当前位置: 仪器信息网 > 行业主题 > >

原子分子

仪器信息网原子分子专题为您整合原子分子相关的最新文章,在原子分子专题,您不仅可以免费浏览原子分子的资讯, 同时您还可以浏览原子分子的相关资料、解决方案,参与社区原子分子话题讨论。

原子分子相关的资讯

  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 多原子分子反应过渡态光谱研究取得进展
    近日,中国科学院精密测量科学与技术创新研究院理论与计算化学研究组副研究员宋宏伟与美国加利福尼亚大学伯克利分校教授Daniel M. Neumark团队、美国新墨西哥大学教授郭华合作,结合慢光电子速度成像光谱实验和量子动力学理论,获得了多原子分子反应过渡态区域目前最为完整的图像,对于剖析多原子分子反应的反应机理具有重要意义。   化学反应过渡态决定化学反应的基本特性。对于多数化学反应,反应过渡态的寿命非常短,实验观测非常困难,因此,直接观测反应过渡态被认为是化学研究的“圣杯”。共振态是反应体系在过渡态区域形成的具有一定寿命的准束缚态,为探索化学反应在过渡态附近的行为提供契机,因而可以通过研究共振态的结构与动力学揭示化学反应的微观机理。  该研究结合慢光电子速度成像光谱实验和量子动力学理论,观测到多原子分子反应 F + NH3 → HF + NH2过渡态区域的多个振动Feshbach共振峰(图1)。共振波函数表明这些Feshbach共振态位于产物端势阱、过渡态和反应物端势阱等区域(图2),成因于单个或多个反应体系振动模式的激发。由于部分Feshbach共振态的能量高于反应物势能,因而可能影响化学反应的速率和量子态分布。本研究获得了多原子分子反应过渡态目前最完整的图像,表明过渡态光谱方法已具备探究多原子分子反应过渡态区域复杂动力学行为的能力。  Feshbach共振态是特殊的量子动力学现象,其标记依赖精确的量子动力学计算。宋宏伟自2016年开始致力于开发计算五原子分子体系光电谱的理论方法,提出了高精度势能面的构建方法(J. Phys. Chem. A 126, 352 (2022))和精确的量子动力学计算方法(Phys. Chem. Chem. Phys. 23, 22298 (2021)),为标记实验光电子谱和理解多原子分子反应微观机理打下良好的理论基础。  相关研究成果发表在《自然-化学》上。研究得到国家自然科学基金创新研究群体项目和面上项目的支持。实验测量与理论计算的F-NH3光脱附谱F-NH3负离子基态与不同Feshbach共振态波函数的分布
  • 中国在原子分子超快动力学研究方面取得重要进展
    p   飞秒强激光为在原子时空尺度(阿秒时间与亚埃空间尺度)探测物质微观结构及电子超快动力学提供了重要手段。近日,我国专家在利用飞秒强激光探测原子分子结构及电子超快动力学研究方面取得重要进展。 /p p   飞秒强激光诱导的电离电子波包或可重新返回母离子实并与之发生再散射过程,由再散射引起的高次谐波谱或光电子谱为探测原子分子结构及电子态超快演化提供有效途径。当前,发展时空高分辨的原子分子结构及动力学探测方法为研究领域广泛关注。 /p p   中国科学院武汉物理与数学研究所柳晓军研究员、全威研究员等人与北京应用物理与计算数学研究所陈京研究员、吴勇副研究员等合作,提出一种新的激光诱导非弹性电子衍射方案,并采用这一方案实验测定了电子与惰性气体离子碰撞引起的非弹性散射微分截面。 /p p   据介绍,在这一方案中,专家利用飞秒强激光驱动原子产生的再散射电子波包替代传统电子束,通过电子碰撞的方法对惰性气体母离子结构进行探测。结合武汉物数所前期建成的高分辨电子-离子动量谱仪装置与符合测量方法,他们实验测量了对应于电子-离子碰撞电离过程的光电子二维动量谱,并从中提取出电子与母体离子作用的非弹性散射微分截面,实验结果与扭曲波波恩近似理论计算结果吻合。 /p p   这一方案继承了传统电子衍射方法的超高空间分辨优点,而且具有超高时间分辨能力,为在飞秒乃至阿秒时间尺度研究激光诱导的原子分子超快动力学过程提供了重要手段。相关研究成果近期发表在学术期刊《物理评论快报》上。 /p
  • 吉林应用原子分子光谱重点实验室在吉大建设启动
    5月29日,吉林省应用原子分子光谱重点实验室(以下简称“实验室”)建设启动会暨青年教师学术报告会在吉林大学中心校区举行。该实验室依托吉林大学原子与分子物理研究所、由吉林省科技厅批准建立。   启动会后,王志刚等4名青年教师围绕各自研究领域作了学术报告。与会嘉宾围绕实验室建设任务和人才队伍建设等提出了意见和建议,并就学术问题进行了现场交流。
  • Nature|潘建伟、白春礼团队合作,首次实现利用射频场相干合成三原子分子
    中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。在该研究中,他们在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月10日,这一重要研究成果发表在国际权威学术期刊《自然》杂志上。图:从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现这一目标需要制备大规模的量子纠缠并进行容错计算,仍然需要长期不懈的努力。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,它能够在某些特定的问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛的应用前景。超冷分子将为实现量子计算打开新的思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级非常复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新的途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到上世纪八十年代。激光冷却原子技术的出现使得光合成双原子分子得以快速的发展,并在高精度光谱测量中取得了广泛的应用。在光合成双原子分子取得成功之后,人们开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局的Paul Julienne教授等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的一个重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,一直无法用来研究三原子分子的合成。后来随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛地应用于超冷化学和量子模拟的研究中。超冷基态分子的成功制备重新唤起了人们对合成三原子分子的研究兴趣。2015年,法国国家科学研究中心的Olivier Dulieu教授等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用极其复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学的研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振,相关成果发表于《科学》杂志 [Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测为合成三原子分子提供了新的机遇。但由于原子和分子的Feshbach共振非常复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子依然是实验上的巨大挑战。在该项研究中,中国科学技术大学的研究小组和中科院化学所的研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到了射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。这一工作为量子模拟和超冷化学的研究开辟了一条新的道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题极其复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题一直都是少体物理中的一个重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,这为刻画复杂的三体相互作用势能面提供了重要的基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要的信息。该研究工作得到了科技部、自然科学基金委、中科院、安徽省、上海市等单位的支持。论文链接: https://www.nature.com/articles/s41586-021-04297-2
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • 西安交大前沿院邵金友教授在原子/分子团簇与器件制造领域取得新进展
    原子/分子团簇是物质结构的一种新形态,具有独特的本征性质。从原子/分子团簇到器件的跨尺度制造,将为高端装备和新兴电子等产业发展带来深刻变革。团簇的多物质构效关系、宏量制造、团簇结构跨尺度构筑以及团簇器件的高性能制造等是原子/分子团簇器件制造的关键发展方向,主导着从原子到产品制造的发展历程。把握这些发展背后的重要机遇,将有助于占领原子级制造研究的制高点,引领原子级制造方法的变革。由原子/分子团簇直接构筑功能器件或构件,是产品制造的新形式,在先进制造领域具有重要的意义,其中包括两个方面。首先,可以微缩器件的特征尺寸并提高制造精度。在集成电路的发展中,越小的器件尺寸意味着更高的集成度和更好的性能。利用原子/分子团簇直接构筑功能器件或构件可以将器件尺寸缩小到原子水平,将成为在后摩尔时代提高芯片性能的重要途径。其次,该策略更具颠覆性的意义,因为它可以突破分子和晶体的限制,通过对原子的精细操控来创造新分子、新材料和新器件。因此,原子/分子团簇直接构筑功能器件或构件不仅是由原子尺度物质科学支撑的先进制造技术,而且是推动物质科学发展的一种未来技术,甚至是未来物质科学的一种新形态,其必将颠覆现有制造方式获得的产品性能,深远影响高端国防装备和新兴电子产业的未来发展。另一方面,通过对原子结构的调控,能够提高材料的工作温度,实现陶瓷增韧,为高超航天器提供新型耐高温材料与结构。在电子产业领域,将原子/分子团簇等按照一定的方式进行组装能构筑具有特定功能的器件,如具有超高分辨率、超高亮度、超快响应能力的新型显示器、红外光电探测系数数倍增强的超敏传感器以及单分子电子器件及其构建的下一代集成电路等。基于上述背景,西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授等从团簇新材料的宏量制造、新型功能器件的原子/分子团簇构筑、团簇—器件的跨尺度制造工艺和装备等三个方面概括了原子/分子团簇与器件制造领域的主要研究进展,总结了原子/分子团簇与器件领域的关键科学问题及面临的挑战,并对其未来发展方向和发展战略给出了建议。特别地,建议从以下三个方面重点关注其中的科学问题研究:1. 在原子/分子团簇及晶胞结构的形性调控机制与宏量制造方面。建议重点研究量子力学在团簇生成及晶胞结构调控过程中的作用机制与控制方法,为原子/分子团簇和晶胞的高性能制造提供量子力学调控原理;研究团簇和晶胞结构形态与材料特性之间的构效关系,为优异特性的材料制造提供合理设计;研究特定形性团簇和晶胞的稳定性和一致性控制方法,为团簇及晶胞的宏量制造提供关键方法保障。2. 在团簇结构的定域组装方法及异质/异构界面特性的调控方面。建议重点研究团簇组装和图形化过程中的界面力学作用机制,为团簇结构制造提供关键理论支撑;研究“自下而上”与“自上而下”相结合的团簇结构定域组装机制与调控方法,实现团簇微纳结构的一致性、批量化制造;研究团簇异质/异构界面的力、热、光、电等基本物理特性形成机制与控制方法,实现团簇结构的基本性能调控。3. 在团簇—微纳结构—器件性能映射关系与一体化高性能制造工艺和装备方面。建议研究团簇形性特征、微纳结构功能特征、器件性能表现三者之间的相互映射关系,为器件功能和性能设计提供理论依据;研究由团簇材料到宏观器件的一体化制造新工艺和新方法,为高性能团簇器件制造提供创新工艺技术;研究典型团簇器件的创新印刷装备,为团簇器件的制造和应用提供制造装备范式。该研究成果以《基于原子/分子团簇结构的材料与器件制造》(Manufacturing From Atomic and Molecular Clusters to Devices)为题发表于材料领域高水平期刊《中国科学基金》。西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授为论文的第一/通讯作者。论文链接:DOI: 10.16262/j.cnki.1000-8217.2024.01.028 邵金友教授简介邵金友,现任西安交通大学科研院常务副院长、曾任职前沿科学技术研究院院长、机械学院副院长、国家杰出青年基金获得者、机械工程学院领军学者、博士生导师。主要从事微纳制造、电子皮肤与可穿戴电子、生物仿生与软体机器人、医工交叉等方面的研究工作。国家自然科学基金“纳米制造的基础研究”重大研究计划重大集成项目首席、国家重点研发专项项目首席,担任国家第六次科技预测(2020-2035规划)极端制造领域专家、十四五国家重点研发计划“高性能制造技术与重大装备”重点专项指南专家。已发表SCI论文160余篇,其中以第一和通讯作者在Nature Communications、Advanced Materials,ACS Nano等国际高水平期刊发表论文80余篇,SCI他引约3100余次,在第一、通讯作者SCI论文中,多篇被Advanced Materials,Advanced Functional Materials,Small,Nanoscale,IEEE Nanotechnology等期刊选为封面亮点论文,入选英国物理学会、美国化学学会和英国化学学会的精选论文或热点论文,被Wiley Video Abstracts,Material View,Advanced Science News,Nanowerk等国际知名学术新闻网站作为研究亮点评述。以第一发明人获得国家授权发明专利22项,获得美国PCT发明专项2项。
  • 原子光谱前沿技术进展 第22届全国分子光谱学学术会议暨2023 年光谱年会报告集锦
    仪器信息网讯 7月15日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开。本次会议由中国光学学会、中国光学学会光谱专业委员会、中国化学学会主办,云南师范大学承办。(相关阅读:15日上午《再聚昆明 第22届全国分子光谱学学术会议暨2023年光谱年会开幕》;15日下午《新技术新成果 第22届全国分子光谱学学术会议精彩报告来袭》)。7月16日,大会设置了拉曼光谱新技术及新方法、生物传感及光谱成像、红外光谱新技术及新方法、超快光谱新技术及新应用、拉曼光谱新技术及新材料、原子光谱新技术及新方法、青年论坛等7大主题分会场,各参会人员按照自己的工作领域与需求在相应的会场进行深入的探讨交流。其中,在原子光谱新技术及新方法分会场上,共有18位行业资深专家进行了报告分享。会议现场四川大学 侯贤灯 教授《原子光谱/质谱分析中的分离技术》武汉大学 胡斌 教授《微流控芯片-ICP-MS 单细胞分析》福州大学 付凤富 教授《纳米金锥的精准调控及其在可视化检测中的应用》中国地质大学 朱振利教授博士生 刘星《等离子体蒸气发生元素/同位素分析方法》四川师范大学 黄科 教授《基于微滤膜辅助分离原子光谱/手机比色生物分析新方法研究》16日上午,原子光谱分会场上半场报告中,侯贤灯教授介绍了其课题组所做的基于ICP的单检测器原子光谱多物理量同时测量系统、光化学蒸汽发生进样技术等的相关研究进展,他提出可以把分离技术与光谱技术结合起来进行研究,并对样品前处理技术进行了分享等;胡斌教授课题组构建了集成化、阵列化微流控芯片样品前处理平台,实现了低至600个细胞的细胞样品中痕量元素及其形态分析,并成功用于硒汞拮抗作用。同时他们还建立了微流控芯片/微流体-time-resolved ICP-MS单细胞分析方法,并将其用于单细胞水平的痕量元素定量、形态分析、纳米粒子的摄取以及胞内纳米粒子的稳定性研究等;付凤富教授课题组建立了NADH-AA 金锥生长调控体系,可有效抑制空白、提高AA调控金锥生长的灵敏度,可以在更低的AA浓度范围内调控金锥生长,产生更多和更清晰的颜色变化。课题组建立的HCI-NADH-AA 金锥生长调控体系,可精确调控AA促进金锥 (AuNBPs) 生长的速度,产生双通道多颜色信号等;刘星博士与大家分享了其所在的朱振利教授课题组在等离子体化学蒸气发生高灵敏元素分析,等离子体化学蒸气发生快速、准确同位素分析两方面的研究内容及研究进展;黄科教授课题组成功建立基于微滤膜辅助分离的原子光谱生物分析方法,实现了基于酶调控策略的原子光谱生物分析的初步探索。他表示,下一步将继续在多目标物同时分析及滤膜修饰方向开展研究。上海交通大学 俞进 教授《机器学习算法赋能激光诱导击穿光谱助力火星科学探测》清华大学 邢志 教授《高纯非导体材料纯度分析方法探索》四川大学 刘睿 教授《金属稳定同位素标记均相免疫分析》武汉大学 何蔓 教授《大气颗粒物中痕量重金属及持久性有机污染物的分析方法研究》中国科学院上海硅酸盐研究所 钱荣 教授《基于常压辉光放电质谱的单胺类神经递质分析新方法》16日上午,原子光谱会场下半场报告中,俞进教授指出基体效应是LIBS走向应用的瓶颈,机器学习展现出强大的LIBS光谱反演功能,将为LIBS发展为成熟分析手段开辟新的前景。报告中,他还与大家分享了机器学习赋能LIBS助力中国首次火星探测实现了原创性科学发现等;邢志教授分享道,高纯非导体材料的理想分析手段是固体直接进样分析。GDMS是固体材料中痕量及超痕量杂质分析的理想手段,分析非导体材料时需要导电介质。报告中,他还对粉体或颗粒非导体材料、高纯晶片的分析要求和注意事项等进行了详细的分享;刘睿教授分享了其课题组开展的金属稳定同位素标记均相免疫分析研究,包括简便快速分析、多组分分析、自验证分析等;何蔓教授课题组通过研究发现当地Cd、Pb、Zn的污染程度较高,其主要来源是土壤、交通运输以及人为活动引起的灰尘再悬浮,通过设计选择性好的分离富集方法,可实现APM中极低浓度重金属或有机污染物的定量等分析;钱荣教授课题组通过开发APGD离子源、表征活性中间体,研究了多酚氧化酶(PPO)催化DA发生氧化的过程,建立了一种新型APGD-MS高效、便捷表征DA及氧化过程的方法,为黑色素病变、神经退行性等疾病早期筛查与诊断提供一种新思路。东北大学 于永亮 教授《元素质谱在金属形态与疾病标志物分析中的应用》大理大学 温晓东 教授《云南道地药材中痕量金属元素分析方法的建立及相关药效学的初步研究》成都理工大学 高英 教授《元素新型光化学蒸汽发生及应用》四川大学 蒋小明 教授《尖端放电结构与参数设计以构建高性能的小型化原子发射光谱仪》中国科学院上海硅酸盐研究所 汪正 教授《大气压辉光放电微等离子体光谱技术研究及其环境应用》中国科学院高能物理研究所 李玉锋 研究员《基于同步辐射光源的空间金属组学助力碎米荠富硒机制研究》四川大学 张金懿 副教授《基于碳点的比色和荧光现场分析策略研究》东北大学 陈明丽教授博士生《激光剥蚀电感耦合等离子体质谱用于生物组织成像方法探索》16日下午,原子光谱会场中,于永亮教授报告中分享了其课题组研发的简单便捷的样品预处理系统,结合色谱分离与元素质谱检测实现了适于复杂体液样品的金属形态分析,将会有助于评估某些金属的暴露,并研究其代谢和毒性等;温晓东教授介绍了其课题组基于新型纳米复合材料和DES/NADES等绿色试剂的研究,其建立了准确测定药材中的痕量金属元素的分析方法,并将超声辅助-DES的消解方法与ICP-OES 联用,首次应用于滇龙胆等药材的快速、绿色前处理等;高英教授研究发现了过渡金属离子辅助PVG、气液界面增强PVG和协同增强PVG等新型光化学反应体系。其课题组建立的痕量元素的分析新方法,分析灵敏度最大可提高70倍等;蒋小明教授分享了其课题组对于放电结构的设计、放电性质的调控、蒸气发生与钨丝电热蒸发进样等的研究成果;汪正教授表示,电极冷却可以提高电极的耐受电压从而提升微等离子体的激发效率,同时改善检测稳定性。通过HG,CVG,ETV以及微等离子体诱导蒸汽发生等技术能够显著提升检测灵敏度,同时显著降低基质干扰等;李玉锋研究员介绍道,金属组学是多学科研究工具,空间金属组学可助力碎米荠富硒机制研究,大科学装置也为金属组学研究提供了有力工具;张金懿副教授介绍道,基于碳点的光化学活性,他们构建了快速高效的光催化显色体系,通过离子中间体对催化活性进行调控,实现了中性及碱性条件下的催化显色等;陈明丽教授课题组在报告中分享道,LA-ICP-MS用于组织样品中元素成像,可以获得金属元素代谢紊乱的位置信息。同时,他们发现,保持低温的剥蚀条件,能最大程度的保持生物组织样品的原始状态,获得金属组分的精确分布信息等。
  • 原子光谱与生物技术 “百家争鸣”—2020分子光谱会议分会场一
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2020年10月31日,第21届全国分子光谱学学术会议暨 2020年光谱年会在成都召开,本次会议由中国光学学会和中国化学会主办,四川大学分析测试中心承办。本次会议共收到论文摘要近320篇。大会组委会特别邀请了知名院士、专家学者参会并做报告,共安排了6个大会报告,11个主旨报告,70个邀请报告,36个口头报告,20个青年论坛报告和70余个墙报展。 /p p style=" text-align: justify text-indent: 2em " 大会第一天,南京大学陈洪渊院士、厦门大学孙世刚院士、北京大学张锦院士等13位院士和专家带来精彩的分享。( strong 相关报道: a href=" https://www.instrument.com.cn/news/20201031/563502.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " 《院士领衔 第21届全国分子光谱学学术会议在成都开幕》 /span /a 、 a href=" https://www.instrument.com.cn/news/20201031/563515.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " 《前沿光谱技术分享——2020分子光谱会议首日下午干货不断》 /span /a /strong ) /p p style=" text-align: justify text-indent: 2em " 11月1日,大会进入分会报告环节,组委会精心安排了5个分会场,共8个主题的分会报告,包括:原子光谱新技术及应用、光谱生物技术及应用、拉曼光谱新技术及应用、红外光谱技术及应用、发光及可视化新技术及应用、荧光光谱新技术及应用、光谱新技术及应用和青年论坛。 /p p style=" text-align: justify text-indent: 2em " 分会场一的主题为:原子光谱新技术及应用和光谱生物技术及应用,26位光谱领域的顶尖专家分享了他们研究的最新进展,让参会专家尽享“光谱盛宴”。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/2fc62204-dd1e-4d66-91ea-aa3d2c9eb52a.jpg" title=" IMG_7345.jpg" alt=" IMG_7345.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 分会场一 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/853ab7e1-7545-4ef6-9d85-d1f06b2973eb.jpg" title=" 胡斌.jpg" alt=" 胡斌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:武汉大学 胡斌 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于ICP-MS的生物医学分析策略 /strong /p p style=" text-align: justify text-indent: 2em " 胡斌教授在报告中介绍了他课题组构建的集成化、阵列化微流控芯片样品前处理平台,以及微流控芯片-time-resolved ICP-MS单细胞分析方法,并将其应用于单细胞水平的痕量元素定量及纳米粒子的摄取研究中。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/1d4ca434-9ae8-47a7-90e4-69fa3a9e8186.jpg" title=" 汪正.jpg" alt=" 汪正.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院上海硅酸盐研究所 汪正 研究员 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:大气压辉光放电微等离子体光谱技术研究及其环境应用 /strong /p p style=" text-align: justify text-indent: 2em " 现有金属元素定量分析技术仍然存在一定的缺点,报告中,汪正研究员介绍了他课题组研发的大气压辉光放电等离子体技术、液体阳极辉光放电-原子发射光谱技术、氦气氖常压辉光放电-原子发射光谱技术等,有效的提高了部分元素的检测灵敏度,同时显著降低了基质的干扰。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d9bc2ac0-ed09-44d4-8477-35e4af079d15.jpg" title=" 陈明丽.jpg" alt=" 陈明丽.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:东北大学 陈明丽 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:ICPMS用于细胞中金属相关形态转化研究探索 /strong /p p style=" text-align: justify text-indent: 2em " 金属形态包括游离态、共价结合态、络合配位态和超分子结合态等,微量元素在生物体中含量很低,却是酶和维生素不可或缺的活性因子,因此,探究细胞中的金属形态显得尤为重要。陈明丽教授在报告中介绍了她通过毛细管电泳与ICPMS联用实现了对细胞中的金属元素/金属纳米粒子的定性定量分析。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/a8eb44c2-0ea2-4630-9724-6c7184abc8e2.jpg" title=" IMG_7478.jpg" alt=" IMG_7478.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院化学所 王铁 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:生命流动体系中的分析检测 /strong /p p style=" text-align: justify text-indent: 2em " 生命体系并非静止,其一直处在变化的状态,因此对生命流动体系的研究意义重大。报告中,王铁教授介绍了他课题组首次引用化工领域的Shilov方程到生命流动体系中,并通过纳米颗粒、多孔MOF等方式提高了检测中对耐药细菌的捕获能力,并设计了肺癌患者呼气分析检测的新方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/fe6caf1f-6890-4275-8df6-267bfe665afe.jpg" title=" 王哲.jpg" alt=" 王哲.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:清华大学 王哲 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:LIBS定量化及应用 /strong /p p style=" text-align: justify text-indent: 2em " 报告中,王哲教授首先介绍了LISB技术的优势,并提出了其重复性低、误差大的问题。随后,他叙述了他如何通过使用等离子体调制和主导因素偏最小二乘法有效的克服了上述的两个问题,并分享了这项研究成果在实时煤质分析、手持式金属分析仪和水泥生料在线控制中的实际应用。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/314eb2ac-f3df-40dd-8125-c86bab06fc56.jpg" title=" 俞进.jpg" alt=" 俞进.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:上海交通大学 俞进 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:机器学习在LIBS光谱数据处理中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 基体效应是LIBS应用的瓶颈问题,报告中,俞进教授介绍了他研制的机器学习LIBS数据校正方法,并优化训练了样品的采集和制备过程,有效的降低了LIBS分析中的基体效应,推进了LIBS产业化应用。他还介绍了这种技术在土壤中金属元素定量分析、钢铁样品中碳的分析、钾肥在线同时测定水分和钾元素含量等领域的应用实例。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/ee284298-85a1-4b4e-8683-b99a3e0a45d6.jpg" title=" 邢志.jpg" alt=" 邢志.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:清华大学 邢志 研究员 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:含氢等离子体蒸汽发生直接固体样品分析的方法研究 /strong /p p style=" text-align: justify text-indent: 2em " 原子荧光光谱仪一直存在长期稳定性差的问题,邢志研究员在报告中介绍了他课题组提出的非THB蒸汽发生元素检出方法以及研制的加氢等离子体的固体直接进样分析装置,可使氢等离子诱导固体直接产生化学蒸汽,大大提高了原子荧光光谱仪的稳定性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/47c99b1c-dd08-4fa0-b00d-38c62b10bdcc.jpg" title=" 高英.jpg" alt=" 高英.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:成都理工大学 高英 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:元素协同光化学还原及分析应用 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/f7eee848-016d-4503-b543-87096ee9a469.jpg" title=" 朱振利.jpg" alt=" 朱振利.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国地质大学 朱振利 教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于等离子体技术的锑元素及同位素分析方法开发 /strong /p p style=" text-align: justify text-indent: 2em " 此外,四川大学蒋小明副教授、四川大学林瑶副教授、四川师范大学黄科副教授、武汉大学何蔓副教授、澳门科技大学伍建林副教授5位专家带来了精彩的报告。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d59fefb4-8958-4b2b-ad8b-47b4dbe1a4d0.jpg" title=" 蒋小明-1.jpg" alt=" 蒋小明-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:四川大学 蒋小明 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:基于放电激发源的小型化原子发射光谱分析 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e2338e1c-b6e6-4e52-9c63-e0f0aa80a0df.jpg" title=" 林瑶-1.jpg" alt=" 林瑶-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川大学 林瑶 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:微等离子体原子发射光谱用于汞的现场分析 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/bb531858-7d22-4615-af3f-611b283828e0.jpg" title=" 黄科-1.jpg" alt=" 黄科-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川师范大学 黄科 副教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:基于量子点阳离子交换反应的原子光谱新方法研究 /b /p p style=" text-indent: 0em text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/b1b55bca-3565-4c2c-805a-9683cc5a70d3.jpg" title=" 何蔓-1.jpg" alt=" 何蔓-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:武汉大学 何蔓 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:HepG2细胞中硒汞拮抗作用初探 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/54d48b27-16dc-4c07-b29c-7071d6b85f11.jpg" title=" 伍建林-1.jpg" alt=" 伍建林-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:澳门科技大学 伍建林 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:少即是多,基于质谱的低丰度成分分析及应用 /strong /p p style=" text-align: justify text-indent: 2em " 在分会场一的第二个主题光谱生物技术及应用环节,中国科学院生态环境研究中心汪海林研究员、四川大学刘睿副教授、国家纳米科学中心孙佳姝研究员、赛默飞世尔科技(中国)有限公司徐菁博士、湖南大学陈卓教授、复旦大学卢建忠教授、安捷伦科技(中国)有限公司张晓丹博士、四川大学李峰研究员、华中农业大学韩鹤友教授、东北大学杨婷教授分别带来了精彩的学术分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c2af4272-00a4-4f1e-9eff-3f93cb6e1590.jpg" title=" 汪海林-1.jpg" alt=" 汪海林-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中国科学院生态环境研究中心 汪海林 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:核酸修饰分析与DNA表观遗传 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c1d56ec0-99ad-4c51-8c08-cbb87e3cb6ef.jpg" title=" 刘睿-1.jpg" alt=" 刘睿-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:四川大学 刘睿 副教授 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:金属稳定同位素标记-准确定量生物分析探索 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/c28d887d-3f6b-40c8-877c-aafc9f0d9796.jpg" title=" 陈佳-1.jpg" alt=" 陈佳-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:中科院兰州化学物理研究所 陈佳 博士 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:碳纳米材料在生物标志物检测中的应用研究 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/58ada246-ee4f-4daa-9bee-8e427cf3b1e9.jpg" title=" 徐菁-1.jpg" alt=" 徐菁-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:赛默飞世尔科技(中国)有限公司 徐菁 博士 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:赛默飞分子光谱在生物分析及环境领域应用进展 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e9df18fd-8cd6-48c5-b793-13a1e185bc09.jpg" title=" 陈卓-1.jpg" alt=" 陈卓-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:湖南大学 陈卓 教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:基于烯碳纳米探针的活体拉曼分析 /b /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/9b53bbc2-12e3-49d0-9160-3700be33b798.jpg" title=" 卢建忠-1.jpg" alt=" 卢建忠-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:复旦大学 卢建忠 教授 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:多组分microRNA流式荧光检测 /b /p p style=" text-indent: 0em " strong /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 421px " src=" https://img1.17img.cn/17img/images/202011/uepic/18edff5c-6f1c-4e93-9555-68d70ea1e3ab.jpg" title=" 张晓丹-1.jpg" alt=" 张晓丹-1.jpg" width=" 600" height=" 421" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 报告人:安捷伦科技(中国)有限公司 张晓丹 博士 /strong /p p style=" text-indent: 0em text-align: center " b 报告题目:生物样品控温测试的创新技术—安捷伦新一代 Cary3500 UV-Vis /b /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/d112b8f8-3adc-4dc5-932c-29e7a6a4dbd3.jpg" title=" 陈佳姝-1.jpg" alt=" 陈佳姝-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong 报告人:国家纳米科学中心 孙佳姝 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong 报告题目:微流控肿瘤液体活检技术 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/e91a0717-4783-4cb9-a317-45070b816a3c.jpg" title=" 韩鹤友-1.jpg" alt=" 韩鹤友-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:华中农业大学 韩鹤友 教授 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:抗超级细菌的新策略新进展 /strong /p p style=" text-indent: 0em " strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/801e8b1d-c2c3-4396-9307-9487ab1440f2.jpg" title=" 李峰-1.jpg" alt=" 李峰-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:四川大学 李峰 研究员 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:三维DNA纳米机器的构建及在生物分析中的应用 /strong /p p style=" text-indent: 0em " strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/be003f59-18cd-41cf-b372-3e5a22ae7b5b.jpg" title=" 杨婷-1.jpg" alt=" 杨婷-1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告人:东北大学 杨婷 教授 /strong /p p style=" text-indent: 0em text-align: center " strong style=" text-indent: 0em " 报告题目:基于硼酸识别的免疫传感器 /strong /p p style=" text-align: justify text-indent: 2em " 另外由于疫情原因,中国科学院青岛生物能源与过程所徐健研究员没能来到会议现场,他特别远程直播为参会者进行了报告。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202011/uepic/6830ef75-03db-4bb2-9f7e-d0484efa27eb.jpg" title=" IMG_8062.jpg" alt=" IMG_8062.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p
  • 荷兰原子分子所与赛默飞、Delmic共同推出皮秒时间分辨SEM
    p    strong 仪器信息网讯 /strong 6月18日,荷兰国家原子分子研究所 (AMOLF)发文称,该实验室与荷兰delmic公司、Thermo Fisher公司的仪器合作项目获得重大突破,研制的两款全新的超快显微镜可以在纳米尺度下拍摄光学图像,时间分辨率可低至1 ps。且其中一款电镜已经推向市场,首台于4月份出售。 /p p    span style=" color: rgb(255, 0, 0) " strong 产学研结合获重大成果——一款已推向市场并售出 /strong /span /p p   AMOLF实验室、荷兰delmic公司、Thermo Fisher公司,这三个合作伙伴于2016年成立了一个联合团队,旨在将扫描电子显微镜(SEM)和光收集和分析系统集成到一个新的显微镜中,电子束是脉冲的,并且以时间分辨的方式采集产生的光(阴极发光)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/9f4af84f-9aa2-4419-97d9-1f0e193e3eec.jpg" title=" 01.jpg" / /p p   2018年5月22日,在三个合作伙伴项目会议期间,展示了两款全新超快SEM。 Thermo Fisher和Delmic已将其中的一款SEM推向市场,且第一台产品于2018年4月售出。据悉,全 strong 新的超快扫描电镜产品将在悉尼国际显微镜会议上展出(2018年9月9日至14日)。 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 第一款SEM——超快速beam-blanker /strong /span /p p   第一款超快速SEM由Thermo Fisher Quanta 650 FEG SEM、Delmic SPARC光采集和分析系统组成,在SEM电子柱上集成了超快静电束消除器,配置专用电子器件和软件, span style=" font-size: 16px " 使用专用电子器件和软件,系统可以输送短于30 ps(5 keV)的电子脉冲,同时利用单光子计数/相关光谱学来收集阴极发光的时间依赖性。 /span /p p   该产品可提供阴极发光寿命和g(2)光子关联,这些数据则可以为研究半导体纳米结构和量子光学等提供关键信息。 /p p    strong span style=" color: rgb(255, 0, 0) " 第二款SEM——脉冲激光驱动的阴极 /span /strong /p p   在第二款显微镜新品中,SEM电子阴极被250飞秒的紫外激光脉冲激发,产生超短电子脉冲。这使得能够在皮秒时间尺度上对光学现象进行空间成像。 此外,这款显微镜可支持超高速脉冲探针光谱,其中激光脉冲分为两部分:一部分激发样品,另一部分激发光电阴极,产生探测样品的电子脉冲。超高速脉冲探针阴极发光光谱与极高的空间分辨率结合,使其成为一种独特的仪器。 /p p    span style=" color: rgb(255, 0, 0) " strong 该合作项目已经发表两篇论文: /strong /span /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.erbium.nl/wp-content/uploads/2018/05/Nanoscale-relative-emission-efficiency-mapping-using-CL-g2-imaging-Nano-Lett.pdf" span style=" color: rgb(0, 176, 240) " Nanoscale relative emission efficiency mapping using CL g(2) imaging /span /a /p p   S. Meuret, T. Coenen, S. Woo, Y.-H. Ra, Z. Mi and A. Polman, Nano Lett. 18, 2288 (2018) /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.erbium.nl/wp-content/uploads/2018/05/Nanoscale-relative-emission-efficiency-mapping-using-CL-g2-imaging-Nano-Lett.pdf" span style=" color: rgb(0, 176, 240) " Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells /span /a /p p   S. Meuret, T. Coenen, M. Lä tzel, S. Christiansen, S. Conesa Boj, and A. Polman, Phys. Rev. B 96, 035308 (2017) /p p    strong 第三篇文献关于以上创新超快显微的技术特点介绍已提交,即将发表: /strong /p p    span style=" color: rgb(0, 176, 240) " Complementary cathodoluminescence lifetime imaging configurations in scanning electron microscopy /span /p p span style=" color: rgb(0, 176, 240) " & nbsp & nbsp & nbsp /span S. Meuret, T. Coenen, M. Solà -Garcia, E. Kieft, H. Zeijlemaker, M.Latzel, S. Christiansen, S.Y. Woo, Y-H Ra, Z. Mi, A. Polman. /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/9d4d99b5-5d56-4bf8-a881-00f114cadd4a.jpg" title=" 0.jpg" / /p p    span style=" color: rgb(0, 176, 240) " 联合团队成员合影,从左至右一次是:Erik Kieft (Thermo Fisher), Ernst Jan Vesseur (Thermo Fisher), Nico Clemens (Thermo Fisher), Sophie Meuret (AMOLF), Toon Coenen (Delmic/AMOLF), Albert Polman (AMOLF), Sander den Hoedt (Delmic), Andries Effting (Delmic) and Magda Sola Garcia (AMOLF). /span /p
  • 原子荧光的应用-速冻饺子的检测
    冬季的各种节日总是离不开饺子这种美食。速冻饺子成为很多不会包饺子的年轻人首选。不过在选购这类食品时除了需要关注口味和保质日期等,还有一类需要关注的检测指标很容易被忽视—重金属含量。今天金索坤的小编和您分享速冻饺子都需要检测哪些重金属指标,其中有哪些与原子荧光光度计有关。首先,饺子皮的面粉需要依照《GB 1355》检测,所用到的动植物油需要依照《GB 2716》检。用到的馅,无论荤素,肉干还是鲜肉、冻肉都需要依照相应的检测标准检测,例如《GB 2733鲜、冻动物性水产品卫生标准》。另外饺子馅中用来调味的添加剂也需要符合《GB 2760食品添加剂使用卫生标准》,所用到的水,盐都需要依照相关标准。当然,饺子包好以后用到的包装材料同样需要依照相应的标准检测。其中重金属超标是影响我国食品安全的重要因素。因此砷、汞等重金属含量是速冻饺子检测的重要指标。原子荧光光度计因其有较高的灵敏度和稳定性在速冻饺子的选材、生产加工以及运输中发挥重要作用。在选材上,无论是面粉还是肉制品、水产品都可以依照《GB 5009.11-2014》、《GB 5009.17-2021》使用原子荧光光度计、原子荧光形态分析仪检测其中总砷总汞以及无机砷和甲基汞的含量。另外食品中硒、硒、锑、锗等元素也可以依照相关标准使用原子荧光光谱仪检测。在饺子加工生产过程中需要依照标准《GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定》检测添加剂中的砷,使用到的水可依照《GB-T 5750-2006 生活饮用水标准检验方法》检测,其中砷、汞元素使用原子荧光法。加工好的成品速冻饺子需要成盒运输,参照标准《GB 31604.38-2016 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定》等可以使用原子荧光光度计检测其中的砷等重金属含量。这样看来,小小的速冻饺子从其选材到我们的餐桌,每一步都经过重重的检测。原子荧光光度计作为检测重金属的主要分析仪器,在速冻饺子加工生产过程中的检测发挥着重要作用。金索坤作为原子荧光行业领跑者,研究原子荧光技术二十余载,推出SK-2003A便捷型原子荧光光度计等系列产品助力食品检测。金索坤会再接再厉,用更加优质的原子荧光产品服务广大客户。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 大型强子对撞机团队确定“穿越万里”反原子核
    轻反原子核由反质子和反中子组成。根据《自然物理》杂志发表的一篇论文,大型强子对撞机(LHC)团队研究认为,轻反原子核或能在银河系中穿越很长的距离。这项研究结果表明,这些反原子核或能用于寻找暗物质。反原子以及反原子构成的反分子等,统称为反物质,反物质与我们周围世界中的常规“正”物质相遇,则发生湮灭,释放大量能量。也正因如此,地球上没有反原子核的天然来源,但它们会在银河系的其他地方产生。有观点提出,反原子核可能是源于太阳系外的高能宇宙辐射与星际介质(星系中恒星之间空间)中的原子相互作用的结果。另一种观点认为,反原子核是尚未发现的暗物质粒子湮灭所形成的。为探索反原子核与物质的相互作用,欧洲核子研究中心的LHC所属ALICE合作组,日前分析了氦-3(氦的一种稳定同位素)原子核的反粒子。研究人员利用LHC的粒子对撞产生反氦-3原子核,再让这些反原子核与ALICE探测器中的物质相互作用,让它们消失。通过研究,团队科学家们确定了反氦-3原子核的消失概率,以及这种概率在这些反原子核穿越银河系过程中所产生的影响。
  • 国产仪器研制放异彩-记2018光谱大会原子光谱分论坛
    p    strong 仪器信息网讯 /strong 2018年月13-14日,“2018光谱大会”在北京蟹岛会议中心召开。此次会议由北京理化分析测试技术学会主办,清华大学、北京大学、中国科学院化学研究所、国家重有色金属质量监督检验中心协办,北京理化分析测试技术学会光谱分会承办。 br/ /p p   光谱技术作为现代分析检测技术中的一个重要组成部分,在分析领域中占据着举足轻重的地位,而其发展也反映了分析技术的不断改革与创新。回顾过去、展望未来,清华大学教授、北京理化分析测试技术学会副理事长光谱分会理事长孙素琴倡议,并实施召开了“2018光谱大会”。该会议以“接地气”的光谱分析技术发展为主,兼顾光谱前沿研究最新进展,老中青的光谱人齐聚一堂。来自全国高等院校、科研机构和各企业单位近300名光谱相关人员参会。 /p p   13日上午大会报告环节结束后,当天下午原子光谱与分子光谱两个分论坛同时举行。本次原子光谱分论坛共设置了9个邀请报告,内容既有将原子光谱(质谱)技术用于当前热点的医学检验领域,也有用于较传统的食品安全、材料等领域,同时也有最新的仪器技术研制进展,最后则以原子光谱分析技术综述报告结束。 /p p    strong 应用研究热点 br/ /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/314fd32d-c378-4953-9031-be4cc54bdf38.jpg" title=" IMG_0167.jpg" alt=" IMG_0167.jpg" / /p p style=" text-align: center " 北京大学公共卫生学院王京宇教授 strong /strong br/ /p p   近年来毒物兴奋效应( hormesis)成为毒理学中关注的热点,它是指化学物对生物体在高剂量时表现负面影响,但在低剂量时却表现为有益作用的现象。而其相应提出的毒物兴奋模型也成为一种新的剂量-效应关系模型,并在环境、医学、公共卫生等领域产生了一定的影响。北京大学公共卫生学院王京宇教授早在2002年即提出了“生命元素组”概念。此次报告中王京宇教授介绍了他利用元素组研究了镧元素浓度与大肠杆菌hormesis效应的机制进展。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/59b1a100-70f3-4f9f-b2ce-62d57b1003ee.jpg" title=" IMG_0179.jpg" alt=" IMG_0179.jpg" / br/ span style=" text-align: left " 岛津公司分析测试仪器市场部郑伟产品经理 /span br/ /p p style=" text-align: left "   异物分析是指分析产品上的微小嵌入异物或表面污染物、析出物等的技术。例如对表面嵌入异物、斑点、油状物、喷霜等异常物质进行定性分析,藉此找寻污染源或配方不相容者,是改善产品最常用的分析方法之一。对异物分析而言,适用于金属和无机物元素分析的 EDX 与适用于高分子和有机物分析的 FTIR 相结合的方法十分有效。上述两种方法均可实现非破坏性分析,非常迅速和简便,因此非常适合用于异物分析。此次论坛岛津公司分析测试仪器市场部郑伟产品经理即介绍了EDX和FTIR及其联用技术在用于异物分析时,从硬件到软件方面所做的更新、以及实际应用案例。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/b2f26ae7-bba5-4cd5-a1db-dbb511fa68da.jpg" title=" IMG_0195.jpg" alt=" IMG_0195.jpg" / br/ 北京疾病预防控制中心刘丽萍研究员 /p p   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。砷就是这样的一种元素,不同形态砷之间的毒性差异很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于砷这样的元素,只了解其在食品中的总量还是不够的,在了解总量的同时,更希望了解砷元素在食品中的形态组成。北京疾病预防控制中心刘丽萍研究员报告中介绍了《GB 2762-2017食品安全国家标准 食品中污染物限量》、《GB 5009.11-2014 食品安全国家标准 食品中总砷及无机砷的测定》等标准的制修订情况。GB 5009.11-2014中无机砷的测定增加了液相色谱-原子荧光光谱法、液相色谱-电感耦合等离子体质谱法 无机砷的测定并不是适用所有食品,而是适用于稻米、水产动物、婴幼儿谷类辅助食品、婴幼儿罐装辅助食品中无机砷(包括砷酸盐和亚砷酸盐)含量的测定。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/b463abf5-a711-4bf1-b44a-f6d87a5bb566.jpg" title=" IMG_0252.jpg" alt=" IMG_0252.jpg" / /p p style=" text-align: center " 苏州博飞克分析技术服务有限公司技术总监苏耿贤 /p p   辉光放电质谱(GDMS)在几乎不需要样品制备的情形下即可对无机粉末、镀膜/基材和非导电性材料直接检测,能够提供各种元素的信息,并且可以提供包括镀层和基材从100%到ppb级别的主要元素、微量元素的浓度信息。苏州博飞克分析技术服务有限公司技术总监苏耿贤先生介绍了GDMS的特点、国内外标准等情况。苏州博飞克公司在发挥GDMS功能方面做了很多工作,如建立了多样取样方法、高纯样品处理方法、定量分析方法等。 /p p    strong 国产仪器创新研制成果 /strong /p p style=" text-align: center "   本次论坛让人印象深刻的是多家国产仪器厂商、科研机构的专家做了多种光谱仪器的研制工作进展,体现了我国国产光谱分析仪器坚持创新并取得了不错的成果。 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/d2cee81d-9271-4c16-9e70-70dec13340be.jpg" title=" IMG_0208.jpg" alt=" IMG_0208.jpg" / br/ 海光仪器梁敬   /p p   火焰在原子吸收光谱、原子荧光光谱、火焰光度计等光谱分析仪器,乃至气相色谱、有机质谱等分析仪器中都有应用。目前的点火技术主要有电炉丝、高压放电、热电偶等方式,不过,其中也存在着点火成功率低、火焰燃烧过程中易熄灭以及安全问题等痛点。海光仪器梁敬在报告中介绍了公司今年推出的新款原子荧光仪器HGAF-900系列中已经应用的免维护点火技术。该高可靠免维护点火技术由百万次免维护点火器件、温度/海拔高度补偿、高灵敏气体泄漏监测等六大体系支撑。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/c2c9c7b6-6b92-43ce-b1f7-59907aa5785d.jpg" title=" IMG_0229.jpg" alt=" IMG_0229.jpg" / /p p style=" text-align: center " 北京矿冶研究总院史烨弘 /p p   《中国制造2025》把发展智能制造作为主攻方向,智能制造需工业化与信息化相结合,而工业过程在线分析检测技术是信息化的基石。常见的过程在线分析技术主要有气相色谱、近红外光谱、拉曼光谱、激光诱导击穿光谱(LIBS) 、质谱、核磁共振波谱等。其中,近红外、质谱、LIBS三类分析仪器的应用领域几乎覆盖所有流程工业,具有巨大的应用市场。LIBS具有远程、在线、原位、快速、无需制样等特点,可用于矿物、金属等无机成分在线分析。北京矿冶研究总院史烨弘报告中介绍了北矿院牵头承担的国家重点研发计划重大科学仪器专项-磷矿浮选工艺过程在线LIBS分析系统及其应用。该系统研制成功后还可以应用于原矿、精矿、尾矿品位浮选工艺的在线检测,以及药剂的在线检测等。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/367b97a8-b2fa-47c1-a56c-18cf584d610c.jpg" title=" IMG_0271.jpg" alt=" IMG_0271.jpg" / /p p style=" text-align: center " 钢研纳克刘明博 /p p   能量色散X射线荧光光谱(EDXRF)具有无损、快速的特点 仪器简单,有台式、便携、手持等多种型式 其应用领域涵盖了冶金、建材、环保、食品等。不过常规EDXRF光斑尺寸超过5mm,只能分析均质样品。在一些特殊领域,这样的技术特点并不能满足其需求,如现代冶金工业需要在大尺寸范围内对细小夹杂物(直径小于10um)的成因来源进行研究,就需要微观局部的无损检测。钢研纳克刘明博报告中介绍了公司根据相关需求研制的微区扫描型EDXRF(uEDXRF)仪器NX-SCAN 200的情况。该uEDXRF应用了多毛细管X射线透镜技术,相对于同样焦斑大小(同样长度)的小孔准直器,多毛细管X射线透镜技术的光通量提高了100倍以上。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/c58bbc1a-183c-4d7d-b0ed-61de41ec43fa.jpg" title=" IMG_0280.jpg" alt=" IMG_0280.jpg" / /p p style=" text-align: center " 北京瑞利付国余 /p p   相比较火花直读光谱,电弧发射光谱可直接检测粉末状样品,广泛应用于国家地质调查、有色冶金材料、半导体材料等领域。在AES-7100的基础上,北京瑞利推出了采用CMOS传感器的AES-8000全谱交直流电弧发射光谱仪。报告中,北京瑞利的付国余介绍了AES-8000的技术特点及应用情况。AES-8000采用了Ebert-Fastic光学系统及三透镜光路+CMOS传感器为核心构建。最新的CMOS传感器及基于FPGA技术、数据处理技术平台,仪器指标性能显著提升。 br/ /p p   最后,中实国金郑国经研究员做题为“原子光谱分析技术的发展动态及应用前景”的综述报告。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/32a888a7-b26a-45c8-9770-9ddf9ab53f69.jpg" title=" IMG_0292.jpg" alt=" IMG_0292.jpg" / /p p style=" text-align: center " 中实国金郑国经研究员 /p p   如今,原子光谱分析从基本理论研究到实用技术已经发展得相当成熟,已经处于高端制造水平 商品化仪器普遍功能稳定可靠,不断向高精密度和高可靠性发展 适用于各种分析要求,广泛应用于工业生产和科技领域。不过,原子光谱分析技术创新的脚步从未停歇,包括通过核心零部件创新而推动光谱仪器的创新,如改进分光元件及分光系统构架进一步提高光谱分辨率 研究快速光谱信息获取新机制和新元件、研制新型激发光源、引入新进样技术等 这些对于光谱仪器的分析功能完善和分析潜力发掘仍具有研究意义和发展潜力。 br/ /p p br/ /p
  • 大型强子对撞机首次对原子进行加速
    p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心日前宣布,该机构人员用大型强子对撞机(LHC)加速了电离的铅原子,这是该设备首次用于加速原子。 /p p style=" text-align: justify " & nbsp & nbsp 大型强子对撞机是世界最大的粒子加速器,日常工作是加速质子即氢原子核,有时用于加速不带电子的其他原子核,此前从未处理过带有电子的原子核。 /p p style=" text-align: justify " & nbsp & nbsp 欧洲核子研究中心发布的新闻公报说,这项试验是为了检验“伽马射线工厂”设想的可行性,将来有可能用大型强子对撞机产生高强度伽马射线,用于物理学前沿研究。 /p p style=" text-align: justify " & nbsp & nbsp 铅原子正常情况下有82个电子,研究人员将电子剥离到只剩一个,使铅原子变成带正电荷的离子。在7月下旬开展的试验中,大型强子对撞机使6束这样的铅离子稳定运行了两个小时,随后研究人员有意弃置了离子束。 /p p style=" text-align: justify " & nbsp & nbsp 伽马射线是一种波长极短的高能电磁波。根据设想,用大型强子对撞机把原子加速到接近光速,再用激光将其中的电子激发到较高能态,电子回落到低能态时就会释放出伽马射线。 /p p style=" text-align: justify " & nbsp & nbsp 当前已经有用电子束产生伽马射线的手段,不过大型强子对撞机产生的伽马射线强度会更高,可用于新型粒子物理学实验,有可能帮助探索暗物质。 /p p br/ /p
  • 昭通学院365.00万元采购ICP-AES,紫外分光光度,原子吸收光谱,荧光显微镜,微波消解仪,分子...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 昭通学院农学与生命科学学院实验室仪器设备采购公开招标公告 云南省-昭通市-昭阳区 状态:公告 更新时间: 2023-10-01 公开招标公告 项目概况 昭通学院农学与生命科学学院实验室仪器设备采购招标项目的潜在投标人应在云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage),进入后切换至“昭通市”获取招标文件,并于2023-10-27 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:YNLB20230933 项目名称:昭通学院农学与生命科学学院实验室仪器设备采购 预算金额(万元):365 最高限价(万元):365 采购需求:1标段:正置荧光显微镜、荧光分光光度计等仪器设备一批;2标段:超微量紫外分光光度计、电感耦合-等离子发射光谱仪(ICP)、微波消解仪(配套原子吸收仪)等仪器设备一批;具体内容详见公告附件。 合同履行期限:合同签订后40日历天以内 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无(本项目不属于专门面向中小企业、监狱企业、残疾人福利企业采购项目);(1)1标段:小微企业价格扣除优惠比例:10% (2)2标段:小微企业价格扣除优惠比例:10% 3.本项目的特定资格要求:无 三、获取招标文件 时间:2023-09-28 14:00至2023-10-11 18:00,每天上午09:00至12:00,下午14:00至18:00(北京时间,法定节假日除外) 地点:云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage),进入后切换至“昭通市” 方式:登录云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage)进入后切换至“昭通市”,凭企业数字证书(CA)在网上获取电子招标文件 售价(元):0 四、提交投标文件截止时间、开标时间和地点 2023-10-27 09:30(北京时间) 地点:开标室4 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 开标方式:智能开标 是否需要缴纳投标保证金:是 (ZC530600202300336001001)昭通学院农学与生命科学学院实验室仪器设备采购-1标段: 保证金金额:20000(元) 保证金缴纳方式:支票、汇票、本票、保函、银行转账 保证金缴纳截止时间:2023-10-27 09:00(ZC530600202300336001002)昭通学院农学与生命科学学院实验室仪器设备采购-2标段: 保证金金额:16500(元) 保证金缴纳方式:支票、汇票、本票、保函、银行转账 保证金缴纳截止时间:2023-10-27 09:30 其他:1、开标方式:方式一:网上智能开标及远程解密(1)供应商登录云南省公共资源交易信息网(网址:https://ggzy.yn.gov.cn/#/homePage),按照《网上智能开标远程解密操作指南(投标人)》完成远程解密、查看开标一览表等相关操作。本项目解密时间为0.5小时,若供应商未在规定时间完成所有投标文件解密,则视为无效投标,不再进入评标阶段。(2)因开标系统、开标现场网络、设备及其他特殊原因,导致不能正常解密投标文件的,经核实和上报相关部门同意后,可再次下达网上解密指令来延长解密时间。(3)开标过程中如有问题,可以在线提出异议,由代理机构给予回复。在规定的异议询问时间内未提出异议的,则视为对开标结果无异议。方式二:现场开标现场解密(1)供应商应在投标截止时间前持加密投标文件的CA数字证书到昭通市公共资源交易中心(昭通市公共资源交易中心)开标现场进行现场解密。招标文件其他要求不变。(2)电子文件开标顺序:按照交易平台自动提取所有供应商的顺序在开标室进行开标。(3)采购人宣布开启电子投标文件后,供应商按照电子文件的开标顺序上前,使用投标文件加密证书对投标文件进行解密。(4)若供应商提交的投标文件不符合采购文件要求,或因供应商原因造成投标文件开标时无法完成读取、导入或解密的,该投标文件则视为无效投标,将被撤回,不再进入评标阶段。2、是否需要缴纳投标保证金:是。3、发布公告的媒介:本次公告在云南省政府采购网(http://www.yngp.com/)、云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage)、昭通学院官网(https://www.ztu.edu.cn/)上发布。4、本项目需要落实的政府采购政策:政府采购节能产品、环境标志产品政策,政府采购促进中小企业发展政策,政府采购支持监狱企业发展政策,政府采购促进残疾人就业。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:昭通学院 地址:昭通市昭阳区国学路 联系方式:马老师0870-3169473 2.采购代理机构信息 名 称:云南蓝本招标咨询有限公司 地址:昆明市西山区环城南路668号云纺东南亚商城A座17楼 联系方式:郑德伟0871-64158494 3.项目联系方式 项目联系人:郑德伟、谌韬、余佳佳、王志、杨桢、何隽 电 话:0871-64158494 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:ICP-AES,紫外分光光度,原子吸收光谱,荧光显微镜,微波消解仪,分子荧光光谱 开标时间:2023-10-27 09:30 预算金额:365.00万元 采购单位:昭通学院采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:云南蓝本招标咨询有限公司 代理联系人:点击查看代理联系方式:点击查看 详细信息 昭通学院农学与生命科学学院实验室仪器设备采购公开招标公告 云南省-昭通市-昭阳区 状态:公告 更新时间: 2023-10-01 公开招标公告 项目概况 昭通学院农学与生命科学学院实验室仪器设备采购招标项目的潜在投标人应在云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage),进入后切换至“昭通市”获取招标文件,并于2023-10-27 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:YNLB20230933 项目名称:昭通学院农学与生命科学学院实验室仪器设备采购 预算金额(万元):365 最高限价(万元):365 采购需求:1标段:正置荧光显微镜、荧光分光光度计等仪器设备一批;2标段:超微量紫外分光光度计、电感耦合-等离子发射光谱仪(ICP)、微波消解仪(配套原子吸收仪)等仪器设备一批;具体内容详见公告附件。 合同履行期限:合同签订后40日历天以内 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无(本项目不属于专门面向中小企业、监狱企业、残疾人福利企业采购项目);(1)1标段:小微企业价格扣除优惠比例:10% (2)2标段:小微企业价格扣除优惠比例:10% 3.本项目的特定资格要求:无 三、获取招标文件 时间:2023-09-28 14:00至2023-10-11 18:00,每天上午09:00至12:00,下午14:00至18:00(北京时间,法定节假日除外) 地点:云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage),进入后切换至“昭通市” 方式:登录云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage)进入后切换至“昭通市”,凭企业数字证书(CA)在网上获取电子招标文件 售价(元):0 四、提交投标文件截止时间、开标时间和地点 2023-10-27 09:30(北京时间) 地点:开标室4 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 开标方式:智能开标 是否需要缴纳投标保证金:是 (ZC530600202300336001001)昭通学院农学与生命科学学院实验室仪器设备采购-1标段: 保证金金额:20000(元) 保证金缴纳方式:支票、汇票、本票、保函、银行转账 保证金缴纳截止时间:2023-10-27 09:00(ZC530600202300336001002)昭通学院农学与生命科学学院实验室仪器设备采购-2标段: 保证金金额:16500(元) 保证金缴纳方式:支票、汇票、本票、保函、银行转账 保证金缴纳截止时间:2023-10-27 09:30 其他:1、开标方式:方式一:网上智能开标及远程解密(1)供应商登录云南省公共资源交易信息网(网址:https://ggzy.yn.gov.cn/#/homePage),按照《网上智能开标远程解密操作指南(投标人)》完成远程解密、查看开标一览表等相关操作。本项目解密时间为0.5小时,若供应商未在规定时间完成所有投标文件解密,则视为无效投标,不再进入评标阶段。(2)因开标系统、开标现场网络、设备及其他特殊原因,导致不能正常解密投标文件的,经核实和上报相关部门同意后,可再次下达网上解密指令来延长解密时间。(3)开标过程中如有问题,可以在线提出异议,由代理机构给予回复。在规定的异议询问时间内未提出异议的,则视为对开标结果无异议。方式二:现场开标现场解密(1)供应商应在投标截止时间前持加密投标文件的CA数字证书到昭通市公共资源交易中心(昭通市公共资源交易中心)开标现场进行现场解密。招标文件其他要求不变。(2)电子文件开标顺序:按照交易平台自动提取所有供应商的顺序在开标室进行开标。(3)采购人宣布开启电子投标文件后,供应商按照电子文件的开标顺序上前,使用投标文件加密证书对投标文件进行解密。(4)若供应商提交的投标文件不符合采购文件要求,或因供应商原因造成投标文件开标时无法完成读取、导入或解密的,该投标文件则视为无效投标,将被撤回,不再进入评标阶段。2、是否需要缴纳投标保证金:是。3、发布公告的媒介:本次公告在云南省政府采购网(http://www.yngp.com/)、云南省公共资源交易信息网(https://ggzy.yn.gov.cn/#/homePage)、昭通学院官网(https://www.ztu.edu.cn/)上发布。4、本项目需要落实的政府采购政策:政府采购节能产品、环境标志产品政策,政府采购促进中小企业发展政策,政府采购支持监狱企业发展政策,政府采购促进残疾人就业。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:昭通学院 地址:昭通市昭阳区国学路 联系方式:马老师0870-3169473 2.采购代理机构信息 名称:云南蓝本招标咨询有限公司 地址:昆明市西山区环城南路668号云纺东南亚商城A座17楼 联系方式:郑德伟0871-64158494 3.项目联系方式 项目联系人:郑德伟、谌韬、余佳佳、王志、杨桢、何隽 电 话:0871-64158494
  • 网络讲座:基于原子力显微镜的天然高分子分子间作用力量化研究
    图片描述:分子间作用力测试过程示意图与典型力-距曲线和作用力统计结果 高分子材料在人类社会中起着不可或缺的作用。高分子的分子间相互作用特性决定了其相关材料在不同领域中的物理化学性质和应用性能。因此,对高分子分子间作用力的量化研究对指导后续功能材料的设计与制备、开拓高分子材料新的应用领域具有重要指导意义。本次网络研讨会将以天然高分子木质素和纤维素为例,首先详细介绍原子力显微镜在量化研究高分子分子间作用力时的基础原理和测试方法,然后展示如何对分子间作用力的测试结果进行详细分析(包括对多种耦合作用力的解构分析等),最后对原子力显微镜分子间作用力测试技术进行简单的展望与总结。报告人:王静禹华南理工大学 化学与化工学院王静禹,华南理工大学化学与化工学院在站博士后。2014年获得长沙理工大学学士学位,博士期间在华南理工大学邱学青教授的生物质资源利用团队进行学习与研究,于2020年获得化学工程博士学位,并在毕业后继续以博士后身份在该课题组开展研究工作。2018年至2020年,以联合培养博士身份赴美国威斯康辛大学-麦迪逊校区进行为期两年的交流学习。王静禹博士有着7年的原子力显微镜应用经验(包括原子力显微镜形貌成像、力学、电学等模块),他目前的研究工作主要包括天然高分子分子间相互作用和溶液行为的基础研究及其超分子结构的精确调控。网络讲座时间:2021年5月27日 星期四 上午10点-上午11点申请方法:关注公众号:Park原子力显微镜 扫描网络讲座里的二维码报名 即可。
  • 我国首次利用冷冻电镜技术获得生物大分子复合体全原子模型
    美国《国家科学院院刊》(Proceedings of the National Academy of Science, USA)1月10日在线发表了中国科学院生物物理研究所朱平研究组程凌鹏副研究员等人的研究论文——Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping。该发现对研究dsRNA病毒的mRNA加帽(Capping)机制有重要意义。这是我国首次利用冷冻电镜技术解析的生物大分子原子结构模型,也是目前已报道的国内最高分辨率的冷冻电镜三维重构结果。同时,这是世界上首次利用冷冻电镜的CCD图像(电荷耦合器件图像传感器,可将图像资料由光信号转换成电信号)获得的生物大分子复合体的全原子模型。   本工作是完全基于生物物理所生物成像技术实验室2010年4月建成并试运行的Titan Krios电镜及其附属设备完成的,用单颗粒图像处理技术获得了呼肠孤病毒科的质型多角体病毒近原子分辨率的三维结构(3.9埃),并独立构建了全原子模型。呼肠孤病毒科病毒是一类重要的双链RNA病毒,其感染宿主包括植物、无脊椎动物、脊椎动物和人类,其中的质型多角体病毒是其两个亚科之一。该研究解析了呼肠孤病毒科质型多角体病毒的近原子分辨率三维结构并构建了完整原子模型,确认了该病毒新生mRNA的流出通道,对研究双链RNA病毒的RNA加帽机制,新生mRNA的释放过程,以及呼肠孤病毒的蛋白衣壳的稳定性和进化具有重要意义。   中国科学院生物物理研究所在中国科学院蛋白质科学研究平台二期建设当中重点发展了生物大分子冷冻电镜三维重构研究平台,已经建成了具有世界先进水平的生物成像技术实验室,拥有目前最先进的300千伏Titan Krios场发射冷冻透射电子显微镜。该成果表明:我国独立开展的生物大分子冷冻电镜高分辨率研究工作达到了该领域的先进水平 和2010年10月孙飞研究组以封面形式发表于Structure的分子伴侣素结构等系列成果表明:中国科学院蛋白质科学研究平台生物成像技术实验室的成功建立,为进一步开展冷冻电子显微前沿研究奠定了坚实的基础,生物物理所生物成像技术实验室已跻身于达到近原子分辨率三维重构水平的极少数实验室行列。   本工作得到基金委国家自然科学基金、科技部国家重点基础研究973计划、以及中国科学院百人计划等项目资助,该文章链接为http://www.pnas.org/content/early/2011/01/05/1014995108。   该研究由中国科学院生物物理研究所生物大分子国家重点实验室朱平研究组和孙飞研究组、华南农业大学孙京臣副教授和中山大学张景强教授等合作完成。其中,生物物理研究所朱平研究组程凌鹏副研究员完成了冷冻电镜成像和结构解析等工作,黄晓星助理研究员协助完成了病毒纯化工作,孙飞研究组研究生张凯协助完成了原子模型构建工作,生物成像中心电子显微镜平台高级工程师季刚博士提供了电镜成像技术支持。      图片说明:质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。
  • 175万!天津大学分子+研究院原子力显微镜采购项目
    项目编号:TDZC2022J0015项目名称:天津大学分子+研究院原子力显微镜采购项目采购方式:竞争性磋商预算金额:175.0000000 万元(人民币)最高限价(如有):175.0000000 万元(人民币)采购需求:原子力显微镜:1台。项目地点:天津大学分子+研究院(天津市南开区卫津路92号)。交货期:合同签订后180天内交货。是否专门面向中小企业或小型、微型企业采购:非专门面向中小企业。本项目中涉及强制采购的节能产品为:无。中小企业划分标准所属行业:工业。本项目允许进口产品参与磋商。本项目不接受联合体参与并不得分包转包。合同履行期限:合同签订后180天内交货。本项目( 不接受 )联合体投标。
  • 分子科学从这里起源——记化学所分子科学创新历程
    开栏寄语:  2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了“创新、求是、团结、奉献”的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技术创新研究,并与高新技术应用和转化工作相协调发展,已成为具有重要国际影响、我国最高水平的化学研究机构之一。本报即日起将推出系列文章,以纪念为化学事业奋斗终身的前辈,也向正在“三个面向”“四个率先”的要求下,为化学科学发展、国民经济和国防建设奋战的科研工作者致以崇高的敬意。▲化学所规划图▲化学所分子楼  化学,是研究物质形成、结构、性能和变化的科学。上世纪90年代,科学家已经在认识分子结构和化学键的本质上积累了丰富的知识。彼时,化学家已瞄准了新的科学目标,即从需求出发设计并合成具有特定化学、物理特性的分子。  中国科学院化学研究所自1956年成立以来,一直把握着世界化学前沿的脉搏,引领中国化学学科相关领域的发展。  当化学学科逐渐走进“分子时代”时,化学所在国内率先提出面向世界科学前沿的分子科学研究计划。多年来,化学所依靠深厚的历史积淀,以扎实的基础研究,突破了诸多关键技术,培养了一大批分子科学领军人才,成为我国分子科学领域的高地。  “弄潮”分子科学  上世纪90年代末,党中央、国务院作出建设国家创新体系的重大决策,决定由中科院开展“知识创新工程”试点。根据该项试点工作的部署,1999年3月,中科院化学所首批进入了中科院知识创新工程,并启动了分子科学中心的建设,希望办成世界上有影响的、国际一流水平的分子科学中心,成为国际交流的窗口,同时建设和完善面向国家重大战略需求的先进高分子材料基地。  该中心由中科院化学所与当时的感光化学所相关部分整合而成,时任化学所所长朱道本被聘任为该中心的主任。  中国科学家“弄潮”分子科学的蓝图就此展开。  朱道本说:“一个人的力量是有限的,有了领导和同事们的支持,才能把分子科学中心建好。”启动伊始,他带领化学所多名研究人员详细调研了德国马普研究所、日本分子科学中心等世界一流的化学研究机构。  1999年4月初,经过详细论证,由14名院士和科研、管理专家组成评委会,在化学所原有研究单元的基础上,论证首批进入中心的单元。分子动态学、有机固体、工程塑料、高分子物理、纳米科技、光化学、胶体和界面等实验室和研究组入选。  “首批进入中心的196人,平均年龄是39.8岁,‘杰青’获得者有10名,‘百人计划’9名。”朱道本告诉《中国科学报》记者。  这些在世纪之交时种下的分子科学“种子”,在十多年里不断开花结果。以有机固体实验室为例,朱道本带领研究小组创造了新的高效合成方法,筛选出了具有自主知识产权、综合性能优异的电子/空穴传输材料 李永舫带领研究小组构建了高性能有机器件,使单结聚合物太阳能电池的能量转换效率提高到10%以上,始终保持了世界领先的水平 李玉良首次在铜表面上合成了具有本征带隙sp杂化的二维碳的新同素异形体石墨炔,开辟了人工化学合成碳同素异形体的先例。  如今,中科院化学所已在分子科学的多个领域位列世界前沿。  “奠基”分子纳米科技  纵观历史,观测手段的每一次进步都能推动人类认识世界的步伐。例如,在生物学上,X光衍射技术为分子生物学的发展奠定了基础。而天文学上,射电望远镜的发明则极大地拓宽了天文学家观测的视野。  分子科学领域也不例外。上世纪80年代,国际上纳米科学与技术的迅猛发展,以STM为代表的纳米表征技术的发明揭示了纳米尺度的微观世界,有力地推动了分子科学的发展。  1987年,在美国加州理工学院专攻扫描隧道显微学技术(STM)的白春礼,携带STM的研制资料和关键元器件回国,在中科院和化学所领导的支持下创立了STM实验室。  当时,STM仪器尚未实现商业化,自行研制STM仪器成为该实验室成立之初的主要目标。1988年,白春礼和同事们在科研经费不足的情况下,只花了不到半年时间,成功研制出中国第一台STM仪器。  “因为实验用房紧张,研制工作在化学所4号楼的一间地下室里开展。”参与STM仪器研发的实验室人员对这段历史记忆犹新,“1988年4月12日,实验室的日历永远记住了这个时间。”  中国科学院化学研究所上一任所长万立骏告诉《中国科学报》记者:“有了STM这个利器,中科院化学所纳米科学的发展得到了极大的支撑。”  1989年初,研究团队还开发了原子力显微镜(AFM),助力分子科学研究直接观察非导体的表面原子结构。超高真空扫描隧道显微镜、低温扫描隧道显微镜、激光检测原子力显微镜、弹道电子发射显微镜等纳米检测仪器也陆续成功研发。  研究人员正是依靠这些自主研发的仪器,对有机导体、有机铁磁体、非线性光学材料、高温超导材料、矿物和生物大分子等一系列物质开展了研究,取得了许多重要的研究成果。  2001年,以白春礼、王琛、万立骏为学术带头人的创新团队获得国家自然科学基金委员会的支持,标志着实验室进入一个新的发展阶段。一年后,该实验室正式被批准为中科院重点实验室。  在科研领域方面,该实验室已从STM研究拓展到纳米材料科学、单分子科学、纳米器件、纳米生物学等广大的纳米学科领域。  从基础到应用:一个都不能少  在中科院化学所分子科学研究走过的历程中,研究人员基于高水平的基础研究,开展了丰富的应用研究和产业化探索,分子科学的创新链条也得到了充分延展。  纳米绿色印刷是化学所全链条创新的典范。宋延林带领的团队先后实现了包括绿色制版、绿色版基和绿色油墨在内的完整纳米绿色印刷产业链技术。从2010年起,该团队与企业合作,推动项目产业化示范和制版中心建设,已经取得多项国际领先的技术成果,在国内外产生了广泛的影响。  有机光导鼓关键技术则始于上世纪80年代。王艳乔等科研人员完成技术研发后,于2000年建成我国首条有机光导鼓自动化生产线,结束了我国有机光导鼓的技术与产业空白局面,创造了良好的经济和社会效益。  在聚丙烯催化剂研发方面,肖士镜、谢光华和胡友良等研究人员成功制备出高活性、高立构规整性的聚丙烯催化剂,并于1992年在辽宁营口实现了催化剂的产业化,替代了进口催化剂。而在甲醇/一氧化碳羰基合成方面,袁国卿等带领研发团队研制出系列新型的螯合型催化剂。2004年起,该类催化剂陆续被大型企业广泛应用,共生产醋酸1100万吨,创造利润40多亿元。  中科院化学所所长张德清指出,多年来,在分子科学领域,化学所形成了分子合成、分子组装与功能及与材料、环境、生命、能源等交叉的全覆盖研究领域。  2013年,中科院发展规划局组织国际知名科学家对化学研究所进行了现场专家诊断评估。“国际评估专家认为化学所是中国最好的化学研究机构,也提出了许多中肯的意见,让我们未来的发展有了更清晰的方向和更大的空间。”张德清表示。
  • 分子大小的晶体管新鲜出炉
    在一个砷化铟晶体上,12个带正电的铟原子环绕着一个酞菁染料分子,这就是科学家最新研制的分子大小的晶体管。按照摩尔定律的硬限制,这很可能是一个晶体管所能达到的最小尺寸。  新型晶体管是由德国PDI固体电子学研究所、柏林自由大学、日本NTT基础研究实验室和美国海军研究实验室研究人员组成的国际团队开发的。这一发表在科学期刊《自然物理》上的最新成果朝着量子计算迈出一大步。  构成晶体管的每个铟原子的直径是167皮米(0.167纳米),比目前的最小电路——IBM公司刚刚推出的7纳米芯片(晶体管尺寸为7纳米)要小42倍。人类发丝厚度为10万纳米,大约是铟原子尺寸的60万倍 红血球直径6000纳米,是它的36000倍 甚至只有2.5纳米宽的DNA链,大小也达到了铟原子的15倍。  在这样的原子尺度上,电子流通常很难得到可靠地控制,电子会跳到晶体管外,导致晶体管无效。英国《卫报》网站21日报道称,研究团队使用一个扫描隧道电子显微镜,将铟原子放置在精确位置上,并对通过栅极的电子流进行控制。他们意外发现,位于晶体管中心的酞菁染料分子的方向是由其电荷决定的,这意味着,与传统晶体管只有一种简单的类似开关的状态相比,新型晶体管可能并不只限于此。  研究证明,通过精确控制原子来创建一个比现有任何其他量子系统都要小的晶体管是可能的,它也为进一步研究如何将这些微晶体管应用于处理能力超过目前水平几个数量级的计算机和系统打开了大门。  摩尔定律说,集成电路上可容纳的元器件的数目约每隔18个月到24个月便会增加一倍,性能也将提升一倍。芯片上集成的晶体管越多,其功能越强大。目前最新款计算机芯片已经突破7纳米尺度,向更小型化发展越来越难。虽然单分子晶体管距离集成到芯片中还很遥远,但这项新研究仍将有助于下一代计算机——量子计算机的开发。
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • 中科大成功对三聚氰胺进行单分子手术
    十五日从中国科技大学获悉,该校单分子物理化学研究团队利用低温超高真空扫描隧道显微镜,成功对三聚氰胺小分子进行了“单分子手术”,在世界上首次实现从普通化工原料转变为既有二极管效应又有机械开关效应的双功能单分子器件,为单分子器件基础研究取得新进展。   中国科技大学杨金龙教授介绍说, 随着电子器件不断小型化,科学家期望利用单个分子构建电子元件。近年来,国内外不少研究组在实验上成功地利用已有分子的固有性质实现单分子器件功能,但在构建单分子器件中仍然面临着两个重要课题。   他说,一方面,寻找具有理想电子学功能的分子十分困难,通过分子手术的方法对已有分子进行改造显得十分必要。另一方面,对分子器件进行功能集成是进入分子电子学时代的一个关键,如果能够在单个分子上实现多功能集成,将大大提高器件集成度,从而构造更小、更快、能耗更少的电子设备。   杨金龙说,其所在的团队通过三年的实验和理论研究的紧密合作,发现三聚氰胺这个比头发丝的六万分之一还细的小分子可以通过人工单分子操控被改造为具有显著二极管效应和开关效应的双重功能分子。在室温下,三聚氰胺分子吸附到铜表面时会发生化学反应脱去两个氢原子,从而与表面铜原子形成化学键,得到与表面垂直的吸附构型,分子的输运曲线表现为正负电压下对称的特征。通过扫描隧道显微镜对其进行“单分子手术”将分子支链的一个氢原子“移植”到分子中间的环上,实现三聚氰胺分子的异构化,造成分子轨道相对于费米面的不对称性,使得输运特性显示出明显的二极管效应。通过非弹性隧穿电子的多电子激发过程进一步诱导其顶端N-H键的可逆转动,得到电导不同的双稳态结构,实现单分子机械开关效应。   据悉,这一成果发表在近期出版的美国《美国国家科学院院刊》上,《美国国家科学院院刊》审稿人认为,该工作“结果可靠,创新性强,代表了这个领域的发展水平”。   杨金龙说,目前该项成果还处于概念性的实验室层次,离真正应用还有点距离。
  • 光子反冲成像:观察分子内部的新方法
    p   近日,德国和瑞典科学家利用欧洲X射线自由电子激光装置(XFEL),通过创新的“光子反冲成像”(Photon-recoil imaging)技术,研究X射线与原子之间相互作用的基本过程。该方法可以使人们更好地了解原子级的化学反应,将成为探索非线性X射线物理学的有力工具。 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5f55c4a7-b32f-412f-9416-323e599f35f6.jpg" title=" 50177d68ee524f13991d9fe7ea5286d6.jpg" alt=" 50177d68ee524f13991d9fe7ea5286d6.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   a)自发x射线拉曼散射的受激原子分布。 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   b)受激x射线拉曼散射的增激发态原子分布(窄线)。? /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   图片来源:网络(mbi-berlin.de) /span /p p   观察X射线与原子之间相互作用 /p p   1921年,爱因斯坦因发现光的量化,即光子作为光粒子流与物质相互作用,获得了诺贝尔物理学奖。从量子力学的早期开始,人们就知道光子具有动量。原子对光子的吸收和发射是光与物质相互作用的基本过程。自1960年代以来,强激光束的出现推动了所谓的“非线性光学”的发展。于是科学家们进一步研究,用X射线代替可见光来操作非线性光学系统,即将非线性光学扩展到X射线光谱域。但由于非线性效应难以捉摸的性质,尽管理论概念数十年前就已提出,迄今科学家们仍在努力实现这一目标。随着2017年位于汉堡的XFEL的投入使用,科学界朝着这一目标更近了一步。 /p p   最近,德国柏林马克斯· 波恩非线性光学和超快光谱研究所(MBI)、瑞典乌普萨拉大学和位于汉堡的欧洲X射线自由电子激光装置(XFEL)的研究人员合作开发出“光子反冲成像”技术,用来观察X射线与原子之间相互作用的基本过程。该技术可以区分X射线范围内的自发和受激拉曼散射(SRS),使得人们几乎可以对单个原子上受激拉曼散射进行自由地研究。相关的理论分析和实验结果发表在《科学》杂志上。 /p p   为了测量实验中激发原子的散射,研究人员将准直的氖原子超声束与XFEL光束成直角相交。当X射线光子的能量与氖的俄歇跃迁能量发生共振时,瞬态激发原子会受到自发拉曼散射的影响。优化X射线的强度和光子能量,则瞬态激发原子在自发衰减之前会与另一个具有适当光子能量的XFEL光子相互作用,产生受激拉曼散射,并沿入射光子的方向发射光子。此过程需要来自X射线的两个光子,因此是非线性的。由受激拉曼散射引起的激发原子基本上不会发生偏转,在检测器上显示为一条锐利的直线。 /p p   有望更好地了解原子级化学反应 /p p   论文第一作者,柏林马克斯· 波恩研究所的乌利· 艾希曼教授解释说,在受激拉曼散射过程中,两个光子沿与两个入射光子完全相同的方向离开原子,原子不改变其动量,也不改变其飞行方向。这与更频繁的线性过程截然不同。在线性过程中,首先吸收一个光子,然后发射另一个光子。由于发射的光子通常以不同的方向发送,因此原子发生偏转。通过观察原子的飞行方向,研究人员能够清楚地将X射线激发的拉曼过程与其他过程区分开。 /p p   XFEL的迈克尔· 迈耶博士解释说:“如果将来我们将新方法与不同波长的X射线脉冲一起使用,就会带来特殊的可能性。”具有不同波长的X射线脉冲可以专门处理分子中的单个原子,因此可以详细了解分子中电子的波函数随时间变化的方式。这为研究非线性X射线过程建立了非常有前途的分析技术。 /p p   长远来看,科学家们还希望借助定制的激光脉冲对其产生影响。乌普萨拉大学的贾恩-埃里克· 鲁本森教授说:“我们的方法有望使人们更好地了解原子级的化学反应,将来甚至可能影响它们。” /p p br/ /p
  • 中科大单分子器件基础研究获新进展
    将大大提高器件集成度,从而构造更小更快能耗更少的电子设备   中国科学技术大学合肥微尺度物质科学国家实验室单分子物理化学研究团队,利用低温超高真空扫描隧道显微镜,巧妙地对三聚氰胺这个比头发丝的六万分之一还细的小分子进行了单分子手术,将其从普通化工原料转变为既有二极管效应又有机械开关效应的双功能单分子器件,为单分子器件的多功能化开辟了新的思路。这一成果发表在近期出版的美国《国家科学院院刊》(PNAS)上。   随着电子器件不断小型化,科学家期望利用单个分子构建电子元件。近年来,国内外不少研究组在实验上成功地利用已有分子的固有性质实现了单分子器件功能,但在构建单分子器件中仍然面临着两个重要课题:一方面,考虑到寻找具有理想电子学功能的分子十分困难,通过分子手术的方法对已有分子进行改造显得十分必要 另一方面,对分子器件进行功能集成是我们进入分子电子学时代的一个关键,如果能够在单个分子上实现多功能集成,将大大提高器件集成度,从而构造更小、更快、能耗更少的电子设备。   该团队通过3年的实验和理论研究的紧密合作,发现三聚氰胺分子可以通过人工单分子操控被改造为具有显著二极管效应和开关效应的双重功能分子。在室温下,三聚氰胺分子吸附到铜表面时会发生化学反应脱去两个氢原子,从而与表面铜原子形成化学键,得到与表面垂直的吸附构型,分子的输运曲线表现为正负电压下对称的特征。通过扫描隧道显微镜对其进行单分子手术,将分子支链的一个氢原子“移植”到分子中间的环上,实现了三聚氰胺分子的异构化,造成分子轨道相对于费米面的不对称性,使得输运特性显示出明显的二极管效应。通过非弹性隧穿电子的多电子激发过程进一步诱导其顶端N-H键的可逆转动,得到电导不同的双稳态结构,实现了单分子机械开关效应。   美国《国家科学院院刊》审稿人认为,该工作“结果可靠,创新性强,代表了这个领域的发展水平”。   据悉,这项成果是该研究团队利用分子手术实现对单分子磁性控制后,再次成功地通过分子手术技术取得的重要研究成果。该工作获得了科技部重大科学研究计划、国家自然科学基金、中科院知识创新工程方向性项目的资助。
  • 上海光谱通过“高性能石墨炉原子化器”子课题技术测试
    由上海光谱仪器有限公司承担的&ldquo 高效原子化器&mdash &mdash 高性能石墨炉原子化器&rdquo 项目是 &ldquo 十一五&rdquo 科技支撑计划项目《科学仪器设备研制与开发》课题&ldquo 高稳定度光源的研究与开发&rdquo 的子课题,2010年10月15日,科技部、国家质检总局测试专家组在上海对该课题联合承担单位上海光谱进行了现场技术测试。专家们认真听取了课题组的研究工作汇报,审查了相关的技术资料、文档,依据课题任务书中规定的考核指标要求逐项进行了审核及测试,现场测试与审查结果表明,课题组成功地完成了任务书规定的考核任务及各项技术指标,上海光谱仪器有限公司作为该课题技术测试的第一站圆满完成了任务,为大课题顺利验收奠定了良好基础。 市场部 2010年10月18日
  • 核磁共振成像技术步入分子层面
    美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如分析药物药效或推断肿瘤生长速度等工作,以更好地为人类健康服务。   加拿大研究人员通过操纵仲氢(仲氢是航天飞机上使用的燃料),将仲氢的磁性转移到许多更容易探测的分子上面,并在动物身上进行了该技术的测试。结果表明,新技术可以将扫描的灵敏度增加1000倍左右,原来统计生物系统数据需要花费90天时间,现在只需几秒就可以完成。   美国科学团队则调整了原子核的旋转来增强信号,在旋转状态的分子之间制造了很大不平衡,并且使分子变成了功能更加强大的磁体,可以产生更详细的图像。新技术得到的信号强度可能是传统MRI中氢原子所释放信号的几千倍甚至几万倍。
  • “钻石钥匙”开启单分子磁共振研究之门
    目前,由于磁共振技术能够准确、快速和无破坏地获取物质的组成和结构信息,已被广泛用于基础研究和医学应用等多个领域。   但是,当前通用的磁共振谱仪受制于探测方式,其研究对象通常为数十亿个分子,成像分辨率仅为毫米量级,无法观测到单个分子的独特信息。   近日,中国科学技术大学教授杜江峰领衔的研究团队将量子技术应用于单个蛋白分子研究,利用钻石中的一种特殊结构做探针,首次在在室温大气条件下,获得了世界上首张单蛋白质分子的磁共振谱。该成果使利用基于钻石的高分辨率纳米磁共振成像诊断成为可能。   该研究成果于3月6日发表在《科学》上,同期《科学》&ldquo 展望&rdquo 栏目专文报道评价&ldquo 此工作是通往活体细胞中单蛋白质分子实时成像的里程碑&rdquo 。   此前的研究显示,基于钻石的新型磁共振技术能将研究对象推进到单分子,成像分辨率提升至纳米级。但实现这一目标面临诸多挑战,主要是单分子信号太弱难以探测。   之后,杜江峰研究团队利用钻石中的氮&mdash 空位点缺陷作为量子探针(以下简称&ldquo 钻石探针&rdquo ),选取了细胞分裂中的一种重要蛋白为探测对象。首先将蛋白从细胞中分离并将标记物(氮氧自由基)固定在蛋白的特定位置,然后将此蛋白分子放置到钻石表面,此时标记物距离&ldquo 钻石探针&rdquo 约10纳米,会产生仅相当于地磁场十六分之一的极微弱的磁信号。&ldquo 钻石探针&rdquo 具有感知极弱磁信号的能力,在激光和微波操控下,它形成一个量子传感器,将单分子信号转化为光学信号而加以检测。   经过两年多的努力,最终他们成功地在室温大气条件下首次获取了单个蛋白质分子的磁共振谱,并通过对比不同磁场下的多组磁共振谱的特征,获取了此蛋白质分子的动力学性质。   随后,《科学》杂志将该工作选为当期亮点并配以专文报道,盛赞其&ldquo 实现了一个崇高的目标&rdquo &ldquo 能够有效克服以往测蛋白分子结构时需要提纯和长成单晶的困难,并且能够实现对单蛋白分子在细胞内的原位检测&hellip &hellip 是通往活体细胞中单蛋白质分子实时成像的里程碑&rdquo 。   此前,杜江峰组已成功探测到金刚石体内两个13C原子核自旋,并通过刻画其相互作用强度以原子尺度分辨率解析出了这两个同位素原子的空间取向,向单核自旋磁共振谱学和成像迈出了重要一步。   另外,杜江峰教授通过与德美研究组合作,检测到(5nm)3有机样品中质子信号,取得纳米尺度核磁共振技术的突破性进展。同期的《科学》&ldquo 展望&rdquo 栏目专文评论为&ldquo 基于钻石的纳米磁探针,将磁共振成像的可探测体积到单个蛋白质分子水平&rdquo 。   据了解,该研究不仅将磁共振技术的研究对象从数十亿个分子推进到单个分子,并且&ldquo 室温大气&rdquo 这一宽松的实验环境为该技术未来在生命科学等领域的广泛应用提供了必要条件,使得高分辨率的纳米磁共振成像及诊断成为可能。   &ldquo 这项技术最直接的用途是在不影响蛋白质性质的前提下检测其结构和动力学性质,直接在细胞膜上或细胞内研究蛋白质分子。&rdquo 杜江峰表示,这对生命科学研究来说有极大吸引力。   因此,该技术有望帮助人们从单分子的更深层次来探索生命和物质科学的机理,对于物理、生物、化学、材料等多个学科领域具有深远的意义。   据介绍,以此为基础,和扫描探针、高梯度磁场等技术结合,未来可将该技术应用于生命及材料领域的单分子成像、结构解析、动力学监测,甚至直接深入细胞内部进行微观磁共振研究。   该研究获得了国家自然科学基金项目的支持。
  • 美国科学家找到一种控制带电分子的方法
    p   美国国家标准技术研究院(NIST)的研究小组最近宣布解决了一个棘手的科学难题,即如何控制单个带电分子或分子离子的量子特性。关键是:利用拟用于未来量子计算机运算的类似“量子逻辑”操作。新技术像激光冷却和其它技术控制原子一样有效控制分子,具有广泛的应用潜力。原子的量子控制将彻底改变原子物理学,引领诸如原子钟一样的应用,但激光冷却与控制分子是非常有挑战性,因为分子比原子复杂得多。新技术仍然使用激光,但只能轻微探测到分子,其量子状态只能间接检测到。这种类型的分子离子控制,即几个带电原子结合在一起,可以导致更加复杂的量子信息处理架构,放大了基本物理研究信号,例如测量电子形状的“圆度”,并且增加了化学反应的控制。 /p p   NIST通过将信息转移到原子离子的方法来找到分子离子的量子态,而量子态可以用激光冷却和控制。借鉴NIST量子逻辑时钟的想法,研究人员试图操纵分子离子。NIST研究人员利用离子阱和正在进行量子逻辑时钟实验的激光,在室温下高真空室中,捕获了两个离子相距几百万分之一的钙离子。氢气泄漏到真空室中,直到一个钙离子反应形成由一个钙离子和一个氢原子结合在一起的氢化钙分子离子。 /p p   研究人员使用激光来冷却原子离子,从而将分子冷却到最低能量状态。在室温下,分子离子也处于其最低的电子和振动状态,但保持在旋转状态的混合物中。研究人员应用红外激光脉冲调制以防止离子的电子或振动状态发生变化,以驱动分子在超过100种可能旋转状态中的两种之间的独特转化,再用一个额外的激光脉冲来转换共享运动的变化,改变原子离子的内部能量水平。之后,原子离子开始散射光,表明分子离子的状态已经改变,并且处于期望的目标状态。随后,研究人员可以将激光诱导跃迁期间发射和吸收的光角传递到例如定向分子在所需方向的旋转状态。 /p p   该研究发表于5月11日的《自然》杂志上,由NIST博德(Boulder)小组执行。该小组曾于1978年进行过第一次原子激光冷却实验。 /p p style=" text-align: right " 转自:中国科技部 /p
  • 东京大学化学家首次原子分辨透射电镜制作化学合成分子视频
    p    strong 仪器信息网讯 /strong 8月23日,东京大学中村荣一(化学系特聘教授/东京大学名誉教授)、原野幸治(化学系特任副教授)合作在Nature Communications刊发文章《Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses》( /p p br/ /p p DOI:10.1038/s41467-019-11564-4 ),首次以原子分辨率透射电镜制作出化学合成视频。 /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 发表者点评 /strong /span /p p    strong 中村荣一 /strong 教授表示:“自2007年以来,物理学家已经实现了超过200年的梦想, 能够看到单个原子的能力。但这并没有就此结束。我们的研究小组已经超越了这个梦想,创造了分子视频,以前所未有的细节观察化学反应。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/72b8ccad-2767-4e1a-8cdd-e5abaf43c6a6.jpg" title=" 00.jpeg" alt=" 00.jpeg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 东京大学化学系教授中村荣一 /span /p p    strong 原野幸治 /strong 解释道:“这是一个两部分的问题。在宏观上,将独特的高分辨率电子显微镜与快速灵敏的成像传感器结合起来进行连续视频成像存在工程挑战 而在微观层面上,我们必须设计一种方法来捕获感兴趣的分子,把它们固定到位,这样相机就能捕捉起运动作用。” /p p   “让我们感到惊讶的是我们的计划确实有效。这是一项复杂的挑战,但我们首先在2013年对这些分子视频进行了视觉化。从那时到现在,我们努力将这个概念变成一个有用的工具。我们的首个成功是成像和描述一个立方体形状的分子,这是金属-有机骨架合成过程中发生的一种重要的中间形式。我们用了一年时间来说服我们的论文审稿人我们发现的是真实的。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 270px " src=" https://img1.17img.cn/17img/images/201908/uepic/13ff28e1-e633-48ec-a361-42e4f3160e29.jpg" title=" 0.jpeg" alt=" 0.jpeg" width=" 450" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 原野幸治与研究中使用的原子分辨率透射电子显微镜 /span /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 发表要点 /span /strong /p p   在溶液中捕捉化学反应中一个接一个地产生和消失的中间产物(反应中间体)的每一个分子,并且用电子显微镜观察到并确定了迄今为止未知的反应中间体的结构。 /p p   用以往的分析方法,只能对溶液中发生的各种化学反应中间体的混合物的平均分子图像,或极少一部分的分子图像进行分析。本次提取了每一个分子,并成功确定了结构。 /p p   此次研究表明,此研究方法可以确定以往常规方法无法观察到的化学反应中间体的每一个分子的结构,从材料科学到生物化学有望得到广泛的学术和工业应用。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 发表概要 /strong /span /p p   东京大学化学系教授中村荣一和副教授原野幸治等研究小组开发了中间产物(反应中间体),它们在化学反应中一个接一个地产生和消失。在溶液中捕获并且通过原子分辨率电子显微镜(电子显微镜,注释1)观察,成功地确定了迄今未知的反应中间体的结构。 /p p   ( span style=" color: rgb(165, 165, 165) " 注释1:像差校正技术的最新进展使得即使使用适于观察有机材料的低加速电压的电子显微镜也能够以原子分辨率捕获图像。 2015年在东京大学分子生命创新大楼新建立的最先进的透射电子显微镜实现了超高速连续拍摄,空间分辨率为0.08纳米,每秒1600幅图像。 /span ) /p p   化学反应一般在从反应物到生成物的过程中,通过不断形成系列反应中间体推动进行。这些中间体的结构各不相同,而且由于在反应溶液中保持平衡,结构不断变化,所以很难通过实验捕获结构。中村教授等,将对反应中间体具有很强亲和力的“分子鱼钩”装在碳纳米管上,再将纳米管放入反应溶液中进行反应。然后,开发了一种新技术,通过快速冷却和过滤快速停止反应,将在反应进行的各阶段发生的一系列的中间体“抓住在鱼钩”上,一网打尽地依次进行结构分析(图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/f4f19cfd-7e1b-4012-b0a0-6a10f0e90416.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图1.本研究中使用的“分子钩”技术的概念图 /span /p p   本次研究中采用的反应是气体储存材料和催化剂形成金属-有机骨架(MOF)的反应,反应中间具有一维至三维结构(簇),并且从原子水平,统计信息阐明了微小分子聚集体生长成晶体的反应机理。 /p p   除人工化学合成反应外,本方法还可应用于对天然矿物、骨矿等矿物质生成等材料形成的反应分析,有望开发出高效化学反应、阐明生命现象。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 发表的内容 /span /strong /p p    strong 研究背景 /strong /p p   “像观看分子模型一样观察分子的反应情况”是科学家长期以来的梦想,也是极其困难的课题。在化学反应中,在将一种物质转换为另一种物质的过程中,存在大量的中间生成物(反应中间体),并且作为混合物形式存在。 /p p   在现有化学反应的分析中,反应总体情况的一般的描述方法是:这些众多反应中间体的平均值,或者主要反应中间体被分离后的结构分析。而每个中间体有各自的形状和大小,关于它们的每种形状和大小的信息并无从获得。特别是,当许多物质参与化学反应时,分析更加困难。为了阐明化学反应机理的细节,有必要建立一种澄清由分子之间的微小反应产生的每个纳米级中间体的结构的方法。 /p p   中村教授等人的研究小组在2007年以来,“它单分子原子分辨率实时间电子显微镜(smart-em)映射”的独立开发的分子运用电子显微镜技术,小分子一个一个的动态视频拍摄记录的研究正在进行。2012年,有机分子的结晶化过程中产生的分子集合体的分子结构及出现频率决定成功,视频拍摄,但单分子不仅分子集合体的研究中也史无前例的最尖端的测量法和报告(nat . mater . 2012, 11, 877)。 /p p   自2007年以来,中村教授等的研究小组充分利用了独立开发的分子电子显微镜技术“原子分辨率单分子实时电子显微镜(SMART-EM)成像”(注4),“小分子一个一个的动态视频拍摄记录的研究正在进行”。2012年,研究小组成功地拍摄确定了有机分子结晶过程中分子组装的分子结构和出现频率,视频拍摄在分子组装和单分子研究中前所未有。相关报道称这是一种最尖端的测量方法(Nat.Mater.2012,11,877)。 /p p   strong  具体的研究内容 /strong /p p   这次,中村教授研究小组, 在碳纳米管尖端引入了化学亲和力,并用它作为“分子钩”从反应混合物中拾取反应中间体,然后使用原子分辨率进行结构解析。通过显微观察成功地以惊人的方式分析了结构(图1)。此外,表明可以基于所获得的数百种反应中间体的结构的统计信息来研究反应机理。 /p p   在这项研究中,主要专注于一组称为金属有机框架(MOF)的物质。MOF内部具有规则的纳米孔,其在储气剂和催化剂中的应用已得到广泛研究,但MOF形成过程的实验信息极为有限。尤其是MOF形成初期发生的纳米尺寸的反应中间体的结构信息,目前尚未获得。因此,这次,由对苯二甲酸(PET瓶的原料)和硝酸锌(图2)合成的两种MOF(称为MOF-2和MOF-5)用于制备具有对苯二甲酸作为分子钓鱼钩的碳纳米管。通过与尖端结合来拾取反应中间体,并进行结构分析(图3)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/80fb40ca-4192-4136-a008-9153d11fc727.jpg" title=" harano_2.jpg" alt=" harano_2.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图2.通过在溶液中加热对苯二甲酸和六水合硝酸锌而生产的两种MOF(MOF-2和MOF-5)。 MOF-2具有通过溶剂层叠网状平面网络的结构,而MOF-5具有像丛林健身房那样的三维网状结构,并且两种结构都具有纳米尺寸的孔。 下部显示晶体结构。 浅蓝色,红色和灰色球体分别代表锌,氧和碳原子。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 247px " src=" https://img1.17img.cn/17img/images/201908/uepic/fd333a83-18cf-45e3-9623-ba98d8c16f4e.jpg" title=" harano_3.jpg" alt=" harano_3.jpg" width=" 450" height=" 247" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3.使用附着在碳纳米管尖端上的“分子钓鱼钩”来升高MOF形成反应中间体的反应示意图。 /span /p p   在反应的每个阶段通过在每个MOF产生、反应、猝灭然后停止反应的温度条件下将碳纳米管与分子钩一起添加到反应混合物中而产生的一系列中间体被鱼钩抓住。然后,将提取的碳纳米管置于电子显微镜中真空条件下观察,以原子分辨率获得MOF形成的反应中间体而产生的1-2纳米尺寸的聚集体(簇)。松散耦合的簇在电子显微镜拍摄的实时尺度上是自发旋转的,因此,可以不倾斜样品而从各种角度观察其三维结构,并在原子水平上揭示了其三维结构。在MOF的形成过程中,产生了由锌离子和对苯二甲酸构成的无数中间体,但是通过取出一个这样的未知分子来确定结构,对于分子结构分析具有重要意义。 /p p   作为MOF-2的反应中间体,除了许多一维链簇之外,还观察到具有作为MOF-2的部分结构的正方形结构的簇(图4)。另一方面,从MOF-5反应溶液中拾取具有立方三维结构的中间体(图5)。通过使用含有碘的对苯二甲酸作为重元素,可以使用碘作为标记物来确定三维结构,并且含有12个有机分子的立方中间体小于1埃,可以精度确定结构(图6)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 230px " src=" https://img1.17img.cn/17img/images/201908/uepic/3f5be26a-4141-464f-9cd4-9e741caaf74b.jpg" title=" harano_4.jpg" alt=" harano_4.jpg" width=" 600" height=" 230" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图4.从MOF-2反应溶液收集的碳纳米管尖端拾取的反应中间体的电子显微镜图像。 (左)许多一维链簇(箭头)和二维方阵(包围虚线)。 (右)从触摸钟摆的方形簇的电子显微镜电影中提取的每个帧。顶部是真实图像,底部是相应的分子模型。图中的数字是从视频录制开始经过的时间(单位:秒)。原子着色与图1中的相同。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 241px " src=" https://img1.17img.cn/17img/images/201908/uepic/5a962d8f-8b0c-4018-8eaa-b8c9dfb958cd.jpg" title=" harano_5.jpg" alt=" harano_5.jpg" width=" 600" height=" 241" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图5.用碘原子标记的MOF-5立方反应中间体的原子分辨率电子显微镜电影。图中的数字是从视频录制开始经过的时间(单位:秒)。图中的比例尺为1纳米。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 424px " src=" https://img1.17img.cn/17img/images/201908/uepic/2bb411ce-c5d7-4a49-a86d-5a1a4caaebac.jpg" title=" harano_6.jpg" alt=" harano_6.jpg" width=" 600" height=" 424" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   图6示出了从图5所示的运动图像中提取的电子显微镜图像的帧(左),与每个图像对应的分子模型(右),以及电子显微镜模拟图像(中心)。图中的数字是从视频录制开始经过的时间(单位:秒)。图中的比例尺为1纳米。 /span /p p   这只是能够以精确和可控的方式控制化学合成的第一步,研究人员称之为“示构合成”。随着合成反应的进步,观察反应的细节非常重要,这样才能有效地进行逆向工程。 /p p   化学家200年前的梦想是看到一个原子,现在的梦想是控制分子,以便建筑创造出合成矿物质,甚至是拯救生命的新药。 /p p    strong 附: /strong /p p   本研究的电子显微镜的部分图像分析是在日本科学技术厅(JST)研究成果展开事业尖端测量技术和设备开发计划(课题编号:JPMJSN16B1)的支援下实施的。 /p p   在这项研究中,使用原子分辨率透射电子显微镜(JEM-ARM200F,由JEOL Ltd.制造),这是由国际科学创新中心开发项目引入并由东京大学分子生命创新组织运营的共享仪器。透射电子显微镜观察的一部分是在教育,文化,体育,科学和技术部纳米技术平台的支持下进行的(发行编号:12024046) /p p    strong 论文链接: /strong a href=" https://www.nature.com/articles/s41467-019-11564-4" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://www.nature.com/articles/s41467-019-11564-4 /span /a /p
  • 碳纳米环带单分子器件研究获进展
    单分子器件可用于研究电荷传输的微观机制,并可为在纳米尺度研究物质的基本物理化学性质提供理想平台。传统上,单分子器件的构建通常需要在功能分子的末端引入杂原子锚定基团,从而将分子固定在电极之间。然而,长期以来,受限于这一方法,单分子器件的研究对象主要局限于结构相对简单的线性分子体系。   在中国科学院院士、中科院化学研究所有机固体院重点实验室研究员朱道本的指导下,臧亚萍课题组与和合作者首次报道了基于碳纳米环带的单分子器件,并发现了其由于独特的环张力效应带来的异于常规线性分子的新奇电子学和化学性质。   碳纳米环带是一种通过自下而上合成的新型碳基纳米材料,被视为碳纳米管的最短单元结构,具有高度精确可调的尺寸、边缘和拓扑结构。臧亚萍课题组和合作者发现,无需引入任何杂原子锚定基团,由于独特的环张力作用,碳纳米环分子可以利用弯曲的径向π轨道直接和金电极键合,构筑具有超低接触电阻的碳纳米环单分子器件。研究进一步利用不同尺寸碳纳米环分子张力的变化,可以实现对其电导的高效调控。此外,臧亚萍课题组、化学所陈传峰课题组及中国科学技术大学杜平武课题组合作,探讨了碳纳米环带边缘结构对其导电性质的影响规律,发现了在碳骨架中引入“五元环”边缘能够显著促进电荷传输,因而带来超高电导。   近日,臧亚萍课题组发现环张力能够影响分子的电荷输运性质,并使其展现出特殊的化学反应能力。该研究通过对碳纳米环单分子器件施加定向电场,在温和条件下(常温,0.6 V电压)实现了相邻苯环间非极性C-C键的断裂,形成了由Au-C共价键连接的线性寡聚苯单分子器件。对照实验和DFT计算进一步表明,这一独特反应遵循经典芳香亲电取代(EAS)机理,其中静电场发挥了关键的催化作用。该方法对不同尺寸的纳米环具有普适性。利用这一方法,课题组制备了目前最长的八聚苯单分子器件,揭示了电子的隧穿传输距离可以延长至八个苯环单元。该原位反应方法为在表界面精准构筑新型碳纳米结构以及研究其电子学性质提供了新手段。相关研究成果发表在《自然-通讯》(Nature Communications)上。   上述成果将单分子器件的研究拓展到复杂环形分子体系,揭示了环张力这一独特结构效应对分子电子学和化学性质的特殊调控作用。这为未来发展具有复杂几何和拓扑结构的新型分子材料和器件提供了新思路。研究工作得到国家自然科学基金和中科院的支持。碳纳米环带单分子器件
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制