当前位置: 仪器信息网 > 行业主题 > >

真空技术

仪器信息网真空技术专题为您整合真空技术相关的最新文章,在真空技术专题,您不仅可以免费浏览真空技术的资讯, 同时您还可以浏览真空技术的相关资料、解决方案,参与社区真空技术话题讨论。

真空技术相关的方案

  • 用真空技术追随爱因斯坦的脚步
    普发真空的真空技术用于 LIGO这项实验,亦即在地球上证实引力波的存在,需要真空技术。为了保证功能正常,激光的两条光路不得受到扰动影响。因此,激光束和光学镜面放置在超高真空系统中。为了保证该系统的质量和可靠性,从而使实验能够顺利完成,需要进行长达十年的准备。作为准备工作的一部分,在世界各地的物理研究所为准备引力波实验而进行了深入的基础研究。普发真空为许多这样的基础实验提供了真空设备。LIGO 探测器中的真空也是由普发真空的分析系统监控的。普发真空的 HiPace 涡轮分子泵及大量质谱仪被用于保障质量和检测泄漏,以对巨型光束管道的烘烤进行诊断。这些设备用于保持管道系统中的必需的真空条件,为成功进行实验提供必要的环境条件。
  • 扫描电子显微镜(SEM)低真空技术改造以提升观测能力的解决方案
    本文针对只能在高真空下使用的扫描电子显微镜(SEM)和光学显微镜,介绍了低真空升级改造的技术方案,通过增加低真空控制装置可实现低真空的精密控制,控制精度可达到1%以内,从而使普通电镜和光学显微镜具有低真空观察功能,拓展和挖掘现有设备应用范围和潜力。
  • 真空技术给癌症患者带来希望
    MIT 的普发真空解决方案一览:隔膜泵在 MIT,隔膜泵用作涡轮分子泵的前级泵。由于其紧凑性,普发真空的隔膜泵是集成到系统中的最佳选择。该产品优势明显:■ 绝对干燥的无油真空■ 隔膜使用寿命长■ 低振动和低噪音水平■ 高操作可靠性■ 易于维护,因为膜和阀门更换简单■ 由于使用了双电压电机或直流驱动器,可在全球范围内使用涡轮分子泵普发真空的涡轮分子泵在 MIT 产生所需的超高真空条件。凭借其高性能和可靠性以及极好的经济性和效率,它们是满足离子束机器要求的最佳解决办法。其优势包括:■ 经验证的轴承系统实现了高可靠性■ 设计、技术组件和泵速度等级的差异实现了灵活性■ 高度发达的泵设计实现了高压缩性能和高效率■ 低能耗■ 很长的保养间隔周期质谱仪在 MIT,普发真空的 PrismaPlus 质谱仪用于在真空系统中进行残余气体分析。高灵敏度、稳定性和智能处理的结合使 PrismaPlus成为最佳解决方案。优势一览:■ 模块化设计实现了最佳适应性■ 紧凑的尺寸和高性能■ 通过各种接口实现了方便的系统集成■ 通过以太网联网■ 高测量速度、稳定性和分辨率测量设备MIT 使用普发真空的 ActiveLine 和 DigiLine 高精度真空计测量仪器。它们具有模拟和数字两种输出。它们非常适合离子束系统的要求,并具有许多优势:■ 磁性杂散场最小■ 轻松集成■ 耐用且易于维护
  • 真空技术用于能量储存——普发真空解决方案助力能源技术的创新
    普发真空的优化方案普发真空以其 DuoLine 系列双级旋片泵和大受欢迎的 HiPace 系列涡轮分子泵为飞轮质量储能系统提供符合要求的理想方案。其中 Duo 3 的特别版带有创新的直流电驱动器,在市场上脱颖而出。这种泵采用 24 V 直流电供电,可在 -20 ° C 至 +60 ° C 范围内工作,用于移动飞轮应用极为理想,因而可直接用于该领域。此外,普发真空的真空泵和真空计应用在全世界的飞轮系统中。能量储存的先锋依靠普发真空储能研发领域的法国先锋 Levisys 从一开始就信赖普发真空为其试验和研发提供的方案。这家创业公司研发生产了首台 10?kW 固定飞轮储能系统,并将其应用在法国电气工程巨头 Engie Ineo 位于 Toulouse 的生产现场。公司建立了所谓的 SmartGrid 智能电网,并使用固定飞轮系统均衡供能偏差。通过这种方法,为生产现场的常规供能提供了新的电能储存途径。它填补了使用至今的锂离子电池储能设备的不足。通过最初的测试阶段后,在 2016年将再加装 9 台固定飞轮储能系统,容量达到 100 kWh 。Levisys 的固定飞轮质量储能系统采用了 DuoLine 旋片泵、HiPace 涡轮分子泵以及真空计,以获取并测量所需的真空环境。对于真空设备的要求很高:其工作必须可靠,结构紧凑,以适合固定飞轮系统内部有限的空间,而且输入功率也必须低。
  • 高亮度灯丝显著提升扫描电镜低真空成像
    在扫描电镜应用中,低真空技术可以实现对非导电样品的直接观察,无需喷镀贵金属,以免造成样品表面细节被掩盖、尺寸发生改变,成分信息减弱或消失等情况。低真空技术是利用入射电子束电离样品仓内空气分子产生正离子和自由电子(如图 1 所示),正离子在样品表面荷电所形成的负电场的吸引下与负电荷产生中和,从而消除样品表面荷电。
  • 真空技术使兴奋剂违规者暴露无遗——普发真空为质谱法检测提供解决方案
    普发真空解决方案的优势一览:HiPace 30 涡轮分子泵■ 市场上最小的大功率涡轮分子泵■ 易于集成到小型分析系统中■ 低重量,非常适合移动使用■ 较长的保养间隔保证了较长的寿命周期HiPace 300 涡轮分子泵■ 特别适用于高真空和超高真空应用■ 非常高的压缩率,尤其适用于小分子气体■ 与隔膜泵结合使用也能实现最好的结果■ 间歇式运行可以节省超过 90% 的能量,而不会损失任何动力SplitFlow™ 涡轮分子泵■ 由于结构紧凑,所以需要最小的空间■ 对所有气体均具有高抽速和最大压缩比■ 通过监控所有运行数据来最大限度地提高运行可靠性DuoLine 旋片泵■ 可选的免维护磁耦合可实现更长的使用寿命■ 优化的泵冷却增加了使用寿命和应用范围■ 通过液压控制的高真空安全阀实现高运行可靠性■ 由于占地面积小且真空连接布置经过优化,可轻松地进行系统集成MVP 隔膜泵■ 绝对干燥的无油真空■ 低振动和低噪音水平■ 紧凑型设计■ 运行可靠性高,隔膜寿命长?■ 隔膜和阀门更换方便,从而使维护很方便
  • 真空技术应用于电厂节能项目——发电厂使用氦气进行检漏
    一旦蒸汽经过了末级汽轮机就会到达冷凝器。蒸汽在冷凝器中将被冷却并冷凝成水。冷凝水将被抽回蒸汽发生器中的管道里然后被再次利用,这样就形成了一条回路。冷凝器里必须仅含有蒸汽以使其能够最优化运行。其它任何因泄漏而进入蒸汽回路的气体,例如周围的空气,会大大降低冷凝器的效率,从而也将降低整个发电厂的效率。发电厂在启动以及运行期间都会排空冷凝器以清除其中的所有其它气体。为了保持系统内的真空状态,要避免复杂蒸汽回路中的任何一处存在泄漏,这一点极其重要。系统内的任何泄漏都会降低发电厂整体的效率。据粗略统计,每提高真空压力 1 hPa (mbar) 将提高净效率约 0.04%。因此发电厂操作者都非常重视避免系统中存在泄漏。发电厂会对主涡轮以及给水涡轮的冷凝区域中的所有真空密封部分进行泄漏检测。其中包括例如:冷凝室、汽轮机外壳(止水缝)、吹脱磁盘、涡轮轴的迷宫密封系统、低压预热器和启动扩容箱。
  • 用于 WENDELSTEIN 7-X 的真空解决方案
    世界上最大的仿星器类型实验核聚变反应装置“Wendelstein 7-X”自2015 年 12 月开始已在德国格利夫斯瓦尔德的马克斯· 普朗克等离子体物理研究所 (IPP) 投入使用。该反应装置用于进行产生氢等离子体的实验,适合于核聚变发电站的连续运行。从长远来看,核聚变产生的能量被看作一种清洁的替代发电方式。Wendelstein 7-X有助于研究仿星器原理可用于发电站的范围。在 2016 年 3 月底完成第一个运行阶段后,反应装置正在升级并准备进行第二批次的系列实验。真空技术是反应装置的基本组成部分:实验只能在超高真空条件下进行。普发真空在反应装置真空系统的设计、实施和运行上已经与格利夫斯瓦尔德 IPP 的科学家们密切合作多年。2016 年 8 月,普发真空项目团队和普发真空股份有限公司管理层成员 Ulrich von Hü lsen 博士参观了格利夫斯瓦尔德的实验聚变反应装置。在参观期间,团队询问了第一个运行阶段的进展情况、普发真空产品的使用情况以及第二阶段的需求。
  • 如太阳那样产生能量——真空为聚变提供必要条件
    聚变反应堆对真空技术的要求Wendelstein 7-X 主要由两个交错的环形真空容器组成。外部低温室包含用于超导线圈的隔离真空和冷却设备,而超导线圈是产生磁场所必需的。内腔室或等离子体容器用于在高真空环境中产生实际的等离子体。操作聚变反应堆的一个重要因素是要有结实、强大可靠的真空系统。因此,所有真空元件必须通过马克斯· 普朗克等离子物理研究所(IPP) 的资格审查程序,以确保其用于聚变实验的适合性。高达 3 特斯拉的强磁场限制了 Wendelstein 7-X 内部等离子体容器中带电的等离子体粒子。等离子体容器周围的磁场如此强烈,以致有必要在距离等离子体容器 4 到 9 米处的特殊装置上安装真空设备。即使在这个距离内,磁场仍然达到 7 毫特拉斯的强度,有时甚至达到 20 毫特斯拉。这些磁场强度几乎是地球自然磁场强度的1,000 倍。为使等离子体容器中的压力达到 10-8 百帕,不仅有必要抽空 100立方米的容器容量,而且有必要抽空从约 1,300 平方米的内表面上释放的气体负荷。而且,所使用的真空泵必须能够达到抽空聚变过程所涉及的氢、氘和氦轻型气体所需的高压缩比。另一个要求是涡轮分子泵和用于涂覆等离子体容器表面的材料之间的良好兼容性。
  • 分析仪器行业定制的真空解决方案
    创新概念SplitFlow™ 是由普发真空开发的利用一个模块去实现涡轮牵引泵的功能,从而为系统制造商提供了最大的灵活性。该泵的开发要求在单一真空系统内结合了精确的几何适应性和优异的性能。尤其是在不断增加的复杂性和台式装置趋势方面,这种概念完全符合市场要求和客户需要。除了纯粹的几何适应性以外,还需要满足特定的真空技术参数。例如,通过结合不同的抽气原理(例如,结合涡轮分子泵和霍尔威克压力级),允许的前真空压力将明显提高,同时压缩性能将提高几个数量级。通过巧妙地设计转子几何形状,可以产生多达三个不同的泵级,它们的定向方式只会部分地相互影响。这样的布置使得可以代替两台离散式高真空泵和一台机械前级泵。这样的设计甚至可以实现完全整合到分析仪器的真空室中。这需要系统制造商和真空供应商从一开始就进行密切合作。设计阶段完善建议非常重要。取决于系统的配置,结果往往可以为真空系统减少大约50%的空间,而且节省成本超过50%。通过取消离散式抽吸装置、采用标准泵批量生产的研究结果,如今可以达到超过100,000小时MTTF(平均无故障时间)的泵可靠性。通过优化的轴承技术可以实现高度的可靠性,这种技术采用无需维护的磁悬浮轴承和精确球轴承在两侧定位快速旋转的转子,从而可以有效减震。泵补充配套有相应的电子驱动单元以及一系列的附件。对于涡轮分子泵的计算机控制一体化,提供标准化的界面。由于其特殊布局,这些泵只需要一个空气冷却系统,这意味着,可以省去附加的水冷却和其他装置费用。
  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术
    常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。
  • 利用可视化技术分析低温结霜的超高真空度精密控制
    摘要:低温结霜可视化实验装置主要用于模拟空间环境并研究深冷表面结霜现象,客户希望对现有实验装置的真空系统进行技术升级,以实现0.001Pa~1000Pa范围内真空度的准确控制。为此本文提出了分段控制解决方案,即采用电容真空计、电动针阀、电动球阀和低真空控制器构成低真空控制回路;采用皮拉尼计、可变泄漏阀和高真空控制器构成高真空控制回路。解决方案可以很好达到技术指标要求,也可推广应用到其它真空和超高真空度控制。
  • 追寻希格斯玻色子(上帝粒子)—— 全球最大的真空系统依赖于普发真空提供的真空解决方案
    粒子加速器运行的一个重要因素是可靠且强大的真空系统。而像LHC这样非同寻常的机器对内置真空技术有着非常特殊的要求。极小误差可能导致整个加速器停止运行数小时。因此,整套真空系统必须是非常可靠的。此外,加速器中使用的所有设备必须能够承受高达1,000 Gy/a的辐射水平。而进行这些复杂测量的设备不能离开加速器的辐射区。因此,能在现场进行设备维护显得至关重要。为满足这些高要求,普发真空与CERN合作,对真空获得、真空测量和真空分析研发并实践了一套定制的真空解决方案。真空获得LHC分两种真空系统: 电子束真空和隔离真空。两种应用中都用到了普发真空的涡轮分子泵。这些泵经改进后都可以满足LHC的特殊要求。为了能在辐射环境中运行,泵体中都不能使用电子元件。要满足这些要求,普发真空研发了无传感器驱动概念,实现了泵的机械部件与电子部件的隔离。采用这一概念,电子部件可以放置在离真空泵1,000 m以外的地方,并定位在一个保护区域内。真空测量普发真空专门研发了特殊的测量设备,用来测量获得的真空。这些使用的设备是改进的皮拉尼和冷阴极真空计。它们用来长期监测加速器内的压力,并确保当压力增加时可以采取适当的行动。由于真空计同样暴露于高水平辐射中,它们被制造成无源传感器,没有集成的电子设备。所有电子设备都被安置在一个辐射安全区域内,并且经由长电缆连接至无源传感器。这些电缆通过精确的指令与CERN密切连接。这使冷阴极真空计可以测量达10-11 hPa的压力。通过一种特殊的点火过程,冷阴极真空计即使在压力非常低的情况下,也可以轻易打开。由于加速器的寿命约为30到40年,因此,只有采用寿命长的电子元件。氦检漏对LHC要求的超高真空压力,加速器使用的部件必须确保极低的漏率。因此,在安装部件之前,必须进行全方位的检漏。针对检漏,CERN采用了ASM系列检漏仪。使用这些设备,即使是细微到的10-13 Pa· m3/s 的泄漏也可以有效地被检测出来。真空分析除压力外,残余气体的组成也是加速器正常运行的一个重要因素。使用残余气体光谱仪,可以得出加速器内使用材料脱气相关的结论。为获得残余气体光谱,CERN采用了普发真空的质谱仪。对于超高真空中的残余气体测量,质谱仪分析仪本身具有较低的脱气率是非常重要的。除了真空退火离子源外,CERN使用的普发分析仪也拥有真空退火棒系统。使用这一方法,分析仪将产生一个极低的背景信号,尤其方便记录加速器内实际残余气体的比例。
  • 飞纳台式扫描电镜在血液细胞领域的应用
    飞纳台式扫描电镜独有的低真空技术,能够最大限度的保持样品的形貌,使得细胞类样品不易变形,低加速电压与CeB6灯丝结合,能够提供清晰的微观形貌。
  • 真空控制系统中关键技术和产品的国产化替代现状
    摘要:真空度控制技术关键部件主要有真空计、进气流量调节装置、排气流量调节装置和真空度控制器四大类。本文在真空度控制技术基本概念和技术要求基础上,详细介绍了真空度控制技术关键部件国外产品的分布和类型,特别介绍了相关的国产产品现状。总之,除了高端电容真空计之外,真空度控制技术中的绝大多数关键部件已实现了国产化,并已得到广泛应用,后续的国产化重点将主要集中在开发MOCVD工艺中的受控蒸发混合器。
  • 高精度真空度控制技术在新型低压电子束焊机中的应用
    新型低压电子束焊接加工技术具有凹型阴极、自聚焦和低造价的突出特点,不再需要高真空系统,也无需磁透镜和磁线圈进行电子束的聚焦和偏转,可进行微零件焊接和低熔点材料表面微结构改性。但这种新型技术对氩气工作气压的要求较高,需要在7~12Pa的低真空范围实现高精度的调节和控制。本文针对此高精度控制提出了解决方案,即在电容真空计作为传感器的基础上,采用了电动针阀和超高精度压力控制器,控制精度可达±1%。
  • 微波等离子体高温热处理工艺中真空压力的下游控制技术方案和装置
    本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了解决这一关键技术所采用的真空压力下游控制技术方案和相应装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。
  • 飞纳台式扫描电镜在烟草纸张领域的应用
    飞纳台式扫描电镜独有的低真空技术,能够最大限度的保持样品的形貌,对于不导电的烟草/纸张样品不需要喷金,可直接观测,最大限度的保持样品的本来形貌与成分,低加速电压与CeB6灯丝结合,能够提供清晰的微观形貌。
  • 飞纳台式扫描电镜在昆虫生物领域的应用
    飞纳台式扫描电镜独有的低真空技术,能够最大限度的保持样品的形貌,使得昆虫生物类样品不易变形,无需喷金可直接观察,低加速电压与CeB6灯丝结合,能够提供清晰的微观形貌。
  • 飞纳台式扫描电镜在电池领域的应用
    飞纳台式扫描电镜独有的低真空技术,能够最大限度的保持样品的形貌,低加速电压与CeB6灯丝结合,能够提供清晰的微观形貌。
  • 月壤环境地面模拟试验装置中的真空度精密控制技术方案
    在探月工程中需要在月面真空环境下采集月壤样品,需要建立地面试验装置来模拟月面的真空热环境,以测试采样器在真空热环境下的性能,由此要求真空度能实现精密控制。本文针对真空热环境地面模拟试验装置,提出了真空度精密控制的技术方案,真空度控制范围为0.1Pa~0.1MPa,全量程的控制精度为± 1%。
  • 用于分析仪器的涡轮分子泵
    在使用真空技术装备实验室和分析系统时,高灵敏度和绝对的可靠性至关重要。在实验室里的洁净室条件和严格空间限制下进行测量和研究,导致对设备的需求增加。在真空环境中的分析大幅提高了结果的质量,因此成为现代实验室技术中首选的测量和分析方法之一。对实验室中理想真空泵的要求相对较高。除了紧凑的设计,低噪声排放和高压力稳定性同样重要。必须能够在高真空和超高真空条件下执行决定性的精确分析程序。而且,所有的解决方案必须可灵活定制,以满足相关应用的不同挑战。
  • 真空冷冻干燥技术在中药研究中的应用
    中药在疾病的预防和治疗中有着至关重要的作用,与人民的日常生活息息相关。在中药生产中,中药质量的控制极为重要,尤其是中药制剂中有效成分的稳定性和疗效的控制。然而,中药在干燥、制成制剂、长期的保存过程中,有的活性成分不稳定或易被破坏失去药效,可能造成严重的不良反应,这些都制约着中药在临床中的应用和发展。随着中药现代化的发展,真空冷冻干燥技术应用于中药领域的研究也越来越广泛。
  • 氦质谱检漏仪锂电池检漏
    锂离子电池中的真空技术: 锂电池作为储能设备之一, 是一类由锂金属或锂合金为负极材料, 使用非水电解质溶液的电池. 锂电池大致可分为两类: 锂金属电池和锂离子电池. 锂电池形状包含可变的软包电池和形状固定的圆柱形和棱柱形. 锂电池用于各种需要长时间能量储备的终端产品. 由于其重量轻而能量密度大, 在智能手机, 平板和笔记本电脑, 移动通讯等设备和电动汽车中应用尤其普遍, 例如正在开发的大容量锂离子电池也在电动汽车中开始试用, 锂电池将成为21世纪电动汽车的主要动力电源之一, 并将在人造卫星, 航空航天和储能方面得到应用. 无论是哪种类型, 锂电池生产过程的多个环节都需要用到真空技术.
  • 单晶生长炉0.1%超高精度真空压力控制技术改造方案
    针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。
  • 真空脉冲卤制工艺中的真空度和温度快速和精密控制技术
    卤制品作为传统美食,真空干燥工艺可有效改善加工品质和缩短生产时间而越来越在卤制品研制和生产工艺得到广泛应用。针对新型真空脉冲卤制工艺中对真空度这一重要工艺参数提出的快速和精密控制要求,本文详细介绍了完整的解决方案以及实施内容。
  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术
    在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。
  • 普发真空在国际空间站(ISS)上的应用技术
    2011 年年中,普发真空向EADS Astrium空间运输公司提供了国际空间站(ISS)的一项实验所需的涡轮分子泵和真空计。该涡轮分子泵以 HiPace 80 型号为基础,通过与客户合作开发的一项创新工艺,对包含真空计在内的设备进行了改装,以适应空间的特殊环境。涡轮分子泵和真空计将用于 Columbus 欧洲研究实验室的MSL-EML 模块中(材料科学实验室 - 磁悬浮装置)。计划将在这里对材料试样进行失重条件下的无容器熔化基础实验。此次研究的主要目的旨在高效地生产性能更佳的材料。该项目实施后,它将成为国际空间站上使用的第二台普发真空涡轮分子泵。2001年,一款经过特殊设计的Compact Turbo 型号产品已被用于 Columbus 模块中,用来研究等离子晶体。
  • 高温管式加热炉真空控制系统技术升级改造解决方案
    摘要:针对用户提出的高温石英管加热炉真空度控制系统的升级改造,以及10~100Torr的真空度控制范围,本文在分析现有真空控制系统造成无法准确控制所存在问题的前提下,提出了切实可行的解决方案。解决方案对原有的无PID控制功能的压强自动控制仪和慢速大口径电动蝶阀进行了更换,采用了高精度可编程PID真空压力控制器,采用了口径较小响应速度更快的电动球阀。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。
  • 包括高真空、低真空和正压压力的全量程高精度控制解决方案
    针对工作范围在5×10-7~1.3×106Pa,控制精度在0.1%~0.5%读数的全量程真空压力综合测量系统技术要求,本文提出了稳压室真空压力精密控制的技术方案。为保证控制精度,基于动态平衡法,技术方案在高真空、低真空和正压三个区间内分别采用了独立的控制方法和不同技术,所涉及的关键部件是微小进气流量调节装置、中等进气流量调节电动针阀、排气流量调节电动球阀、正压压力电子调节器和真空压力PID控制器。配合相应的高精度真空压力传感器,此技术方案可以达到控制精度要求,并已得到过试验验证。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制