当前位置: 仪器信息网 > 行业主题 > >

质谱成像

仪器信息网质谱成像专题为您整合质谱成像相关的最新文章,在质谱成像专题,您不仅可以免费浏览质谱成像的资讯, 同时您还可以浏览质谱成像的相关资料、解决方案,参与社区质谱成像话题讨论。

质谱成像相关的仪器

  • iMScope QT保留岛津质谱成像的高空间分辨率和光学显微镜融合特点的同时,连接 LCMS-9030,以MALDI-Q-TOF提高成像速度和灵敏度。iMScope QT还可以把显微镜-MALDI单元简单地分离和组装,实现了一台仪器多用途使用,从而完成定性,定量,定位的整体流程。iMScope QT 主要特点:显微镜观察和质谱成像分析的融合。高分辨率光学显微镜完美地融合在成像质谱仪,可对微小区域进行观察和分析,通过叠加光学显微镜图和质谱成像图,更准确地进行定位。高空间分辨率,高速,高精度,高效率的成像分析。使用5 μm空间分辨率,20,000 Hz的激光频率,结合LCMS-9030的快速检测系统,成像分析速度可达到50像素/秒,分析100 x 100像素的图像仅需数分钟即可完成。LCMS-9030高性能的MS/MS分析,可快速提供目标分子的结构信息和高特异性成像数据。一台质谱即可获得LC-MS的定性、定量信息和质谱成像的位置信息。iMScope QT成像单元和LCMS-9030质谱单元可以组装和分离,轻松实现质谱成像分析和LC-Q TOF定性定量分析的切换,同时满足定量成像分析的需求。?
    留言咨询
  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询
  • 卓立汉光所研发的高光谱成像仪主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。HyperSIS高光谱成像系统工作原理如下(推扫型/推帚型):线光源照射在放置于X-Stage电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。【HyperSIS-高光谱成像分析仪型号列表】 型号 描述光谱范围(nm)扫描速度** (images/s)备注1HyperSIS-VNIR-QE增强型400-1000 9 系统包含:高光谱成像仪,CCD相机、光源、暗箱、数据采集软件、笔记本电脑 2HyperSIS-VNIR-PS高效型400-100011 3HyperSIS-VNIR-HS高速增强型400-1000334HyperSIS-VNIR-PFH标准型400-1000305HyperSIS-NIR 近红外增强型900-170060 6HyperSIS-SWIR短波红外增强型1000-2500100在整个系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,本系统的设计针对大小不超过200 mm (长)*200 mm (宽)*100 mm (高)的物体。若使用者对于系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身对系统的特别使用需求。【应用】用于农产品、水果、食品、药品等快速、无损检测分析 农产品检测 水果检测 肉类检测 食品药品检测
    留言咨询
  • 共轴 TOF 质谱仪的突破性创新易于使用:一体化的消耗品和软件的生态系统阐明:为组织生物学情景化实现单个像素点分子信息获取的最大化发现:提供多种 MALDI 分析流程,速度和性能的进一步提升转化:单个组织切片,多维度空间生物学分析仪器特点1)116 通道靶标蛋白质的同步空间可视化MALDI 质谱成像可以从单个组织切片中获得深度的空间多组学信息,推动您的空间生物学研究,加深对肿瘤微环境系统的认识;通过 MALDI HiPLEX-IHC 和其他组学方法的联合分析,可在一个软件方案中实现对组织样本从分子表达到疾病机制认识的一系列研究。我们的空间生物学工具包使您能够通过疾病特异性的 HiPLEX 实验来评估靶点的接合效应。在鳞状细胞癌组织上已经实现突破性的 116 通道的 MALDI HiPLEX-IHC 实验, 空间分辨率为 30 µ m, 采集时间为 7 小时,全面的蛋白质分析可实现空白组织与小细胞肺癌组织有效区分。样本由瑞士苏黎世大学和瑞士联邦理工学院的 Bernd Bodenmiller 教授提供。2)每一帧像素分子信息的最大化neofleX&trade 成像质谱系统能够使研究人员深入挖掘组织的分子表达谱,推动转化医学研究。实验设置:自动化设置及图像导入功能为高通量实验提供了极大的便利数据解析:从靶向可视化到数据的多模态融合及统计学分析等高级流程,SCiLS&trade 为每个用户提供了多种选择。3多功能性、灵活性与采集速度的完美融合neofleX&trade MALDI-TOF/TOF 结合了分析速度快和操作简便的优势,对台式 MALDI-TOF 质谱仪的性能实现了性的提升。快速获得结果 —— 实验操作和数据分析的便利为一系列分析和应用实现分析结果的即时交付即时方案 —— 为生物学表征如 MALDI 自上而下测序、反应监控、杂质分析和组分鉴定提供简单快速的方法超越分子量极限 —— 独特的高质量端检测能力可实现带有高异质性的完整蛋白质的直接分析,如 PEG 修饰蛋白质和融合蛋白质应用方向: 加速生物药物研发MALDI-TDS 对 NIST mAB 轻链的序列验证。使用 Bruker OmniScape&trade 软件中序列确认的工作流程进行数据分析,只需点击几下鼠标,即可在短时间内获得无与伦比的序列覆盖率,从而得到可靠的序列验证结果。在生物制药领域,快速决策至关重要。MALDI 快速的分析速度,和短时间即可生成结果的特点,为加速生物制剂各个阶段的开发提供了独特的潜力。MALDI 自上而下测序(MALDI-TDS)能够快速提供药物蛋白质一级序列、末端状态和近末端修饰等信息,并在治疗性抗体、聚乙二醇化蛋白质、抗原和其它药物分子的表征方面一直具有独到的优势。MALDI-TDS 常常用于极具挑战性的分析工作中,例如疏水小型膜蛋白的测序,这在蛋白质组学研究中经常被忽视,但却代表了独特的药物靶点。在需要更高通量的常规应用中,neofleX&trade 是提供紧急问题即时解答的完美工具。配合布鲁克的 BioPharma Compass 软件解决方案,能够轻松且快速获得众多类型生物分子的质控结果,比如合成肽、完整或酶解的蛋白质、聚糖、DNA 和 RNA 寡核苷酸等。neofleX&trade MALDI-TOF/TOF 重新定义了台式 MS/MS 的性能。其新开发的 TOF/TOF 技术有助于揭示精细结构信息,如蛋白质的修饰或突变,而这些在生物通路中起着至关重要的作用,也是影响蛋白质药物质量、安全性与有效性的关键因素。软件:SCiLS&trade autopilot——自动一体化的 MALDI 成像工作流程SCiLS&trade Lab 采用通用的 OME-TIFF 图像文件,可以与您所选的其他平台无缝兼容。SCiLS&trade autopilot 提供了一个自动化的工作流程,便于样品跟踪和成像运行参数的设置和优化。无需先验知识即完成仪器参数的优化,确保每次运行的重复性和稳健性。neofleX&trade 的数据是开放式的 OME-TIFF 格式,便于科研共享。MALDI 表征的配套软件方案BioPharma Compass 自动化处理,简化了日常实验流程,提高了工作效率。 OmniScape&trade 提供了一套全面的 “自上而下” 数据分析工具,包括蛋白质从头测序和 PTM 修饰位点的验证工具。耗材配件:实验成功的首要因素IntelliSlides:“智慧型”载玻片最大限度地洞察每一个像素点布鲁克 lntelliSlides 完美适配于空间定位组学工作流程 ( SpatialOMx ) 。通过读取导电载玻片表面预先刻蚀好的条形码和定位标记,可自动定位并确定样本区域,从而实现成像设置的自动化,简化了您的质谱成像工作流程。fleXmatrix —— MALDI 质谱分析成功的关键fleXmatrix 采用预分装的小瓶,简化了 MALDI 成像基质溶液的制备,尤其是对于喷涂方法或升华方法。它保证了实验的一致性,并节省了工作流程时间。AnchorChip 靶板技术 —— 简化样品制备,提高实验结果的可重现性AnchorChip 是一种带有专利保护的靶板技术,“anchor” 的内部是亲水性的中心,外部是疏水性的外环,该结构促使样品液滴自动浓缩并集中于靶点中心,可以确保在自动采样时每一束激光都能轰击到样品。
    留言咨询
  • iTracer-高光谱成像仪,主要应用于刑侦鉴定方面,如指纹识别分析、笔迹鉴定、血迹鉴定等。 iTracer-高光谱成像仪,可采用透射光谱、反射光谱、荧光光谱、拉曼光谱等各种光谱测量手段,高光谱成像仪结合推扫成像技术,可有效、快速进行指纹识别分析、笔迹鉴定、血迹鉴定等各项刑侦鉴定工作。 光谱范围:200-400nm,380-800nm,400-1000nm,900-1700nm,1000-2500nn
    留言咨询
  • 光电离质谱成像仪 MSI DPI-A产品介绍质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。MSI通过直接扫描生物样本,可以同时获得多种分子的空间分布特征。光电离质谱成像仪 MSI DPI-A 是基于专利技术( DESI/PI,即带电液滴解析/后光电离质谱成像技术,专利号:ZL201810935962.4)研发的一款用于空间分子成像的装置,该成像仪的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。该成像仪可适配于主流质谱仪(Agilent、Thermo Fisher、Waters等),对动/植物组织、各种物体表面及内部分子进行空间成像。光学成像和质谱分子成像对比显微镜光学成像看外观,质谱的分子成像看本质光学影像看似一样,但质谱成像显示生物标志物只在特点区域分布 光电离质谱成像仪 MSI DPI-A产品特点分子成像技术一次性对所有质谱信号成像组织切片成像植物叶/根/茎切片成像软电离成像待测物无极性歧视扫描速度快光电离质谱成像仪 MSI DPI-A产品优势与其它成像技术相比,ProC-MSI-DPI-A光电离质谱成像系统成像技术具有:(1) 免标记:无需放射性同位素或荧光标记 (2) 高通量:可以对上千种生物分子同时进行原位成像分析 (3) 信息丰富:可以同时获得生物分子的结构、丰度和空间分布信息。目前国际上普遍使用的DESI成像源只能对极性较强的组分进行成像,有极性歧视(影响多种极性和非极性组分的准确度)和较强的离子抑制(干扰使待分析物的响应信号被抑制,需要对样品净化),不适于所有的待测物体系。与之相比,本公司基于DESI的二次光电离质谱成像技术(DESI-PI-MSI)光电离成像源不仅可以将小鼠、植物组织等切片中的非极性化合物进行成像,还可以进一步提升极性成分的信号强度,从而大大高了成像信噪比。与传统DESI技术相比, 使用DESI/PI后信号强度可提高1-3个量级,大大提升了待测物尤其是非极性成分的检出和成像能力。图1 利用Omni PI成像源与市售其他成像源获得的质谱 图和成像图比较图2 利用Omni PI源在国际顶尖期刊《分析化学》 发表的封面论文光电离质谱成像仪 MSI DPI-A系统组成整个系统由一台高分辨率飞行时间质谱仪和一台分子成像仪集成一体,为国内首创质谱仪规格参数:质量检测范围20-10000 amu 检测限0.05ppb质量分辨率 10000自动数据采集及分析程序成像仪规格参数尺寸:300(w)x200(h)x150(d)空间分辨率:10-200微米,可进行原位检测成像速率:50像素/秒解析源:DESI+PI电离源:后光电离光电离质谱成像仪 MSI DPI-A应用领域代谢组学:蛋白质组学、代谢物的空间分布变化、病理学诊断:疾病标志物的发现、疾病的早期诊断、临床病理研究、细菌分析、微生物成像、确定肿瘤的级别、激素受体状况、基因芯片检测、细胞生物学、微生物生态学药物代谢动力学:新药研发、药物及代谢物在不同时间不同器官的代谢过程、药物定量、药物发现及分布研究、草药混合物植物代谢:代谢物的空间分布变化、植物代谢研究工业领域:化工原料、包装材料、染料、化妆品、材料基质、食品成分分析法医学:法医鉴定、指纹扫描、毛发、组织中的滥用物质及代谢物 毒理学环境化学考古学光电离质谱成像仪 MSI DPI-A应用范例1.小鼠大脑成像DESI/PI产生更多、更强的待测物质谱信号,如乙醇胺、GABA、肌酸、腺嘌呤、谷氨酰胺、谷氨酸、胆固醇、PC脂、GalCer脂质、PE脂质、MAG脂质等(如上图所示)2.小鼠乳腺癌成像研究 原位质谱成像方法(aa-DESI/PI),以小鼠乳腺癌组织作为模型开展成像研 究,有助于深入揭示肿瘤复杂的代谢过程。3.药物研究在药物研发(Discovery及R&D)过程中,必须详细了解药物的药理学、毒性和分布。质谱成像是无须标记,可用于可视化生物组织中内源性化合物、药物、脂质、蛋白质、肽和药物输送系统的二维(和三维)分子分布。因此,该技术不仅能够收集药物和代谢物分布数据,还能收集药效学和生物标志物信息,这些信息在药物开发的多个阶段都非常有价值。在给药后6小时,药物浓度在不同区 域的分布可见降低4、植物叶片成像及代谢研究在已知植物种群中,有约 200,000 个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规MALDI和DESI等软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像MSI DPI-A质谱成像源仪的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台(Analytical Chemistry,2019,91,6616-6623)结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。5、黑色素细胞痣诊断和形成机制操作流程特征性脂质标志物在表皮、痣和皮下组织中分布的箱线图四例样本成像图胆固醇合成酶(HMGCR)及转运酶(TSPO)的IHC图表明,两者均在黑素细胞痣区域高表达,这表明黑素细胞痣中胆固醇的积累是由HMGCR和TSPO酶的共同作用 产生的.6.卷烟叶的成像六种代表性化学物质的质谱成像图7.茶叶成像DESI/PI 在可视化极性和非极性代谢物的空间分布植物成像的一个好例子。植物中的代谢物已经通过不同的MSI成像技术.作为消费最广泛的仅次于水的饮料世界,茶富含多种生物活性物质成分。例如,儿茶素占新鲜茶叶的干重的30%,健康茶有很多益处。然而,由于它们的极性低, DESI 对这些儿茶素的电离效率很差。茶的两个连续鲜叶芽横截面植物分别通过DESI/PI和DESI进行分析。中性儿茶素包括 (-)-表儿茶素 (EC),(-)-表儿茶素没食子酸酯 (ECG),和 (-)-表没食子儿茶素没食子酸盐 (EGCG) flavan-3-ols 可以被检测和成像由 DESI/PI 提供。ECG 和 EGCG 是热不稳定的化合物,以及它们的片段([M + H - C7H6O5]+)分别在 m/z 272.07 和 289.07 处检测到。这DESI / PI质谱进一步证明了分配EC、ECG 和 EGCG 的标准。我们的结果表明,DESI/PI 可以增加中性物种的检测灵敏度,也拓宽了DESI 在可视化非极性生物分子中的适用性植物组织的MSI,可以被认为是一种有效的中度侧向 MALDI 和替代技术解析度。茶叶咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力证据。两个连续新鲜叶芽的平均质谱图获得的茶树横截面(减去背景)以甲醇/甲苯/FA (v:v:v = 70:30:1)作为溶剂的 DESI/PI和 DESI以甲醇/FA (100:1) 为溶剂,分别在正离子模式。(A) 叶芽组织的最优图像的茶。 (B-F) m/z 184.07 处一些代表性峰的 MS图像,195.09、272.07、289.07 和 291.09 由 DESI/PI 获得。(G-H) 质谱DESI 获得的 m/z 184.07 和195.09 处的两个峰的图像。白色比例尺对应于 1 mm非标订制及其他产品我们还提供非标飞行时间质量分析器和各种催化、高/压热解反应器、光电离源、电离腔、JSR反应器、分子泵、MCP微通道板、数据采集卡等质谱仪专用备件订制服务。
    留言咨询
  • 平台介绍:质谱流式的超高检测通道数量的优势在组织成像研究中最大化,其性能远远超越了传统的免疫组化或者免疫荧光技术。质谱流式系统的检测通道多达135个,目前单次检测即可获得组织切片样本上4-37种蛋白标记物的图像数据,充分满足研究人员未来不断增长的实验需求;并在最大限度上利用单个样本进行数据采集和分析,非常适用于珍贵的稀有样本;更重要的是,该方法有效地避免了因连续切片造成的样本间差异以及由于连续染色造成的数据间差异;此外,通过保留组织结构和细胞形态学信息,研究人员可以在组织微环境下从亚细胞水平获得全新的研究视角。平台优势:传统免疫组化质谱免疫组化通道最多10色拥有135个通道,目前最多可同时检测37个抗体串色荧光串色严重,信号相互叠加,染料灵敏度及浓度直接影响图像真实性通过质谱收集金属离子转换为图像信号,信号精准不重叠,真实可靠背景有些组织内含有内源性过氧化物酶,有些组织存在自发荧光,两种情况都引起高背景金属螯合物与细胞组分的非特异性结合极低,作为标记的镧系金属元素,在细胞中的含量基本为零,背景极低染色流程目前两种方法:一种是每张切片染3色,制作多张切片染色;另一种是一次染3色,然后洗掉,再染3色,然后洗掉再染,反复操作每张切片最多可结合37个抗体,同时染色,仅需一张切片,节约样品,节省时间应用领域:1. 肿瘤微环境相关因子检测2. 机体免疫功能检测3. 细胞信号通路相关因子检测4. ......我们的优势:1. 提供从Panel设计到数据分析的质谱成像应用完整解决方案2. 优质的项目服务,成熟的实验流程,严格的质控管理服务流程:销售与老师进行沟通,明确需求 销售与技术部门沟通,出具方案 签署合同 收取样品 检查切片细胞情况 扫描分析并出具报告
    留言咨询
  • 简介质谱成像(Mass Spectrometry Imaging)是一种新型的表面原位分析技术,它揭示了样品真正表面或近表面的化学组成,其信息量远远超过了简单的化学成分分析,可以用于表征、鉴定待测样品表面的化学成分。较之其他成像技术,如显微镜成像,基于质谱的成像方法不局限于特异的一种或者几种分子,分析物可以以其最初的形态被检测,不需要对待测物进行标记,大大节省了标记所带来的技术和时间成本。目前主要有三种离子化技术用于质谱成像:基质辅助激光解吸电离(MALDI)质谱、电喷雾解吸电离(Desorption Electrospray Ionization)质谱和二次离子质谱(Secondary Ion Mass Spectrometry)技术,其中MALDI是应用最为广泛的离子化技术。MALDI通过引入基质分子,使分子与基质形成共结晶,当用一定强度的激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量而使分子解吸/电离。MALDI是一种软电离技术,待测分子不易产生碎片,解决了非挥发性和热不稳定性生物大分子解吸离子化的问题,是分析难挥发的有机物质的重要手段之一。在1994年,德国吉森大学(Justus Liebig University Giessen)的Bernhard Spengler教授首次将MALDI MS与成像方法结合用于分析多肽,此后质谱成像技术便受到了广泛的关注,不断的在疾病诊断,病理组织特征,药物代谢和植物代谢等研究中发挥着越来越重要的角色。一、仪器设备概况德国TransMIT AP-SMALDI 10是由世界知名质谱学家Bernhard Spengler教授研制成功并商品化的常压基质辅助激光解吸电离离子源,是目前MALDI质谱成像中分辨率很高的离子源(分辨率高达到1微米),突破了MALDI质谱成像空间分辨有效成像像素限制在50微米的瓶颈。与其他MALDI产品相比,该离子源在提高空间分辨率的同时保证了质谱信号的灵敏度,是检测生物样品中微量以及痕量成分的重要保障。TransMIT AP-SMALDI 10可与超高分辨质谱Orbitrap(Thermo Fisher Scientific)兼容,可同时获得高空间分辨率和高质量准确度和分辨率的二维离子密度图,实现了真正意义上的高分辨质谱成像。TransMIT AP-SMALDI 10与同领域其他设备,其具体优势体现在以下几个方面:1. 常压到中压的操作环境,大大简化了样品制备的方法,节约了成本。传统的MALDI样品分析是在真空条件下进行,操作要求高,且随着分析时间的延长,会导致基质在真空条件下挥发损失,造成分子离子峰的信号衰减和成像误差;2. 小于5微米的高空间分辨率,能够可视化生物组织内化合物在细胞水平上的空间分布,并且可用于单细胞质谱成像分析;3. 采用激光束和离子流的同轴设计,大大提高了样品表面分子离子的产率;4. 采用激光器,即无害免控激光器,在使用过程中对人体无任何危险;5. 配有专用于高分辨质谱成像的数据分析软件;6. 可与Thermo Scientific Q Exactive系列质谱仪兼容,拆装灵活。二、仪器设备应用及性能说明高空间分辨率TransMIT AP-SMALDI 10离子源问世后,已经在生命科学领域展示了自己的优势,受到了国际专家和同行的一致认可,多项研究成果发表在Angewandte Chemie,The Plant Journal, Analytical Chemistry,Analytical and Bioanalytical Chemistry,Rapid Communications in Mass Spectrometry, International Journal of Mass Spectrometry等知名期刊上。在了解生物组织特征,病理组织特征,药物疗效及发现生物标志物等方面表现突出。现对TransMIT AP-SMALDI 10主要优势特色做简要综述:1、 高空间分辨率 高空间分辨率是准确判断生物组织内化学物质分布的前提条件。以大鼠脑组织中的磷脂分布为例,在100×100 μm2像素下,我们仅可以得到脑组织中磷脂的低分辨轮廓图。当分辨率提高到35 μm时,图像清晰度显著提高,可以准确识别脑组织切片中不同功能区内化合物的分布。再次聚焦TransMIT AP-SMALDI 10激光束到3 μm,则可以得到更加精细、无毛刺的磷脂二维离子密度图,这样可以清晰识别大鼠脑组织中微小部位中的代谢产物分布。3×3 μm2二维离子密度图中红、蓝、绿分别代表不同的化合物,红色代表背景离子,蓝色代表phosphatidylcholine(38:1),绿色代表phosphatidylcholine (38:1)。 2、高质量准确度和高质谱分辨率 TransMIT AP-SMALDI 10的另一个优势是其基于Orbitrap设计的一款离子源。Orbitrap无疑是近20年来高分辨质谱技术上最重要的突破,该质谱是目前体积最小的高分辨质谱仪。Orbitrap分辨率可高达140000 @ 200 Da,可同时进行定性和定量分析,尤其能够针对复杂基质中痕量组分的高灵敏度定量分析。集成了TransMIT AP-SMALDI 10的Orbitrap可以为研究者提供超高分辨的二维离子密度图,解决了质谱成像技术中原位鉴定化合物的难点,全面提高了鉴定分子离子的准确率和效率。可同时实现全扫描和MS/MS扫描,获得RMS 2ppm的高质量准确度的二维离子密度图。如图所示,基于Orbitrap的AP-MALDI质谱成像可以分辨质量差仅为0.1Da的两个化合物。如果使用低分辨质谱,将无法区分平均质量同为m/z 726的两个化合物,致使得到的二维离子密度图(图d)实际上是两种离子信号叠加的结果。由此可见,AP-MALDI-Orbitrap技术结合了高空间分辨率和高质谱分辨率,是一种具有优势的质谱成像技术。 3、单细胞质谱成像分析 目前单细胞分析大多依靠显微镜技术,因此需要标记细胞中的分析物,但是细胞中绝大多数分子没有荧光,这不利于细胞中未知分子的检测 其次常用的荧光探针具有一定的波长宽度,在有限光窗下只能检测3-4种分子。单细胞质谱分析因为具有无需标记、多组分同时分析、相对和jue对定量、适于代谢组学和蛋白组分析的特点而受到研究者的青睐。在此基础上单细胞质谱成像成为了近期新的研究热点,常用的单细胞质谱成像技术为二次离子质谱仪(SIMS),虽然SIMS的空间分辨率通常高于MALDI,但其质量检测范围较小,质荷比超过1000时灵敏度显著降低。TransMIT AP-SMALDI 10可以提供1-10 μm的高分辨率,同时弥补了SIMS质量检测范围窄和灵敏度低的缺点,成功应用于磷脂、多肽以及蛋白质等活性物质在单细胞中的空间分布研究。下图展示了首次采用TransMIT AP-SMALDI 10获得的单细胞中化学物质的二维离子密度图,使用 7 μm的激光束可以成功捕获单个HeLa细胞(图a)中荧光标记物(图b)和磷脂(图c和d)的二维空间分布信息。 综上所述,TransMIT AP-SMALDI 10是一款性能优异、实用价值高的质谱成像离子源。整合后的AP-MALDI-Orbitrap在成像空间分辨率、质量准确度及质谱采集时间等方面得到了全面提升,配合其自主研发的数据处理软件 MIRION,更加提高了图像处理的速度和质量。AP-MALDI-Orbitrap在质谱成像领域中具有许多独特优势,势必在多学科交叉领域研究中成为重要的研究工具。
    留言咨询
  • 多重离子束组织质谱成像系统-MIBIscope System多重离子束成像平台(MIBI)技术 1、颠覆性的多重组织成像平台,提供可操作的信息多重离子束组织质谱成像仪器应用于高精度空间蛋白质组学,基于多重离子束成像(MIBI)技术,MIBIscope系统可以在单次扫描中可视化40+蛋白标记物,并提供组织样本微环境的相关信息. 2、高精度空间蛋白质组学的标准 3、强劲的性能,可重复的结果,操作方便• 遵循标准的病理工作流程• 光学和SED图像引导ROI选项• 有限的实用需求和利用率• 大于104动态范围• 操作简单 不需要特别的专业知识 4、技术参数:获取时间:低分辨率 (1 μm):9-35分钟高分辨率 (500 nm):17-68分钟超高分辨率(350 nm):35-139分钟用的生物标志物通道:40ROI区域:400x400 – 800x800 μm2抗体检测下限:1 (113In) - 16 (166Er)动态范围:5 log文件类型:TIFF链接:
    留言咨询
  • 光电离质谱成像系统 ProC-MSI-DPI-A 产品介绍质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。MSI通过直接扫描生物样本,可以同时获得多种分子的空间分布特征。我公司的光电离质谱成像仪是基于专利技术( DESI/PI,即带电液滴解析/后光电离质谱成像技术,专利号:ZL201810935962.4)研发的一款用于空间分子成像的装置,该成像仪的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。该成像仪可适配于主流质谱仪(Agilent、Thermo Fisher、Waters等),对动/植物组织、各种物体表面及内部分子进行空间成像。光学成像和质谱分子成像对比显微镜光学成像看外观,质谱的分子成像看本质光学影像看似一样,但质谱成像显示生物标志物只在特点区域分布 光电离质谱成像系统 ProC-MSI-DPI-A产品特点分子成像技术一次性对所有质谱信号成像组织切片成像植物叶/根/茎切片成像软电离成像待测物无极性歧视扫描速度快光电离质谱成像系统 ProC-MSI-DPI-A产品优势与其它成像技术相比,ProC-MSI-DPI-A光电离质谱成像系统成像技术具有:(1) 免标记:无需放射性同位素或荧光标记 (2) 高通量:可以对上千种生物分子同时进行原位成像分析 (3) 信息丰富:可以同时获得生物分子的结构、丰度和空间分布信息。目前国际上普遍使用的DESI成像源只能对极性较强的组分进行成像,有极性歧视(影响多种极性和非极性组分的准确度)和较强的离子抑制(干扰使待分析物的响应信号被抑制,需要对样品净化),不适于所有的待测物体系。与之相比,本公司基于DESI的二次光电离质谱成像技术(DESI-PI-MSI)光电离成像源不仅可以将小鼠、植物组织等切片中的非极性化合物进行成像,还可以进一步提升极性成分的信号强度,从而大大高了成像信噪比。与传统DESI技术相比, 使用DESI/PI后信号强度可提高1-3个量级,大大提升了待测物尤其是非极性成分的检出和成像能力。图1 利用Omni PI成像源与市售其他成像源获得的质谱 图和成像图比较图2 利用Omni PI源在国际顶尖期刊《分析化学》 发表的封面论文光电离质谱成像系统 ProC-MSI-DPI-A系统组成整个系统由一台高分辨率飞行时间质谱仪和一台分子成像仪集成一体,为国内首创质谱仪规格参数:质量检测范围20-10000 amu 检测限0.05ppb质量分辨率 10000自动数据采集及分析程序成像仪规格参数尺寸:300(w)x200(h)x150(d)空间分辨率:10-200微米,可进行原位检测成像速率:50像素/秒解析源:DESI+PI电离源:后光电离光电离质谱成像系统 ProC-MSI-DPI-A应用领域代谢组学:蛋白质组学、代谢物的空间分布变化、病理学诊断:疾病标志物的发现、疾病的早期诊断、临床病理研究、细菌分析、微生物成像、确定肿瘤的级别、激素受体状况、基因芯片检测、细胞生物学、微生物生态学药物代谢动力学:新药研发、药物及代谢物在不同时间不同器官的代谢过程、药物定量、药物发现及分布研究、草药混合物植物代谢:代谢物的空间分布变化、植物代谢研究工业领域:化工原料、包装材料、染料、化妆品、材料基质、食品成分分析法医学:法医鉴定、指纹扫描、毛发、组织中的滥用物质及代谢物 毒理学环境化学考古学光电离质谱成像系统 ProC-MSI-DPI-A应用范例1.小鼠大脑成像DESI/PI产生更多、更强的待测物质谱信号,如乙醇胺、GABA、肌酸、腺嘌呤、谷氨酰胺、谷氨酸、胆固醇、PC脂、GalCer脂质、PE脂质、MAG脂质等(如上图所示)2.小鼠乳腺癌成像研究 原位质谱成像方法(aa-DESI/PI),以小鼠乳腺癌组织作为模型开展成像研 究,有助于深入揭示肿瘤复杂的代谢过程。3.药物研究在药物研发(Discovery及R&D)过程中,必须详细了解药物的药理学、毒性和分布。质谱成像是无须标记,可用于可视化生物组织中内源性化合物、药物、脂质、蛋白质、肽和药物输送系统的二维(和三维)分子分布。因此,该技术不仅能够收集药物和代谢物分布数据,还能收集药效学和生物标志物信息,这些信息在药物开发的多个阶段都非常有价值。在给药后6小时,药物浓度在不同区 域的分布可见降低4、植物叶片成像及代谢研究在已知植物种群中,有约 200,000 个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规MALDI和DESI等软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像MSI DPI-A质谱成像源仪的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台(Analytical Chemistry,2019,91,6616-6623)结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。5、黑色素细胞痣诊断和形成机制操作流程特征性脂质标志物在表皮、痣和皮下组织中分布的箱线图四例样本成像图胆固醇合成酶(HMGCR)及转运酶(TSPO)的IHC图表明,两者均在黑素细胞痣区域高表达,这表明黑素细胞痣中胆固醇的积累是由HMGCR和TSPO酶的共同作用 产生的.6.卷烟叶的成像六种代表性化学物质的质谱成像图7.茶叶成像DESI/PI在可视化极性和非极性代谢物的空间分布植物成像的一个好例子。植物中的代谢物已经通过不同的MSI成像技术.作为消费最广泛的仅次于水的饮料世界,茶富含多种生物活性物质成分。例如,儿茶素占新鲜茶叶的干重的30%,健康茶有很多益处。然而,由于它们的极性低, DESI 对这些儿茶素的电离效率很差。茶的两个连续鲜叶芽横截面植物分别通过DESI/PI和DESI进行分析。中性儿茶素包括 (-)-表儿茶素 (EC),(-)-表儿茶素没食子酸酯 (ECG),和 (-)-表没食子儿茶素没食子酸盐 (EGCG)flavan-3-ols 可以被检测和成像由 DESI/PI 提供。ECG 和 EGCG 是热不稳定的化合物,以及它们的片段([M + H - C7H6O5]+)分别在 m/z 272.07 和 289.07 处检测到。这DESI / PI质谱进一步证明了分配EC、ECG 和 EGCG 的标准。我们的结果表明,DESI/PI 可以增加中性物种的检测灵敏度,也拓宽了DESI在可视化非极性生物分子中的适用性植物组织的MSI,可以被认为是一种有效的中度侧向 MALDI 和替代技术解析度。茶叶咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力证据。两个连续新鲜叶芽的平均质谱图获得的茶树横截面(减去背景)以甲醇/甲苯/FA (v:v:v = 70:30:1)作为溶剂的 DESI/PI和 DESI以甲醇/FA (100:1) 为溶剂,分别在正离子模式。(A) 叶芽组织的最优图像的茶。 (B-F) m/z 184.07 处一些代表性峰的 MS图像,195.09、272.07、289.07 和 291.09 由 DESI/PI 获得。(G-H) 质谱DESI 获得的 m/z 184.07 和195.09 处的两个峰的图像。白色比例尺对应于 1 mm.非标订制及其他产品我们还提供非标飞行时间质量分析器和各种催化、高/压热解反应器、光电离源、电离腔、JSR反应器、分子泵、MCP微通道板、数据采集卡等质谱仪专用备件订制服务。
    留言咨询
  • 超高分辨率组织质谱成像系统-MIBIscope System多重离子束成像平台(MIBI)技术 1、颠覆性的超高分辨率组织质谱成像平台,提供可操作的信息多重离子束组织质谱成像仪器应用于高精度空间蛋白质组学,基于多重离子束成像(MIBI)技术,MIBIscope系统可以在单次扫描中可视化40+蛋白标记物,并提供组织样本微环境的相关信息. 2、高精度空间蛋白质组学的标准 3、强劲的性能,可重复的结果,操作方便• 遵循标准的病理工作流程• 光学和SED图像引导ROI选项• 有限的实用需求和利用率• 大于104动态范围• 操作简单 不需要特别的专业知识 4、技术参数:获取时间:低分辨率 (1 μm):9-35分钟高分辨率 (500 nm):17-68分钟超高分辨率(350 nm):35-139分钟用的生物标志物通道:40ROI区域:400x400 – 800x800 μm2抗体检测下限:1 (113In) - 16 (166Er)动态范围:5 log文件类型:TIFF链接:
    留言咨询
  • 简介 德国TansMIT公司的AP-SMALDI 5 AF高分辨自动聚焦3D快速质谱成像系统在兼具高空间分辨率和高质量分辨率的基础上,新增了3D检测模式、全像素检测模式、快速检测模式等,检测速度高达18pixels/s,检测灵敏度更是在AP-SMALDI10的基础上提升了一个数量级,该系统能够快速有效地进行生物组织样本的成像检测,将会助您探索更多的科学奥秘。一、技术优势无标记检测技术,无需放射性同位素或荧光标记,无需染色;待检测物质多样,不局限于特异的一种或几种分子,可以对非目标性物质同时进行成像分析;既可获得分子的空间分布信息,还能够提供目标物质的分子结构信息;可直接分析组织切片或细胞,样本兼容性高。二、产品特点固态激光器,自动聚焦至样品表面;3D检测模式 可检测凹凸不平的样品表面;快速检测模式∶速度可高达18pixels/s;单点检测模式∶逐点扫描样品表面;全像素检测模式∶大大提升检测灵敏度;倾斜校正功能∶保证样品检测完整性; 常压到中压操作环境,接近样本生理状态;避免了真空状态下对样本造成的影响;自主研发激光束和离子流同抽设计,解决了高空间分辨率和低采样量之间的矛盾三、样本类型各种组织∶植物器官,动物新鲜组织、冷冻组织,培养细胞各类分子∶脂类(磷脂∶PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物数百种分子同时成像∶筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构非靶向性检测,无需任何标记四、应用领域生物标志物发现 肿瘤研究 脂类代谢异常疾病研究药物研发 药代动力学分析 药效学分析动物学 单细胞检测 微生物研究植物与农业 药用植物与天然产物研究食品安全 营养学研究 环境研究 土壤研究刑侦五、性能参数1、激光器固态激光器,激光频率2000Hz激光波长:343nm 2、常压操作环境极大简化了样品制备的方法,节约了成本,无需昂贵的ITO导电玻璃;传统的MALDI样品分析在真空条件下进行,操作要求高,且随着分析时间的延长,会导致基质在真空条件下挥发损失,造成分子离子峰的信号衰减和成像误差3、细胞级空间分辨率 3μm的高空间分辨率,能够可视化生物组织内化合物在细胞水平上的空间分布,可实现单细胞质谱成像分析4、采用激光束和离子流的同轴设计,大大提高了样品表面分子离子的产率5、成像面积:75mm × 25mm6、采用激光器,即无害免控激光器,在使用过程中对人体无任何危险7、配有专用于高分辨质谱成像的数据分析软件8、搭配Thermo Scientific&trade Q Exactive&trade 或Orbitrap Exploris&trade 系列质谱仪,实现高空间分辨率和高质量分辨率的结合9、检测模式单像素模式:待测区域内逐像素模式,在每个像素的中心位置进行单点检测连续模式:检测过程中载物台快速连续移动,像素点≤20μm时,取样区域为一条连续的直线。快速模式:检测过程中载物台快速连续移动,像素点>20μm时,每个像素中取样区域长度为20μm。全像素模式:在整个像素区域(≥25μm×25μm)内进行扫描,提升检测灵敏度。三维成像:该功能能够实现在检测过程中跟踪非平面物体表面的高度变化,实现3D表面检测,如叶片、花瓣、线虫等。下图为雏菊花瓣的3D RGB MS图像。自动聚焦:检测前激光斑点自动聚焦至样品表面,无需人工调节,节省时间,并保证样品采集完整性。倾斜校正:能够在倾斜组织样本的图像采集过程中调整样品高度,以实现恒定的离子产率和光斑大小。10、技术参数六、应用方向研究实例一 AP-SMALDI 技术突破 德国吉森大学Bernhard Spengler教授团队通过向AP-SMALDI10离子源加入高重复频率激光器,并与Orbitrap质谱仪结合,开发了新的检测模式。该系统能够在5μm的空间分辨率和18pixels/s的成像速度下对小鼠脑组织切片进行单细胞水平可视化检测和分析。此外,在全像素检测模式下,通过在整个像素点≥25μm上进行“w”型扫描,将组织上的离子信号强度提高20倍,并将检测限降低1个数量级,提高了分析灵敏度。研究实例二 3D表面质谱成像检测 近年来,MSI技术在医学、药学、生物学等领域获得了极大的关注。然而,现有质谱成像技术仅能对同一平面中的样品进行质谱成像分析,要想获得三维空间信息,则只能依靠图像的三维重建技术和数据归一化处理来实现,极为耗时。 针对3D MSI的技术瓶颈,德国吉森大学的Bernhard Spengler教授团队开发了自动聚焦三维质谱成像技术,成果发表在国际Top杂志Nature Methods——Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces(Nature Methods, 2017, 14(12): 1156)。这是继“1.4μm超高分辨率质谱成像技术”之后,Spengler教授团队的又一次突破。该技术通过把激光三角测量系统整合到AP-SMALDI10 MSI系统中,实现了小于10μm的侧向分辨率。如下图所示,自动聚焦MALDI质谱成像系统能够清晰的可视化苜蓿叶片中糖苷类和脂类物质的三维空间分布(Fig.2c),曼氏裂体吸虫中磷脂类物质空间特异性分布(Fig.2e, f),以及小鼠脑部磷脂类物质的组织空间特异性分布(Fig.2g, h)。该技术的出现可直接对三维生物样品进行质谱检测,其自动聚焦技术能够大大提升检测效率和检测通量,并有效避免样品中检测信号的缺失。
    留言咨询
  • 空间蛋白质组织质谱成像系统-MIBIscope System多重离子束成像平台(MIBI)技术 1、颠覆性的多重组织成像平台,提供可操作的信息超高分辨组织质谱成像仪器应用于高精度空间蛋白质组学,基于多重离子束成像(MIBI)技术,MIBIscope系统可以在单次扫描中可视化40+蛋白标记物,并提供组织样本微环境的相关信息. 2、高精度空间蛋白质组学的标准 3、强劲的性能,可重复的结果,操作方便• 遵循标准的病理工作流程• 光学和SED图像引导ROI选项• 有限的实用需求和利用率• 大于104动态范围• 操作简单 不需要特别的专业知识 4、技术参数:获取时间:低分辨率 (1 μm):9-35分钟高分辨率 (500 nm):17-68分钟超高分辨率(350 nm):35-139分钟用的生物标志物通道:40ROI区域:400x400 – 800x800 μm2抗体检测下限:1 (113In) - 16 (166Er)动态范围:5 log文件类型:TIFF 链接:
    留言咨询
  • 光电离质谱成像系统 ProC-MSI-DPI-A 产品介绍质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。MSI通过直接扫描生物样本,可以同时获得多种分子的空间分布特征。我公司的光电离质谱成像仪是基于专利技术( DESI/PI,即带电液滴解析/后光电离质谱成像技术,专利号:ZL201810935962.4)研发的一款用于空间分子成像的装置,该成像仪的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。该成像仪可适配于主流质谱仪(Agilent、Thermo Fisher、Waters等),对动/植物组织、各种物体表面及内部分子进行空间成像。光学成像和质谱分子成像对比显微镜光学成像看外观,质谱的分子成像看本质光学影像看似一样,但质谱成像显示生物标志物只在特点区域分布 光电离质谱成像系统 ProC-MSI-DPI-A产品特点分子成像技术一次性对所有质谱信号成像组织切片成像植物叶/根/茎切片成像软电离成像待测物无极性歧视扫描速度快光电离质谱成像系统 ProC-MSI-DPI-A产品优势与其它成像技术相比,ProC-MSI-DPI-A光电离质谱成像系统成像技术具有:(1) 免标记:无需放射性同位素或荧光标记 (2) 高通量:可以对上千种生物分子同时进行原位成像分析 (3) 信息丰富:可以同时获得生物分子的结构、丰度和空间分布信息。目前国际上普遍使用的DESI成像源只能对极性较强的组分进行成像,有极性歧视(影响多种极性和非极性组分的准确度)和较强的离子抑制(干扰使待分析物的响应信号被抑制,需要对样品净化),不适于所有的待测物体系。与之相比,本公司基于DESI的二次光电离质谱成像技术(DESI-PI-MSI)光电离成像源不仅可以将小鼠、植物组织等切片中的非极性化合物进行成像,还可以进一步提升极性成分的信号强度,从而大大高了成像信噪比。与传统DESI技术相比, 使用DESI/PI后信号强度可提高1-3个量级,大大提升了待测物尤其是非极性成分的检出和成像能力。图1 利用Omni PI成像源与市售其他成像源获得的质谱 图和成像图比较图2 利用Omni PI源在国际顶尖期刊《分析化学》 发表的封面论文光电离质谱成像系统 ProC-MSI-DPI-A系统组成整个系统由一台高分辨率飞行时间质谱仪和一台分子成像仪集成一体,为国内首创质谱仪规格参数:质量检测范围20-10000 amu 检测限0.05ppb质量分辨率 10000自动数据采集及分析程序成像仪规格参数尺寸:300(w)x200(h)x150(d)空间分辨率:10-200微米,可进行原位检测成像速率:50像素/秒解析源:DESI+PI电离源:后光电离光电离质谱成像系统 ProC-MSI-DPI-A应用领域代谢组学:蛋白质组学、代谢物的空间分布变化、病理学诊断:疾病标志物的发现、疾病的早期诊断、临床病理研究、细菌分析、微生物成像、确定肿瘤的级别、激素受体状况、基因芯片检测、细胞生物学、微生物生态学药物代谢动力学:新药研发、药物及代谢物在不同时间不同器官的代谢过程、药物定量、药物发现及分布研究、草药混合物植物代谢:代谢物的空间分布变化、植物代谢研究工业领域:化工原料、包装材料、染料、化妆品、材料基质、食品成分分析法医学:法医鉴定、指纹扫描、毛发、组织中的滥用物质及代谢物 毒理学环境化学考古学光电离质谱成像系统 ProC-MSI-DPI-A应用范例1.小鼠大脑成像DESI/PI产生更多、更强的待测物质谱信号,如乙醇胺、GABA、肌酸、腺嘌呤、谷氨酰胺、谷氨酸、胆固醇、PC脂、GalCer脂质、PE脂质、MAG脂质等(如上图所示)2.小鼠乳腺癌成像研究 原位质谱成像方法(aa-DESI/PI),以小鼠乳腺癌组织作为模型开展成像研 究,有助于深入揭示肿瘤复杂的代谢过程。3.药物研究在药物研发(Discovery及R&D)过程中,必须详细了解药物的药理学、毒性和分布。质谱成像是无须标记,可用于可视化生物组织中内源性化合物、药物、脂质、蛋白质、肽和药物输送系统的二维(和三维)分子分布。因此,该技术不仅能够收集药物和代谢物分布数据,还能收集药效学和生物标志物信息,这些信息在药物开发的多个阶段都非常有价值。在给药后6小时,药物浓度在不同区 域的分布可见降低4、植物叶片成像及代谢研究在已知植物种群中,有约 200,000 个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规MALDI和DESI等软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像MSI DPI-A质谱成像源仪的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台(Analytical Chemistry,2019,91,6616-6623)结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。5、黑色素细胞痣诊断和形成机制操作流程特征性脂质标志物在表皮、痣和皮下组织中分布的箱线图四例样本成像图胆固醇合成酶(HMGCR)及转运酶(TSPO)的IHC图表明,两者均在黑素细胞痣区域高表达,这表明黑素细胞痣中胆固醇的积累是由HMGCR和TSPO酶的共同作用 产生的.6.卷烟叶的成像六种代表性化学物质的质谱成像图7.茶叶成像DESI/PI在可视化极性和非极性代谢物的空间分布植物成像的一个好例子。植物中的代谢物已经通过不同的MSI成像技术.作为消费最广泛的仅次于水的饮料世界,茶富含多种生物活性物质成分。例如,儿茶素占新鲜茶叶的干重的30%,健康茶有很多益处。然而,由于它们的极性低, DESI 对这些儿茶素的电离效率很差。茶的两个连续鲜叶芽横截面植物分别通过DESI/PI和DESI进行分析。中性儿茶素包括 (-)-表儿茶素 (EC),(-)-表儿茶素没食子酸酯 (ECG),和 (-)-表没食子儿茶素没食子酸盐 (EGCG)flavan-3-ols 可以被检测和成像由 DESI/PI 提供。ECG 和 EGCG 是热不稳定的化合物,以及它们的片段([M + H - C7H6O5]+)分别在 m/z 272.07 和 289.07 处检测到。这DESI / PI质谱进一步证明了分配EC、ECG 和 EGCG 的标准。我们的结果表明,DESI/PI 可以增加中性物种的检测灵敏度,也拓宽了DESI在可视化非极性生物分子中的适用性植物组织的MSI,可以被认为是一种有效的中度侧向 MALDI 和替代技术解析度。茶叶咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力证据。两个连续新鲜叶芽的平均质谱图获得的茶树横截面(减去背景)以甲醇/甲苯/FA (v:v:v = 70:30:1)作为溶剂的 DESI/PI和 DESI以甲醇/FA (100:1) 为溶剂,分别在正离子模式。(A) 叶芽组织的最优图像的茶。 (B-F) m/z 184.07 处一些代表性峰的 MS图像,195.09、272.07、289.07 和 291.09 由 DESI/PI 获得。(G-H) 质谱DESI 获得的 m/z 184.07 和195.09 处的两个峰的图像。白色比例尺对应于 1 mm.非标订制及其他产品我们还提供非标飞行时间质量分析器和各种催化、高/压热解反应器、光电离源、电离腔、JSR反应器、分子泵、MCP微通道板、数据采集卡等质谱仪专用备件订制服务。
    留言咨询
  • 美国Spectroglyph LLC公司的MALDI/ESIInjector采用新型双离子漏斗接口,实现MALDI/ESI双离子源结合,在生物样本中可实现组织成像与结构鉴定,通过配置t-MALDI、MALDI-2等技术并搭载Thermo Scientific&trade QExactive"/Orbitrap Exploris"系列超高分辨率质谱检测仪,使成像系统兼具高灵敏度、高空间分辨率、高质量分辨率和高质量精度的特性,操作简单,适用范围广。该系统能够快速有效的进行生物组织样本的成像检测,可实现单细胞或亚细胞分辨率下的成像检测,将会助您探索更多的科学奥秘。1、质谱成像技术优势::(1)无标记检测技术,无需放射性同位素或荧光标记,无需染色 (2)待检测物质多样,不局限于特异的一种或几种分子,可以对非目标性物质同时进行成像分析 (3)既可获得分子的空间分布信息,还能够提供目标物质的分子结构信息 (4)可直接分析组织切片或细胞,样本兼容性高。2、独特的Dual lon Funnel设计,实现MALDI与ESI源之间快速转换DPSS固态激光器,搭载可视化光学系统 同时搭载MALDI与ESI离子源,可进行质谱成像与结构鉴定 双离子漏斗结构,可以进行快速离子源切换 MALDI-2激光诱导后电离技术,提高检测灵敏度 采用Transmission透射模式,提高空间分辨率 序列编辑器,可依次对靶板上的不同组织区域进行分析。3、样本类型各种组织:植物器官,动物新鲜组织、冷冻组织,培养细胞,类器官等各类分子:脂类 (磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物数百种分子同时成像:筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构非靶向性检测,无需任何标记4、MALDI ESI INJECTOR 透射式超高分辨质谱成像系统特点:1um高空间分辨率,可实现单细胞及亚细胞水平成像分析;DDAlmagingMode质谱成像数据采集模式;高分辨质谱成像专用数据分析软件;高空间分辨率和高质量分辨率保证分子化合物的最佳成像效果;搭载Thermo Scientific&trade QExactive&trade /Orbitrap Exploris&trade 等多个系列质谱仪,提供高质量精度和分辨率(1ppm RMS)。性能参数:应用方向:一、单细胞高分辨成像 细胞是组成生命体的基本单元,了解特定细胞的生物分子组成是了解潜在生物和生化过程的关键因素。由于细胞的异质性,在群体细胞乃至组织水平上的采样可能使得一些重要的分子信息淹没在大量的正常细胞中而被忽略。Spectro-glyph LLC t-MALDI-2-MSI成像系统,采用激光透射模式将空间分辨率提升至1um以内,并且应用MALDI-2激光后电离技术提高了检测灵敏度,对于单细胞成像提供了丰富的表型特征信息,为单细胞研究提供了坚实的技术支持。通过t-MALDI-2在单细胞和细胞培养物中进行成像分析,以Vero B4细胞作为研究对象,通过比较明场图像与MSI成像发现t-MALDI-2可获得亚细胞级的分辨率,并且在负离子模式下获得了和正离子模式测量中相似的高质量图像。图1 a ITO载玻片上生长的Vero B4细胞明场显微图像;b来自基质的特征性背景离子(m/z=633.042)图像;c-e 代表性t-MALD1-2-MS离子图像,,像素大小为1.0um;f a图明场显微镜图像中红色轮廓区域放大图;g三个物质的叠加图像,分别来自背景离子(b;蓝色);PE(40:6),[M+H](c绿色);PC(34:1),[M+K,(d,橙色);h基质涂覆细胞培养物的显微明场图像,区域为f中的轮廓区域。参考文献:Transmission-mode MALDl-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods, 16,925-931 (2019).二、脂类研究 脂质具有区分和识别不同组织和细胞类型的可能性,脂质的重要生物功能与机体的生理、病理过程有着紧密的联系。脂质的变化对疾病背后的相关生化途径提供着重要的价值意义,并且脂类代谢异常也是引发多种疾病的重要原因,研究脂类分子的组织空间特异性分布对阐明脂代谢异常疾病的相关机制也有着重要的意义。MALDI-2激光诱导后电离技术能够对传统MALDI检测中生成的中性脂质分子再次进行电离,提升了脂质分子的检测灵敏度。图2所示为应用Spectroglyph LLC MALDI Injector的MALDI-2 技术在大鼠的脑组织切片中对130mDa m/z质量窗口下的脂质分子进行成像。传统的MALDI下只检测到一种脂质分子,使用MALD1-2额外检测到三种脂质分子,大大提升检测的灵敏度。脂类分子大鼠脑组织中的空间分布图2 大鼠脑组织切片 MALDI(底部)和MALDI-2(顶部)质谱图的放大截面和对应离子图像。除MALD1-2中[PC(34:1)+Na]+(3.4 ppm)和MALDI中[PC(36:4)+H]+ (-2.7 ppm),其他质量误差均小于2 ppm。 参考文献:Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging olipids.Chem.Commun,53,7246-7249 (2017).
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破 成像速度快——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz),提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况 药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。 质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像 近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破成像快速——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz)大大提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;超高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一大大提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,能极大提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询
  • 高光谱成像仪HY-8030-A高谱成像产品详情 产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • 高光谱成像仪HY-8030-S高谱成像产品详情 产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • iSpecHyper-VS1000是莱森光学(LiSen Optics)最新明星产品,一款操作简单、配置灵活便携式高光谱成像系统,主要优势采样了独有高光通量分光设计、信噪比灵敏度高、大靶面探测器、高像质等特点。iSpecHyper-VS1000便携式高光谱成像系统采用了透射光栅内推扫原理,系统集成高性能数据采集与分析处理系统,高速USB3.0接口传输,全靶面高成像质量光学设计 ,物镜接口为标准C-Mount,可根据用户需求更换视场镜头。iSpecHyper-VS1000便携式高光谱成像系统广泛应用于公安刑侦、物证鉴定、精准农林、遥感遥测、 工业检测、 医学医疗、采矿勘探等各领域。技术优势特点1.光谱范围400-1000nm,分辨率优于3nm2.独有高光通量分光成像设计、信噪比灵敏度高3.24mm/35mm镜头电控自动对焦技术、自动曝光、自动成像扫描匹配、激光定位测距4.高帧率,辅助摄像透实时监控,内置锂电池供电无需额外电源5.全靶面高成像质量光学设计,点列斑直径小于0.5像元 6.数据格式支持ENVI等分析软件,支持多区域ROI,镜头可更换软件操作界面 便携式系统方案示例图 实验室系统方案示例图主要技术指标高光谱技术典型应用案例高光谱成像技术在水果分选的应用案例随着我国农产品加工业的发展和农业现代化进程的加快,使得农产品品质检测和分级技术显得更加重要,迫切性日益增加,水果的内部品质表示水果内部的生理、化学和物理性质,高光谱成像系统目前已经开始应用于水果分选,反映水果品质光谱信息主要集中在650-950nm之间,水果的糖分含量是决定光谱品质的重要因素,糖分光谱特征主要在700nm-820nm的吸收以及750nm附近800-900nm的峰值等。高光谱成像系统水果分选利用工业领域的传送带作为高光谱相机的推扫成像机构,高光谱相机利用龙门架结构架设在传送带上方,配合专用线型光源进行照明。系统主要包括高光谱相机及其支架、线型光源、控制模块、相关定位传感器、计算机(运行控制与数据采集软件)等组成。高光谱成像技术在血液氧含量检测的应用案例2015年发表的论文“Hyperspectral optical tomography of intrinsic signals in the rat cortex”一文中,研究人员研究了大鼠大脑皮层的高光谱成像,研究者发现有氧血红蛋白和脱氧血红蛋白分别在529nm和630nm处有敏感变化。鉴于高光谱技术数据算法的灵活多边性,作者开发了一种新的高光谱算法DOT,用于方便快捷的判断血液中结合氧含量。高光谱成像技术在光合作用研究的应用案例2017年发表的“Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis”一文中,研究了海蛞蝓的“光合作用”,海蛞蝓以大型藻类为食,并将叶绿体渗入其肾小管细胞中,研究者利用高光谱成像对海蛞蝓体内的叶绿体的丰度、分布和光合作用机制进行了研究,发现黑暗饥饿24天的海蛞蝓体内的叶绿体明显变少,可见,在极其恶劣的环境中,海蛞蝓体内的叶绿体可进行分解,以满足其能量需求。高光谱成像技术在生物医学的应用案例2012年发表的论文“Hyperspectral imaging and spectral-spatial classification for cancer detection”,文中提出高光谱成像是一种用于生物医学应用的新兴技术。本研究提出了一种先进的图像处理和分类方法,用于分析前列腺癌检测的高光谱图像数据。开发了最小二乘支持向量机(LS-SVM)并对其进行了评估以对高光谱数据进行分类,以增强对癌组织的检测。该方法用于检测荷瘤小鼠的前列腺癌。创建空间分辨图像以突出癌症的反射特性与正常组织的反射特性的差异。小鼠的初步结果表明,高光谱成像和分类方法能够可靠地检测动物模型中的前列腺肿瘤。高光谱成像技术可以为癌症的光学诊断提供新工具。Houzhu Dingd等(2015)、Michael S. Chin等(2015)本别以猪和裸鼠作为实验动物,对烧伤分级和恢复进行了高光谱成像研究。左图为根据高光谱成像分析得出的烧伤区域氧饱和分布与血红蛋白分布,T00、T01、T04、T24分别为烧伤0时、1小时、4小时、24小时后;右图上图为裸鼠烧伤皮肤彩色成像,中图为高光谱成像分析的氧合血红蛋白成像,下图为组织切片,高光谱成像可以将烧伤深度进行非损伤、非接触、高通量分级。高光谱成像技术在生物分类的应用案例2013年发表的“Non-Invasive Measurement of Frog Skin Reflectivity in High Spatial Resolution Using a Dual Hyperspectral Approach”一文中,研究者采用了由两个推扫式高光谱成像系统组成的双摄像机设置,其产生400和2500nm之间的反射图像,分析了三种树栖青蛙的光谱反射率。3中树蛙都呈现出肉眼可见的绿色,但物种之间的光谱反射率在700和1100nm之间显着不同,依次可以区分不同种类。 高光谱成像技术在文物考古的应用案例自1974年兵马俑被发现以来,一直为全世界关注,被法国前总统希拉克誉为“世界第八大奇迹”。但是,包括兵马俑在内的这些埋于地下两千多年的珍贵文物,突然暴露在空气中,极易发生变化,其修复和保护工作极为困难。高光谱成像技术通过非接触直接获取兵马俑的图像光谱信息,通过分析兵马俑的图像及光谱信息,可了解兵马俑被病害侵蚀程度以及兵马俑制造的颜料,*后根据分析结果对其进行模拟修复。高光谱成像技术在作物的精细分类和识别的应用案例高光谱数据能区分作物更细微的光谱差异,探测作物在更窄波谱范围内的变化,从而能够准确地对作物进行详细分类与信息提取。目前最流行、应用最广的高光谱作物分类方法有光谱角分类(SAM)、决策树分层分类等。中科院遥感所熊桢基于高光谱影像对常州水稻生长期进行监测,利用混合决策树法对水稻的品种进行了高光谱图像的精细分类,包括6个水稻品种的划分,分类精度达到 94.9%。张兵充分考虑自然界地物分布的一般性规律,针对高光谱遥感海量数据的特征,利用光谱特征优化的专家决策分类方法,用高光谱影像对日本南牧农作物进行精细分类。结果表明,这种分类模式一方面可以提高像元分类精度,另一方面也大大减少了分类结果图像上的误判噪声。高光谱成像技术在谷物检测的应用案例我国是世界上最大的粮食生产国,谷物类包含水稻、小麦、玉米、花生等。通过高光谱成像技术对大米急性检测,检测质量及种类,得到大米高光谱图像,以主成分分析方式,对图像中的数据降维处理,提取垩白度及形状特点,以PCA、BPNN建立谷物识别模型,发现采用BPNN模型效果较为理想,其准确率达到89.91%,而PCA准确率为89.18%,两者相差不大。BPNN和数据融合结合,准确率进一步提高,可达到94.45%。因此,采用高光谱成像技术对谷物进行检测,对大米种类及质量分析具有实用性。高光谱成像技术在森林物种识别的应用案例森林树种类型识别的主要目的是提取森林树种的专题信息,为划分森林类型、绘制林相图和清查森林资源提供基础和依据。目前研究多集中在河湖、盐沼、海岸滩等湿地生境的植被识别及制图,即群落尺度的区分。结合地面调查来提取不同物种典型的特征光谱曲线。数据源采用高光谱成像仪实地测得的数据,通过建立光谱信息模型等方法,实现对主要物种、森林类型或具体树种的识别。有学者借此对植被空间分布制图、植被变化监测进行研究,均取得了与地面数据相当好的一致性。(混合决策树、专家决策树法常用于农作物的精细分类,高光谱更多应用于草原生物量估算、农作物理化信息提取等方面。
    留言咨询
  • 高光谱成像无人机SEN-P904 采用高光谱成像技术,能够获取更多的光谱信息,实现对水质参数的更准确的识别和可视化分析高光谱成像无人机SEN-P904 由无人机搭载高光谱成像仪,通过前沿的科学技术实时监测河面、湖面水质中COD、溶解氧、氨氮、叶绿素、总磷、高锰酸盐等多种指标,分析水质优劣情况分布,高光谱成像仪采用了多个波段进行成像,同时光谱分辨率可以达到纳米级,这使得它能够提供更多无形的数据,获取更多的光谱信息。保证其测量结果的准确性和可靠性。实现对河道、湖体等水域水质状况进行可视化的精准监测。应用领域 &bull 水质监测 &bull 河道生态 &bull 灾害评估 &bull 资源调查 &bull 应急监测特点:&bull 光谱分辨率高优于 1.3 nm级别,可以实现对目标物的精细分类和识别。 &bull 波段成像采用了400~1000nm波段进行成像,能够获取更多的光谱信息,从而实现对目标物的更准确的识别和分析。&bull 大视场和高灵敏度具有大视场和高灵敏度,成像清晰、噪点少,能够实现对目标物的快速、准确的检测和分析。 &bull 扫描速度快堆扫型成像扫描速度快,可以在短时间内对大范围进行扫描,从而提高了数据获取的效率。技术参数
    留言咨询
  • 卓立汉光所研发的高光谱成像仪主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。HyperSIS高光谱成像系统工作原理如下(推扫型/推帚型):线光源照射在放置于X-Stage电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。【HyperSIS-高光谱成像分析仪型号列表】 型号 描述光谱范围(nm)扫描速度** (images/s)备注1HyperSIS-VNIR-QE增强型400-1000 9 系统包含:高光谱成像仪,CCD相机、光源、暗箱、数据采集软件、笔记本电脑 2HyperSIS-VNIR-PS高效型400-100011 3HyperSIS-VNIR-HS高速增强型400-1000334HyperSIS-VNIR-PFH标准型400-1000305HyperSIS-NIR 近红外增强型900-170060 6HyperSIS-SWIR短波红外增强型1000-2500100在整个系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,本系统的设计针对大小不超过200 mm (长)*200 mm (宽)*100 mm (高)的物体。若使用者对于系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身对系统的特别使用需求。【应用】用于农产品、水果、食品、药品等快速、无损检测分析 农产品检测 水果检测 肉类检测 食品药品检测
    留言咨询
  • 植物高光谱成像系统 400-860-5168转4713
    HAIP Solutions 公司的BlackMobile高光谱成像系统是一款智能手持式涵盖可见光和近红外波段范围的高光谱成像系统,可轻松、快速获取光谱数据,实现现场分析。相机集成了独有的宽带LED照明单元,无需外置光源,适合各种环境。系统配有大触摸屏,用户界面简洁,确保了实践应用。无需深度专业知识即可使用相机或解读结果,系统采用即用设计,处理结果可在屏幕上显示BlackMobile 背面:宽带LED照明BlackMobile 软件正面面版图特点智能便携高光谱成像系统测量迅速、易于使用 集成宽带LED照明单元 VNIR (500-1000 nm) HSI 与4K RGB NIR范围高信噪比系统配有大触摸屏,用户界面简洁, 确保了实践应用。无需深度专业知识即可使用相机或解读结果,系统采用即用设计,处理结果可在屏幕上显示。 100 光谱波段 7“ 触摸屏显示 内置高性能GPU 用于数据处理光谱特性波长范围:500-1000nm波段数量:100光谱分辨率:5 nm光谱采样:5 nm空间性质RGB分辨率:3840 * 2160 px光谱分辨率:640 * 480 px光学特性视野(FOW):22 * 16.5 cm ( 50 cm) 传感器特性传感器:CMOS辐射分辨率:10 bit积分时间(立方体):3秒数据尺寸(原始):120 MB/ 数据立方体相机特性连接:USB-C, WIFI操作温度:0 - +30°C保护级别:IP 64功耗:20V / 5A USB-C PD尺寸:250 * 165 * 70 mm重量:1500g高光谱成像系统优势无需高光谱专业经验。系统用户界面会对成像步骤进行指导,确保数据品质。高光谱传感器提供的100个光谱通道的空间分辨率为640*480像素,波长范围500-1000nm。可单独选择所需光谱范围。要进行图像归档,使用了4K高清RGB传感器(8 百万像素),屏幕可同时显示RGB实时流。这可帮助用户在所有时间关注测量的图像细节。BlackMobile可通过USB-C端口外置电源适配器 或移动电源充电。通过USB或WIFI远程连接、计算机可远程控制BlackMobile成像系统,采集、研究和输入数据。
    留言咨询
  • 多光谱成像仪6X是一款操作简易、数据结果可快速输出的科研级机载多光谱产品,光谱成像仪6X可满足多种应用领域的多光谱数据使用需求,该成像仪由同步触发的5个的320万像素全局快门光谱通道和一个2010万像素的RGB通道组成,每个通道都配备了高性能的光谱采集模块,因而可快速获取8通道的高辐射精度高质量多光谱影像数据。多光谱成像仪6X配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。多光谱成像仪6X关键性能和优势 实时图像处理分析 光照传感器内置GPS 快速输出数据结果 3 fps高速数据采集 兼容MavLin通信协议 多款无人机直接集成 影像色彩选择性校正 操作简易使用方便
    留言咨询
  • 共轴 TOF 质谱仪的突破性创新易于使用:一体化的消耗品和软件的生态系统阐明:为组织生物学情景化实现单个像素点分子信息获取的最大化发现:提供多种 MALDI 分析流程,速度和性能的进一步提升转化:单个组织切片,多维度空间生物学分析仪器特点1)116 通道靶标蛋白质的同步空间可视化MALDI 质谱成像可以从单个组织切片中获得深度的空间多组学信息,推动您的空间生物学研究,加深对肿瘤微环境系统的认识;通过 MALDI HiPLEX-IHC 和其他组学方法的联合分析,可在一个软件方案中实现对组织样本从分子表达到疾病机制认识的一系列研究。我们的空间生物学工具包使您能够通过疾病特异性的 HiPLEX 实验来评估靶点的接合效应。在鳞状细胞癌组织上已经实现突破性的 116 通道的 MALDI HiPLEX-IHC 实验, 空间分辨率为 30 µ m, 采集时间为 7 小时,全面的蛋白质分析可实现空白组织与小细胞肺癌组织有效区分。样本由瑞士苏黎世大学和瑞士联邦理工学院的 Bernd Bodenmiller 教授提供。2)每一帧像素分子信息的最大化neofleX&trade 成像质谱系统能够使研究人员深入挖掘组织的分子表达谱,推动转化医学研究。实验设置:自动化设置及图像导入功能为高通量实验提供了极大的便利数据解析:从靶向可视化到数据的多模态融合及统计学分析等高级流程,SCiLS&trade 为每个用户提供了多种选择。3多功能性、灵活性与采集速度的完美融合neofleX&trade MALDI-TOF/TOF 结合了分析速度快和操作简便的优势,对台式 MALDI-TOF 质谱仪的性能实现了性的提升。快速获得结果 —— 实验操作和数据分析的便利为一系列分析和应用实现分析结果的即时交付即时方案 —— 为生物学表征如 MALDI 自上而下测序、反应监控、杂质分析和组分鉴定提供简单快速的方法超越分子量极限 —— 独特的高质量端检测能力可实现带有高异质性的完整蛋白质的直接分析,如 PEG 修饰蛋白质和融合蛋白质应用方向: 加速生物药物研发MALDI-TDS 对 NIST mAB 轻链的序列验证。使用 Bruker OmniScape&trade 软件中序列确认的工作流程进行数据分析,只需点击几下鼠标,即可在短时间内获得无与伦比的序列覆盖率,从而得到可靠的序列验证结果。在生物制药领域,快速决策至关重要。MALDI 快速的分析速度,和短时间即可生成结果的特点,为加速生物制剂各个阶段的开发提供了独特的潜力。MALDI 自上而下测序(MALDI-TDS)能够快速提供药物蛋白质一级序列、末端状态和近末端修饰等信息,并在治疗性抗体、聚乙二醇化蛋白质、抗原和其它药物分子的表征方面一直具有独到的优势。MALDI-TDS 常常用于极具挑战性的分析工作中,例如疏水小型膜蛋白的测序,这在蛋白质组学研究中经常被忽视,但却代表了独特的药物靶点。在需要更高通量的常规应用中,neofleX&trade 是提供紧急问题即时解答的完美工具。配合布鲁克的 BioPharma Compass 软件解决方案,能够轻松且快速获得众多类型生物分子的质控结果,比如合成肽、完整或酶解的蛋白质、聚糖、DNA 和 RNA 寡核苷酸等。neofleX&trade MALDI-TOF/TOF 重新定义了台式 MS/MS 的性能。其新开发的 TOF/TOF 技术有助于揭示精细结构信息,如蛋白质的修饰或突变,而这些在生物通路中起着至关重要的作用,也是影响蛋白质药物质量、安全性与有效性的关键因素。软件:SCiLS&trade autopilot——自动一体化的 MALDI 成像工作流程SCiLS&trade Lab 采用通用的 OME-TIFF 图像文件,可以与您所选的其他平台无缝兼容。SCiLS&trade autopilot 提供了一个自动化的工作流程,便于样品跟踪和成像运行参数的设置和优化。无需先验知识即完成仪器参数的优化,确保每次运行的重复性和稳健性。neofleX&trade 的数据是开放式的 OME-TIFF 格式,便于科研共享。MALDI 表征的配套软件方案BioPharma Compass 自动化处理,简化了日常实验流程,提高了工作效率。 OmniScape&trade 提供了一套全面的 “自上而下” 数据分析工具,包括蛋白质从头测序和 PTM 修饰位点的验证工具。耗材配件:实验成功的首要因素IntelliSlides:“智慧型”载玻片最大限度地洞察每一个像素点布鲁克 lntelliSlides 完美适配于空间定位组学工作流程 ( SpatialOMx ) 。通过读取导电载玻片表面预先刻蚀好的条形码和定位标记,可自动定位并确定样本区域,从而实现成像设置的自动化,简化了您的质谱成像工作流程。fleXmatrix —— MALDI 质谱分析成功的关键fleXmatrix 采用预分装的小瓶,简化了 MALDI 成像基质溶液的制备,尤其是对于喷涂方法或升华方法。它保证了实验的一致性,并节省了工作流程时间。AnchorChip 靶板技术 —— 简化样品制备,提高实验结果的可重现性AnchorChip 是一种带有专利保护的靶板技术,“anchor” 的内部是亲水性的中心,外部是疏水性的外环,该结构促使样品液滴自动浓缩并集中于靶点中心,可以确保在自动采样时每一束激光都能轰击到样品。
    留言咨询
  • 高光谱成像系统410Vis是一款高度一体化的机载高光谱成像系统,内置双目成像探测器、采集控制及存储单元、惯性导航INS等组件;可见光相机采用高品质传感器,有效像素1200万,搭载高灵敏度陀螺仪芯片,内嵌AI防抖算法,可拍摄12M像素照片;整体结构紧凑,可搭载于多种无人机,在环境遥感、精准农业、森林调查、植被评估和管理,以及矿产勘查等领域具有广泛的应用前景。高光谱成像系统410Vis配备的400~1000nm高光谱传感器,采用先进的高量子效率CMOS焦平面阵列(FPA) 技术和获得专利的固体光学模块Offner成像光谱仪,具有性能优异的高反射衍射光栅(钻石工艺精密加工而成),具有卓越的传输效率、信噪比、光谱保真度和空间分辨率。高光谱成像系统410Vis内置了高效率的微机控制系统、数据采集及存储系统、精密的基于MEMS的紧耦合GPS/惯性导航系统(INS)。获取的高光谱图像可以保存为原始数据和/或经辐射校准的数据,可以显著减少后处理时间和简化工作流程。
    留言咨询
  • 高光谱成像系统410-Vis是一款高度一体化的机载高光谱成像系统,内置双目成像探测器、采集控制及存储单元、惯性导航INS等组件;可见光相机采用高品质传感器,有效像素1200万,搭载高灵敏度陀螺仪芯片,内嵌AI防抖算法,可拍摄12M像素照片;整体结构紧凑,可搭载于多种无人机,在环境遥感、精准农业、森林调查、植被评估和管理,以及矿产勘查等领域具有广泛的应用前景。高光谱成像系统410-Vis配备的400~1000nm高光谱传感器,采用先进的高量子效率CMOS焦平面阵列(FPA) 技术和获得专利的固体光学模块Offner成像光谱仪,具有性能优异的高反射衍射光栅(钻石工艺精密加工而成),具有卓越的传输效率、信噪比、光谱保真度和空间分辨率。高光谱成像系统410-Vis内置了高效率的微机控制系统、数据采集及存储系统、精密的基于MEMS的紧耦合GPS/惯性导航系统(INS)。获取的高光谱图像可以保存为原始数据和/或经辐射校准的数据,可以显著减少后处理时间和简化工作流程。
    留言咨询
  • FT-IR 光谱辐射应用 光谱辐射计量应用 从科学研究到可部署的解决方案,傅立叶变换红外(FT-IR)光谱辐射计量技术已经成为发展和增强不同军事应用的理想技术。在国防工业领域,FT-IR光谱辐射计量技术应用于:&minus 伪装系统开发和红外隐身;&minus 飞机发动机热辐射特性的分析检测;&minus 红外诱饵发射光谱和先进对抗系统的开发、分析和改进;&minus 逸散性排放分类,用于红外辐射特性数据库的开发;&minus 战场爆炸波分类,其中包括炸弹爆炸、炮口焰和导弹发射;&minus 开发多种可部署的侦察解决方案对战场情况进行远程遥感。 这种卓越的创新型技术扩展了工程模型的应用。它还用于改善不同类型的红外发射源。FT-IR成像光谱辐射计可为红外发射源建模和辐射场的时空演变提供关键信息数据。 结合成像光谱辐射计,用带有反演算法的辐亮度测量可以对各种大气应用进行成像,例如:&minus 气象湍流探测;&minus 大气成分分析;&minus 化学云的远距离探测。 技术在传统的单像束FT-IR光谱辐射仪具有无可比拟的性能(如更高的光谱分辨率和在整个视场(FOV)内更好的灵敏度)的同时,多像素FT-IR超光谱成像仪则进一步拓展了红外特性的探测能力。通过空间解析所观察场景的关键特性,可能提供精确的目标空间谱信息。 通过结合场景的光谱和空间谱信息,采集到的数据将得到进一步的应用。因此,FT-IR成像光谱辐射计具有生成3D图像的独特功能(2D空间图像+Z向的光谱信息),其中每个像素点具有其所对应空间场景的谱信息。 走在成像光谱领域的最前沿ABB在光谱技术领域拥有35年的创新史,是公认的世界领导者,目前正在通过其新开发的FT-IR超光谱成像光谱辐射计扩展其遥感产品系列。MR-i具有以下特点: 成熟、坚固的设计MR-i是一款商用/商业级FT-IR成像光谱辐射计,以ABB Bomem MR系列光谱辐射仪为基础,核心其设计采用了与MR304/MR170相同的无阻尼、坚固的4端口干涉仪结构。 双相机配置MR-i是首款能同时具有中波红外成像和长波红外成像的商业级FT-IR超光谱成像光谱辐射计。MR-i 4端口干涉仪能够同时容纳两种不同类型的相机模块(如MWIR/LWIR)组合,扩展了仪器的光谱覆盖范围,或可集成两个相同的相机模块(如MWIR/MWIR),扩展了仪器的动态范围。凭借这种独特的特性,MR-i能够同时采集并精确同步两个可互换的相机模块的数据,使仪器能够同时进行复杂辐射场景的测量。 配置两个探测模块的MR-i就如同在一个仪器中融合两个成像光谱辐射仪的功能,具有以下好处:&minus 两个相机的精确同步;&minus 两个相机的光轴一致;&minus 通过一个用户界面轻松操作;&minus 降低了购置成本;&minus 降低了维护成本 灵敏度/扩展的动态范围 某些应用,例如目标红外辐射特性,常常需要同时测量场景中随机分布的高、低强度发射源。每个探测模块的信噪比性能受到相机积分时间的影响。根据亮点(hot pixels)的能量级别设置积分时间将对场景中的暗点(cold pixels)产生负面影响。另一方面,预设暗点最大信噪比的积分时间将导致亮点饱和。 MR-i对于目标红外辐射特性的定量测量与分析提供了无与伦比的灵敏度。利用相同光谱范围(MWIR-MWIR或LWIR-LWIR)的两个探测模块配置在两个输出端口,它们能够分别设置不同的增益或积分时间,以扩展仪器的动态范围。这大大改善了对于场景中最明亮和最暗淡的区域的定量监测。
    留言咨询
  • IMEC推出的这款SNAPSCAN高光谱相机,采用了像素级的芯片镀膜技术,并结合IMEC微电子半导体上强大的软硬件实力,使这款相机具备了高信噪比,高空间和谱段分辨率。它集成了光谱成像所需的所有关键组件:光谱图像传感器、光学、压电扫描、主动冷却系统、照明、三脚架安装,配备由imec研究团队开发的高光谱成像软件。相机内置悬停推扫平台,通过线扫获得特定谱段的光谱信息。体积小巧轻便。适用于显微高光谱成像、细胞遗传学和研究、农业遥感、矿物和材料表征等实验室和户外环境的高光谱成像。 产品特性:1、高空间分辨率(7Mpx)2、高光谱(分辨率)150 +频段3、高信噪比4、软件功能:数据立方体重建和光谱校正5、快照式高光谱成像,无需与被测物体相对运动
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制