当前位置: 仪器信息网 > 行业主题 > >

质谱进展

仪器信息网质谱进展专题为您整合质谱进展相关的最新文章,在质谱进展专题,您不仅可以免费浏览质谱进展的资讯, 同时您还可以浏览质谱进展的相关资料、解决方案,参与社区质谱进展话题讨论。

质谱进展相关的论坛

  • 【资料】有机质谱的研究进展

    请看附件文献《有机质谱仪器的研究进展》[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=44249]有机质谱仪器的研究进展[/url]

  • 【分享】液相色谱质谱联用技术进展及其在中药中的应用zt

    转自丁香园,作者:cooks 有离子阱和四级杆质谱工作原理的介绍。内容:一、质谱原理简介1.四级杆质谱2.离子阱质谱二、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]技术进展1.色谱进展2.[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]接口3.质谱性能的改进三、在中药研究中的应用四、展望[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21685]液相色谱质谱联用技术进展及其在中药中的应用[/url]

  • 【资料】同位素质谱分析测试技术进展

    同位素质谱分析测试技术进展====================================================同位素地球化学经历了近一个世纪的发展,已经成为一门成熟的学科。它不但成为研究各种基础地球科学问题的重要手段,而且在解决人类社会面临的重大资源、环境、生态问题方面开始发挥关键作用。同位素质谱分析测试技术是同位素研究的基础。新的测试技术的创立,新的测试仪器的研制,原有仪器设备和测试方法的改进是稳定同位素地球化学研究发展的依托。因此发展同位素质谱测试技术始终是同位素地球化学研究的一个主要方面,技术上的每一项突破往往会为同位素地球化学研究开辟新的领域。在过去的十几年里同位素质谱分析测试技术得到了迅速的发展,具体表现为测试对象的微区化,仪器设备的自动化,测试工作的标准化。目前常用的新技术包括:多接收器等离子体质谱法、激光探针质谱、离子探针、热电离质谱法和高精度质谱计。--------------------------------------同位素质谱分析测试技术是同位素研究的基础。本文评述了同位素质谱分析测试技术中常用的多接收器等离子体质谱法、激光探针质谱、离子探针、热电离质谱法和高精度质谱计分析同位素的原理、应用范围、存在问题和研究进展,建议选择分析同住素方法时,需考虑每种方法各自的特点和优势、仪器的性能等。================================================== [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=155681]同位素质谱分析测试技术进展【PDF】[/url]

  • 从天瑞在质谱项目的进展看国产质谱的未来

    从天瑞在质谱项目的进展看国产质谱的未来  研发生产质谱产品,对国产仪器厂商来说是很有难度的,但国产质谱仪器的不断突破,让我们看到了希望。那么,国产质谱未来的发展将会如何呢?  国产质谱的未来发展  首先还是产品的合适定位和开发。以国产仪器厂商的技术实力,能做出的质谱产品也许性能并不止于此,但用户对国产仪器的接受能力和比较根深蒂固的印象,一时还难以扭转,国产质谱仪还不能为性能舍弃突出的价格优势。因此国产质谱仪研发在未来一段时间,主要还是一个均衡性问题,要在兼顾高性价比的情况下,尽可能地实现更好的性能和功能。当然,这种立足实用性的开发也许本就比较适合很多国内用户,更高的灵敏度、更低的检出限等也许很好,白送当然谁都想要,但如果要为之破费太多,恐怕很多用户也要心痛,也不一定有必要,毕竟谁也不知道十年后的检测目标、技术走向、标准会是个什么样子。  除了自行开发,适当的技术收购,或许能够快速缩小国产质谱的差距。目前,国产质谱大多是从零开始搞研发,相当不易,自力更生固然是很好,想买技术可能也买不到,但时间和费用等方面的代价实在太大了,反观国外仪器厂商,其质谱技术很多都是当年通过收购、投资当时还比较小的公司,或是通过其他形式以较低的价格收购来的。比如赛默飞世尔收购HD Technologies从而获得Orbitrap技术时,HD Technologies只是个英国小公司,但是基于Orbitrap技术的质谱仪已逐渐成为赛默飞世尔独有的而且是重要的产品。  反观国产仪器厂商,质谱的研发都很艰苦,如果能适当的通过收购获得一些前景较好的质谱相关技术,就有可能实现快速和大幅的进步。同样,收购也可以快速获得专利,对于突破技术封锁非常有效。  国产仪器厂商如果能有全球的视野,长期的观察,良好的技术把握,前瞻性的眼光,准确的判断,强大的执行力,同样也能够实现高性价比的收购,买到能下金蛋的“小母鸡”或是良好的技术储备。  立足行业应用,开发行业仪器,或许可以成为国产质谱仪的另一条道路。作为后来者,技术和诸多条件的限制,使国产质谱仪很难也去走“大而全”的道路,那么针对具体行业应用,发展专一用途的仪器,走“精而专”的道路也许就不错。开发这样的行业专用仪器,技术难度和专利问题大为降低,实现起来就要容易的多了,产品也能够变得易用和小型化便携化,打开新的销路。其实已经有很多领域的仪器尝试过这条道路而且获得成功,有些国产仪器厂商也是通过发展行业仪器起家的。质谱仪也许同样可以在这条道路上获得成功。

  • 【网络讲堂】:1月29日 基于Orbitrap质谱的定量蛋白质组学技术新进展

    【网络讲堂】:基于Orbitrap质谱的定量蛋白质组学技术新进展【讲座时间】:2015年01月29日 14:00【主讲人】:李静 (赛默飞世尔公司色谱质谱部应用研究中心质谱应用工程师,在赛默飞一直致力于蛋白质组学的技术支持,积累有丰富的分析经验。)【会议简介】1、 2015 CNHUPO生物质谱蛋白质定量高级研讨会新进展介绍2、 Thermo DIA(数据非依赖采集)定量技术新应用3、 Thermo TMT SPS MS3定量技术新应用-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年01月29日 13:304、报名参会: http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/13225、报名及参会咨询:QQ群—231246773

  • 【分享】转载:MALDI-TOF生物质谱成像技术的进展

    随着MALDI-TOF等生物质谱仪器性能的提升和应用领域的扩大,基于MALDI的质谱成像技术已成为研究肿瘤标志物、药物代谢、脂类分布等方面的有力手段。最新样品前处理方法以及自动化基质喷涂等技术的发展,大大提高了质谱成像技术的灵敏度和分辨率。利用原位酶切技术直接鉴定组织切片上的蛋白质和多肽是IMS当前的热点和关键。体内药物代谢物分布、脂类物质分布以及植物组织的质谱成像等研究逐渐成为新的应用热点。本文较系统地介绍了生物组织质谱成像技术的研究进展。详见附件。http://simg.instrument.com.cn/bbs/images/brow/em09510.gif

  • [转帖]:离子淌度质谱及其理论研究进展

    作者:王海龙,魏开华 来源:军事医学科学院院刊 [摘要] 离子淌度质谱是离子淌度分离与质谱联用的一种新型二维质谱分析技术,离子淌度分离原理是基于离子在飘移管中与缓冲气体碰撞时的碰撞截面不同,离子可按大小和形状进行分离。经过30多年的发展,离子淌度质谱已配有多种最新的离子源及质量分析器,理论研究也日渐成熟,并在蛋白质、多肽及复杂化合物异构体分析方面越发显示出独特的优势,正在发展成为一种新型的重要分析工具。[关键词] 离子淌度;质谱;碰撞截面;理论进展 2O世纪8O年代后,由于各种软电离技术相继问世,质谱(mass spectrometry,MS)的应用拓展到对高极性、难挥发和热不稳定的生物大分子的分析研究,发展成为生物质谱,并迅速成为现代分析化学最前沿的领域之一 。离子淌度质谱(ion mobility mass spectrometry,IMMS)是离子淌度光谱(ion mobility spectrometry,IMS)技术与质谱的联用。是一种新型的二维分离质谱技术。IMS技术出现于2O世纪7O年代,由于其具有多样性的分析能力、良好的检测限及实时的检测能力,在当时受到人们广泛关注,但由于IMS分辨率较低且不能给出离子质量信息,加之当时人们对离子组成的重要性缺乏理解,因此在1976年以后,有关离子淌度的研究逐渐减少。直到2O世纪8O年代末,特别是以MALDI和ESI 为代表的各种软电离方法应用以来,IMS在化合物异构体分离方面具有的独到优势才又引起了人们的关注,相继推出了配备各种新型离子源的IMS—MS联用技术,精确的离子几何形状和淌度计算方法得到飞速发展,IMMS技术有了实质性进展。目前,IMMS已经用来检测化学战剂、爆炸物 、环境污染 、麻醉剂 、半导体及生物大分子(如肽和蛋白质类),并显示出其强大的分析能力。1 原理与仪器组成1.1 IMMS基本原理 离子淌度(ion mobility,IM),又称离子迁移率,是指在电场强度为1 V/m或电场力为1N时正离子或负离子的运动速度,单位为m /V。在IMS中,离子受电场力加速的作用向前运动,运动中又与飘移区缓冲气体分子发生碰撞产生阻力使速度降低。碰撞过程中离子失去的动能可转化为内能使离子温度升高,再次的碰撞又可将升高的内能传递给气体分子,回复到系统温度 。因此,离子在运动过程中温度和速度并不保持恒定。离子之间、离子与缓冲气体之间也可能存在着静电引力与库仑斥力,决定了离子在飘移区的运动过程是极其复杂的,只能由其平均速度(即离子淌度 )或离子通过飘移区的时间td来计量。这种分离过程与色谱的分离过程类似,因此IMS在早期又被称为等离子体色谱(plasmachromatography,Pc)。为了使不同实验条件下的测量值能够相互比较,在实际应用中通常将离子淌度转换为折合离子淌度(reduced ionmobility, ),即在温度为273 K,压力为760 Tort的条件下的离子淌度,离子的大小和形状可用离子与缓冲气体发生碰撞时的平均可用截面即碰撞截面(collision Cross section,n)来衡量。由上述可知,离子淌度分离主要是基于离子的形状和大小。因此,对于用常规质谱方法不能区分的异构体或复合物等分析,这种分离手段具有独特优势。离子按淌度预分离后,再通过每一组分质荷比求得质量数,便可获得离子淌度质谱二维图谱或三维图谱(图1)。1.2 仪器组成 离子淌度质谱仪与常规质谱仪的主要区别在于前者在离子源和质量分析器之间增加了一个离子飘移管。离子飘移管通常由不导电的高纯度氧化铝制成,中间镶嵌若干不锈钢环,不锈钢环之间以高温电阻相连,两端不锈钢环之间施加驱动离子前进的电场。质量分析器可采用四极质量分析器或飞行时间质量分析器,由于四极分析器扫描离子费时较长,现在IMMS分析器多为飞行时间质谱(TOF—MS)。仪器中飘移管部分通以缓冲气体,质量分析器部分采用高真空,二者之间配以由锥体和离子透镜组成的接口。典型的离子淌度质谱的组成见图2。由于离子在飘移管中通过的时间为毫秒级,在飞行管中通过时间为微秒级,在下一组分到来前有充足的时间求得离子的质量数,因此对每一组分可在一次实验中同时求得淌度和质量数,整个实验可在1 min内完成。 有时为了获得更多的离子信息,可在飘移管前和(或)后串联使用几种质量分析器,如离子阱或四极滤质器等。2 离子淌度理论的研究进展2.1 缓冲气体对碰撞截面的影响 IMS区分离子是通过与缓冲气体分子碰撞过程而实现的,缓冲气体的种类直接影响分离过程。氮气和氦气是最常用的两种气体,氮气一般用于常规分析,氦气常用于结构分析。其他气体还有二氧化碳、六氟化硫、氨 和四氟化碳 。使用不同缓冲气体的理论研究在1975年之后便很少,即使是现在也还没有引起人们足够的重视,但在实际应用中,使用不同的气体对获得良好的分辨率和检测灵敏度相当重要。 离子的碰撞截面不仅与缓冲气体的质量数有关,而且取决于缓冲气体极化率的大小 。Matz等 研究6种苯丙胺(安非他明)衍生物在氦气、氩气、氮气与二氧化碳4种不同缓冲气体下的碰撞截面,结果显示碰撞截面随缓冲气体质量数的上升而上升,但并无严格的线性关系。而极化率与碰撞截面之间有良好的线性关系,碰撞截面随极化率的上升而上升,这也说明碰撞截面更依赖于缓冲气体的极化率而不是质量数。Els等 研究了不同浓度的氮气/二氧化碳混合气体作为缓冲气体在l0 水平分离5种氯代和溴代乙酸的情况,使用100% 氮气,2种组分淹没在其他峰中,若在缓冲气体中加入3%二氧化碳,则能达到完全分离,表明载气的组成明显影响峰形的检出。

  • [分享]:液相色谱-质谱联用在药学领域应用进展

    LC/MS APPLICATIONS IN DRUG DEVELOPMENTMass Spectrometry Reviews, 1999, 18, 187-279[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15457]液相色谱-质谱联用在药学领域应用进展[/url]

  • 【资料】基于质谱的DNA序列测定进展

    基于质谱的DNA序列测定进展 许崇峰 杨芃原 岳贵花 卞利萍   摘 要 对质谱DNA序列测定的各种技术的原理、进展、面临的困难以及发展的前景作了评述。   关键词 质谱 DNA序列测定 评述  Abstract This article gives a review on DNA sequencing by mass spectrometry,including the principles of MS techniques,and their progress,difficulties and perspective.   Key words Mass spectrometry;DNA sequencing;Review 1 引言   DNA序列分析在生物基因学以及遗传病和病毒性疾病的诊断和治疗上具有重要的作用。用质谱化学方法进行DNA序列分析是一种新兴的技术。Sanger双脱氧链终止序列测定方法是常规的DNA序列分析方法,Sanger产物需要通过凝胶分离和显色来得到DNA的序列信息。而当采用质谱(MS)时,Sanger产物可不需分离而直接测定,因而质谱方法具有快速性的优点。80年代中后期相继出现的质谱离子化新技术电喷雾(ESI)和基体辅助激光解析电离(MALDI)使得用质谱进行DNA序列测定成为可能。但是由于技术尚不成熟,目前使用质谱方法仅能测定含几十个碱基的寡聚核苷酸。要使质谱在人类基因工程(HGP)和临床分析中得到广泛的应用,质谱技术和质谱方法必须得到显著改善。2 生物质谱方法   生物质谱,有别于传统质谱,测定的对象是分子量可高达几万至几十万的生物分子,这使得传统的电子轰击(EI)、化学电离(CI)等电离技术的应用受到了极大的限制。随着快原子轰击(FAB)、MALDI、ESI、离喷雾(IS)、大气压下碰撞电离(APCI)等电离技术的出现,大大提高了质谱的测定范围。特别是ESI-MS和MALDI-MS显示了在生物大分子分析(如蛋白质和核酸)上的巨大潜力。 2.1 ESI-MS  电喷雾是一种软电离方法。通常认为电喷雾可以用两种机制来解释:1)离子蒸发机制,在喷针针头与施加电压的电极之间形成了强电场,该电场使液体带电,带电的溶液在电场的作用下向带相反电荷的电极运动,并形成带电的液珠(液滴)。由于小雾滴的分散,比表面增大,在电场中迅速蒸发,结果使带电雾滴表面单位面积的场强高达108V/cm2,从而产生液滴的“爆裂”。重复此过程,最终产生分子离子;2)带电残基(分子)机制,首先也是电场使溶液形成带电雾滴,带电雾滴在电场作用下运动并迅速溶去,溶液中分子所带电荷在去溶时被保留在分子上,结果形成离子化的分子。一般来讲,电喷雾方法适合使溶液中的分子带电而离子化。离子蒸发机制是主要的电喷雾过程,但对质量数大的分子化合物,带电残基的机制也会起相当重要的作用。   电喷雾所形成的离子是多电荷离子,由于质谱测定的是质荷比,这就拓宽了它所能测定的质量范围,使得它适合于生物大分子的测定。 2.2 MALDI-MS  MALDI也是一种软电离方法,它利用激光束照射分散于基体(又称基质、底物)中的样品,由于样品被包裹在基体中,因而大部分激光能量被基体所吸收,从而保护了样品分子。MALDI中的基体起到了多种重要的作用:从脉冲激光中吸收足够的能量;隔离样品分子;提供光激发的酸或碱基团,以及在离子-分子碰撞中电离样品分子。目前MALDI比较公认的机理是:激光光束的能量首先被发色团的基本吸收,接着这些基体迅速蒸发为气相,被包含的分析物的分子从而被带入气相。而离子化的产生是由于受激的基体分子将质子转移给分析物分子。   MALDI可以由不同类型的质谱来实现,特别是飞行时间质谱(TOF)。理论上,飞行时间质谱的质量上限是无限的,这决定了它特别适合于生物大分子分子量的测定。

  • 生物质谱技术应用及进展

    生物质谱技术应用及进展   生物质谱因其高灵敏度、高准确度、快速、易于自动化等特点,在生命科学领域的应用和研究日益广泛。本文就其近年来在蛋白质、核酸、糖类、药物代谢以及微生物检验等方面的应用及进展作一综述。 生物质谱;电喷雾;基质辅助激光解吸附;串联质谱 O657.6 A Applications and progress on bio-mass spectrometry YING WAN TAO,QIAN XIAO HONG National Center of Biomedical Analysis, Academy of Military Medical Sciences, Beijing 100850 For its high sensitivity, accuracy, high speed and easy to automate, bio-mass spectrometry develops very fast . This article reviews its applications and latest progress in the field of proteins/peptides, nucleotides, carbohydrates, pharmaceutical metabolism and microbiology in the past years. bio-mass spectrometry; electrospray ionization; matrix-assisted laser desorption ionization; tandem mass spectrometry  1 概述 生命科学的发展总是与分析技术的进步相关联,X射线晶体衍射对DNA双螺旋结构的阐述奠定了现代分子生物学的基础,使人类对微观领域的认识迈出了决定性的一步。原位PCR技术的出现使得生命科学在微观领域的研究不再是可望而不可及。大规模、自动化基因测序技术的问世,使本世纪生命科学领域最宏大的研究项目人类基因组计划的实施比预期一再提前。而后基因组时代,即功能基因组和蛋白质组计划的实施所必需的高通量大规模筛选对分析方法又一次提出了挑战。已发展了一百多年的质谱技术,由于其所具有的高灵敏度,高准确度,易于自动化等特点,毫无疑问地成为解决上述问题的关键手段之一。 自1886年Goldstein发明早期质谱仪器常用的离子源,到1942年第一台单聚焦质谱仪商品化,质谱基本上处于理论发展阶段。随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。然而,即使在等离子体解吸(plasma desorption, PD)和快原子轰击(fast atom bombardment, FAB)两项软电离质谱技术出现以后,质谱分析的相对分子质量也只是在几千左右。真正意义上的变革以80年代中期出现的两种新的电离技术:电喷雾电离(electrospray ionization, ESI)和基质辅助激光解吸电离(matrix-assisted laser desorption ionization, MALDI)为代表,这两种技术所具有的高灵敏度和高质量检测范围,使得在fmol (10-15)乃至attomole(10-18)水平检测分子量高达几十万的生物大分子成为可能,从而开拓了质谱学一个崭新的领域棗生物质谱,促使质谱技术在生命科学领域获得广泛应用和发展。 2 生物质谱仪 目前商业化的生物质谱仪,其离子化方式主要是电喷雾电离与基质辅助激光解吸电离,前者常采用四极杆质量分析器,所构成的仪器称为电喷雾(四极杆)质谱仪(ESI-MS),后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。ESI-MS的特点之一是可以和液相色谱、毛细管电泳等现代化的分离手段联用,从而大大扩展了其在生命科学领域的应用范围,包括药物代谢、临床和法医学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。此外可用于生物大分子测定的质谱仪还有离子肼(ion trap, IT)质谱和傅里叶变换离子回旋共振(fourier transform ion cyclotron resonance, FTICR)质谱等。而最近面市最新型的生物质谱仪是液相色谱-电喷雾-四极杆飞行时间串联质谱仪(LC-ESI-MS-MS)与带有串联质谱功能的MALDI-TOF质谱仪,前者是在传统的电喷雾质谱仪的基础上采用飞行时间质量分析器代替四极杆质量分析器,大大提高了仪器的分辨率、灵敏度和质量范围,其商品名有Q-TOF和Q-STAR等;后者是在质谱中加入了源后降解(post-source decay, PSD)模式或碰撞诱导解离(collisionally induced dissociation, CID)模式,从而使生物大分子的测序成为可能。 3 生物质谱的应用 3.1 蛋白质和多肽的分析 3.1.1 分子量测定 分子量是蛋白质、多肽最基本的物理参数之一,是蛋白质、多肽识别与鉴定中首先需要测定的参数,也是基因工程产品报批的重要数据之一。分子量正确与否往往代表着所测定的蛋白质结构正确与否或者意味着一个新蛋白质的发现。生物质谱可测定生物大分子分子量高达400KDa,准确度高达0.1%~0.001%,远远高于目前常规应用的SDS电泳与高效凝胶色谱技术。 3.1.2 肽谱测定 肽谱是基因工程重组蛋白结构确认的重要指标,也是蛋白质组研究中大规模蛋白质识别和新蛋白质发现的重要手段。通过与特异性蛋白酶解相结合,生物质谱可测定肽质量指纹谱(peptide mass fingerprint, PMF),并给出全部肽段的准确分子量,结合蛋白质数据库检索,可实现对蛋白质的快速鉴别和高通量筛选。PMF常和胶上原位酶解相结合,成为蛋白质组研究中必不可少的一种手段。此外根据肽段质量数变化,可对基因产品的插入、缺失、突变进行对比分析。 3.1.3 肽序列测定技术 构成蛋白质的常见氨基酸有20种,一段3个氨基酸的肽段碎片将有8,000种可能的排列方式,4个氨基酸将有160,000种排列方式,即一个特定的4个氨基酸序列的出现概率为1/160,000。因此,即使对于一个相当大的蛋白质组来说,五、六个氨基酸残基的序列片段已具有很高的特异性。串联质谱技术可直接测定肽段的氨基酸序列,从一级质谱产生的肽段中选择母离子,进入二级质谱,经惰性气体碰撞后肽段沿肽链断裂,由所得到的各肽段质量数差值推定肽段序列,用于数据库查寻,称之为肽序列标签技术(peptide sequence tag, PST),目前广泛应用于蛋白质组研究中的大规模筛选。较之传统的Edman降解末端测序技术,生物质谱具有不受末端封闭的限制、灵敏度高、速度快的特点。另外,一种间接的肽序列测定技术即肽阶梯序列技术(peptide ladder sequence),通过末端酶解或化学降解,产生一组相互之间差一个氨基酸残基的多肽系列,经MALDI-TOF-MS鉴定后,由所得到的肽阶梯图中各肽段的分子量差值确定末端的氨基酸序列,从而用于数据库查寻。

  • 直播 | 第十三届 质谱网络会议,质谱技术最新成果及食品、生命科学等领域研究新进展,听这场会议就够了!

    直播 | 第十三届 质谱网络会议,质谱技术最新成果及食品、生命科学等领域研究新进展,听这场会议就够了!

    科学仪器设备是科学研究和技术发展的基石,是经济发展、民生问题和国防安全的重要保障。质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。随着关系人类健康的生命科学、生态环境、食品安全等学科的发展,质谱应用领域不断拓展,同时也推动了质谱技术与仪器的快速发展。基于此,仪器信息网自2010 年开始举办质谱网络会议,旨在为国内外质谱相关科研工作者及行业一线工作者提供实时便捷的沟通平台,以促进业内交流,提高相关领域的研究及应用水平。2022年仪器信息网联合北美华人质谱学会(CASMS),于12月13-16日联合举办第十三届质谱网络会议(iCMS 2022),会议分设质谱新技术新方法、临床质谱、质谱在禁毒/司法毒品分析领域的新进展、质谱在生命科学与医药领域的技术应用进展、质谱在环境/食品分析领域的技术应用领域、北美华人质谱学会等专场,聚焦质谱技术最新成果,以及在食品、环境、制药、生命科学、医疗等领域的最新研究进展。[size=18px][color=#ff6666][b]分享参会学习到的知识,以主题帖形式分享至仪器社区,然后将主贴链接回复至评论区,将获得200积分奖励![/b][/color][/size][size=24px]点击参会[/size]:[url=https://insevent.instrument.com.cn/t/6ya]https://insevent.instrument.com.cn/t/6ya[img=,690,418]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913153868_4673_3295121_3.png!w690x418.jpg[/img][img=,690,498]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913153887_3934_3295121_3.png!w690x498.jpg[/img][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913156010_5023_3295121_3.png!w690x464.jpg[/img][img=,690,552]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913154454_6085_3295121_3.png!w690x552.jpg[/img][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913157104_356_3295121_3.png!w690x392.jpg[/img][img=,690,703]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140913156362_3960_3295121_3.png!w690x703.jpg[/img][size=24px]点击参会[/size]:https://insevent.instrument.com.cn/t/6ya[/url]

  • 我国质谱的现状与2012年的主要进展

    我国质谱的现状与2012年的主要进展质谱:我国有市场缺产品  质谱仪自诞生之日开始,就以其准确的定量定性分析能力,在分析仪器领域确立了不可动摇的地位。其后经过数十年的发展,质谱仪的技术与性能不断增强,应用也日趋广泛,越来越多的检测标准与检测方法采用了质谱法,质谱仪逐渐由高高在上的“少数派”、“贵族化”仪器,发展成为一种主流的常规分析测试仪器。  质谱仪的发展非常迅速, 在全球市场,质谱仪每年都有着两位数的增长率,2012预计市场规模将达到45亿美元,占分析仪器市场的三成以上。而在中国市场,质谱仪的发展更加迅速,2003年中国质谱仪市场只有300多台的规模,2010年时已增长约10倍,达到3000多台, 2012年上半年质谱仪销量已超过2000台,全年质谱仪销量可能超过4000台,总值超过4亿美元。但是这样一个极其重要而且高速发展的市场,在长达数十年的时间里却几乎没有国产仪器的参与,整个市场基本都是进口仪器的。  实际上,这几十年来我国在质谱方面的研究生产并非真的是一片空白,上个世纪六十年代,北京分析仪器厂曾经研制成功中国最早的同位素质谱计;在上个世纪七十年代,北京分析仪器厂和北京科学仪器厂也分别自主研发了气质联用仪,使我国成为美国之外第二个能研发生产质谱仪的国家;改革开放以后,北京分析仪器厂和北京科学仪器厂也曾经分别从惠普和岛津引进技术组装质谱仪。但由于种种原因,我国在质谱仪方面的研发生产一再被割裂和中断,这些前辈们的研究成果都变成了孤立的,无法延续下来,仅是昙花一现。而在此后,质谱的相关技术如质量分析器等有了长足的进步,差距逐渐被拉大到难以想象的地步。形成了我国只有质谱仪市场,却缺乏质谱仪产品的局面。  国产质谱面临的各种困难  在质谱领域,国产仪器面临的主要问题,一是技术,二是资金,三是人才,四是以上要素的综合运用,即大家通常所说的,把研究成果产品化、商品化。  尽管质谱仪已经逐渐普及,但其仍是分析仪器行业的高端产品,是整合光、机、电、算等多领域科技的系统工程,其中离子源、四极杆等质量分析器、真空泵等子系统技术含量都比较高,即使有全部现成的各种研究成果摆在面前可供使用,如何设计集成,如何让其达到实用化,性能尽可能高,还要把成本控制在仪器用户能满意的程度,这都不是容易的事,何况如果没有至少一部分核心技术的话,完全依赖外购,成本就是难以控制的。由于质谱仪的整个研发是这样一个很大的系统工程,不仅仅对技术力量有很高的要求,研发成本也同样如此,质谱仪需要长期的投入高额的研发费用,超出了大部分国内仪器厂商的承受能力。仪器仪表学会及分析测试协会曾经对仪器仪表行业进行的调研表明,国际著名仪器公司用于科技创新的开发资金一般都超过年销售金额的10%。而我国一般仪器企业用于研发的资金一般不超过年销售金额的3%。  人才和技术则是双关的问题,没有人才技术也无从说起,仪器行业一直都缺乏人才,尤其是高端人才,质谱领域由于我国的空白期很长,这方面也是比较大的问题,相信有志于质谱领域的国产仪器企业和科研机构,这方面可是没少操心。  即使万事俱备,科技产品的诞生也并不容易。我国的科研成果很多,但能转化形成产品的就比较少,据国内权威部门统计,“九五”、“十五”科技攻关计划与“863”计划共安排科学仪器设备研发课题1251项,但攻克关键技术并转化为市场化产品的课题仅为100多项,其中实现大量推广应用的研发成果还不足30项。而在产品的生产过程中,很多国内企业面临着工艺水平低和品质管控不力,往往导致产品的纸面指标优秀,实际上却大打折扣;或是要实现预期的技术指标时,其成本和生产性又没有可行性,这都是我国科技界的老问题,尽管政策在转变,比如许多专项研发转为以企业为主导,但一时还未能完全解决问题。在质谱这一高技术领域国内企业同样也受制于类似问题。  天瑞质谱:三台质谱,两项突破  困难虽多,终究也只能困住国产仪器一时,进入二十一世纪后,各种国产质谱仪陆续诞生,使国产仪器重返质谱市场。  其中,天瑞于2012年3月发布了三款自行研发的质谱仪:气相色谱质谱联用仪GC-MS 6800,电感耦合等离子体质谱仪ICP-MS 2000,液相色谱质谱联用仪LC-MS 1000,其中ICP-MS 2000是中国首台商业化的等离子体质谱仪,LC-MS 1000是中国首台液质联用仪,填补了我国在这方面的技术空白。作为目前最新的国产质谱仪器,天瑞这三种质谱仪的同时问世可以说是国产仪器在质谱领域最突出的一次表现。  据了解,天瑞本来就非常重视研发团队建设和投入,而为了研发质谱产品,天瑞董事长刘召贵博士曾亲自“围着地球转了几圈,拜访了好多专家,发了很多的信件,就为了一件事——寻找人才。这种高端的人才在国内比较紧缺,在国外也比较紧缺,但是还可以找得到的。最终功夫不负我,我们从美国、日本都招来了一些人才。”天瑞不断的寻觅汇集优秀人才,逐渐建立了近40人的质谱研发团队,专责研发质谱产品。其中包括3名“海归”博士等,整个团队都是来自全球和中国各所名校的高端人才。  即使有了一支强有力的研发队伍,质谱的研发也绝非易事,和国外厂商不同,国产仪器厂商在此领域仍然缺少技术积累,很多技术都要从头开始研发。从立项开始到产品上市,天瑞历经五年的努力终于使得三种新型质谱仪顺利问世。  这5年里,天瑞为此投入了自有资金数千万元,即使天瑞是科学仪器行业中实力出众的一家企业,也是少数上市企业之一,仍然感到相当吃力。刘召贵博士曾有一句轰传业界的名言“卖血也要造质谱”,就是在那段困难时期的感慨。  当然,现在大家都知道结果了,还没有困难到那种程度,天瑞就完成了质谱系列产品的开发。不过不得不说,天瑞这三款质谱产品的诞生,说来简单,实际上从技术研究到产品设计、生产制造,从无到有的过程每步都来之不易,没有半分侥幸。

  • 【分享】大气压电离质谱DART和ASAP最新进展学术报告会将举办

    “Direct and Rapid Analysis by Ambient Ionization Mass Spectrometry: DART ® and ASAP ™ ”大气压电离质谱DART ® 和 ASAP ™最新进展学术报告会邀请函  演讲人: Dr. Brian D. Musselman, President and CEO, IonSense, Inc.  时 间: 2010年12月6日,9:30 – 11:30 (北京,星期一)  地 点: 解放军医学图书馆, 北京市海淀区西四环中路59号(国家生物医学分析中心旁边, 五棵松地铁站D口 出来向前走500米即到,具体请参阅地图。)  主 办: 国家生物医学分析中心      华质泰科生物技术有限公司  联系人:董方霆主任,E-mail:dongft@yahoo.com, 电话:010-66931447      刘慧英老师,E-mail:ncba2008@yahoo.cn , 电话:( 0)15910825699      李倩小姐,E-mail:info@aspectechnologies.com, 电话:010-6439-9978  因座位有限,请于2010年12月1日,星期三,以前以电子邮件确认您的参与并请告知单位及联系方式。  摘要  最近几年兴起的直接快速分析技术比如实时直接分析(DART®)和大气压固体分析探针(ASAP™)等非表面接触型大气压解析暨离子化新技术,是继电喷雾离子化(ESI)及大气压化学电离(APCI)成功解决了生物分子的分析之后又一波具有革命性的质谱离子化技术,满足了实验室对样品高通量分析的要求和现场、直接、无损、快速、原位分析的需求。 由于该技术其独特的样品脱附/离子化进样机制,无需或极少需要样品前处理,在生物医药分析、药物发现与开发、食品药品安全检测、环境应急事件监测、理化检验与取证分析、材料检测与控制等领域得到了广泛的关注和应用。近两年来,该技术在美、欧、日等国的应用已十分普遍,并在著名大学(如斯坦福,麻省理工,哈佛,北大等)、研究院(如美国国家实验室、加拿大国家研究院、美国军事科学院等)、 跨国制药及食品公司(如罗氏、默克、辉瑞、雀巢等)、国家执法部门(如美国食品药品管理局FDA、联邦调查局FBI、环境保护署EPA等)优先采用。为进一步加强学术交流,开阔产品研发与应用视野,我们特邀请美国IonSense公司总裁兼首席执行官,Brian D. Musselman 博士来京访问,就DART®和 ASAP™技术进展和应用前景进行演讲和讨论,诚邀您的参与。  Brian Musselman 博士简介  Brian Musselman 博士毕业于Michigan State University生物化学专业。曾任Faberge International化学家,CPC Inc.分析化学家,Michigan State University 质谱中心主任。Musselman博士于1987-1995年间,加入JOEL (美国)总部,历任质谱产品部经理,质谱应用部经理,国际市场部高级经理。并于1995-2000年加入PE Biosystems (后称Applied Biosystems, ABI,和Life Technologies, 现为AB SCIEX)任生物质谱部全球市场高级总监。2000年后发起成立高科技咨询公司MicroPhage 和SciMarket Strategies。2006-至今为美国IonSense公司总裁兼首席执行官。Musselman 博士发表论文40多篇,曾获Pittcon’97 ESI-TOF质谱发明银奖,IR100’94 台式高分辨GCMate质谱发明奖等大奖。Musselman 博士曾兼职国际知名学术组织美国质谱学会ASMS(1993-1995)副总裁,和美国生物分子资源与设施联合会ABRF(2004-2008) 委员。2006年至今担任实验室自动化联合会(ALA)委员。2008年至今为美国生物分子资源与设施联合会ABRF 主席。http://bimg.instrument.com.cn/lib/editor/UploadFile/201011/20101119131920496.jpg  *乘坐地铁1号线,到五棵松地铁站站D出口即是。(A为解放军医学图书馆)详情:http://www.instrument.com.cn/news/20101119/051420.shtml

  • 第十四届质谱网络会议(iCMS2023),聚焦质谱技术最新成果,以及在食品、环境、制药、生命科学、医疗等领域的最新研究进展

    第十四届质谱网络会议(iCMS2023),聚焦质谱技术最新成果,以及在食品、环境、制药、生命科学、医疗等领域的最新研究进展

    [size=18px][/size][font='宋体'][size=16px][color=#000000]科学仪器设备是科学研究和技术发展的基石,是经济发展、民生问题和国防安全的重要保障。质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。随着关系人类健康的生命科学、生态环境、食品安全等学科的发展,质谱应用领域不断拓展,同时也推动了质谱技术与仪器的快速发展。[/color][/size][/font][font='宋体'][size=16px][color=#000000] 基于此,仪器信息网自2010 年开始举办质谱网络会议,旨在为国内外质谱相关科研工作者及行业一线工作者提供实时便捷的沟通平台,以促进业内交流,提高相关领域的研究及应用水平。[/color][/size][/font][font='宋体'][size=16px][color=#000000] 2023年仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),会议分设质谱技术前沿应用趋势、单细胞质谱技术及应用新进展、结构质谱新方法、临床质谱、质谱在生物医药与生命科学领域的新进展、质谱仪器新技术、质谱在环境分析领域的技术应用领域、质谱在食品分析领域的技术应用进展、北美华人质谱学会等专场,聚焦质谱技术最新成果,以及在食品、环境、制药、生命科学、医疗等领域的最新研究进展。[/color][/size][/font][font='宋体'][size=16px][color=#000000]点击参会[/color][/size][/font][font='宋体'][size=24px][color=#000000]:[/color][/size][/font][url=https://insevent.instrument.com.cn/t/jys][font='times new roman'][size=16px][back=#ffffff]https://insevent.instrument.com.cn/t/jys[/back][/size][/font][/url][font='宋体'][size=16px][color=#000000]1.会议时间:[/color][/size][/font][font='宋体'][size=16px][color=#000000]2023年12月12日-15日[/color][/size][/font][font='宋体'][size=16px][color=#000000]2.专场安排:[/color][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281526468578_905_6065669_3.png[/img][font='宋体'][size=16px][color=#000000]3.参会方式[/color][/size][/font][font='宋体'][size=16px][color=#000000]本次会议免费参会,参会报名可点击会议官网:[/color][/size][/font][font='宋体'][size=16px][color=#000000]h[url=https://www.instrument.com.cn/webinar/meetings/iCMS2023/]ttps://www.instrument.com.cn/webinar/meetings/iCMS2023/[/url][/color][/size][/font][font='宋体'][size=16px][color=#000000]或扫描下方二维码报名:[/color][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281526471617_4879_6065669_3.png[/img]

  • 【原创大赛】国产临床质谱研发新进展

    【原创大赛】国产临床质谱研发新进展

    [align=center]国产临床质谱研发新进展[/align]质谱是一种测量离子质荷比(m/z)的分析方法,最早是1906年由英国著名物理学家汤普森发明。我们可以把质谱仪想象成一杆特殊的天平,称量的是离子的质量。自1906年至今,在这100多年的发展历史中,质谱技术不断进步发展,具有快速、高分辨率、高灵敏度、高特异性等优点,出现了很多不同工作原理的质谱仪,如低分辨、高分辨、飞行时间、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]等。从80 年dai开始,质谱发展成工业产品,最早应用于化学分析,生命科学科研和制药业。国内有很多质谱仪研发厂商已经具备一定的能力,集医疗器械研发、生产、销售及第三方医学检测服务一体化的高新技术企业在蓬勃发芽。很多公司围绕基因组学和代谢组学开展科学研究,搭建了国内先进的基因检测平台、质谱检测平台及质量控制平台等。精确诊断是精准医疗的重要前提,作为生物样本内小分子分析的金标准方法,质谱技术是精准诊断实现过程中不可或缺的工具,也是临床检验技术重要的发展方向。近年来,精准医疗在逐步获得国际医疗机构认可和重视的同时,质谱技术在临床检测中的需求也越来越大,目前国内越来越多的第三方及医院相继建立了质谱分析平台,质谱技术也因其自身高灵敏度、高特异性、高技术型等特点一度成为了临床检验能力的一种标志。质谱技术作为一种多功能的新型检测技术,硬件已是完全工业产品化,虽然其功能非常强大,但方法学和质量管理体系是检测结果及应用的关键。对于同一台仪器,如果样品处理方法不同,达到的检测的准确性和灵敏度会有很大的差异。这对传统的医院或检验实验室或检验人员来说都是一种新的挑战,但同时也是一种新的发展机遇。在中国临床质谱应用发展过程中,主要存在几个难点:仪器属于大型仪器,投资高,医院没有经费购买仪器;对人员技术要求高,业界缺乏相关的专业应用技术人才; 没有相关质谱检测的收费标准;没有标准化的IVD方法学;没有成熟的质量管理体系。借着参加新旧动能转换-中美精准医疗高峰论坛的机会,我近距离欣赏了一下国产最前沿的超高效液相色谱串联质谱。最新研发的超高效液相色谱串联质谱仪采用超高效液相色谱串联质谱技术([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS),将超高效液相色谱的高分离度、高效率与质谱的高灵敏度、高选择性完美结合,最终通过同位素内标及外标实现精准定量。下图是国产[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132019314940_5072_3255306_3.jpg!w690x517.jpg[/img]国产[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]在临床应用主要有临床代谢病、维生素、激素、脂肪酸、氨基酸、胆汁酸、治疗药物等70余项检测项目。其检测原理是三重四级杆。检测原理见下图。[align=center][img=,690,284]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132020476280_5571_3255306_3.jpg!w690x284.jpg[/img][/align]其开发的高效液相色谱串联质谱仪由两部分组成,第一部分是超高效液相色谱仪,其系统耐压可达14000 psi,是目前最先进的HPLC系统之一,配备多通道流路,更佳的分离效果、更广的应用范围、更快的分析速度,为分析工作者节省人工和时间,提高质谱利用效率。其主要有4大优势:1、更好的分离能力:新型高效二元高压混合系统耐压更高、系统体积更小。确保最优的性能,满足苛刻的分离要求。2、更高的分析效率:高耐压能力结合大容量自动进样器,实现高通量临床检验。3、更广的适用范围:极宽流速范围结合大容量柱温箱,适合各种色谱柱和分析方法。4、更强的人机交互:自动化设计,系统操作方便,使工作充满乐趣。下图是超高效液相色谱的细节图:[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132021050254_4222_3255306_3.jpg!w690x920.jpg[/img]第二部分是三重四级杆质谱仪,它是新一代三重四级杆质谱仪的代表之一,基于离子源、离子传输组件、质量分析器的多维创新,可针对基质中极低浓度的化合物进行定量分析。其主要有四大优势:1、超凡灵敏度:轻松完成超痕量物质测定;2、卓越的耐用性和稳健性:应对生物分析基质复杂、样品量大的挑战;3、极佳的易用性:无需质谱经验,即可获得可靠结果;4、更高的检测效率:维护简单,停机时间少,分析速度快。下图是国产质谱仪及离子源部分。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132026119211_7857_3255306_3.jpg!w690x517.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132026180640_784_3255306_3.jpg!w690x920.jpg[/img]做工精美,小巧是我对国产[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]连用仪的第一印象,通过更深入的了解,这款质谱仪的核心技术主要应用了真空锁定装置,使日常的离子传输毛细管清洗与维护不用泄真空,大大提高仪器的使用效率。其主动离子管控技术,使所有电场部件得到精密设计,协同优化,信号响应得到最大化处理,消除了污染,获得了突破性的性能提升。其更多核心技术见下图。[img=,690,588]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132028055670_8776_3255306_3.jpg!w690x588.jpg[/img]

  • 【精品讲座】赛默飞2017ASMS最新质谱及解决方案进展(2017-08-17 14:00 )

    [b]【网络讲座】:赛默飞2017ASMS最新质谱及解决方案进展 [/b]【讲座时间】:2017-08-17 14:00【主讲人】:聂爱英,博士,毕业于复旦大学,现任职于赛默飞世尔科技(中国)有限公司,致力于生物制药、蛋白质组学、精准医疗等科学领域的方法开发,技术支持和科学研究工作,拥有7年以上的色谱和质谱方法开发和优化经验,发表了多篇生物制药和蛋白质组学相关的应用报告,并且和国内多家知名高校实验室和公司开展技术合作。【会议简介】[color=#333333]美国质谱年会ASMS作为全球规模最大的质谱盛会,今年在美国印第安纳州如期举行,Thermo秉承以往的创新传统,作为质谱界大咖,再次推出了多款神器,[/color][list=1][*]超高分辨质谱Orbitrap新产品或更新:最高分辨率在三合一系列仪器上实现了1,000,000,并且增加了最新的UVPD碎裂技术和APD峰检测技术;另外在最新的QE-HF-X仪器上实现了Orbitrap前所未有的扫描速度40 Hz,同时采用全新离子透镜技术实现了灵敏度高达10倍的飞跃;高分辨[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]Exactive [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用了全新VeV技术,使灵敏度提升2.5倍。 [*]三重四级杆新产品:TSQ Quantis &TSQ Altis,采用顶尖的分段式四极杆技术、全新OptaMax离子源、全新双模式检测器,实现了耐用性、灵敏度的新突破,扫描速度更是达到业界最高600 SRM/秒。 [*]软件更新:Proteome Discoverer增加了非标定量、Cross-linking、更多统计学功能;Compound Discoverer增加了数据智能归一化处理、丰富了统计学算法。 [/list]本次报告将主要针对以上提及的新产品和软件更新,在蛋白质组学和生物制药以及精准医疗方面的应用进行详细的介绍,为大家提供更新和更全面的整体解决方案。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“质谱”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 【精品讲座】赛默飞2017ASMS最新质谱及解决方案进展(2017-08-17 14:00 )

    [b]【网络讲座】:赛默飞2017ASMS最新质谱及解决方案进展 [/b]【讲座时间】:2017-08-17 14:00【主讲人】:聂爱英,博士,毕业于复旦大学,现任职于赛默飞世尔科技(中国)有限公司,致力于生物制药、蛋白质组学、精准医疗等科学领域的方法开发,技术支持和科学研究工作,拥有7年以上的色谱和质谱方法开发和优化经验,发表了多篇生物制药和蛋白质组学相关的应用报告,并且和国内多家知名高校实验室和公司开展技术合作。【会议简介】[color=#333333]美国质谱年会ASMS作为全球规模最大的质谱盛会,今年在美国印第安纳州如期举行,Thermo秉承以往的创新传统,作为质谱界大咖,再次推出了多款神器,[/color][list=1][*]超高分辨质谱Orbitrap新产品或更新:最高分辨率在三合一系列仪器上实现了1,000,000,并且增加了最新的UVPD碎裂技术和APD峰检测技术;另外在最新的QE-HF-X仪器上实现了Orbitrap前所未有的扫描速度40 Hz,同时采用全新离子透镜技术实现了灵敏度高达10倍的飞跃;高分辨[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]Exactive [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用了全新VeV技术,使灵敏度提升2.5倍。 [*]三重四级杆新产品:TSQ Quantis &TSQ Altis,采用顶尖的分段式四极杆技术、全新OptaMax离子源、全新双模式检测器,实现了耐用性、灵敏度的新突破,扫描速度更是达到业界最高600 SRM/秒。 [*]软件更新:Proteome Discoverer增加了非标定量、Cross-linking、更多统计学功能;Compound Discoverer增加了数据智能归一化处理、丰富了统计学算法。 [/list]本次报告将主要针对以上提及的新产品和软件更新,在蛋白质组学和生物制药以及精准医疗方面的应用进行详细的介绍,为大家提供更新和更全面的整体解决方案。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“质谱”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 11月7日网络会议:快速高分辨质谱在中药物质组学研究中的新进展

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647924_2507958_3.gif快速高分辨质谱在中药物质组学研究中的新进展主讲人:张克荣 AB SCIEX药物市场技术专员 活动时间:2013年11月7日 下午 14:00http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647924_2507958_3.gif【简介】 本次讲座将介绍在中药物质组学研究面临各种分析技术挑战之时,快速高分辨质谱在中药成分分析流程:一次进样,同时定性、定量;TripleTOF系列质谱仪进行代谢物鉴定工作流程,IDA工作流程;同时获得MS和MS/MS,代谢物鉴定、MS/MS结构阐明以及代谢物相关性分析;代谢组学研究定性/定量工作流程。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2013年11月7日4、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动: *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答*6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、提问时间:现在就可以在此帖提问啦,截至2013年11月6日8、会议进入:2013年11月7日13:30点就可以进入会议室9、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》

  • 【精彩来袭】7.22 聚焦质谱在多组学研究的技术应用进展

    【精彩来袭】7.22 聚焦质谱在多组学研究的技术应用进展

    [size=16px][/size][size=16px]仪器信息网将于 [/size][size=18px][i][b]7月22日[/b][/i][/size][size=16px][i] [/i]举办 [/size][font=&][size=18px][i][b]第一届女性质谱学者国际研讨会[/b]([url=https://www.instrument.com.cn/webinar/meetings/fems2021/]会议页面戳这里[/url])。[/i][/size][/font][font=&][size=18px][i][/i][/size][/font][align=center]=======================================================================[/align] [align=center][i][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2021/07/202107141042105831_9881_2507958_3.jpg!w690x151.jpg[/img][/i][/align][font=&][size=18px][b] 会议介绍[/b][/size][/font] 科学究其本质就是一种磨练,得益于那些好奇心无限、智慧超然并愿意为世界和个体生活带来真正改变的人们。正因如此,科学界一直不乏杰出的女性智者和先驱,她们为其所在领域带来了翻天覆地的改变。在质谱学领域,越来越多的女院士、女教授、女专家,还有资深女工程师……正在通过自己的思考与行动影响着该行业的发展。 当前,质谱技术在生物、医药、材料、食品、环境、公共安全等众多领域发挥着不可替代的作用。女性学者在质谱领域的占比也越来越高,并在其各自的岗位发挥着重要作用。受社会角色影响,女性学者面临工作和生活中更多的困难和挑战。 基于此,仪器信息网在Females in Mass Spectrometry(FeMS)组织的大力支持下,于2021年7月22日举办“第一届女性质谱学者国际研讨会”,旨在为质谱领域的女性学者从学业生活到个人心路历程等方面搭建沟通、交流的平台,激励质谱领域女性学者的工作热情、帮助领域内女性学者的事业发展。[b]会议日程[/b][table=92%][tr][td=1,1,189]分会场Sessions[/td][td=1,1,87]时间 Time[/td][td=1,1,203]报告题目Topic[/td][td=1,1,250]演讲嘉宾The Speakers[/td][/tr][tr][td=1,13][b]Multi-omics Enlightens Chemistry and Life Sciences (质谱在多组学研究的技术应用进展)(07月22日)[/b][/td][td=1,1,87]09:00[/td][td=1,1,203]Multidimensional Characteristics for Highly Confident Measurements and Scientists基于多维特征分析实现高可信度高可信度质谱检测[/td][td=1,1,250]Erin S. Baker( North Carolina State University[北卡罗莱纳州立大学])[/td][/tr][tr][td=1,1,87]09:30[/td][td=1,1,203]Single cell proteomics in neurons 单神经元蛋白组学[/td][td=1,1,250]John R. Yates III(Scripps Research[斯克利普斯研究所])[/td][/tr][tr][td=1,1,87]10:00[/td][td=1,1,203]On-tissue Spatially Resolved Multiomics Analyses Enabled by MALDI MS Imaging Coupled with In-situ Chemical Reactions MALDI质谱成像辅助原位化学反应实现空间分辨的组织原位多组学分析[/td][td=1,1,250]Lingjun Li[李灵军](School of Pharmacy University of Wisconsin[威斯康星大学麦迪逊分校])[/td][/tr][tr][td=1,1,87]10:30[/td][td=1,1,203]Top-down Proteomics and Metabolomics for Precision Medicine 精准医学中的Topdown蛋白组学和代谢组学研究[/td][td=1,1,250]Ying Ge[葛瑛](University of Wisconsin-Madison[威斯康星大学])[/td][/tr][tr][td=1,1,87]11:00[/td][td=1,1,203]Community-building: Plasma Lipidomics and Beyond 搭建研究群体:血浆脂质组学[/td][td=1,1,250]Anne K Bendt( National University of Singapore [新加坡国立大学])[/td][/tr][tr][td=1,1,87]11:30[/td][td=1,1,203]Lunch Break[/td][td=1,1,250]午休[/td][/tr][tr][td=1,1,87]14:00[/td][td=1,1,203]In-depth urine and serum proteome maps immune responses associated with the COVID-19 disease 深度尿液和血清蛋白质组与新冠的免疫谱图[/td][td=1,1,250]Catherine Wong [黄超兰](Peking University [北京大学医学部精准医疗多组学研究中心])[/td][/tr][tr][td=1,1,87]14:30[/td][td=1,1,203]Chemical proteomics reveal functional targets for glycolytic metabolites 化学蛋白质组学解密糖酵解代谢物的功能靶标[/td][td=1,1,250]Hui Ye[叶慧](China Pharmaceutical University[中国药科大学])[/td][/tr][tr][td=1,1,87]14:50[/td][td=1,1,203]MS-based approaches for analysis of glycosylation and their application 蛋白质糖基化质谱分析新方法及应用[/td][td=1,1,250]Ying Zhang [张莹](Fudan University [复旦大学])[/td][/tr][tr][td=1,1,87]15:30[/td][td=1,1,203]Fragment Ion-based Quantitation Methods enable accurate, precisive and dynamic proteome analysis 基于碎片离子的高精准蛋白质组动态分析新方法[/td][td=1,1,250]Jianhui Liu[刘健慧](CAS[中科院大连化学物理研究所])[/td][/tr][tr][td=1,1,87]15:45[/td][td=1,1,203]Redox Chemoproteomics氧化还原蛋白质组学[/td][td=1,1,250]Ling Fu[付玲](National Proteome Center[国家蛋白质科学中心])[/td][/tr][tr][td=1,1,87]16:00[/td][td=1,1,203]Deep-Profiling of Aminophospholipids from Biological Samples via Two Orthogonal Derivatizations 基于正交衍生的氨基磷脂组深度分析策略[/td][td=1,1,250]Qiaohong Lin[林巧红](Tsinghua University[清华大学])[/td][/tr][tr][td=1,1,87]16:15[/td][td=1,1,203]Microparticle assisted protein precipitation strategy for drug target screening基于微球辅助的蛋白质沉淀策略的药物靶点筛选研究[/td][td=1,1,250]Jiawen Lyu[吕佳纹](CAS[中科院大连化学物理研究所])[/td][/tr][/table][size=18px]欢迎大家参会,[url=https://www.instrument.com.cn/webinar/meetings/fems2021/]报名请戳这里[/url][/size]

  • 【精品讲座】赛默飞2017ASMS最新质谱及解决方案进展(2017-08-17 14:00 )

    [b]【网络讲座】:赛默飞2017ASMS最新质谱及解决方案进展 [/b]【讲座时间】:2017-08-17 14:00【主讲人】:聂爱英,博士,毕业于复旦大学,现任职于赛默飞世尔科技(中国)有限公司,致力于生物制药、蛋白质组学、精准医疗等科学领域的方法开发,技术支持和科学研究工作,拥有7年以上的色谱和质谱方法开发和优化经验,发表了多篇生物制药和蛋白质组学相关的应用报告,并且和国内多家知名高校实验室和公司开展技术合作。【会议简介】[color=#333333]美国质谱年会ASMS作为全球规模最大的质谱盛会,今年在美国印第安纳州如期举行,Thermo秉承以往的创新传统,作为质谱界大咖,再次推出了多款神器,[/color][list=1][*]超高分辨质谱Orbitrap新产品或更新:最高分辨率在三合一系列仪器上实现了1,000,000,并且增加了最新的UVPD碎裂技术和APD峰检测技术;另外在最新的QE-HF-X仪器上实现了Orbitrap前所未有的扫描速度40 Hz,同时采用全新离子透镜技术实现了灵敏度高达10倍的飞跃;高分辨[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]Exactive [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]采用了全新VeV技术,使灵敏度提升2.5倍。 [*]三重四级杆新产品:TSQ Quantis &TSQ Altis,采用顶尖的分段式四极杆技术、全新OptaMax离子源、全新双模式检测器,实现了耐用性、灵敏度的新突破,扫描速度更是达到业界最高600 SRM/秒。 [*]软件更新:Proteome Discoverer增加了非标定量、Cross-linking、更多统计学功能;Compound Discoverer增加了数据智能归一化处理、丰富了统计学算法。 [/list]本次报告将主要针对以上提及的新产品和软件更新,在蛋白质组学和生物制药以及精准医疗方面的应用进行详细的介绍,为大家提供更新和更全面的整体解决方案。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2311[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“质谱”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 国产小质谱 我们上路了[最新进展:12.15更新]

    国产小质谱 我们上路了[最新进展:12.15更新]

    国产小质谱 我们上路了【版主见谅,要是发在此版不适合还请将贴移到合适的版块】质谱这东西,用处自不必多说,尤其目前人类健康、环境安全以及能源的合理利用等突出问题,质谱仪更是受到格外青睐。其实我国有机质谱仪器的研制在60年代已经开始,多少人呕心沥血的研究,许多仪器厂都曾推出自己设计生产的各类四极杆质谱仪。然而国产仪器在性能、价格等方面均不敌外国产品,逐渐失去市场,大家对国产质谱顾虑颇多(有点像中国足球)。但我想说的是,在分析仪器领域,中国人从没有停下脚步,一直还在努力。我们承认在高端分析仪器领域我们和国外的技术存在不小的差距,但在小型便携质谱和工业在线应用上,我们还有机会。我们一直努力创新和突破,而不仅仅是模仿,所以在原有四极杆台式质谱的基础上,设计定型了分析级工业用四极杆质谱计样机。这是整机照片,测试平台用的还是Pfeiffer泵,国产的没到。http://ng1.17img.cn/bbsfiles/images/2011/09/201109300923_320333_2376899_3.jpg有这样几个特点:1、使用自己研制的四极杆,上机验证不低于400amu,可批量生产。2、小型化车载便携设计,整机使用24V供电,可以使用电池。3、整机电源、倍增器高压电源、射频电源、数控板、软件均自己研发。4、离子源等机械部件也是自己加工制造,在线应用时,全部机械部分可以烘烤去气。5、如果使用国产泵和法拉第筒,即可以做到完全国产化。6、如果完全使用国产化部件,品质不打折,价格更诱人,可以拼刺刀了。 这是研发未完全定型时的照片。http://ng1.17img.cn/bbsfiles/images/2011/09/201109300923_320334_2376899_3.jpg简单说说仪器指标吧,由于没接GC,灵敏度就没列,以后补:1、质量范围1.5-400amu,这个范围根据要求可变,无非是改线圈、换精度高的四极杆。2、质量准确性: ±0.2amu3、质量稳定性: ±0.2amu /48h4、扫描速率:2000amu/S5、扫描范围内单位分辨上图了,有图有真相,下面两张是FC-43的谱图,分辨还不是最好,好戏在后头。http://ng1.17img.cn/bbsfiles/images/2011/09/201109300923_320335_2376899_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109300923_320336_2376899_3.jpg一些电路参数:1、发射电流最大:800uA2、能量: -30~-150V3、采样率:20K4、射频电源频率:900K左右 研制小质谱,我们还有许多工作需要做,如软件的完善、质谱应用的开展等。我们特别希望能和其他仪器厂商一道,做专用化的应用开发,为中国的用户量身定制可靠的分析仪器。天宫一号顺利升空,狂喜。明天就是国庆,祝福一下我们的祖国。喜欢《亮剑》中李运龙那句“无论对手有多么强大,就算对方是天下第一剑客,明知不敌,也要亮出自己的宝剑,即使倒在对手的剑下,也虽败尤荣!”。中国的仪器厂商不会败也不会倒,普析、东西走在前面,更多的厂商像聚光、天瑞站了出来,有了自己的GC-MS,即使没有占据市场,至少也把国外同类仪器的价格拉下来了,那也是贡献。在车载、便携与在线应用上,中国的厂商同样也需要和Inficon、Pfeiffer等国外公司亮亮剑,国产小质谱,我们上路了。

  • 【分享】蛋白质质谱分析研究进展

    蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 3.1蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 3.2蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。

  • 质谱学会年会,西安8.6 日程公布了

    主办:中国质谱学会(CMSS);承办:西北核技术研究所(NINT)时间:2011.08。05-2011.08.10地点:西安2011年第31届中国质谱学会年会第三轮通知论坛活动:2011年第31届中国质谱学会年会,有参加的木有?——参加的报名啦~(8月6日-10日 西安)2011年第31届中国质谱学会年会,将于2011年8月6日至8月10日在西安未央湖大酒店召开,会期五天。本届年会的主题是:前沿质谱新方法、新技术及其应用的最新进展。本次年会将邀请知名质谱专家,做高水平的学术报告;并组织多领域的质谱同行进行学术讨论,分专业组作专题报告,交流近年来质谱及其相关领域的最新研究成果及应用经验;此外,赛默飞世尔科技等国际主要质谱公司还将介绍最新质谱技术及其应用进展。

  • 【资料】蛋白质组学中质谱分析前的预富集研究进展

    自80年代以来一系列新的软电离技术如快原子轰击电离 、基质辅助激光解吸电离 、电喷雾电离等发现后,生物质谱技术迅速发展,已成为现代科学研究前沿的热点之一。而其中又以基质辅助激光解吸质谱(MALD I2MS)和电喷雾电离质谱(ESI2MS)应用最为广泛。基质辅助激光解吸质谱灵敏度高、可操作性强且对生物样品中的无机盐和缓冲溶液具有较好包容性;电喷雾电离质谱选择性好、分析质量范围宽、样品消耗量小、易于与各种色谱联用。在生物样品的处理中常常需要用到非挥发性的盐,用于为细胞营造无毒的环境,稳定溶剂化的样品及维持酶的活性等。此外,许多用于分离生物分子的分离方法也需要高浓度的盐和缓冲溶液 。但是,样品处理及分离过程中所用的NaCl、十二烷基磺酸钠、盐酸胍、尿素、甘油、二甲基亚砜等都会影响后续质谱高灵敏的分析 。因为这些不挥发的低分子量污染物会导致复杂加合物的形成,增加噪音及造成明显的信号抑制 。此外,在复杂的组织或细胞蛋白质组中,与疾病和信号传导相关的蛋白质往往是属于低丰度的蛋白质,这些重要的蛋白质由于本身存在的量极少而很难得以有效鉴定 。因此,对蛋白质/多肽样品的预富集处理将是MALD I2MS或ESI2MS得到高质量质谱图的前提,也是成功鉴定蛋白质的关键。该文献主要侧重于相关工作的概述。

  • 【资料】-色谱联用技术在环境和生物样品中痕量超痕量元素形态分析研究进展

    摘 要:随着分析科学的不断发展,常用的元素分析方法,如光谱技术AES ,AFS) 和质谱等已不能满足环境和生物样品中痕量、超痕量元素的赋存形态分析。以色谱联用技术为代表的元素形态分析测试技术(如:液相色谱- 原子光谱联用、色谱- 电感耦合等离子质谱联用、毛细管电泳- 电喷雾离子化质谱联用技术等) 已成为国内外研究的热点。本文扼要的介绍了近年来国内外在环境和生物样品中痕量、超痕量元素砷、硒、汞形态分析的色谱联用技术研究进展,并侧重于样品前处理方法、痕量或超痕量元素的形态分析技术。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31681]色谱联用技术在环境和生物样品中痕量超痕量元素形态分析研究进展[/url]

  • 【资料】质谱法 液相色谱柱知识

    质谱法 液相色谱柱知识+质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。目录 1 发展史 2 软电离技术 3 样品导入 4 离子源 5 质量分析器 6 检测器 7 电离技术进展 8 新型离子检测技术 9 展望 10 参考文献

  • 高分辨率质谱技术在高质荷比离子分析方面的进展

    现代质谱(MS)面临的一个主要挑战是如何在高质荷比(m/z)区域实现高质量分辨率和高精度的分析。为了提高MS的实际应用能力,了解最新技术的局限性及其在应用科学中的地位至关重要。本综述总结了高分辨质谱(HRMS)中的重要仪器和相关的研究进展,这些仪器的前沿研究将其工作范围扩展到高m/z区域。[font=&][size=14px][color=#222222]高分辨质谱[/color][/size][/font] [font=&][size=14px][color=#222222](HRMS)[/color][/size][/font] [font=&][size=14px][color=#222222]在现代分析科学中具有不可或缺的作用,因为它具有精确识别未知化合物和定量样品中待测化合物的优越性能。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]质量分辨率[/color][/size][/font] [font=&][size=14px][color=#222222](MRP)[/color][/size][/font] [font=&][size=14px][color=#222222]、质量准确度、灵敏度和适用的质量范围是决定质谱仪性能最重要的属性。[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]是量化离子峰锐度的因子,人们将其定义为观察到的质量[/color][/size][/font] [font=&][size=14px][color=#222222](m)[/color][/size][/font] [font=&][size=14px][color=#222222]与最大峰高的特定分数之比,在谱图中通常用质谱离子峰的半峰宽[/color][/size][/font] [font=&][size=14px][color=#222222](FWHM)[/color][/size][/font] [font=&][size=14px][color=#222222]高度或[/color][/size][/font] [font=&][size=14px][color=#222222]δm[/color][/size][/font] [font=&][size=14px][color=#222222]表示。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]具有较高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪可以潜在地分辨更多的特征,因为它可以产生具有较高峰值容量的质谱图。[/color][/size][/font] [font=&][size=14px][color=#222222]另一方面,质量精度是指测定的[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]与其精确理论值的差值;[/color][/size][/font] [font=&][size=14px][color=#222222]质量精度可以代表测量结果的正确性。[/color][/size][/font] [font=&][size=14px][color=#222222]高质量精度可通过几个基本要求获得,例如仪器需要具有足够的电子分辨率、高[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]、稳定的离子源和稳定的电气系统等。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]MS[/color][/size][/font] [font=&][size=14px][color=#222222]的灵敏度是高质量应用中的另一个关键问题。[/color][/size][/font] [font=&][size=14px][color=#222222]它依赖于合适的样品制备和电离方法,例如电喷雾电离[/color][/size][/font] [font=&][size=14px][color=#222222](ESI)[/color][/size][/font] [font=&][size=14px][color=#222222]可以从水溶性样品中产生多电荷分子,基质辅助激光解吸电离[/color][/size][/font] [font=&][size=14px][color=#222222](MALDI)[/color][/size][/font] [font=&][size=14px][color=#222222]主要从固体样品中产生单电荷分子。[/color][/size][/font] [font=&][size=14px][color=#222222]旨在提高电离效率的研究十分常见,在这里我们鼓励读者查阅相关文献和综述文章。[/color][/size][/font][font=&][size=14px][color=#222222]高分辨率仪器通常被认为是具有提供[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]以上[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的仪器。[/color][/size][/font] [font=&][size=14px][color=#222222]通过使用具有这种[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的质谱仪,人们可以在低[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222] 1[/color][/size][/font] [font=&][size=14px][color=#222222],如图[/color][/size][/font] [font=&][size=14px][color=#222222]1[/color][/size][/font] [font=&][size=14px][color=#222222]所示。[/color][/size][/font] [font=&][size=14px][color=#222222]在高[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内,这种分辨能力可以区分初级离子[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即电离离子,如质子、钠离子等[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、同位素、修饰[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即翻译后修饰[/color][/size][/font] [font=&][size=14px][color=#222222][PTMs][/color][/size][/font] [font=&][size=14px][color=#222222]或标记[/color][/size][/font] [font=&][size=14px][color=#222222])[/color][/size][/font] [font=&][size=14px][color=#222222]、微小的结构变异或与小分子相关的复合物。[/color][/size][/font] [font=&][size=14px][color=#222222]然而,为了实现独特的元素成分分配,所需的[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]要高得多[/color][/size][/font] [font=&][size=14px][color=#222222]([/color][/size][/font] [font=&][size=14px][color=#222222]即[/color][/size][/font] [font=&][size=14px][color=#222222]1/δm 100)[/color][/size][/font] [font=&][size=14px][color=#222222]。[/color][/size][/font] [font=&][size=14px][color=#222222]我们将在下文重点介绍[/color][/size][/font] [font=&][size=14px][color=#222222]HRMS[/color][/size][/font] [font=&][size=14px][color=#222222]在[/color][/size][/font] [font=&][size=14px][color=#222222]m/z[/color][/size][/font] [font=&][size=14px][color=#222222]范围内实现[/color][/size][/font] [font=&][size=14px][color=#222222]10000[/color][/size][/font] [font=&][size=14px][color=#222222]左右[/color][/size][/font] [font=&][size=14px][color=#222222]MRP[/color][/size][/font] [font=&][size=14px][color=#222222]的关键技术。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352869.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图1 质量分辨率和相应分析能力的相关性[/size][/font][size=14px][color=#000000]高分辨技术[/color][/size][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]傅立叶变换(FT)和飞行时间(TOF)质谱是满足高m/z范围(MRP 10000和m/z 10000)中高MRP标准的两个主要质谱仪类别。[/color][/size][/font] [font=&][size=14px][color=#222222]离子回旋共振(ICR)和轨道阱(Orbitrap)质量分析器是FTMS系列的主要成员,而TOFMS系列由几个变体组成,包括线性分析仪、反射分析仪和多反射/多转分析仪。[/color][/size][/font] [font=&][size=14px][color=#222222]大多数FT和许多TOF质谱仪都是混合仪器,前面有四极杆质量过滤器(即Q-TOFMS),便于串联MS分析。[/color][/size][/font] [font=&][size=14px][color=#222222]本文不讨论磁质谱,因为它们主要用于低质量数化合物的检测,尽管它们也提供较高的MRP。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]大多数质谱仪的MRP随着m/z的增加而下降。[/color][/size][/font] [font=&][size=14px][color=#222222]例如,傅里叶变换离子回旋共振质谱(FT-ICRMS)的MRP随着m/z的增加而线性降低,而Orbitrap-MS的MRP与m/z平方根的倒数成比例。[/color][/size][/font] [font=&][size=14px][color=#222222]因此,尽管Orbitrap在m/z= 200时提供了140000的MRP,但在m/z在10000的范围内时,MRP会降低到16000。[/color][/size][/font] [font=&][size=14px][color=#222222]TOFMS与上述质谱仪呈现的规律不同,其MRP独立于m/z或在特定条件下随着m/z的增加而逐渐增加。[/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222][/color][/size][/font][font=&][size=14px][color=#222222]图2显示了基于MRP的商业化质谱仪的经验规律。[/color][/size][/font] [font=&][size=14px][color=#222222]在过去的十年中,这些技术的最大MRP已经有了相当大的进步,研究人员将这些仪器的MRP推向了另一个高度。[/color][/size][/font] [font=&][size=14px][color=#222222]表1总结了重要的商业化HRMS或其改进版本的分析特性,这些特性决定了仪器在高m/z范围内的适用性。[/color][/size][/font] [font=&][size=14px][color=#222222]我们还列出了制造商报告的低质量范围(m/z 10000的低分辨率数据。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近的一项研究表明,在基于Orbitrap的单粒子电荷检测(CD)技术中,人们通过在低离子计数条件下确定了大量单个离子的电荷和接近理论预测的高MRP,而这一方法以更长的采集时间作为代价。[/size][/font] [font=&][size=14px]关于大分子检测中其它电荷检测质谱法(CDMS)细节的文章可以在别处找到,这里不做赘述。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352873.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图4 在Orbitrap质谱仪上实施源内离子捕获以提高高质量结构分析能力的示意图[/size][/font][font=&][size=14px]A,仪器的修改用红色标明;B,传输平台的示意图;C,正常/源内离子捕获模式中的相对电位。该仪器实现了更有效的去溶剂化和碰撞冷却,从而提高了MRP和质量传输效率。[/size][/font][font=&][size=14px]FTMS需要复杂的长时间镜像电流瞬态测量(通常从几秒到几分钟)来获得大蛋白质的同位素分辨率,这对高通量分析是不利的。[/size][/font] [font=&][size=14px]然而,高分辨率并不总是必要的,也就是说,电荷状态的分化需要比识别细微PTM分化(例如磷酸化)相对更低的MRP。[/size][/font] [font=&][size=14px]此外,仪器需要保持超高的真空度,以确保振荡离子有足够的平均自由程;[/size][/font] [font=&][size=14px]或者,TOFMS是另一种通用的选择。[/size][/font] [font=&][size=14px]关于高扫描速度和自由空间电荷效应,我们将在下一节讨论。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]3、飞行时间质谱[/color][/size][/font][font=&][size=14px]飞行时间质谱仪根据离子飞越无磁场区域的时间来分析离子,由此可以推断出它们的m/z。[/size][/font] [font=&][size=14px]在为离子提供势能(qU,其中U是离子源的电势)的电场下,离子源区域会产生离子。[/size][/font] [font=&][size=14px]在离子产生之后,离子被抽出并加速到封闭在飞行管内的无场区域。[/size][/font] [font=&][size=14px]加速过程将离子的势能转化为进入无场区域前的动能()。[/size][/font] [font=&][size=14px]在无场区域内,不同m/z的离子表现出不同的速度。[/size][/font] [font=&][size=14px]飞行时间(t)和离子质量(m)之间的简化关系为:[/size][/font][font=&][size=14px]其中L为无场区域的长度。[/size][/font] [font=&][size=14px]在TOFMS中,MRP可以转换为时间t/(2Δt)。[/size][/font] [font=&][size=14px]由于t随L呈线性变化,因此目前的共识是原则上飞行管长度越长,MRP越高。[/size][/font] [font=&][size=14px]根据定义,降低Δt可以实现更高的MRP。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]为了在飞行时间质谱中获得较高的MRP,电离时离子的能量和空间扩散需要最小化。[/size][/font] [font=&][size=14px]值得注意的是,能量扩散随着离子m/z的增加而增加。[/size][/font] [font=&][size=14px]提高飞行时间质谱仪MRP的两个最重要的技术是离子延迟引出和反射器技术。[/size][/font] [font=&][size=14px]离子延迟引出在Wiley和McLaren (1955)介绍的两级离子源中完成。[/size][/font] [font=&][size=14px]这种离子源的第一阶段是电离发生。[/size][/font] [font=&][size=14px]电离后,离子被引出,并被一个温和的电场推向第二阶段。[/size][/font] [font=&][size=14px]第二阶段用强电场将离子加速到它们朝向无场区域飞行的最终速度。[/size][/font] [font=&][size=14px]当进入无场区域时,不同m/z的离子通过它们到达检测器表面的时间而被分离。[/size][/font] [font=&][size=14px]延迟引出是在电离后的第一级施加较短的延迟电压,延迟范围在几十纳秒到低微秒之间的一种方法。[/size][/font] [font=&][size=14px]它有效地最小化了离子的初始能量扩散对到达时间的影响。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]另一方面,反射器使用飞行管中的环形电极堆来产生电场,以反射离子的轨迹。[/size][/font] [font=&][size=14px]反射器可以进一步补偿离子在反射过程中的能量差异,因为初始能量较高的离子会在反射器中传输更深,而初始能量较低的离子会传输更浅,如图5所示。[/size][/font] [font=&][size=14px]通过适当选择反射器后的飞行距离,具有相同m/z但不同初始能量的离子将同时到达探测器,实现飞行时间聚焦效果。[/size][/font] [font=&][size=14px]使用反射器的另一个优点是飞行距离的增加,这可以增加t和MRP。[/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/352874.png?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]图5 飞行时间质谱仪中反射器的示意图[/size][/font][font=&][size=14px]具有较高动能的离子在反射器中穿透得更深,促进了检测器的聚焦效果。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]自20世纪60年代以来,TOFMS一直是最受欢迎的技术之一。[/size][/font] [font=&][size=14px]在线性飞行时间质谱仪中,基本上不存在质量上限,因为离子经过电势加速后会沿着直线向检测器传输。[/size][/font] [font=&][size=14px]由于离子运动不受射频电场的控制,轨迹与m/z无关,常规线性模式飞行时间质量分析仪可以检测MDa水平的离子(即使用专用的基质分子,电荷检测器,或专门的低温离子探测器,如下所述),尽管其灵敏度和MRP都没有完全优化。[/size][/font] [font=&][size=14px]为了获得高分辨率光谱图,典型的TOF质谱仪是在反射模式下运行的,在低质量范围内提供大约10000–60000的MRP。[/size][/font] [font=&][size=14px]尽管其MRP在大多数质量范围内低于FTMS,但TOFMS的扫描速度比FTMS快2-3个数量级,可完美匹配联用分析系统。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS中有几个变化进一步增强了MRP。[/size][/font] [font=&][size=14px]最有吸引力的解决方案是安装静电扇区或多个反射器,以增加飞行距离。[/size][/font] [font=&][size=14px]一个例子是多圈或螺旋飞行时间质谱仪,它可以很容易地将飞行距离延长到几十米以上。[/size][/font] [font=&][size=14px]对于m/z约为10000的离子,这种仪器的最大MRP超过20000。[/size][/font] [font=&][size=14px]虽然飞行时间质谱基本上没有质量上限,但最大可观测m/z仍然受到一些关键因素的限制,包括样品制备、电离、离子轨迹、检测器特性等。[/size][/font] [font=&][size=14px]这种仪器方面的限制主要是指用于检测大分子的离子检测器的灵敏度。[/size][/font] [font=&][size=14px]例如,传统微通道板(MCP)检测器的灵敏度随着离子速度的降低而降低。[/size][/font] [font=&][size=14px]由于较高的m/z离子表现出较低的速度,这种检测器对于大分子分析是低效的。[/size][/font] [font=&][size=14px]为了克服这一问题,其中一个有效的解决方案是用更灵敏的替代物取代MCP检测器,例如通过能量感应撞击离子的能量敏感型低温检测器。[/size][/font] [font=&][size=14px]低温检测器可以将飞行时间质谱的质量上限提高到大约2 MDa。[/size][/font] [font=&][size=14px]低温探测器的缺点是响应时间长,通常在微秒范围内,这会导致较高的δt产生。[/size][/font] [font=&][size=14px]响应时间比传统的MCPs长两个数量级以上,无法产生高分辨率的质谱图。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个不可避免的问题是检测器偏向于检测低质量的离子,该问题主要是由于低质量离子导致的检测器饱和所致。[/size][/font] [font=&][size=14px]这种偏差源于MCP检测器在离子撞击表面后恢复其离子记录能力所需的时间。[/size][/font] [font=&][size=14px]在恢复时间窗口内,同一检测器区域的离子传输受到阻碍。[/size][/font] [font=&][size=14px]由于质谱通常存在低m/z的杂质离子,这些杂质离子可能是与基质相关的分子或较大离子的碎片,因此对高m/z离子的灵敏度要低得多。[/size][/font] [font=&][size=14px]人们可以通过改变检测器电压来调整增益效果,从而降低偏好程度;[/size][/font] [font=&][size=14px]也可以通过离子或检测器门控来使该问题最小化,以保持检测器在高m/z范围内的灵敏度。[/size][/font] [font=&][size=14px]有一种动态仪器优化方法被证明可以将灵敏度提高2-3倍。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]TOFMS的另一个限制是,质谱仪存在离子损失现象,反射器不适合分析高m/z离子。[/size][/font] [font=&][size=14px]这种损失可能是由于离子在进入反射器之前在飞行管中的亚稳态衰减,因此它们在不同的时间到达检测器。[/size][/font] [font=&][size=14px]反射器的另一个可能的问题是较高的m/z离子具有较宽的发散角,使得离子轨迹在反射后偏离检测器轴。[/size][/font] [font=&][size=14px]为了进行高m/z离子的检测,人们通常通过商用化的TOF仪以线性模式进行实验,但这不可避免地会降低光谱的MRP。[/size][/font] [font=&][size=14px]人们发展了一种综合的计算方法来预测线性飞行时间质谱仪的最终构型,这表明离子源区域的尺寸以及引出电压和延迟的组合在MRP的改进中起着关键作用。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][font=&][size=14px][color=#021eaa]4、正交和四极杆飞行时间质谱[/color][/size][/font][font=&][size=14px]串联质谱(MS[/size][/font] [font=&]n[/font] [font=&][size=14px])是一种技术,该技术在概念上集成了两个或多个质量分析器,可以提高质谱破译复杂化合物信息的能力。[/size][/font] [font=&][size=14px]最初开发于20世纪80年代初的四极杆-飞行时间(Q-TOF) MS已成为高分辨率和高质量应用中最常见的混合仪器之一。[/size][/font] [font=&][size=14px]四极质量分析器包括四个平行的双曲线或圆柱形杆状电极,并通过调节直流(DC)电压和RF电压的频率和幅度来传输或存储特定m/z的离子。[/size][/font] [font=&][size=14px]四极质量分析器通常设计紧凑,且需要低真空,并且具有很高的离子容量。[/size][/font] [font=&][size=14px]四极杆质量分析仪兼容各种电离技术(如ESI和MALDI)以及离子激活方法(例如电子激活解离和光诱导解离)。[/size][/font] [font=&][size=14px]四极杆质量分析器的主要缺点包括对离子传输、质量检测范围和质量分辨能力(通常为单位质量分辨率)的限制。[/size][/font] [font=&][size=14px]混合Q-TOFMS得到了广泛的认可,因为它保留了双方的优点(分别是选择性和高MRP ),而没有增加缺点。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]离子传输效率的提高使得在Q-TOFMS中检测大分子化合物成为可能。[/size][/font] [font=&][size=14px]根据RF频率和振幅以及杆组件的直径,传统的四极杆质量分析仪可以在高达4000的有限m/z下运行。[/size][/font] [font=&][size=14px]Q-TOFMS通过增加四极杆区内的压力进而促进对大分子径向运动的碰撞冷却,导致了离子传输效率的提高。[/size][/font] [font=&][size=14px]Q-TOFMS通过将四极杆的射频频率降低至300 kHz,实现了更宽的m/z范围至40000(一种蛋白质复合物,m/z为38150的GroEL伴侣蛋白)。[/size][/font] [font=&][size=14px]在这种情况下,不同的真空泵保持着高压,包括紧挨在取样锥后面的一个室(10 mbar)、六极周围的一个金属套筒(局部压力为8×10[/size][/font] [font=&]3[/font] [font=&][size=14px] mbar)和一个碰撞室(1.5×10[/size][/font] [font=&]2 [/font] [font=&][size=14px]mbar)。[/size][/font] [font=&][size=14px]正交TOF区域中的离子传输效率也通过在离子透镜上使用低计数网格和较低重复率的离子反射器(即加速前的传输时间为410 μs)而得到提高。[/size][/font] [font=&][size=14px]可检测的m/z超过85000(碘化铯簇),在m/z约为84000时信噪比(SNR)为5。[/size][/font] [font=&][size=14px]在串联MS模式下,四极杆具有窄带质量过滤器,因此只有窄m/z范围内的(前体)离子被传输到TOF区域,从而提高了检测动态范围和信噪比。[/size][/font] [font=&][size=14px]理论上,四极杆质量分析仪传输的离子比设定值高4-5倍:[/size][/font] [font=&][size=14px]将离子传输的m/z设置为32000应传输m/z为128000-160000的离子。[/size][/font] [font=&][size=14px]随着电离和检测效率的进一步提高,Q-TOFMS可以继续检测超过90000的m/z离子。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]此外,在Q-TOF质谱仪中,离子光学已得到改进,以实现更好的MRP以及质量相关传输。[/size][/font] [font=&][size=14px]低温度系数陶瓷垫片的使用可以减少温度引起的质量漂移,该瓷片可以利用对称屏蔽对所有电极进行更好的离子聚焦;[/size][/font] [font=&][size=14px]与之前的模型相比,MRP提高了约35%。[/size][/font] [font=&][size=14px]离子从四极杆通过正交TOF转移至检测器,这进一步改变了离子光学设计理念。[/size][/font] [font=&][size=14px]更详细地说, “步进式转移时间”可以调整不同m/z的离子从碰撞单元行进到正交加速单元的时间。[/size][/font] [font=&][size=14px]使用较大的入口孔径和较高的加速场,探测效率提高了30%。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]最近,离子淌度谱(IMS)是一种集成到飞行时间质谱中的一种技术。[/size][/font] [font=&][size=14px]IMS的加入为大分子分析提供了另一个分离维度,在电场的影响以及缓冲气体的存在下,具有不同迁移率或平均碰撞横截面的离子根据不同的淌度信息被分离开。[/size][/font] [font=&][size=14px]与四极杆质量分析仪类似,离子淌度池具有减少能量分布、降低化学噪音、提高检测动态范围和传导MS[/size][/font] [font=&]n[/font] [font=&][size=14px]的优势。[/size][/font] [font=&][size=14px]IMS的各种设计,例如行波离子迁移谱(TWIMS)、捕集离子迁移谱(TIMS)和环形离子淌度(cIM),都被证明可以增强淌度分离和离子传输。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]首个市售的IMS-Q-TOFMS于2006年推出(Waters,Synapt high definition MS[HDMS])。含有TW堆叠环形离子导向器的离子淌度池取代了六极杆,有效地将离子从离子源区域桥接至四极杆质量分析器,并消除了不需要的中性物质。在该系统中,位于四极杆和正交TOF之间的“TRIWAVE”系统(捕集、IM和转移池)不仅能实现淌度分离,还能激活离子,因此有利于定量结构分析。TIMS的工作原理是通过使用电场推动离子与逆流的中性漂移气体分子不断碰撞,从而分离离子。TIMS质谱于2016年才商业化,并因其对天然大分子组装体的结构解析能力而广受欢迎。现代的IMS-Q-TOFMS可以在m/z 10000以上提供平均50000的MRP[/size][/font] [font=&][size=14px]。[/size][/font][font=&][size=14px][color=#021eaa][/color][/size][/font][size=14px][color=#000000]5、数据处理技术[/color][/size][font=&][size=14px]由于数据复杂性和分析要求的增加,数据处理是HRMS的另一个重要部分。[/size][/font] [font=&][size=14px]与仪器的重大发展相反,数据处理可能是提高数据质量的一种有效而方便的手段。[/size][/font] [font=&][size=14px]在傅立叶变换质谱(FTMS)中,数据处理尤为重要,因为在傅里叶变换之前对原始数据进行校正、滤波和变迹是获得谱图的常见做法。[/size][/font] [font=&][size=14px]例如,人们发现相位校正可以显著提高FT-ICRMS的光谱质量,包括SNR、MRP和质量准确度。[/size][/font] [font=&][size=14px]在其他质谱数据中,离线或采集后处理提高了分子鉴定的谱图质量。[/size][/font] [font=&][size=14px]例如,人们可以通过波变换、翘曲函数以及其他方法提高峰值检测和降噪的效率。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]研究表明,充分的校准可以将质量准确度提高一个数量级以上。[/size][/font] [font=&][size=14px]另一方面,采集后数据校准可以通过比较多个光谱以自校准方式进行。[/size][/font] [font=&][size=14px]复杂光谱中蛋白质的鉴定也可以通过使用多峰拟合和模拟技术提高蛋白含量来实现。[/size][/font] [font=&][size=14px]相比之下,人们通过使用简单的峰对齐算法(而不是使用复杂的校准函数),就可以实现在线的自校准[/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制