当前位置: 仪器信息网 > 行业主题 > >

细胞坏死

仪器信息网细胞坏死专题为您整合细胞坏死相关的最新文章,在细胞坏死专题,您不仅可以免费浏览细胞坏死的资讯, 同时您还可以浏览细胞坏死的相关资料、解决方案,参与社区细胞坏死话题讨论。

细胞坏死相关的论坛

  • 【资料】研究肿瘤坏死因子抑制机理 治疗炎症创新路

    韩国学者日前宣布,一项大学间的共同研究阐明了抑制TNF因子活性的一种机理,从而为风湿性关节炎、遗传性过敏性皮炎、哮喘乃至肝硬化、糖尿病、冠心病等炎症或免疫性疾病的预防和治疗开辟了全新方向。 被称为“肿瘤坏死因子”的TNF因子是一种具有多种生物活性的炎性或组织损伤介质,参与了多种复杂疾病的发病过程和病情进展过程。此前医学界已经知道,降低组织内的TNF因子水平将对这些疾病的治疗具有重要价值。但是到目前为止,有关降低TNF水平的研究均围绕着TNF抗体和TNF免疫拮抗剂进行。 此次韩国学者发表的研究结果显示,细胞组织内一种称为Smad7的蛋白质能够抑制或阻断TNF因子的受体传导信号,从而影响TNF的活性。“Smad7”蛋白质增加,将与组成TNF因子信号传导路径的蛋白质TAB2以及TAB3结合,并通过这一结合体阻断TNF因子传导信号,从而减低其活性。在相反的情况下,Smad7蛋白质减少,则TNF受体传导信号受到较少的阻断。 有关研究人员表示,这一成果为临床医疗技术的发展指出了全新方向。Smad7可以中和TNF活性,抑制TNF在组织内的超表达,能够诱导Smad7蛋白质的物质将成为下一步的开发重点。 韩国加川医科大学和成均馆大学的研究人员共同做出了上述发现。这一成果同时将发表在《自然免疫学》杂志网络版上。 TNF被认为是一种致炎性介质,有TNF—α以及TNF—β两种类型,分别来自单核巨噬细胞和活化T细胞。TNF—α具有致炎性、引发细胞坏死和新血管形成等作用。此外,一些研究认为,由于TNF—α可促进内皮素的产生并引起血管壁损伤,表现出促进动脉硬化形成的作用,所以TNF—α还参与了冠心病的诱发过程并影响病程。

  • 细胞凋亡实验步骤及注意事项

    一、实验目的1、掌屋凋亡细胞的形态特征   2、学会用荧光探针对细胞进行双标记来检测正常活细胞、凋亡细胞和坏死细胞的方法二、实验原理 细胞死亡根据其性质、起源及生物学意义区分为凋亡和坏死两种不同类型。凋亡普遍存在于生命界,在生物个体和生存中起着非常重要的作用。它是细胞在一定生理条件下一系列顺序发生事件的组合,是细胞遵循一定规律自己结束生命的自主控制过程。细胞凋亡具有可鉴别的形态学和生物化学特征。在形态上可见凋亡细胞与周围细胞脱离接触,细胞变园,细胞膜向内皱缩、胞浆浓缩、内质网扩张、细胞核固缩破裂呈团块状或新月状分布、内质网和细胞膜进一步融合将细胞分成多个完整包裹的凋亡小体,凋亡小体最后被吞噬细胞吞噬消化。在凋亡过程中细胞内容物并不释放到细胞外,不会影响其它细胞,因而不引起炎症反应。在生物化学上,多数细胞凋亡的过程中,内源性核酸内切酶活化,活性增加。核DNA随机地在核小体的连接部位被酶切断,降解为180-200bp或它的整倍数的各种片断。如果对核DNA进行琼脂糖电泳,可显示以180-200bp为基数的DNA ladder(梯状带纹)的特征。相比之下,坏死是细胞处于剧烈损伤条件下发生的细胞死亡。细胞在坏死早期即丧失质膜完整性,各种细胞器膨胀,进而质膜崩解释放出其中的内容物,引起炎症反应,坏死过程中细胞核DNA虽也降解,但由于存在各种长度不等的DNA片断,不能形成梯状带纹,而呈弥散状。一些温和的损伤刺激及一些抗肿瘤药物可诱导细胞凋亡,通常这些因素在诱导凋亡的同时,也可产生细胞坏死,这取决于损伤的剧烈程度和细胞本身对刺激的敏感程度。三尖杉酯碱(HT)是我国自行研制的一种对急性粒细胞白血病,急性单核白血病等有良好疗效的抗肿瘤药物。研究表明HT在0.02~5μg/ml范围内作用2小时,即可诱导HL-60细胞凋亡,并表现出典型的凋亡特征。本实验用1μg/ml HT在体外诱导培养的HL-60细胞发生凋亡,同时也有少数细胞发生坏死。用Hoechst33342和碘化丙啶(propidium iodide,PI)对细胞进行双重染色,可以区别凋亡、坏死及正常细胞。细胞膜是一选择性的生物膜,一般的生物染料如PI等不能穿过质膜。当细胞坏死时,质膜不完整,PI就进入细胞内部,它可嵌入到DNA或RNA中,使坏死细胞着色,凋亡细胞和活细胞不着色。而一些活细胞染料由于为亲脂性物质,可跨膜进入活细胞,因而可进行活细胞染色。Hoechst33342是一种活性荧光染料且毒性较弱,它是双苯并咪唑的一种衍生物。与DNA特异结合(主要结合于A-T)碱基区),显示凋亡细胞和活细胞。凡是看到有凋亡小体的细胞都是凋亡细胞。三、实验用品1、试剂:三尖杉酯碱(HT),300μg/ml,100mmol/L Tris-HCl(pH7.5),5mol/L EDTA缓冲液、碱性裂解液:0.2mol/L NaOH, 1%SDS、醋酸钠:3mol/L KAc(pH4.8);异丙醇;70%乙醇;溴酚蓝,蔗糖指示剂。TBE电泳缓冲液,1%琼脂糖,溴乙锭。PI母液:500μg/ml;Ho33342母液:2mmol/L。   2、仪器设备:荧光显微镜,电泳仪,电泳槽,微量加样器(1ml,100μl)0.5、1.5ml离心管,载玻片,盖玻片。四、实验材料人早幼粒白血病HL-60细胞,用含10%小牛血清的RPMI1640培养基在37℃,5%CO2条件下培养。五、方法步骤 1、三尖杉酯碱诱发HL-60细胞凋亡   (1)实验前约24小时,接种两瓶HL-60细胞,标记①、②,每瓶含约6ml培养液,置37℃,5%CO2培养箱培养。   (2)实验前约2.5小时,当细胞密度达到70%,①号瓶加入三尖杉酯碱200μl,使终浓度为1μg/ml,②号瓶中加入同等量PBS(pH7.4)作对照。共同放入培养箱中继续培养2.5小时。2、Ho33342和PI双重染色鉴别三种细胞   (1)染色:将瓶中的细胞摇匀取200μl于1.5ml的离心管中,加入Ho33342母液2μl,PI 20μl,染色15分钟。   (2)滴片:取一载玻片用双面胶围成一小室,从离心管中各取以上染色后的细胞悬液10μl,加入小室内盖上盖玻片,荧光镜下用紫外激发光,高倍镜下观察,区别三种细胞,并注意三者比例。六、注意事项1、诱导培养HL-60细胞时间要准确;  2、荧光显微镜下观察细胞时,由于荧光易碎灭,观察时要尽量快。

  • 总结了一下支原体感染和细胞小黑点的问题

    最近我养细胞发现小黑点现象很严重,原来对“黑胶虫”一说嗤之以鼻,认为那不过是自欺欺人的借口,觉得怎么也不会发生在自己身上。但是真的就碰上了:要来的细胞传代以后就出现细胞间黑点,细胞空泡化,很多类似凋亡、坏死的细胞,最终细胞漂浮,完全死亡。上述现象很像所谓的“黑胶虫”。我感觉实际是支原体感染以后细胞生长不好造成的碎片和感染原虫的混合体。这种现象的直接原因是支原体等原虫感染,间接表象是小黑点,被以讹传讹成为了“黑胶虫”。光镜下看不到支原体,但是可以看到支原体感染的终末现象——细胞凋亡坏死,释放出大量碎片,看起来就像小黑虫子。查找类似的帖子——很多人是更换血清后出现这种问题;说空气传播的可能是一个培养箱的人都用了同一种血清,而不是可以通过培养箱空气传播;感染最可能是牛源性的支原体,通过产道或血行感染,所以兽用的泰乐菌素比较有效。用plasmocin等抗支原体的药物有效;用巨噬细胞共培养有效(吞噬支原体);很多人更换进口血清就好了。感染也有个疾病谱,在质和量上从低烈度到高烈度,所谓“细胞生长不受影响”,其实是感染的烈度不高而已;烈度高的感染就出现细胞大量空泡形成,细胞间空旷地带出现大量黑点,细胞最终凋亡、坏死,漂起来。有些国产血清写着建议灭活,其实是挂羊头卖狗肉,那个56度30分钟更多的是为了杀杀支原体的。实际上也有杀不死的。但可以降低产品的风险。我用阿奇霉素(有针对支原体衣原体功效)75-100ug/ml的浓度洗了细胞和加入培养基中,小黑点确实明显抑制。不过我想根治就很难了。据说invivogen公司的plasmocin可以根治,不过就成本来说不如直接更换血清。以上是自己个人总结的一点看法。建议不要总拿子虚乌有的“黑胶虫”来说事。多考虑看不到的支原体,不要还停留在培根时代——只相信自己眼睛看见的。

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 【分享】流式细胞仪检测细胞凋亡——Annexin V/PI双染色法

    [size=3][font=宋体]基本原理[/font][font=Times New Roman] [/font][/size][size=3][font=宋体]细胞凋亡早期改变发生在细胞膜表面,目前早期识别仍有困难。这些细胞膜表面的改变之一是磷脂酰丝氨酸([/font][font=Times New Roman]PS[/font][font=宋体])从细胞膜内转移到细胞膜外,使[/font][font=Times New Roman]PS[/font][font=宋体]暴露在细胞膜外表面。[/font][font=Times New Roman]PS[/font][font=宋体]是一种带负电荷的磷脂,正常主要存在于细胞膜的内面,在细胞发生凋亡时细胞膜上的这种磷脂分布的不对称性被破坏而使[/font][font=Times New Roman]PS[/font][font=宋体]暴露在细胞膜外。[/font][font=Times New Roman]Annexin V[/font][font=宋体]是一种[/font][font=Times New Roman]Ca+[/font][font=宋体]依赖的磷脂结合蛋白,最初发现是一种具有很强的抗凝血特性的血管蛋白,[/font][font=Times New Roman]Annexin V[/font][font=宋体]具有易于结合到磷脂类如[/font][font=Times New Roman]PS[/font][font=宋体]的特性。对[/font][font=Times New Roman]PS[/font][font=宋体]有高度的亲和性。因此,该蛋白可充当一敏感的探针检测暴露在细胞膜表面的[/font][font=Times New Roman]PS[/font][font=宋体]。[/font][font=Times New Roman]PS[/font][font=宋体]转移到细胞膜外不是凋亡所独特的,也可发生在细胞坏死中。两种细胞死亡方式间的差别是在凋亡的初始阶段细胞膜是完好的,而细胞坏死在其早期阶段细胞膜的完整性就破坏了。因此,可以建立一种用[/font][font=Times New Roman]Annexin V[/font][font=宋体]结合在细胞膜表面作为凋亡的指示并结合一种染料排除试验以检测细胞膜的完整性的检测方法。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]试剂与仪器[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]孵育缓冲液:[/font][font=Times New Roman]10mmol/L HEPES/NaOH[/font][font=宋体],[/font][font=Times New Roman]PH 7.4[/font][font=宋体],[/font][font=Times New Roman]140mmol/L NaCl[/font][font=宋体],[/font][font=Times New Roman]5mmol/L CaCl2 [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]标记液:将[/font][font=Times New Roman]FITC- Annexin V[/font][font=宋体](宝灵曼公司产品)和[/font][font=Times New Roman]PI[/font][font=宋体]加入到孵育缓冲液中,终浓度均为[/font][font=Times New Roman]1ug/ml [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]流式细胞仪[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]实验步骤[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]1. [/font][font=宋体]细胞收集:悬浮细胞直接收集到[/font][font=Times New Roman]10ml[/font][font=宋体]的离心管中,每样本细胞数为([/font][font=Times New Roman]1~5[/font][font=宋体])×[/font][font=Times New Roman]106[/font][font=宋体],[/font][font=Times New Roman]/mL[/font][font=宋体] [/font][font=Times New Roman]500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体],弃去培养液。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]2. [/font][font=宋体]用孵育缓冲液洗涤[/font][font=Times New Roman]1[/font][font=宋体]次,[/font][font=Times New Roman]500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]3. [/font][font=宋体]用[/font][font=Times New Roman]100ul[/font][font=宋体]的标记溶液重悬细胞,室温下避光孵育[/font][font=Times New Roman]10~15min[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]4. 500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体]沉淀细胞孵育缓冲液洗[/font][font=Times New Roman]1[/font][font=宋体]次。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]5. [/font][font=宋体]加入荧光([/font][font=Times New Roman]SA-FLOUS[/font][font=宋体])溶液[/font][font=Times New Roman]4[/font][font=宋体]℃下孵育[/font][font=Times New Roman]20min[/font][font=宋体],避光并不时振动。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]6. [/font][font=宋体]流式细胞仪分析:流式细胞仪激发光波长用[/font][font=Times New Roman]488nm[/font][font=宋体],用一波长为[/font][font=Times New Roman]515nm[/font][font=宋体]的通带滤器检测[/font][font=Times New Roman]FITC[/font][font=宋体]荧光,另一波长大于[/font][font=Times New Roman]560nm[/font][font=宋体]的滤器检测[/font][font=Times New Roman]PI[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]7. [/font][font=宋体]结果判断:凋亡细胞对所有用于细胞活性鉴定的染料如[/font][font=Times New Roman]PI[/font][font=宋体]有抗染性,坏死细胞则不能。细胞膜有损伤的细胞的[/font][font=Times New Roman]DNA[/font][font=宋体]可被[/font][font=Times New Roman]PI[/font][font=宋体]着染产生红色荧光,而细胞膜保持完好的细胞则不会有红色荧光产生。因此,在细胞凋亡的早期[/font][font=Times New Roman]PI[/font][font=宋体]不会着染而没有红色荧光信号。正常活细胞与此相似。在双变量流式细胞仪的散点图上,左下象限显示活细胞,为([/font][font=Times New Roman]FITC-/PI-[/font][font=宋体]);右上象限是非活细胞,即坏死细胞,为([/font][font=Times New Roman]FITC+/PI+[/font][font=宋体]);而右下象限为凋亡细胞,显现([/font][font=Times New Roman]FITC+/PI-[/font][font=宋体])。[/font][/size]

  • 【分享】流式细胞仪检测细胞凋亡——Annexin V/PI双染色法

    [size=3][font=宋体]基本原理[/font][font=Times New Roman] [/font][/size][size=3][font=宋体]细胞凋亡早期改变发生在细胞膜表面,目前早期识别仍有困难。这些细胞膜表面的改变之一是磷脂酰丝氨酸([/font][font=Times New Roman]PS[/font][font=宋体])从细胞膜内转移到细胞膜外,使[/font][font=Times New Roman]PS[/font][font=宋体]暴露在细胞膜外表面。[/font][font=Times New Roman]PS[/font][font=宋体]是一种带负电荷的磷脂,正常主要存在于细胞膜的内面,在细胞发生凋亡时细胞膜上的这种磷脂分布的不对称性被破坏而使[/font][font=Times New Roman]PS[/font][font=宋体]暴露在细胞膜外。[/font][font=Times New Roman]Annexin V[/font][font=宋体]是一种[/font][font=Times New Roman]Ca+[/font][font=宋体]依赖的磷脂结合蛋白,最初发现是一种具有很强的抗凝血特性的血管蛋白,[/font][font=Times New Roman]Annexin V[/font][font=宋体]具有易于结合到磷脂类如[/font][font=Times New Roman]PS[/font][font=宋体]的特性。对[/font][font=Times New Roman]PS[/font][font=宋体]有高度的亲和性。因此,该蛋白可充当一敏感的探针检测暴露在细胞膜表面的[/font][font=Times New Roman]PS[/font][font=宋体]。[/font][font=Times New Roman]PS[/font][font=宋体]转移到细胞膜外不是凋亡所独特的,也可发生在细胞坏死中。两种细胞死亡方式间的差别是在凋亡的初始阶段细胞膜是完好的,而细胞坏死在其早期阶段细胞膜的完整性就破坏了。因此,可以建立一种用[/font][font=Times New Roman]Annexin V[/font][font=宋体]结合在细胞膜表面作为凋亡的指示并结合一种染料排除试验以检测细胞膜的完整性的检测方法。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]试剂与仪器[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]孵育缓冲液:[/font][font=Times New Roman]10mmol/L HEPES/NaOH[/font][font=宋体],[/font][font=Times New Roman]PH 7.4[/font][font=宋体],[/font][font=Times New Roman]140mmol/L NaCl[/font][font=宋体],[/font][font=Times New Roman]5mmol/L CaCl2 [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]标记液:将[/font][font=Times New Roman]FITC- Annexin V[/font][font=宋体](宝灵曼公司产品)和[/font][font=Times New Roman]PI[/font][font=宋体]加入到孵育缓冲液中,终浓度均为[/font][font=Times New Roman]1ug/ml [/font][/size][size=3][font=Times New Roman] [/font][font=宋体]流式细胞仪[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]实验步骤[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]1. [/font][font=宋体]细胞收集:悬浮细胞直接收集到[/font][font=Times New Roman]10ml[/font][font=宋体]的离心管中,每样本细胞数为([/font][font=Times New Roman]1~5[/font][font=宋体])×[/font][font=Times New Roman]106[/font][font=宋体],[/font][font=Times New Roman]/mL[/font][font=宋体] [/font][font=Times New Roman]500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体],弃去培养液。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]2. [/font][font=宋体]用孵育缓冲液洗涤[/font][font=Times New Roman]1[/font][font=宋体]次,[/font][font=Times New Roman]500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]3. [/font][font=宋体]用[/font][font=Times New Roman]100ul[/font][font=宋体]的标记溶液重悬细胞,室温下避光孵育[/font][font=Times New Roman]10~15min[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]4. 500~1000r/min[/font][font=宋体]离心[/font][font=Times New Roman]5min[/font][font=宋体]沉淀细胞孵育缓冲液洗[/font][font=Times New Roman]1[/font][font=宋体]次。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]5. [/font][font=宋体]加入荧光([/font][font=Times New Roman]SA-FLOUS[/font][font=宋体])溶液[/font][font=Times New Roman]4[/font][font=宋体]℃下孵育[/font][font=Times New Roman]20min[/font][font=宋体],避光并不时振动。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]6. [/font][font=宋体]流式细胞仪分析:流式细胞仪激发光波长用[/font][font=Times New Roman]488nm[/font][font=宋体],用一波长为[/font][font=Times New Roman]515nm[/font][font=宋体]的通带滤器检测[/font][font=Times New Roman]FITC[/font][font=宋体]荧光,另一波长大于[/font][font=Times New Roman]560nm[/font][font=宋体]的滤器检测[/font][font=Times New Roman]PI[/font][font=宋体]。[/font][font=Times New Roman] [/font][/size][size=3][font=Times New Roman]7. [/font][font=宋体]结果判断:凋亡细胞对所有用于细胞活性鉴定的染料如[/font][font=Times New Roman]PI[/font][font=宋体]有抗染性,坏死细胞则不能。细胞膜有损伤的细胞的[/font][font=Times New Roman]DNA[/font][font=宋体]可被[/font][font=Times New Roman]PI[/font][font=宋体]着染产生红色荧光,而细胞膜保持完好的细胞则不会有红色荧光产生。因此,在细胞凋亡的早期[/font][font=Times New Roman]PI[/font][font=宋体]不会着染而没有红色荧光信号。正常活细胞与此相似。在双变量流式细胞仪的散点图上,左下象限显示活细胞,为([/font][font=Times New Roman]FITC-/PI-[/font][font=宋体]);右上象限是非活细胞,即坏死细胞,为([/font][font=Times New Roman]FITC+/PI+[/font][font=宋体]);而右下象限为凋亡细胞,显现([/font][font=Times New Roman]FITC+/PI-[/font][font=宋体])。[/font][/size]

  • 荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期

    荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期

    荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期流式细胞术检测到明显的细胞凋亡,随着加药浓度的升高,细胞凋亡数量增多,早期凋亡细胞、晚期凋亡细胞和坏死细胞 的 数 量 都 随 之 上 升 (图 a).测 得 实 验 组 凋 亡 率 分 别 为 12.32% ±0.84% (P 0.05),15.63%±0.91%(P0.001),与对照组相比,有统计学意义(图b).与此同时通过 EdU 实验检测(图c)其细胞周期的变化,随着加药浓度的增高,Hoechst蓝色荧光染色细胞数目减少,即活细胞数减少,药物对细胞杀伤作用显著 EdU 绿色荧光染色细胞数减少,即进入 DNA 复制期的细胞数量减少.表明西达本胺可以明显促进 HCT-15细胞凋亡、抑制其增殖且阻滞细胞周期.[img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302205203559_379_5389809_3.png[/img]

  • 超声波细胞破碎仪原理及用途

    超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用.超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。超声对细胞的作用主要有热效应,空化效应和机械效应。热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热(42-43℃),因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。工作原理 同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用.超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。超声对细胞的作用主要有热效应,空化效应和机械效应。热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热,因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温、高压,可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。超声波细胞破碎仪的原理并不是太神秘、太复杂。简单说就是将电能通过换能器转换为声能,这种能量通过液体介质而变成一个个密集的小气泡,这些小气泡迅速炸裂,产生的象小炸弹一样的能量,从而起到破碎细胞等物质的作用

  • 【金秋计划】石斛生物碱对四氯化碳诱导急性肝损伤线粒体ROS介导的坏死性凋亡的抑制作用

    [b][size=15px][color=#595959]急性肝损伤(ALI)[/color][/size][/b][size=15px][color=#595959]是突然和大量肝细胞损伤的严重后果。线粒体是多种药物和化学物质引起的药物性肝毒性的重要靶点。最近的证据表明,[b]线粒体功能[/b]异常可触发各种肝脏疾病的发生,并有助于感染、毒素和药物滥用引起的ALI 。线粒体扰动也会影响肝功能的恢复,改善线粒体功能一直是探索包括ALI在内的各种肝脏疾病潜在治疗方法的热门研究领域。[/color][/size] [b][size=15px][color=#595959]金钗石斛(DNL)[/color][/size][/b][size=15px][color=#595959]是载入《中国药典》(2020年版)的著名中药。先前的数据表明,[b]金钗石斛生物碱(DNLA)[/b]通过减少[b]氧化应激[/b]和改善线粒体功能来保护CCl4诱导的肝损伤,但确切的调控信号通路尚不清楚。[/color][/size][size=15px][color=#595959][/color][/size] [size=15px][color=#595959]该研究旨在探讨[b]坏死性凋亡[/b]在CCl4诱导的肝损伤模式中的作用,并确定DNLA是否通过抑制线粒体ROS (mROS)介导的坏死性凋亡对CCl4诱导的急性肝损伤(ALI)有保护作用。 [/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]从DNL中提取DNLA,采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])法测定其含量。采用C57BL/6J小鼠进行体内实验。先给药DNLA (20 mg/kg/d, ig) 7 d,然后给药CCl4(20 μL/kg, ip)。通过小鼠血清生化指标评估和苏木精伊红(H&E)染色对肝组织进行组织病理学检查,评价CCl4对小鼠肝损伤的影响。采用western blotting和实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] (RT-q[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])检测蛋白和基因表达。使用荧光探针DCFH-DA检测活性氧(ROS)产生,使用荧光探针JC-1评估线粒体膜电位。采用荧光探针MitoSOX检测[b]线粒体ROS (mROS)水平[/b]。 [/color][/size] [b][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]DNLA减轻CCl4诱导的肝损伤,表现为降低AST和ALT水平,改善肝脏病理。[b]DNLA通过降低RIPK1、RIPK3和MLKL磷酸化抑制坏死性凋亡,同时增强线粒体功能[/b]。它还打破了mROS与RIPK1/RIPK3/MLKL激活之间的正反馈循环。在白藜芦醇和线粒体SOD2过表达中观察到类似的结果,两者都减轻了mROS和坏死性凋亡。进一步的机制研究发现,DNLA抑制RIPK1的氧化并降低其磷酸化水平,从而降低RIPK3和MLKL的磷酸化水平,阻断坏死性凋亡,减轻肝损伤。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][size=16px][/size][/color][/size][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959]DNLA通过减少mROS介导的RIPK1氧化,从而降低RIPK1、RIPK3和MLKL的磷酸化,抑制坏死性凋亡信号通路,对肝损伤具有保护作用[/color][/size][/b][size=15px][color=#595959]。[/color][/size][size=15px][color=#595959][/color][/size]

  • 超声波对生物细胞的三种作用

    超声波是一种弹性机械波,同时,也是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化。超声波对生物细胞的作用效应主要有热效应、空化效应和机械效应三种。1、热效应:超声在介质中传播时,由于摩擦力对超声引起的分子震动的的阻碍,使得超声波的部分能量转化为了局部热能。正常组织的临界致死温度为45.7℃,而对温度较为敏感的肿瘤组织在此温度下常常发生细胞的代谢障碍,使肿瘤组织的DNA、RNA、蛋白质等重要生物大分子的合成受到严重影响。医学上利用超声波对生物细胞的热效应而发明的超声波治疗仪即是能对癌细胞产生杀伤作用却不影响正常组织生理代谢。2、空化效应:指在超声作用下,生物体内的水分子会形成微小空泡,伴随空泡生长和破裂产生的巨大机械剪切力和高温,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。3、机械效应:是超声引起的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。超声机械效应杀伤作用的强弱与超声的频率和强度密切相关。利用超声波对生物细胞的三大作用而发明的仪器设备广泛应用于基础研究领域的细胞破碎乳化、医疗系统的疾病诊断、超声治疗等各个行业领域。

  • 巨细胞病毒感染

    巨细胞病毒感染常见于A皿病人,男性同性恋中CMV感染率高达95%以上。巨细胞病毒感染可能对聊的细胞毒性及Kw复制具有协同作用,被认为是一种协同因子。在临床上可引起中枢神经系统感染以及脉络膜视网膜炎所致失明、慢性肠炎和肺炎。  .念珠菌日食管盗不少艾滋病或艾滋病相关综合征病例出现口腔真菌感染,其中有少数病例出现弥漫性食官央。临床表现为在咽部、食管、直肠及肛门周围皮肤教膜感染.严重者有吞咽团难,肛周糜烂,病原体为念珠茵,常呈反复发作。一般以活检为主要诊断依据,如口腔白色念珠茵感染肉服难以辨别,有必要用钡剂吞咽并经气管镜采集标本进行培养和活检。  .非结核分枝杆菌感染在艾滋病患者中常以局部或播散性感染出现。很容易从患者骨髓、淋巴结、肝活检组织及血液分离出分技杆菌。由于艾滋病不形成典型肉芽肿,甚至没有于酪样坏死性肉芽肿,对活检组织仍要做Nid-NMI删染色检查。  .隐球菌病许多艾滋病患者具有中枢神经系统症状,除了xP本身所致感染外,常与隐球菌感染有关。临床上主要表现为脑膜炎症状。  弓形虫病典型艾滋病患者身上,鼠弓形虫可侵犯思者肺部、脑、骨酷肌及皮肤,侵犯大脑可引起脑脓肿,有占位性神经病变体征。  .单纯疤疹病毒感染许多艾滋病患者常常有单纯疤疹病毒感染史,表现为可在口、食管、肛门等部位引起慢性进行性广泛的溃疡性病变。艾滋病患者伴有这种感染,常常可引起广泛的戳膜溃疡.持续一个月以上,同时出现肺部、胃肠道或其他播散性感染。

  • 【分享】细胞凋亡的形态学检测

    http://gene.bjmu.edu.cn/news/ap1.gif   细胞凋亡与坏死是两种完全不同的细胞凋亡形式,根据死亡细胞在形态学、生物化学和分子生物学上的差别,可以将二者区别开来。细胞凋亡的检测方法有很多,下面介绍几种常用的测定方法。 一、细胞凋亡的形态学检测   根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。   1 光学显微镜和倒置显微镜   (1) 未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。 贴壁细胞出现皱缩、变圆、脱落。   (2) 染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割 成块状和凋亡小体等典型的凋亡形态。   2 荧光显微镜和共聚焦激光扫描显微镜   一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。   常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种染料与 DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。   Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。   DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。  结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。   3 透射电子显微镜观察   结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。

  • 细胞破碎的四种方法

    [b][font=微软雅黑][size=10.5pt]一、机械破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]是指利用捣碎机、研磨器或匀浆器[/font] [font=微软雅黑]等将细胞破碎开来[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt]1. 高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。[/size][/font][font=微软雅黑][size=10.5pt]2. 玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。[/size][/font][b][font=微软雅黑][size=10.5pt]二、物理破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt]指利用温度差、压力差或超声波等将细胞破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]1.用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂(借助超声的震动力破碎细胞壁和细胞器)。[/size][/font][font=微软雅黑][size=10.5pt]机制:可能与强声波作用溶液时,气泡产生、长大和破碎的空化现象有关,空化现象引起的冲击波和剪刀力使细胞裂解。[/size][/font][font=微软雅黑][size=10.5pt]超声波破碎的效率取决于声频、声能、处理时间、细胞浓度和细胞类型等。(使用时注意降温,防止过热)。[/size][/font][font=微软雅黑][size=10.5pt]2. 高压破碎:细胞悬浮液从高压室的环状隙喷射到静止的撞击环上,被迫改变方向经出口管流出。此过程中细胞经历了高速造成的剪切的碰撞及高压到常压的变化,从而破碎释放内含物。[/size][/font][font=微软雅黑][size=10.5pt]这是一种温和的、彻底破碎细胞的较理想的方法。[/size][/font][font=微软雅黑][size=10.5pt]3. 反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。[/size][/font][b][font=微软雅黑][size=10.5pt]三、化学破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]指利用甲醛、丙酮等有机溶剂或表面活性剂作用于细胞膜,使细胞膜的结构遭到破坏或透性发生改变[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠([/font]SDS)、去氧胆酸钠等细胞膜破坏。浓度一般为1mg/ml。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]四、酶学破碎法[/font] [font=微软雅黑]:[/font][/size][/font][font=微软雅黑][size=10.5pt]选用合适的酶,使细胞壁遭到破坏,进而在低渗溶液中将原生质体破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]细菌细胞壁较厚,可采用溶菌酶处理效果更好。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]裂解液标准配方[/font]: :50mM Tris-HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml溶菌酶。(溶菌酶在这个pH范围内比较好发挥作用) 。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]综合叙述:无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸([/font]DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入PMSF也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。[/size][/font]

  • 激光扫描共聚焦显微镜在细胞凋亡研究中的应用

    摘要激光扫描共聚焦显微镜作为80年代发展起来的一种高精度分子细胞生物学分析仪器,具有组织细胞断层扫描、活细胞动态荧光监测、三维图像重建、共聚焦图像定量分析等先进功能,在近年的细胞凋亡这一研究热点中得到了大量创造性的应用。本文拟就对激光扫描共聚焦显微镜在凋亡的形态学、分子水平变化及重要生理过程三方面研究中的应用及其成果做一综述。细胞凋亡(apoptosis)是不同于细胞坏死的一种细胞主动死亡方式,并由特定的基因控制。凋亡细胞在形态上出现变圆皱缩、染色质浓缩边集、核碎裂、凋亡小体形成等变化,并最终由非炎症过程清除。由于细胞凋亡独特地影响着机体的细胞发育和代谢,在监测和清除肿瘤细胞与突变细胞等方面也可能发挥重要的作用,近年来受到了细胞生物学、分子生物学、免疫学等多学科的广泛关注。激光扫描共聚焦显微镜(laser scaing confocal microscopy, LSCM)是80年代发展起来的一种高精度分子细胞生物学分析仪器,辅以各类免疫荧光探针或荧光染料与被测物质特异性结合,不仅可观察固定的细胞组织切片,还可对活细胞的结构、分子和离子进行实时动态地观察和检测。在细胞凋亡的研究中,激光扫描共聚焦显微镜已被广泛地应用于形态学、分子水平监测及重要生理改变等各方面,其中不乏新颖之处,并获得了大量成果,以下将就此做一简单的介绍。激光扫描共聚焦显微镜与凋亡的形态学激光扫描共聚焦显微镜用点光源扫描标本的光学横断面,以代替普通光学显微镜所使用的场光源,并用探测针孔滤去离焦光线,所以消除了来自焦平面以外的衍射或散射光的干扰,可实现高清晰、高分辨率的组织细胞断层扫描。并且由于激光扫描共聚焦显微镜采用数字化成像,因而辅以一定的软件就能对图像进行定量分析及三维重建等操作。过去对细胞凋亡的形态学研究方法局限于活性细胞和组织切片染色、荧光镜观察,或者石蜡切片原位末端标记法。由于普通光镜的分辨率和清晰度有限,而电镜又显然不适合对凋亡这一复杂动态过程的监测,激光扫描共聚焦显微镜的应用使人们对细胞凋亡的形态学观察分析提高到了一个前所未有的新水平。细胞核核膜的破坏对于染色质聚集并形成凋亡小体起重要作用。lamin是构成核片层的蛋白质,位于核膜的内表面,由caase-6介导的lamin裂解可影响核膜的完整性。在McCall等的研究中,对果蝇卵子发生晚期的细胞凋亡现象进行了动态观察。以单抗mAb101标记其哺育细胞核内膜的laminDm0(哺乳类laminB的同源体),用激光扫描共聚焦显微镜加以观察。正常哺育细胞到11期时,染色的lamin呈弥散的雾状分布并围绕核周,而dcp-1GLC哺育细胞即使到了较晚的14期时,仍然显示界线明确的染色。可见dcp-1突变体在核lamin蛋白的酶切或解聚方面存在缺陷。细胞器Li 等在对C(6)-酰基鞘氨醇诱导胞内囊泡产生的研究中,在不产生中毒效应的情况下,加入10microM C(6)-酰基鞘氨醇以诱导鼠纤维母细胞(3T3-L1和3T3-F442A)凋亡。观察到囊泡的形成与C(6)-酰基鞘氨醇的诱导呈时间依从和剂量依从关系。大量小泡在其加入后8小时内出现,并且随时间而增大;大泡最终分布在核周,而小泡分布在细胞边缘。用抗-溶酶体膜蛋白抗体和共聚焦免疫荧光显微分析,证明增大的囊泡为晚期内吞体/溶酶体。另外,胞内的细胞器都有其适用的荧光探针,如高尔基复合体常用的探针有Dceramide、BODIPY ceramide等,内质网常用的有Dil、DiOC6等,经标记均可进行精细的观察。当然,激光扫描共聚焦显微镜在形态学中的优势更在于其对图像的三维重建功能,从而揭示过去只能在平面上显现的凋亡细胞在三维空间中的结构;而对细胞凋亡的动态过程,它可以用三维加时间的四维方式进行观察,来获取最逼真的形态学资料。凋亡过程中一些特征性的三维形态变化正期待着进一步具体的工作去发现。激光扫描共聚焦显微镜对凋亡细胞的分子水平监测随着分子生物学突飞猛进的发展,关于细胞凋亡分子机制的研究已有了很大的突破。细胞凋亡的信号传递途径及其调控涉及到大量的酶级联反应、生物大分子的空间转移等。而激光扫描共聚焦显微镜以其定性、定量、定时的优点,结合众多荧光探针的应用,成为了研究细胞凋亡分子水平变化的有力手段。DNA大分子DNA断裂以及染色质的异常凝聚,是细胞凋亡的关键,同时也是细胞核在细胞凋亡中具有标志性的变化。Columbara等报道将激光扫描共聚焦显微镜与原位TdT和Poll免疫荧光技术相结合,进而确定双链和单链DNA的断裂点。而在对细胞凋亡和细胞坏死区别的研究中,Kreel等在培养的K562细胞中加入放线菌素D以诱导凋亡,并对细胞的DNA片段进行了3’-末端标记。经激光扫描共聚焦显微镜观察发现K562细胞凋亡早期有大量DNA片段出现,且DNA片段弥散分布于除核仁外的细胞核区。伴随着凋亡的进展,细胞核内出现大量高标记密度的圆形小体。而采用NaN3或快速冻融法使细胞坏死,经激光扫描共聚焦显微镜观察证实,在坏死开始阶段并无DNA片段的出现,至少在坏死发生24小时后才有DNA片段产生。Caase家族Caases是一组高度保守的半胱氨酸蛋白酶,目前发现有11个成员。多数细胞凋亡是以Caase家族蛋白的激活并作用于其关键底物而实现的,而caases激活的关键又在于该家族蛋白间的级联反应,因此caases被认为是细胞凋亡的中心环节和执行者,成为研究的热点。Mandal等用激光扫描共聚焦显微镜对细胞凋亡中激活的caase-3的重分布进行了研究。用丁酸处理细胞后,观察到DNA-PKcs的裂解与caase-3的激活成正相关,而Bcl-2的过度表达则可抑制上述两个过程。同时还证明(1)激活后的caase-3重分布到核区,(2)裂解局部的DNA-PKcs和PARP(polyADP-ribosepolymerase,聚腺苷二磷酸核糖多聚酶),(3)裂解产物又被释放到核外的细胞液。caase-3的抑制物四肽DEVD-CHO又可抑制上述的三个连续的步骤。该研究提示:激活的caase-3在核内的重分布构成了丁酸所诱导的细胞凋亡中的一个重要凋亡信号。另外,在用激光扫描共聚焦显微镜对Q79诱导大鼠神经元凋亡的研究中,Sanchez等发现了Q79对caase-8的聚集和激活,而对caase-8的抑制则阻止了被诱导的细胞凋亡;加以Westernblot分析,还建立了caase-8的激活和某些神经退行性疾病(如舞蹈病)的联系。Grazyme丝氨酸蛋白酶grazyme为另一种重要的凋亡信号分子,对某些caase家族蛋白也有激活作用。Trapani等就证明了杀伤淋巴细胞利用穿孔素和grazymeB的协同作用来诱导靶细胞的凋亡,在其研究中通过激光扫描共聚焦显微镜观察到(1)50%细胞的胞核内快速聚集了以FITC荧光标记的grazymeB(最长7分钟,t1/2为2分钟),然后发生凋亡;(2)其它的细胞只有细胞液内有FITC-grazyme B的摄取,避免了凋亡。此间至少在13分钟后才有DNA碎片的出现,说明核内的grazyme B聚集出现在凋亡的执行阶段之前。并且通过对核内液的处理(加入70KDa FITC-dextran),间接观察到grazyme B的转移并非是因为核膜受caases的作用而破损,而是由于穿孔素的协同。其它以上的介绍显示,激光扫描共聚焦显微镜在检测活细胞酶活性动态变化方面有着突出的优势。实际上,对于细胞凋亡的分子机制这样一个极其复杂的课题,激光扫描共聚焦显微镜的应用远不只限于上述的几种离子和大分子,而是渗透到了大量的分枝课题中去。如在对重要的凋亡负调控蛋白Bcl-2的研究中,Beham等利用基因毒性损害(genotoxic damage)诱导细胞凋亡,并以Bcl-2蛋白抑制其凋亡过程。用激光扫描共聚焦显微镜和Immunoblotting观察显示,Bcl-2的作用在于阻止了诱导产生的p53蛋白向核内的转运。而Ohsawa等对独立于caase家族的另一种重要蛋白酶—组织蛋白酶进行了研究,用血清剥夺法诱导PC12细胞凋亡,并用激光扫描共聚焦显微镜监测了其精细超微结构改变过程和细胞内组织蛋白酶B和D的免疫活度的对比变化。又如,在人胰岛淀粉样多肽(hIA)的研究中,Hiddinga等用表达hIA的质粒转染COS-1细胞诱导凋亡,辅以免疫组化染色,用激光扫描共聚焦显微镜证明了hIA在细胞的内质网和高尔基复合体内呈簇状沉积,并与细胞

  • 流式细胞术详解 21.22章节 &参考文献

    95%。目前细胞分选主要用于研究,临床应用较少。血液学应用最多的是造血干细胞的研究,最近随着造血理论的深入研究关于造血干细胞究竟是否都是CD34+细胞出现一些争论,实验研究证明, CD34-造血干细胞较CD34+造血干细胞更具造血潜能,这些实验研究所用的CD34- 和CD34+细胞就是通过细胞分选获得的。小鼠造血干细胞分选一般按lin-c-Kit+CD34+/ lin-c-Kit+CD34-分选,人造血干细胞分选一般按lin-CD34+/ lin-CD34-分选。 为避免某些遗传性血液病如海洋性贫血、异常血红蛋白病的纯合子出生,产前诊断非常重要,这些疾病的主要靶细胞是红细胞,而孕妇血循环中存在着胎儿有核红细胞,只是数量非常少,利用流式细胞仪可从孕妇血液中分选出胎儿有核红细胞(分选条件:CD45-GPA+)进行基因分析,作出产前诊断。利用流式细胞仪分选免疫担当细胞进行细胞免疫学研究也是目前的热门课题。总之,流式细胞仪能够分选出你想得到的任何一亚群细胞,只要你想得到的某一亚群细胞有合适的单克隆抗体标记,流式细胞仪的分选功能将得到越来越多的科学研究和临床应用。二十二. 流式细胞术在血液学中的应用 其他流式细胞仪可能在两方面对骨髓增生异常综合症(MDS)有用,一是测定CD34阳性细胞数,以监测病情,二是测定核蛋白增殖因子(PCNA),有报告PCNA再在生障碍性贫血、骨髓增生异常综合症、白血病三种疾病中表达有明显差异,可辅助鉴别诊断。 此外流式细胞仪也可检耐药蛋白,如肺耐药相关蛋白(LRP)、多药耐药蛋白(MRP)、 P170等。 流式细胞仪也可检测细胞因子,细胞内细胞因子如白介素系列(IL-1—IL-14),肿瘤坏死因子(TNF),干扰素(IFN)等,[/color

  • 细胞凋亡如何检测?

    摘要:细胞凋亡与坏死是两种完全不同的细胞凋亡形式,根据死亡细胞在形态学、生物化学和分子生物学上的差别,可以将二者区别开来。细胞凋亡的检测方法有很多,下面介绍几种常用的测定方法。一、细胞凋亡的形态学检测根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。1. 光学显微镜和倒置显微镜(1) 未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。贴壁细胞出现皱缩、变圆、脱落。(2) 染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割成块状和凋亡小体等典型的凋亡形态。2. 荧光显微镜和共聚焦激光扫描显微镜一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种染料与 DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1376376278_small.jpg3 透射电子显微镜观察结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1376376295_small.jpg二、磷脂酰丝氨酸外翻分析(Annexin V法)磷脂酰丝氨酸(Phosphatidylserine, PS)正常位于细胞膜的内侧,但在细胞凋亡的早期,PS可从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中(图3)。Annexin-V是一种分子量为35~36KD的Ca2+依赖性磷脂结合蛋白,能与PS高亲和力特异性结合。将Annexin-V进行荧光素(FITC、PE)或biotin标记,以标记了的Annexin-V作为荧光探针,利用流式细胞仪或荧光显微镜可检测细胞凋亡的发生。碘化丙啶(propidine iodide, PI)是一种核酸染料,它不能透过完整的细胞膜,但在凋亡中晚期的细胞和死细胞,PI能够透过细胞膜而使细胞核红染。因此将Annexin-V与PI匹配使用,就可以将凋亡早晚期的细胞以及死细胞区分开来。http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1376376296_small.jpg方法1. 悬浮细胞的染色:将正常培养和诱导凋亡的悬浮细胞(0.5~1×106)用PBS洗2次,加入100 ul Binding Buffer和FITC标记的Annexin-V(20ug/ml)10 ul,室温避光30 min,再加入PI(50 ug/ml)5 ul,避光反应5 min后,加入400 ul Binding Buffer,立即用FACScan进行流式细胞术定量检测(一般不超过1 h), 同时以不加AnnexinV-FITC及PI的一管作为阴性对照。2. 贴壁培养的细胞染色:先用0.25%的胰酶消化,洗涤、染色和分析同悬浮细胞。3. 爬片细胞染色:同上,最后用荧光显微镜和共聚焦激光扫描显微镜进行观察。结果 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1376376298_small.jpg http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1376376300_small.jpg

  • Nature:酒精分解产物破坏造血干细胞(所以,少喝酒啊)

    2012年8月28日 英国医学研究理事会(MRC)分子生物学实验室的科学家们已经发现,人体内骨髓中的造血干细胞对酒精的主要分解产物是极为敏感的,这可能导致造血干细胞不可逆的DNA损害。相关研究在老鼠身上开展的,其结果发表于国际权威杂志Nature上,新的研究表明这种造血干细胞的DNA损害通常存在两个重要的控制机制:一种可以清除有毒分解产物(乙醛)的酶,一组能够识别和修复受损DNA的蛋白。缺乏这两种保护机制的小鼠由于血液干细胞闭塞导致骨髓造血功能衰竭。调查结果提供了一个解释,为什么有的人患有一种称为范可尼贫血(FA)的罕见遗传性疾病。患有这种疾病的人继承一个或多个FA基因突变,从而导致乙醛引起的DNA损伤得不到修复。因此,FA患者患发育缺陷、骨髓造血功能衰竭、血液和其他癌症的风险极高。这些人缺乏酶ALDH2来消除有毒的乙醛,因此可能对DNA的损伤异常敏感。作者认为,酒精消费量可能会导致造血干细胞永久性损坏,骨髓造血功能衰竭和加速老化,血癌风险增加。MRC分子生物学实验室KJ Patel博士说:造血干细胞是给我们的整个生命周期提供了源源不断的健康的血液细胞,随着年龄的增长,这些重要的干细胞变得不那么有效,因为其DNA受到损伤。我们的研究确定这种DNA损伤的一个重要来源,定义了干细胞用于对付这种威胁的两种保护机制。

  • MSI1 在人小细胞肺癌细胞系中的表达及 MSI1 低表达细胞模型的构建

    MSI1 在人小细胞肺癌细胞系中的表达及 MSI1 低表达细胞模型的构建

    [font='times new roman'][color=#000007]MSI1[/color][/font][font='times new roman'][color=#000007] [/color][/font][color=#000007]在人小细胞肺癌细胞系中的表达及[/color][color=#000007] [/color][font='times new roman'][color=#000007]MSI1[/color][/font][font='times new roman'][color=#000007] [/color][/font][color=#000007]低表达[/color][color=#000000]细胞模型的构建[/color]MSI1 在人小细胞肺癌细胞系中高表达提取人正常肺上皮细胞 BEAS-2B,SCLC-A 型 H69、H209、DMS153 细胞,SCLC-N 型 H446、H82、H2066 细胞,SCLC-P 型 H526、H211 细胞,SCLC-Y 型 H841、DMS114、SW1271 细胞的 RNA,利用 q-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] 检测 MSI1 在正常肺上皮及小细胞肺癌细胞系中的表达情况,结果如图 2-1 显示,MSI1 在小细胞肺癌细胞系中的表达远远高于正常肺上皮细胞,综合分析,选取了 H69、H82、H526 及 SW1271 细胞用于后续实验。 [img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326443512_4838_5389809_3.png[/img]图 小细胞肺癌细胞系中 MSI1 mRNA 的表达(***P0.001)MSI1 低表达细胞模型的构建本实验选取人小细胞肺癌细胞系 H69、H82、H526、SW1271 细胞,使用慢病毒感染技术敲低 MSI1 的表达,同时设置对照组除外病毒本身对细胞产生的影响,待细胞状态良好使用嘌呤霉素筛选, 然后在荧光显微镜下观察如图 , 可见 H69-NC 、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2、SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2细胞均产生绿色荧光,表明人小细胞肺癌细胞慢病毒感染成功。 [img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326451025_2121_5389809_3.png[/img]图 慢病毒感染后 4X 荧光显微镜下图片(H69、H82、H526、SW1271 明场及荧光照片) 敲低 MSI1 后转录和蛋白水平验证分别提取对数生长期的 H69-NC 、H69-shMSI1-1 、H69-shMSI1-2 、H82-NC 、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2、SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞的 RNA 和蛋白,利用 q-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] 技术分别检测各细胞 MSI1 mRNA 相对表达量,结果如图 所示,与对照组相比,H69-shMSI1-1、 H69-shMSI1-2 、 H82-shMSI1-1 、 H82-shMSI1-2 、 H526-shMSI1-1 、 H526-shMSI1-2 、SW1271-shMSI1-1、SW1271-shMSI1-2 组 MSI1 mRNA 表达量明显降低(P0.01), 抑制率约为 75%。利用 Western blot 技术检测各细胞内 MSI1 蛋白的表达情况。结果如图 2-3 所示,与对照组相比,MSI1 蛋白表达在 H69-shMSI1-1、H69-shMSI1-2、H82-shMSI1-1、H82-shMSI1-2、H526-shMSI1-1、H526-shMSI1-2、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞中明显降低。表明 MSI1 低表达细胞模型构建成功。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326454704_2148_5389809_3.png[/img]图 敲低 MSI1 在转录水平和蛋白水平的验证(***P0.001)

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    [align=center][size=18px]敲低[/size][size=18px] MSI1 对小细胞肺癌细胞生长增殖的影响[/size][/align][size=16px]检测 MSI1 对人小细胞肺癌细胞生长增殖的影响[/size][size=16px]收集[/size][size=16px] H69、H82、H526、SW1271 的对照组和实验组[/size][size=16px]细胞细胞[/size][size=16px]离心,并用完全培养基调整细胞浓度,H69-NC、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、[/size][size=16px] [/size][size=16px]H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2 以每孔 1×104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2,以每孔 1.3×[/size][size=16px]104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,37℃ 恒温培养箱中培养。铺板后,分别于 24 h、48 h、72 h、96 h、120h 在每孔加入 10 [/size][size=16px]μL[/size][size=16px] CCK-8 溶液,37℃ 恒温培养箱中孵育 4h。并用酶标仪测定波长 450 nm 处 OD 值,利用 [/size][size=16px]Graphpad[/size][size=16px] prism5 计算增殖情况。[/size][size=16px]检测 MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]收集[/size][size=16px] H69 、H82 、H526 、SW1271 的对照组和实验组细胞, 其中 H69-NC 、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、[/size][size=16px]H526-shMSI1-1、H526-shMSI1-2 细胞系以 1×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细胞密度接种于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 以 1.3×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细[/size][size=16px]胞[/size][size=16px]密度接种于[/size][size=16px] 96 孔板中。待细胞融合率约 80%,加入不同浓度顺[/size][size=16px]铂[/size][size=16px]。每组均设置对照组及空白组(仅有同体积培养基)。H69、H82、H526 的对照组和实验组[/size][size=16px]加药浓度梯度为 0、1、2、4、8、16、32、64 nmol/mL,SW1271 对照组和实验组细胞加药浓度梯度为 0、2、4、8、16、32、64、128、256 nmol/mL,(加药浓度梯度根据细胞类型、前期预实验结果及细胞对药物的敏感程度而定)。每种浓度设 6 [/size][size=16px]个[/size][size=16px]复孔,每孔总体积为 100 [/size][size=16px]μL[/size][size=16px],培养 24、48、72、96、120 h 后[/size][size=16px]分别检测细胞活力。每孔加入[/size][size=16px] 10 [/size][size=16px]μL[/size][size=16px] 的 CCK-8[/size][size=16px](避光),培养箱中孵育[/size][size=16px] 4 h 后取出,使用酶标仪测定波长为 450 nm 的吸光度(OD 值)。利用公式:抑制率=(加药组-空白组)/(对照组-空白组)计算增殖抑制率。实验重复 3 次,取平均值。以药物浓度为横坐标,细胞增殖抑制率为纵坐标,利用[/size][size=16px]Graphpad[/size][size=16px] prism5 绘图。[/size] [size=16px]敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞增殖能力的影响[/size][size=16px]CCK-8 是一种基于 WST-8 而广泛应用于细胞增殖和细胞毒性的快速、高灵敏度、无放射性的比色检测试剂盒。WST-8 在电子耦合试剂存在的情况下,可以被线粒体内的一些脱氢酶还原生成橙黄色的甲[/size][size=16px]瓒[/size][size=16px],生成的甲[/size][size=16px]瓒[/size][size=16px]物的数量与活细胞的数量呈正比,因此可以直接进行细胞增殖和毒性分析。[/size][size=16px]CCK-8 法 测 生 长 曲 线 实 验 结 果 如 图[/size] [size=16px]3-1 显 示 , 实 验 组 H69-shMSI1-1 、[/size][size=16px]H69-shMSI1-2 、 H82-shMSI1-1 、 H82-shMSI1-2 、 H526-shMSI1-1 、 H526-shMSI1-2 、[/size][size=16px]SW1271-shMSI1-1、SW1271-shMSI1-2 细胞的 OD [/size][size=16px]值明显[/size][size=16px]低于对照组。[/size][size=16px]表明敲低[/size][size=16px] MSI1[/size][size=16px]抑制了[/size][size=16px] SCLC 细胞的生长增殖。[/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321138249_2126_5887180_3.png[/img][size=16px] [/size][size=16px]图[/size][size=16px] [/size] [size=16px]MSI1 低表达对 H69、H82、H526、SW1271 对照组和实验组细胞增殖的抑制情况。应用 [/size][size=16px]Graphpad[/size][size=16px] prism5 作图所示(*P0.05,**P0.01,***P0.001,表示与对照组相比,[/size][size=16px]敲低组[/size][size=16px] OD 值减小[/size][size=16px]具有统计学意义)。[/size] [size=16px]测敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]药敏实验结果如图[/size][size=16px] 3-2 所示,与对照组相比,实验组 H69-shMSI1-1、H69-shMSI1-2、H82-shMSI1-1、H82-shMSI1-2、H526-shMSI1-1、H526-shMSI1-2、SW1271-shMSI1-1、[/size][size=16px]SW1271-shMSI1-2 经不同浓度[/size][size=16px]顺铂处理[/size][size=16px] 24、48、72、96、120 h 后细胞的药物敏感性无明显变化。[/size][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321124223_9282_5887180_3.png[/img]

  • MSI1在人小细胞肺癌细胞系中的表达及MSI1低表达

    MSI1在人小细胞肺癌细胞系中的表达及MSI1低表达

    MSI1在人小细胞肺癌细胞系中的表达及MSI1低表达细胞模型的构建实验方法与步骤 细胞的复苏 1.复苏前的准备:打开水浴锅,设置温度37℃;紫外线将超净台消毒30 min;配置完全培养基。 2.将要复苏的H69、H446细胞从液氮取出,用一次性PE手套包裹冻存管,迅速放入水浴锅中震荡,使其快速融化。 3.在15 mL离心管中加入5 mL完全培养基及融化的细胞悬液,900 r/min离心8分钟,弃去上清,得到细胞沉淀。 4.在25 cm2的培养瓶中加入5 mL完全培养基,并用1 mL培养基将沉淀的细胞重悬并加入准备好的培养瓶中,放入CO2恒温培养箱中继续培养。 细胞的传代 1.选取在悬浮培养瓶中生长至90%的H69细胞,用移液枪将细胞悬液移入15 mL离心管中,选取在贴壁培养瓶中生长至90%的H446细胞,用PBS溶液将细胞吹至漂浮,并移入15 mL离心管中,两种细胞均900 r/min离心8分钟,弃掉上清。 2.分别在3个25 cm2培养瓶中加入5 mL完全培养基,在细胞沉淀中加入3 mL培养基并充分吹打混匀,将3 mL细胞悬液平均放入3个培养瓶中并混匀,放入培养箱中继续培养。 MSI1低表达细胞模型的构建1.从-80℃冰箱取出慢病毒载体冰上融化,将慢病毒用空白培养基稀释为滴度2×108,充分混匀,准备好病毒感染增强液。2.将25 cm2悬浮培养瓶中H69细胞移入15 mL离心管中并用移液枪充分吹打混匀,取其中500 μL放入细胞计数仪中计数,取出1.2×106个细胞置入新的离心管中,加入空白培养基至6 mL。3.在12孔板中以MOI=10的病毒滴度进行感染,培养16 h。4.16 h后将细胞悬液离心,换成不加双抗的完全培养基继续培养,72 h后观察荧光。5.待细胞生长至状态良好,加入1 μg/mL嘌呤霉素筛选至90%以上细胞均产生荧光。荧光实时定量PCR(Q-PCR)检测MSI1在mRNA水平的表达 总RNA的提取分别将细胞离心,PBS缓冲液清洗2次,900 r/min离心8 min,得到细胞沉淀。分别加入1 mL Trizol,用移液枪吸打至细胞完全破裂,加入200 μL氯仿,震荡30 s,室温静置10 min,以有效分离无机相和有机相,随后4℃,12,000 g/min离心15 min。将上清移至高压过的1.5 mL离心管中,加入与上清等体积的异丙醇,轻柔颠倒震荡数次,室温静置10 min,随后4℃,12,000 g/min离心10 min。弃去上清,加入75%无水乙醇,4℃,12,000 g/min离心5 min。弃去上清,沉淀置于冰上自然干燥,但不可完全干燥。用30 μL DEPC水溶解总RNA。用NanoDrop One超微量分光光度计进行定量和纯度检测,用1%琼脂糖凝胶电泳进行完整性检测。 cDNA的合成逆转录体系试剂名称使用量模板RNAMonScriptTM 5*RT111 All-in-One MixMonScriptTM dsDNaseNuclease-Free Water1 μg4 μL1 μLup to 20 μL将混合液轻柔吹打混匀,瞬时离心,37℃ 2 min,55℃ 15 min,85℃ 5 min,得到cDNA。 Q-PCR检测MSI1 mRNA的表达GAPDH引物序列:Forward primer:Reverse primer:5’-GGTCGGAGTCAACGGATTTG-3’5’-ATGAGCCCCAGCCTTCTCCAT-3’MSI1引物序列:Forward primer:Reverse primer:5’-GAACCATCCCGTCCTGTATCA-3’5’-GAAACCATGAAGCCCCAACC-3’Q- PCR反应体系:Q-PCR反应体系试剂名称使用量cDNAForward primerReverse primerMonAmpTM Chemhs qPCR MixLow ROXNuclease-Free Water50 ng0.2 μL0.2 μL5 μL0.1μLup to 10 μLQ-PCR反应程序: Q-PCR反应程序反应步骤反应温度反应时间循环次数预变性95℃10 min1变性95℃10 s40退火55-65℃10 s延伸72℃30 s溶解曲线溶解曲线按仪器默认溶解曲线 结果采用t检验,用Graphpad prism5计算MSI1在mRNA水平的表达量。 Western blot检测MSI1在蛋白水平的表达总蛋白的提取将对数生长期的H69-NC、H69-shMSI1细胞移入15 mL离心管中,900 r/min离心8 min,并用PBS溶液洗涤2次,以去除培养基中血清影响。分别加入含PMSF的蛋白裂解液100 μL,与细胞充分混匀。4℃裂解1小时后,4℃,12000 g/min离心15 min,将上清移至新的离心管中,得到细胞总蛋白。 BCA法测定蛋白浓度 将Solution A和Solution B以50:1的体积比配置BCA工作液,充分混匀。将2 mg/mL蛋白标准品等比稀释,最小浓度为125 μg/mL,并分别与配置好的200 μL BCA工作液混匀,铺入96孔板中。37℃孵育30 min,测定波长562 nm处OD(光密度值)值,并绘制蛋白标准曲线。取适量H69-NC、H69-shMSI1细胞总蛋白,20:1稀释后,与200 μL BCA工作液混合均匀。37℃孵育30 min,用酶标仪测定波长562 nm处OD值,根据标准曲线计算出样品中的蛋白浓度。Western blot检测MSI1蛋白的表达 分别收集对数生长期的H69-NC、H69-shMSI1细胞总蛋白,加入相应体积4×SDS Loading Buffer,沸水浴煮5 min,分别取40 μg细胞总蛋白,在提前配制的10% SDS-PAGE分离胶电泳。电泳结束后,将蛋白转至PVDF膜上。用含5%脱脂牛奶的封闭液 37℃封闭1.5 h。弃去封闭液,用TBST缓冲液洗3次,每次10 min,加入MSI1兔单克隆抗体(1:1000),并以GAPDH为内参,加入GAPDH鼠单克隆抗体(1:5000);4℃孵育过夜,次日用TBST缓冲液洗膜3次,每次10 min。在敷有MSI1抗体的膜上加入辣根酶标记山羊抗兔IgG(1:5000),在敷有GAPDH抗体的膜上加入辣根酶标记山羊抗鼠IgG(1:5000),37℃敷育1 h,TBST 缓冲液洗膜3次,每次10 min。用增敏化学发光底物试剂检测,暗室曝光显影。在GAPDH表达量相同的情况下比较MSI1的表达情况。多次重复,应用ImageJ计算出各个蛋白条带的灰度对比,结果采用t检验,并应用Graphpad prism5作出柱状图。 MSI1在人小细胞肺癌细胞系中高表达 提取人正常肺上皮细胞BEAS-2B、小细胞肺癌细胞H446、H69的RNA,利用Q-PCR检测MSI1在正常肺上皮及小细胞肺癌细胞系中的表达情况,结果如图2-1显示,MSI1在小细胞肺癌细胞系H446、H69中的表达远远高于正常肺上皮细胞。https://ng1.17img.cn/bbsfiles/images/2022/10/202210102201428158_6718_5389809_3.png1 MSI1 mRNA在小细胞肺癌细胞系中的表达(**代表与正常肺上皮细胞相比,小细胞肺癌细胞MSI1表达量增高具有统计学意义,P0.01)。 MSI1低表达细胞模型的构建本实验选取人小细胞肺癌细胞系H69细胞,使用慢病毒感染技术敲低MSI1的表达,同时设置对照组除外病毒本身对细胞产生的影响,待细胞状态良好使用嘌呤霉素筛选,然后在荧光显微镜下观察如图2-2,可见H69-NC、H69-shMSI1细胞均产生绿色荧光,表明人小细胞肺癌H69细胞慢病毒感染成功。https://ng1.17img.cn/bbsfiles/images/2022/10/202210102201428036_9359_5389809_3.png MSI1低表达细胞模型的构建。应用shMSI1慢病毒载体感染H69细胞,利用嘌呤霉素筛选,并在荧光显微镜下观察。 荧光实时定量PCR(Q-PCR)检测MSI1的mRNA表达水平提取对数生长期的H69-NC、H69-shMSI1细胞的RNA,并测量RNA浓度及完整性,用1%琼脂糖凝胶电泳检测完整性可见,RNA有三条带,从上到下依次为28S rRNA、18S rRNA和5S rRNA,且28S rRNA的亮度是18S rRNA的两倍。用NanoDrop One超微量分光光度计测定人总RNA的A260/A280的值为2.00左右,A260/A230的值为2.30左右,说明提取的RNA质量和完整性很好,可以用于后续试验。利用Q-PCR技术检测各细胞内MSI1 mRNA相对表达量,结果如图2-3所示,与对照组相比,H69-shMSI1组MSI1 mRNA表达量明显降低(P0.01),抑制率约为75%。https://ng1.17img.cn/bbsfiles/images/2022/10/202210102201434330_8277_5389809_3.png MSI1在RNA水平的表达(***代表与对照组相比,H69-shMSI1组MSI1 mRNA表达量下降具有统计学意义,P0.001)。 Western blot检测MSI1蛋白表达水平将BSA标准品(2 mg/mL)进行等比稀释,最低浓度为125 ug/mL,并应用BCA蛋白质浓度测定试剂盒测定在波长562 nm下的OD值,以OD值为纵坐标,对应蛋白质浓度(μg/mL)为横坐标,绘制标准蛋白曲线如图2-4所示。https://ng1.17img.cn/bbsfiles/images/2022/10/202210102201435248_4142_5389809_3.png图2-4 标准蛋白曲线分别提取H69-NC、H69-shMSI1细胞的总蛋白质,利用Western blot技术检测各细胞内MSI1蛋白的表达情况。结果如图2-5所示,与对照组相比,MSI1蛋白表达在H69-shMSI1细胞中明显降低。表明MSI1低表达细胞模型构建成功。ahttps://ng1.17img.cn/bbsfiles/images/2022/10/202210102201437240_855_5389809_3.pngbhttps://ng1.17img.cn/bbsfiles/images/2022/10/202210102201434999_3303_5389809_3.png图2-5 MSI1蛋白水平表达:(a)MSI1蛋白表达条带;(b)MSI1蛋白的相对表达量。(*表示与对照组相比,H69-shMSI1组MSI1蛋白表达下降具有统计学意义,P0.05)。首先验证MSI1在小细胞肺癌细胞系中的表达情况,利用Q-PCR技术检测在RNA水平,MSI1在肺正常上皮细胞及小细胞肺癌细胞系中的表达,结果显示,MSI1在小细胞肺癌细胞中的表达明显高于正常肺上皮细胞。随后以人经典型小细胞肺癌细胞系H69细胞为研究对象,构建MSI1低表达细胞模型,应用shMSI1慢病毒载体感染H69亲本细胞,同时设置对照组除外病毒本身对细胞产生的影响,利用Q-PCR及Western blot验证MSI1在RNA及蛋白水平的表达,结果显示,H69-shMSI1组MSI1的mRNA及蛋白的表达明显降低。表明MSI1低表达细胞模型构建成功,可以用于后续实验。

  • 【金秋计划】基于MAPK/PI3K信号通路和成分细胞垂钓的茯苓醇溶提取物抑制胃癌MKN45细胞生长的研究

    [size=15px][color=#595959]茯苓是一种形成菌核的食用菌,具有利尿、祛湿、健脾、调胃的作用,最早被记录在中国古代医学巨著《神农本草经》中。茯苓在中医临床中有很高的应用,是许多抗癌配方的重要成分之一,如宋代《太平惠民和剂局方》记载的四君子汤,汉代《金匮要略》记载的桂枝茯苓丸、小半夏加茯苓汤。这些配方含有茯苓,对[/color][/size][size=15px][color=#595959]胃癌[/color][/size][size=15px][color=#595959]、[/color][/size][size=15px][color=#595959]卵巢癌[/color][/size][size=15px][color=#595959]、[/color][/size][size=15px][color=#595959]肝癌[/color][/size][size=15px][color=#595959]、[/color][/size][size=15px][color=#595959]肺癌[/color][/size][size=15px][color=#595959]和其他癌症有很好的抑制作用。[/color][/size] [size=15px][color=#595959]茯苓含有多糖、三萜、甾醇等活性化学成分;研究表明,多糖和三萜都是一类具有广泛抗[/color][/size][size=15px][color=#595959]肿瘤[/color][/size][size=15px][color=#595959]活性的化合物。胃癌是一种常见的[/color][/size][size=15px][color=#595959]消化[/color][/size][size=15px][color=#595959]道疾病,由生活习惯、饮食和环境等多种综合因素引起;中医等综合治疗方法已成为临床上癌症重要的治疗方法。2000多年来,茯苓被广泛用于治疗胃肠道疾病。该研究进一步研究了茯苓乙醇溶性提取物(PESE)的物质组成及对胃癌的抑制作用,并探讨其潜在的机制和生物活性成分。[/color][/size] [size=15px][color=#595959]采用体外和体内实验检测细胞活性和凋亡情况。基于转录组学进行差异表达分析和途径富集,并通过实时聚合酶链反应和western blotting进行验证。将胃癌肿瘤模型小鼠随机分为三组,即对照组(CMC-Na,0.5%,20 mL/kg/天)、CDDP组(顺铂,4 mg/kg/2天)和PESE组(PESE,200 mg/kg/天)。测定小鼠体重和肿瘤体积,测定肿瘤组织病理特征及[/color][/size]免疫[size=15px][color=#595959]组化变化。然后,采用MKN45细胞垂钓检测PESE的主要活性成分。[/color][/size] [align=center] [/align][size=15px][color=#595959][/color][/size][size=15px][color=#595959]体外实验表明,PESE对MKN45细胞增殖有抑制作用,但不诱导细胞凋亡。基于转录组和western blotting结果,PESE对MKN45增殖的抑制可能受丝裂原活化蛋白激酶(MAPK)和磷酸肌醇-3-激酶-蛋白激酶B (PI3K-Akt)信号通路的影响。体内实验表明,PESE抑制小鼠肿瘤生长,引起[/color][/size][size=15px][color=#595959]肿瘤细胞[/color][/size][size=15px][color=#595959]部分[/color][/size][size=15px][color=#595959]坏死[/color][/size][size=15px][color=#595959],但对小鼠无毒性作用。细胞垂钓鉴定出茯苓中9种三萜类化合物为PESE的主要活性成分。[/color][/size][align=center] [/align][size=15px][color=#595959][/color][/size][size=15px][color=#595959]PESE对胃癌具有明显的抑制作用,其机制可能共同影响MAPK和PI3K-Akt信号通路,可能与PESE的三萜成分有关。[/color][/size]

  • 流式细胞术可以检测什么?

    [font=宋体]流式细胞术,作为一种先进的生物技术,已经在生物医学研究中占据了举足轻重的地位。这种技术以其高精度、高速度以及多参数同时检测的能力,广泛应用于细胞生物学、免疫学、肿瘤学等多个领域。流式细胞术不仅可以对单个细胞进行多参数定量分析和分选,还能够对细胞内部的蛋白质、核酸、细胞受体以及细胞表面抗原等进行检测。因此,它在疾病诊断、药物筛选、细胞功能研究等方面具有广泛的应用前景。本文将对流式细胞术的检测原理、应用领域以及发展前景进行详细介绍,旨在为读者提供对这一技术全面而深入的了解。流式细胞术可以检测什么?下面是具体检测信息及应用:[/font][font=宋体] [/font][b][font=宋体][font=Calibri]1.[/font][font=宋体]细胞表型检测[/font][/font][/b][font=宋体]免疫细胞表型是流式细胞术最突出应用。[/font][font=宋体][font=宋体]通过检测免疫细胞群的表面或细胞内标志物,对其进行鉴定和表征。流式细胞术能够精确鉴定和分类免疫细胞群,例如[/font] [font=Calibri]T [/font][font=宋体]细胞、[/font][font=Calibri]B [/font][font=宋体]细胞、[/font][font=Calibri]NK [/font][font=宋体]细胞、树突状细胞、单核细胞、巨噬细胞、血小板和粒细胞等。[/font][/font][font=宋体] [/font][font=宋体]研究人员可以识别和量化异质群体中的各种免疫细胞亚群。[/font][font=宋体] [/font][font=宋体][font=宋体]临床医生可以诊断和监测各种血液系统疾病、进行免疫免疫评估([/font][font=Calibri]8[/font][font=宋体]大类免疫细胞构成与肿瘤预后)。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]2.[/font][font=宋体]细胞活力检测[/font][/font][/b][font=宋体] [/font][font=宋体]流式细胞术能够定量测量群体内和体外培养的活细胞和非活细胞。[/font][font=宋体] [/font][font=宋体]通过使用选择性标记活细胞或死细胞的荧光染料,流式细胞术可以提供精确可靠的活力测定,有助于确定细胞活力百分比。[/font][font=宋体] [/font][font=宋体]流式细胞术可以根据特定的标志物或染料区分活细胞、凋亡细胞和坏死细胞,从而更详细地了解细胞的健康和状态。通过将活力染料与细胞表面抗原、细胞内蛋白或功能测定的标记物相结合,研究人员可以在特定细胞类型或实验条件下获得有关细胞活力及其发生机制的全面信息。[/font][font=宋体] [/font][font=宋体]最常用的活性检测染料[/font][font=宋体] [/font][font=宋体][font=宋体]死细胞:碘化丙啶([/font] [font=Calibri]propidium iodide[/font][font=宋体],[/font][font=Calibri]PI[/font][font=宋体])和[/font][font=Calibri]7-AAD[/font][font=宋体],与[/font][font=Calibri]DNA[/font][font=宋体]结合,但只能进入膜受损的细胞,使死细胞发出荧光。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]凋亡细胞:[/font][font=Calibri]annexin V[/font][font=宋体]:对磷脂酰丝氨酸具有强结合亲和力的蛋白质,在细胞凋亡的早期阶段暴露在质膜的外表面[/font][font=Calibri]annexin V+PI[/font][font=宋体]是常用区分凋亡细胞和坏死细胞的组合。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]活细胞:[/font][font=Calibri]calcein AM[/font][font=宋体]、[/font][font=Calibri]CFDA[/font][font=宋体]([/font][font=Calibri]carboxyfluorescein diacetate[/font][font=宋体])、[/font][font=Calibri]FDA [/font][font=宋体]([/font][font=Calibri]fluorescein diacetate[/font][font=宋体]) :进入活细胞,但只有在与细胞内酶相互作用时才会发出荧光[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞体内增殖:[/font][font=Calibri]CFSE(CFDA-SE)[/font][font=宋体]穿透细胞膜,在活细胞内与胞内蛋白共价结合,水解后释放出绿色荧光。在细胞分裂增殖过程中,它的荧光强度会随着细胞的分裂而逐级递减,标记荧光可平均分配至两个子代细胞中,因此其荧光强度是亲代细胞的一半,根据这一特性,它可被用于检测细胞增殖,细胞周期的估算及细胞分裂等方面。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]3.[/font][font=宋体]细胞周期分析[/font][/font][/b][font=宋体] [/font][font=宋体]从流式细胞术的早期开始,细胞周期分析就成为有价值的应用。[/font][font=宋体] [/font][font=宋体]原理是基于荧光和核酸的量之间的关系。[/font][font=宋体] [/font][font=宋体][font=宋体]常用核酸结合染料:碘化丙啶([/font][font=Calibri]PI[/font][font=宋体]),[/font][font=Calibri]Hoechst[/font][font=宋体],[/font][font=Calibri]DAPI[/font][font=宋体],[/font][font=Calibri]7-AAD[/font][font=宋体],溴化乙锭等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术细胞周期分可以有很多方面的应用,例如,[/font][font=Calibri]DNA/Ki67[/font][font=宋体]测定可以将表型选择与细胞周期分析相结合,用于监测[/font][font=Calibri]p53[/font][font=宋体]细胞周期停滞,评估抗癌活,多药耐药性等。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]4.[/font][font=宋体]离子通道测定[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]钙作为关键的第二信使,在许多细胞信号通路中起着至关重要的作用。它在免疫细胞活化中尤为重要,包括[/font][font=Calibri]T[/font][font=宋体]细胞、[/font][font=Calibri]B[/font][font=宋体]细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞。[/font][/font][font=宋体]此外,钙信号传导还参与肥大细胞脱颗粒、神经元兴奋性、突触传递和神经递质释放至关重要。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞脱颗粒的早期测量值是通过使用钙离子载体[/font][font=Calibri]A23187[/font][font=宋体]的流式细胞术确定的。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]常用荧光染料:[/font][font=Calibri]fluo-3 [/font][font=宋体]和[/font][font=Calibri]indo-1[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]虽然[/font][font=Calibri]Ca2+[/font][font=宋体]通道测量是最常见的应用之一,但其他离子如镁、钾、钠和氢也可以使用流式细胞术进行监测。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]5.[/font][font=宋体]细胞功能检测[/font][/font][/b][font=宋体]最早的检测是细胞酯酶。[/font][font=宋体] [/font][font=宋体][font=宋体]使用响应氧化态变化的活性染料检测粒细胞的氧化电位。例如,氢乙啶([/font][font=Calibri]hydroethidine[/font][font=宋体])用于中性粒细胞呼吸爆发。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]二乙酸二氯荧光素([/font][font=Calibri]dichlorofluorescein diacetate[/font][font=宋体]),已被用于吞噬细胞功能研究。[/font][/font][font=宋体] [/font][font=宋体]效应细胞杀伤功能,是流式细胞术的另外一个重要应用。[/font][font=宋体] [/font][font=宋体]细胞因子是免疫细胞功能的重要执行分子,对科学研究,免疫细胞治疗,临床诊疗都及其关键。基于流式细胞术开发的多重细胞因子检测,已经有广泛应用。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]6.[/font][font=宋体]蛋白质工程[/font][/font][/b][font=宋体] [/font][font=宋体]流式细胞术和分选传统上不是蛋白质工程中最常用的技术之一。然而,近年来,在该领域的应用越来越多。[/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术被用于酶学蛋白质研究,包括细胞色素[/font][font=Calibri]P450[/font][font=宋体]、葡萄糖氧化酶、几丁质酶、纤维素酶、过氧化物酶、酯酶、转移酶、β半乳糖苷酶、硫代内酯酶等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白质工程,包括在基因水平上引入突变(随机或特异性),以创建由数千到数百万个单个蛋白质变体组成的文库(如上图),使用流式细胞术[/font] [font=宋体]每天能够分析多达[/font] [font=Calibri]10^8[/font][font=宋体]–[/font][font=Calibri]10^9 [/font][font=宋体]个克隆,并对具有所需特性的克隆进行分类。[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]哺乳动物细胞和细菌细胞分选[/font][/font][/b][font=宋体] [/font][font=宋体]细胞分选是流式细胞的重要应用之一,哺乳动物细胞相对成熟,不做赘述。细菌细胞方面的应用,也逐渐开始建立。[/font][font=宋体] [/font][font=宋体]与耗时的传统琼脂铺板检测方法相比,流式分选可以快速检测和分选悬浮液中的单个细菌细胞。[/font][font=宋体] [/font][font=宋体]尽管细胞分选仪具有高性能,但它们在微生物学中的应用一直受到限制。[/font][font=宋体] [/font][font=宋体]这主要是由于微生物体积小,因此很难将它们与培养基中的细胞碎片或背景颗粒区分开来。另一个潜在的问题是,通常没有细菌菌株特有的抗体。[/font][font=宋体] [/font][font=宋体][font=宋体]限制细胞分选仪在细菌检测和分选中的适用性的其他因素主要与分选仪硬件功能本身有关,在流式细胞术仪器的早期,数量有限的激光器和检测器,限制一次只能使用一种或两种荧光染料。随着最新仪器的发展,多激光器和检测起的仪器被开发:包括赛默飞世尔的[/font][font=Calibri]Bigfoot[/font][font=宋体]光谱细胞分选仪,[/font][font=Calibri]BD FACSAria III[/font][font=宋体]分选仪,索尼[/font][font=Calibri]MA900[/font][font=宋体]细胞分选仪和贝克曼库尔特的[/font][font=Calibri]MoFlo Astrios EQ[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]此外,部分致病性细菌,需要在[/font][font=Calibri]BSL2[/font][font=宋体]以上的实验环境下进行,现在部分流式细胞术带有[/font][font=Calibri]BSL 2 hood[/font][font=宋体]。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]8.[/font][font=宋体]液滴微流体[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]液滴微流体是一个相对较新的领域,专注于皮升体积中含有细胞或[/font][font=Calibri]DNA[/font][font=宋体]的离散液滴的形成,操作和分析,应用于生物学、化学、材料科学和医学。[/font][/font][font=宋体] [/font][font=宋体]在生物学中,液滴微流体可实现单细胞分析、生物分子的高通量筛选、细胞异质性研究和药物发现。[/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术分析是研究单细胞的强大技术,可提供有关各种参数的宝贵信息。然而,它的测量仅限于直接连接到细胞的分子,例如表面或细胞内标记物,限制研究由细胞分泌或由[/font][font=Calibri]DNA[/font][font=宋体]分子产生但不物理附的分子。液滴微流体提供了一种克服这一限制的新方法。将细胞或[/font][font=Calibri]DNA[/font][font=宋体]封装在单个液滴中会产生离散的区室,从而能够分析由封装实体释放或产生的化合物。[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]9.[/font][font=宋体]下一代生物制剂[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]生物制药已经占据了药物市场的重要份额,包括治疗性蛋白质([/font][font=Calibri]65%[/font][font=宋体]),疫苗([/font][font=Calibri]20%[/font][font=宋体])等。通过测序([/font][font=Calibri]NGS[/font][font=宋体])进行单[/font][font=Calibri]B[/font][font=宋体]细胞库分析和克隆扩增鉴定,直接从人类幸存者克隆免疫球蛋白基因,分离出高亲和力中和抗体,加快了单克隆抗体药物的研发,然而,这种方法比较昂贵,且依旧需要后续的功能验证等。新策略可使用流式细胞术、[/font][font=Calibri]MACS[/font][font=宋体]或微流体将单细胞分离与功能筛选相结合,降低开发成本并消除失败的候选药物,是流式细胞术新的应用开发方向。[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],拥有[/font][font=宋体][font=宋体]①具有 [/font][font=Calibri]20,000 [/font][font=宋体]次以上流式抗体筛选鉴定经验及多年流式诊断抗体研发经验,在实验方案设计、样品制备、数据分析等方面确保科学性、准确性和可靠性[/font][font=Calibri] [/font][/font][font=宋体][font=宋体]②拥有 [/font][font=Calibri]1,000 [/font][font=宋体]余株自产精品流式抗体,覆盖细胞膜、胞内、核内及分泌抗原;[/font][/font][font=宋体][font=宋体]③自产 [/font][font=Calibri]Annexin V/7-AAD [/font][font=宋体]凋亡检测试剂盒,并储备多种流式检测常用试剂,大大节约购买试剂的等待时间和实际费用;[/font][/font][font=宋体][font=宋体]④可以提供近 [/font][font=Calibri]200 [/font][font=宋体]种细胞系选择,省去细胞样本寄送过程中的风险,并可以免费提供健康人外周血细胞对照品。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font][font=Calibri] [/font]

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • 【转帖】第四种淋巴细胞—NKT细胞

    第四种淋巴细胞—NKT细胞 通常认为,构成机体免疫系统的淋巴细胞有三种细胞系组成,一是由胸腺产生的T细胞,二是由骨髓分化而来的产生抗体的B细胞,三是自然杀伤(NK)细胞。而新近发现存在第四种淋巴细胞—NKT细胞。1. NKT细胞的发现1986年,克隆成功了NKT细胞的特征性抗原受体基因。将其命名为Va14基因,与其他T细胞抗原受体的(TCR)基因不同,有其独特的结构特征。1987年美国国立卫生研究所的Fawlkes与瑞士的Budd分别领导的两个研究小组报告指出,胸腺细胞中的T细胞通常不能表达受体,仅有部分未成熟T细胞选择表达V-β8.2受体。随后的研究证明这种细胞不是T细胞,考虑是NK细胞的受体,这种细胞集团的数量极少,生理意义不明。1994年,这两个研究小组的研究人员发现,他们报道的细胞为同一细胞,从此NKT细胞的研究引起人们的广泛关注。T细胞识别的抗原是蛋白质,而NKT细胞是别的抗原是α-Gal-Cer即所谓的糖脂质,这是该免疫系统与通常的免疫系统重要的不同点。NKT细胞的分化与T细胞不同的是在胸腺形成前的胎生初期6.5日在胸腺外组织分化。NKT细胞与T细胞比较,机能处于不发达状态。T细胞分化为功能不同的Th1和Th2细胞群,Th1细胞产生INFγ及IL-2,引起迟发行过敏症等细胞性炎症。Th2细胞能产生IL-4和IL-10,参与变态反应及抗体产生等体液免疫反应。而NKT细胞不但能分泌Th1和Th2细胞因子,同时还具有与CD8+伤害性T细胞(cytotox-ic Tlymphocyte,CTL)相同的杀伤靶细胞作用。毫无疑问,NKT细胞在免疫调节系统中占有重要位置。NKT细胞与疾病可能有诸多关系,可能与自身免疫性疾病的发病机制、变态反应的调节、抗肿瘤作用、及抑制寄生虫感染等有关。2. NKT细胞的多样性分化NKT细胞具有T细胞和NK细胞细胞两重性质,既能表达Va14/Ja281特定的T细胞受体又能由CD1介导识别脂质抗原。NKT细胞的分化是否依赖胸腺尚有争议。根据其表达TCR等多种表面抗原的不同,提示NKT细胞存在两个以上细胞群。从CD4/8的表达看,可将其分为(1)CD4-NKT细胞,(2)CD8-NKT细胞,(3)CD4和CD8均不能表达的DN-NKT细胞。第一类的全部和第二类的半数是Va14/Ja281-T细胞。3.人类NKT细胞人末梢血中的DN-NKT细胞V区域,可高度表达Va24/JaQ(这与鼠的Va14/Ja281高度相似)及Vβ11(与鼠Vβ18高度相似)。这种TCR的组合表达可见于DN-NKT细胞和CD4+细胞。而未见于CD8+细胞。小鼠的CD1相当于人的CD1d的Va24/JaQ。此外,人末梢血中1~2%的T细胞能表达抑制性受体,即抑制型NK细胞受体(KIR),而Va24/JaQ+细胞则不能表达。它的NK相关分子是CD16、CD56或CD57,Va24/JaQ+细胞异不能表达这些分子。在小鼠中还可以看到Va24/Ja281+T细胞以外的NKT细胞。人类Va24/JaQ+细胞与KIR+T细胞能形成不同的亚群。且具有不同的功能。4. NKT细胞分化的胸腺依赖性这是目前存在争议的问题,可以肯定地说NKT细胞分化过程中胸腺是有作用的。NKT细胞多见于胸腺及脾脏以外的肝脏和骨髓种,胸腺缺损的小鼠与正常小鼠比较,NKT的分化并不少。将出生三日小鼠的胸腺摘除,虽然NKT细胞的分化显著受到抑制,但此时CD8+NKT细胞的分化未受到影响。由此认为CD8+NKT细胞在胸腺外分化的可能。5. NKT细胞产生细胞因子的意义 NKT细胞是指能够表达NKT细胞标志NKT1.1的T细胞,其机能具有T细胞和NKT细胞双重特征。NKT细胞在TCR和NKR介导下,产生大量的IL-4及INFγ,对肿瘤细胞有细胞伤害作用。 NKT细胞能表达T细胞的TCR与NK细胞的NKR-P1两种受体,特别是NKT细胞多数表达Va14TCR,识别CD1抗原,而NKR-P1识别各种糖链。 NKT细胞,特别是CD4-NKT细胞,对TCR刺激可产生大量IL-4及IFNγ,同时具有ThO型细胞因子产生能力。NKT细胞不但产生IL-4的主要细胞,而且强力产生IFNγ。IFNγ参与自身Th1诱导,具有极强的Th1诱导能力,从而是IL-2产生亢进。它同时还具有Th2细胞分化抑制功能。IL-12能诱导NKT细胞产生IFNγ。IL-12对TCR的刺激是IFNγ的产生显著亢进。综上所述,NKT细胞不但是IL-4和IFNγ的强力产生细胞,同时参与Th1/Th2分化的抑制,而这些作用都不是单纯的。 虽然NKT细胞能大量产生细胞因子,但仅在机体内保持这种功能。当初一度认为,NKT细胞只是IL-4的产生细胞,而不是Th2分化的必需细胞。并不认为在CD1缺损的小鼠中NKT细胞的分化和对TCR刺激使IL-4产生减少,且对Th2分化必需的IL-4及IgE的产生没有多大影响。但给小鼠投于α-GalCer可使NKT细胞活化,IL-4的产生诱导Th2的应答。有报告指出,同样投于α-GalCer,可使NKT细胞产生IFNγ而致IgE产生低下。由此可见,NKT细胞能产生IL-4与IFNγ两种功能相反的细胞因子。这种微妙的协调作用可能是NKT机能表达的重要特征。NKT细胞的活化通常伴有T细胞、B细胞及NK细胞的活化,这对NKT细胞活化后的免疫应答有较大影响。

  • 【分享】细胞冻存和细胞复苏的方法步骤

    目前,细胞冻存最常用的技术是液氮冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。细胞在不加任何保护剂的情况下直接冷冻,细胞内外的水分会很快形成冰晶,从而引起一系列不良反应。如细胞脱水使局部电解质浓度增高,pH值改变,部分蛋白质由于上述原因而变性,引起细胞内部空间结构紊乱,溶酶体膜由此遭到损伤而释放出溶酶体酶,使细胞内结构成分造成破坏,线粒体肿胀,功能丢失,并造成能量代谢障碍。胞膜上的类脂蛋白复合体也易破坏引起细胞膜通透性的改变,使细胞内容物丢失。如果细胞内冰晶形成较多,随冷冻温度的降低,冰晶体积膨胀造成细胞核DNA空间构型发生不可逆的损伤,而致细胞死亡。因此,细胞冷冻技术的关键是尽可能地减少细胞内水分,减少细胞内冰晶的形成。采用甘油或二甲基亚砜作保护剂,这两种物质分子量小,溶解度大,易穿透细胞,可以使冰点下降,提高细胞膜对水的通透性,且对细胞无明显毒性。慢速冷冻方法又可使细胞内的水分渗出细胞外,减少胞内形成冰结晶的机会,从而减少冰晶对细胞的损伤。二、细胞冻存操作步骤:(1)选择处于对数生长期的细胞,在冻存前一天最好换液。将多个培养瓶中的细胞培养液去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养液。用吸管吸取培养液反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬液。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清液,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×106~1×107/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记好细胞名称和冻存日期,同时作好登记(日期、细胞种类及代次、冻存支数)。(4)将装好细胞的安瓿或冻存管装入沙布袋内;置于液氮容器颈口处存放过夜,次日转入液氮中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时(此步可省略),再吊入液氮容器颈气态部分存放2小时,最后沉入液氮中。细胞冻存在液氮中可以长期保存,但为妥善起见,冻存半年后,最好取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。

  • 经验总结:关于细胞消化

    一、酶消化法1、胰酶。这是用得最多的。一般浓度在0.25-0.5%。作用时间根据细胞种类、作用温度等因素而变化很大,从几分钟到几十分钟不等。0.25%的胰酶作用于单层贴壁的细胞,在37度条件下,一般消化1-5分钟就足够了。终止是用血清。主要作用于细胞间。配制时不能用含钙、镁的平衡液,否则影响活性。保存于-20度。2、胶原酶。这种方法比较少,一般是用原代培养时,从组织消化下细胞。这种方法作用温和,对细胞损伤较小,但是,价格也较贵。中止同样是用血清。二、离子螯合剂 不破坏细胞表面分子,仅与CAMs螯合,因此,如果检测细胞表面分子的话,尽量,甚至是一定不要用酶消化法。1、EDTA。用得也是非常多。一般浓度在0.02%左右。作用于细胞与间质,对细胞间也有一定作用。注意,它能显著影响pH值,而且在弱碱性条件下才易溶。因此,配制时应调节好酸碱度。它不能被终和。因此,消化下来的细胞要洗一遍。2、商品化的无酶消化液。个人的使用经常觉得对细胞的损伤比较大,但是分离成单细胞悬液的能力确实比较强。三、物理法 直接吹打或用细胞刮子将细胞刮下来。四、冷冻法 这是本人做细胞培养时发现的方法。此方法仅能用于细胞传代时。无法使组织上的细胞脱落下来。本方法的原理,我想是因细胞冷冻后收缩,从而从培养瓶上脱落下来。优点是:对细胞损伤小,不需要中止或洗细胞,方便,不需要另外配制消化液。特别适用那些贴壁不是特别紧,又特别娇气的细胞。不足是细胞常成小片脱落。此种方法曾用于因用其它方法传代导致大量细胞死亡操作的间充质干细胞、DC细胞的培养,效果非常满意。具体过程是:1、用较多的4度的PBS洗涤一遍细胞(以6孔板为例,加1.5 ml/孔);2、再加0.5 ml 4度的PBS,静置操作台上,很快细胞就小片脱落;3、轻轻吹打,细胞即完全脱落;4、按一定比例传代。

  • 【分享】细胞生长受什么因素影响?影响细胞生长的因素

    细胞在体外进行培养,失去了机体的调节和控制。因此,除满足营养的要求外,还必须使细胞生存环境尽量接近活体的环境。外环境的培养条件如温度、渗透压、酸碱度等均能影响细胞的生长。 一、温度 一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长,但速度减缓;放在40℃数小时后,再置回37℃培养细胞仍能继续生长。但如果在40℃下暴露时间太长,对细胞生长不利,甚至变圆脱落于瓶壁。若温度过低,在降到冰点以下时,细胞因胞外水和胞质结冰而受损死亡。但若向培养液中加入甘油或二甲亚砜等保护剂,封入安瓿中后,置于液氮中,可起保护作用,此时细胞可耐受-70℃以下温度,能长期储存,解冻后细胞复苏,仍能继续生长增殖,细胞生物性状不受任何影响。此为保存细胞的主要手段。 高温对细胞培养不利。细胞在39~40℃培养1小时,能受到一定损伤,但仍有可能恢复,但不能忍受温度再升高2℃,持续数小时,即在41~42℃中培养1小时,细胞损伤严重,温度至43℃以上时细胞多数被杀死。高温主要引起酶的灭活、类脂质破坏,核分裂的破坏,产生凝固酶使细胞发生凝固,另外使蛋白质变性。因此,体外培养细胞时一定要避免高温。 二、渗透压 细胞在高渗溶液或低渗溶液中,可以立即发生皱缩或肿胀、破裂。所以,渗透压是体外培养细胞的重要条件之一。哺乳动物和其他动物组织细胞体外培养的渗透压的维持主要与NaCl有关,但不能忽视其他电介质渗透压的关系。渗透压与单位体积溶媒内溶质的分子数和离子数成正比。为此,按一定比例控制培养液中离子平衡,维持正常渗透压是很重要的。这不仅是为了维持细胞张力,而且是为了调节细胞的代谢。因为细胞外离子输送和离子浓度改变着其他营养物质的输送(如氨基酸、蔗糖等),直接影响细胞基本合成系统。 理想的渗透压因细胞的类型及种族而异,人血浆渗透压为290mmol/L,被视为是体外培养人类细胞的理想渗透压。哺乳类动物细胞的渗透压一般为290~300mmol/L。人胚肺成纤维细胞为250~325mmol/L,鼠则为310mmol/L左右。在实际应用中,260~320mmol/L的渗透压可适于大多数细胞。

  • 2017第七届国际分子与细胞生物学大会通知

    第七届国际分子与细胞生物学大会将于2017年4月25-27日在西安举行。大会活动主要包括主题报告、科技论坛、专题讨论会、展览展示、海报展示高端人才招募洽谈会等。会议议题包含干细胞、分子与细胞生物学的最新技术、分子细胞生物学、生物医药等。此外本届会议将邀请到国内外著名院士、以及来自世界50多个国家和地区的相关领域学者、企业高管、科研院所的科研专家等领衔主讲高端论坛近40个。为广大的国内外分子与细胞生物学领域嘉宾提供了相互交流的平台。同期将召开第二届遗传学大会和生物技术产业大会。三会联动,一次注册均可参加!大会网站:http://www.bitcongress.com/cmcb2017/cn/default.asp大会主席:尹玉新博士,北京大学基础医学院院长、北京大学系统生物医学研究所所长大会主题论坛演讲人:Martin Banwell 博士,澳大利亚国立大学教授 Christian Patermann 博士,德国欧洲委员会前主任 Robert S. Plumb 博士,英国帝国理工学院教授Dongping Zhong博士,美国俄亥俄州立大学教授Xiang Zhang博士,英国剑桥大学首席顾问,皇家学会会员 著名演讲人(国内)卢灿忠,中国科学院福建物质结构研究所教授罗顺,中国健顺生物科技有限公司总裁许胜勇,北京大学教授范兴明,云南省农业科学院研究员孙凌云,南京大学医学院教授、主任谭砚文,复旦大学教授陈建海,南方医科大学教授谢志红, 安徽医科大学教授华益民,苏州大学教授沈赞明,南京农业大学教授胡颖,哈尔滨工业大学教授刘磊, 北京大学教授郑彩霞,北京林业大学教授邓文生,武汉科技大学教授邓文礼, 华南理工大学教授王雯,首都医科大学教授陈兵, 第三军医大学教授张小莺,西北农林科技大大学杨铁林,西安交通大学教授秦 鸿雁,第四军医大学教授刘毅, 遵义医学院附属医院教授许乃寒,清华大学深圳研究生院教授茅卫锋,大连医科大学副教授张志远,中国国家生物科学研究所研究员蒋晓江,第三军医大学教授,主任医师刘书逊,第二军医大学副教授吴玉梅,第四军医大学副教授著名演讲人(国外):Ying-Jan Wang,台湾国立成功大学教授Julie Kazimiroff,美国艾伯特爱因斯坦医学院主任Samir Ounzain,瑞士洛桑大学博士后科学家Yitzhak Rabin,以色列巴伊兰大学教授Franz E. Weber, 瑞士苏黎世大学教授Christina L. Chang,台湾国立成功大学教授Ivan Robert Nabi,加拿大英属哥伦比亚大学教授Brajendra K. Tripathi,美国国立卫生研究院科学家Stefano Zanasi,意大利佛罗伦萨大学教授Vadim Davydov,俄罗斯国立医科大学教授So Yoon Kim,韩国延世大学教授Kari Keinanen,芬兰赫尔辛基大学教授Yi Wang,加拿大阿尔伯塔大学Yeu-Ching Shi,台湾Indigena Botanica公司Ruben G. Contreras,墨西哥高级研究中心首席研究员Yong Jia,美国诺华研究基金会基因组学研究所高级研究员Dongxia Xing,美国MD安德森癌症中心高级研究科学家Mark A. Birch-Machin,英国纽卡斯尔大学教授 Zvi Naor,以色列特拉维夫大学教授Jia-Ching Shieh,台湾中山医科大学副教授Emmanuel M. Drakakis,英国帝国理工大学教授Kiwon Song,韩国延世大学教授Gregory Lee,加拿大不列颠哥伦比亚大学教授Michael Uhlin,瑞典卡罗林斯卡学院研究员Makoto Fukuda,日本东京医科齿科大学Kwan-Kyu Park,韩国大邱大学教授Yonggui Gao,新加坡南洋理工大学副教授Edith Aberdam, 巴黎第七大学研究工程师Alex Kharazi ,美国Stemedica副总裁Jukka Tuomi,芬兰阿尔托大学研究室主任Charles H. Sherwood,美国阿尼卡疗法有限公司总裁、首席执行官David Trudil,美国NHDetect公司执行总裁Alain Verreault,加拿大蒙特利尔大学教授、首席研究员Susanne Staehlke, 德国罗斯托克大学医学中心研究员 会议议题专题一:细胞生物学的研究前沿论坛1:细胞核结构和功能 论坛2:染色质和表观遗传 论坛3:基因组不稳定性和DNA损伤 论坛4:细胞骨架、粘附和迁移 论坛5:中心粒、中心体和纤毛 论坛6:蛋白质结构和功能 论坛7:膜结构、动态、运输和调控 论坛8:线粒体功能和细胞能量代谢 论坛9:信号转导和信号网络 论坛10:细胞分裂和细胞周期 论坛11:蛋白质稳态、细胞应激 论坛12:细胞坏死与存活 论坛13:叶绿体和光合作用 论坛14:细胞壁生物学 论坛15:发育和形态发生 论坛16:免疫细胞生物学 论坛17:微生物和寄生虫生物学 论坛18:基因表达和转录调控专题二: 干细胞论坛1:胚胎干细胞和成体干细胞 论坛2:间充质干细胞 论坛3:造血干细胞 论坛4:神经干细胞 论坛5:细胞可塑性和重编程 论坛6:干细胞治疗专题三: 分子与细胞生物学的最新技术论坛1:基因组编辑技术 论坛2:高通量/高含量技术 论坛3:分子和细胞成像技术 论坛4:单分子和单细胞分析技术 论坛5:实验室芯片、微流体和微阵列 论坛6:流式细胞术 论坛7:新型细胞分离,分离和培养技术 论坛8:光遗传学专题四: 分子细胞生物学与生物医药论坛1:分子与细胞生物学和转化医学 论坛2:分子药物靶标研究 论坛3:癌细胞生物学 论坛4:细胞神经生物学 论坛5:神经退行性疾病 论坛6:生殖细胞和生殖疾病 论坛7:肌肉细胞和肌肉疾病 论坛8:RNA与疾病和治疗 论坛9:端粒、端粒酶与衰老 论坛10:模式生物和疾病模型 论坛11:组织修复与再生 论坛12:心血管生物学 论坛13:红细胞疾病 论坛14:时间生物学★ 企业展位展览范围 一、科学仪器区 分析测试仪器:光谱仪器、色谱仪器、质谱仪器、频谱仪器、波谱仪器、光学分析仪器、热分析仪器、表面分析仪器、元素分析仪器、成份分析仪器、过程分析仪器、图像分析仪器、射线分析仪器、气相色谱、液相色谱、显微镜、光学影像处理和其他通用分析仪器等。 通用实验室仪器:热量装置、反应装置、剂量称重系统、自动化装置、独立技术、实验室家具、实验室用品、实验室医疗设备、实验室数据系统、实验室图像分析及处理、实验室工艺及设备、输送设备与连接装置、清洁、烘干设备、超洁净环境工程设备等。 生化仪器、生命科学及微生物检测仪器、实验动物设施:多肽合成仪、氨基酸测试仪、DNA合成仪、诊断仪器、生物生化技术设备、生物培养箱、发酵罐、酶标仪、生物传感器、生物工程过程控制与生产工艺装备。行业专用分析仪器与设备:电子光学仪器、生化仪器、生命科学及微生物检测仪器、生物反应器、实验动物设施。二、试剂/消耗品区 通用试剂、仪器专用化学试剂、标准物质、实验室用化学品、电子试剂 、光化学试剂、生化和分子生物学试剂、医学/诊断/检验试剂、细胞/血清/培养基抗体、实验室消耗品。 三、生物医药区

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制