当前位置: 仪器信息网 > 行业主题 > >

原位表征

仪器信息网原位表征专题为您整合原位表征相关的最新文章,在原位表征专题,您不仅可以免费浏览原位表征的资讯, 同时您还可以浏览原位表征的相关资料、解决方案,参与社区原位表征话题讨论。

原位表征相关的资讯

  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments.Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°.heng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht,S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 高通量组合薄膜制备及原位表征系统
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 122" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " 高通量组合薄膜制备及原位表征系统 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " 中科院物理研究所 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 联系人 /p /td td width=" 175" p style=" line-height: 1.75em " 郇庆 /p /td td width=" 159" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 192" p style=" line-height: 1.75em " qhuan_uci@yahoo.com /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " √正在研发 □已有样机 □通过小试 □通过中试 □可以量产 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " √技术转让 & nbsp & nbsp √技术入股 & nbsp □合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title=" LIBE-STM.jpg" width=" 350" height=" 321" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 321px " / /p p style=" line-height: 1.75em " & nbsp br/ /p p style=" line-height: 1.75em " & nbsp & nbsp 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 应用前景尚不明确。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 发明专利:201510446068.7、201510524841.7 /p /td /tr /tbody /table p br/ /p
  • 热点分会场之“原位电子显微学表征”精彩分享
    p    strong 仪器信息网、中国电子显微镜学会联合报导 /strong :2018年10月24日, a href=" https://www.instrument.com.cn/zt/CEMS2018" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong “2018年全国电子显微学学术年会” /strong strong /strong strong /strong /span /a 在成都禧悦酒店正源厅盛大开幕。大会为期三天,吸引来自大专院校、科研院所、企业等电子显微镜学领域专家学者1000余人出席。大会旨在帮助大家了解电子显微学及相关仪器技术的前沿发展,促进基础研究与应用研究最新进展的交流。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/70b306ee-4d38-4311-b06c-5317862d1fb0.jpg" title=" 微信图片_20181024102728_副本.jpg" alt=" 微信图片_20181024102728_副本.jpg" / br/ span style=" color: rgb(0, 176, 240) " 大会现场 /span /p p   继大会报告后,十个分会场同时上演。延续往届会议大家对第2分会场“原位电子显微学表征分会场”的关注热度,该会场再次成为最受欢迎的分会场之一。 /p p   原位电子显微学表征技术的发展使得在原子尺度上实时动态观察物质在热、电、气、压力、磁、液体及化学反应等外部条件作用下的微结构演化成为可能,实现了在电镜内部对物理和化学反应的动态、实时原位观测。该技术通过研究物质在外界环境作用下的微结构演化规律,揭示其原子结构与物理化学性质的相关性,指导其设计合成和微结构调控,促进新物质的探索和深层次物质结构研究,为解决材料的形核及生长,界面反应,电化学反应,新能源、生物矿化,和催化反应等领域的具体问题提供了直接、准确和详细的方法。目前国际上越来越多的研究者已经利用实时原位电子显微学表征技术在所研究领域获得了突破。原位电子显微学也逐渐成为电子显微学研究的热点研究领域。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/4e20c3f1-05e3-462e-877c-7fe9fbc14842.jpg" title=" IMG_1344.jpg" alt=" IMG_1344.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 原位电子显微学表征分会场 /span /p p   总计两天的“原位电子显微学表征分会场”,40余个专家报告轮番上演,与会学者对该分会场的关注热情也一直保持到了会议结束,以下为部分精彩报告摘要。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/c8ff5a4a-a652-4e6d-954f-d65e96acd72b.jpg" title=" IMG_1357.jpg" alt=" IMG_1357.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:车仁超 教授(复旦大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:面向磁性材料的洛伦兹电子显微学 /span /p p   透射电镜物镜存在强磁场,因而清晰的分析金属磁性材料的微观结构成为一个难题。目前对于商业化的TEM、原位附件等产品在磁性材料,尤其强磁性材料的微观结构分析方面面临很多局限性。车仁超团队突破了常规洛伦兹透射电镜的极限分辨率,自主建立了针对金属磁性材料的原位低温多场耦合电镜研究平台:低温可至12 K的液氦低温 自旋极化电流等。尤为重要的是在施加上述多场的同时,可以实现原子级别高分辨的微观结构观察。围绕磁性吸波材料和半导体超晶格材料的显微结构、电磁结构与吸波性能关系,以原位低温电子显微学方法为主要手段,以此平台为基础在原子分辨显微结构角度研究了金属吸波材料的构效关系。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/2eca7273-e06e-415c-9140-baf4978cae6f.jpg" title=" IMG_1363.jpg" alt=" IMG_1363.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:陆洋 副教授(香港城市大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:纳米尺度下共价晶体(硅与金刚石)的超弹性现象及其弹性应变工程 /span /p p   金刚石是世界上最坚硬的物质。除了用作珍贵的珠宝装饰外,还可作为深井钻探以及玻璃切割工具对岩石、玻璃等极其坚硬的物质进行高精度切割加工。在宏观尺度下,通常表现的脆性断裂使得金刚石在一些可能承受机械变形的应用中的使用受到了限制。为针对金刚石这一特殊的脆硬材料进行定量纳米力学测试,陆洋团队基于城大先进的电子显微镜平台,发展了一套独特的纳米力学实验方法,实现了电镜实时观察下对纳米金刚石锥样品进行压缩-弯曲测试。实验结果显示,单晶金刚石纳米锥可以实现前所未有的大变形且在极大范围内可完全瞬时回复。此发现将有助于进一步拓展纳米金刚石在药物传输、生物探测和影像等生物医学领域,光电器件领域,及作为纳米机械谐振器、数据存储器等量子信息技术领域等方面的应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/448df2cc-8587-4494-979a-f90b7abea9f1.jpg" title=" IMG_1391.jpg" alt=" IMG_1391.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:Marc Georg Willinger (ETH Zurich) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:Multi-scale Observation of Catalyst Dynamics Under Reactive Conditions /span /p p   Mary G.Burke分别以Ni、Cu的氧化还原反应及Cu、Pd的氧化反应过程的原位表征为例,表明表观动力学与催化活性呈正相关的关系。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/2d495dea-76aa-4484-a693-d88196f427ab.jpg" title=" IMG_1405.jpg" alt=" IMG_1405.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:毛圣成 教授(北京工业大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:透射电子显微镜原位高温实验力学样品杆研制 /span /p p   开展Ni基高温合金的研究具有重要意义,但面临合金元素复杂且随服役条件不断演变、显微结构演化规律复杂、中断实验引入复杂微观结构变化等难点。因此透射电镜中施加1100摄氏度以上,施加应力,同时双轴倾转原位观察高温材料在蠕变、卸载温度/应力过程中的显微结构演化规律将加速我国高温合金的研发。目前相关商业化样品杆品牌包括Gatan、Hysitron、DENSsolution、Protochips等,但都存在一定的不足。基于此,由张泽院士、韩晓东教授负责的国家重大科学仪器研制专项项目将攻克这一难题,并介绍了该项目的研制进展情况。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/60b04349-65ae-46aa-89fe-a00a61224c67.jpg" title=" IMG_1428.jpg" alt=" IMG_1428.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:张莉莉(金属所) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:碳纳米管生长机理的原位环境电镜研究 /span /p p   对碳纳米管结构,如直径、层数、尤其是导电属性和手性的控制制备是实现 其在电子学领域应用的重要前提,也是目前该领域研究的重点和难点。张莉莉通过原位环境电镜技术,以催化剂-碳纳米管界面为主要研究对象,以一氧化碳及一氧化碳/氢气混合气为对比碳源,开展了系列原位实验研究。结果表明在低压下一氧化碳歧反应一氧化碳歧反应为限制步骤,制备得到的单壁碳纳米管多为长度在5nm以下的短管,揭示出缩颈、拓宽直径等弱催化剂-碳纳米管相互作用为生长终结方式 而更换混合碳源后制备出较长的单壁碳纳米管,进一步证明了碳源是影响碳纳米管生长的重要因素。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1e7f3f1a-4dcc-4203-9e31-f61df476d57a.jpg" title=" IMG_1467.jpg" alt=" IMG_1467.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:隋曼龄 教授(北京工业大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:Electron radiolysis effect and low dose control for in-situ electron microscopy on functional metal oxides /span /p p   原位透射电镜研究过程中,许多情况下减少电子束对样品的损伤比提高分辨率更加有意义。隋曼龄在报告中主要介绍了原位电镜技术对功能金属氧化物的电子辐射分解效应及低剂量控制,分别以高电子剂量与低电子剂量为例进行实验,结果表明不同电子辐射条件往往会给原位透射观察带来不同的结果,尤其在环境透射条件下。另外,严格控制电子辐射条件对于原位环透射表征是十分重要的。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/17367c9a-6c4b-4088-99da-3778a3a29756.jpg" title=" IMG_1484.jpg" alt=" IMG_1484.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:祝祺 博士(浙江大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:体心立方金属纳米线的变形孪晶行为 /span /p p   体心立方(BCC)结构的金属纳米线具有优异的力学性能和出色的耐高温性能,有望被用于构筑苛刻条件下服役的微纳器件。然而,由于现有实验技术的限制,BCC金属纳米线的力学性能及其变形机制的研究仍然十分匮乏。祝祺所在王江伟研究员团队,利用先进的球差校正电子显微镜结合力-电耦合原位样品杆,对原位制备的纳米线进行力学加载,观察到了体心立方金属纳米线的超塑性变形行为。并通过追踪变形过程中晶体结构的演变,进一步揭示了多重变形机制协同调控的取向转变过程及其对纳米线力学性能的贡献,为金属纳米线性能的优化及应用提供了关键依据。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/682a0396-d8ec-46af-8e27-92bad6782feb.jpg" title=" IMG_1495.jpg" alt=" IMG_1495.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:徐强 博士(DENS solutions) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:DENS solutions原位电镜技术的最新进展 /span /p p   荷兰DENSsolutions公司提供技术先进的透射电镜样品管理解决方案,徐强主要介绍了该公司原位电镜最新技术、解决方案及相关案例。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9738ae2f-39e5-404c-b407-e5ba23981a4c.jpg" title=" IMG_1512.jpg" alt=" IMG_1512.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:岳永海 教授(北京航空航天大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:一维非晶材料强韧化机制研究 /span /p p   岳永海团队用静电纺丝方法制备了一种基于亚纳米非晶纳米线的纤维,原位力学测试说明材料的力学性能受材料内部超顺排结构影响显著,循环实验说明亚纳米线间距的减小大大提高了范德华力的作用,材料性能得到进一步提高。同时,采用原位生长方式制备具有晶体/非晶复合结构一维氧化锆纳米线,获得超过7%弹性应变和3.52GPa强度,有效抑制晶界软化和剪切带软化效应,实现了强度和韧度双提升。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/e59ea705-f354-448b-bfac-5ef047cc7747.jpg" title=" IMG_1519.jpg" alt=" IMG_1519.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:韩卫忠 教授(西安交通大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:Deformation Mechanism of Zr Containing Helium Nanobubbles /span /p p   韩卫忠团队借助先进的原位纳米力学技术,研究了纳米氦泡金属新型变形机制。高能粒子辐照会在材料内部产生诸多辐照缺陷,如位错环、层错四面体、空洞和气泡等。其中,辐照氦泡会导致金属结构部件发生沿晶脆性开裂。随后,韩卫忠详细介绍了原位纳米力学测试技术在单晶铜内氦泡在变形过程中的演化行为研究,并揭示了纳米氦泡金属变形新机制。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1fecb858-42ac-4b51-a468-80d720ffb351.jpg" title=" DSC03706_副本.jpg" alt=" DSC03706_副本.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:白雪冬 研究员(中国科学院物理研究所) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:氧空位序动力学行为的原位电镜研究 /span /p p   纳米材料的操纵和原子结构-性质对应关系是一个重要的基础问题。目前能够达到原子分辨的两种主要仪器是扫描隧道显微镜和透射电子显微镜。白雪冬团队将扫描探针技术的优势与透射电子显微镜的结构表征功能相结合,开发透射电镜中的扫描探针技术,并应用于纳米材料的操纵和性质测量研究。针对单个纳米结构单元或材料微区进行性质测量和原位高分辨结构表征,直接建立性质与原子结构的一一对应关系。相关仪器技术方案包括原位电镜光电测量系统、透射电镜内置扫描探头设计开发、扫描探针显微镜控制器开发、相位共轭无透镜激光会聚和扫描。在这些原位电镜技术基础上,进一步介绍了氧空位序动力学行为的研究。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/37be3073-329b-4ee1-a83d-0f328ef0eeb5.jpg" title=" IMG_2439_副本.jpg" alt=" IMG_2439_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:孙立涛 教授(东南大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:亚10纳米材料表/界面原位研究 /span /p p   孙立涛首先介绍了其团队的研究概况,研究对象为10nm以下材料,研究内容为表征、调控、应用,研究方法为原位电子显微学。接着介绍了原位透射电镜技术对一些工业领域发展做出的贡献,如半导体领域热议的纳米制程工艺就离不开原位电镜技术,如中芯国际为提高竞争力将采购十余台高端球差校正电镜等。再如石墨烯领域的发展更离不开原位透射电镜技术。最后,孙立涛表示从原位实验到应用是一个蛮长艰难的过程,需要不断研究和积累,创业也是如此,并为创业者给出几点建议:坚持科学、不忽视技术(工匠精神) 优势合作、分享利益、避免全能 客观理解产业化(坚持)。 /p
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。   验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。   该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新 ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。 2、原位表征 ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。 3、系统组件 集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 ICCS催化剂原位表征系统
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 院士领衔|透射电镜原位表征高端研讨会之26位专家报告集锦
    2021年6月19日-20日,“先进材料透射电镜原位表征高端研讨会——暨赛默飞-百实创-北工大显微结构与性能联合实验室成立仪式”在赛默飞中国客户体验中心召开,百余位先进材料透射电镜领域知名专家齐聚上海,共同见证了赛默飞-百实创-北工大显微结构与性能大数据联合实验室合作的启航,并一同探讨透射电镜原位技术在新进材料的研究中的最新进展。会议由中国科学院院士张泽担任会议主席,北京工业大学韩晓东教授担任组织委员会主席,由大会报告和四个主题专场报告组成(四专场主题依次为:透射电镜理论、技术与仪器发展;先进原位透射电镜表征;结构材料先进显微学表征;功能材料先进显微学表征)。大会报告张泽院士在题为“苛刻使役条件下材料性能与显微结构关系研究”的大会报告中强调,材料科学尤其材料显微学科研工作者,应重视建立材料微结构与宏观性能之间的对应关系,从而解决材料实际应用问题。张泽院士也着重介绍了先进结构材料在能源、环境、高端制造等领域的基础性、战略性低位,以及其在高温、高应力等苛刻使役条件下所面临的工程技术难题中的关键科学问题。并通过对航空发动机涡轮叶片等关键材料的微观尺度相结构调控、宏观结构稳定机理等科学问题的深入剖析,分享了如何完成从微观、介观到宏观的跨尺度研究,并把结构与性能之间的关系一一对应的详细研究过程与经验。同时也介绍了在材料性能与结构演变关系的研究过程中多场耦合条件的原位表征研究以及其在串联显微结构表征、材料性能乃至材料制备过程中的重要作用。张泽院士分享报告赛默飞电镜业务亚太区高级商务总监Marc Peeters在题为“Thermo Fisher Scientific: Contributions to Materials Research”的报告中,简要介绍了赛默飞的公司使命、整体概况及其在全球尤其中国的广阔商业布局与强大技术力量,并回顾了赛默飞世尔科技在微观表征设备尤其电子显微镜领域的研发、设计、制造的悠久历史与突出贡献:恒功率透镜、超级能谱、球差校正器、超亮电子枪、单色器、全新的探测系统、以及色差校正器等等技术的创造性推出与持续改进,极大帮助了科学家的材料研发、设计与制备等科研工作;近年,建立在超高稳定性系统上的全新自动化数据获取与智能化数据分析系统,亦将材料表征与分析、乃至新材料的开发工作推进到了一个全新的高度;而其完备的产品线及完整的表征工作流程,更是极大便利了科学家的材料科研工作。Marc随后也介绍了赛默飞强劲的研发、生产与技术支持实力,并展望了其在中国的远大发展前景。Marc Peeters 分享报告主题1:透射电镜理论、技术与仪器发展南京大学的王鹏教授深入浅出地介绍了基于高速相机4D-STEM大数据的叠层电子衍射成像技术(Ptychography)的技术原理及优势,并展望了该技术在突破硬件极限的超高分辨成像、与能量过滤器联用的5D-STEM、以及电子束敏感样品的低辐照高衬度成像乃至冷冻生物样品附带三维尺度信息的成像等等领域的最新应用。浙江大学的王江伟研究员则通过精巧设计的原位实验观察到了金属材料的单一理想界面的不同界面塑性变形的产生,进而讨论了其动力学机制及影响因素。武汉大学的郑赫副教授通过其最近在金属氧化物纳米材料的量子限域的可逆相变与点缺陷迁移方面的工作揭示了其微观力学的形变机理及广阔应用前景。赛默飞世尔的吴伟博士介绍了最新的Helios Hydra多气体离子源双束显微镜的低损伤透射电镜样品制备,及其搭载的多气体离子源切换与全新一代AutoTEM5带来的对各类不同材料的强大适应性与易用性。北京工业大学的张跃飞研究员与百实创科技的李志鹏博士分别介绍了扫描电镜及透射电镜上原位附件的最新技术进展、解决方案及相关应用。主题2:先进原位透射电镜表征重庆大学的黄天林教授通过原位加热实验系统地研究了层状纳米结构Al合金的结构演变,提出颗粒的粗化和集合,颗粒与位错界面/层状界面的联合可强化Y-junction迁移的钉扎作用,提高层状纳米结构的稳定性。北京工业大学的王立华研究员通过在原子尺度探索了纳米孪晶Pt材料的力学行为,回答了晶粒尺寸从Hall-Petch效应到反Hall-Petch效应区域的纳米晶的塑性变形机制等问题。北京航空航天大学的岳永海教授通过原位力学实验系统研究了纳米孪晶复合金刚石的强韧化机制,讨论了该材料变形过程中由孪晶增韧、相变增韧和叠层增韧等多重增韧机制协同作用。重庆大学的陈厚文教授在原子尺度研究了Mg合金中的界面结构,发现Mg合金中溶质原子孪晶界反常偏聚现象,提出化学成键能力是决定溶质原子孪晶界偏聚特征的重要因素。上海交通大学的刘攀教授通过原位变形研究了纳米多孔金的变形和断裂特征,发现表面原子扩散和体内位错滑移协同作用导致材料塑性室温,揭示了局域应变软化和孔洞粗化诱发整体脆断的变形机理。西北工业大学的马晓助理研究员通过原位加热的方法研究了高温金属材料的微观组织结构演变特征,揭示了高温结构材料服役过程中的精细微观组织结构的演变规律,为热处理制度制定,工程应用提供了理论指导。主题3:结构材料先进显微学表征浙江大学的余倩教授在题为“位错调控与金属结构性能关系”的报告中介绍了其通过现代电子显微学对合金材料的位错调控机理及应用的研究。她通过创造性的能谱“定量”技术解决了了高熵合金中元素周期性非均匀分布的表征问题,从而确定了合金元素错核靶向固溶引起的的超常强化的机理;进而应用该机理,通过主动调整相应元素,基于纳米尺度成分起伏,完成了合金的强韧化调控。来自上海大学的姜颖副教授通过题为“金属材料腐蚀行为的电子显微学研究”的报告详细介绍了合金材料中纳米析出相与微电偶腐蚀诱发点蚀行为以及微米尺度上的微电偶腐蚀的研究工作,并深入讲解了各种静态与原位的电子显微学表征手段在这一研究工作中的作用。南京理工大学的周浩副教授在题为“界面偏析诱导金属材料纳米化”的报告中,详细介绍了界面偏析的形成机理;分享了通过溶质偏析合金界面,进而诱导合金纳米化,从而调控其结构并改善性能,获得低成本高性能特种合金的经验。中南大学的刘春辉副教授在题为“铝合金薄壁件形性协同流变制造及其原理的原位电子显微学研究”的报告中,首先介绍了对合金材料位错诱导的强化相异质形核析出及强化等机理的研究,并利用高密度位错同时提高铝合金蠕变量和力学性能,实现回溶与高效高性能蠕变时效成形新工艺技术,解决了各类地空天运载装备的流变成形制造面临的成形与成性矛盾的问题;他随后分享了中南大学及机电工程学院电镜平台上各类原位工作的研究成果及心得。赛默飞世尔科技的牟新亮介绍了最新的高端球差透射电镜Spectra Ultra,及其中搭载的各项强大的技术,尤其是突破性高达4.45 sr立体角的Ultra-X能谱系统与颠覆性可灵活快速改变高压的Octagon电子光学系统;并展望了Spectra Ultra对现有表征手段的强化与对表征新维度的拓展,及其对材料科研工作的巨大帮助。专题4:功能材料先进显微学表征来自武汉理工大学的吴劲松教授在题为“热电材料 Cu2Se相变的原位电镜研究”的报告中介绍了其所在的纳微结构研究中心众多的来自赛默飞的高端电镜设备,阐述了通过掺杂和复合设计获得了 Cu2Se新的性能,借助高分辨电镜结合能谱及原位技术,发现了 Cu2Se第二相强化的机制,此项发现可以应用于阻止快离子导体中离子的流失进而提高热电材料的稳定性。上海交通大学的邬剑波教授在会议上做了题为“原位开启催化材料设计之可能”的报告,介绍了目前燃料电池所遇到的问题挑战及通过改变催化剂材料微观结构从而提高其性能和使用寿命的机理研究。同时邬老师介绍了他通过透射电镜液态样品杆获得的科研成果及对未来原位力学实验的展望。中科院物理所的张颖研究员在 “新型拓扑磁畴结构的探索”报告中主要介绍了通过透射电镜相关技术研究磁性材料的一些知识。中南大学的李凯副教授在“Al-Mg-Si合金纳米析出相在变形过程中的破碎与旋转”报告中阐述了铝合金变形的机理研究及通过透射电镜研究,发现被位错切过的纳米析出相发生碎片化的过程,并对未来使用原位力学杆的一些研究进行了展望。重庆大学的张斌博士做了 “SnSe层状化合物表面氧化行为的电子显微学研究”的主题报告,解释了通过高分辨透射电镜结合能谱研究明星热电材料SnSe化合物的氧化过程的必要性,及目前所获得的研究成果。华东师范大学的成岩副研究员在“原位电场下铪基铁电薄膜的原子尺度结构转变”主题报告中详细介绍了通过高分辨透射电镜结合原位样品样品杆解释铪基铁电薄膜极化的起源;来自北京理工大学的邵瑞文博士在“缺陷在功能材料中作用的原位透射电镜研究”报告中介绍了原位透射电镜在掺杂原子核位错观察中的应用,及其在实验中的一些经营和感受。本次会议主题报告主要邀请的为材料领域有突出表现的青年科学家,这些科学家是中国科技创新的希望,在国家科技强国的路上必将发挥重要的作用。
  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p   5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。 /p p   项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。 /p p   该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。 /p p   中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title=" W020170531466982123675.jpg" / /p p style=" text-align: center " 从超高真空到常压的表面光谱原位表征系统 /p p br/ /p
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。   阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。   在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。   这项工作得到了国家自然科学基金委、科技部和中科院的资助。  图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm   图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图   图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 基于MEMS芯片的气相原位透射电镜(TEM)表征技术
    近日,中国科学院上海微系统与信息技术研究所研究员李昕欣团队采用基于MEMS芯片的气相原位透射电镜(TEM)表征技术,探究了Pd-Ag合金纳米颗粒催化剂在MEMS氢气传感器工况条件下的失效机制。4月13日,相关研究成果作为Supplementary Cover论文,以In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors为题,发表在Nano Letters上。 采用MEMS芯片气相原位TEM技术揭示氢气传感器失效机制的示意图随着低碳经济的快速发展,氢能作为理想的清洁能源应用于各个领域,如氢燃料电池汽车。为了确保氢气的安全使用,迫切需要开发具有高灵敏度、高选择性、高稳定性且低功耗的氢气传感器。李昕欣/许鹏程研究团队在国家重点研发计划“硅基气体敏感薄膜兼容制造及产业化平台关键技术研究”的支持下,开展了MEMS低功耗氢气传感器的研究工作。在半导体敏感材料表面修饰贵金属催化剂是提升氢气传感器性能(如灵敏度)的有效方法。然而,半导体气体传感器的工作温度高达数百摄氏度。在长期的高温工作环境下,金属催化剂的活性易衰减,引起半导体气体传感器的性能下降甚至失效,阻碍了该类传感器的实用化。传统的材料表征方法通常只能分析敏感材料失活前后微观形貌、结构及成分等的变化,缺乏在工况条件尤其是气氛条件下原位表征敏感材料的能力,难以分析半导体气体传感器的失效机制。该研究使用气相原位TEM实验,在工况条件下观测到Pd-Ag合金纳米颗粒催化剂的形貌和物相演变全过程,揭示了该合金纳米催化剂在不同工作温度下的失活机制,并据此对MEMS氢气传感器进行优化,有效推进了氢气传感器的实用化。原位TEM实验结果表明,当半导体氢气传感器在300 ℃工作时,相邻近的Pd-Ag合金纳米颗粒易发生融合、颗粒长大现象,且颗粒的结晶性提高。Pd-Ag合金纳米颗粒催化剂的粒径增大、缺陷减少,使其催化活性降低,引起氢气传感器的灵敏度出现衰减。当氢气传感器在更高温度(500 ℃)下工作时,Pd-Ag合金纳米颗粒进一步发生相偏析,Ag元素从合金相中析出,同时生成了PdO相,导致催化剂丧失了协同增强效应,使氢气传感器的灵敏度大幅下降甚至失效。原位TEM实验实时记录合金催化剂的融合过程在上述失效机制的指导下,科研团队进一步优化了Pd-Ag合金催化剂的元素组成、负载量及工作温度,并使用实验室独立研发的集成式低功耗MEMS传感芯片,研制出新一代的氢气传感器。该氢气传感器具有灵敏度高(检测下限优于1 ppm)、长期稳定性好(在300 ℃下连续工作一个月后,对100 ppm H2的响应值衰减小于1%)、功耗低(300 ℃下持续工作,功耗仅为22 mW)。该研究采用气相原位TEM技术来探讨气体传感器的失效机制,为气体传感器的理论研究与实用化提供了新的研究方式。目前,该MEMS氢气传感器已在汽车加氢站等领域试应用,相关应用工作正在积极推进。研究工作得到国家重点研发计划、国家自然科学基金及中科院仪器研制项目等的支持。论文链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c05018
  • 需求很火热,发展正当时——原位电子显微学表征分会场侧记
    p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 2017年10月18日, a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong 2017年全国电子显微学学术年会 /strong /span /a 在成都星宸皇家金煦酒店隆重召开。学术年会为期三天,吸引了近900人来自大专院校、科研院所、企业等单位的代表出席。学术年会旨在帮助大家了解电子显微学及相关仪器技术的前沿发展,促进基础研究与应用研究最新进展的交流。 br/ /p p style=" text-align: center" a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/24795d72-6926-4069-9704-947fbac2f49d.jpg" title=" 0.jpg" / /a /p p   继大会报告后,八个分会场同时上演。其中的“原位电子显微学表征分会场”更是火爆异常! /p p   原位电子显微分析方法是实时观测和记录位于电镜内部的样品对于不同外部激励信号的动态响应过程的方法,该方法在继承常规电镜高空间分辨率和高能量分辨率优点的同时,在电子显微镜内部引入力、热、电、磁以及化学反应等外部激励,实现了物质在外部激励下的微结构响应行为的动态、原位实时观测。由于近来纳米科技的发展,研究者们需要在原子尺度观察材料的结构与性质,这使得原位电子显微学引起了人们极大的兴趣。原位电子显微学表征技术近年来也得到了飞速发展,其广阔发展潜力从本次分会场的“火热”可见一斑! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/b4c3d01c-d66f-4435-a063-609118a0998a.jpg" title=" 1.jpg" / /p p style=" text-align: center "    strong 原位电子显微学表征分会场 /strong /p p   两天 “原位电子显微学表征分会场”共40余个报告轮番上场,参会观众也是将对这个“热门”领域的热情一直保持到了会议最后,以下为摘取的部分精彩报告,与君共享。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/8f7e3f25-55cb-47eb-a60f-94d7156f01ab.jpg" title=" 2.jpg" / /p p style=" text-align: center "    strong 报告人:黄建宇 教授(燕山大学) /strong /p p style=" text-align: center " strong   报告题目:Application of in-situ elelctron microscopy in nanoscience and energy research /strong /p p   将透射电镜TEM与多种扫描探针显微镜SPM技术联用,可大大扩展TEM的应用范围,能够应用于原位电性能、机械性能、光学、电化学等的分析研究。黄建宇介绍了其团队利用原位透射电镜技术在纳米科学及能源领域的若干研究进展。如锂离子电池样品放置TEM中进行分析,研究电子转移、充放电电化学变化等原位过程 通过开发锂离子电池电化学性能的原位透射电镜分析新技术,为纳米电化学表征研究提供理论基础等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/dd97637d-c00a-4fa5-8f7e-0e299fb80fcf.jpg" title=" 3.jpg" / /p p style=" text-align: center "    strong 报告人:付琴琴 副教授(西安交通大学) /strong /p p style=" text-align: center " strong   报告题目:原位纳米力学在管线钢微观组织性能研究中的初探 /strong /p p   大位移特征的管道对管线钢有大变形的要求,其关键技术包括双相组织的获取等。报告中,为了获得双相高应变管线钢中贝氏体、铁素体单相组织的压缩盈利应变曲线,付琴琴团队利用原位纳米力学技术进行了一些列管线钢微观组织性能的研究,从对贝氏体-铁素体双相管线钢在高应变情况下的变形行为进行模拟。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/a6698f4a-9614-4bb1-b498-cf8f4ae93524.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 报告人:王江伟 教授(浙江大学电子显微镜中心) /strong /p p style=" text-align: center " strong   报告题目:金属纳米线的超塑性变形及其机制 /strong /p p   报告中,王江伟就FCC纳米线、BCC金属孪晶变形在微纳尺度上的变形和损伤进行了原位TEM研究,获得了一系列原创性的研究结果。系统、定量地剖析了微纳尺度下材料在各种物理、化学条件下的结构演化和损伤机理,构建材料在多尺度、多场耦合条件下的结构-性能关系,对微纳器件的设计、优化与可靠使用提供了理论指导,对材料的宏观性能提升有着至关重要的理论意义。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/f206a6e5-76da-48e6-9fbd-0892460c3391.jpg" title=" 5.jpg" / /p p style=" text-align: center "    strong 报告人:单智伟 教授(西安交通大学) /strong /p p style=" text-align: center " strong   报告题目:透射电镜原位定量多场耦合加热系统的开发及其在铝高温氢损伤研究中的应用 /strong /p p   针对市场上原有原位电镜加热装置样品热漂移大、温度控制精度差、样品制备困难的问题,单智伟团队成功研发出了一种新型的原位电镜加热装置。该装置不仅具有热漂移率优于市场上所有同类装置的特性,而且可以方便地在高温下对从宏观样品制备的样品进行原位定量加热并实时观察样品微观结构随温度变化的全过程。利用这一独特设备,选取铝单晶作为模型材料,在环境透射电镜中研究了充氢后的微纳尺度铝柱在加热过程中界面结构演化的全过程。研究结果对研发和制备高温抗氢损伤材料具有重要的指导意义。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/a4052eeb-b4ed-4ae0-885b-d2b2743ed7a6.jpg" title=" 6.jpg" / /p p style=" text-align: center "    strong 报告人:岳永海 副教授(北京航空航天大学) /strong /p p style=" text-align: center " strong   报告题目:结构对材料力学行为影响机制的原位定量化研究 /strong /p p   报告中,岳永海团队原位动态揭示了孪晶界滑移行为,结合分子动力学模拟给出了可能的机制。同时从院子尺度揭示了五次孪晶在铜纳米线弯曲不变形过程中的作用机制,发现了Lomer位错锁这一局部加工硬化行为。最后,用静电纺丝方法制备了一种基于亚纳米非晶纳米线的显微,原位力学测试说明材料的力学性能受材料内部超顺结构影响显著,循环实验说明亚纳米线间距的减小大大提高了范德华力的作用,材料的强度得到进一步提高。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/4ef4bcaa-7ad6-4fd1-9e5d-6e65439cdb30.jpg" title=" 7.jpg" / /p p style=" text-align: center "    strong 报告人:陈江华 教授(湖南大学材料科学与工程学院) /strong /p p style=" text-align: center " strong   报告题目:用先进电子显微技术解决材料中的经典科学问题 /strong /p p   陈江华在报告中首先介绍了湖南大学高分辨电镜中心团队、设备情况,中心的目标是可以实现力学的、电学的和热、气体、液体状态下的原位TEM/STEM观测。目前,透射电镜像差矫正的方法主要是通过给物镜戴一个很复杂的“电子光学眼镜”,即像差矫正器来实现的,但这不是唯一可行的方法,其他方法如波函数重构软件方法等。接着介绍了铝合金材料基础科学问题与知识创新研究实例,用定量原子成像方法测定了3种主要高性能2xxx、6xxx、7xxx系列铝合金中的强化相结构,重新理清了其成核、生长和演变的基本规律和原子尺寸的机理过程。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/494db377-3a60-4e8f-b097-3da4f0cc2aed.jpg" title=" 8.jpg" / /p p style=" text-align: center "    strong 报告人:郑赫 副教授(武汉大学) /strong /p p style=" text-align: center " strong   报告题目:低维材料动态结构分析 /strong /p p   近年来,由于具有新奇的物理、化学等性能,低纬结构材料受到广泛关注。基于原位透射电子显微技术,郑赫团队实时观察到氧化铜孪晶纳米线在应力作用下的力学行为。首先,外界压力使纳米线产生高应变,而当应力释放后,部分应变的回复不是瞬时的,而是一段时间内(几分钟到几十分钟)逐渐回复到零,具有典型的滞弹性应变特征。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/9ca58a00-337c-4f2b-8f54-8ba093f55156.jpg" title=" 9.jpg" / /p p style=" text-align: center "    strong 报告人:陈清 教授(北京大学) /strong /p p style=" text-align: center " strong   报告题目:纳米结构的原位分析 /strong /p p   陈清报告中介绍到,虽然SEM相比TEM分辨率不占优势,但SEM具有样品室空间大,可操作余地大等特点,因此该团队利用自己搭建的原位SEM平台对InAs进行研究,并发现InAs的杨氏模量不随直径的减少而降低。首次发表了关于压电及压阻对InAs& lt 0001& gt 结构的影响,开发了InAs样品用于SEM和TEM同时表征的新方法。 !--0001-- !--0001-- !--0001-- !--0001-- /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/59e6f93d-5ebc-4042-9bfb-edce90cf46c8.jpg" title=" 10.jpg" / /p p style=" text-align: center "   strong  报告人:刘晰 研究员(中科合成油技术有限公司) /strong /p p style=" text-align: center " strong   报告题目:原位观察化学驱动下单原位银催化活性的产生 /strong /p p   刘晰团队通过利用气体分子、金属粒子及精心设计的HMO支架之间的相互作用,成功的设计了Ag链和高度密集的Ag原子活性位点。接着,利用原位TEM从原子尺度,成功揭示了Ag 粒子的独特解体过程。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/ea1cc01c-1516-4ed0-855b-536c3e94017f.jpg" title=" 11.jpg" / /p p style=" text-align: center "    strong 报告人:高鹏 教授(北京大学) /strong /p p style=" text-align: center " strong   报告题目:二维材料中的碱金属离子迁移 /strong /p p   高鹏团队近来研究表明,在van der waals材料体系中,Li和Na的迁移可能导致非常的相变行为 体系中非对称反应,即两相混合及固体溶液萃取 体系中Li和Na迁移的动力学行为类似,则可基于锂离子电池设计钠离子电池 体系中Li和Na迁移的动力学行为也有差别,主要体现在迁移速率上,Li要快一点。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/349747fd-a83b-4a2d-b850-417fa2a054a8.jpg" title=" 12.jpg" / /p p style=" text-align: center "    strong 报告人:魏贤龙 研究员(北京大学) /strong /p p style=" text-align: center " strong   报告题目:二维材料层间滑动和摩擦特性的原位研究 /strong /p p   魏贤龙团队基于原位扫描电子显微镜发展了一种测量异质和单层二维下料层间摩擦系数的方法。实验证实石墨-石墨、石墨-氮化硼、石墨-二硫化钼、单层二硫化钼-单层二硫化钼之间具有超润滑特性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/9a147e16-7409-443c-973b-ca18c7bc4d18.jpg" title=" 13.jpg" / /p p style=" text-align: center "    strong 报告人:罗俊 教授(天津理工大学) /strong /p p style=" text-align: center " strong   报告题目:全固态锂离子电池中锂离子扩散的原位观察 /strong /p p   报告中,罗俊团队研究发现,当LiFePO4固体电解质电池充电时,首先在颗粒中心形成负电场,锂离子由中心向边缘扩散,锂离子在颗粒边缘的向外扩散较困难。LiFePO4的脱锂过程中出现新的固溶相,未遵循经典的两相反应。高电压过充后在颗粒表面出现P元素富集,出现新相。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/5e523be5-bd18-4b02-9098-e10d0f2bcb1f.jpg" title=" 14.jpg" / /p p    strong 报告人:毛星原 教授(美国匹斯堡大学) /strong /p p strong   报告题目:In situ mechanics under HRTEM with experimental & quot moleculardynamics& quot /strong /p p   毛星原教授对于推动原位透射电镜研究纳米材料变形做出了较大贡献,其领导的团队于2004年在Science发表的关于纳米金属塑性变形机制的论文,是使用实验力学方法首次发现纳米金属的变形机理。报告中,毛星原利用原位透射电镜对晶体样品进行了高密度位错原位观测,研究了小尺度晶体在电镜拉伸下的机制。如FCC晶体Ag、Pt、Au的扩散形变,纳米尺度BCC晶体W的孪晶机制等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/5741ab25-3b20-4e8a-984f-85efcb3035ff.jpg" title=" 15.jpg" / /p p style=" text-align: center "    strong 报告人:孙立涛 教授(东南大学) /strong /p p style=" text-align: center " strong   报告题目:材料表面的动态表征与调控 /strong /p p   孙立涛首先介绍了其团队的研究概况,研究对象为10nm以下材料,研究内容为表征、调控、应用,研究方法为原位电子显微学。从原位实验到应用是一个蛮长艰难的过程,需要不断研究和积累。最后孙立涛表示目前仍有太多未知需要去探索,并提出了应用研究过程中的几个瓶颈问题,如石墨烯材料对不同溶液的选择吸附性?本征和缺陷石墨烯与液体分子的作用机理?液态环境中外来原子与石墨烯的相互作用机理? /p
  • 微区原位表征多面手!3D/2D表面形貌、力学、电学、磁学等表征均可实现,换样仅需几分钟!
    一、设备简介随着材料性能在芯片制造、新能源、医疗、机械、机电等诸多领域的广泛应用,材料的体相成分信息表征已不能满足当前的研究,越来越多的研究者开始关注材料的微区结构。目前,微区性能通常使用多台设备切换不同表征手段相互印证,很难实现在纳米级精准度的前提下对某一微区进行表征,所获得的研究结果关联性较弱。为此,Quantum Design公司推出了多功能材料微区原位表征系统-FusionScope。该设备结合了SEM和AFM的互补优势,直接选取感兴趣的区域,即可在同一时间、同一样品区域和相同条件下完成样品的原位立体综合表征,实现三维结构、力学、电学、磁性和组成成分的原位分析。该设备简单直观的软件设计,可快速获得所需数据;高分辨率SEM实时、快速、精准导航AFM针尖,从而实现AFM对感兴趣区域的精准定位与测量,轻松表征纳米线、2D材料、纳米颗粒、电子元件、半导体、生物样品等材料。Quantum Design微区性能综合表征系统-FusionScope 二、测量模式2.1 SEM-AFM联用:人造骨骼SEM-AFM测量2.2 微区三维形貌测量2.2.1 接触模式: 聚合物样品2.2.2 动态模式:悬空石墨烯样品2.2.3 FIRE模式(测量样品硬度和吸附力):聚苯乙烯和聚烯烃聚合物样品 2.3微区性能测量2.3.1 导电AFM测量(C-AFM)左图为在Si上Au电极SEM图片,中图为电极的AFM测量结果,右图为电极导电测量结果2.3.2 静电AFM测量(EFM)左图BaTiO3陶瓷样品的SEM图片,中图为样品同一区域AFM形貌结果,右图为+1.5V偏压下EFM表征结果 2.3.3 磁力AFM(MFM)左图为Pt/Co/Ta复合材料AFM表征结果,右图为同一区域的MFM表征结果 三、应用案例3.1 材料微区性能表征左图为双相钢在晶界处的SEM图形,中图为原位AFM形貌测量结果,右图为样品原位顺磁和铁磁区域表征结果3.2 电子/半导体器件分析左图为通过SEM将AFM探针定位到CPU芯片特定区域,中图为选定区域晶体管的AFM表征结果,右图为选定区域晶体管的SEM图像 3.3 二维材料表征左图为通过SEM将AFM探针指引到HOPG所在区域,中图为HOPG样品三维形貌图,右图为中图中HOPG样品的高度(0.3 nm) 3.4 生命科学左图为通过SEM将AFM探针定位到样品所在区域,中图为贝壳上硅藻结构的SEM图像,右图为硅藻结构的AFM三维形貌图
  • 中科院物理所|新一代高通量薄膜制备及原位表征技术获进展!
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队和超导国家重点实验室金魁/袁洁团队,在新一代高通量薄膜制备及原位表征技术研发获得重大进展,该成果发表于近期的《科学仪器评论》杂志上 span style=" color: rgb(0, 0, 0) " 【Review of Scientific Instruments 91, 013904 (2020) doi: 10.1063/1.5119686】 /span a href=" http://www.iop.cas.cn/xwzx/kydt/202002/P020200212416644690060.pdf" target=" _self" span style=" color: rgb(0, 112, 192) " (文章链接) /span /a 。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/e637a6c9-3502-4446-8d0c-ea9fb16b6e59.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: justify text-indent: 2em " 中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡学者)、魏忠旭、冯中沛等同学 strong span style=" color: rgb(0, 0, 0) " 成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。 /span /strong 该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点: strong 1) /strong 采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性; strong 2) /strong 特殊设计的STM扫描头能够实现大范围XY移动(& gt 10 mm)和高精度定位(定位精度优于 1 μm); strong 3) /strong 完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。 /p p style=" text-align: justify text-indent: 2em " 该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。 strong 目前,该系统已用于研究高温超导机理问题和新型超导材料探索。 /strong /p p style=" text-align: justify text-indent: 2em " 作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/7b2acf06-1ac6-465d-ad0a-d76ef6f1406c.jpg" title=" 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt=" 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/bb46dd89-0b72-4f5e-a7d6-dd88e1baa05c.jpg" title=" 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" alt=" 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" / /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b) /span /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/ca707a08-a9a8-4ef2-8798-23266bfbc9df.jpg" title=" 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" alt=" 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" / /span /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 13.3333px text-align: -webkit-center " 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图 /span /span /span /p
  • AFSEM™ 小试牛刀——SEM中原位AFM定量表征光子学微结构表面粗糙度
    近期,老牌期刊刊载了C. Ranacher等人题为Mid-infrared absorption gas sensing using a silicon strip waveguide的文章。此研究工作的目的是发展一种能够与当代硅基电子器件方便集成的新型气体探测器,探测器的核心部分是条状硅基光波导,工作的机理是基于条状硅基波导在中红外波段的倏逝场传播特性会受到波导周围气氛的变化而发生改变这一现象。C. Ranacher等人通过有限元模拟以及时域有限差分方法,设计了合理的器件结构,并通过一系列微加工工艺获得了原型器件,后从实验上验证了这种基于条状硅基光波导的器件可以探测到浓度低至5000 ppm的二氧化碳气体,在气体探测方面具有高的可行性(如图1、图2)。 图1:硅基条型光波导结构示意图图2:气体测试平台示意图参考文章:Mid-infrared absorption gas sensing using a silicon strip waveguide值得指出的是,对于光波导来说,结构表面的粗糙程度对结构的固有损耗有大的影响,常需要结构的表面足够光滑。传统的SEM观测模式下,研究者们可以获取样品形貌的图像信息,但很难对图像信息进行量化,也就无法定量对比不同样品的粗糙度或定量分析粗糙度对器件特性的影响。本文当中,为了能够准确、快捷、方便、定量化地对光波导探测器不同部分的粗糙度进行表征,C. Ranacher等人联系到了维也纳技术大学,利用该校电镜中心拥有的扫描电镜专用原位AFM探测系统AFSEM™ (注:奥地利GETec Microscopy公司将扫描电镜专用原位AFM探测系统命名为AFSEM,并已注册专用商标AFSEM™ ),在SEM中选取了感兴趣的样品部分并进行了原位AFM形貌轮廓定量化表征,相应的结果如图3所示,其中硅表面和氮化硅表面的粗糙度均方根分别为1.26 nm和1.17 nm。有了明确的量化结果,对于不同工艺结果的对比也就有了量化的依据,从而可以作为参考,优化工艺;另一方面,对于考量由粗糙度引起的波导固有损耗问题,也有了量化的分析依据。图3:(a) Taper结构的SEM形貌图像;(b) Launchpad表面的衍射光栅结构的SEM形貌图像;(c) 原位AFM表征结果:左下图为氮化硅层的表面轮廓图像,右上图为硅基条状结构的表面轮廓图像;(d) 衍射光栅的AFM轮廓表征结果通过传统的光学显微镜、电子显微镜,研究者们可以直观地获取样品的形貌图像信息。不过,随着对样品形貌信息的定量化表征需求及三维微纳结构轮廓信息表征的需求增多,能够与传统显微手段兼容并进行原位定量化轮廓形貌表征的设备就显得愈发重要。另一方面,随着聚焦电子束(FEB,focused electron beam)、聚焦离子束(FIB,focused ion beam)技术的发展,对样品进行微区定域加工的各类工艺被越来越广泛地应用于微纳米技术领域的相关研究当中。通常,在FIB系统当中能够获得的样品微区物性信息非常有限,如果要对工艺处理之后的样品进行微区定量化的形貌表征以及力学、电学、磁学特性分析,往往需要将样品转移至其他的物性分析系统或者表征平台。然而,不少材料对空气中的氧气或水分十分敏感,往往短时间暴露在大气环境中,就会使样品的表面特性发生变化,从而无法获得样品经过FIB系统处理后的原位信息。此外,有不少学科,需要利用FIB对样品进行逐层减薄并配合AFM进行逐层的物性定量分析,在这种情况下需要反复地将样品放入FIB腔体或从FIB腔体中去除,而且还需要对微区进行定标处理,非常麻烦,并且同样存在样品转移过程当中在大气环境中的沾污及氧化问题。有鉴于此,一种能够与SEM或FIB系统快速集成、并实现AFM原位观测的模块,就显得非常有必要。GETec Microscopy公司致力于研发集成于SEM、FIB系统的原位AFM探测系统,已有超过十年的时间,并于2015年正式推出了扫描电镜专用原位AFM探测系统AFSEM™ 。AFSEM™ 基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM轮廓测试(图4、图5)。另一方面,通过选择悬臂梁的不同功能型针(图6、图7),还可以在SEM腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。对于联用系统,相信很多使用者都有过不同系统安装、调试、匹配过程繁琐的经历,或是联用效果差强人意的经历。不过,对于AFSEMTM系统,您完全不必有此方面的顾虑,通过文章下方的视频,您可以看到AFSEM™ 安装到SEM系统的过程十分简单,并且可以快速的找到感兴趣的样品区域并进行AFM的成像。图4:(左)自感应悬臂梁工作示意图;(右)AFSEMTM与SEM集成实图情况 图5:AFSEMTM在SEM中原位获取骨骼组织的定量化形貌信息 图6:自感应悬臂梁与功能型针(1) 图7:自感应悬臂梁与功能型针(2)目前Quantum Design中国子公司已将GETec扫描电镜专用原位AFM探测系统AFSEM™ 引进中国市场。AFSEM技术与SEM技术的结合,使得人们对微观和纳米新探索新发现成为可能。
  • 太酷了!这台全新多功能材料微区原位表征系统,可实现同位置,同界面的SEM和AFM综合测量
    材料的性能在芯片制造,新能源,医疗,机械,机电等诸多领域起着举足轻重的作用。随着科学技术的进步,人们发现材料学的宏观性能往往取决于材料微区的性能累积。因此,材料科学等研究领域的学者将研究重心放在了材料的微区组织和相关性能上。当研究的对象尺寸从宏观的厘米和毫米小到微米和纳米时,相关组织和性能的研究就需要特别注意不同区域组织和性能的对应关系。为了表征这种对应关系,通常需要在不同的设备间进行切换,很难实现在纳米级精准度的前提下对某一微区进行表征,各种表征和性能的测量也很难锁定需要的微区域,所获得的研究结果关联性较弱。为了解决这一问题,Quantum Design公司推出了多功能材料微区原位表征系统-FusionScope。该系统可以对材料纳米级微区域进行原位二维和三维的形貌、成分分析、力学性能、电学性能,磁学性能表征。同时,FusionScope还可以搭配加热/制冷样品台以及可倾转到80°的大倾角样品台来满足客户的不同需求,可广泛满足材料科学,纳米结构,半导体或太阳能电池、生命科学等领域的应用。设备操作软件简单易用,并且为刚接触和有经验的使用者分别提供了不同使用模式。设备后期维护简单,所占空间小,方便使用。图1. Quantum Design材料微区性能综合表征系统-FusionScope材料微区性能综合表征系统主要优势:简单易用Quantum Design自主研发的AFM和SEM成熟集成方案,自动化程度高,软件/硬件操作简单易用;不仅能满足有经验的使用者,也能让初学者快速上手;原位共享坐标测量多种AFM功能与SEM原位联用,发挥出两种常用显微镜的技术优势,实现同一时间、同一样品区域和相同条件下的原位共享坐标测量,避免样品转移过程中的污染风险,特别适合环境敏感样品;齐全的测量功能多通道样品特性成像,并无缝关联到三维形貌图像中。AFM可测量的功能包括有:三维/二维表面形貌成像,力学/机械性能测量、电学测量、磁学测量;SEM配备EDS功能;原位旋转测量利用SEM进行实时、快速、精准导航AFM针尖,从而实现AFM对感兴趣区域的精准定位与测量。无需转移样品,原位进行80° AFM与样品台同时旋转;更换样品FusionScope更换样品仅需几分钟,简单快速。FusionScope功能展示电子成像:图2. FusionScope和Hitachi Flex电子成像对比。左侧图为FusionScope获得结果,右图为Hitachi Flex扫描电镜结果不锈钢样品微区电子成像-三维成像-磁学综合表征:图3. FusionScope对不锈钢样品的微区进行电子成像,三维成像和磁学性能综合表征BaTiO3样品微区电子成像-三维成像-电学综合表征:图4. FusionScope对BaTiO3样品进行电子成像,三维形貌和电学性能的综合表征BaTiO3样品的EFM、AFM、SEM扫描视频微观力学性能表征:图5. 利用FusionScope的FIRE模式(Finite Impulse Response Excitation)对不同弹性模量的聚合物进行综合表征大尺寸样品形貌综合表征:图6. FusionScope对刀片样品进行电子成像和三维成像综合表征FusionScope对刀片尖锐部分扫描视频相关产品1、多功能材料微区原位表征系统-FusionScope
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 《焊接接头成分原位统计分布表征微束X射线荧光光谱法》团体标准公开征求意见
    近日,由中国材料与试验标准化委员会综合标准标准化领域委员会(CSTM/FC99)归口承担的《焊接接头成分原位统计分布表征微束X射线荧光光谱法》团体标准(立项号:CSTMLX 9900 01102——2022)已完成征求意见稿,按照《中关村材料试验技术联盟团体标准管理办法》的有关规定,现公开广泛征求意见。焊接接头是指两个或两个以上零件要用焊接组合的接点。或指两个或两个以上零件用焊接方法连接的接头,包括焊材、焊缝、熔合区和热影响区。熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织,其性能常常是焊接接头中最差的。热影响区(HAZ)是在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域。低碳钢的热影响区可分为过热区、正火区和部分相变区。其中,过热区是最高加热温度1100°C以上的区域,晶粒粗大,甚至产生过热组织。过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。熔合区和热影响区中的过热区是焊接接头中机械性能最差的薄弱部位,其中,Nb、Ti. Al、Mg、 Ni、 Mo等元素成分对焊接接头性能影响较大。但在实际焊接接头中,熔合区和焊接热影响区HAZ只是一个较小范围的局部区域,一般宽度只有几个毫米。又由于HAZ的显微组织存在梯度性,可分为组织特征极不相同的许多很小的区域,使得经历某一特定热循环的每个区域更小。现有焊接接头成分测试主要依据GB/T 223《钢铁及合金化学分析方法系列标准》、GB/T 20125《低合金钢多元素含量的测定电感耦合等离子体发射光谱法》、GB/T 4336《碳素钢和中低合金钢火花源原子发射光谱分析》,湿法/化学法、火花光谱等测试方法不能满足焊接接头对熔合区和热影响区成分分析研究需要。微束X射线荧光分析(MXRF)中的微-毫区分析是XRF分析技术发展的一个新领域。该技术逐渐成为微小原始样品或大样品微小区域中元素含量及其分布研究的-种重要手段,适合焊接接头对熔合区和热影响区成分分析研究需要。本标准规定了采用能量色散微束X射线荧光光谱法对船板钢焊接接头母材、焊材、熔融区的化学成分进行原位统计分布表征的原理、仪器与辅助设备、检测条件、标样选择、操作步骤、数据处理及检测报告。适用于船板钢焊接接头中Ni、Ti、Mn、Nb、Mo、Fe、Cr、Cu等元素的原位统计分布分析,其他材料焊接接头可参考使用。微束X射线荧光光谱法测定大尺寸焊接接头相关标准,可在船舶、汽车、石油、航空、航天等领域,为焊接接头的成分测试提供标准支撑,助力焊接工艺质量提升。
  • 先进材料透射电镜原位表征高端研讨会召开 赛默飞-百实创-北工大联合实验室揭幕
    仪器信息网、中国电子显微镜学会联合报道 2021年6月19日,“先进材料透射电镜原位表征高端研讨会——暨赛默飞-百实创-北工大显微结构与性能联合实验室成立”在赛默飞中国客户体验中心召开,百余位先进材料透射电镜领域知名专家齐聚上海,共议透射电镜原位技术最新进展,并共同见证赛默飞-百实创-北工大显微结构与性能联合实验室揭牌成立。研讨会现场会议由中国科学院院士张泽担任会议主席,北京工业大学韩晓东教授担任组织委员会主席,由大会报告和四个主题专场报告组成(四专场主题依次为:透射电镜理论、技术与仪器发展;先进原位透射电镜表征;结构材料先进显微学表征;功能材料先进显微学表征)。首先,会议进行了联合实验室签约仪式。中国科学院院士张泽致辞张泽院士在致辞中表示,作为全球知名电镜产品生产供应商,赛默飞的成功离不开与用户之间的相互合作。最早产品工程师的设计理念多数来自用户需求,时下,这种需求依旧是推动整个电子显微学发展的重要基础。其次,科研用户在推动共同的发展的过程中,应该意识到,国家经过改革开放四十余年的发展,已经有这样的需求和能力去发展自己的科学仪器技术,包括和国际企业的共同发展。同时,除了自己的努力、加强国际合作、项目验收之外,更重要是要真正走向商业化。百实创是国家重大仪器专项 “针对若干国家战略需求材料使役条件下性能与显微结构间关系的原位研究系统”项目的科技成果产业转化之一,此次合作,希望百实创能够和赛默飞共同推动在国内乃至国际上相关仪器技术的发展。另外,也希望赛默飞能如体验中心一个办公室名字“汤若望厅”——最早进入中国宣传西方文化的汤若望那样,能够不忘初心,共同推动科技的发展在中国落地,为人类造福。联合实验室三方致辞,左至右:赛默飞中国分析仪器事业部商务副总裁周晓斌、百实创执行董事荆亦仁、北京工业大学韩晓东教授赛默飞中国分析仪器事业部商务副总裁周晓斌首先感谢了大家的到来,接着表示,如张院士所言,赛默飞来到中国就是要扎根中国,一个关键任务便是把科学技术带来。赛默飞在中国不仅有工厂,也有研发中心,不仅是销售产品,更重要是在这里生产,将产业链带到中国、把科学技术和人才带到中国,助力本土企业的发展,共同解决科学问题,共同促进人类文明的提升。同时也恭喜百实创能够基于北京工业大学的助力,顺利通过赛默飞各种非常严苛的测试考验,达到大家共同希望的效果,最终真正与到赛默飞产品技术进行合作,三方共同为科研工作者带来更好的科技技术。百实创执行董事荆亦仁表示,十分自豪经过两年的努力,百实创产品成功将高端的技术转化为产业,并能通过赛默飞严苛的测试考验,成为赛默飞产品的合作单元。同时,作为赛默飞曾经的成员,看到赛默飞在中国的飞速发展也非常骄傲,希望未来,通过赛默飞和百实创的共同努力,能够有更多的新技术、新应用,为更多的科研工作者的科研工作插上飞翔的翅膀。韩晓东首先回顾了自己回国后一直围绕原位电镜研究这18年的历程,百实创的成功产业化转换,不仅仅是五年重大仪器专项的攻坚,更是近20年的漫长积累。同时,感谢了张院士的指导、李宁春老师的鞭策与鼓励、团队人员的努力、曾经最早给自己提供成果技术转化价值思维的Marc Peeters、敢于“第一个吃螃蟹”的百实创创业团队等。最后,希望基于赛默飞-百实创-北京工业大学三方合作全新的起点,通过三方共同的努力,能够作出更好更大的创新!赛默飞与百实创签署采购协议(左:赛默飞材料与结构分析高级商务总监陈厅行;右:百实创CEO李海鑫)赛默飞、百实创、北京工业大学三方签署战略合作协议据介绍,“赛默飞-百实创-北工大显微结构与性能联合实验室”的责任和使命包含共同促进原位电镜技术的发展,加快原位电镜人才培养等。“赛默飞-百实创-北工大显微结构与性能联合实验室”成功揭牌大会报告部分,分别由张泽院士和赛默飞世尔科技电镜业务亚太区高级商务总监Marc Peeters为大家分享了精彩报告。大会报告主持人:重庆大学 黄晓旭 教授大会报告人:中国科学院院士 会议主席 张泽报告题目:苛刻使役条件下材料性能与显微结构关系研究张泽院士在报告中表示,材料科学尤其材料显微学科研工作者,往往容易忽视材料宏观性能与微观结构研究之间的对应关系,而解决材料实际应用问题,从宏观到微观的跨尺度研究,把两者之间的关系一一对应,对于解决当前我国先进材料制造卡脖子问题具有重要意义。建议材料显微学科研工作者不要仅仅局限于原子、电子,更要重视所研究材料的使用场景和服务对象,为串联解决材料宏观性能到微观结构研究建立基础。接着,围绕航空发动机涡轮叶片在使役中高温、高应力等苛刻要求,讲解了对应材料结构的显微结构高温、高应力、原位研究,结合添加什么元素、形成什么相才能使材料的强韧性和空间;相关核心元素在界面处起到什么作用、如何保证界面完整性;结构与性能之间的关系等问题,详细分享了如何将解决这些技术问题转化为解决科学问题的研究过程。同时也表示,如果能建立材料微观结构信息与宏观性能的一一对应关系,将有重要意义,不久将来的人工智能技术或将发挥重要作用。大会报告人:赛默飞世尔科技电镜业务亚太区高级商务总监 Marc Peeters报告题目:Thermo Fisher Scientific: Contributions to Materials ResearchMarc Peeters首先介绍了赛默飞世尔科技的整体概况,公司年销售额达320亿美元,全球超过80,000名赛默飞员工。赛默飞世尔科技进入中国发展已超过35年,目前员工人数约为5400余人,其中研发人员超过1000人,研发投入达1.85亿美元。产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为满足中国市场需求,现有8家工厂分别在上海、北京、苏州和广州等地运营。并设立6个应用开发中心以及示范实验室,位于上海和苏州的中国创新中心,拥有100多位专业研究人员和工程师及100多项专利。接着重点介绍了赛默飞电镜产品技术及在中国市场交付情况、及提供的系列支持。据介绍,赛默飞电镜研发生产主要位于荷兰和捷克,在中国电镜相关技术、支持等超三百人,各类电镜产品安装达2210台/套。参观赛默飞中国客户体验中心大会报告后,四大主题专场(透射电镜理论、技术与仪器发展;先进原位透射电镜表征;结构材料先进显微学表征;功能材料先进显微学表征)报告依次展开,报告详情,请关注后续报道。合影留念
  • 硫化锂电池原位电镜表征与循环稳定性调控研究获进展
    p   随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。 /p p   硫化锂(Li sub 2 /sub S)材料理论容量高达1166 mA h g sup -1 /sup ,是其它过渡金属氧化物和磷酸盐的数倍 其首次脱锂充电过程中所发生的体积收缩能给后续的嵌锂放电反应提供空间,保护了电极结构不受破坏 其可与非锂金属负极材料(诸如硅、锡等)组装电池,有效避免锂枝晶形成等问题所带来的安全隐患,是极具发展潜力的锂硫电池正极材料。然而,该材料电子/离子导电率低,反应中间产物多硫化物在电解液中的溶解引发穿梭效应等问题,限制了其在锂硫电池中的实际应用。 /p p   近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对硫化锂电极充电过程的实时观测 在充分理解Li sub 2 /sub S充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并通过控制充电容量和电压,显著提升了Li sub 2 /sub S的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials 杂志上。 /p p   研究人员为提高锂硫电池的容量利用率和循环寿命,通常会将硫填充至具有高比表面积和高导电性的多孔材料中(如:碳纳米管,多孔碳,石墨烯和碳纤维等)。张跃钢课题组在前期研究工作中发现氧化石墨烯上引入氮掺杂官能团,不仅可以有效减少多硫化物在电解液中的溶解,而且可优化多硫化物在沉积过程中的分布(Nano Letters,2014, 14, 4821-4827)。为了更好地改善Li sub 2 /sub S的容量利用率以及循环寿命,该团队利用原位表征技术研究了Li sub 2 /sub S溶解和再沉积机理,进而提出将最初活化电池电压调控到3.8 V,然后通过控制电压(1.7~2.4 V)和充电容量可有效阻止长链可溶性多硫化物的形成,该充放电调控方法让电极在充电过程中保留了一部分不可溶的Li sub 2 /sub S作为种子,使得Li sub 2 /sub S材料能够有效地活化和均匀地再沉积。此外,该研究通过在氮化处理前的氧化石墨烯表面包覆葡萄糖,有效增加了石墨烯的折皱率和弯曲率,进而为多硫化物提供了更多的负载位点 反应过程中利用氨水和高温氨气热处理的方法使得氮掺杂量提高至12.2% 该高氮掺杂石墨烯材料不仅具有高导电性,其表面氮官能团更能有效减少多硫化物的溶解,优化Li2S的均匀分布。利用该高氮掺杂石墨烯-Li2S复合正极材料所制备的锂硫电池在2000圈(1C)循环后其容量仍能保持318 mA h g sup -1 /sup (按硫元素重量折算为457 mA h g sup -1 /sup ),3000圈(2C)循环后仍能保持256 mA h g sup -1 /sup (按硫元素重量折算为368 mA h g sup -1 /sup ),是迄今为止所报道的最长循环寿命。 /p p   该研究工作首次利用了新开发的原位扫描电镜和原位透射电镜芯片技术实现了对硫化锂电极充电过程的实时观测,并在研究 /p p   Li sub 2 /sub S充放电机理的基础上,开发新的电压-容量调控机制,设计了一种新型的高氮掺杂负载硫化锂的电极材料,为高能量的Li sub 2 /sub S-C /Li 电池的应用打开了广阔的应用前景。 /p p   该项研究工作得到了国家自然科学基金重点项目、中国科学院千人计划人才专项的大力支持。 /p p    a href=" http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369/epdf" target=" _self" title=" " 原文链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/noimg/3d4cdfa8-d284-4598-81b3-9799a4671568.jpg" title=" 00000.jpg" / /p p   负载于单层石墨烯电极表面的Li sub 2 /sub S材料在LiTFSI-DOL/DME电解液中活化过程的原位观测SEM图 /p
  • 材料基因研究仪器——高通量连续组分外延薄膜制备及原位局域电子态表征系统
    p    strong 仪器信息网讯 /strong 材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。 /p p   中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发 超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。两团队经多年合作成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/042ce1da-8ab9-46b9-8bb1-eb602327463f.jpg" title=" 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt=" 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" / /p p style=" text-align: center " 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片 /p p   该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点: /p p   1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性 /p p   2)特殊设计的STM扫描头能够实现大范围XY移动(& gt 10 mm)和高精度定位(定位精度优于 1 μm) 3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。 /p p   该仪器研发历时4年多,设计版本多达50多个,并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。 /p p   组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术、阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品 此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要意义。 /p p    /p p br/ /p
  • 预见新一代晶体学分析技术:原位观测与缺陷表征——访北京大学孙俊良教授
    孙俊良教授,北京大学化学与分子工程学院无机固体材料化学课题组负责人、国家杰出青年科学基金获得者,长期从事结构确定方法的发展(包括单晶/粉末衍射、三维电子衍射技术等)和无机固体材料的合成及应用。经过数年的积累与突破,孙俊良教授已然成为我国晶体学研究领域的代表人物之一,在业界享誉盛名。近日,借助第十七届中国科学仪器发展年会(ACCSI2024)契机,仪器信息网有幸采访了孙俊良教授,请他围绕晶体学表征技术的发展与应用等展开分享。点击以下视频,观看采访详情:仪器信息网:请介绍一下您的主要研究方向?孙俊良教授:我现在的研究方向主要有两个。一个是材料的研发,包括电池材料和孔材料;另一个是电子衍射相关表征方法的研发,这个与仪器设备的相关性较强,也是我的一个更加带有标签性的工作。仪器信息网:晶体学主要涉及哪些表征技术?我国的应用水平如何?孙俊良教授:晶体学其实是一个很广的范围,如果从现代晶体学来说,它大约起源于一个世纪前X射线衍射技术的出现,这标志着晶体学真正开始用于结构分析了,后面又有电子衍射、中子衍射等一些比较老的衍射技术,现在把很多的散射、甚至是相关的非弹性散射也放在里面了。当然,早期的衍射技术侧重于一些具有比较高对称性的这种平移对称性,简单来说就是晶体,而现在的衍射技术已经发展到了非晶体材料也能够通过类似的方式去分析,比如“Pair Distribution Function,PDF”,是一种局域结构的分析方法,近几年发展的非常快。仪器信息网:作为中国晶体学会秘书长,请您谈谈材料表征技术对于晶体学的重要意义?中国晶体学会围绕材料表征技术主要开展哪些工作?孙俊良教授:我觉得晶体学能够真正让大家毫无怀疑地去确定物质的结构,可以说是现代科学的一个支柱。通常的材料,也就是固体材料,我们需要知道里面的一个个原子是怎么排布的,因为材料的性能和原子的排布具有很强的关联性。比如大家比较熟知的锂电池材料,要研究锂电池在充放电过程中发生了什么样的结构变化,为什么用着用着电量就下降了,这些都离不开晶体学的原位表征方法。总的来说,晶体学促使了材料的发展,同时材料的发展又给晶体学的表征技术提出了更高的要求,这又促使了晶体学的发展。中国晶体学会每两年举办一次所有专委会一起的年会,平时还会有一些科普或教育性质的研讨会,比如有单晶x射线衍射、粉末x射线衍射、电子衍射、小角散射,后面还会有中子散射以及刚刚提到的局域结构的分析方法——PDF表征技术,希望推动更多国内学者、研究人员能够用到现在全球相对而言快速发展的技术,而不仅仅是二、三十年前就已经发展比较成熟的那些。仪器信息网:请您谈谈对晶体学表征技术的未来展望?孙俊良教授:未来肯定会有一些不定因素,我只能就现在已有的稍微谈一下。现在很多已经发展相对成熟的技术,总体来说还是对静态的观测。如果要观测动态的,当然我们已经可以做到分钟级别的了,但是要观测秒级甚至毫秒级的,就对晶体学提出了很高的要求。这是一个原位的技术,相当于时间分辨,我认为这是未来发展的一个重要趋势。我们以前通常观测的是“完美”的晶体结构,其实材料很多的性能来自于它里面的缺陷,但是晶体学是否能够对这些缺陷进行很好的表征,现在来说还比较困难。当然,通过电子晶体学图像可以看到一些缺陷,但是只能看到局部,有可能这个颗粒里面是这个缺陷,那个颗粒里面是另一个缺陷,那到底缺陷跟它的性能有什么关联,还需要一些比较笼统的、或者统计性更强的技术。现在,PDF分析方法正在往这个方向上走,但是不是会有一些更好的方法?我觉得还是值得大家再去思考、再去发展的。仪器信息网:X射线衍射技术是一门相对古老的技术,上海光源、北京光源陆续投入使用是否会对X射线衍射技术的进一步发展有推动作用?孙俊良教授:从光源上光的质量来说,它显然是比实验室里普通的X射线光源要好很多,那么自然而然是在推动发展。比如做粉末衍射,得到的峰就会更锐一些,信号区分度也更高一些。如果信号很弱,它可以通过产生低背景,然后拿到相对较强的信号。同时强的信号会对分辨率有很好的帮助,像通常说的同步辐射可以观测到微米级的晶体,现在x射线自由电子激光可以观测到百纳米级别。中国的这个技术现在还在发展中,还没有真正把它给建立起来。我相信在未来十年,这个技术在中国能够得到更好的应用。仪器信息网:今年是仪器信息网25周年,请您谈谈对仪器信息网未来有哪些建议或期待?孙俊良教授:我觉得仪器信息网上面的信息还是挺全的,比如粉末x射线衍射仪,基本上把中国市场上主要有销售的企业都包括在里边了,还有丹东通达等国产仪器厂商。近年来,国家对国产仪器特别重视,我相信国产仪器水平会快速提升,仪器信息网以后可以把国产仪器的最新进展多报道一下,这有利于国内整体仪器设备的发展。另外,我也看到仪器信息网上还有一些论坛类的内容,如果能有专家多参与进来,在论坛上多体现设备发展过程中的问题和改进方法、设备使用过程中的问题和解决方法,这将促使国内仪器的研发和使用都再上一个台阶。附:关于ACCSI“中国科学仪器发展年会(Annual Conference of China Scientific Instruments,ACCSI)”始于2006年,已成功举办十七届。每年一届的“中国科学仪器发展年会”旨在促进中国科学仪器行业“政、产、学、研、用、资”等各方的有效交流,力求对中国科学仪器的最新进展进行较为全面的总结,力争把最新的有关政策、最前沿的行业市场信息、最新的技术发展趋势在最短的时间内呈现给各位参会代表。更多第十七届中国科学仪器发展年会精彩内容,请点击链接:ACCSI2024现场直击
  • 白雪冬等原位电镜表征项目提名为国家自然科学奖二等奖
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 3月24日,国家科学技术奖励工作办公室发布公告第95号,2020年度国家科学技术奖提名工作已结束,根据《国家科学技术奖励条例实施细则》规定,对形式审查合格予以受理的330项国家自然科学奖项目、259项国家技术发明奖通用项目以及934项国家科学技术进步奖通用项目,在科技部网站和国家科学技术奖励工作办公室网站同时公布。对形式审查合格予以受理的67项国家技术发明奖专用项目、183项国家科学技术进步奖专用项目在一定范围内公布。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 79px " src=" https://img1.17img.cn/17img/images/202003/uepic/a0ad89ab-bfc3-43fb-9837-1c6b46b726ec.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 79" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 提名项目中,在“2020年度国家自然科学奖受理项目目录”下“材料科学组”中, span style=" color: rgb(0, 112, 192) " “原位电镜纳米表征方法的发展与储能机理的原子尺度表征” /span 项目在列。 /p p style=" text-indent: 2em " 该项目由专家提名为国家自然科学奖二等奖,提名专家依次为北京航空航天大学郭林教授、上海交通大学贾金锋教授、中国科学院物理研究所靳常青研究员。 /p p style=" text-indent: 2em " strong 项目主要完成人情况: /strong /p p style=" text-indent: 2em " 1、姓名:白雪冬 /p p style=" text-indent: 2em " 排名:1 /p p style=" text-indent: 2em " 技术职称:研究员 /p p style=" text-indent: 2em " 工作单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 完成项目时所在单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 2、姓名:胡勇胜 /p p style=" text-indent: 2em " 排名:2 /p p style=" text-indent: 2em " 技术职称:研究员 /p p style=" text-indent: 2em " 工作单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 完成项目时所在单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 3、姓名:谷林 /p p style=" text-indent: 2em " 排名:3 /p p style=" text-indent: 2em " 技术职称:研究员 /p p style=" text-indent: 2em " 工作单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 完成项目时所在单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 4、姓名:许智 /p p style=" text-indent: 2em " 排名:4 /p p style=" text-indent: 2em " 技术职称:教授级高工 /p p style=" text-indent: 2em " 工作单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 完成项目时所在单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 5、姓名:王文龙 /p p style=" text-indent: 2em " 排名:5 /p p style=" text-indent: 2em " 技术职称:研究员 /p p style=" text-indent: 2em " 工作单位:中国科学院物理研究所 /p p style=" text-indent: 2em " 完成项目时所在单位:中国科学院物理研究所 /p p style=" text-indent: 2em " br/ /p
  • 950万!中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪、激光共聚焦显微拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G240270057项目名称:中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪采购项目预算金额:550.000000 万元(人民币)最高限价(如有):525.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪1是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G240270059项目名称:中国科学院宁波材料技术与工程研究所激光共聚焦显微拉曼光谱仪采购项目预算金额:400.000000 万元(人民币)最高限价(如有):328.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-真空拉曼光谱仪1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月09日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院宁波材料技术与工程研究所     地址:浙江省宁波市镇海区中官西路1219号        联系方式:范老师0574-86324529      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、王琪010-68290502/0523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290502/0523
  • 中国电镜产业链系列走访第8站祺跃科技:致力原位扫描电镜产业化,赋能材料结构与性能一体化表征
    秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于 2018 年启动“国产科学仪器腾飞行动”之“创新 100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,在企业发展的关键时期“帮一把”。五年以来,天时地利人和至,中国电镜产业迎来发展窗口期,国内电镜产业链企业们也纷纷抓住历史机遇,实现生机蓬勃的发展之势。2023 年迎来国产电镜的“全新时代”。此背景下,“创新 100”项目组在2023年底走进13家中国电镜产业链代表性企业,邀请电镜专家联合走访,探寻中国电镜产业发展进展,为发展新阶段赋能,也为 2024 年即将在苏州举办的“第三届中国电镜产业化发展论坛”的内容筹备作前期调研。交流现场走访第8站,由仪器信息网材料物性组执行主编杨厉哲、“创新 100”项目负责人韦东裕、营销服务中心经理韩永风、牛群山等组成的走访项目组走进浙江祺跃科技有限公司(以下简称“祺跃科技”),祺跃科技董事长张跃飞、研发总监唐亮等接待了走访一行人员。——企业发展进展浙江祺跃科技有限公司主要从事材料显微结构与性能一体化检测的纳米分辨可视化原位扫描电镜、真空与镀膜装备的研发、生产、销售和维护服务,并提供材料检测、材料大数据与AI应用、原位微观表征解决方案服务。祺跃科技的技术根基源自浙江大学张泽院士主持的国家重大科研仪器设备研制项目。基于该项目的研究成果,2019年,张跃飞和祺跃科技踏上了扫描电镜纳米分辨高温力学原位仪器的产业化之路。从创办第一年,只能生产电子显微镜的一个功能模块,到2022年短短三年,祺跃科技已经研制出满足市场上扫描电子显微镜的系列化原位高温力学功能模块与整机,完成多项科技成果转化。期间,祺跃科技还获批浙江省“院士工作站”、国家高新技术企业、浙江省级研发中心、承担国家重点研发计划,杭州市领军型创新团队项目等。经过坚实且成果斐然的初创期之后,祺跃科技稳健地迈向发展新阶段,于2023年成功完成天使轮融资。——产品技术与布局2019年,张泽院士主持的“国家重大科研仪器项目”成果落地转化,祺跃科技研制出原位拉伸力学与原位加热测试装置,极限载荷与温度分别为2000N、1150℃。2020年,原位拉伸力学与原位加热测试装置产品型号愈加丰富,产品性能进一步提升,极限载荷与温度分别进一步提升到5kN、1200℃ 。2021年,祺跃科技提高产品的标准化与通用性,发布尺寸最小的原位拉伸台、长时间原位真空疲劳测试系统等多款设备。2022年,祺跃科技形成系统解决原位方案,推出系列化原位SEM疲劳和蠕变台、原位电化学测试台,原位冷热台;同时,原位SEM拉伸台载荷提升至10kN,EBSD测试温度提升至1000℃和-180℃原位低温力学测试,开发出了原位SEM-EBSD-DIC关联应用原位表征测试方法。原位扫描电镜In-situ SEM 660F值得一提的是,预计在2024年祺跃科技将正式发布首台原位扫描电子显微镜(In-situ SEM 660F)。In-situ SEM 660F作为一款创新性的产品,填补了国内外原位高温微观结构与力热耦合一体化测试仪器的空白,可以实现1400℃纳米级高分辨成像,并可以与多种原位测试系统联用,在高/低温条件下对样品进行原位力学、氧化腐蚀、电化学等多场耦合测试。该仪器提供跨尺度研究材料液-固、固-固相转变过程演化研究的新方法,可以在高/低温环境作用下对样品施加拉伸、疲劳、蠕变、电化学、氧化腐蚀等多场耦合作用,表征样品/样件性能与微观组织演变实时相关的过程信息,极大程度满足用户的多功能、多场景测试需求。目前,祺跃科技基于长期研发投入,在高温-应力耦合加载同时保持电子显微纳米级分辨快速成像的核心技术方面具有领先优势,已布局原位扫描电子显微镜、原位测试模块、真空镀膜设备等系列化高端科学仪器。未来,公司将充分发挥产学研用一体化优势,以“成为微观过程可视化检测行业引领者,提供材料与高端制造业升级和创新的眼睛与大脑”为愿景,聚焦于开发显微结构与性能一体化高通量原位表征新仪器,为客户提供创新性的材料原位检测研究新产品与高水平分析测试服务。实验室参观——国产电镜发展观点国产电镜的发展近年来取得了显著的进步,但同时也面临着多方面的挑战。技术创新与突破:国产电镜在技术创新方面已经取得了长足的进步。通过不断研发新技术、新材料和新工艺,国产电镜的性能和稳定性得到了显著提升。然而,与国际先进水平相比,国产电镜在某些关键技术方面仍存在一定的差距。因此,加大技术创新力度,持续推动技术进步,是国产电镜发展的关键。市场需求与拓展:随着科学技术的快速发展,电镜在材料科学、生命科学等领域的应用越来越广泛。这为国产电镜提供了巨大的市场机会。然而,国产电镜在高端市场领域的份额仍然有限。因此,国产电镜厂商需要深入了解市场需求,加强产品研发和市场推广,提高产品的竞争力和市场占有率。人才培养与团队建设:电镜技术的研发和应用需要一支高素质、专业化的团队。然而,目前国产电镜领域的人才储备相对不足,尤其是缺乏高层次的专业人才。因此,加强人才培养和团队建设,提高从业人员的专业素养和技能水平,是国产电镜持续发展的重要保障。国际竞争与合作:在国际市场上,国产电镜面临着来自国际知名品牌的激烈竞争。这要求国产电镜厂商不仅要提高自身的技术水平,还要积极参与国际合作与交流,学习借鉴国际先进经验和技术成果。同时,通过与国际同行的合作与交流,可以推动国产电镜技术的国际化发展,提高国际竞争力。合影留念附1:2024年4月,“第三届中国电镜产业化发展论坛”将在苏州举办,现进入论坛内容筹备阶段,为更好解决产业痛点,切实助力产业发展,现向广大网友征集论坛内容建议,欢迎大家积极参与,建议被采用的网友或专家将获得论坛定向邀请函,邀请现场与电镜业界专家、企业精英共议行业发展!扫码填写论坛内容建议或点击链接填写:https://www.wjx.cn/vm/hxJFe0g.aspx#或直接邮件或电话沟通,邮箱:yanglz@instrument.com.cn,电话(同微信):15311451191。附2:2023年年底中国电镜产业链系列走访名单走访企业聚束科技惠然科技速普仪器大束科技格微仪器康尔斯特国仪量子祺跃科技雷博科仪屹东光学苏州冠德上海精测纳克微束
  • 1082万!福州大学透射电镜原位表征系统和上海市疾病预防控制中心多维色谱-轨道阱质谱采购项目
    一、项目一(一)项目基本情况项目编号:310000000240205160195-00085404项目名称:多维色谱-轨道阱质谱预算编号: 0024-00034755 预算金额(元): 7500000(/)最高限价(元): / 采购需求: 包名称:多维色谱-轨道阱质谱 数量:1 预算金额(元):7500000 简要规格描述或项目基本概况介绍、用途:质量范围:50-2000 m/z 合同履约期限: 合同签订后,接到采购人通知后60天内完成交付 本项目( 不允许 )接受联合体投标。(二)获取招标文件时间:2024年08月23日至2024年08月30日,每天上午09:00至11:00,下午13:00至16:00(北京时间,法定节假日除外)地点:上海市普陀区曹杨路528弄35号(中世办公楼)方式: 上述领购时间范围内每天上午:9:00 ~ 11:00,下午:13:00 ~ 16:00(节假日除外)备注:未领购招标文件的供应商不得参加投标。报名须提交的下述资料:单位负责人委托书;被授权代表身份证。注:在上述时间段内至代理公司进行现场报名或微信公众号报名、领购招标文件,逾期不再办理。报名时提供的资料应与投标文件中的资格证明文件一致,如有不同,以投标文件为准。供应商可关注“中世建咨”微信公众号,主界面右下角点击“投标报名”完成微信报名登记。 售价(元): 600 (三)对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海市疾病预防控制中心地 址:上海市中山西路1380号联系方式:021-627587102.采购代理机构信息名 称:上海中世建设咨询有限公司地 址:上海市普陀区曹杨路528弄35号(中世办公楼)联系方式:021-62441033、525558193.项目联系方式项目联系人:李杰、赵贞、马昕雨电 话:021-62441033、52555819二、项目二(一)项目基本情况项目编号:[350001]FJXFZB[GK]2024022项目名称:福州大学透射电镜原位表征系统采购采购方式:公开招标预算金额:3,328,000.00元采购包1(透射电镜原位表征系统):采购包预算金额:3,328,000.00元采购包最高限价: 3,328,000.00元投标保证金: 33,280.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表透射电镜原位表征系统1(套)否利用透射电镜原位表征系统,气氛加热测量系统研究材料。扫描探针调范围:XY方向2.5 mm,Z方向1.5 mm;细调范围:XY方向15 μm,Z方向1.5 μm;电学测量细调分辨率:XY方向0.4 nm,Z方向0.04 nm;电学测量粗细调均为压电陶瓷驱动方式,软件控制;包含电流电压测试单元;芯片类型:四电极气氛加热芯片。 要求:质量保证期至少一年,验收合格之日起计算。服务要求:保修期内由供货方负责。3,328,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订生效后开始至双方合同义务完全履行后(二)获取招标文件时间: 2024-08-23 至 2024-08-30 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福州大学地址:福建省福州市福州地区大学新区学园路2号联系方式:0591-228659172.采购代理机构信息(如有)名称:福建信发招标代理有限公司地址:福州市鼓楼区铜盘路466-3号大自然文化创意园5号楼4层联系方式:0591-880023093.项目联系方式项目联系人:林娜、周灵珍、陈爱光、吴江挺电话:0591-88002309网址: zfcg.czt.fujian.gov.cn开户名:福建信发招标代理有限公司
  • 仪器表征,科学家先进表征揭示电催化CO₂还原新突破!
    【科学背景】电化学还原一氧化碳(CORR)作为一种无碳酸盐的潜在方法,利用可再生电力生产乙烯引起了广泛关注。乙烯作为重要的化工中间体,其制备过程一直受到选择性和能效的限制。传统的碳-碳偶联反应在碱性条件下虽然有效,但同时也伴随着碳酸盐形成导致的CO2利用效率低问题。而在酸性电解质中进行CO2RR虽然能一定程度上解决了碳酸盐生成问题,但却面临能量效率不高的挑战,特别是在乙烯选择性方面表现不佳。为了解决这些问题,科学家们致力于减弱水解离过程,目的是抑制竞争的氢析出反应,进而提高CO2RR的选择性和能效。然而,初步的实验结果表明,减缓水解离过程并非一劳永逸的解决方案,因为使用重水代替普通水反而导致对乙烯的选择性进一步降低,这引发了新的思考和探索方向。有鉴于此,悉尼大学化学与生物分子工程学院李逢旺教授, 中国科学技术大学,合肥微尺度物质科学国家研究中心及化学物理系曾杰教授(国家杰青)联合多伦多大学David Sinton 和 Edward H. Sargent院士合作探索了促进水吸附并降低水解离能量壁垒的新方法。通过将强电子受体7,7,8,8-四氰基喹啉二甲烷(TCNQ)引入铜催化剂表面进行分子修饰,研究团队实现了显著的乙烯产率提升。修饰后的催化剂表现出75%的乙烯法拉第效率,比未修饰的铜催化剂高出1.3倍。在膜电极组件系统中,实现了32%的全电池能量效率,对应乙烯电合成的能量成本为154 GJ t-1。关键的创新在于,TCNQ修饰不仅增强了铜与水分子的相互作用,促进了水解离过程,还降低了CO到乙烯途径中关键中间体的氢化能量壁垒,从而显著提高了乙烯的选择性。通过一系列原位表征和密度泛函理论(DFT)计算,研究进一步揭示了修饰催化剂的作用机制。【科学亮点】(1)实验首次探索了使用7,7,8,8-四氰基喹啉二甲烷(TCNQ)对铜催化剂进行分子修饰,以提高CO电还原产乙烯的效率和选择性。(2)实验通过在流动电池中测试修饰后的催化剂,发现其乙烯法拉第效率达到75%,比未修饰的铜催化剂高出1.3倍。此外,在膜电极组件(MEA)系统中,实现了32%的全电池能量效率,对应的乙烯电合成能量成本为154 GJ t-1。(3)通过一系列原位表征和密度泛函理论(DFT)计算,揭示了TCNQ修饰如何增强铜与水分子的相互作用,降低了关键中间体*CHCOH到*CCH的氢化能垒,从而提高了CO到C2H4的选择性。【科学图文】图1:水解离对CORR产品分布的影响。图2. Cu-100TCNQ催化剂的表征。图3. TCNQ修饰铜电催化剂的CORR性能。图 4:TCNQ修饰铜催化剂促进C2H4形成的机理研究。【科学结论】本文探索利用强电子受体修饰铜催化剂以激活水解离过程,从而提升CO到C2H4途径的效率和选择性。通过这一设计原则,研究展示了铜与7,7,8,8-四氰基喹啉二甲烷(TCNQ)的相互作用如何增强水分子的吸附和解离能力,进而降低了关键中间体*CHCOH到*CCH的氢化反应能垒。这些发现不仅在实验层面证实了修饰催化剂在电化学还原反应中的潜力,而且通过密度泛函理论(DFT)计算提供了理论支持。此外,通过流动电池和膜电极组件系统的实际性能评估,显示出高达75%的C2H4法拉第效率和32%的能量效率,这为碳中和和可持续化学品生产提供了有前景的路径。这项工作不仅拓展了催化剂设计的思路,还为实现高选择性和能效的多碳产品生产提供了新的理论和实验基础。原文详情:Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00568-8
  • 近千万材料原位微纳表征大单亟待“填补空白” 含电镜、划痕仪、光谱、能谱等
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 28px font-family: 宋体 font-size: 14px " 近日, /span span style=" text-align: justify text-indent: 28px font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0px font-size: 14px background: rgb(251, 253, 254) " 南方科技大学 /span span style=" text-align: justify text-indent: 28px font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0px font-size: 14px background: rgb(251, 253, 254) " 发布公告招标“ /span span style=" text-align: justify text-indent: 28px font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0px font-size: 14px background: rgb(251, 253, 254) " 材料原位真空微纳表征系统 /span span style=" text-align: justify text-indent: 28px font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0px font-size: 14px background: rgb(251, 253, 254) " ”, /span span style=" text-align: justify text-indent: 28px font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0px font-size: 14px background: rgb(251, 253, 254) " 填补学校科研仪器设备的空白,总招标金额高达750万。 /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 据南方科技大学介绍,该校招标的 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 材料原位真空微纳表征系统是按需搭建的一套开放式系统 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" , /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 用于 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 材料表征和开发、材料性能评价、化学反应性能研究等 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 。 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 该 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 材料原位真空微纳表征系统 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 中所涉及的仪器类型包括 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 场发射扫描电镜 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 、 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 离子溅射仪 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 、 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 能谱仪 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" - /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 电子背散射衍射仪 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 、 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 原位定量纳米力学测试仪 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 、 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 阴极荧光光谱仪 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 等,项目招标所有仪器都接受进口。 /span /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 据南方科技大学介绍,学校 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" 2/3院系的科研工作中都会对扫描电子显微镜、能谱表征、原位力学、表面光谱等表面分析测试有需求,其中材料科学与工程系、化学系、电子与电气工程系、环境科学与工程系的需求量最大。 /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 而南方科技大学 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 还没有全面进行此类分析的综合分析平台 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" , /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 尤其较为 /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 缺乏关于 /span 10nm以下超高分辨率的样品表面细节表征、原位力学性能测试分析手段 /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 。 /span /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 项目名称: /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 材料原位真空微纳表征系统 /span /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 采购编号: /span /span span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" PLAN-2020-0108016001-01166 /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 预算: /span 750万元 /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 采购单位:南方科技大学 /span /span /p p style=" text-indent:28px text-align:justify text-justify:inter-ideograph" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px background: rgb(251, 253, 254)" span style=" font-family:宋体" 采购详情: /span /span /p table border=" 1" cellspacing=" 1" style=" margin-left: 6px background: rgb(204, 204, 204) border-width: 1px border-style: solid border-color: windowtext " width=" 646" tbody tr class=" firstRow" td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 序号 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 货物名称 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 招标技术要求 /span /p /td /tr tr td valign=" center" rowspan=" 34" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1 /span /p /td td valign=" center" rowspan=" 34" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 场发射扫描电镜 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.1 运行环境: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.1.1 房间温度:15 ~ 25℃ /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.1.2 相对湿度:小于60% /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.1.3 适用电源:单相,220V± 10%,50/60Hz,4kVA,要求连续供电 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.1.4 地线:接地电阻范围40 ~100 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.2电子光学系统: /span /p p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ★1.2.1 分辨率: 0.6nm@15kV; 0.7nm@1kV /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.2.2 加速电压:最低 0.5kV; 最高 30kV;0.1kV/步 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.2.3着陆电压:0.01 -20kV(减速模式) /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.2.4 放大倍数:最小 20倍; 最大 200万倍(底片模式) /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.2.5电子枪:冷场发射电子枪 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.2.6 配备10年场发射灯丝耗材 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ★1.2.7最大电子束流: ≦20nA,且连续可变 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.2.8物镜光栏:内外加热自清洁式,四孔,可移动物镜光栏 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3样品室: /span /p p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.1 样品台: 5轴自动马达驱动,机械优中心 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.2样品移动:X 0-110mm;Y 0-110mm;Z 1.5-40mm;R = 360 连续旋转,T -5~ +70 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.3样品防撞警报装置:有 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.4容纳样品尺寸: 150mm直径 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.5样品换样方式 /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.3.5.1配备交换仓,交换仓端面透明,可观察到样品交换过程 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.3.5.2交换仓能容纳 150mm的样品 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.5.3具有样品安装到位提示,避免样品在安装时脱落 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.3.6检测器: 配有顶位、高位以及低位二次电子探测器,顶位探测器可选择接收二次电子像或背散射电子信号,高位探测器可选择接收二次电子或背散射电子信号,并以任意比例混合。在低压下(2kV)可以得到背散射电子图像 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.4 真空系统: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.4.1真空泵: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 机械泵:135L/s /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 涡轮分子泵(磁悬浮型):300L/s /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3级离子泵:60L/s 1, 20L/s 2 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.4.2 真空度:电子枪部分优于10-7Pa;样品室部分优于10-4Pa /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.4.3 保护:自动真空抽气及诊断系统,具有断电、缺水、失真空保护系统 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.4.4样品更换抽真空时间: 1分钟 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.5 图像处理软件:可以进行图像的处理、测量和编排实验报告 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.6 数据记录:照片包括编号,加速电压,标尺,放大倍率,日期,时间,工作距离等 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.7图像显示:不低于1280 960像素 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.8图像储存:640 480,1280 960,2560 1920,5120 3840像素,照片包括编号,加速电压,标尺,放大倍率,日期,时间,工作距离等信息 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.9图像类型: TIFF, BMP或JPEG /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.10 信号/图像处理功能: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 像素积分改善S/N,框架积分,彩色图像显示,2色合成图像显示(保存图像),伪彩色图像显示(保存图像),针对保存图片的图像处理(灰阶变换,伽马调整,各种空间过滤处理) /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.11 保存图像处理: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 可以进行图像的处理、测量和编排实验报告,捕捉的图片可存储在临时图片栏内,可选择单张存储或批量存储,可自动连续命名 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.12 用户可自行完成红烘烤维护和镜筒合轴维护 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1.13 防污染措施:防污染冷阱 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲1.14订制样品台:包含一个电流电压测试单元;电流测量范围:1nA-30mA,9个量程;电流分辨率:优于100fA /span /p /td /tr tr td valign=" center" rowspan=" 6" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2 /span /p /td td valign=" center" rowspan=" 6" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 离子溅射仪 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲2.1与电镜同一精度配套型号 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2.2含镀金镀碳2种功能 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2.3最大样品尺寸:直径60mm,高度20mm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2.4溅射电流:0-40mA /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2.5溅射时间:0~999s /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 2.6靶材:PT靶材 /span /p /td /tr tr td valign=" center" rowspan=" 11" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3 /span /p /td td valign=" center" rowspan=" 11" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 能谱仪 电子背散射衍射仪 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.1探测器:硅漂移(SDD)电制冷探测器探头系统,采用场效应管(FET)一体化集成设计的高速SDD芯片,探测器具有60mm2有效活区面积,超薄窗设计,独立真空 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.2能量分辨率:在双探测器总100,000CPS条件下Mn Ka保证优于129eV,轻元素分辨率:C-K/57eV, F-K/67eV /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.3采用纤细化等技术提高固体角,单个探指直径仅18.2mm,改善系统分析效率 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲3.4能谱仪处理单元与计算机采用分立式设计,单探测器输出最大计数率优于600,000CPS,可处理最大计数率优于1,500,000CPS /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲3.5配备完善而精准的原子数据库,包含所有的分析线系(K, L, M 和 N线系),实现1-30kv精确定量 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.6定量分析:标配P/B-ZAF以及XPP修正的PhiRhoZ定量方法,可对抛光表面或粗糙表面定量分析。采用定量修正技术,可对倾斜样品进行修正,并增强对轻元素的修正;可以得到归一化和非归一化定量结果,可以用化学配位法得到非归一化结果 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.7高速高灵敏CCD相机:高端16bitCCD相机, 640 480像素,在10pA下可采集到清晰菊池花样 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.8花样采集速度:945花样/秒@8 8binning 630花样/秒@4 4binning,并且在低至4kV时可采集到清晰菊池花样,角分辨率达到0.1 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.9原位EBSD 探测器倾斜角度调节:可在原位进行垂直方向+/-4.5 度角倾斜,电子传感器自动读取倾斜角 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.10标配两个磷荧光屏 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 3.11可实现EDS谱图采集与EBSD花样采集同步,同步采集速度可达170p/s,*衍射花样的再处理不低于54,000p/s; /span /p /td /tr tr td valign=" center" rowspan=" 29" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4 /span /p /td td valign=" center" rowspan=" 29" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 原位定量纳米力学测试仪 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.1测试系统的本征控制模式必须是本征位置控制,不允许通过反馈来实现位置控制 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲4.2采用压电陶瓷来实现驱动施加载荷,采用电容式位置传感器和基于 MEMS 的电容式力传感 器 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.3最大载荷: 200 mN /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲4.4纵向载荷背景噪音(10 Hz 下测量) 0.5nN /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.5最大压痕深度: 25 m /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲4.6位移背景噪音(10 Hz 下测量) 0.05 nm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.7通过内置的压电陶瓷控制样品的精准定位 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.8样品台可移动范围:X 12 mm,Y 12mm,Z 21mm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.9 X/Y/Z 定位分辨率: 1 nm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.10具有旋转轴,样品能围绕测量方向旋转 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.11样品台旋转范围: 360 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.12样品台旋转分辨率: 0.000035 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.13样品转轮能在不更换样品的情况下实现至少 3 个直径不小于 12 mm 样品的原位力学测试 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.14具有纳米划痕模块,通过两个独立的压电陶瓷来实现驱动,采用独立的电容式位置传感器 和一个电容式二维力传感器 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.15纳米划痕实验的最大横向力: 20mN /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.16纳米划痕实验的最大横向位移: 20 um /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.17纳米划痕实验的横向载荷背景噪声(10 Hz 下测量): 100 nN /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.18纳米划痕实验的横向位移背景噪音(10 Hz 下测量) 0.05 nm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.19具有连续的载荷、位移数据随时间变化的实时数据的功能 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.20具有载荷控制功能以及位置控制功能 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" margin-top:0 margin-right:0 margin-bottom:0 margin-left:0" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.21可以在 SEM 内控制原位拉伸、压缩、断裂、疲劳、蠕变、纳米压痕(含 CSM)、 纳米划痕、 纳米摩损等力学测试 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.22可与 SEM分析部件联用,可在力学测试同时通过 SE、EBSD、TKD、STEM等探头进行原位观察 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.23具备原位 SPM 成像功能,可以对样品进行连续不间断的 3D 原位扫描成像 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.24 提供硬件级别传感器保护模式,防止微力传感探针的力学过载 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.25 包含基于Windows操作系统的微力测试软件、微操作软件;允许用户生成自定义的微力测试 程序 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.26 软件使测量数据(比如力和位移、力和时间数据等)可视化,可记录和导出数据(.txt 或.xls) /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.27 连续刚度测量(CSM)频率: 500 Hz /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.28 最大疲劳测试频率: 500 Hz /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 4.29 数据采集率: 96000Hz /span /p /td /tr tr td valign=" center" rowspan=" 12" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5 /span /p /td td valign=" center" rowspan=" 12" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 68" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 阴极荧光光谱仪 /span /p /td td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.1具有阴极荧光全谱成像、单谱成像和单光谱分析功能 /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲5.2配置自动切换三光栅谱仪,谱仪焦距320mm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲5.3光栅台为3光栅台,谱仪安装3块光栅,软件控制切换: /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 150gr/mm光栅,闪耀波长500nm /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 300gr/mm光栅,闪耀波长500nm /span /p p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 1200gr/mm光栅,闪耀波长400nm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" ▲5.4六档滤光片轮,装配有RGB滤光片,软件控制 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.5光谱探测范围300-900nm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.6 光谱仪入口和出口狭缝宽度可调,可调范围0-3mm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.7椭球镜工作距离可低于12mm /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.8具有电子束扫描控制及电镜图像采集功能 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.9具有阴极荧光光谱线/面分布功能 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.10软件自动控制荧光收集装置伸缩,伸缩尺寸满足电镜样品室要求 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.11荧光收集装置预对中调整 /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.12高性能椭球反射镜,理想荧光收集效率大于90% /span /p /td /tr tr td valign=" center" style=" background: rgb(251, 253, 254) border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 524" p style=" text-indent: 28px" span style=" font-family: 宋体 color: rgb(51, 51, 51) letter-spacing: 0 font-size: 14px" 5.13光纤传导,光纤长度大于3m /span /p /td /tr /tbody /table
  • 岛津材料化学研究表征技术研讨会成功举办
    2023年12月22日,岛津材料化学研究表征技术研讨会在湖南大学成功举办,会议邀请了各大高校专家老师参与了此次会议。会议现场湖南大学化工学院书记王双印教授首先致辞,他对参会的各位嘉宾表示了欢迎,岛津公司和湖南大学化学化工学院建有合作实验室,和电催化与电合成实验室亦有很多的互动交流沟通,之前,我们合作有在这举办电催化相关研究的技术交流会,今天我们在这就材料化学研究表征进行技术交流,报告专家会分享材料研究中的表征技术及仪器使用,希望能对各位嘉宾的科研有所助力,也预祝本次会议能圆满成功。湖南大学化工学院书记王双印教授中南大学粉末冶金国家重点实验室沈茹娟副研究员做了题为《试验机在材料分析和矿物分析中的解决方案》的发表。报告分享了:电子万能试验机基础介绍和应用实例、扫描电镜中的原位力学测试系统、力学性能微观测试。中南大学粉末冶金国家重点实验室沈茹娟副研究员岛津分析计测事业部营业部售前支持团队王文龙先生做了题为《X射线光电子能谱 (XPS) 在材料研究中的应用进展》的分享。报告分享了:XPS作为一种表面成分及化学状态分析的表征手段,可应用于研究表面反应、薄膜及涂层成分和结构,在材料科学研究中越来越受到大家的重视。王文龙先生在报告中介绍了XPS的原理、基本功能及在材料科学中的应用进展,包括XPS(准)原位测试、成像XPS、角分辨XPS及XPS深度剖析等。岛津分析计测事业部营业部售前支持团队王文龙先生岛津分析计测事业部市场部 石欲容女士岛津分析计测事业部市场部石欲容女士做了题为《岛津在材料研究中的典型解决方案及应用》的分享。报告分享了:岛津在材料研究中的整体解决方案,在材料研究中化合物、金属元素定性定量用到的有机、无机测定分析仪器,结构性能表征中XPS、EPMA、SPM、UV、SALD、试验机等分析仪器;在典型应用中重点介绍了EPMA标配的波谱测定功能在定性和面分析能力上比能谱更优异的应用,同时介绍了岛津的典型客户使用带扫描的试验机在氧化物弥散强化钢板高温蠕变性能的影响中的应用,以及岛津粒度仪的应用及特点。本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制