当前位置: 仪器信息网 > 行业主题 > >

制造技术

仪器信息网制造技术专题为您整合制造技术相关的最新文章,在制造技术专题,您不仅可以免费浏览制造技术的资讯, 同时您还可以浏览制造技术的相关资料、解决方案,参与社区制造技术话题讨论。

制造技术相关的资讯

  • 拜登签署启动「生物技术和生物制造计划」,美高官:为合成生物等技术扩展制造基地
    2022年9月12日,白宫官网发布简报,宣布了美国总统拜登已经正式签署了一项行政命令,以启动一项《国家生物技术和生物制造计划》(National Biotechnology and Biomanufacturing Initiative)。在白宫同期发布的情况说明书中,其对于这一计划的背景释义,是这样的:“借助生物技术,我们可以对微生物进行编程,以制造特殊化学品和化合物,这一过程称为‘生物制造’。这些进步促使工业界接受生物制造以作为基于石油基的替代品来重塑塑料、燃料、材料和药品等产品。行业分析表明,在本世纪末之前,生物工程可能占全球制造业产出的 1/3 以上,价值接近30万亿美元。”很显然,此项技术所针对的技术核心,直指合成生物学。而在稍早时候,在周日的电话会议上,美国高级官员因面对提问而解释该计划时,更是直接这样说道:“一个挑战是:我们可能在生物工程和合成生物学方面处于领先地位,但是如果一家公司,尤其是没有能力在内部制造所有东西的小公司,除非我们真正扩大生物制造基地,否则它就必须走出国门去寻找基础设施。”以下为白宫官网发布的对于该技术的情况说明书全文,其详细介绍了该计划的问题背景、行业背景以及措施行动。今天,美国总统拜登签署了一项行政命令,以启动一项《国家生物技术和生物制造计划》,来确保美国能够在国内制造于美国所发明的所有东西。该计划将在美国国内创造就业机会、建立更强大的供应链,并为美国家庭降低价格。周三,白宫将举办 “国家生物技术和生物制造计划峰会”,届时内阁机构将宣布一系列新的资源投入,这将使美国能够充分利用生物技术和生物制造的潜力,并推进拜登的行政命令。当前,全球工业正处于由生物技术驱动的工业革命的风口浪尖。各国都正在将自己定位成为全球生物技术方案和产品的提供商。目前,美国过于依赖外国原料和生物生产,过去,对于包括生物技术在内关键行业的离岸外包,威胁到其获取重要化学品和活性药物成分等原料的能力。不过,鉴于美国的行业、创新者和强大的研究企业,生物经济仍然是美国的强项,这同时也是一个巨大的机遇。通过负责任地利用生物技术和生物制造,人们将能够实现生物学的潜力,这将可以制造人们日常生活中所使用到的几乎任何东西,从药物到燃料再到塑料,借助生物技术,我们可以对微生物进行编程,以制造特殊化学品和化合物,这一过程称为 “生物制造”。这些进步促使工业界接受生物制造以作为基于石油基的替代品来重塑塑料、燃料、材料和药品等产品。行业分析表明,在本世纪末之前,生物工程可能占全球制造业产出的 1/3 以上,价值接近 30 万亿美元。该计划将加速生物技术创新,并在多个行业发展美国的生物经济,包括健康、农业和能源等。该计划将推动生物制造的进步,以美国国内强大的供应链替代来自国外脆弱的供应链,并为美国各地社区提供高薪工作。该计划将改善粮食和能源安全,推动农业创新,同时减轻气候变化的影响,其将通过医学的进步帮助人们过上更长寿、更健康的生活。具体而言,该计划将:• 提高美国国内生物制造能力。今天,由于美国国内缺乏基础设施,许多美国生物公司在国外进行生产。该计划将建立、振兴和保护美国生物制造的国家基础设施,包括通过投资区域创新和加强生物教育,同时加强美国生产国内燃料、化学品和材料的供应链;• 扩大生物基产品的市场机会。该计划是政府机构可持续采购的标准,既提供石油产品的替代品,又支持美国工人的高薪工作。该计划将增加联邦机构的强制性生物基采购,包括通过培训和支持合同官员,并确保管理和预算办公室和美国农业部定期发布进展评估。通过这样做,该计划将为行业提供有关生物基产品选择差距的具体指导,从而创造新产品和新市场。该计划将共同发展和加强生物优先计划,增加可再生农业材料的使用,并使美国公司在生物创新方面继续引领世界;• 推动研发(R&D)以解决我们面临的最大挑战。政府对生物技术的重点支持可以迅速产生解决方案,正如 COVID-19 大流行期间首创的 mRNA 疫苗。该计划将指导联邦机构确定优先研发需求,将生物科学和生物技术发现转化为医学突破、气候变化解决方案、食品和农业创新以及更强大的美国供应链;• 改善对优质国家数据的访问。将生物技术与海量计算能力和人工智能相结合,可以为健康、能源、农业和环境带来重大突破。该生物经济计划的数据将确保生物技术开发人员能够简化对高质量、安全和广泛的生物数据集的访问,这些数据集可以推动解决紧迫的社会和全球问题;• 培养多元化的技术劳动力。美国正面临着从社区大学到研究生院各个层次的相关人才短缺。该计划将扩大所有美国人在生物技术和生物制造方面的培训和教育机会,重点是促进种族和性别平等,并支持服务不足社区的人才发展;• 简化生物技术产品的法规。生物技术的进步正在迅速改变农业、工业、技术和医疗产品的格局,这可能给开发者和创新者带来挑战。该计划将提高生物技术产品监管过程的清晰度和效率,以便有价值的发明和产品能够在不牺牲安全性的情况下更快地进入市场;• 推进生物安全以降低风险。该计划将优先投资于应用生物安全研究,并激励生物安全创新,以降低整个生物技术研发生命周期的风险;• 保护美国生物技术生态系统。该计划将通过推进人类生物数据的隐私标准和实践、生物数据的网络安全实践、生物相关软件的标准开发以及对于国外竞争对手参与生物制造供应链所带来的风险的缓解措施来保护美国生物技术生态系统;• 与合作伙伴和盟友建立繁荣、安全的全球生物经济。该计划推动国际合作,以利用生物技术和生物制造来应对最紧迫的全球挑战,从气候变化到健康安全,并共同努力确保生物技术产品的开发和使用符合民主道德和价值观,确保生物技术的突破造福全体公民。
  • 新高度:计量测试技术必须走在中国制造的前列
    随着2016年“5.20世界计量日”的日益临近,计量,再次成为人们关注的焦点。事实上,计量,在人们生活中无处不在,人们应该时刻关注计量。近日,中国计量测试学会秘书长马爱文撰文论述了计量对中国制造的重要性和作用。  该论文指出,国务院印发的《中国制造2025》明确强调:制造业是国民经济的主体,是立国之本、兴国之器、强国之基。《中国制造2025》,是我国实施制造强国战略第一个十年的行动纲领。聂荣臻元帅曾经说过:科技要发展,计量须先行。那么对于中国制造呢?中国计量测试学会马爱文秘书长认为,计量测试技术必须走在中国制造的前列。  一、中国制造的基本内容和特征  《中国制造2025》,在全面分析全球制造业格局面临的重大调整、我国经济发展环境发生重大变化、我国制造业存在的问题等基础上,国务院提出了我国建设制造强国的九项战略任务和重点:提高国家制造业创新能力、推进信息化与工业化深度融合、强化工业基础能力、加强质量品牌建设、全面推行绿色制造、大力推动重点领域突破发展、深入推进制造业结构调整、积极发展服务型制造和生产性服务业、提高制造业国际化发展水平。  通过分析这九个方面的关系,中国制造的实质可以概括为:通过创新、融合、强基,实现质量提升、企业转型和快速发展。  创新,《中国制造2025》中上百次用到“创新”一词,并且提出了一些新的创新领域和创新概念,如设计创新、工艺创新、创新网络、创新联盟、创新模式等,但最为主要、最为基础的是科技创新。科技是第一生产力,是中国制造业发展的核心,是其他创新最为依赖的技术基础。我国虽然有200多种产品产量居世界第一位,但缺少核心技术和品牌优势,95%的高档数控机床、85%的集成电路、80%的高端芯片依赖进口。究其原因,科技的落后是我国制造业落后的主要因素。必须通过科技发展与创新,全面提高中国制造创新能力,激发中国制造的创新活力,推动中国制造实现创新发展,并建立起“以企业为主体、市场为导向、政产学研用相结合的制造业创新体系”。  融合,就是指推进信息化与工业化深度融合。信息化与工业化的融合是现代制造业的重要特征。美国提出的网络物理系统(CPS:cyber-physical system)以及德国的工业4.0,其实质都是信息化与工业化的融合问题。中国的制造水平落后于德国、美国,这是不争的事实,中国必须加快这种融合,加快“机器换人”进度,这样中国的制造才能在“再工业化”进程中占有一席之地。也只有实现信息化与工业化深度融合,才能实现智能制造、绿色制造,才能不断“推进生产过程智能化,培育新型生产方式,全面提升企业研发、生产、管理和服务的智能化水平”,才能不断增强中国制造的竞争实力。  强基,就是要夯实中国制造的各项基础。我国已提出“四基战略”,就是把“核心基础零部件(元器件)、先进基础工艺、关键基础材料和产业技术基础”做为我国的工业发展的基础。零部件的精度直接决定着整机的精度 生产工艺、基础材料直接决定产品的质量与效益,产业技术水平直接决定着现代化制造业的整体水平和能力。要实现中国制造,必须夯实这四个中国制造的基础,不断提升精密加工、智能制造以及高质量产品的制造能力,才能全面提升我国基础工业发展水平和快速发展的能力。  二、计量测试技术是中国制造的基础  (一)计量测试技术是科技的基础,也是创新的基础。  我国制造业整体水平排在德国、美国等发达国家之后,而我国的计量测试能力和水平也在这些发达国家之后,这不仅仅是一个巧合,而是从另一个角度反映了计量对整个制造业的影响。俄国化学家门捷列夫讲:没有测量就没有科学。每一项科研成果的取得都是在成百上千次甚至上万次的计量测试的基础上,经过分析、比较、归纳出来的。计量对科技具有很强的引领和促进作用。国家质检总局局长支树平在2015年亚太计量规划组织(APMP)大会上讲:计量测试技术是创新的“种子”和“引擎”,是国家核心竞争力的重要标志之一。没有计量测试技术的创新与发展,没有计量测试提供准确、可靠、一致、有效的计量测试数据,就很难提出创新的思路,也很难验证创新的成果。从科技领域来看,每一次计量测试精度的提高或者新的测试方法的提出,都会带来一些科技新发现,带来一些科技新发明,也会带来一些新技术上革命与进步。  (二)计量测试技术是“融合”的基础。  实现信息化与工业化深度融合,“智能”“大数据”将成为深度融合的重要手段。智能产品、智能装备,及至智能车间、智能工厂,这些都是智能制造的重要组成部分,也是信息化与工业化深度融合的前提和基础。要实现“智能”,就必须以计量测试为前提,为手段。以智能制造为例:一个智能产品(原材料)的基本信息,如基本尺寸、基本成份含量,都必须经过计量测试才能得到 这个智能产品(原材料)要与智能装备进行信息交互,实现智能制造加工,必须经过计量测试才能相互感知,才能对智能产品(原材料)进行定制(按提前计量测试好的要求)化加工 加工后的基本信息只有通过计量测试才能重新写入新的智能产品中,为下一道工序加工提供新的更加完备的基本信息。德国一家玻璃智能制造生产线上有3000多个传感器,正是这3000多个计量测试用的传感器,不停地感知有关信息,并经传输、分析、再感知、再分析,才能保证制造出带有“智能”功能的玻璃产品。带有“智能”功能的玻璃产品再进入“智能”物流或其他“智能”制造过程中,成为社会需要的更加“智能”的产品。在整个“智能”制造过程中,计量测试发挥着重要的作用,并且计量测试的精度直接影响着“智能”产品最后的质量和效益。  (三)计量测试技术是“四基”的基础。  基础零部件、基础原材料、基础工艺、产业技术基础(包括基础检测技术)构成我国制造业的基础。直接把基础检测技术列入国家战略发展的基础,这足以说明基础检测技术的重要性。但更为重要的是:计量测试技术也是其他“三基”(基础零部件、基础原材料、基础工艺)的基础。以基础零部件为例:齿轮是机械加工、高精密仪器制造等各类机械制造中非常重要的一个基础零部件,齿轮的精度直接影响着机械加工的精度。大连理工大学王立鼎院士是齿轮研究方面的专家,他制造的齿轮可以和德国的齿轮精度相一致。他多年来担任中国计量测试学会的常务理事。2013年,我拜访他时,曾经问他:齿轮制造与计量测试有什么样的关系?他对我讲:要制造出高精度的齿轮,就必须要有更高精度的计量测试手段。同时他还讲到:我国精密加工机床精度不高,机器噪音大,寿命短等,造成的原因表现上是齿轮之间或轴承之间的有效啮合不好,深层次原因是我国在这方面的计量测试精度不够。在现代化的生产工艺过程中,计量测试是实现工艺过程控制的技术基础,计量测试精度的高低直接影响着产品的质量,影响着企业的效益。同样,在原材料的制造过程中,如果计量测试不准确,精度不够高,同样会直接影响到原材料的质量和性能。  (四)计量测试技术是企业提质增效、转型升级的基础。  在工业企业,人们常讲的一句话是:计量是企业的“眼睛”。的确,从原材料进厂,到企业生产工艺过程控制,到企业的产品检测,再到企业的节能减排增效,计量都发挥着重要的“眼睛”作用。但随着现代化企业的发展,特别是工业化与信息化的深度融合,计量测试将成为现代化企业的“中枢”,甚至是大脑。在智能制造过程中,使用微型传感器进行计量检测,通过互联网将数据传到数据中心,数据中心经过计算分析,再将指令传达到智能设备,智能设备进行智能操作。这时,计量测试已不仅仅是简单的“眼睛”,而变成一个系统,包括传输、分析甚至执行。随着芯片技术的发展,这一整套过程都会集成到一个小小的芯片上。计量测试已完全构成了一套系统,成为一个“智能人”。未来要实现定制化智能制造,一条生产线已不再只生产一种规格的产品,要随时检测、随时调节、随时制造不同规格、不同颜色、不同大小、不同形状、不同性能的产品。这时更需要不断进行计量测试。计量测试水平以及计量测试技术的应用已成为影响中国“智造”的关键。早在上世纪初,世界工业发达国家就把合格的原材料、先进的生产工艺以及计量测试技术做为现代化企业的三大支柱。计量测试已成为现代企业保障产品质量、实现转型升级的重要技术基础。欧盟2002年一项统计表明,计量通过支持技术创新对欧盟GNP的贡献达0.77%,数额达610亿欧元。随着社会进步对科技的依赖,这个数字肯定还要高。  三、加快推进计量测试技术进步,引领中国制造快速发展  基础不牢,地动山摇。要实现中国制造,计量测试技术必须先行。  (一)加强计量测试前沿技术研究,不断提高计量测试精度。  计量研究是一个不断超越自我的过程。精度的提高是永无止境的。精确计量还将不断催生其他领域新技术的发展。伴随测量精度的大幅度提高,一大批革命性的新技术也会相继涌现,如纳米技术的应用将不断提升航空发动机的精度,也不断推动核潜艇技术的发展。目前我国整体的计量测试水平离发达国家还有很大的差距,特别是在与中国制造相关的极大、极小,极高、极低等领域差距更大。因此,要加强计量科技基础及前沿技术研究,特别是基本物理常数等精密测量和量子计量基准研究,在应对国际单位制重大技术革命的同时,建立一批新一代的高准确度、高稳定性量子计量基准,为中国制造服务。要突破重点领域的关键计量测试技术,建立一批适合中国制造快速发展的国家计量基标准、社会公用计量标准;要加强高精度、具有快速反应能力的计量测试技术的研究,为精准制造、敏捷制造提供精准计量测试技术服务。  同时,要加强计量测试科技成果的转化,推动计量测试产业发展。计量科研项目的立项、论证等要与中国制造中的重点领域、重点产业、重大战略的科研项目对接,把科研成果的转化作为计量测试技术研究课题立项、执行、验收的全过程评审指标。要建立计量科研机构与企业技术机构交流平台,加强计量技术机构与企业联合立项、联合攻关、联合研发力度。  (二)加强先进实用计量测试技术研究,推动计量测试技术与中国制造的深度融合。  要加快新型传感器技术、微型传感技术、功能安全技术等新型计量测试技术和测试方法研究,推动我国传感器产业的快速发展 要加强传感器计量检定、校准特别是自校准、自适应过程中的量传溯源技术的研究,保证传感器量值的准确可靠。要加强远程传输、远传校准、扁平校准等新计量测试技术的研究,以适应“系统计量”或“整体计量”的需要。要加快航空航天装备、海洋工程装备、节能与新能源汽车、电力装备、农机装备等现代制造业重点领域专用计量测试技术研究,提升专业计量测试水平。要加强核心基础零部件、基础工艺、基础材料相关计量测试技术的研究,着力解决影响核心基础零部件(元器件)、基本原材料产品性能和稳定性的关键共性技术,为“四基”战略打好计量测试技术基础。要加强数控机床、机器人、轨道交通装备等整体中计量测试技术的研究,特别要在柔性制造中,加强“柔性计量”技术的研究,提高整体(机)加工(制造)精度。加强仪器仪表核心零(部)件、核心控制技术研究,培育具有核心技术和核心竞争力的仪器仪表品牌产品。  (三)加强中国制造过程中智能计量测试技术研究。  2005年,美国国家标准与技术研究所(NIST)提出了“聪明加工系统(smart machining system,SMS)”研究计划。我国也要加强这方面的研究工作。加强工业生产中计量测试技术的研究,为精益生产、在线检测、质量诊断、精细化管理、绿色制造提供计量测试技术保障。加强产业计量测试技术研究,为全产业链、全产品寿命周期、全量传溯源链提供前瞻性计量测试技术服务。加强智能产品、智能装备以及智能制造中相关的计量测试技术研究,为智能化生产提供计量测试技术服务。要加强互联网技术中的计量测试技术研究,确保计量测试数据在传输过程中的保真、保准、一致、可靠。要加强人机智能交互、工业机器人、智能物流管理、增材制造等过程中的计量测试技术研究,促进制造工艺的优化、实时监测、远程监控和自适应控制技术的发展。要将计量测试嵌入到产品研发、制造、质量提升、全过程工艺控制中,实现关键量准确测量与实时校准。  计量测试是中国制造的基础,特别是随着中国制造质量的提升、制造精度的提高以及制造功能的扩大,计量测试的基础作用、先导作用将更加突显。计量测试技术必须走在中国制造的最前沿。
  • 绿色制造技术标准联盟日前正式成立
    2010年2月2日,由机械科学研究总院中机生产力促进中心(下称“中心”)组织,中国机械工业联合会、北京机电研究所、重庆大学等20余家单位共同发起的绿色制造技术标准联盟(下称“联盟”)成立大会在北京召开。成立大会由中心副主任邱城主持,中国机械工业联合会李冬茹处长、机械科学研究总院院长李新亚到会并讲话。中心标准化研究所副所长丁红宇做了绿色制造技术标准联盟筹备工作总结报告,对近两年的联盟筹备工作进行了详细介绍。   据了解,联盟以“十一五”国家科技支撑计划“绿色制造关键技术和装备”重大项目成果为基础,由国内相关的研发单位、应用企业、标准化机构、行业协会以及检测、评定机构等共同发起,自愿组成。主要任务为:跟踪绿色制造技术发展前沿和国内外相关标准化动态,研究装备制造业绿色制造技术标准需求,开展共性问题和重点标准的前期研究和技术研讨工作 提出绿色制造技术标准体系、行业标准和国家标准制修订计划、标准化研究项目立项以及相关标准化方针和政策的建议 促进相关标准化机构之间的信息沟通、技术交流与标准协调工作,配合相关标准机构,组织联盟成员单位协助或参与相关国家或行业标准的研究与制定工作 组织开展国际、国内相关标准化技术交流活动,建立绿色制造技术标准平台,配合相关标准机构开展标准技术咨询、标准宣传与贯彻工作。   李新亚院长对联盟的成立给予了充分的肯定,并指出,联盟的组建将进一步增强绿色制造技术联盟的整体实力,为统一绿色制造技术基本概念的理解与表述,更好地开展绿色制造技术标准体系研究、标准制修订奠定了基础。在提升绿色制造技术的普及、应用和收效程度,保障绿色制造技术相关检测、评估评价与认定工作的规范化,促进绿色制造技术资源的共享与积累等方面具有重要的意义。同时,李院长表示,作为绿色制造技术创新联盟的成员,机械科学研究总院将积极支持院直属企业加入绿色制造技术标准联盟,认真履行相应义务。   此次会议推选中国机械工业联合会李冬茹为理事长,中机生产力促进中心奚道云为联盟第一届理事会秘书长,重庆大学曹华军、上海交通大学陈铭为副秘书长。
  • 中关村成立未来制造业产业技术联盟
    12月5日下午,中关村未来制造业产业技术国际创新战略联盟成立大会在中国工程院举行。工程院副院长干勇等与会领导为联盟代表成员授牌,并为联盟专家委员会主任委员颁发聘书。   据介绍,中关村在未来制造业主要产业链环节具备较好的基础,在部分材料、设备等核心领域展开了积极探索,产业融合态势及个性化定制生产的新兴业态在中关村初现端倪。   为鼓励协同创新,吸引更多的企业加入产业发展,不断探索未来制造业发展的新模式,在中关村管委会支持下,京城控股、北新建材、数码大方、优纳科技等34家核心企业和院所发起成立了未来制造业产业技术联盟,理事长单位是机械科学研究总院。   据悉,该联盟将以高端装备为牵引,主要针对数字化设计、智能制造、高端装备等未来制造业发展的关键新材料、新技术、新装备和新产品等进行研发攻关和集成创新,联合相关单位承担重大科研任务,形成一批对行业和北京市发展起支撑作用的重大成果,打造具有国际竞争力的新兴产业集群。
  • “精密超精密制造技术联合实验室”揭牌
    南京航空航天大学机电学院与上海航天控制技术研究所共建“精密超精密制造技术联合实验室”签约暨揭牌仪式近日举行。   南航机械制造及其自动化学科是国家重点学科。上海航天控制技术研究所的业务涉及弹、箭、星、船、器各领域,军民融合已形成良性发展。   双方相关负责人表示,成立联合实验室可充分发挥双方技术与人才优势,实现在先进制造领域的全面战略合作 希望双方加强产学研合作,使联合实验室成为人才培养的平台、先进制造技术交流的平台。希望联合实验室不断提高自主创新能力,为我国航天事业的发展提供强有力的技术支持。
  • 2022年先进光学制造技术及应用国际会议暨第二届国际先进光学制造青年科学家论坛
    2022年先进光学制造技术及应用国际会议暨第二届国际先进光学制造青年科学家论坛International Conference on Advanced Optical Manufacturing Technologies & Applications 2022 & 2nd International Forum of Young Scientists on Advanced Optical Manufacturing(AOMTA & YSAOM 2022)2022年7月29-31长春国际会展中心大饭店https://b2b.csoe.org.cn/meeting/YSAOM2022.html光学在制造业中的作用日益凸显,在应用需求的推动下,大会预计将在2022年7月29-31日于长春国际会展中心大饭店举办。本次大会将重点探讨先进光学制造技术及装备的最新发展动态。会议邀请相关领域全球资深专家做大会报告以及国内外中青年专家作专题报告,同时欢迎广大青年才俊自荐报告展示最新成果。为相关从业人员以及研究生提供合作交流平台,使先进光学制造领域产学研紧密结合。录用论文收录在美国SPIE国际会议文集序列暨其数字图书馆中,EI核心检索,全球出版发行,同时也有众多国内优质光学期刊参与本次会议全文收录。活动包括会议、展览、培训等多种形式。活动内容国际会议交流:专家报告采用申请+邀请制,会议活动包括但不限于主旨报告交流、专家报告交流、口头报告交流、Poster海报展示、优秀学生论文评选(颁发证书)、论文发表等。光学制造产业展:包括产品展示、校企对接会、院企对接会等活动。技术及技能培训:为相关从业人员提供实例分析、概念讲解和技能实训等方面技术及技能培训。组织机构:主办单位:中国光学工程学会承办单位:中国科学院长春光学精密机械与物理研究所长春理工大学吉林大学长春工业大学上海理工大学复旦大学上海超精密光学制造工程技术研究中心中国光学工程学会先进光学制造青年专家委员会联办单位:天津津航技术物理研究所清华大学国家光栅制造与应用工程技术研究中心中国科学院光学系统先进制造技术重点实验室支持单位:湖南天创精工科技有限公司长春长光大器科技有限公司长春长光精瓷复合材料有限公司布鲁克(北京)科技有限公司大连盛航科星科技发展有限公司北京欧唐科技发展有限公司长春吉萤光电科技有限公司安捷伦科技(中国)有限公司武汉红星杨科技有限公司成都兴南科技有限责任公司光驰科技(上海)有限公司恒迈光学精密机械(杭州)有限公司上海至臻超精密光学有限公司大会荣誉主席:庄松林 院士 上海理工大学王家骐 院士 中科院长春光学精密机械与物理研究所郭东明 院士 大连理工大学蒋庄德 院士 西安交通大学大会主席:姜会林 院士 长春理工大学谭久彬 院士 哈尔滨工业大学罗先刚 院士 中科院光电技术研究所国际主席:Prof. Saulius Juodkazis, Swinburne University of Technology, Australia大会执行主席:张学军 研究员 中科院长春光学精密机械与物理研究所孙洪波 教 授 清华大学付跃刚 教 授 长春理工大学组织委员会主席:董科研 长春理工大学岳晓峰 长春工业大学张 舸 中科院长春光学精密机械与物理研究所青年科学家论坛主席团:• 主席孔令豹 复旦大学张大伟 上海理工大学薛栋林 中科院长春光学精密机械与物理研究所薛常喜 长春理工大学• 共主席(按姓氏拼音排序):高 平 中科院光电技术研究所郭 江 大连理工大学冀世军 吉林大学李文昊 中科院长春光学精密机械与物理研究所刘华松 天津津航技术物理研究所刘智颖 长春理工大学彭小强 国防科技大学彭云峰 厦门大学任明俊 上海交通大学王素娟 广东工业大学魏朝阳 中科院上海光学精密机械研究所张继友 浙江大立科技有限公司宗文俊 哈尔滨工业大学大会报告人Plenary Speakers(更新中):郭东明院士,大连理工大学——高性能光学制造技术Prof. Saulius Juodkazis, Swinburne University of Technology, Australia——Ultra-short laser pulses for high precision laser fabricationProf. Wounjhang Park, University of Colorado Boulder, USA——Upconversion Nanomaterials for Biosensing and Imaging Applications张学军研究员,中科院长春光学精密机械与物理研究所——Ultra-precision optical component manufacturing and measurement technology胡鹏程教授,哈尔滨工业大学——超精密激光干涉位移测量技术研究进展与挑战研讨主题(分专题组织机构成员按姓氏拼音排序):• 专题1:大尺寸光学反射镜与望远镜技术本专题拟反映大尺寸光学反射镜与望远镜技术及装备的最新进展,重点包括但不限于:科学目标观测与光学工程技术、大型轻量化光学反射镜优化设计、先进光学与结构材料、高精度高稳定性反射镜及结构支撑技术、拼接式合成孔径光学系统测量与调控技术、大型光电仪器一体化设计、主动光学与自适应光学技术、巨型跟踪结构及其高精度稳定控制技术、空间望远镜天地一致性技术、大型光电仪器精密装配技术、复杂光学元件及系统试验/测试与计量技术。主 席:薛栋林(中科院长春光学精密机械与物理研究所)共主席:Chen,Wei-Jun(Zeiss Group)范 斌(中科院光电技术研究所)程序委员会:李龙响(中科院长春光学精密机械与物理研究所)王 虎(中科院西安光学精密机械研究所)王 伟(复旦大学)王 炜(中科院国家天文台)王永刚(北京空间机电研究所)杨继兴(天津津航技术物理研究所)袁 群(南京理工大学)张军平(中科院南京天文光学技术研究所)• 专题2:超精密光学加工技术及装备本专题拟反映超精密光学制造装备、制造技术手段及工艺方法的最新进展,重点包括但不限于:超精密车、铣、磨、抛等工艺,激光加工,特种加工,新型微纳加工,模压及注塑成型,微纳压印,增减材复合工艺,多能场辅助加工,刀具设计及制造,刀具磨损,加工误差诊断与优化,加工路径规划及优化,工艺链过程建模与仿真、材料去除机理,有限元和分子动力学分析,振动控制,表面全频段误差分析及控制,加工精度保持及可靠性,加工检测一体化,机床核心功能器件(高性能电机、主轴、光栅尺、运动控制器、导轨、转台等),超精密加工系统及模组,精密加工关键算法及软件等。主 席:孔令豹(复旦大学)共主席:彭云峰(厦门大学)王素娟(广东工业大学)魏朝阳(中科院上海光学精密机械研究所)程序委员会:曹中臣(天津大学)陈国达(浙江工业大学)陈杉杉(西安交通大学)黄 鹏(南京理工大学)孙占文(广东工业大学)王海涛(深圳职业技术学院)杨 高(深圳大学)于文慧(山东理工大学)张国庆(深圳大学)赵泽佳(深圳大学)专题秘书:王施相(复旦大学)• 专题3:光学测试、测量技术及设备本专题拟反映光学测试、测量技术及仪器设备的最新进展,重点包括但不限于:光学测试和测量基标准、计量与在线数字校准、先进光学制造过程中的测量问题、光学元件几何参数和物理特性测量方法、光学测量系统中关键光学器件研制、基于光栅、光纤等光学器件的测试测量技术、微纳制造中的先进测量方法、宏微观测量技术、精密和超精密加工测量、精密和超精密测量的现代光学技术和仪器、光学测量中的数据处理方法、新型光学测试测量原理、新型光学测量仪器与设备、新型仪器理论与设计方法、微纳米测试与计量方法、极大极小尺寸光学测量方法、视觉测量技术等。主 席:李文昊(中科院长春光学精密机械与物理研究所)共主席:陆振刚(哈尔滨工业大学)闫钰锋(长春理工大学)杨树明(西安交通大学)程序委员会:陈梅云(广东工业大学)陈修国(华中科技大学)胡鹏程(哈尔滨工业大学)胡 摇(北京理工大学)任明俊(上海交通大学)单明广(哈尔滨工程大学)沈 华(南京理工大学)谈宜东(清华大学)王 允(北京理工大学)吴冠豪(清华大学)虞益挺(西北工业大学)张文喜(中科院空天信息创新研究院)张效栋(天津大学)专题秘书:刘兆武(中科院长春光学精密机械与物理研究所)• 专题4:新体制、新概念设计技术和方法本专题拟反映新体制、概念、设计、工艺和方法的最新进展,重点包括但不限于:新的光学设计、光学制造、光学检测、光学装调,突出新概念、新方法、新思路、新材料、新设计、新工艺,实现复杂曲面、金属光学、难加工材料光学等数学描述和非传统光学系统的创新性光学设计,及其通过超精密单点车削技术、磁流变/离子束/数控研磨抛光、光学玻璃模造成型和光学塑料注塑成型技术等超精密光学先进制造技术,实现新型光学元件的设计与制造,提出检测新方法,制造方法和装配方法的新概念。主 席:薛常喜(长春理工大学)共主席:王孝坤(中科院长春光学精密机械与物理研究所)吴仍茂(浙江大学)徐 亮(中科院西安光学精密机械研究所)张云龙(西安应用光学研究所)程序委员会:郭 兵(哈尔滨工业大学)潘敏忠(福建富兰光学股份有限公司)王道档(中国计量大学)章少剑(南昌大学)朱 钧(清华大学)专题秘书:杨 超(长春理工大学)• 专题5:光学微纳制造技术及应用本专题拟反映光学微纳制造技术及应用的最新进展,重点包括但不限于:超分辨/超衍射制造新机理与新方法,超分辨光学增材/减材制造技术及应用,高效率亚波长结构制造方法,激光微纳制造新机理与新技术,光子及微电子集成芯片的光学制造新方法,三维全息显示器件的低成本制造方法,光学微纳制造的性能评测方法及配套精密光学检测技术等。主 席:陈岐岱(吉林大学)共主席:高 平(中科院光电技术研究所)周见红(长春理工大学)程序委员会:高洪跃(上海大学)李连升(北京控制工程研究所)王文君(西安交通大学)吴 东(中国科学技术大学)岳伟生(中科院光电技术研究所)周 锐(厦门大学)专题秘书:王 磊(吉林大学)• 专题6:高性能光学制造技术及装备本专题拟反映高性能光学制造、测量技术及装备的最新进展,重点包括但不限于:高性能光学微细结构及自由曲面控形控性超精密加工技术及装备,能场辅助难加工材料极端制造技术,原子级超光滑表面制造技术,高性能光学元件高效、超低损伤制造技术,高性能光学元件几何参数高精度测量技术,高性能光学元件服役性能测试及评价技术,大规模微纳尺度微细结构高精度快速制造技术等。主 席:郭 江(大连理工大学)共主席:崔海龙(中物院机械制造工艺研究所)王春锦(香港理工大学)许金凯(长春理工大学)朱吴乐(浙江大学)程序委员会:邓伟杰(中科院长春光学精密机械与物理研究所)侯 溪(中科院光电技术研究所)康城玮(西安交通大学)童 振(哈德斯菲尔德大学)王振忠(厦门大学)姚 鹏(山东大学)于 楠(爱丁堡大学)张建国(华中科技大学)专题秘书:杨 哲(大连理工大学)• 专题7:制造新技术、新工艺和新方法本主题旨在反映新型制造技术、工艺和方法的最新发展,包括但不限于:新型纳米抛光技术、超表面/超构材料设计制造、先进束能抛光、特种材料加工技术等;先进的表面处理技术;新型加工装备、工具的设计开发,新型超硬材料刀具;制造工艺链的设计与优化、系统设计与仿真等。主 席:徐学科(上海恒益光学精密机械有限公司)共主席:陈俊云(燕山大学)戴 博(上海理工大学)许剑锋(华中科技大学)程序委员会:蔡玉奎(山东大学)姜 超(中南大学)刘 超(北京航空航天大学)鲁艳军(深圳大学)穆德魁(华侨大学)石 峰(国防科技大学)苏 星(中物院机械制造工艺研究所)谭启玚(澳大利亚昆士兰大学)王 朋(天津津航技术物理研究所)王绍凯(哈尔滨工业大学)熊 涛(湖北久之洋红外系统股份有限公司)专题秘书:方媛媛(中科院上海光学精密机械研究所)• 专题8:前沿光学薄膜技术及设备本专题拟反映光学薄膜设计、制备、表征技术及设备的最新进展和重大项目领域的应用成效,重点包括但不限于:涵盖从X射线到远红外光学谱段的新型光学薄膜材料,光学薄膜材料性能调控的新进展;以X射线、激光和红外典型光学谱段为代表的高性能光学薄膜设计与制造技术、多维功能表面薄膜设计与制备技术、多功能光学薄膜设计与制备技术(光、热、力、电);面向应用需求的薄膜性能测试技术,如超宽谱段光学常数表征技术、低损耗光学薄膜性能测试技术、特种环境光学薄膜性能评估与测试方法等;光学薄膜制造设备与检测仪器的最新进展等。主 席:张锦龙(同济大学)共主席:程鑫彬(同济大学)刘华松(天津津航技术物理研究所)程序委员会:何文彦(中科院光电技术研究所)李 刚(中科院大连化学与物理研究所)邵宇川(中科院上海光学精密机械研究所)沈伟东(浙江大学)王笑夷(中科院长春光学精密机械与物理研究所)汪 洋(光驰科技(上海)有限公司)卫耀伟(中物院激光聚变研究中心)专题秘书:杨 霄(天津津航技术物理研究所)• 专题9:光学系统装调,系统集成与评价技术本专题拟反映光学制造及装备中的光学系统集成的最新进展,重点包括但不限于:空间复杂焦面拼接与配准测试技术、复合光路高精度定心与装调测试技术、立体测绘相机系统集成与测试技术、内方位元素与畸变测试技术、低温光学装调与性能评价技术、红外光学系统装调与性能评价技术、激光跟踪系统装调与性能评价技术、精密光谱仪高精密装调与检测技术、大口径光学系统装调测试技术、计算机辅助装调技术、无应力胶合及无应力装配技术、原位检测技术、高精度定位及多自由度装调技术、基于频率组分的光学面形评价技术、波前探测技术、高功率激光系统装调技术、多波段共光路光学系统精密装调技术、多光轴一致性精密调整技术。主 席:张继友(浙江大立科技有限公司)共主席:沈正祥(同济大学)吴雪峰(哈尔滨理工大学)程序委员会:毕 勇(中科院南京天文仪器有限公司)李重阳(北京空间机电研究所)李 忠(华中光电技术研究所)魏 来(中物院激光聚变研究中心)伍雁雄(佛山科学技术学院)虞林瑶(中科院长春光学精密机械与物理研究所)张 振(天津津航技术物理研究所)专题秘书:王东杰(北京空间机电研究所)• 专题10:光流控与液晶技术及应用专题秘书:张 旺(吉林大学)会议日程(以现场为准):时间 内容
  • 专业仪器+先进信息技术,携手实现“中国制造2025”!
    新中国成立后,特别是改革开放以来,我国制造业持续快速发展。然而,与世界先进水平相比,中国制造业仍然大而不强,在自主创新能力、资源利用效率、产业结构水平、信息化程度、质量效益等方面差距明显,转型升级和跨越发展的任务紧迫而艰巨。 “中国制造2025”是以体现信息技术与制造技术深度融合的数字化网络化智能化制造为主线的。 奥林巴斯的产品不仅体现了专业性和高效性,更是体现了很强的信息化水平。它们不仅在各专业检测领域发挥着重要的作用,同样也为“中国制造2025”贡献着自己的力量。 奥林巴斯近期发布的奥林巴斯科学云(Olympus Scientific Cloud,简称 OSC)3.0 版本,带来了更加简洁易用的UI、全新应用商城、仪器集、个人管理工具以及云数据存储功能,这些全新的强大工具,将使工业检测的数据处理工作变得易如反掌,让用户在检测和分析应用中,从容施展工业互联网和工业4.0 的威力。 奥林巴斯OSC3.0,是面向所有互联奥林巴斯工业设备的单源平台,可为用户提供持续增强的全面解决方案。奥林巴斯无线设备用户(包括 Vanta™ XRF 分析仪、EPOCH™ 6LT 探伤仪以及配有 38-Link™ 适配器的 38DL PLUS™ 测厚仪)均可免费注册OSC帐户,并可获得扩展10GB存储(每租户)、无线软件更新、手册和检验证书云访问、用户注册、角色管理等免费仪器功能。 同时,在OSC 3.0平台,用户还可以浏览免费和付费应用,全新应用软件让以往一些特别令人头疼的问题得到轻松解决。首款全新应用 Inspection Project Manager (简称IPM) 伴随OSC 3.0一起发布,该应用有助于简化测厚仪腐蚀检测流程,让数据管理工作变得快速和高效。配有38-Link™ 适配器的 38DL PLUS™ 测厚仪 云技术的普及和运用,是全世界的科技发展方向,也是“中国制造2025”中关键的一环。奥林巴斯OSC 3.0可为管理员提供一个中心位置,远程控制与其云租户相关的用户和设备。比如控制用户的权限和角色,添加或删除成员,并管理和订阅相关数据,做到随时随地掌控全局。在设备方面,用户可在其租户中添加新设备,查看之前注册的仪器,还可以查看和下载与每个仪器相关的关键文档,例如检验证书和用户手册等等。 光有先进的信息技术,没有专业高效的产品肯定是不行的!只有通过两者的相辅相成,才能发挥更大的作用!奥林巴斯EPOCH™ 6LT 探伤仪 便于携带、使用方便的EPOCH 6LT探伤仪是一款符合人体工程学要求的坚固耐用的仪器,不仅可使操作人员得心应手地进行操作,还可以正常运行更长的时间。 仪器仅重890克,其重量的分配根据抓握方向决定,单手操作时可最大程度地减少手腕的疲劳。飞梭旋钮和简单的按钮设计,使得仪器使用起来非常方便,即使操作人员带着手套。设计符合IP65/IP67评级标准,且通过了坠落测试。清晰明亮的屏幕使用户在多数光线条件下都可以清楚地观看A扫描。 38DL PLUS超声测厚仪 未来,奥林巴斯将继续秉承“实现世界人民的健康、安心和幸福生活”的企业使命,为现代工业生产、运行筑起安全堡垒,为中国工业科技领域的发展和进步贡献企业力量。
  • 汽车零部件振动辅助制造技术
    汽车零部件振动辅助制造技术为促进材料与汽车的融合创新,赋能汽车产业高质量发展,陕西省汽车工程学会携手仪器信息网于2023年9月14日组织召开“汽车新材料研究应用及检测技术”网络会议,邀请多位专家学者围绕汽车用先进结构材料和相关检测技术展开研讨。会议报名链接:https://www.instrument.com.cn/webinar/meetings/autonewmaterial230914/ 本次介绍专家:孟德安--汽车零部件振动辅助制造技术专家简介:长安大学汽车学院副教授,硕导。主要研究方向为:汽车先进制造技术、结构轻量化设计技术。近年来,主持包括国家自然科学基金、国家重点研发计划专题、陕西省自然科学基金、陕西省科技重大专项专题等多项纵向课题,参与包括国家自然科学基金重点项目、国家重点研发计划等多项国家级重点课题,在复杂零部件特种成形制造等多个技术领域积累丰富经验,以第一作者/通讯作者发表中英文学术论文20余篇,授权发明专利20余项。附:参会指南 1、 进入汽车新材料研究应用及检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/autonewmaterial230914/)进行报名。 扫描下方二维码,进入会议官网报名 2、 报名开放时间为即日起至2023年9月14日。 3、 会议召开前一周进行报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。 4、 本次会议不收取任何注册或报名费用。 5、 会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn) 6、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 利用iPS细胞高效制造造血干细胞技术问世
    日本研究人员日前宣布,他们开发出了利用实验鼠的诱导多功能干细胞(iPS细胞)高效制造造血干细胞的技术。医生未来在治疗白血病时,有望利用这种技术制造大量造血干细胞,从而代替骨髓移植。   造血干细胞位于骨髓中,可以分化为红细胞和白细胞。东京都临床医学综合研究所与大阪大学的研究人员利用iPS细胞先制作出了中胚层细胞。这种细胞可以发育为血管和肌肉等组织。随后研究人员向中胚层细胞植入LhX2基因,最终生成了大量的造血干细胞。   研究人员接下来用放射线照射实验鼠,使其失去造血功能,再将用上述方法得到的造血干细胞移植到一部分实验鼠体内。结果显示,和没有接受造血干细胞移植的实验鼠相比,接受移植的实验鼠寿命大幅延长,生存了4个月。   研究人员指出,此前利用iPS细胞培养造血干细胞时,难以单纯生成造血干细胞,还会混杂其他细胞,而这次开发出的新技术使造血干细胞的生成效率达到了原有方法的四五倍。   目前在对白血病患者进行治疗时,主要是移植与患者血液类型接近的正常人骨髓,以利用其中的造血干细胞,帮助患者恢复。研究人员希望在确认安全性后,将这种新技术用于人类的白血病治疗。相关论文已刊登在新一期美国《血液》杂志网络版上。
  • 激光技术在高效光伏电池制造中的最新应用!
    【研究背景】光伏技术是将太阳能转化为电能的关键技术,因其可再生、清洁的特点,成为了当前全球能源转型的研究热点。然而,光伏电池在高效能转换与材料成本之间存在权衡问题,尤其是在光电转换效率、长期稳定性和制造成本等方面面临挑战。为了解决这些问题,研究者们采用了多种先进的材料和技术,例如氢化非晶硅(a-Si:H)及其层状结构。相关研究表明,优化材料的微观结构和电气性能能够显著提高太阳能电池的效率和可靠性。在此背景下,隆基绿能科技有限公司李振国、徐希翔博士、Liang Fang 、Chaowei Xue联合扬州大学丁建宁教授携手利用先进的特征化技术,如光束诱导电流(LBIC)和椭偏仪,系统地分析太阳能电池的电流-电压特性及材料的光学性能。这些研究不仅提高了对材料内部机制的理解,也推动了新型光伏材料的开发。通过有限元法(FEM)和双温度模型(TTM)的结合,科学家们模拟了激光作用下各层的瞬态热响应,为优化光伏设备的设计提供了理论依据。研究结果表明,采用新的材料组合和工艺能够显著提升光伏电池的光电转换效率,促进了光伏技术的可持续发展。【表征解读】本文通过Sinton FCT-650 IV测试仪和Sinton Instruments WCT-120仪器对太阳能电池的电流-电压(I-V)特性和有效寿命进行了测量,从而揭示了电池性能与材料特性的关系。同时,采用Kane和Swanson方法提取表面复合参数J0,以量化表面复合效应对电池性能的影响,进而挖掘了表面质量与效率之间的微观机制。针对电气遮挡机制引起的电流损失现象,本文利用自制的光束诱导电流(LBIC)系统进行了系统表征,得到了不同光照条件下的电流分布特征。这一分析使得我们深入理解了在光照强度变化下,太阳能电池中电流损失的微观机制,进一步促进了材料优化的可能性。此外,本文通过J.A.Woollam M-2000椭偏仪测量了薄膜的厚度、折射率(n)和消光系数(k),并使用傅里叶变换红外光谱(FTIR)获得了氢化非晶硅层的微观结构(R*)和氢含量(CH)。这些表征手段揭示了氢含量与薄膜性能之间的关联,强调了氢在改善薄膜电气特性方面的关键作用。在此基础上,结合有限元法(FEM)仿真,本文模拟了激光能量下的瞬态热响应,通过双温度模型(TTM)与波光学模块(WOM)的结合分析了材料在不同激光功率下的热与光学特性。这些发现不仅有助于理解材料的热响应机制,还为未来光伏器件设计提供了重要的理论基础。综上所述,经过系统的表征和微观机理分析,本文深入探讨了氢化非晶硅薄膜的电气特性与微观结构之间的关系,进而制备了性能优异的新型材料。【图文速递】图1:HBC太阳能电池设计。图2. HBC 的密集钝化 N 接触。图3. 激光图案化过程。图4: 太瓦级可持续性分析。【科学启迪】本文展示了激光图案化技术在高效硅异质结背接触太阳能电池(HBC)的制造中的重要性,尤其是在提高功率转换效率(PCE)和简化生产流程方面。研究表明,优化钝化接触和采用先进的激光技术可以显著降低接触电阻,提高载流子传输效率,最终使HBC电池的效率突破27%。此外,通过无铟和无银的材料创新,研究团队不仅提高了电池的效率,还降低了稀有材料的使用,推动了可持续发展的目标。未来,随着技术的进一步成熟和规模化生产的实现,HBC太阳能电池有望在满足日益增长的能源需求和环境保护方面发挥更大作用。这项研究不仅为光伏技术的进步提供了新的思路,也为其他高效能材料的开发与应用奠定了基础,强调了跨学科合作在解决现代能源挑战中的重要性。因此,继续探索新材料和制造技术将是推动光伏产业可持续发展的关键。原文详情:LWu, H., Ye, F., Yang, M. et al. Silicon heterojunction back contact solar cells by laser patterning. Nature (2024). https://doi.org/10.1038/s41586-024-08110-8
  • 北京亦庄首个合成生物制造公共技术平台正式启用
    近日,合成生物技术创新论坛在北京经济技术开发区(北京亦庄)举行。该论坛由北京经济技术开发区管委会指导,工业生物催化教育部重点实验室主办,北京经开区生物技术和大健康产业专班、北京衍微科技有限公司承办。在论坛上,北京亦庄首个合成生物制造公共技术平台正式启用。抢抓生物制造产业发展机遇合成生物制造是抢抓全球生物经济发展机遇、加快形成新质生产力的重要方向,也是北京亦庄生物技术和大健康产业发展的重要赛道之一,正成为国家和地区综合实力比拼的重要领域。本次论坛上不仅有院士、专家等行业“大咖”带来主题演讲,引领前瞻探索;更有融资签约助力企业加速发展。北京衍微科技有限公司(简称:衍微科技)是依托清华大学科技成果转化初创的新型合成生物技术企业,也是全国首个创立1年即获批牵头承担国家重点研发计划项目的企业,北京亦庄国际投资发展有限公司与衍微科技签约,投资0.5亿元,助力该企业实现超过1.5亿元的A轮融资。接下来,北京亦庄将助推衍微科技,强化与清华大学、中粮集团、中石化等知名研发机构和大型企业的技术合作,深入开展科技研发与成果转化。亦庄首个合成生物制造公共技术平台启用论坛期间,由衍微科技建设的“天空之境合成生物制造公共技术平台”正式启用,这也是北京亦庄首个合成生物制造公共技术平台。该公共技术平台建筑面积超过5000平方米,固定资产投资超过5000万元,具备从合成生物技术到绿色过程技术、再到不同领域产品开发的仪器集群和创新技术网络。走进天空之境合成生物制造公共技术平台,新设备、新产线等引人注目。其中,北京市首台声波激发耦合质谱系统能为105酶和菌种样本提供高通量精准筛选关键技术;5L-500L多条小试-中试发酵生产线和多种形式生物催化装置,为工艺优化和放大、产品制造提供了重要生产平台。此外,该公共技术平台还建设人工气候室、模拟采油装置、界面化学等多个应用测试平台,能面向能源、化工等领域应用开发提供便捷高效的模拟测试环境。今年将发布合成生物制造专项政策据悉,截至目前,北京经开区生物技术和大健康产业已聚集各类企业4200余家。其中聚焦合成生物领域,北京经开区引育了衍微科技、未来生物、津合生物、擎科生物等创新企业,并同步招引企业数十家,成为北京布局发展合成生物制造产业的主要区域之一。为护航产业发展,北京经开区发布了《北京经济技术开发区加快建设全球“新药智造”产业高地行动计划(2023-2025年)》,建立“1+N”结构的产业政策体系,支持领域涵盖高端化药、生物药、高端医疗装备、新型疫苗等板块。同时,北京经开区还把合成生物纳入未来健康产业的发展重点,今年将面向合成生物细分赛道发布专项政策。接下来,北京经开区将进一步助推合成生物行业发展,依托天空之境合成生物制造公共技术平台和现有产业基础,围绕企业的创新研发、成果转化、产业生态链建设等方面,加快出台合成生物制造专项政策,助力北京经开区打造世界级合成生物制造创新策源地和转化聚集区。
  • 上海光机所杨上陆:国产电镜助力激光制造技术创新
    希望能够跟国内外企业协同创新,共同打造更加先进的高端装备,从而更快地推动我们在应用基础研究及技术开发上的发展——中国科学院上海光学精密机械研究所研究员 杨上陆焊接,是连接金属材料的重要方式。从最初的电弧焊接到今天的激光焊接,每一次焊接技术的革新,都绘就了现代工业文明的壮丽画卷。图片来源:摄图网持续创新,为中国激光制造技术添砖加瓦近年来,随着新能源汽车、航空航天等领域对轻质高强度材料的需求不断增长,传统的材料焊接技术已无法满足业界需求。中国科学院上海光学精密机械研究所作为我国建立最早、规模最大的激光专业研究所,设立了激光智能制造研发中心,重点深耕激光焊接、激光精密制造、激光增减材制造、激光冲击强化等核心器件开发、关键工艺的突破和高端装备的研发。中心负责人杨上陆研究员介绍:“我们团队主要围绕轻量化、高性能材料先进激光制造技术的研发,努力构建新材料-新工艺-新装备-新结构之间的新的技术体系,注重应用基础研究、知识产权布局和技术转移转化相结合,坚持通过创新为社会创造价值的理念。近年来,在铝硅涂层热成型钢激光填丝焊接、铝合金电阻点焊、异质材料连接等领域取得了突破”。“牛顿环”铝合金电阻点焊技术攻克了几十年的行业难题,可实现板材、型材、铸铝等铝合金材料的高质量焊接。自2023年起,该技术已应用于吉利、极氪、路特斯等品牌汽车的制造中,也应用在宁德时代、威唐等企业的储能产品,在半导体行业也实现了应用。针对新能源汽车轻量化关键轻量化材料之一的铝硅涂层热成型钢,团队打破了该材料激光焊接技术长期被垄断的局面,实现了不同强度级别、不同涂层厚度和不同供应商材料的“多合一”一体化解决方案。从用户反馈来看,该技术不仅提升了生产效率,也大幅降低了制造成本,提升了制造利润。2023年9月开始,该技术已在多家汽车公司应用。从电极材料制造到失效分析,国仪电镜服务创新全流程为观察焊接接头微观组织及形貌和接头失效分析,通过机理的理解来指导先进焊接工艺开发与改进,激光智能制造研发中心于2022年通过公开招采,引进了国仪量子研制的场发射扫描电镜SEM5000。从材料到制造,再到最终产品性能分析的全过程,都离不开对产品微观结构的检测。传统光学方法无法观测微观细节,因此必须借助扫描电镜来深入分析内部微观组织。“扫描电镜不仅是我们团队每天必须使用的重要工具,更是推动科研创新的强大利器。” 杨上陆说,“它极大加快了我们的研发步伐。”激光智能制造研发中心博士后张家志介绍:“团队通过国仪量子的扫描电镜,对高强钢、铝合金、铜合金、钛合金等材料的焊接接头和失效断口进行组织分析和元素分析。找出断裂机理,指导工艺优化和改进。在‘牛顿环’铝合金电阻点焊技术和铝硅涂层热成型激光焊接技术开发研究过程中,我们也广泛使用了国仪量子扫描电镜,分析接头微观组织和失效断口。国仪量子扫描电镜为“牛顿环”电阻点焊工艺优化和电极改进以及铝硅涂层激光焊接技术开发提供了重要依据。”与国产品牌协同创新,实现自主可控,推动技术升级 牛顿环、盘古界、昆仑镜......激光智能制造研发中心团队的工程师们为他们自主研发的多项技术装备赋予了独特的称谓。杨上陆介绍:“铝合金电阻点焊技术之所以取名“牛顿环”,是因为这项技术所发明的电极形状与光学上的“牛顿环”图样相似,我们想传承牛顿为人类社会进步所做出伟大贡献的科学精神,所以取名为牛顿环。随着新技术、新成果的不断涌现,我们希望这些成果能够建立起属于国人的品牌符号,也就有了盘古界、昆仑镜这些富有传统文化特色的名称。”从产品命名到科研创新,对自主可控的追求贯穿了团队上下。杨上陆说:“实验室仪器装备至关重要。中心希望通过与国内企业的合作,实现高端分析仪器设备的自主可控,拥有自主品牌,形成先进装备与制造技术的良性互促,从而加速科技自主创新,推动制造业高质量发展。扫描电镜对我们这个领域非常重要,我们也希望能够自主可控。”自主可控、用户友好是国仪量子扫描电镜的重要优势。“国仪量子的扫描电镜界面更加人性化,操作简单,即使是没有扫描电镜基础的人员,经过短时培训就可以很快上手。”张佳志说,“而且分辨率和探测器性能都非常优秀,与进口电镜相当,但中文界面和操作更加友好。”他还很赞赏国仪量子的售后服务,“只要有需求,基本能在24小时内得到高效响应和解决。”“国产新能源汽车的不断发展,背后是无数中国科研人的智慧与汗水,是牛顿环、盘古界、昆仑镜等自主创新技术的推广与应用,也是国仪量子等国产科学仪器厂商的执着与坚守。未来,随着更多国产技术装备的突破,先进装备与制造技术必将实现良性互促,推动产业发展升级。”
  • 先进制造技术创新研讨会(上海)召开在即!
    为进一步探讨增材制造行业发展新趋势,共谋先进制造技术多元应用场景。摩方精密将于2023年10月22日,在上海举办本年度第四次先进制造技术创新研讨会,重点聚焦精密增材制造材料与设备技术发展应用。激发创新思维,共创产业发展。本次会议拟邀请各行业专家、合作伙伴、龙头企业家代表,围绕微纳3D打印技术在生物医疗、微流控、智能制造等领域的创新应用展开研讨交流。摩方精密将再次搭建一场关于先进制造技术的行业盛会,期待您的关注!———本次会议亮点抢先看:◎ 行业洞察,微纳3D打印前沿动态◎ 大咖云集,顶尖人物共话发展◎ 技术领先,摩方创新应用成果展示本次大会新增圆桌论坛,通过积极的对话和思想碰撞,窥见行业的未来趋势,共同探索精密增材制造的发展之道。摩方精密诚邀您莅临,共享知识盛宴!———会议:先进制造技术创新研讨会(上海)时间:10月22日14:00-18:00地址:上海锦江汤臣洲际大酒店
  • 精密增材制造技术在生物医疗产业的创新应用
    近期,重庆摩方精密科技股份有限公司(简称“摩方精密”)在北京成功举办了先进制造技术创新研讨会。此次活动聚焦精密增材制造,洞察生物医疗创新应用趋势,同时邀请了众多专家学者和企业家代表与会分享交流,就各自领域的最新实践成果展开了思维的碰撞。本次研讨会特邀重庆摩方精密科技股份有限公司副总裁周建林、北京理工大学副教授刘晓明、北京大学助理教授黄天云、及乐普医疗有源器械部项目主管李向义展开圆桌论坛环节。来自不同领域的专家,围绕精密增材制造在生物医疗产业的创新应用探讨交流,并就行业应用场景、阶段性重点项目进展及产学研合作模式展开讨论,共话行业趋势动态,探讨未来机遇与挑战。01聚焦增材,医械新篇:各位聚焦哪些方面的研究?是否涉及精密增材制造及其在生物医疗的应用?“——我们的业务领域正在不断拓宽,主要包括三个方面:一是精密制造医疗器械的关键零部件;二是研发手术机器人中的精密零部件;三是开发创新体外培养医疗器械。——”周建林分享了生物医疗与3D打印的结合点,并表示摩方精密将在三个方面持续拓展业务:一是生产医疗器械精密零部件,如内窥镜等;二是研发手术机器人中的精密零部件;三是开发体外培养医疗器械。同时还着手研究基于水凝胶的创新技术,以解决人体组织和材料加工的相容性问题。在生物医疗领域,摩方精密在与科研院校和医院等专业机构合作的过程中,共同研究前沿的材料、终端应用和技术,并取得显著成果。未来,摩方精密还将致力于解决材料加工的相容性问题,助力微纳3D打印技术在生物医疗领域的发展。“——微纳3D打印的跨尺度和高精度特性,给我们提供了一个从宏观到微观的工具。——”刘晓明分享了他在微纳机操作和微纳机器人两个主要研究方向,并利用摩方精密微纳3D打印技术辅助构建了大量研究模型,有效提升研究人员设计不同类型机器人的研发速度。通过结合其自身研究,刘晓明强调了微纳3D打印技术为研究人员提供了一种从宏观到微观的交互桥梁作用,使他们能够更好地研究生命体单细胞或微小组织,从而赋能在人体内进行靶向药物输送和组织检测。02产业布局,砥砺前行:在应用中是否开展产业化布局或重点项目建设?有何阶段性进展和成果?“——真正的挑战在于如何将这个产业推向市场,并使其得到广泛的应用。这需要创新者们在产业化道路上不断摸索、改进,以实现从0到1,再从1到无穷大的飞跃。——”黄天云分享了他在微纳米机器人制造领域,从理论研究到生产制造的转变。在研究过程中,他的团队利用摩方精密微纳3D打印技术进行微机器人、微流控芯片等领域的研发。在他看来,尺度在制造过程中非常重要,每个尺度都有对应的工具。特别小的样件好做,比较大的样件也好做,不大不小的跨尺度样件反而不好加工,然而摩方精密在这个区间具有很大的优势。黄天云进一步表示,近些年看到了校企联合推动先进技术发展的成果,也非常期待摩方精密利用快速精密成型、材料可选择性多的优势,实现更多的技术创新和产业化突破。“——摩方精密聚焦垂直应用领域的发展,重点关注生态链建设的成熟度。——”周建林表示摩方精密始终专注于为顶尖高校和企业提供先进的制造装备和材料。面对客户不断提出的高要求,摩方精密秉持着压力与动力并重的理念,持续迭代创新。在设备制造方面,摩方精密目前已发展至第三代装备。在材料方面,致力于树脂和陶瓷等材料的创新研发,并与国内外合作伙伴建立联合实验室,以满足用户需求。在产业布局方面,摩方精密积极加强在生物医疗领域的探索,例如与北大口腔建立联合实验室,共同推进口腔修复技术的创新。周建林进一步表示,摩方精密会持续关注市场动态及需求,以期为行业带来更多的社会价值。03创新合作,未来可期:精密增材制造,在生物医疗领域的未来发展趋势?有哪些产学研创新合作模式?“——希望由微纳3D打印技术制备的产品,可以直接融入终端产品。——”李向义表示基于摩方精密微纳3D打印设备,极大降低了企业研发的试错成本,将原先研发周期大大缩短至1/10,也就意味着节省研发成本并提高企业利润。关于产业未来发展前景,他希望实现直接将打印产品应用于终端产品。同时,也期待看到摩方精密不仅成为赋能研发解决方案的提供商,还能发展成为终端设备零件的供应商,助力更多企业发展壮大。“——如果可以开创材料共享模式,不仅能推动科研界的发展,更助力产业界的生态形成。——”黄天云探讨了在使用微纳3D打印设备时遇到的材料问题,希望摩方精密能研发并统筹出更多适用于不同应用场景的材料,与高校机构共同开创材料共享模式的良性生态系统。再者,黄天云建议,高校和企业可通过相互学习互通技术,一方面助力科研不断精进,开发出更多的专利;另一方面助力企业拓展业务,在产业化道路上,能够解决更多实际问题,助力产学研深度融合发展。“——摩方精密的合作模式极具开放性,我们专注于赋能和制造,携手产学研共同进步。——”周建林分享了摩方精密未来发展方向以及合作模式。他提到,摩方精密将继续推进医疗领域的终端应用制造,在垂直专业领域方面始终坚持开放式合作,希望发挥不同机构的独特优势。他强调指出,摩方精密将会进一步深化外部合作,在材料研发、专利技术、终端应用等多方面推动项目建设,为生物医疗的突破孕育更多的创新技术。圆桌论坛环节虽落下了帷幕,但激烈的思维碰撞和深入的交流仍在每位参与者心中回响。摩方精密愿与您携手打破精密增材制造领域的瓶颈,为生物医疗产业发展注入新的活力。
  • 两项制造技术入选十大最具变革潜质前沿技术
    近期科技部高技术中心,根据国家软科学研究计划项目&ldquo 世界高技术发展趋势跟踪研究&rdquo 的任务要求,组织信息、材料、能源、先进制造、交通及基础研究等领域,来自863、973计划专家组,以及有关高校、研究院所和重点企业的总计230多名专家,采用文献计量和定性分析相结合的方法,通过对相关领域具有领先优势的国家与企业的有关科技计划、规划、发展动态和战略部署的梳理,以及对相关核心期刊、国际学术会议等的学术文献资料信息的统计分析,提出了各领域当前十个左右共计61个前沿热点。经过进一步凝练,他们提出了当前十大最具备变更潜质的前沿技术。   其中突破衍射极限的光学光刻技术和激光微纳制造技术也入选最具变更潜质的十大前沿技术。   据介绍,突破衍射极限的光学光刻技术作为微纳信息器件制造的先导和主流技术,光学光刻技术发展正面临着原理性障碍:光学光刻分辨力这一核心技术指标的提高受到衍射极限的限制。表面等离子体成像光刻技术、表面等离子体局域光刻技术等以突破衍射极限,建立超分辨成像光刻理论和技术体系为目标的技术热点,已成为信息领域的重大科学技术问题之一。   这些技术一旦成熟,可提供小于32nm、22nm甚至10nm节点以下的光学光刻技术,从而有望解决国际上传统光刻技术路线衍射受限的理论和技术困境,成为新的光学光刻方法和工具。   而激光微纳制造则是微纳制造技术的重要部分。激光微纳制造是通过激光与材料相互作用,改变材料的物态和性质,实现微米至纳米尺度或跨尺度的控形与控性。由于激光微纳制造在能量密度、作用的空间和时间尺度、制造体吸收能量的可控尺度都可分别趋于极端,而使制造过程所利用的物理效应、作用机理完全不同于传统制造,其制造复杂结构的能力与品质远高于传统制造,由此产生了一批新技术(如光刻、近场纳米制造、干涉诱导加工、微焊接等)、一批新产品(如大规模集成电路、MEMS/NEMS等)、一批产品的高性能化(如航空发动机、燃气轮机、太阳能电池等)和相应的高新技术产业群。   激光微纳制造涉及光学、物理、材料、化学、生物、信息、控制、机械、纳米科技等学科,必将推动制造及相关学科的深入发展。并为能源、航空、IC制造、国防、汽车、生物、医疗等领域实现跨越式发展提供重要的制造支撑。   另外还有碳基纳米材料、半导体纳米材料、光电子集成芯片技术、后摩尔时代三维互连集成及芯片设计、碳化硅电力电子器件技术、量子通信技术及与经典通信的融合、轨道角动量通信技术、泛在感知与全分布控制技术等技术入选十大最具备变更潜质的前沿技术。
  • 激光精密测量技术及其在高端装备制造业中的应用
    “中国制造 2025”发展战略对高端装备制造业的质量提出了更高要求。超精密测量对提升高端装备制造质量具有基础支撑作用,并在制造全过程中的质量控制发挥决定性作用;只有解决整体测量能力问题,才能从根本上解决高端装备制造质量问题。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。目前,越来越多的激光精密测量系统已作为产品检测的重要环节融入高端装备制造生产线,并已成为大型装备制造业中质量保证的重要手段,包括激光干涉仪、激光跟踪仪等。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器,广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合;特别是基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。为帮助用户更好地了解激光精密测量技术及其在高端制造中的应用,仪器信息网将于2022年10月20-21日举办首届“精密测量与先进制造”主题网络研讨会,特邀中国科学院微电子研究所主任周维虎、清华大学教授张书练、哈尔滨工业大学长聘教授胡鹏程、中国计量科学研究院副研究员崔建军分享主题报告。 点击图片直达报名页面中国科学院微电子研究所主任/研究员 周维虎《激光跟踪仪精密测量技术与应用》(点击报名)周维虎研究员长期从事精密光电测量技术与仪器研究,主持科技部重大仪器专项、国家重点研发计划、自然基金重大仪器专项、国防科工局重点预研、装备发展部军用测试仪器、中科院仪器装备项目等50余项精密测量与仪器类课题,获得中国机械工业科学技术发明特等奖、中国计量测试学会技术发明一等奖等7项省部级奖励,发表论文近200篇,申请专利近50项,编写教材1部,起草国家计量检定规程和规范4部,获得国务院特殊津贴、中科院朱李月华优秀教师奖、江苏省双创领军人才、青岛市创新领军人才等称号。成功研发国际上首台飞秒激光跟踪仪、国内首台三自由度激光跟踪仪和六自由度激光跟踪仪,打破了国外在激光跟踪测量领域的技术垄断。担任中国科学院大学岗位教授、博士生导师,北京航空航天大学、华中科技大学、大连理工大学、吉林大学、合肥工业大学等十余所高校兼职教授和博士生导师,南京航空航天大学特聘教授,湖北工业大学楚天学者教授。担任《计测技术》、《测控技术》、《中国测试》和《光电子》期刊编委,《Optical Engineering》、《中国航空学报(中、英文)》等十余份国内外期刊审稿人。报告摘要:激光跟踪仪用于超大尺寸空间几何量测量,具有测量速度快、精度高、范围大,可现场测量等特点。在航空航天、船舶、雷达、高铁、能源设备、汽车、大科学装置等大型装备制造领域具有广泛应用,本报告重点介绍激光跟踪仪研发技术及相关领域中应用。清华大学教授 张书练《激光回馈精密测量技术新进展》(点击报名)张书练,清华大学教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。曾任清华大学精密测试技术及仪器国家重点实验室主任,现任广东省计量院重点实验室学术委员会主任。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。哈尔滨工业大学长聘教授 胡鹏程《超精密激光干涉位移测量技术进展与挑战》(点击报名)胡鹏程,哈工大长聘教授、博导,精密仪器工程研究院副院长,2019年入选国家高层次青年人才计划。校内兼职:第二届校学术委员会,委员;超精密仪器技术及智能化工信部重点实验室,副主任;超精密光电仪器工程研究所,常务副所长。校外兼职:中国计量测试学会,第八届计量仪器专业委员会,副主任委员;IEEE Senior Member;中国电子学会、中国光学工程学会,高级会员;中国仪器仪表学会传感器分会,理事;教育部学位与研究生教育发展中心,中国高校创新创业教育研究中心,评审专家;《光学精密工程》编委,《哈尔滨工业大学学报》青年编委,《红外与激光工程》青年编委;国家重点研发计划引力波探测重点项目,咨询专家组,成员;ISPEMI 2018, Secretary General;IFMI&ISPEMI 2020,Cochair of organizing committee,IFMI&ISPEMI 2022,Cochair of organizing committee 学术研究:围绕超精密激光测量与光电仪器方向,从事基础研究、关键技术突破和仪器研制测试。承担国家科技重大专项课题、技术基础项目、国家重大工程项目、国家自然科学基金国际合作研究项目、国家自然科学基金重大研究计划课题、国家自然科学基金面上项目等,项目经费1.2亿余元;发表SCI检索论文60篇,出版编著1部,申请/授权国内外发明专利152项。 科研成果奖励:中国计量测试学会科学技术进步奖,一等奖(第1完成人,基础类,2021年);国家技术发明奖,二等奖(第5完成人,2013年)等。报告摘要:甚多轴高速超精密激光干涉测量技术与仪器是高端装备发展与前沿研究的重大核心基础技术,作为光刻机等高端装备中不可替代的核心单元,其直接决定了装备所能达到的极限运动精度与整体性能;作为溯源精度最高的长度计量测试仪器,其准确统一全国相关量值,支撑国际单位制量子化变革等前沿研究。随着高端装备发展与前沿研究的迅猛发展,其甚多轴、高速、超精密测量需求越加显著,使激光干涉测量技术发展不断面临新的挑战。为此,开展了甚多轴高速超精密激光干涉测量技术研究,突破了激光稳频、多轴干涉镜组、干涉信号处理等多项关键技术,研制成功系列超精密激光干涉测量仪器,测量速度优于5m/s,动态测量分辨力0.077nm,光学非线性误差优于0.02nm,并在微电子光刻机、国家基准装置、德国PTB超测量装备等成功应用,为我国高端装备发展与前沿研究奠定重大共性技术基础。中国计量科学研究院课题组长/副研究员 崔建军《差分珐珀激光干涉微位移计量及应用研究》(点击报名)崔建军副研究员长期从事精密几何量测量技术及计量标准研究,主持和参加科技部重大仪器专项、国家重点研发计划、国家及北京市自然科学基金项目、国家市场监管总局项目等30余项精密测量与几何量计量研究项目,获得浙江省科学技术进步二等奖、国家质检总局科技兴检二等奖、中国计量测试学会科学技术进步三等奖等多项省部级奖励,发表论文近40余篇,申请专利近30项,软件著作权20余项,正在负责及参加起草的国家计量检定规程规范10余项。主持建立新一代双频激光干涉仪计量标准装置、激光测微仪、光栅式测微仪校准装置、纳米薄膜厚度计量标准装置等多项国家量值最高的计量标准装置。提出了双频差分法布里珀罗激光干涉技术原理,研制了准确度达到数十皮米的微位移及干涉仪非线性计量装置。担任担任全国半导体器件、全国光学和光子学光纤传感、全国试验机等3个标准化技术委员会委员,担任中国机器人检测认证联盟技术委员会分工作专家组专家,国家计量标准的一级考评员和一级注册计量师,中国计量科学研究院研究生导师,南方科技大学、河南理工大学等多所高校兼职研究生导师,担任《计量学报》、《计量科学与技术》、《中国计量》、《中国激光》,《光学学报》、《sensor review》《measurement》、等十余份国内外期刊审稿人。报告摘要:微位移测量是高端装备核心零部件设计和先进制造急需的应用基础技术,也是几何量计量、微纳制造和光刻技术等发展所急需的关键技术。报告针对当前急需的纳米及亚纳米精度的激光干涉仪、亚纳米电容测微仪和纳米位移传感器等难以计量的现状,创造性提出采用固定频差双频激光建立差分珐珀干涉系统的光学理论,并研究基于该理论构建精度达到数十皮米甚至更高量级的位移测量技术实现方法,研制实现皮米级分辨力的高精度位移测量装置,推动国家精密测量、先进制造等领域的高质量发展,也为建立皮米级国家最高微位移计量标准装置提供技术方法。扫码报名抢位指导单位:中国计量测试学会主办单位:仪器信息网协办单位:上海大学会议日程报告时间报告主题报告人单位职务10月20日上午09:30-10:00工业视觉技术进展及装备应用邾继贵天津大学精密仪器及光电子工程学院院长10:00-10:30激光跟踪仪精密测量技术与应用周维虎中国科学院微电子研究所主任/研究员10:30-11:00激光回馈精密测量技术新进展张书练清华大学教授11:00-11:30待定胡鹏程哈尔滨工业大学长聘教授10月20日下午14:00-14:3020年来齿轮测量技术的发展石照耀北京工业大学长江学者特聘教授14:30-15:00基于波长移相技术的光学平行平板轮廓和厚度信息测量技术于瀛洁上海大学机电工程与自动化学院院长15:00-15:30视觉在线测量与检测技术卢荣胜合肥工业大学教授15:30-16:00面向智能制造的全过程、全样本、全场景测量李明上海大学教授10月21日上午09:00-09:30工业摄影测量技术研究及应用郑顺义武汉大学教授09:30-10:00装备空间运动误差被动跟踪测量方法与仪器娄志峰大连理工大学副教授10:00-10:30差分珐珀激光干涉微位移计量及应用研究崔建军中国计量科学研究院课题组长/副研究员10:30-11:00面向先进制造过程的在线计量技术研究赵子越中国航空工业集团公司北京长城计量测试技术研究所高级工程师
  • 2022西安工业测量展览会|2022工业测量展|2022西安数字制造技术展
    同期举办:中国西部国际装备制造业采购商大会批准单位:中国科学技术部主办单位:中国国际贸易促进委员会、中国机械工业联合会、陕西省振兴装备制造业领导小组联合主办单位:中国工业电器协会电炉及工业炉分会、中国机械工程学会工业炉分会组织单位:陕西省机械工业协会、四川省机械工业协会、西安市工业和信息化委员会、成都市经济和信息化委员会承办单位:西安三联执行单位:上海赛贸会展有限公司地址:西安国际会展中心 时间:2022年3月17-20号随着工业的需求面不断扩大与深入,企业对产品质量检验的设施与技术的要求也越来越高,如何提升检测手段、完善检测设备是检测从业人士身负的重任和义务。如何有效的进行过程控制是确保产品质量和提升产品质量,促使企业发展、赢得市场、获得利润的核心。企业要在激励的市场竞争中生存和发展,仅靠方向性的战略性选择是不够的。任何企业间的竞争都离不开“产品质量”的竞争,没有过硬的产品质量,企业终将在市场经济的浪潮中消失。而产品质量作为最难以控制和最容易发生的问题。为迎合这一契机,在得到国内外各级主管部门的大力支持下,“2022第6届中国(西安)国际工业控制及仪器仪表展览会”将于2022年3月17-20日在西安国际会展中心隆重举办为期4天,展会汇聚众多工业控制品牌、仪器仪表产品、围绕工业仪器技术与设备、物理测试与材料试验机、分析仪器、计量与测试技术为主要展出内容,汇集了各地检测设备制造商及代理商带来的高端技术和先进手段与设备,为西部地区业界提供高效的商务合作及交流平台。太仓庄正数控设备有限公司、帝悦精密科技(苏州)有限公司、江苏长沐智能装备有限公司、江苏磐一智能装备有限公司、昆山欧思克精密工具有限公司、苏索利得物联网有限公司、昆山欧思克精密工具有限公司、苏州益耕科技有限公司、苏州汉测测量设备有限公司、苏州稳信智能科技有限公司、苏州普费勒精密量仪有限公司等近300家相关行业企业前来参展。“2022第6届西安工业测量及数字制造技术展”作为2022欧亚工博会重要要组成部分,大会预设6大室内展馆、2大室外展馆,合计展出面积100000平米,可容纳近5000家企业前来参展。重点展示金属切削机床、五金机电、钣金加工、激光切割、工具测量设备、工业自动化及机器人、智能装备及精密部件、动力传动与流体液压、智慧物流、军民融合及航空航天等内容,聚集高端装备制造研发设计、生产加工、制造服务资源,展示创新、绿色、开放发展的新成果,促进实体产业与互联网、大数据、人工智能深度融合。同期举办中国西部制造智能发展论坛暨第三届陕西工业经济发展大会、第三届陕西民营经济与制造业发展大会、第三届中国西部工业信息化发展论坛、第六届中国智能制造企业家大会西部峰会、首届工业微程序大赛等系列重点活动。展览范围:一、工业控制与零部件:控制装置及专用控制器、工厂自动化系统、传感器和测量设备、无线传感器网络设备和应用、定位器、通讯设备和零部件、执行器、控制阀、元件模块和辅助设备、自动化仪表与系统、电子测量仪器、仪表元件、质量控制和检测设备、自动化元器件二、控制系统:控制技术、测量及调整设备技术、网络\工业数据通讯、电动机、机架系统、传感系统、驱动装置、工业无线通讯、嵌入系统、光电技术、电力供应、电气开关工业网络(工业以太网,现场总线技术与设备)、安全自动化(监控组态软件、安全监控系统、机器视觉、故障诊断)、基于PC的自动化、工控机,工业计算机、工业电源、人机界面、控制装置及专用控制器、变频调速、电气传动、运动控制(伺服系统、步进系统、运动控制总线等)、可编程控制器(PLC)、可编程自动化控制器(PAC)、分布式计算机控制系统(DCS)、数据采集、信号处理、工业自动控制系统及装备、楼宇自动化三、仪器仪表:仪器仪表及测试测量:过程控制仪器仪表、环保类仪器仪表(城市供水、污水处理过程检测仪表等)、检测类仪器仪表、测量仪器、质量控制和检测设备、计量分析类仪器仪表、研发和管理技术、测量投影仪、影像量测仪、二次元量测仪、三坐标测量仪、测量机、测试仪、工业体视/ 光学 / 电子显微镜、温度、流速、流量、压力、物位、及其参数计量、各类变送器、测试、显示、记录仪器仪表。
  • 全球振动试验设备制造业技术水平分析
    行业发展历史及技术水平   随着科技发展对工业产品高速化、智能化、大功率化等的要求不断提高,产品的结构越来越复杂、精度越来越高,相应地振动试验设备及环境与可靠性试验的作用和地位也更加重要。   1、国外振动试验设备与环境试验行业的发展历史及技术水平   国外振动试验设备制造业源起于二次世界大战前的三十年代。欧美发达国家根据一战期间军事装备的故障情况,提出了有针对性的大量模拟环境条件的试验方法,振动试验是其中重要的试验方法之一。二战后的六、七十年代,振动试验技术及振动试验设备得到了空前的发展,以美国军用标准系列(MIL)为例:近二十年来,该系列标准已将振动试验技术的关注点从单一环境应力、单轴单激励试验方法,转向多环境应力、多轴多激励试验方法 同时,各种试验方法从单一为军事工业服务逐步转向全面为各行业产品服务,促进了民用行业和国民经济的高速发展。   目前国外在环境与可靠性试验方面,除大量使用电动振动试验系统外,已广泛使用三轴同振振动试验系统(电动台或液压台)、三轴六自由度多台激励系统(电动台或液压台)、单轴多台并激系统(电动台或液压台)。在欧美发达国家的军事工业产品及高技术产品研发过程中,试验技术、试验方法是其绝密资料之一。资料显示,自上世纪九十年代初,美国在航天飞机的研发过程中便已应用了多轴多激励的振动试验技术。目前国外在航空航天和汽车制造等行业,还广泛运用振动带扭转、离心机带振动台复合运动试验设备 在研究建筑、桥梁、核电站设备抗震方面使用大型液压振动台(大位移、大负载、三轴六自由度系统)等。   随着环境试验技术的发展,国外已从单一的振动试验发展为多种环境条件的综合试验,此外,基于激发产品故障的新型试验设备高加速寿命试验和应力筛选系统也已广泛应用于电子、汽车、仪器设备、航空航天等领域。   2、我国振动试验设备与环境试验服务行业发展历史及技术水平   我国振动试验设备制造业起步于上世纪五十年代末六十年代初。随着国内大规模工业建设的兴起,引发了对振动试验设备的需求。振动试验设备制造行业的发展,与国内其他现代工业一样,经历了仿制、引进、消化、吸收、自主创新的不同阶段。由于欧美发达国家对我国振动试验技术、振动试验设备采取了较为严格的管制措施,使得产品试验需求长期得不到满足,严重影响了我国装备工业现代化的进程。1962年,本公司的业务前身苏州试验仪器厂成功研制了企业第一台电动振动台产品后,经过五十年的发展,已完成了从98N到392kN全系列电动振动试验设备及其他力学环境试验设备,为我国振动试验设备行业的发展做出了巨大贡献。   经过五十多年的发展,我国电动振动试验设备制造技术已日臻成熟和完善,除了能满足国内市场的需求外,还有部分产品出口满足国际市场的需求。但是,由于我国的振动试验设备制造行业起步晚、起点低,与欧美发达国家相比,目前仍有较大的差距。这些差距主要表现在多应力集成的大型试验系统研发能力不足,以及多应力、多轴多激励复杂试验技术的研究投入较少等。因此在高端产品领域,如多应力复合、多轴多激励等试验设备,目前国内的需求还主要依赖进口产品。此外,在液压振动台领域,由于其生产工艺较为复杂、资本投入金额较大,目前国内厂商液压振动台的生产水平相对落后。   在环境与可靠性试验方面,我国相关领域的实验室目前已可以从事环境与可靠性领域的主要试验检测项目,但在试验方法及试验技术的研究上,与国外相比仍存在一定差距。比如,为避免装备在结构最低共振频率上过试验或欠试验,国外通行的试验方法需在振动台、夹具、试件中间安装动态力传感器以将振动台的运动由力传感器反馈控制,以再现外场实测的界面力,而目前国内振动试验中较少采用此试验方法。我国环境与可靠性试验行业对于试验方法及试验技术的持续研究和改进,对于提升我国工业产品的环境适应性与性能可靠性水平至关重要。
  • 色谱分离技术制造高纯度益生元
    日前,广东江门量子高科生物股份有限公司(以下简称量子高科)采用色谱分离技术成功产出纯度达95%以上的高纯度益生元,各项技术指标均达到国际领先水平。   在国内率先采用色谱分离技术,成功实现纯度达到95%以上的高纯度低聚果糖的工业化生产,在国内尚属首创。量子高科的高纯度低聚果糖色谱项目的投产成功,标志着我国益生元产业的高纯度低聚果糖的核心技术的“瓶颈”宣告打通,不仅填补了中国益生元产业的技术空白,还打破了国外的垄断局面,替代进口产品满足国内市场需求,大大推动我国益生元行业的发展进程,同时对全国功能食品行业的发展产生积极作用。   量子高科在引进、消化和吸收世界最先进的益生元技术基础上,通过自主创新,投资建成了国内第一套千吨级采用色谱分离技术制造高纯度益生元的生产系统,生产流程通过PLC(可编程逻辑自动控制器)控制,生产线的运行流程和技术规范都在全自动化模式下进行,最大化减少人员接触产品,更进一步提高产品的卫生和安全性。整个生产系统不仅流程全封闭、全循环,而且产量高、能耗低,绿色环保。与过往从55%纯度的低聚果糖中再次提取精制而取得高纯度低聚果糖的生产工艺相比,不仅简化了操作工序,缩短了生产时间,还保证了产品的品质,确保与国际先进水平同步。今年11月,工程主工艺系统设备安装完毕,经过1个多月的系统调试,工艺装置全部达到设计要求。12月,工厂全部工艺流程打通,投料试产,日前以色谱分离技术成功生产出优质的高纯度低聚果糖产品。   量子高科首创的高纯度低聚果糖色谱项目的成功,对益生元行业的发展是一大推进。开发高纯度低聚果糖产品在生理学功能、营养研究及加强农产品综合利用、延长农业产业链、提高产品附加值方面都具有非常重要的意义。
  • 李克强谈“中国制造2025”:从制造大国迈向制造强国
    p   2015年《政府工作报告》中首次提出实施“中国制造2025”,坚持创新驱动、智能转型、强化基础、绿色发展,加快从制造大国转向制造强国。此后,“中国制造2025”一直是贯穿国务院工作部署的关键词之一。 /p p   2015年5月,国务院印发《中国制造2025》,这是我国实施制造强国战略第一个10年的行动纲领。2016年,国务院办公厅发布《关于开展消费品工业“三品”专项行动营造良好市场环境的若干意见》,促进消费品工业迈向中高端。今年7月,李克强总理主持召开国务院常务会议,部署创建“中国制造2025”国家级示范区,加快制造业转型升级。 /p p   联合国两位高级官员近日撰文称赞,《中国制造2025》路线图正在引导中国的工业现代化进程。《福布斯》杂志认为,实施“中国制造2025”将助力中国制造业保持国际竞争力。世界经济论坛主席施瓦布称,得益于智能制造业的迅速发展,“中国将成为第四次工业革命的领军者”。 /p p   “中国制造2025”如何深入推进?总理作过这些阐述—— /p p style=" text-align: center " img title=" 2-140620154HK50.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/378b671f-18b3-49a8-b388-910ed0b875ee.jpg" / /p p   下一步深入实施《中国制造2025》,要深化供给侧结构性改革,以市场为导向,以企业为主体,强化创新驱动和政策激励,把发展智能制造作为主攻方向,与“互联网+”和大众创业、万众创新紧密结合,打造勇于改革创新、成果不断涌现、具有引领作用的“示范方阵”,促进整个制造业向智能化、绿色化和服务型升级,加快建设制造强国。 /p p   ——2017年5月17日,李克强总理主持召开国务院常务会议 /p p   我愿为中国装备“站台”,希望你们给国家“撑台”,打造永不褪色的金名片! /p p   ——2015年4月10日,李克强总理考察北车集团长春客车股份有限公司 /p p   中国经济要持久保持中高速,必须迈向中高端,须加速推进“中国制造2025”。 /p p   ——2015年4月23日,李克强总理考察福建泉州嘉泰数控机械有限公司 /p p   现在,传统的“Made in China”还要继续做,但中国制造的核心,应该是主打“中国装备”。这就要运用信息技术,智能转型。 /p p   ——2015年6月9日,李克强总理会见来华出席全球首席执行官委员会第三届圆桌峰会的代表并座谈交流 /p p   工业制造是国民经济的重要支柱,是实现发展升级的国之重器。我们提出“中国制造2025”,实际上是推进“中国制造”的不断升级,努力形成我国经济发展的新动能。 /p p   ——2015年6月15日,李克强总理考察中国核电工程有限公司、工业和信息化部并主持召开座谈会 /p p   “集众智者成大事”,要通过大众创业、万众创新,用亿万人层出不穷的新鲜点子,激发市场活力,真正推进中国制造的智能转型。 /p p   ——2015年6月17日,李克强总理主持召开国务院常务会议 /p p   它型号大、精度高、工艺先进,可谓“大块头有大智慧”。“中国制造2025”的核心就是实现制造业智能升级。 /p p   ——2015年9月,李克强总理考察大连重工起重集团有限公司时,为一个全球冲程最大的船用曲轴测量精度 /p p   “互联网+双创+中国制造2025”,彼此结合起来进行工业创新,将会催生一场“新工业革命”。 /p p   ——2015年10月14日,李克强总理主持召开国务院常务会议 /p p   加强国际创新合作,推动“中国制造2025”与德国“工业4.0”等紧密合作,相互学习、优势互补。 /p p   ——2016年1月27日,李克强总理主持召开国务院常务会议 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/b13c588c-f33f-426f-be69-0ff075e7c4a1.jpg" / /p p   我不仅是为东风加油,也是为“中国制造”加油。我们需要一场“品质革命”,促进“中国制造”整体升级! /p p   ——2016年5月23日,李克强总理在湖北十堰考察东风商用车重卡新工厂 /p p   我愿为中国自行车做广告,更愿为“中国制造”智能升级“站台”。 /p p   ——2016年6月26日,李克强总理考察飞鸽自行车天津胜利路体验店 /p p   农业现代化需要大马力拖拉机,“中国制造2025”更需要大马力发动机。 /p p   ——2017年5月8日,李克强总理在中联重科开封工业园登上一辆自主生产的230马力拖拉机 /p p   《中国制造2025》绝对不是光指大企业,制定相关方案和支持措施时千万不要只瞄准大企业,对中小企业要予以充分支持,促进大中小企业融通发展。 /p p   ——2017年5月17日,李克强总理主持召开国务院常务会议 /p p   有人误解“中国制造2025”目的是将来不买国外装备了,这是不可能的。中国开放的市场只会给企业更多自主选择权利。更重要的是,在全球化条件下,关起门来提高自己装备质量和水平等于闭门造车。 /p p   ——2017年6月28日,李克强总理会见2017夏季达沃斯论坛企业家代表 /p p   实施“中国制造2025”不仅要在技术方面实现突破,更要在体制机制上不断创新。 /p p   ——2017年7月19日,李克强总理主持召开国务院常务会议 /p p /p
  • 德国研发聚焦镜头制造和质量检测新技术
    p   光学系统的应用范围主要在制造工业。由于需要聚焦(射线引导)镜头,目前在医疗或航天技术方面的应用还常常受限。因为新的脉冲激光源产生的辐射强度,超过常规的玻璃透镜和阵列器件。石英玻璃或钻石等替代光学材料则能提供更好的传输性能,耐受高辐射强度和机械环境影响的能力更强。然而,要加工这些材料很难,而且对自由成型镜头的质量检测大多只能依赖抽样进行。 /p p   德国弗劳恩霍夫制造技术研究所(IPT)近日称,将承担由德国教研部资助的“数字光子生产”研究园区子项目“MaGeoOptik”,研究如何能使要求苛刻的石英玻璃或钻石聚焦镜头的生产成本降低、质量更高,从而开拓新的更大的光学产品市场。这种镜头主要用于高功率激光器。 /p p   研发内容分三部分:一是研制石英玻璃镜头的高精度模具。迄今为止,精密光学器件主要通过研磨和抛光技术生产,但也可通过冲压加工工艺,采用高达1400℃的温度,以复杂的几何形状被制成。“MaGeoOptik”项目的核心是研究这种高温玻璃的性能,并结合新的模具替代材料,如碳化硅或氮化硼陶瓷以及玻璃碳。 /p p   二是制定新的钻石镜头抛光控制方案。目前,制造单晶金刚石光学元件只能通过研磨工艺,因为其结构特性,这种极硬的材料很难被改造,因此,磨具在加工过程中磨损严重。研发人员计划研发新的应用模型,制定相应的机轴控制软件方案,使得生产具有复杂几何形状的钻石镜头更快,成本更低,更适应商业市场。 /p p   三是建立对超精密自由成型镜头的100%无损检测方法。该方法将是一种新的高精准的光学测量系统,用于检测由石英玻璃或钻石制造的镜头的特性。与现有的触摸式方法相比,该方法的测量速度可提高六至十倍。此外,该方法可在生产现场直接使用,并能被集成到自动化生产过程中。 /p p   该项目的研究结果不仅可用于测试高功率激光器及其它未来应用领域的光学新材料,而且符合工业用途。 /p
  • 中国制造业高管眼里的“中国制造2025”
    p br/ /p p   《中国制造2025》的公布引发了社会各界的强烈反响,关于中国制造业转型创新的讨论成为中国乃至国际社会瞩目的焦点。在这场远远超越制造业领域的讨论中,中国制造业本身的看法和观点并没有得到足够的传播和重视。日前,由中国管理和信息化研究中心与IBM(中国)公司联合发布的《而今迈步从头越:中国制造业高管眼里的“中国制造2025”》调研报告填补了这一空白。 /p p   《中国制造业高管眼里的“中国制造2025”》调研报告通过对来自不同地区、不行领域356位制造业高管的调研,全面准确反映了中国制造业、尤其是大型特大型制造业高管们对于“中国制造2025”的真实看法。调研报告结合制造业专家、研究机构的学者以及行业知名人士的洞见,为中国制造型企业转型创新提出了“构建以数据洞察为驱动的新价值网络”的创新发展模式,并结合中国企业跨越式发展的历程,为企业明确自身定位、结合行业实际制定未来发展方向、选择转型升级发展路径提出了建议。 /p p   调研报告发现,中国制造业高管们对于中国制造业现状有非常清醒的认识,对于制造业产能过剩、对环境的负面影响,以及制造业本身参差不齐的发展水平都有准确的了解和把握。在这样的前提下,中国制造业高管们对于实现“中国制造2025”的目标依然充满信心。 /p p   中国制造业高管们认为,制造业转型创新的主要挑战集中在核心技术和自主创新能力两项,在新一轮世界制造业竞争格局大调整大变动的背景下,他们正在努力通过企业的内部调整优化,竭力在核心技术和自主创新能力上面实现突破。 /p p   调研报告表明,中国制造业把核心技术与自主创新能力、以品牌建设为主导的全球化列为实现“中国制造2025”的主要手段,为保证这一手段落到实处,中国制造来高管们把企业的战略管理、组织流程优化放在非常重要的地位。 /p p   调研报告在综合分析了中国制造业高管的看法和观点后,为制造业转型创新提出了建议,即“构建以数据洞察为驱动的新价值网络”。调研报告认为,参与者、产品和生产是价值创造过程中的三个要素。在传统价值链下,三者之间缺乏交互作用,联系不紧密,而在新价值网络下,通过大数据、云计算、物联网、移动互联网等新一代信息技术平台的作用,企业能够获得精准的数据洞察,以此为核心驱动力,改造整个研发、生产、销售等环节,实现参与者、产品和生产的协同互联 同时,数据洞察作为核心驱动力,将始终贯穿整个新价值网络。当然,这三者之间的互动不是机械的,可以实现跨越式发展。 /p p   当然,新价值网络的构建是一个长期艰巨的工作。“中国制造2025”战略的实现需要杰出的创新能力、领先的信息技术能力,以及值得信赖的合作伙伴。作为中国企业35年的合作伙伴,IBM已经与中国政府、客户和市场建立了深厚的互信,IBM有能力、有价值、有意愿,也有措施成为助力“中国制造2025”战略实现的“合伙人”。 br/ /p
  • “国家光栅制造与应用工程技术研究中心”通过验收
    近日,科技部对2006、2007年组建的工程中心开展验收工作,经过专家现场检查评估和国家工程技术研究中心验收委员会综合评议,国家光栅制造与应用工程技术研究中心通过验收。   该中心攻克了光栅制造中的关键技术瓶颈,完成了5套光栅设计软件的开发、5台(套)光栅测试设备或系统研制开发及30多种母版光栅的研制,建立了光栅分光系统的数值仿真平台和虚拟光谱仪器库等。中心研究开发、试验检测、工程技术装备、分析测试平台等工程化条件良好,工程化研究开发体系完整,已形成了很强的技术成果工程化能力,建立了较好的人才流动及对外开放合作机制,以及合理的组织机构与管理制度。
  • 成都绿色能源与绿色制造技术研发中心揭牌
    2月19日,成都绿色能源与绿色制造技术研发中心揭牌,同时与中国大唐集团新能源股份有限公司签署合作协议,双方将组建联合光伏研究实验室,在先进薄膜太阳能电池科技进步和产业化进程科技研发方面建立合作关系。   该中心挂靠于中国工程物理研究院化工材料研究所,是该所承担的国家“千人计划”重点建设项目,下设联合光伏研究实验室、绿色有机材料实验室、高性能锂离子电池材料实验室等多个实验室,将在绿色能源和绿色制造技术研究领域开展前沿性的技术研究。该中心在绿色能源方面拥有多项国家级和世界级专利。
  • 中药制造领域近红外光谱技术的专利技术进展和趋势
    中药制药工业是我国医药行业中拥有自主知识产权的民族产业。我国中药制药水平整体不高,难以满足现代化生产对质量控制提出的要求,一定程度上影响了中药产业现代化进程和国际化脚步[1]。《中药现代化发展纲要》《中医药发展战略规划纲要(2016—2030年)》《中国制造2025》等指出要推进中药工业数字化、网络化、智能化建设,提高质量在线监测、在线控制。实现中药制造的数字化、智能化是走向“制药强国”的必经之路。中药制剂过程控制是国家战略需求的重要组成部分。然而,现阶段我国中药生产制造领域工艺较粗糙,2018年智造中药高峰论坛上,张伯礼院士指出:“我国中药现代化战略实施20多年来,中药工业总产值从不到300亿元增长到9000余亿元… … 我国中医药现代化还处于初级阶段,中药产业普遍存在生产工艺粗放、科技基础薄弱、质控水平低、质量有待升级等问题”[2]。近红外光谱技术因其快速、无损等优势,近年来被国内诸多研究团队引入中药制造的原料检测、过程控制和成品质量快速无损检测等中药制造过程的多个环节,其应用特点主要在于不破坏样品的情况下快速测定其中的有效成分,便于实现在线分析,是制造过程质量控制的关键技术之一[3]。浙江大学程翼宇教授和瞿海斌教授团队以近红外光谱为技术工具,分别对提取(水提、醇提和渗漉)、浓缩、醇沉、精制纯化(硅胶柱色谱和大孔树脂纯化)、混合和包衣等关键工艺过程和制剂成品进行了快速分析,主要完成了复方苦参注射液、痰热清注射液和丹参注射液等生产过程的快速质量评价[4-5]。罗国安教授团队应用近红外光谱技术,开展了提取、混合、柱色谱等生产过程在线质量分析,完成了安神口服液、丹参多酚酸盐、清开灵注射液等生产过程快速质量控制体系[6-7]。北京中医药大学乔延江教授和吴志生教授智能制造创新团队在国内较早提出基于光谱技术及信息技术的中药生产过程分析技术研究思路,完成了安宫牛黄丸、清开灵注射液和乳块消片近红外光谱快速质量评价和过程控制体系[8-9]。近20年,国内学者采用近红外光谱技术,建立了系列中药制造质量控制方法,为中药制造数字化、智能化发展提供了关键技术支撑。本文对中药制造领域近红外技术相关的专利进展进行分析,并进一步对近红外光谱技术在中药制造领域的发展趋势进行展望,为中药近红外光谱技术发展提供重要数据支撑。1 研究方法本文采用Incopat科技创新情报平台和patentics系统,对涉及近红外光谱技术在中药制造应用中的发明专利申请(截至2020年12月)进行检索,经人工浏览,手动筛选,对数据进行归纳整理。2 专利技术申请概况2.1 近红外光谱技术在中药制造领域的发明专利趋势2002年至今,近红外光谱技术在中药制造领域发明专利的变化趋势如图1所示,最早的一件申请是2002年浙江大学提出的,涉及将近红外光谱技术用于中药生产工艺中产品质量指标的在线检测。之后的近10年这一领域的专利申请数量相对较少,每年平均申请量基本在5件左右。至2011年,申请数量相比之前增长2倍以上,随后的10年,每年平均申请数量较前10年增长2倍以上。就申请国家而言,公开专利申请绝大部分来自中国,其他国家的申请较少,这也符合中药制造领域的研究现状,大都集中在中国。虽然日本和韩国在中药制造行业也有一些较为成熟的技术,但涉及近红外光谱技术的应用领域并未以专利形式进入中国。2.2 近红外光谱技术在中药制造领域的发明专利申请人2.2.1 申请人及其类型 如图2所示,相关专利的申请人以企业和大专院校为主,企业占57%,大专院校占34%,科研单位占5%,个人占4%。其中大专院校中申请数量排名前3的分别是浙江大学、中山大学和北京中医药大学。可以看出,企业和高校是该领域最主要的创新主体,其根据需要收购了个人或企业的有关专利权。其中,浙江大学的程翼宇教授、刘雪松教授深耕中药制造过程控制多年,也成功将近红外光谱技术引入中药生产过程质量控制当中。中山大学的葛发欢教授团队与广州中大南沙科技创新产业园有限公司合作,共同申请5项专利,将近红外光谱技术应用于凉茶和娑罗子中七叶皂苷的在线监测。北京中医药大学乔延江教授、吴志生教授团队也针对中药生产过程质量控制进行了多年的研究。企业申请人排名前3的分别是江西汇仁药业有限公司、广州中大南沙科技创新产业园有限公司和天津天士力现代中药资源有限公司。就数量而言,排名前3的制药公司和大专院校,申请数量相当,这表明近红外光谱技术作为一个应用型技术,其研究正不断实现从实验室走向生产过程的应用,广泛分布在企业当中,这也充分体现了其因快速、无损的特点适用于中药制造过程质量检测的优势。2.2.2 申请人申请趋势 图3显示的是2002年至今排名前几位的申请人的申请数量。包括申请数量排名前3的江西汇仁药业有限公司、天津天士力现代中药资源有限公司等企业的申请时间主要集中在某个时间段,说明近红外光谱技术在企业中的应用范围较为单一,没有技术上的突破和创新,仅是一种成熟技术应用于不同中药的制造过程。而大专院校相对企业而言,申请分布的时间更长,如北京中医药大学在2014、2016、2018、2019年都有申请,相对更有连续性。这说明近红外光谱技术尚存在很大发展空间,其作为一门过程分析技术,在中药制造中的应用整体呈上升趋势。2.3 发明专利申请的当前法律状态及转让情况如图4所示,相关专利授权42件,授权率为47.7%,驳回27件,驳回率为30.7%,撤回19件,撤回率为21.6%。失效专利数量为51件,有效专利数量为42件,即超过50%的专利申请已失效。申请人江西汇仁药业有限公司、浙江大学、上海市中药研究所、上海雷允上科技发展有限公司的专利权转让基本都发生在相同申请人内部,江西汇仁药业有限公司将7件专利都变更为与其旗下公司上海中创医药科技有限公司共有。除此之外,还存在其他转让情况,见表1。3 近红外光谱技术发明专利申请的技术内容3.1 中药原料制造过程质量评价的近红外光谱技术现状分析中药原料是中药制造的首关环节,直接影响中药的产品质量和药效。如何快速、准确地评价药材质量是中药制造需解决的首要问题。传统的鉴定方法耗时较长、样品处理繁琐,存在不同程度的局限性。将近红外光谱技术与计算机软硬件、化学计量方法等结合,可作为快速准确鉴别中药材的新方法[10]。涉及中药原料近红外光谱技术的发明情况如图5所示。中药制造原料质量评价包括真伪优劣、道地性、产地、加工炮制、种属等。将近红外光谱与聚类分析等方法相结合,建立假冒伪劣中药材鉴别系统,能有效提升假药的鉴别能力和速度。3.1.1 中药原料的真伪鉴别 在真伪鉴别方面有7件申请,分别涉及药材三七、丹参、山参、麻黄、皂角刺和甘草,如申请人天津天士力现代中药资源有限公司的2件申请CN101961360A、CN101961379A均通过主成分分析法在降低维数的同时充分提取光谱图中的有效信息,再采用马氏距离法判别样本的类别归属,以鉴别三七和丹参的真伪。其他4件也与此类似,创新之处主要在于近红外光谱数据的不同建模方法在中药制造原料质量评价中的应用。3.1.2 中药原料的道地性鉴别 在中药制造原料道地性鉴别方面,药材因在疗效、产量、贮藏、生长环境、采摘时节等方面所体现出来的综合特性优于同种内其他非道地药材,不同产地的气候环境直接影响中草药的化学成分、药用价值和治疗效果,因此中药材产地鉴定是中药疗效和用药安全的重要保障。针对道地性、产地鉴别的申请涉及的药材有陈皮(CN103033486A)、淫羊藿(CN104089921A)、三叶青(CN107607485A)和忧遁草(CN111595802A)。对不同基原以及不同产地的中药材进行鉴别,无需对样品进行复杂处理,操作简单、快速,结果稳定可靠。3.1.3 中药原料的炮制鉴别 炮制是中药制造原料的重要工艺之一。中药材加工炮制鉴定主要是针对加工后的药材进行检验,了解其是否具备原有的药材成分与药效。中药材在经过了炮制加工后,均会产生一定的化学性质变化,而这种变化便可以利用近红外光谱技术加以验证。硫磺熏蒸是一种传统的药材加工方法,可使药材快速干燥,解决药材颜色发黄和生虫等问题,保存时间长、卖相好,但硫磺熏蒸会导致药材中二氧化硫残留,影响人体的健康,已被国家明令禁止。如何区别中药是否被硫磺熏蒸过已成为人们关注的一项内容[11]。2件专利申请涉及白芷硫磺熏蒸与否的鉴定研究,1件专利(CN107449754A)采用近红外光谱分析方法对栀子炮制品的品质进行定性鉴别,为市场栀子炮制品的质量监管提供科学依据。3.1.4 中药原料的综合评价 另外,还有11件申请涉及中药材种属、真伪、优劣、产地、道地性等综合质量评价。CN144711A涉及中药药材红外光谱非分离提取多级宏观指纹鉴定方法,CN103076300A涉及专属性模式识别模型判别分析中药材资源指纹信息的方法,都是使用指纹鉴定的方法。CN104345045A和CN107782695A是相似药材、合格与否的鉴别,其他几件申请涉及大黄、人参、党参、甘草、三七、丹参和麻花艽的鉴别。水分是中药制造原料的关键质量属性之一。涉及含水量检测的申请,如鲜人参含水量的检测(CN108709869A)、中药水分测量方法及系统(CN110702631A)。3.2 中药制剂制造过程在线控制的近红外光谱专利技术现状分析在线检测的应用为中药制剂生产过程的动态监控和工艺优化提供了依据,改变了传统检验滞后的模式,真正实现了药品质量的在线控制。检测前,对预先采集的数据进行处理,建立模型,无需进行样品处理,可同时测定样品中的多个分子结构,液体、固体等均可直接检测,减少了样品处理时间,缩短了检测时间,提高了检测效率,为中药制剂生产过程控制提供数据支持。中药制剂制造工艺较为复杂,最终产品的品质稳定性与生产过程多项工艺参数息息相关。因此,中药制剂生产的过程监控非常重要。近红外光谱在线检测技术可以全面监控中药生产过程中的微生物、含水量、水不溶物、混合过程中药物分布的均匀性等,同时对多项参数进行有效控制,可在很大程度上提高制药工艺的自动化水平及药物自身的稳定性与均一性。3.2.1 近红外光谱技术应用的中药制剂剂型 发明专利申请中有78件涉及中药制剂在线检测和过程质量控制,近红外光谱技术在中药制剂领域的应用最为广泛。涉及中药制剂的剂型有药酒、胶囊、口服液、浓缩丸、合剂、颗粒和注射剂,如枣仁安神胶囊、肾宝合剂、贞芪扶正颗粒、金玄痔科熏洗散、一清颗粒、复方杜仲胶囊、增健口服液。3.2.2 近红外光谱技术应用的中药制剂主要成分和辅料 在发明专利申请中,涉及的单一成分或单类物质有丹酚酸B、丹参素钠、鞣质、芍药苷、总蛋白、柚皮苷、新橙皮苷、总黄酮、马兜铃酸I、枯矾、绿原酸、栀子苷、七叶皂苷A~D、苯丙素类、生物碱类或萜类化合物;涉及的多种成分或多类物质为总黄酮和总皂苷、药材浸出物(天花粉和葛根)、娑罗子提取物、淫羊藿提取物、苦黄注射剂等。有2件申请涉及中药注射剂(CN1432803A)和中药颗粒(CN1447109A),申请人均是清华大学,主要方法都是脱去溶剂的试样(注射剂)用溴化钾压片制样,测定粉末样品压片试样的普通红外光谱(注射剂)或中红外光谱(颗粒)、漫反射近红外、漫反射中红外光谱、反射光谱及衰减全反射光谱,求出并绘出相应光谱图的二阶导数光谱图,测定试样的二维相关红外光谱,分级对比相应图谱,测定主料和辅料的相对含量。3.2.3 近红外光谱技术应用的中药制剂生产环节 近红外光谱检测手段被应用于中药制剂生产的提取、浓缩、混合[12]、纯化、干燥[13]等多个环节。对于提取环节,申请中所涉及的药材或制剂有丹参、白芍、杏香兔耳风、娑罗子、大黄、栀子、淫羊藿、葛根、天花粉、龙血竭、川红活血胶囊、女金胶囊、肾宝合剂渗漉液、动物提取液。如CN102252992A涉及一种对中药提取过程进行近红外光谱在线检测的方法,实现了对中药各指标成分和含固量的实时监测以及提取过程终点的快速判断。CN102106888A公开了一种杏香兔耳风提取过程的质量控制方法,应用近红外光谱技术对杏香兔耳风提取液指标成分进行连续取样和现场分析,建立了在线应用的提取液指标成分的近红外模型,用于杏香兔耳风提取过程质量控制。对于浓缩环节,申请中涉及的有六味地黄丸、女金胶囊、淫羊藿提取物、丹参提取液,如CN102106939A提供了一种六味地黄丸浓缩丸提取浓缩液质量控制方法,能测定六味地黄丸浓缩丸提取浓缩液比重及马钱苷、丹皮酚含量,可对六味地黄丸浓缩丸提取浓缩液指标成分进行连续取样和现场分析。混合是中药制造的关键环节之一。对于混合均匀度的测定,如控制中药药粉二维混合的均匀度(CN101832921A)、正天丸混合过程终点的测定方法(CN105092520A)。对于纯化步骤,CN103808665A公开了一种测定娑罗子提取物纯化过程中多指标成分含量的方法,CN108362663A涉及丹参提取液纯化过程中的质量控制方法。针对干燥过程质量控制,CN108592527A涉及石斛冻干加工系统及其控制方法,采用近红外光谱仪对冻干加工过程中的石斛的水分含量进行检测,并根据检测结果自动调节冻干控制数据,不仅节约能源,还能确保冻干石斛的品质。CN110632016A涉及中药饮片在干燥环节中水分浓度的精准控制。贵州景峰注射剂有限公司在中药制剂制造过程控制领域进行了较为全面的保护,其申请内容涵盖了提取过程(CN108760676A)、浓缩过程(CN108398401A)、纯化过程(CN108362663A)和大孔树脂吸附分离过程(CN108693138A)的终点判断方法。3.3 中药制造近红外光谱技术一体化装备专利技术现状分析在所有发明专利申请中,涉及近红外检测装置的共有8件,3件涉及中药在线监测的提取装置,2件(CN111175247A、CN102507491A)涉及中药品质的检测装置,2件涉及中药成分的检测,1件(CN105092517A)为颗粒沸腾干燥过程的在线质量控制装置。4 存在问题及建议4.1 存在问题中医药发展“十三五”规划要求发挥中医药特色优势,利用现代科学技术,推进中医药现代化与国际发展,引领中医药自主创新国际主导权。而近红外光谱技术在中药制造业中的应用,可解决中药真伪鉴别、分类和分级靠人工经验的落后面貌,同时可实现中药制造过程在线质量监控,该技术的推广应用对我国中药提升产品质量产生了巨大影响。通过对近红外光谱技术在中药制造领域的专利技术分析,发现如下问题。4.1.1 申请数量少,后劲不足 近红外光谱技术在中药制造应用领域的专利总量还较少,从2002年至今发展较为缓慢,申请量最多的一年也仅有17件,申请量最大的申请人也仅有7件申请,申请时间主要集中在某个时间段,没有针对某项技术的持续性改进,技术方向重点有所转移。4.1.2 专利申请涉及的适用范围有限 重点申请人的申请基本都是涉及提取过程的质量控制,申请方向较为单一。在产业实践中,近红外光谱技术被广泛应用于药品检测,基本涵盖了从原材料供应到生产全过程乃至上市后的监督检验,但是在专利申请中还未见有药品非法添加的相关检测,对假劣药品的鉴别也非常少。相关专利中近红外光谱技术局限于药材的鉴定,且进行综合评价的药材基本都是根、茎和根茎类药材,其中参类药材较多,药材品种少而分散。4.1.3 专利质量有待调高,布局有待改善 该领域专利许可数量为0,技术转让寥寥无几,从侧面反映了其专利的质量不够高、应用性不够强。所有申请中也没有针对某个核心专利的后续改进及专利布局。国内申请中,仅有深圳市药品检验研究院2018年申请的一件涉及皂角刺真伪化学模式识别的方法(WO2019192433A1)提出了国际申请,其是以国内专利CN108509997A为优先权,其仍然处于国际阶段,说明该领域研究在国外的布局起步很晚,且数量非常少,保护主题单一,大部分国内申请人尚未建立国际化的专利布局意识。这也反映出对于专利应用价值和成果转化预期的不确定。4.2 建议基于以上问题,笔者提出以下建议。4.2.1 开展广泛的产学研一体化合作 在中药制造业创新发展的过程中,高校、科研机构、中药制造企业应当充分利用近红外光谱技术和中药的优势,发挥各自的特点和特长,走产学研一体化的创新之路,对该领域的专利信息数据进行跟踪,有针对性地进行改进创新,推动近红外光谱技术在中药制造领域的产业化发展,进一步提高专利技术的实际应用价值。4.2.2 拓展适用范围 近红外光谱技术可以应用于中药原料和中药制剂的质量控制,涉及中药的种属、真伪、优劣、产地、道地性、非法添加等,生产过程中微生物、含水量、水不溶物等多种指标,炮制、提取、浓缩、混合、纯化、干燥等多个环节,中药品种成千上万,药用部位包括花、果实、种子、根及根茎等,除了植物药,还包括动物药、矿物药,申请人可以针对某种或某类药材或制剂从多个角度拓展应用,或联合其他检测技术以增强或改善检测结果或效果。4.2.3 提升专利质量,扩展海外布局,加强专利运营 “十四五”规划纲要的指标中专门为知识产权设置了一项关键性指标,即每万人高价值发明专利拥有量达到12件。国家知识产权局出台了一系列知识产权政策,显示了政府努力提高专利质量的决心,专利质量的提升是未来参与全球竞争的关键所在。申请人在研究和申请前应充分了解相关领域的现有技术和在线申请情况,围绕核心专利进行全面、持续性改进研究并进行海外专利布局。重视高价值专利的运营,加强校企合作,强化市场意识和应用导向,提高专利的转化率,实现专利价值的最大化。利益冲突 所有作者均声明不存在利益冲突参考文献(略) 来 源:刘南岑,耿立冬,马丽娟,吴志生.中药制造领域近红外光谱技术的专利技术进展和趋势 [J]. 中草药, 2021, 52(21): 6768-6774 .
  • 2021“制造基础技术与关键部件”重点专项预评审专家名单公布
    根据“制造基础技术与关键部件”重点专项评审工作安排,中心于2021年6月4-10日组织开展了“制造基础技术与关键部件”重点专项2021年度项目预评审。此次评审采用网络评审方式,涉及5个指南方向,评审专家共3组22人,统一从国家科技专家库中抽取产生。根据《国家重点研发计划管理暂行办法》(国科发资〔2017〕152号)的文件精神,现将评审专家名单予以公布。评审分组A:指南方向 1.5齿轮传动系统多维信息感知及智能运维 (青年科学家项目)序号专家姓名所在单位1刘春时沈阳机床(集团)有限责任公司2宋轶民天津大学3程永亮中国铁建重工集团股份有限公司4王禹林南京理工大学5陈信琦中国电子科技集团公司第四十九研究所6王晓力北京理工大学评审分组B:指南方向 1.6基于二维材料的柔性应变传感器阵列 (青年科学家项目)序号专家姓名所在单位1陈寿面上海集成电路研发中心有限公司2李青中国计量大学3查钢强西北工业大学4王惟彪中国科学院长春光学精密机械与物理研究所5许高斌合肥工业大学6伞海生厦门大学7董文飞中国科学院苏州生物医学工程技术研究所 评审分组C:指南方向 1.7 高灵敏磁电阻传感器(青年科学家项目)1.11工业测控高精度硅基压力传感器关键技术2.2 动力电池组控制安全传感器开发及示范应用序号专家姓名所在单位1李斌中国科学院上海技术物理研究所2苏岩南京理工大学3桑胜波太原理工大学4叶树亮中国计量大学5李加东中国科学院苏州纳米技术与纳米仿生研究所6费峻涛河海大学7徐大诚苏州大学8孟凡利东北大学9褚金奎大连理工大学专业机构:工业和信息化部产业发展促进中心中心申诉电话:010-68207746工业和信息化部产业发展促进中心2021-06-15
  • 化药口服固体制剂连续制造技术指导原则征求意见:明确NIR在线应用
    2022年9月9日,国家药品监督管理局药品审评中心发布关于公开征求《化药口服固体制剂连续制造技术指导原则(征求意见稿)》意见的通知。连续制造作为一种先进生产工艺,在生产过程中,输入物料持续进料、持续转化,同时伴随输出物料的持续产出。不同于传统的批生产工艺,连续制造工艺具有生产步骤连续无间歇、生产效率高、设备占地面积小、产品质量实时监控、生产批量易于调节等诸多特点,有助于改善并提高药品质量。 全球范围内已有多个采用连续制造工艺的化药口服固体制剂产品获批上市。国际上已发布多个连续制造相关指南和标准(草案),ICH Q13质量议题目前仍在协调中。国内目前尚无连续制造相关指导原则发布。为指导企业研发,统一审评尺度,助力 ICH Q13指导原则在国内的落地实施,借鉴国外相关指导原则和标准,国家药品监督管理局药品审评中心组织起草了本指导原则,阐述了化药口服固体制剂连续制造批定义、控制策略制定、工艺验证和 稳定性研究、批量变更等的基本思路和监管考虑。本指导原则主要内容包括:概述、总体考虑、相关概念、 控制策略、工艺验证、稳定性研究、批量变更、药品质量体 系、申报资料要求、参考文献共十部分。特别值得一提的是,征求意见稿中明确提出了近红外技术的在线应用。文中描述到:过程监测方法的开发需包括风险评估,其中应考虑过程监测数据采集时的中断情形(例如,重新校准近红外(NIR)探针或重新填装饲料机)如何影响产品质量。选择的过程监测方法应包括替代或额外的质量控制措施,以降低这些情形带来的产品质量风险。征求意见稿中的这一描述,引发了不少业内专家的讨论。有专家表示:药品行业的近红外应用终于解决了进入门槛的问题,有望迎来高速发展期!附件:《化药口服固体制剂连续制造技术指导原则(征求意见稿)》.pdf
  • 安捷伦组学技术赋能生物制造,高精技术推动合成生物学发展
    继DNA双螺旋结构、基因组技术后,合成生物学被誉为第三次生物技术革命。麦肯锡预计,到2025年,合成生物学与生物制造的经济价值将达到1000亿美元,未来全球60%的物质生产可通过生物制造方式实现。我国对合成生物产业的发展高度重视,在《“十四五”生物经济发展规划》中,国家明确提出了合成生物学作为关键技术创新领域。除国家层面以外,各省、市也在积极出台合成生物学相关的政策,建设合成生物学研究中心。近期,由南京大学和无锡市政府合作共建的“无锡合成生物学和生物制造研究中心”举行了揭牌仪式,无锡市南京大学锡山应用生物技术研究所(以下简称“南大无锡研究所”)与安捷伦共建的“生物制造与组学技术联合实验室”同步签约落地,仪器信息网受邀参与活动,并在活动现场与南京大学生命科学学院副院长/无锡市南京大学锡山应用生物技术研究所所长董磊、安捷伦助理副总裁/大中华区生物制药业务及华东区整机销售总经理丁皓、安捷伦液质联用系统应用团队经理冉小蓉博士就合成生物学研究及技术进展进行了深入的交流。安捷伦与南大无锡研究所建立联合实验室南大无锡研究所与安捷伦合作共建联合实验室,双方合作的初衷是什么?董磊回答说:“安捷伦作为分析仪器领域的头部企业,其专业性不言而喻,而在生物医药领域,无论是开发过程还是实验过程,分析结果的准确性十分重要。在这方面,我十分认可安捷伦的技术水平,并且与之合作多年。本次与安捷伦共建的联合实验室,不仅可以展示、利用安捷伦最新的质谱技术,还为合成生物学领域研究提供了高水平的技术支持。”董磊说。南京大学生命科学学院副院长/无锡市南京大学锡山应用生物技术研究所所长董磊丁皓表示:“几年前,安捷伦与南京大学郭子建院士团队合作了生物制药技术。通过这次合作,我们发现郭院士特别注重产、学、研的结合,他的科研成果不仅限于发表学术文章,更多在于将科研成果进行产业化。因此,我们想通过建立联合实验室帮助郭院士团队加速科研成果的落地转化。同时,我们期待通过自身技术优势,不仅服务于无锡本地的企业,更期待在整个中国产生更强的影响力。”安捷伦助理副总裁/大中华区生物制药业务及华东区整机销售总经理丁皓据了解,无锡合成生物学和生物制造研究中心是由中国科学院院士、南京大学化学和生物医药创新研究院院长郭子建领衔的产业平台,团队成员共计13人,当前主要研究医用领域的大分子生物制造。据董磊介绍,目前,植入人体的医用材料主要以惰性材料为主,但因为具有准确生物活性的材料在体内整合等方面的性能更佳,因此临床对于活性材料仍有需求。然而,活性生物大分子的结构高度复杂,仅依靠传统的化学方式合成活性生物材料很难,相比之下,合成生物学是一个很好的方式。这也是未来很长一段时间内该研究团队研究的重点。“加之与小分子生物制造相比,生物大分子的前沿性更高、技术产量更大,同时也更能依托南京大学的技术优势。”董磊补充道。合成生物学:真核体系构建难、规模化生产难、“研、产”对接难合成生物学作为近年来在科学界受关注度不断上升的学科领域,在推动生物经济创新、生物医学发展等方面都展现出了巨大潜力,但由于合成生物学尚处于早期发展阶段,合成生物学的发展还面临着许多难点。据董磊描述,难点主要集中在三个方面:“第一,在底盘细胞设计方面,当前合成生物学使用的底盘细胞主要以原核细胞为主,无法合成复杂的生物分子,而这类复杂的生物分子通常需要真核体系,但真核体系尚未完善,实现底盘细胞从原核体系到真核体系的转变仍需进行大量工作。“第二,在规模化生产方面,实现实验室到工业化生产仍存在很多问题,比如生产效率较低,无法形成成本优势等。“第三,在合成生物学与医药行业的深入对接方面,很多生物功能是否可以通过合成生物学的方法真正实现在体内使用?关于这个命题,想做的团队很多,但有突破的很少,因为在基团逻辑的构建方面存在许多细节问题。”“针对上述难点,安捷伦可以在合成生物学‘设计-构建-测量-学习’工程循环的相关环节提供对应的产品及方案,并且不断地迭代、打磨,为产、学、研提供技术赋能。”冉小蓉博士认为,在底盘细胞构建涉及的相关测试中,合成途径的精确分析及底盘筛选的大样本高通量分析是两个比较关键的点。因为,当前底盘细胞的构建实验大部分还属于试错性实验,产生的样本量非常大,因此,合成生物学对于“高通量、自动化”仪器设备需求与其他领域相比显得尤为突出。“对此,安捷伦一直不断加深与用户在高通量、自动化整合方案开发方面的合作、真正帮助客户解决实际问题。同时,安捷伦早期在代谢通路分析、组学技术上的积累也可以很好的用在合成生物学领域,为研究团队在合成途径的设计上提供精确分析和验证,可以加速合成生物学高效底盘的构建。”安捷伦液质联用系统应用团队经理冉小蓉博士合成生物学已成为安捷伦业绩增长最快的领域之一受到美国合成生物学发展的影响,总部在美国西海岸的安捷伦在合成生物学领域也是早有布局。在国内合成生物学的概念尚未火起来、该技术还被普遍称作“生物工程”的时候,安捷伦就已经和上游科研端和客户构建了合作。同时,安捷伦在美国总部设立的大学关系事业部,一直在合成生物学领域致力于深化与学术界的紧密合作。通过思想领袖奖、安捷伦应用和核心技术大学研究项目(ACT-UR)等奖项,帮助安捷伦拓展合成生物学领域,了解合成生物学领域前沿进展与用户的痛点并加深与用户的合作,以此来优化、迭代原有技术,再服务更多的团队。如今合成生物学的热度逐渐上升,国家也在陆续提出“碳中和”、“生物经济”、“新质生产力”等概念,各个领域,尤其是大的科研机构在合成生物学方向的投入越来越大,得益于安捷伦早期在合成生物学领域的布局,安捷伦也贡献到了这些合成生物学大设施平台的建设。丁皓表示:“从整体来看,在四、五年前合成生物学就已经呈现了比较好的增长态势,如今该领域已经成为了我们业绩增长最快的板块之一。与制药、食品、化工、能源等其他行业不同,合成生物学是一个以科研为导向,强调产、学、研结合的行业。因此,得益于早期在头部科研院所、头部企业打下的基础,许多海外归国人才会主动向安捷伦寻求决方案。”深度布局合成生物学:迭代技术,客户为先在谈及安捷伦在合成生物学领域的整体规划时,冉小蓉博士首先从技术层面进行了解答:“首先,针对目前合成生物学领域用户提出的需求和挑战,我们会利用现有的技术方案迅速的响应,提供精准的支持;其次,我们也将持续保持与行业用户的紧密互动、合作,及时了解新需求并迭代新方案,为该领域赋能;最后,随着对整个行业和用户需求了解的不断加深,我们也将凭借跨行业经验为合成生物学实验室提供建议,帮助他们发现并利用尚未充分应用的分析方案,从而提升研发速度和成果转化效率。我们致力于以客户为中心,与合成生物学领域共同进步,推动行业发展。安捷伦作为一家科学仪器厂商,除技术层面外,丁皓还从用户的角度出发提出了一些新的见解。如今,在科学仪器行业,很多领域的用户已经从关注仪器本身转向了关注解决方案,对于用户来说,更想知道的是“我想要做这个,你怎么帮我做?” 因此,安捷伦这几年除了在产品上不断推陈出新以外,还对整个销售和应用团队进行了优化,丁皓表示:“这点很重要。如今,我们更加注重售前、售后人员综合应用能力的培训,或者是技能提升,使售前团队和售后团队到用户现场之后,能够与用户在应用层面展开沟通,而并非只对仪器本身做介绍。另外,安捷伦在与企业的合作中,更加关注合成生物学用户的使用体验,即技术支撑,帮助用户在整个生产制造环节做好前期发现,在检验环节做好产品品控,如今安捷伦的很多设备已经被许多合成生物学制造型企业用在最终的产品放行阶段,例如苹果酸、乳酸、糖类等物质。”对于合成生物学的未来发展,董磊认为生物医药行业是一个非常重要的发展方向,因为现在大多数药物来自于天然产物,产量少,成本高,但如果能通过合成生物学技术获取目标产物并破解发酵难题,药物的成本将大幅下降。并且,医药行业对成本的耐受度与其他行业相比相对较高,这也会在一定程度上促进新兴产业的发展。此外,合成生物学还可以应用到食品、环境等众多行业,可谓无所不包,未来,合成生物学有望成为各个行业的底层技术支撑。
  • 用于仪器制造,我国前沿半导体材料碲锌镉制备技术取得新突破
    日前,安徽承禹半导体材料科技有限公司(简称“承禹新材”)获得中国科学院半导体研究所关于第三代前沿半导体材料碲锌镉单晶棒及晶片的检测检验报告。其结论和数据显示,承禹新材制造的碲锌镉单晶棒及晶片,在红外透过率等综合参数性能、产品良率、晶棒及晶片尺寸规格、尤其是3英寸的全单晶圆片等几项关键指标方面,均处于国内同行业中遥遥领先、名列前茅的位阶,部分指标追平甚至领先国际技术水平。中国科学院半导体研究所是中国国务院直属事业单位,是集半导体物理、材料、器件及其应用于一体的半导体科学技术的综合性研究机构,在国内具有很高的权威性,被称为“引领我国半导体科学技术发展的火车头”。“承禹新材此次顺利获得中科院半导体所的产品检测报告,既彰显出该公司在碲锌镉半导体材料制备技术方面具有雄厚的实力,也可以看出该公司未来巨大的发展潜力。”一位资深业内人士表示。碲锌镉,英文名称cadmium zinc telluride,简写为CZT。自然界中并不现存有该物质,它是人工用碲、锌及镉三种单质(包含其它微量添加物质)化合生长而成单晶体,是属于第三代前沿战略性的半导体材料,是当前国际国内制造室温中红外探测、X射线探测、γ射线探测、核辐射及高能射线等探测器最为先进、优异的材料。据悉,碲锌镉半导体材料在军事用途上,主要是大幅提升武备的红外探测性能及其成像清晰度,而当前国际上武备九成以上均是以红外探测方式搜寻和发现目标的。在民用领域,未来主要应用于核医疗、放射源检测、无破损检测、核辐射探测、探温探源检测及夜视等领域、行业的设备、仪器的制造。其核心作用与意义在于更新迭代前述行业的设备、仪器的工艺、功能及性能,提升产业结构,助力国内这些行业同代等差参与国际竞争。更主要的是,碲锌镉半导体材料及器件可以提高核医疗、核辐射剂量、安检等设备仪器(如CT机、X光机、安检仪器等)功能与性能,降低放射源剂量,广泛惠及民众的医疗水平及健康。正因该材料在军事及民用领域具有诸多革新、颠覆性的功能与性能,国际上少数几个能生产制造的先进国家都将其列为战略性、管制性的产品,对我国进行技术与产品的双封锁。“而位于安徽省蚌埠市的承禹新材生产的综合质量参数优良、高良率、大尺寸的碲锌镉单晶棒及其晶片(包括全单晶圆片,这是属于首创性的高难度技术工艺,必将改变未来相关产业工艺),必将有力打破这种掣肘,实现国内供给,助推国内诸多相关行业设备、产品的更新升级,其意义重大、前景广阔,是国人创新与研发能力的一个有力例证。”半导体领域一权威人士说道。业内人士表示,碲锌镉单晶材料及晶片是制造室温X射线、γ射线、核辐射等探测器优异、先进的半导体材料,具有噪声低、暗电流低、热稳定性好、电阻率高、探测射线能量分辨率较高、带隙宽且可调、灵敏度高、计数率高、能量响应率高等诸多突出优点。其中,民用领域主要应用于核医疗、放射性安检、夜视、红外探测、核辐射探测、灾难搜救、探温探源、空间天文研究等设备、仪器上,军用领域可应用于导弹、卫星、战机、雷达、舰船、坦克、步兵战车、单兵作战等各类武器装备红外探测器及成像的材料。比如,在目前使用的CT机、X光机等医学检查中,以闪烁体探测器为核心部件的传统医疗成像设备,相比碲锌镉单晶材料做衬底的核医疗设备,在成像清晰度、扫描层隔精度、放射元素辐射量、成像时间等性能指标上差距甚大。而在应用碲锌镉单晶材料制造的X光机、CT机等各类核医疗探测、成像设备的核心部件中,不仅可实现从间接成像转向直接成像,而且扫描层隔更精微,成像更清晰,放射性元素剂量可以降低到原来闪烁体探测器剂量的三分之一,检测时间可以缩短为原来四、五分之一左右,同时还可以延展医疗检测的群体和适应症范围。据了解,2021年,蚌埠市水利局领导及蚌埠水利建设投资有限公司高层在对该项目经过多轮科学、严谨的求证、考察之后,果断决策、高效执行,最终力促碲锌镉单晶半导体材料项目花落珠城蚌埠。2021年8月,蚌埠水利建设投资有限公司与合肥达识新材料技术开发有限公司共同合作投资成立安徽承禹半导体新材料科技有限公司。该公司现已成为国内首批进行纯企业化、大规模化量产碲锌镉半导体材料的领跑者。“蚌埠水利建设投资有限公司是国有政策性投资公司,具有政策及资金方面的资源优势。合肥达识则拥有国内领先的技术工艺以及先进的经营管理水平和优秀的市场运营能力。双方真诚携手,相得益彰,优势互补,前景可期。”蚌埠水利建设投资有限公司冉凡荣董事长如是说。合肥达识新材料技术开发有限公司目前已拥有以碲锌镉单晶为代表的多项先进、成熟的第二代、第三代半导体和其它化合材料及芯片的生产制造技术与工艺。公司研发的化合材料包括碲锌镉、碳化硅、透明高阻薄膜、锑化镓、氮化镓、氟化钡、氟化钙、砷化镓、宝石级金刚石等。公司掌握的碳化硅和透明高阻薄膜技术工艺等则属于升级类别,不仅在产品性能质量、参数指标等方面显著领先,而且生产成本也成倍降低。
  • “中国制造”需升级 国产制造业的“攻坚战”
    p style=" text-align: center "    img title=" b71426bdeba24839802f68a008f32a1a_副本.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/23bbba1d-3439-42e8-99e9-782d35aff35a.jpg" / /p p   “我们要打一场制造业的‘攻坚战’,用先进标准倒逼‘中国制造’升级。”李克强总理在4月6日的国务院常务会议上说。 /p p   当天会议决定实施《装备制造业标准化和质量提升规划》。李克强说,坚持标准引领,建设制造强国,是结构性改革尤其是供给侧结构性改革的重要内容,有利于改善供给、扩大需求,促进产品产业迈向中高端。 /p p   他强调:“要提振消费者对‘中国制造’的信心,支撑制造业提质增效,提升国际竞争力。” /p p    strong 发挥市场倒逼作用,提振消费者对“中国制造”的信心 /strong /p p   当天这一议题原本只聚焦于“提升制造业标准”上。李克强总理明确要求,要在文件标题中加入“质量”二字。 /p p   “标准和产品质量紧密相连,我们要制造高质量的产品,建设制造强国,必须有先进的标准作为支撑。反过来,我们推进装备制造业标准化的目的,也是为了提升消费品质量,拓展国内国际市场。”总理阐释二者的关系。 /p p   李克强说,中国目前是制造业大国,但并不是制造强国。这其中很重要的一个原因是,我们的标准仍然比较落后,很多产品的质量仍然处在中低端。 /p p   “现在很多民众出国买东西,跨境电子商务也是大量进口国外消费品。”总理说,“我们必须要瞄准国际先进标准,发挥市场倒逼作用,提振消费者对‘中国制造’的信心,支撑制造业提质增效,提升国际竞争力。” /p p   李克强要求,相关部门要进一步提高标准水平,逐步与国际接轨,加快关键技术标准研制,加快标准更新,促进技术和产品创新。 /p p   他强调,我们要继续扩大开放,让消费者有更多选择,进而倒逼“中国制造”升级,最终目的是要激励国内制造业,按照更加符合市场需求的标准发展壮大起来,创造更多就业岗位,助力国家持久发展。 /p p    strong 老百姓的需求越来越多样化,层次也越来越高,政府的管理也要同步跟上啊 /strong /p p   一位部长在讨论中说,有些创新创业企业负责人反映,他们研发了新产品,却因为没有相应的产品标准,导致无法进入市场。李克强明确要求,装备制造业标准和质量提升,首先要改进政府管理方式,要采取新办法,让消费者自主选择。 /p p   “别再列什么工业消费品的‘目录’了,这样会提高创新创业产品进入市场的门槛!”李克强说,“要采取负面清单的管理办法,除在危害人身安全、国家安全和生命健康等方面设置强制性标准,需要强制执行、严格管住外,其他方面要更多让市场发挥作用。” /p p   他强调,政府需要创新管理模式,把精力从“设置门槛”更多转移到“提供服务”上来,引导更多企业采用先进标准,适应市场需求,推动整个制造业的升级发展。 /p p   “现在老百姓的需求越来越多样化,层次也越来越高,政府的管理也要同步跟上啊!”总理说。 /p p strong   解除对创新思维的束缚,培育精益求精的“工匠精神” /strong /p p   李克强谈起近20年前他在欧洲一家企业参观的经历:一位技术工人浇筑的镁条粗细均匀,一丝缝隙都没有。 /p p   “机器都没他做得好!”谈起当时的场景,总理连连感叹,“更重要的是,这家企业的总经理告诉我,这位工人的收入和他本人的收入一样多。这就是对‘工匠精神’的最大激励!” /p p   李克强进而强调,装备制造业不仅要提升标准和质量,更要从根本上解除对创新思维的束缚,培育精益求精的“工匠精神”。 /p p   “政府要明确自己的职责:一方面要把假冒伪劣、坑蒙拐骗‘管死’,营造公平竞争的市场环境 另一方面要弘扬工匠精神,追求精益求精,生产更多有创意、品质优、受群众欢迎的产品,让制造业蓬勃发展。” /p p    strong 要用消费者的选择,倒逼工业消费品提质和“中国制造”的升级 /strong /p p   在讨论提高装备制造业标准质量的同时,李克强也明确要求有关部门,要尽快拿出针对大众消费品的质量标准提高计划。 /p p   “过去我们的工业体系是,先把生产设备定下来,然后‘我生产什么你就买什么’。但现在人民群众消费需求越来越多样,对消费品质量、标准的要求也越来越高。制造业正在日益向定制化、个性化方向转型。”总理说。 /p p   他说,在计划经济年代,我们和一些国家都曾经历过“重工业发达、轻工品却买不到”的历史。而在当今互联网时代,不能再走这样的“老路”。 /p p   “‘中国制造2025’不能只搞装备制造业,而要用消费者的选择,倒逼工业消费品提质和‘中国制造’的升级。”总理说。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制