蛋白用于细胞培养基添加剂,成为细胞培养中血浆来源的血清白蛋白的替代品;可减少培养基中胎牛血清的使用量;还可用于高纯试剂、细胞冷冻保护剂、医疗器械包埋剂、药物载体、化妆品组分、体外诊断等。 国外已在疫苗及生物医药产品的细胞培养的稳定剂上使用。我国按照国家药监局的要求,要通过临床研究后才能进入临床应用。 通过治疗大鼠肝硬化腹水对比,进行植物源重组血清白蛋白的药效研究,发现大鼠肝硬化腹水的治疗效果在降低腹围、增加尿量和尿蛋白量等指标优于血浆来源的血清白蛋白。 “植物源重组血清白蛋白正在进行临床前研究,已完成大部分的药学研究,预计在2013年上半年可望完成临床前研究;预计进入临床研究至少需要2年时间,进入临床应用至少需要4—5年或更长的时间,这取决于临床研究的结果与进度以及国家的法规。”杨代常说。 从实验室走向产业化 去年年初,杨代常带着多年的研发成果,入驻武汉东湖国家自主创新示范区光谷生物城,一年内实现了项目产业化。 “这一过程我们走得很艰难。”杨代常说,为了让投资者更有信心,他在商业模式上从长中短期产品计划入手,将技术做好做精。在科技部转基因重大专项、国家863计划和武汉东湖国家自主创新示范区光谷生物城的支持下,加速了项目产业化进程。 “我国生物产业要走在世界前列,在心理上要打破‘奴性’思维,在政策上要突破传统观念,要敢做别人不能做或不敢做的事情。”杨代常说,“现在一谈到转基因,很多人就‘谈虎色变’。实际上,理解上存在很多误区。转基因技术是通过遗传工程的手段,将人类需要的基因(一段DNA片段)导入到植物或任何一种生物的一项高科技技术,是人类由必然王国走向自由王国的必由之路。” 近日,杨代常的科研团队又传出喜讯,在水稻中“种”出了“人抗胰蛋白酶”。目前,重组抗胰蛋白酶与重组血清白蛋白一样,有效地避免人血液中病毒病原菌感染的风险,但需要进行一系列的免疫原性、急性、毒性等相关实验和临床研究后,方能应用于临床。 杨代常透露,未来,其团队研发重心将着重原创性技术研究,建立单克隆抗体的表达平台,使我国的单克隆抗体药物的价格降到5万元左右,重组血清白蛋白进入临床应用。(记者 马爱平) 《科技日报》(2012-09-01 三版)

  • 【求购】究发现人体新陈代谢速度主要由4个基因决定

    [center]究发现人体新陈代谢速度主要由4个基因决定[/center] 研究人员发现,4个基因似乎能决定人们消化食物的速度,这项发现将来也许能帮助医生给病人提供更个性化的护理。 据路透社报道,新陈代谢情况的不同会导致一些人更易患上糖尿病之类的疾病,这也解释了饮食、锻炼、药物对不同病人产生的结果各不相同的原因。 研究人员共扫描了284个人的基因,发现FADS1、LIPC、SCAD和MCAD这4个基因能决定人体的新陈代谢速度。 德国慕尼黑的黑尔姆霍尔茨中心研究人员卡斯滕• 祖雷说:“这些基因似乎与新陈代谢有关,或者能对新陈代谢起重要作用。” 祖雷说,这方面的可能为更个性化的护理开辟了道路,医生可以根据病人的基因构成来研究他们的新陈代谢情况,再根据这些情况决定如何进行治疗。这对于治疗与新陈代谢有关的疾病,如冠状动脉疾病和肥胖可能尤其有效。 祖雷和同事在《公共科学图书馆遗传卷》月刊上撰文说:“这些发现使我们可以根据基因和新陈代谢两方面的特点来作出判断,从而带领我们向个性化护理和营养供给迈进。”信息来源:中国中医药报 -------------------------------------------------------------------------------- 相关链接 - 研究发现人体新陈代谢速度主要由4个基因决定 - 心律失常致病新基因被发现 - 我研究人员研制成功糖尿病基因诊断芯片 - 美科学家开发出一种可防心脏病的转基因大豆 - 科学家发现两种基因变异可增加患肺癌的可能性 - 新加坡科学家发现影响结核病的"关键基因" - 上海乳腺癌基因易感性研究获新发现 - 加拿大科学家研究找到男性型秃发相关基因 - 我国基因重组人源化单克药物泰欣生获重大突破 - 科学家发现脱发基因有助治疗脱发症 - 基因变异增加患皮肤癌风险 - 科学家鉴定出HIV病毒抑制基因 - 英国科学家发现多种疾病致病基因 - 科学家发现细胞基因重组新方法 - 变异基因影响降胆固醇药物疗效 - 美研究人员发现成神经细胞瘤致病基因 - 基因泰克,又一个消逝的生物巨头? - 美国研究显示存在懒惰遗传基因 - 美研究人员:生物钟与新陈代谢分子关联查明 - 科学家通过动物实验发现调控排卵的基因 - 美国研究发现不良行为与基因变异有关 - 中国首个基因重组人源化治疗肿瘤药物成功上市 - 美国研究称编辑特定基因可使人对艾滋免疫 www.chinapharm.cn 2008-12-09

  • 基因工程技术在制药领域的应用前景及产业化趋势

    现代生物技术,又称生物工程,是利用生物有机体(从微生物直至高等动物)或其组成部分(器官、组织、细胞等)发展新工艺或新产品的一种科学技术体系。 生物工程主要包括基因工程、细胞工程、酶工程、蛋白质工程和发酵工程等5个部分。以重组DNA为核心的现代生物技术的创立和发展,为生命科学注入了新的活力,它所提供的实验方法和手段极大地促进了传统生物学科如植物学、动物学、遗传学、生理学、生物医学等的发展。同时,生物技术目前也已被广泛地应用于医药、食品、化学、农业及环保等领域,为这些行业带来了一场新的技术革命。现代生物技术的发展仅20余年,但它在生命科学研究和产业化方面已产生了巨大的影响,但这仅仅是个开始,生物技术的发展和应用仍方兴未艾。基因工程即重组DNA技术,是指对不同生物的遗传基因,根据人们的意愿,进行基因的切割、拼接和重新组合,再转入生物体内,产生出人们所期望的产物,或创造出具有新的遗传特征的生物类型。世界上第一批重组DNA分子诞生于1972年,次年几种不同来源的DNA分子装入载体后被转入到大肠杆菌中表达,标志着基因工程正式登上历史舞台。基因工程彻底改变了传统生物科技的被动状态,使得人们可以克服物种间的遗传障碍,定向培养或创造出自然界所没有的新的生命形态,以满足人类社会的需要。蛋白质工程也称“第二代基因工程”。蛋白质工程主要包括通过基因工程技术了解蛋白质的DNA编码序列、蛋白质的分离纯化、蛋白质的序列分析和结构功能分析、蛋白质结晶和蛋白质的力学分析、蛋白质的DNA突变改造等过程。蛋白质工程为改造蛋白质的结构和功能找到了新途径,推动了蛋白质和酶的研究,为工业和医药用蛋白质(包括酶)的实用化开拓了美妙的前景。细胞是生物体的结构单位和功能单位。细胞工程是利用细胞的全能性,采用组织与细胞培养技术对动、植物进行修饰,为人类提供优良品种和保存濒危珍稀物种。细胞工程主要包括体细胞融合、核移植、细胞器摄取和染色体片段重组等。体细胞融合是指两个不同种类的细胞,加上融合剂,在一定条件下,彼此融合成杂交细胞,使来自两个亲本细胞的基因有可能都被表达,从而打破了远缘生物不能杂交的屏障,提供了创造新物种的可能。细胞核移植对动物优良杂交种的无性繁殖具有重要的意义。克隆技术便是细胞核移植的一个最为典型的应用。细胞器的摄取主要是指叶绿体和线粒体的摄取。如用白化型原生质体摄取正常的叶绿体,进而发育成正常的绿色植物;用抗药型草履虫的线粒体植入其他草履虫细胞,使后者获得抗药性。染色体片段重组是利用染色体替换来改变生物遗传特性,如利用染色体的易位、缺体等方法,获得新的染色体组合。酶是生物体内的一种具有新陈代谢催化剂作用的特殊蛋白质,它们可特定地促成某个反应而自身却不参与反应,并具备反应效率高、反应条件温、反应产物污染小、能耗低以及反应易于控制等优点。酶工程即利用酶的催化作用,在一定的生物反应器中,将相应的原料转化成所需的产品。酶工程是现代酶学理论与化工技术的交叉技术,它的应用主要集中于食品工业、轻工业和医药工业等领域。发酵工程是指利用微生物的特定性状,通过现代工程技术,在生物的反应器中生产有用物质的一种技术系统。当前的医用和农用抗生素绝大部分是发酵的产品,此外发酵工程产品还包括氨基酸、工业用酶等,人们日常生活中广泛使用的味精、维生素B2等也是发酵工程的产品。基因工程的操作步骤基因工程一般包括四个方面的基本内容:一是取得符合人们的要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA(质粒和病毒DNA称作载体);三是把重组DNA引入某种细胞(称为受体细胞);四是把目的基因能表达的受体细胞挑选出来。DNA分子很小,其直径只有20埃,约相当于五百万分之一厘米,在它们身上进行“手术”是非常困难的,因此基因工程实际上是一种“超级显微工程”,对DNA的切割、缝合与转运,必须有特殊的工具。首先,要把所需基因——目的基因从供体DNA长链中准确地剪切下来。1968年,沃纳·阿尔伯博士、丹尼尔·内森斯博士和汉密尔·史密斯博士第一次从大肠杆菌中提取出了限制性内切酶能够在DNA上寻找特定的“切点”,认准后将DNA分子的双链交错地切断。人们把这种限制性内切酶称为“分子剪刀”。这种“分子剪刀”可以完整地切下个别基因。自70年代以来,人们已经分离提取了400多种“分子剪刀”,其中许多“分子剪刀”的特定识别切点已被弄清。有了形形色色的“分子剪刀”,人们就可以随心所欲地进行DNA分子长链的切割了。由于限制性内切酶的发现,阿尔伯、史密斯和内森斯共享1978年诺贝尔生理和医学奖。DNA的分子链切开后,还得缝接起来以完成基因的拼接。1976年,科学在5个实验室里几乎同时发现并提取出一种酶,这种酶可以将两个DNA片段连接起来,修复好DNA链的断裂口。1974年以后,科学界正式肯定了这一发现,并把这种酶叫作DNA连接酶。从此,DNA连接酶就成了名符其实的“缝合”基因的“分子针线”。只要在用同一种“分子剪刀”剪切的两种DNA碎片中加上“分子针线”,就会把两种DNA片段重新连接起来。把“拼接”好的DNA分子运送到受体细胞中去,必须寻找一种分子小、能自由进出细胞,而且在装载了外来的DNA片段后仍能照样复制的运载体。基因的理想运载工具是病毒和噬菌体,病毒不仅在同种生物之间,甚至可以在人和兔培养细菌细胞转移。还有一种理想的载体是质粒。质粒能自由进出细菌细胞,当用“分子剪刀”把它切开,再给它安装上一段外来的DNA片段后,它依然如故地能自我复制。因此,它是一种理想的运载体。有了限制性内切酶、连接酶及运载体,进行基因工程就如可以愿以偿了。把目的基因装在运载体上,运载体将目的基因运到受体细胞是基因工程的最后一步。一般情况下,转化成功率为百万分之一。为此,遗传工程师们创造了低温条件下用氯化钙处理受体细胞和增加重组DNA浓度的办法来提高转化率。采用氯化钙处理后,能增大体细胞的细胞壁透性,从而使杂种DNA分子更容易进入。目的基因的导入过程是肉眼看不到的。因此,要知道导入是否成功,事先应找到特定的标志。例如我们用一种经过改造的抗四环素质粒PSC100作载体,将一种基因移入自身无抗性的大肠杆菌时,如果基因移入后大肠杆菌不能被四环素杀死,就说明转入获得成功了。  目的基因:所谓目的基因就是我们想要的基因片段,它在生物体内能表达产生所要蛋白产物。生物界的基因有上亿个,多数存在于染色体上,少数存在于细胞质中。取得目的基因的办法是用“分子剪刀”剪切供体DNA分子,把它切成一些比基因略长的片段,然后再从中找出包含所需目的基因的DNA片段。到目前为止,人们用这种方法已分离出40种大肠杆菌蛋白质基因、鸡的组蛋白基因等。另一种获得目的基因的方法是人工合成。随着技术的进步,已有用于自动测定DNA顺序的专门仪器和自动合成DNA仪器。还有一种基因合成方法是模板合成。基因工作指令的传递是按照“DNA-RNA-蛋白质”这一方向进行的,相反的信息传递即由RNA-DNA也存在。基因模板合成法就是先以信使RNA为模板,反向转录出一条DNA单链,再以互补的方式加倍成DNA双链。用这种方法人们已先后合成了家兔、鸭和人的珠蛋白基因、羽毛角蛋白基因等。载体:目的基因片段很难直接转入生物体细胞,而且由于它自身常无DNA复制所需信息,在细胞分裂时不能复制给子细胞,就会丢失,所以人们要把它连在一些能独立于细胞染色体之外复制的DNA片段上,这些DNA片段就叫载体。常用的载体有质粒和病毒。当然载体还有其它作用,如促进目的基因转化、表达等。人们对天然质粒及病毒进行了一系列改造,如加上耐药性基因片段等,提高基因的转化、筛选、表达效率。限制性内切酶: 在细菌内存在的一类能识别并水解外源DNA限制性内切酶,它具有极好的专一性,能识别DNA上的特定位点,将DNA的两条链都切断,形成粘性末端或平末端。DNA经限制性内切酶切割后产生的具有碱基互补单链的末端称为粘性末端。限制性内切酶的生物学功能在于降解外面侵入的DNA而不降解自身细胞的中的DNA,因自身DNA的酶切位点经修饰酶的甲基化修饰而受到保护。限制性内切酶较为稳定,常用的约100多种,并已大多转化为商品。限制性内切酶在分析染色体结构、制作DNA的限制酶图谱、测定较长DNA序列以及基因的分离、基因的体外重组等研究中是不可缺少的重要工具酶。

  • 美设计出可在活细胞内进行计算的基因器件

    美国斯坦福大学的生物工程团队设计出一种基因器件,可在个体活细胞中像晶体管一样起作用,从而将计算从机械和电子带入到生物学活细胞领域。研究团队在28日出版的《科学》杂志上详细描述了这种由遗传物质DNA(脱氧核糖核酸)和RNA(核糖核酸)制成的生物晶体管,并称之为“转录器”。  论文第一作者、生物工程博士后杰罗姆·博内特表示,与晶体管和电子器件相类似,转录器是对基因逻辑进行放大的关键组成部分。转录器的创建将允许工程师们在活细胞内进行计算和记录。当细胞暴露于某些外部刺激或环境因素,就能按需打开和关闭。  在电子设备中,晶体管控制电子沿着电路流动。同样地,在生物设备中,转录器控制特定蛋白——RNA聚合酶沿着DNA链的流动。研究团队已利用该转录器创建出电子工程中熟知的逻辑门。研究人员将这种以转录器为基础的逻辑门称为“布尔聚合酶逻辑”(BIL)门。  所有的现代计算机尽管存在外在差异,但都具有3个共同的基本功能:信息的存储、传输和逻辑运算。基于转录器的门单独并不能构成一台计算机,但它们是可在单个活细胞内运行的生物计算机的第三个、也是最后一个器件。  在生物环境中,逻辑的可能性像在电子学中一样是无限的。研究人员可测试一个给定细胞是否接触到任何数量的外部刺激,如葡萄糖和咖啡因的存在。BIL门将决定是否将这些信息进行存储,如此即可简单地识别出细胞是否与外部刺激接触。同样,在某些因素下,也可告诉细胞开始或停止繁殖。将BIL门与研究团队的生物学网络进行连接,就有可能实现从细胞到细胞的遗传信息交流,从而协调一组细胞的行为。  为了创建转录器和逻辑门,研究团队使用了经过仔细校准的酶组合,其能控制RNA聚合酶沿着DNA链的流动。DNA相当于电线,RNA聚合酶相当于电子。对6个基本逻辑门的设计和构建是基于2种丝氨酸重组酶的活性基础之上的。每个逻辑门由3个基因组成:2个为编码输入的基因,一个为输出基因,该基因含有不同的转录控制元件(启动子,终止子),而这些转录控制元件在其侧面上具有重组酶识别位点。  该转录器获得了介于生物学晶体管和半导体晶体管之间的一些类似重要功能:信号放大。聚合酶表达的微小变化,即可引起其他两个基因表达的很大变化。此一结果或将成为构建更大、更复杂基因电路的进身之阶。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制