当前位置: 仪器信息网 > 行业主题 > >

质子治疗

仪器信息网质子治疗专题为您整合质子治疗相关的最新文章,在质子治疗专题,您不仅可以免费浏览质子治疗的资讯, 同时您还可以浏览质子治疗的相关资料、解决方案,参与社区质子治疗话题讨论。

质子治疗相关的资讯

  • 质子放疗设备研讨会召开助力国产质子治疗装备行业发展
    p   为全面了解我国质子放疗设备研发情况及产业发展趋势,为国家重点研发计划“数字诊疗装备研发”重点专项的组织实施提供建议,生物中心于2018年5月9日在北京组织召开国产质子放疗设备研讨会议。生物中心董志峰四级职员、“数字诊疗装备研发”专项专家组部分专家、项目有关单位代表、生物中心化学药与医疗器械处相关人员参加了会议。会议由化学药与医疗器械处负责人主持。 /p p   会上,董志峰首先介绍了本次会议召开的背景和目的,专项专家组组长王卫东研究员介绍了“数字诊疗装备研发”重点专项质子放疗方面的部署情况。随后,与会专家围绕质子和重离子的优劣,回旋和同步两种加速器治疗系统的技术差异、共性问题、发展趋势等方面展开了讨论。会议形成了以下几个方面的共识: /p p   一是基于回旋加速器和同步加速器的质子治疗装置,无论是流强、性能、防护以及治疗效果方面,均各有优势及不足,对两项技术进行布局都具有合理性,应同步关注。二是小型化、紧凑型、经济型是质子治疗装备的发展方向之一。三是对重离子治疗的技术和产业化应积极进行布局。 /p
  • 肿瘤质子治疗四大问题和最新进展
    p   提到“质子治疗”,大多数人可能首先会联想到化学原子核中的质子,恰恰是这种微小的粒子,将其应用于癌症治疗上,能取得意想不到的效果,且已经成为目前最先进的癌症治疗技术。 /p p   近日,《自然》就刊发了一篇综述,归纳了质子治疗肿瘤的现状和最新进展,为了能让更多癌症患者获得质子精准治疗,专家们提出了三种建议方案:缩小加速器基建规模、更加精准质子、拓展医保覆盖范围,最终把质子治疗肿瘤作为抗癌首选方案之一,让更多患者获益。 /p p   质子治疗最早于1946年首次被提出,1954年,美国劳伦斯伯克利国家实验室的研究团队进行了世界首例肿瘤患者的质子治疗。此后,美国、欧洲、日本等相继开始了质子在医学领域的研究,但直到1988年,质子治疗才获得了美国FDA的批准,质子治疗从此开始在肿瘤治疗领域大放异彩。 /p p   目前,全美有20多家癌症质子束治疗中心,包括MD安德森肿瘤中心、梅奥医学中心、麻省总医院肿瘤中心、宾夕法尼亚大学附属的癌症质子束治疗中心和佛罗里达州医疗联合机构附属质子束治疗中心等。 /p p   2015年5月8日,我国首家质子重离子医院——位于上海国际医学园区的上海市质子重离子医院正式运营,截至到目前,收治患者已突破1000例。 /p p    strong 质子治疗的原理 /strong /p p   所谓质子治疗,就是将失掉电子的氢原子原子核,利用回旋加速器或者同步加速器加速到光速约70%,以这种极快的速度穿透到人体内部,到达癌细胞所在的特定部位,速度突然降低并停止,释放出最大能量,产生“布拉格峰”,将癌细胞杀死,同时有效地保护周围正常组织,且副作用小。比如当肿瘤直接与重要器官或结构如脊髓、视神经、心脏等相邻,质子治疗依然能在有效治疗肿瘤的同时保护这些重要器官或结构的功能,这在常规辐射治疗中是不可能的。 /p p   同时,质子刀对比其他放射手术方法,其穿透性能强,对病灶的定位效果是最佳的,机器操作的精准度也最高,其对病灶外区域造成的辐射量少,降低诱发二次癌症的几率。与质子治疗相比,X射线治疗诱发第二原发肿瘤的风险高出12倍,接受质子治疗后的患者能拥有更好的生存质量。国外临床治疗数据表明,质子治疗肿瘤有效率达到95%以上,五年存活率高达80%。 /p p   此外,质子刀还可以适用于肿瘤复发的治疗,肿瘤之前经过放射治疗后复发,可以再次接受质子治疗,只需要控制质子束的剂量和浓度,这在传统放射治疗中是不可能的。 /p p   strong  质子治疗的优势 /strong /p p   临床上,质子束疗法通常可以治疗前列腺癌、头颈部肿瘤、部分儿童肿瘤、胰腺癌,甚至部分早期乳腺癌和肺癌等。 /p p   比如,对于早期前列腺癌患者而言,放疗是常见的用于局部前列腺癌的根治性治疗方法。临床试验证明,高放射剂量可以取得更好的治疗效果。然而,对前列腺放射剂量的递增也增加了对于临近正常组织损伤的风险。在外照射放疗的治疗过程中正常直肠的暴露剂量与治疗并发症相关,多表现为直肠出血。因此,病灶区最大剂量同时周围直肠最小化剂量是放射治疗的理想追求。 /p p   同样的问题也存在于肺癌的放射治疗中。放疗在转移性肺癌的治疗中起着重要作用,单纯放疗可以治愈Ⅰ期非小细胞肺癌(NSCLC)。放疗也可作为综合治疗的组成用于治疗局部晚期 NSCLC。根治性放疗中需要采用大剂量照射,治疗和剂量必须在预期的治疗毒性与实现肿瘤局部控制的可能性之间取得平衡。 /p p   事实上,为了限制辐射损伤邻近正常组织的风险,放疗往往达不到杀死肿瘤的剂量,但质子治疗就能达到上述目的。 /p p   《自然》刊文认为:质子治疗癌症对患者的获益还是可预测的,随着质子加速器等技术进步,从质子治疗中获益的患者数量也会增加。 /p p    strong 《自然》刊文指出质子治疗的四大问题 /strong /p p   虽然质子治疗比较与传统放射治疗有着无可比拟的优势,但是其依然存在几大问题。 /p p   上述提到的《自然》刊文就指出,相对于常规X-射线放疗而言,质子治疗费用至少高出2-3倍,这对于来自普通家庭的患者来讲,这笔高昂的医疗费用是难以承担的,并且未全部覆盖到医保,比如,目前上海质子重离子医院一个疗程的费用是在27.8万元,只能走一些商保渠道。 /p p   还比如在美国,虽然医保覆盖了部门部分癌症质子治疗,但是保险公司对于质子治疗适应症患者的选择十分苛刻,有近30%的患者被拒之门外,保险不承担费用,主要原因是临床治疗中提供有明显疗效的临床数据太少,这就形成了一个恶性循环:患者个人的医疗保险不负担,相关临床治疗也很难开展下去。 /p p   对于患者而言,质子治疗的医疗费用难以承担,而对于医院来讲,质子设备同样难以承受。 /p p   自20世纪90年代以来,加速器的重量从上百吨降到了20吨,加速器直径也缩小了3倍,迄今为止最小的质子治疗加速器直径不到2米,与一张特大号床相当。但是,与旋转机架和其它辅助设备加在一起,即使是最为Mini型质子治疗系统也要占用几百平方米面积,也比一般传统的50平方米治疗室大几倍,目前,多数医院缺乏建造质子治疗专用机构的资金和空间,这些是现实问题。 /p p   同时,质子治疗还存在一个更精准度的问题,有医生表示,目前质子束能精确在0.5厘米内,这与X射线类似,将质子束的精密度从厘米精准到毫米级将是下一步必要的技术更新。尤其在治疗肺部和肝脏肿瘤时,肿瘤所处位置是一个移动部位,这将是另一艰难的技术挑战。 /p p   此外,精通质子设备安装和调试的专业技术人员以及擅长质子治疗技术医生的短缺也是一大问题。 /p p    strong 改进建议和最新进展 /strong /p p   治疗费用方面,《自然》刊文指出保险公司应建立“参考定价”模式,为有相似治疗效果的不同治疗方法建立统一支付标准,这将有助于在新的临床应用中收集质子治疗临床数据。 /p p   在设备方面,目标是把质子治疗设备安装在一个房间内,医院可以不另建造治疗室,这样更便于医院更新换代现有的X射线治疗装置,同时,如果一台质子加速器设备价能格降低到500万美元,那么普及应用质子治疗的时代也就不远了,相应地治疗费用也会不断降低。 /p p   在精度方面,目前已经探究出几种测量质子束的方法,当质子与原子核相互作用时,它们发出可跟踪的γ射线,当组织器官受到质子脉冲照射加热产生膨胀和收缩时,会释放声波。这种技术在实验环境中可以使质子束精确在几毫米范围,但尚未在临床治疗中应用,克服在临床治疗中的技术障碍需要医疗科研机构、医生和患者的共同努力。 /p p   对于专业技术人员和医生的短缺,《自然》刊文提出解决方案之一是使质子治疗工作流程与传统的X射线治疗类似,可以借用现有的放疗医生和技术人员,另一种方法是更多地依靠人工智能和全自动化,通过专家指导系统形成一个AI系统进而指导患者治疗过程。 /p p   值得一提的是,《自然》刊文还提到了质子治疗的三项最新进展:质子笔形束可以将辐射剂量准确地照射到实体肿瘤上,减少了从多角度照射患者的必要 快速成像方法可以检测患者位置的微小变化,进而改变光束的精准区域 运用可延展材料制作的“软体机器人”,利用其机器人手臂,对患者进行快速且舒适地定位,减少医生频繁进入治疗室的机会。 /p
  • 快速单层单次扫描技术实现质子闪疗,助力肿瘤治疗
    武汉大学医学物理团队针对目前的肿瘤放射治疗手段——闪疗(FLASH),首次在国际上提出了一种应用于质子闪疗技术的快速单层单次扫描技术(基于自主设计的静态和动态的脊形滤波器),可大幅缩短质子笔型束扫描时间。该方法能够满足FLASH所要求的高剂量率的同时,提供与标准的调强质子治疗可比的剂量分布,同时大幅缩短常规笔行束扫描时间,有望推进质子闪疗的临床转发步伐。相关研究成果以“基于脊形滤波器的质子闪疗”为题,近日发表在放射治疗的权威期刊《医学物理》。论文第一作者为武汉大学医学物理专业博士生张国梁,通讯作者为武汉大学教授彭浩。该项目由武汉大学、解放军总医院第五医学中心和无锡新瑞阳光粒子医疗装备公司共同参与。目前全球质子治疗中心和治疗患者数目的年增长速度超过15%,近年来在中国也进入了一个高速的发展阶段,多家肿瘤治疗机构都在筹建质子中心。质子闪疗有望在未来肿瘤治疗中扮演重要的角色,也为国产质子治疗相关技术赶超世界领先水平提供了机遇。据彭浩介绍,闪疗是一种在超高剂量率下进行的超快速放疗手段。和传统剂量率照射相比,闪疗可以在不改变肿瘤控制效果的同时,减少辐射对正常组织和器官的损伤。闪疗效应的一种可能解释是高剂量率导致组织中的氧气耗竭,使正常组织产生辐射抵抗,其他解释包括活性氧化物质和免疫反应。质子放疗由于其先天的剂量率和布拉格峰的优势,是FLASH临床应用的首选。在国际上,质子设备厂商(如IBA,VARIAN等)和诸多质子中心都在开展相关研究,如瑞典的IBA公司给出了基于Hedgehog的解决方案,美国的Varian公司也提出了类似光子放疗中多叶光栅的动态束流调制方案,其目的均为实现快速的束流调制。针对此问题,武汉大学医学物理团队与国产质子设备商新瑞阳光合作,首次提出了一种新型用于质子FLASH的扫描方案。质子笔型束扫描时间长的原因在于,多层能量切换时间(秒级),难以满足闪疗所需的瞬时高剂量率的要求。研究团队设计了一种单能量单层束流扫描技术,通过自主开发设计的脊形滤波器,可以一次照射完成束流调制和适形实现瞬时高剂量率的质子闪疗。相比IBA和Varian两家国外厂商的方案,研究团队的方法真正做到了基于Dose而非Fluence的调强,能在保证高剂量率的同时做到治疗靶区内的剂量适形,也能大幅的缩短治疗时间。以头颈部和肺部肿瘤为例,相比于传统的质子调强治疗,扫描时间可缩短5—10倍左右。相关论文信息: https://doi.org/10.1002/mp.15717
  • 质子碳离子治疗系统临床评价技术审查指导原则发布
    p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 总局关于发布质子碳离子治疗系统临床评价技术审查指导原则的通告(2018年第4号) /strong /span br/ /p p   为加强医疗器械产品注册工作的监督和指导,进一步提高注册审查质量,国家食品药品监督管理总局组织制定了质子碳离子治疗系统临床评价技术审查指导原则(见附件),现予发布。 /p p   特此通告。 /p p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/d0843598-3dd6-4622-bd70-0514bdb230b2.doc" 质子碳离子治疗系统临床评价技术审查指导原则.doc /a /p p style=" text-align: right "   食品药品监管总局 /p p style=" text-align: right "   2018年1月4日 /p p br/ /p
  • 国产世界上最紧凑型超导回旋质子治疗系统研制成功
    3月16日,中国科学院合肥物质科学研究院研制的超导回旋质子治疗系统加速器束流经过能量选择系统与二四极铁、治疗头等传输系统到达系统治疗头,实现200MeV(兆电子伏)稳定质子束流从治疗室引出,这标志着国产世界上最紧凑型超导回旋质子治疗系统研制成功。质子治疗作为一种新型的放疗技术,具有治疗效果好、副作用小、患者恢复快的特点,是国际上先进的新型治疗肿瘤方法。因引进质子设备费用及运维成本高,国内缺乏质子治疗高端医疗装备,研制具有自主知识产权的国产质子治疗装备及推动产业化应用前景广泛。合肥研究院等离子体物理研究所质子治疗系统研发团队历经五年,依靠自主研发,先后突破部件研制、集成总装、系统联调测试等多项关键节点中的卡脖子技术。研制出目前世界上最紧凑型超导回旋质子治疗系统加速器并引出200MeV的质子束流,实现了紧凑型超导加速器技术的自主可控。该加速器超导磁体电流密度达到140A/mm2,是国内外同类装置磁体水平的3倍;静电电场达到170kV/cm国际最高应用水平;加速器实现3.0特斯拉最高场强;直径缩小25%,仅2.2米,总重不超过50吨。历经数月系统调试,实现治疗室束流引出,解决了高精度束流传输与精准适形治疗兼容性难题,掌握了高精准控制与精准定位技术。此外,完成国内首个超临界氦外冷却超导二极铁系统研发和小型化超导旋转系统设计,大幅度降低研制和建筑成本。近年来,合肥研究院和合肥市政府合作,依托合肥综合性国家科学中心创新平台,成立合肥中科离子公司开展国产超导回旋质子治疗系统的自主研发及推动质子高端医疗装备的产业化。合肥研究院等离子体所在建设运行国家大科学装置中储备关键技术,加速推动大科学工程衍生技术落地生根,将超导、磁体、低温等技术应用于高端医疗装备产业,面向经济主战场、面向人民生命健康,服务“健康中国”国家战略和国家大健康产业发展。国产最紧凑型超导回旋质子治疗系统分布示意图国产最紧凑型超导回旋质子治疗系统加速器国产最紧凑型超导回旋质子治疗系统治疗室束流引出数据图国产最紧凑型超导回旋质子治疗系统治疗室
  • 国产首台质子治疗系统获批上市 共178款国产创新医疗器械获批
    近年来,国家药品监督管理局全面贯彻落实党中央国务院有关深化医疗器械审评审批制度改革要求,积极推动创新医疗器械、国家重点研发计划和重大科技专项医疗器械上市,促进产业创新高质量发展,更好满足患者健康需要。2022年9月26日,国家药品监督管理局批准了上海艾普强粒子设备有限公司生产的“质子治疗系统”创新产品注册申请。该产品是“十三五”期间科技部重点研发计划“数字诊疗装备专项”的重点支持项目,也是我国首台获准上市的国产质子治疗系统。该产品的获批上市,标志着我国高端医疗器械装备国产化又迈出一步,对于提升我国医学肿瘤诊疗手段和水平,具有重大意义。该产品由加速器系统和治疗系统两部分组成。其中加速器系统包括注入器系统、低能传输系统、主加速器系统、高能束流传输系统和辅助电气系统,治疗系统包括固定束治疗系统、180°旋转束治疗系统和治疗计划系统。产品提供质子束进行放射治疗,在实现肿瘤部位高剂量的同时,可降低周围正常组织剂量,特别是靶区后组织的剂量,适用于治疗全身实体恶性肿瘤和某些良性疾病,具体适应症应由临床医师根据实际情况确定。使用者应当严格按照产品批准的适用范围使用产品,同时应当严格遵守卫生健康部门的诊疗规范。在该产品的注册申报过程中,国家药监局按照“提前介入、专人负责、全程指导,科学审批”的原则,在标准不降低、程序不减少的前提下,积极沟通,多方协调,加大产品注册申报指导,加快审评审批进程,在保证安全、有效的基础上推动产品尽快上市,满足患者使用高水平医疗器械的需要。国家药监局已批准的创新医疗器械全名单:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemaker system美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准20193070969山东华安生物科技有限公司国械注准2020313019779药物球囊扩张导管上海微创心脉医疗科技股份有限公司
  • 47名受试者参与首台国产化质子治疗装置临床试验 新技术有望惠及普通患者
    近日,记者从中国科学院上海高等研究院获悉,首台国产质子治疗装置第一注册单元的固定束和180度治疗室完成临床试验,总计47名受试者完成治疗。在3个月的访视期结束后,该装置有关项目组将向国家卫健委器审中心提交资料,申请医疗器械注册证。这标志着国产首台质子治疗装置向注册上市迈出关键性的最后一步,国产质子治疗装置的临床应用即将拉开帷幕。180度旋转束治疗室内开展的临床试验。(图源 新华社 )初步结果显示,47名受试者中,部分患者所有分次治疗结束就达到肿瘤完全缓解程度,有一位颅底脊索瘤患者经过10次治疗开始恢复部分视力,所有患者目前均无不适主诉。整个治疗过程中,首台国产质子治疗装置运行稳定可靠,各项性能指标满足临床要求,临床团队表示,装置已达到可以正式临床运行的状态。有关负责人称,疫情结束后,装置的360度旋转束治疗室和眼束治疗室的调试与第三方检测工作将全面展开,力争年底完成注册检测并为第二注册单元的临床试验做好准备。疫情未减临床试验速度疫情期间,瑞金医院肿瘤质子中心入组180度旋转束治疗室的患者如期进行治疗,这是继固定束治疗室之后,国产质子治疗装置投入临床试验的第二间治疗室,也是首个国产180度旋转束治疗室。“这套系统能多角度精准照射到肿瘤部位,降低正常组织的辐射损伤。”瑞金医院副院长陈海涛介绍,“完成全球最先进的360度旋转支架临床试验,是我们下一步的工作目标。”据悉,国产质子治疗装置第一注册单元包含固定束和180度旋转束两个治疗室临床试验。根据临床试验方案入排标准和质子治疗指征严格筛选后,共47例患有头颈、胸部、腹部、盆腔和脊柱等全身不同部位实体肿瘤的受试者接受治疗,病情复杂、治疗难度大是他们共同的特点。瑞金医院放疗科主任陈佳艺表示,质子束流独特优越的物理性质可以大幅度降低正常组织的照射体积,从而有效减少放射治疗副作用,并将一部分在光子治疗技术下因为重要正常组织的辐射耐受性限制而无法治愈的肿瘤提供了可治愈的机会,在头颈部肿瘤、盆腔深部肿瘤、眼部肿瘤和儿童肿瘤等治疗中有不可替代优势,尤其有助于保留患者的生活质量。她以一位32岁的年轻病患为例介绍说:“病人因颅底脊索瘤几乎失明,病灶范围较广且毗邻重要组织结构。质子治疗在消灭肿瘤的同时,最大限度保护了重要组织,病人仅治疗约10次就已明显改善视力和视野。”记者采访获悉,部分临床试验经历了上海此轮疫情最严峻的时期,团队为保障治疗系统接收测试以及临床试验,闭环在瑞金医院肿瘤质子中心80余天,克服了各种困难和影响,保障所有受试者顺利完成预计治疗。接下来,团队将继续密切关注受试者随访情况,预计于2022年9月完成受试者3个月疗效和急性毒性反应随访后形成临床试验总结报告,提交产品注册申请,有望于2023年一季度向社会患者开放,正式投入临床使用。此外,360度旋转束和眼部治疗室的调试和第三方检测将在疫情后全面展开,力争年底完成注册检测并为第二注册单元两个治疗室的临床试验做好准备。治疗室背后的180度旋转机架。新华社记者方喆摄国内外对质子治疗装置的需求近年来快速增加,但这种大型精密医疗设备技术复杂、造价和运维费用高,国内该设备主要依靠进口,患者治疗成本居高不下。为实现质子治疗装置国产化,首台国产质子治疗示范装置研发项目于2012年正式立项。项目启动后,各参与单位不懈努力,在自主研制紧凑型同步加速器磁聚焦结构、高饱和强场磁铁、超低纹波磁铁电源、磁合金高频腔、注入引出切割器、精密定时、束流调制引出、旋转机架、点扫描治疗头、机器人治疗床、图像引导及呼吸运动管理等关键技术上取得突破。自主创新突破“卡脖子”现代抗肿瘤治疗的主要手段包括手术、药物和放射治疗三大类。其中,质子治疗代表了放射治疗技术的制高点,由美国科学家于20世纪40年代提出,并在21世纪初得到快速发展。值得关注的是,全球已建成质子治疗中心超过100家,但大多分布在欧美日等发达国家。我国的质子治疗装置依赖进口,建设成本和运营维护费用高,这既造成了治疗资源稀缺,也导致治疗费用高昂。质子装置的国产化,有望大幅降低设备成本和医疗成本,为众多恶性肿瘤患者提供可及性更高的先进治疗技术和设备。质子装置是上海又一大科学装置——上海光源“沿途下蛋”的结晶,瑞金医务人员和科学家团队、运维团队等团结一心、携手攻关,让这一治癌新技术也可以“飞”入寻常患者家。中科院上海高等研究院研究员、上海光源粒子束应用技术部副主任陈志凌告诉记者,同步加速器位列质子治疗装置核心技术的第一位,其国产突破得益于上海光源,它是一台高性能的第三代同步辐射光源,光源能量在全世界位居第四。国产质子治疗装置是上海光源的“缩小版”,更是“升级版”。“我们这台装置产生的能量能够满足临床治疗需要,原理都是同步加速器,大小约为上海光源的二十分之一,区别在于一个用的是质子,一个用的是电子。”陈志凌说。作为服务老百姓的医疗产品,装置还集成了许多医疗必需的治疗系统,这是上海光源所没有的。例如,笔形束点扫描技术将质子束精准打在不规则病灶的边缘和内部区域,图像引导与呼吸运动管理可以避免肿瘤随着呼吸移动而导致的误差,等等。质子装置的国产化之路经历过长期探索。据中国工程院院士、中科院上海高等研究院研究员、上海光源科学中心主任赵振堂介绍,首台国产质子治疗装置2012年立项,在上海市自主创新和高新技术产业发展重大项目以及“十三五”时期科技部重点研发项目支持下进行,中科院上海应用物理研究所、中科院上海高研院上海光源科学中心、上海艾普强粒子设备有限公司、瑞金医院及相关厂家合作研发,携手促进产、学、研、医协作融合发展。位于瑞金医院肿瘤质子中心的质子同步加速器。新华社记者方喆摄不止于“0到1”的突破不只是设备的“0到1”突破,更重要的是“1到100”的产业化进程。据了解,成本和治疗效率决定了质子治疗装置市场化的可能。该装置计划将建设成本降低到进口装置的80%,运维成本降低到60%。另外,从投入临床应用开始,一台质子治疗装置通常在三年以后达到最高效的使用状态。“需要接受放射治疗的肿瘤患者有很多,但质子治疗能够提供的服务在目前阶段还是非常有限,我们必须选出其中最能从质子治疗中获益的病人。在现有的光子治疗装置已经能获得很满意的疗效和很低的副作用的情况下,我们不会优先推荐质子治疗。”陈佳艺说。6月3日,上海联合投资有限公司、瑞金医院和上海艾普强粒子设备有限公司在原来《推进国产质子治疗装置产业化合作协议》的基础上,共同签署质子治疗项目瑞金方案推广应用合作协议,可复制、可推广的肿瘤质子中心一体化建设“瑞金方案”正在形成。陈海涛阐述说,肿瘤质子中心“瑞金方案”即在首台国产质子治疗示范装置研制,以及瑞金医院肿瘤质子中心建设中总结凝练的智慧和经验。包括质子的装置研制、产品升级、治疗指南、运行管理、经营效益以及质子中心筹建等各个方面,从临床需求、应用、验证、推广等多个维度,形成肿瘤治疗的系统性、标准化、规范化的推广方案。“我们不只是要做出一个设备,未来的目标更是把质子治疗的可复制方案推广出去,在核心技术方面实现质子治疗装置小型化,在诊断技术上形成一系列的配套标准和规范。”宁光说,“肿瘤的发病率居高不下,患者跋涉千里来到上海负担很重。未来,我们希望在一些地级市推广建立小型的肿瘤中心,进一步降低治疗费用。”
  • 2019年,美国在治疗非小细胞肺癌方面有哪些新突破?
    p   肺癌是世界范围内癌症死亡第一常见的原因,也是发病率最高的癌症。大约85%的患者为非小细胞肺癌(NSCLC),包括肺腺癌(和肺鳞癌、大细胞肺癌。其中肺腺癌占比最多,约40%多。 br/ /p p   近年来,非小细胞肺癌(NSCLC)的治疗取得了重大进展。靶向药及免疫治疗药物的问世,将5%的五年生存率提高到15%,即便给这里患者人群带来了前所未有的生存益处,但是将NSCLC变成慢性病还有很长的路要走。 /p p   然而,非小细胞肺癌的总体治愈率和生存率仍然很低,特别是发生转移后,治疗难度不可预知。 因此,需要继续研究新药、新技术、联合治疗将临床益处扩大到更广泛的患者人群,提高非小细胞肺癌患者的总体生存期,改善生活质量。 /p p   美国是医学技术发展最快的国家之一,我们来盘点一下,对于NSCLC,2019年美国有哪些治疗新技术? /p p    strong span style=" color: rgb(192, 0, 0) " 1.靶向治疗及免疫治疗 /span /strong /p p   药物治疗是所有癌症治疗应用最广泛的方法。NSCLC是目前获批靶向药最多的癌症,最常见的靶点包括:EGFR、ALK、BRAF、HER2、MEK、ROS1、PD-L1、VEGF等。具体药物清单如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/6d9661fa-bec0-4e7e-830e-4e973755c6ac.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   靶向药及免疫治疗药物治疗之前,需进行基因检测,找到突变的靶点才能采用相对应的靶向药治疗,若无突变,将与靶向药失之交臂。 /p p   但在癌症的治疗过程当中,有一部分人在接受靶向治疗前,选择不做基因检测,而这种治疗方法就叫做盲试。对比基因检测,盲试也有自己的优势,比如即能省钱又能节省时间。除非万不得已,否则不建议这样做!!以下两种情况可以选择盲试: /p p   ①可选择药物单一时:一些种类的癌症,可能突变类型比较单一,有效的化疗药也较少,对于靶向药也没有可选余地,这种情况下,可以选择盲试,一旦发现没有效果,就立即更换其他疗法。NSCLC靶向药这么多,不建议盲试!一次全面的基因检测,可以指导患者获得最精准的治疗方案,这么多靶向药,总有一个可用吧!新年基因检测福利大放送: /p p   ②生存期不乐观时:对于一些癌友,可能医生的预估生存期不足3个月,并且经济条件也不好,这种情况,如果拿半个月等一个不确定的结果的话,就显得太冒险,所以不如直接进行盲试,把钱用在刀刃上,挑选概率最大的药进行尝试,“得之我幸,失之我命”,一切看天意了。 /p p   span style=" color: rgb(192, 0, 0) " strong  2.电场疗法 /strong /span /p p   2000年,以色列教授Yoram Palti利用他在生物物理学的研究成果研究出一种全新的治疗实体肿瘤的技术,这种技术会消灭肿瘤细胞,同时对健康细胞没有任何副作用, 这项黑科技的全称叫肿瘤治疗电场(Tumor Treating Fields,简称电场疗法或者TTF)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/4a1ff426-1ba6-44bd-80cb-896788632b85.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 像上图中这位患者,睡着觉就可以轻松治疗肺癌? /span /p p   这是一种需要量身定做的可穿戴设备,英文名字叫Optune,作为一种轻便的可穿戴设备,Optune不影响患者睡觉、聊天、带孩子、甚至工作。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ee75376e-95f6-4a39-b510-ae5233951437.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   肿瘤治疗电场属于新时代的黑科技。因为癌细胞与正常的细胞在分裂速度上有区别,理论上可以通过控制电场的频率,来精确扰乱癌细胞的分裂,而对正常细胞不造成影响。目前,美国已经批准TTF用药脑胶质瘤的一线治疗。 /p p   除此之外,电场治疗在其他癌症治疗领域也收获颇丰,包括肺癌、卵巢癌、胰腺癌等多种恶性肿瘤。 /p p   瑞士温特图医院癌症中心的医学肿瘤学主任Miklos Pless在2010年欧洲医学肿瘤协会(ESMO)上发表了重要数据:在瑞士的四个中心进行一项单臂二期临床研究,招募了42名患有局部晚期和转移性的NSCLC(IIIb-IV期)患者,这些患者先前化疗失败,每天接受TTF治疗12个小时,并联合使用培美曲塞(爱宁达,礼来公司),直到病情恶化。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/a5178420-0f85-4bc1-975b-099af6f584e7.jpg" title=" 4.png" alt=" 4.png" / /p p    span style=" color: rgb(192, 0, 0) " 结果显示: /span /p p   接受TTF联合培美曲塞治疗组相比单独培美曲塞治疗平均存活时间为13.8 vs 8.3个月 /p p   联合治疗一年生存率为57%,单独培美曲塞治疗只有30% /p p   当TTF联合培美曲塞治疗,无进展的存活时间增加了一倍多,达到了22-28周,单独培美曲塞治疗仅为12周! /p p   唯一报告的TTF治疗不良反应是在治疗位轻微到中度的皮肤刺激。 /p p   2018年12月28日,TTF疗法已经正式用于治疗首位香港脑胶质瘤患者,正式登陆香港,全球肿瘤医生网可以协助国内癌症患者联系香港或美国,进行TTF治疗,致电400-626-9916。 /p p    span style=" color: rgb(192, 0, 0) " strong 3.古巴肺癌疫苗 /strong /span /p p   越来越多的肺癌患者已经知道,古巴有一种非小细胞肺癌疫苗可以延长晚期肺癌患者的生存期,并且,有一些正在接受肺癌疫苗治疗的晚期肺癌患者已经回到了正常的生活! /p p   古巴肺癌疫苗可以通过激发免疫系统产生一种抗体,绑定和去除癌细胞生长所必需的表皮生长因子(EGF),从而有效减缓肿瘤进展。目前,肺癌疫苗已经在古巴、秘鲁等地批准临床使用多年,美国目前正在进行临床试验。 /p p   这个肺癌疫苗也不是所有患者都能用的,要求是已经采用手术、化疗、放疗或者靶向治疗等将病情控制住的非小细胞肺癌患者,不能有脑转移,不能有胸水、腹水、心包积液等,需要患者将病历资料发送给古巴的医生,评估通过之后,才能获得购买资格。 /p p   但是,患者必选要清楚的是古巴肺癌疫苗是控制肺癌继续进展速度的疫苗而不是治愈肺癌的疫苗。目前,古巴科学家已经研制成功两代疫苗,分别是Vaxira和CIMAvax,两代疫苗价格一样,具体使用哪种,需古巴医生决定,但是,每次只能购买半年的用量。据估计第一年的药价需10多万人民币,后续治疗会越来越少。古巴肺癌疫苗咨询及购买请致电全球肿瘤医生网400-626-9916。 /p p span style=" color: rgb(192, 0, 0) "    /span span style=" color: rgb(192, 0, 0) " strong 4.质子治疗 /strong /span /p p   质子治疗是放疗技术的一种,但与世人所知的放疗有所不同的是照射线不同,质子治疗采用的是质子线,也就是通过一些机器从氢原子中分离出来质子,然后再发射出去,集中照射到肿瘤部位,达到杀伤肿瘤的目的。 /p p   普通放疗采用的是X射线,由于X射线有辐射,照射过程中在对达肿瘤之前的皮肤及肿瘤周边、后方的组织会有很严重的损害,如果控制不好剂量,放疗带来的副作用可能会威胁生命。质子线照射有一个特别的机制,可以形成布拉格峰。 /p p   如同放烟花一样,质子线从离开加速器到肿瘤之前,几乎不会释放能量,到达肿瘤才一下释放全部的能量,在肿瘤部位“爆炸”,肿瘤后面也不会有残余的能量照射,没有遭受损害。 /p p   因此,质子治疗被誉为 “肿瘤治疗神器”。虽然没有那么夸张,但是质子治疗绝对是“高配版”放疗,放疗中的法拉利,已被全世界认可。质子治疗适用于各种实体瘤。对于没有全身转移,病灶小于3个的实体瘤质子治疗都适用,不分癌种,只要是实体瘤就可以。换句话说,只要医生建议或评估可以采用放疗治疗,这样的患者都可以选择质子治疗。 /p p   55岁男性,无明显诱因出现走路左偏,左侧上肢抽搐,发作时意识清醒,持续时间约1-2分钟,可自行缓解。PET-CT显示:左肺上叶尖后段肺癌 并右侧顶叶脑转移,在全麻下行“脑转移瘤切除术”,术后症状明显改善。 /p p   病理检测无基因突变,术后行化疗2周期,后拟行手术治疗,因肺部肿瘤靠近大血管,不能手术,经专家会诊,行质子放射治疗。质子治疗一个月后,肿瘤体积缩小65%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/0036f2fc-4c99-4739-bd33-c9b06159ce39.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " span style=" color: rgb(0, 0, 0) " 质子治疗前后对比CT /span /span /p p    span style=" color: rgb(192, 0, 0) " strong 5.细胞免疫治疗 /strong /span /p p   3年前,细胞免疫治疗曾因魏则西事件被推至风口浪尖,在国内销声匿迹。但是,一个社会事件不能阻挡科学的发展,细胞免疫治疗技术强势回归。 /p p   2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p   紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。这两项都是获批治疗血液癌症的,针对实体瘤的细胞免疫治疗技术正在全球各地如火如荼地开展着。 /p p    strong 细胞免疫疗法治疗流程是这样的 /strong /p p   用先进的血细胞分离机采集患者自体外周单核细胞。 /p p   在GMP实验室里,分离单个核细胞置于培养瓶中,加入培养液和细胞因子刺激免疫细胞使其活化增殖,同时对树突状细胞进行处理,加入抗原或者通过基因工程修饰,与免疫细胞共培养,提高免疫细胞具有识别杀伤肿瘤的能力。 /p p   经过7~14天细胞培养,细胞数增至原有数量的几百到上千倍,免疫杀伤能力增加20~100倍。 /p p   回收免疫细胞,在GMP实验室进行质量检测。 /p p   质检合格的免疫细胞方可给患者回输。 /p p   细胞免疫治疗的目的是通过激活人体免疫系统而对抗癌细胞,但由于整体治疗费较高,患者仍然需要谨慎选择!结合正规治疗,可考虑作为辅助治疗,提高身体免疫力。 /p
  • 从肿瘤放射治疗技术的“前世今生”看我国大型医疗设备国产化
    “癌症”已经成为人类健康的第一杀手。  根据中国肿瘤登记中心最新统计数据,2015年我国预计有429.2万新增肿瘤病例和281.4万死亡病例。如此高的新增病例和死亡率使得人们谈“癌”色变。那么癌症有哪些有效的治疗方法呢?  目前恶性肿瘤治疗主要依赖放射治疗、手术治疗和化疗。下面我们就讲讲肿瘤放射治疗技术的“前世今生”。 WilliamHenry Bragg  放射治疗作为一种物理治疗手段已有100多年历史。自1896年贝克勒尔发现天然放射性现象之后的第8年,也就是1903年,英国物理学家威廉亨利布拉格William Henry Bragg与克里曼Kleeman在实验中观测到:带电粒子束在射入物质时,根据其能量大小会在某个深度形成一个剂量高峰。科学界将这一伟大发现(估计这哥俩根本没意识到他们的这个发现有多牛掰多伟大~)称之为“Bragg峰”(中文译为“布拉格峰”)。  科学家们很快发现,这种带电粒子束与传统射线(就是X射线,γ 射线什么的~)相比优势相当明显。     Robert R. Wilson  1946年美国物理学家威尔森Robert R. Wilson(这哥们可是参与曼哈顿计划的著名核物理学家)大胆提出,可将这种具有物理优势的射线应用于医学领域。  威尔森认为,带电粒子束或可在治疗肿瘤领域有突出表现,他的依据是:传统高能X射线穿越人体时,沿途会不断释放大量能量,肿瘤前后的正常组织也受到了相当剂量的照射。而带电粒子束有独一无二的“布拉格峰”,射线进入人体后,高能带电粒子束在射程前段仅会释放较少能量,直至射程末端,巨大的能量才会彻底释放,从而大幅减少了肿瘤周边正常组织的照射剂量。     各种放射线在体内的剂量分布对比图  在该理念提出不到10年,也就是1954年,美国的劳伦斯伯克利(LBL)实验室就开始启动粒子束治疗研究,此后瑞典、日本、德国的研究机构相继开展质子及重离子治疗研究̷̷  兰州重离子加速器作为核物理学领域非常重要的研究工具,主要用来探索物质微观结构、物质起源和宇宙规律等基础物理研究,中国科学院近代物理研究所的科研人员利用兰州重离子加速器国家实验室得天独厚的有利条件,于上世纪90年代初,在国内率先开展重离子治疗肿瘤基础研究,进行了放射物理、放射生物学实验以及一些治癌技术的初步预研,为重离子临床治疗积累了一些必要的基础数据。  在2006年-2013年期间,共完成了213例前期临床实验研究,包括皮肤鳞癌、恶性黑色素瘤、神经纤维瘤、前列腺癌、原发性肝癌等。试验患者大部分为常规治疗复发或无效病例,经过1个疗程(12-16次治疗)的试验研究治疗,大部分患者4年肿瘤局部控制率和存活率均达到60%以上,成功治疗了许多位于重要器官的恶性肿瘤,疗效十分显著,使我国成为继美国、日本和德国之后全球第四个掌握重离子治癌技术的国家。  重离子治疗技术使肿瘤放疗的精确性达到当今最高水平,既能有效杀灭肿瘤细胞,又能最大限度保护周围健康组织,既能有效杀灭乏氧的或者放疗抵抗的肿瘤细胞,又对各个细胞周期的肿瘤细胞都具有不可逆性杀伤作用。重离子治疗的优势简单粗暴地概括起来就是四点:精度高、疗程短、疗效好、副作用小。因此无论是生物学效应还是物理学特性,重离子都被誉为是面向二十一世纪最理想的放疗用射线。  目前,世界各国都在竞相发展重离子肿瘤治疗设备的研制与相关机构的建设。但是重离子放疗因其设备复杂,建造和维护成本较高,目前全世界只有9家重离子医院。  中国科学院近代物理研究所研发设计的完全拥有自主知识产权的医用重离子加速器,也是目前世界上最小的重离子治疗专用加速器示范装置,已通过了科技部、环保部、商务部、国家质量监督检验检疫总局组织的国家重点新产品认定,并已于2012年先后在武威离子治疗示范中心和兰州重离子医学创智产业园区投入建设。其中武威重离子肿瘤治疗中心于2015年12月成功建成出束,即将开始临床试验治疗。     武威重离子治疗示范装置  这标志着我国第一台完全拥有自主知识产权的医用重离子加速器装置投入运行,也标志着我国大型医疗设备的国产化取得了重大突破。医用重离子加速器是我国大科学装置回馈社会、造福于民的典范,必将在人类征服癌症的奋斗过程中做出重要贡献。(中国科学院近代物理研究所供稿)  参考文献  [1]叶飞 李强《重离子治癌相关研究》 原子核物理评论 第7卷第3期 2010年9月  [2]王岚 戴小亚 全球质子重离子医院现状与展望 China Academic Journal Electronic House
  • 精准“爆破”癌细胞!我国首台硼中子俘获治疗样机成功研制
    近日,在中核集团龙腾创新项目的支持下,中核集团中国原子能科学研究院“BNCT强流质子回旋加速器样机研制”项目顺利通过技术验收,这标志着国内首台基于强流回旋加速器的硼中子俘获治疗(BNCT)样机成功研制,为下一步开展BNCT商品机定型和临床技术研究提供了坚实保障,有力推动了下一步BNCT装备的成果转化。来自中国科学院近代物理研究所、清华大学、武汉大学、华中科技大学、四川大学、华北电力大学、航天23所的专家,以及原子能院核技术综合研究所、反应堆工程技术研究所领导及项目组成员参加技术验收会。专家组听取了项目组的技术总结汇报,查验了测试结果,经过提问与质询后发表验收意见。各位专家一致表示,样机测试结果满足设计指标要求,完成了任务书规定的全部研究内容,部分技术指标优于任务书要求。专家组建议把握时机、增加投入,加快开展临床关键技术研究工作。BNCT是近年来国际肿瘤治疗领域最前沿的癌症靶向治疗技术之一,可用于头颈部肿瘤、黑色素瘤等癌症治疗中。由原子能院核技术综合研究所和反应堆工程技术研究所合作组成的“BNCT强流质子回旋加速器样机研制”项目团队成功突破了强流回旋加速器技术、中子靶和慢化体技术,实现了小型回旋加速器mA量级流强引出能力。下一步,将尽快开展基于该装置的临床关键技术研究工作,争取早日实现成果转化,为我国医疗健康事业做出贡献。
  • 中国科学家成功研制国产最紧凑型超导回旋质子加速器
    p style=" text-indent: 2em " 由中国科学家自主研制的最紧凑型超导回旋质子治疗系统加速器近日顺利引出200MeV的质子束流,实现高能量级超导回旋加速器技术的关键突破,标志着国产最紧凑型超导回旋质子加速器研制成功。 /p p style=" text-indent: 2em " 据介绍,合肥质子治疗系统研发团队依靠自主创新日夜攻关,研制成功该加速器,相比较国际上同类装置,其超导磁体电流密度是国内外同类装置磁体水平的3倍;静电电场达到170kV/cm国际最高应用水平;加速器实现3.0T最高场强;直径缩小25%,仅2.2m,重量降低50%,总重不超过50t。这是目前世界上最紧凑型的质子加速器,具有体积更小、重量更轻、耗能更低、精度更高、能量切换更快的显著特点。 /p p style=" text-indent: 2em " 科研人员依托合肥综合性国家科学中心创新平台,在建设运行国家重大科技基础设施中凝炼关键技术,加速推动大科学装置衍生技术的落地生根,将聚变大科学工程项目中的超导、磁体、低温等大科学工程衍生技术应用于我国大健康产业发展和高端医疗装备产业。 /p p style=" text-indent: 2em " 质子治疗是国际上先进的治疗肿瘤方法,合肥质子治疗系统研发团队正在加快建设国产紧凑型超导回旋质子系统,期望未来在合肥建成世界一流水平的离子医学中心,实现超导质子系统的国产化和产业化。 /p p br/ /p
  • 瓦里安医疗系统将在ChinaMed上展示全新放射肿瘤治疗系统
    瓦里安医疗系统将在北京举行的 ChinaMed展会上展示采用影像引导技术的全新放射肿瘤治疗系统:TrueBeam(TM)   瓦里安还将在第23届国际医疗仪器设备展览会期间举办放射治疗新技术研讨会   提供肿瘤放射治疗全面解决方案的全球领先生产企业瓦里安医疗系统公司 (Varian Medical Systems, Inc.) (NYSE: VAR) 将于2011年3月25至27日在北京召开的第23届国际医疗仪器设备展览会(International Medical Instruments and Equipment Exhibition,简称“ChinaMed”)上展示其采用影像引导技术完成放射治疗的全新 TrueBeam(TM) 系统。   TrueBeam 是一台全新设计的系统,为快速和精确地治疗肿瘤而设计 -- 包括针对随着患者呼吸而移动的肿瘤进行治疗。TrueBeam 可以应用于肺部、胸部、前列腺、头颈部和其他类型肿瘤的治疗,其所拥有的大量技术创新,能够更好的动态完成同步影像、患者定位、运动管理和治疗实施。通过其高强度模式 (High Intensity Mode),TrueBeam 能够迅速、准确地给予非常高的剂量投照,速度是前一代技术的两倍以上。   瓦里安医疗系统公司中国区市场商务经理张岭 (Ling Zhang) 表示:“TrueBeam 系统去年四月份在美国首次推出,此次将是公司首次面向中国的医疗专业人士展示该系统。我们为此次有机会展示TrueBeam这个高性能的癌症治疗设备感到非常自豪。”   瓦里安还将在这届 ChinaMed 展会上重点展示其 X 射线产品,包括技术先进的新型 X射线球管和平板探测器。这些新产品旨在共同作用改善成像品质、提高病人流通量以及降低每次成像成本。瓦里安中国X 射线产品中国区总经理潘小力 (Hsiao-Li Pan) 表示:“由于我们在北京工厂扩大了库存和产品支持服务,我们的客户将能够充分获得数字放射治疗带来的好处。”   新技术研讨会   此外,瓦里安将于2011年3月25日下午举办的新技术研讨会上向来自全国各地25家重点医院的约60名来宾正式推出 TrueBeam。发言人将包括加州大学圣地亚哥分校 (University of California, San Diego) 医疗中心的放射肿瘤医生 Joshua Lawson 医学博士以及佛罗里达州墨尔本的 MIMA Cancer Center 首席医学物理师 Joseph Ting 博士。Lawson 博士将谈论 TrueBeam 系统的临床优势。Ting 博士将着重介绍该系统的高强度模式,该模式大大缩短了治疗时间,使一些原先不可能实现的治疗成为可能。   瓦里安亚太区销售与市场部副总裁 Thomas P. Duffy 表示:“瓦里安为能在今年的ChinaMed 上展示这个新的世界级肿瘤治疗解决方案感到非常荣幸。在全球各地都有像 Lawson 博士和 Ting 博士这样的临床专家先行一步,开始使用 TrueBeam 提供准确的影像引导手段,为癌症患者提供高度个性化的先进治疗。”   瓦里安医疗系统公司简介   总部位于加州帕洛阿尔托的瓦里安医疗系统公司是提供癌症及其他疾病放射治疗,放射外科治疗,质子治疗和近距离放射治疗设备及相关软件的全球领先生产企业。该公司提供用于综合癌症治疗机构、放射治疗中心和医学肿瘤学治疗机构的信息管理软件。瓦里安医疗系统还是应用在医学,科学和工业应用领域的 X 射线成像管和数字探测器以及货物检测和工业检测 X 射线成像产品的主要供应商。瓦里安医疗系统拥有约5400名员工,他们分布在该公司位于北美、欧洲和中国的生产机构以及全球约70个销售和支持机构。该公司的北京工厂涵盖肿瘤治疗设备生产业务、面向放射治疗临床专业人士的教育中心、客户服务中心以及 X 射线产品装配与服务。
  • 我国科学家发现新冠肺炎治疗新策略
    从德尔塔到奥密克戎,新冠病毒不断变异,全球疫情高位流行,感染人数持续攀升。目前,虽然新冠疫苗可以极大地防止病毒传播,但它们无法治疗感染病毒的患者。为了治疗新冠肺炎患者,科学家在药物研发上付出了巨大努力,但迄今为止,能够治疗新冠肺炎的药物仍然很少。同时,“尽管一些中和抗体和小分子抑制剂正在被研发,但其安全性和有效性存在不确定性。因此,我们迫切需要探索治疗新冠肺炎的新策略。”1月6日,中国医学科学院基础医学研究所黄波教授告诉科技日报记者。经过10个多月的努力,黄波、中国医学科学院医学实验动物研究所秦川教授等研究团队有了新发现。相关研究成果在线发表于国际知名免疫学学术期刊《细胞与分子免疫学》。“我们改造出一种细胞微颗粒,它富含氧化型胆固醇和血管紧张素转化酶2(ACE2)。微颗粒表面的ACE2与新冠病毒结合后,能够协助肺泡巨噬细胞吞噬更多的新冠病毒。”黄波说。为了防御病原菌入侵,在人体肺泡表面的液体层定居着免疫细胞,特别是具有吞噬功能的巨噬细胞,其占比达95%以上,医学上称之为肺泡巨噬细胞。这些巨噬细胞可以吞噬吸入空气中所包含的颗粒和微生物,维持肺泡的干净。巨噬细胞根据接受的刺激信号的不同,可以变化为促炎的M1型巨噬细胞,或者是抑制炎症的M2型巨噬细胞。黄波团队以往的研究显示,M1型巨噬细胞内小体囊腔偏酸,有助于新冠病毒遗传物质RNA核酸,突破内小体的限制,进入细胞浆,从而启动病毒复制程序。与之相反,M2型巨噬细胞内小体囊腔偏碱,抑制新冠病毒核酸从病毒颗粒成分中分离,使得病毒潴留在内小体的囊腔中,并最终递送至溶酶体(细胞内的垃圾处理站),从而将病毒降解。基于此,研究人员把细胞微颗粒(一种来自细胞膜的细胞外囊泡,平均直径在500 nm,已用于临床)进行改造,使其富含氧化型胆固醇和ACE2。微颗粒表面的ACE2与新冠病毒结合,可以协助肺泡巨噬细胞吞噬更多的病毒。与此同时,微颗粒携带的氧化型胆固醇抑制内小体质子泵,使其囊腔偏碱,能够抑制新冠病毒核酸从病毒颗粒成分中分离,从而被递送到溶酶体降解。此外,微颗粒治疗新冠肺炎小鼠结果显示,小鼠体内不仅病毒载量下降,相关炎症因子也明显受到抑制。黄波表示,微颗粒作为一种新型生物载体,已应用于临床,安全性较高。它结合新冠病毒,使其靶向递送到巨噬细胞被降解,且抑制巨噬细胞炎症反应,有望成为新冠治疗新策略。
  • 功能性MRI技术在阿尔茨海默病药物治疗效果研究中的应用
    p   阿尔茨海默病(AD)是晚年痴呆最常见的原因。该病以渐进性神经变性为特征,表现为逐渐丧失记忆力和认知能力,以及其他脑功能的下降。尽管在过去十年中人们进行了广泛的研究,但AD的病因和治疗仍然大多未知。 /p p   人们已对AD相关的几种缺陷进行治疗干预,包括基于淀粉样变性,β, 和炎症假说的干预。但是,目前只有2种药物——胆碱酯酶抑制剂和美金刚(memantine),已被批准用于控制AD的认知症状,例如记忆丧失,语言和执行功能的丧失。 /p p   已经有研究人员使用无创的体内功能磁共振成像(MRI)技术,包括血氧水平依赖性功能性MRI,基于动脉自旋标记的灌注MRI和质子磁共振光谱术,来研究胆碱酯酶抑制剂和美金刚在脑中的作用。这些研究中的大多数已经证实了AD和轻度认知功能障碍患者的功能激活和连接性增加,局部脑血流量和治疗后容量增加,以及反映神经元状态和功能的关键脑代谢物的阳性反应。这些发现有助于了解药物治疗的机制,并支持功能性MRI技术在AD药物治疗的发展和完善中的关键作用。 /p p   原文请查阅: /p p   Hui Guo, Lukas Grajauskas, Baraa Habash, Ryan CN D& #39 Arcy, Xiaowei Song . Functional MRI technologies in the study of medication treatment effect on Alzheimer& #39 s disease. Aging Medicine, 2018, 1, 75-95 /p p style=" text-align: right "   符斌供稿 /p p br/ /p
  • 上海打造5000亿未来产业 重点方向:生物安全、合成生物、基因和细胞治疗等
    为了贯彻落实创新驱动发展战略,全力做强创新引擎,培育发展新动能,打造未来产业创新高地、发展壮大未来产业集群,近日,上海市人民政府制定并印发了关于《上海打造未来产业创新高地发展壮大未来产业集群行动方案》的通知。通知中指出,打造未来健康产业集群,包括脑机接口、生物安全、合成生物、基因和细胞治疗四个方向。上海打造未来产业创新高地发展壮大未来产业集群行动方案  为了贯彻落实创新驱动发展战略,全力做强创新引擎,培育发展新动能,打造未来产业创新高地、发展壮大未来产业集群,制定本行动方案。  一、明确总体要求  (一)指导思想  以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届历次全会精神,强化高端产业引领功能,以落实国家重大战略任务为牵引,统筹推进科技和产业融合、当前和长远结合、有为政府和有效市场结合,立足产业基础和生态优势,集中力量、滚动培育,全力打造具有世界影响力的未来产业创新高地。  (二)发展目标  到2030年,在未来健康、未来智能、未来能源、未来空间、未来材料等领域涌现一批具有世界影响力的硬核成果、创新企业和领军人才,未来产业产值达到5000亿元左右。  ——建设核心技术自主创新的未来高地。依托各类社会主体,建设未来产业研究院,成立5家左右未来技术学院,培育15个左右未来产业创新中心,建设一批创新联合体,打通基础研究、应用基础研究到产业化的双向通道。  ——做强未来产业集群发展的未来引擎。打造5个未来产业集群,建设15个左右未来产业先导区,攻关100个左右核心部件,推出100件左右高端产品,形成100项左右中国标准,促进产业集聚引领发展。  ——形成大中小企业融通创新的未来范式。推动10家左右领军企业向未来产业布局,发展20家左右生态主导型企业,打造100家左右企业技术中心,培育1000家左右高新技术企业,促进各类所有制企业相互融合。  ——营造要素集聚、开放包容的未来生态。积极参与国际大科学计划和大科学工程,引进一批高层次战略科学家和企业家,持续优化创新生态。形成50个左右综合性应用场景,形成产学研用高效协同的创新生态。  到2035年,形成若干领跑全球的未来产业集群。  二、布局未来产业,打造未来产业集群  (一)打造未来健康产业集群  在浦东、宝山、闵行、金山、奉贤等区域,提升“张江研发+上海制造”承载能力,打造未来健康产业集群。  1.脑机接口。加速非侵入式脑机接口技术、脑机融合技术、类脑芯片技术、大脑计算神经模型等领域突破。加强脑工程学、脑神经信息学、人工神经网络等基础研究,推动类脑芯片、类脑微纳光电器件、类脑计算机、神经接口、智能假体等研发创新。探索脑机接口技术在肢体运动障碍、慢性意识障碍、精神疾病等医疗康复领域的应用。  2.生物安全。突破新型微生物、病原体快速鉴定和短期规模化检测、科学追踪溯源等关键技术。推动新型疫苗、抗体及分子、免疫诊断等共性技术研发转化,开发具有自主知识产权的重大传染病防治药物,构建生物安全产业体系。支持生产和储备一批重大传染性疾病防治药物、检测试剂和设备。  3.合成生物。推动攻关DNA/RNA底层关键技术,发展基于生物信息学和机器学习的DNA/RNA自动合成系统。聚焦生物体初级和次级代谢间的相互作用,发展代谢科学共性交叉技术。推动合成生物技术在创新药研发、医美产品研制、微生物菌株试验、生物可降解材料等领域的应用转化。  4.基因和细胞治疗。突破加速载体递送、基因编辑等技术,鼓励攻关临床级病毒载体、规模细胞培养工艺等关键技术。加快细胞治疗、基因治疗、溶瘤病毒等相关技术产品的研发转化。支持关键原材料、重要设备耗材等研发创新与产业化应用。  (二)打造未来智能产业集群  在浦东、徐汇、杨浦、宝山、闵行、嘉定、青浦等区域,以场景示范带动产业发展,打造未来智能产业集群。  1.智能计算。推动超大模型智能计算突破,培育智能计算自主框架和算法平台,发展自主智能芯片。协同云边端算力,推动知识增强、跨模态统一建模、提示学习、持续学习等技术在超大模型创新应用。加快超大模型向机器视觉、智能语音语义、自然语言处理、人机交互等领域应用,推动AI普惠化。  2.通用AI。构建具有泛化知识、动态学习和自主规划的通用AI模型,深化模型在城市治理、生物安全预警等领域部署应用。布局AI+药物研发、AI+新材料等应用,推动AI与物理、化学、数学等基础科学深度融合发展,开发为科学服务的基础性工具。攻克柔性感知、自适应迁移、群体智能等关键技术,建设感知、决策、规划和控制一体化的机器智能体,推动在医疗、陪护、养老等场景的应用。  3.扩展现实(XR)。突破XR关键技术,推动近眼显示、感知交互技术、渲染计算技术、云内容制作分享技术等突破。加快XR终端产品和应用软件开发,推动新一代通信网络(NGN)+XR融合创新,发展软硬一体的智能交互设备产业链。构建XR科技应用场景,加快在教育培训、医疗健康、工业制造、体育娱乐等行业应用。  4.量子科技。围绕量子计算、量子通信、量子测量,积极培育量子科技产业。攻关量子材料与器件设计、多自由度量子传感、光电声量子器件等技术,在硅光子、光通讯器件、光子芯片等器件研发应用上取得突破。推动量子技术在金融、大数据计算、医疗健康、资源环境等领域的应用。  5.6G技术。科学有序推进关键核心技术研发、未来网络试验设施和规模化商用。突破空天海一体化、确定性网络等关键技术。聚焦6G智能终端、系统设备、通感算一体化网络以及融合应用等领域,推动产业做大做强。建立6G国家标准与技术推进中心,强化6G标准引领。  (三)打造未来能源产业集群  在浦东、闵行、嘉定等区域,打造未来能源产业集群。  1.先进核能。加快商业化先进核能技术攻关,开展新型小堆、超高温气冷堆装备研制以及新型核工程材料研发应用。攻关小型模块化钍基熔盐堆核能系统及模块化智能装备,研发高温超导可控核聚变实验装置,开展新型核聚变能源系统技术预研,推进核能小型化技术验证,开展多能融合示范应用。  2.新型储能。推动开展战略性储能技术研发,推动压缩空气、液流电池等长时储能技术商业化,促进“光储充”新型储能站落地,加快飞轮储能、钠离子电池等技术试验,推动固态电池电解质技术攻关。推动大功率长寿命氢燃料电池和碳纸、质子交换膜、催化剂等关键材料创新,推动燃料电池热电联供系统、固体氧化物燃料电池等应用研究。  (四)打造未来空间产业集群  在浦东、杨浦、闵行、金山、松江、青浦、崇明等区域,打造未来空间产业集群。  1.深海探采。推动研发深远海和极地船舶与海洋工程装备。发展重型破冰船、高冰级LNG船等极地装备,构建极地科考和资源开发装备体系。研制深远海运维保障、多功能救援等特种船舶,提高应急救援装备能力。研制深水大型浮式生产储卸装置等能源海工装备以及驻留浮式研究设施。研制深海采矿装备,加快海试验证及示范应用。  2.空天利用。突破倾转旋翼、复合翼、智能飞行等技术,研制载人电动垂直起降飞行器,探索空中交通新模式。聚焦智能机载、复合材料、新能源动力创新,研制超音速、翼身融合等新一代商用飞机,推动氢电池、氢涡扇等氢能飞机技术验证示范。研制低成本卫星和可重复使用运载火箭,加快宽带通信卫星发射组网及商业运营,积极利用空间频率和轨道资源,建设陆海空天领域全天候、全球性卫星互联网。  (五)打造未来材料产业集群  在浦东、宝山、金山等区域,提升产业转化承载能力,打造未来材料产业集群。  1.高端膜材料。提升膜材料基础结构设计和原料自主化能力,突破高端分离膜技术,研发攻克燃料电池质子交换膜及专用树脂、体外膜肺氧合器用中空纤维膜、5G/6G天线用液晶高分子聚合物膜、高导热石墨烯薄膜等原材料及成膜技术。持续推进高端锂电池用膜材料、新型显示用光学膜、集成电路离型膜等材料技术迭代和产业化。  2.高性能复合材料。做强高性能纤维产业链,布局极端环境纤维、生物医用纤维、人工智能纤维等方向。加强聚丙烯腈基碳纤维研发,支持粘胶基碳纤维、沥青基碳纤维、芳纶纤维、超高分子量聚烯烃纤维等制备技术与工艺提升,攻关核心催化材料,突破高性能碳纤维及复合材料量产技术。研发能源转化及存储纤维、变色纤维、形状记忆纤维和致动纤维等应用技术。持续攻关航空发动机用高温合金、金属基复合材料和高端医用可降解合金等技术。  3.非硅基芯材料。推动碳化硅、氮化镓等宽禁带半导体化合物发展,持续提升宽禁带半导体化合物晶体制备技术能级和量产规模,积极布局宽禁带半导体晶圆制造工艺技术,增强宽禁带半导体芯片产品设计能力,扩大产品应用领域。积极推动石墨烯、碳纳米管等碳基芯片材料,半导体二维材料等未来非硅基半导体材料技术研究和布局。  三、实施六大计划,竞逐未来赛道  (一)未来技术“筑基计划”  筹划组建一批未来技术学院,加强高校学科建设和人才培养。发挥中国工程院院士专家成果展示与转化中心作用,集聚各类创新资源,建设未来产业研究院。发展创新联合体,组建一批未来产业创新中心,加强前沿技术多路径探索、交叉融合和颠覆性技术供给。完善未来产业全球创新网络,加强国际创新协作,布局一批海外技术转移转化网络节点、国际技术转移和创新合作中心。  (二)未来布局“领跑计划”  谋划未来产业先导区,聚焦临港、张江、紫竹等,集聚创新要素,推动创新链和产业链深度融合。建设未来产业加速园,遴选若干特色产业园区前瞻布局,发挥未来产业科技园作用,建设一批推动创新成果转化的加速器。打造未来产业试验场,建设未来社区、未来工厂、未来医院、未来商业、未来农业等标杆示范场景。  (三)未来伙伴“携手计划”  培育产业生态主导型企业,鼓励国有企业加强未来产业布局,加大企业创新开放力度,纳入企业年度创新考核。引进培育一批创新型企业,发布硬核科技百强榜单,形成一批在细分领域引领的“未来之星”。依托“浦江之星”计划,构建“科学家+企业家+投资家”整合的项目挖掘与甄别机制。  (四)未来场景“开源计划”  发布早期验证场景,研究未来技术可行性,加速“0-1”的创新突破。发布融合试验场景,支持企业和科研院所联合建设中试基地和验证平台,实施跨界融合示范工程,推动“1-100”产业加速孵化。发布综合推广场景,以大规模示范推动“100-100万”的爆发式增长,加速应用迭代与产业化。  (五)未来人才“雁阵计划”  推出一批面向全球的“揭榜挂帅”项目,充分赋予科学家自主权和决策权,营造自由探索的良好氛围。引进全球顶尖人才、科研团队和创新型企业,建立以市场化为导向的利益风险分担机制,推动研发活动产业化。发挥院士(专家)工作站、博士后科研工作站等平台功能,跟踪未来技术创新成果,培育未来产业创新人才,支持申报各类人才计划。  (六)未来生态“雨林计划”  探索设立市场化主导的未来产业引导基金,鼓励金融机构开展产品和服务创新。推动国际性行业组织落户,支持企业参与制定未来产业标准规范。建立未来产业知识产权保护体系,注重数据安全、产业安全和伦理制度建设。放大世界顶尖科学家论坛、世界人工智能大会等溢出效应,搭建未来产业合作交流平台。联动“海聚英才”全球创新创业大赛,举办未来产业大赛。  四、落实保障措施  (一)加强组织推进  依托市制造业高质量发展领导小组,建立健全市级层面未来产业推进工作机制,加强基础研究、技术创新和产业化一体化部署,扩大产业规模,统筹协调未来产业发展。加强部市合作,争取国家重大工程、重大项目、重要平台等落户上海。加强市、区联动,强化区域布局和要素保障。  (二)加强战略研究  依托市产业技术创新战略咨询委员会,成立未来产业战略咨询专家组。编制未来产业发展白皮书,加快完善统计体系。组建未来产业促进平台,促进资源对接、成果转化,优化未来产业发展生态。  (三)加强政策支持  研究制订推动未来产业发展的支持政策,加大产业高质量发展、战略性新兴产业发展和科技创新行动计划等专项的支持力度。落实研发费用加计扣除、装备首台(套)、科技创新券、创新产品推广等政策,鼓励市场开展消费补贴,培育壮大市场需求。强化人才服务保障和融资支持。各区可结合实际出台专项支持政策。  (四)加强改革创新  健全完善适应未来产业技术更迭和产业变革要求的制度规范。按照包容审慎原则,统筹监管和服务,适当放宽新兴领域产品和服务市场准入,深化科研人才减负松绑的机制政策创新。加快要素市场化配置,强化企业创新主体地位,研究未来产业用地模式,推动数据开放和交易。  (五)加强氛围营造  大力营造鼓励创新、宽容失败、尊重人才、尊重创造的社会氛围与创新文化。加强场景建设,加大试点应用、创新示范案例总结和经验推广的力度。深化科普教育,让更多未来科学种子孕育发芽,为未来产业持续发展筑牢基础。图解提供:上海市经济信息化委
  • 生物中心组织召开“基于超导回旋加速器的质子放疗装备研发”项目推进会
    p   为加强国家重点研发计划“数字诊疗装备研发”重点专项重点项目过程管理,对华工科技股份有限公司承担的“基于超导回旋加速器的质子放疗装备研发”项目的组织实施进行推进,生物中心成立了由数字诊疗专项专家组成员、相关技术专家、财务专家、工程专家等8位专家组成的项目推进专家组,并于2017年12月12日在武汉组织召开了该项目的工作推进会。此次项目推进工作由生物中心董志峰带队,推进专家组成员、生物中心化学药与医疗器械处相关人员出席了会议。武汉市委常委、副市长李有祥,湖北省科技厅副厅长吴麟章,武汉市科技局局长李记泽,项目参与单位华中科技大学党委书记路钢,项目顾问段正澄院士参加会议并讲话。项目负责人马新强以及项目组成员共90余人参与了会议。 /p p   会上,项目相关负责人对项目总体进展、设备研发进度、临床基地及研发生产基地建设、质量体系建设等情况进行了汇报,项目推进组专家查阅了相关文件资料,就项目进展情况及存在的问题与项目相关负责人员进行了深入的交流与讨论,并实地考察了项目承担单位华工科技产业股份有限公司质子放疗装备的研发现场。 /p p   在深入了解项目进展情况及充分交流讨论的基础上,推进组专家形成了相关意见并现场反馈给项目组。项目组代表表示将严格按照生物中心的要求及推进组的意见,进一步明确项目里程碑目标,加快推进项目实施,争取按期完成项目。 /p
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 日本大强度质子加速器核心设备正式启用
    日本大强度质子加速器(j-PARC)的一个核心设备12月23日正式启用,今后科研人员将主要利用加速器产生的中子进行高性能材料和新药开发等研究。   位于茨城县东海村的日本大强度质子加速器是由日本原子能研究开发机构和高能加速器研究机构共同建设的。它由一个330米长的线性加速器和两个同步加速器组成。质子速度经过3个阶段提升可接近光速。用如此高速度的质子轰击金属的原子核,原子核会被击碎并释放出中子、反质子、μ介子、K介子等粒子。   利用释放出的中子,科研人员可探究物质的细微构造,以帮助开发新药、高温超导材料、纳米材料以及燃料电池新材料等。日本原子能研究开发机构科学家西川信一说,一些大学、研究机构和企业已获准利用这一科研设备开展61项课题研究。   质子加速器是探索宇宙形成和粒子微观物质结构的基础研究装置之一,日本大强度质子加速器是该领域利用中子进行研究的重要设备,也是目前全球最重要的大强度质子加速器之一。
  • 上海应物所丰质子核镁22双质子发射研究获进展
    p style=" text-align: justify " & nbsp & nbsp 近日,中国科学院上海应用物理所核物理研究室与中科院近代物理研究所、中国原子能科学院等合作,在兰州重离子加速器装置放射性束流线(RIBLL)上开展的丰质子核β缓发衰变实验测量中,观测到22Mg(镁22)在14.044 MeV的同位旋相似态(IAS态)存在明确的2He(氦2)集团双质子发射现象。相关研究成果发表在《物理快报B》上。 /p p style=" text-align: justify " & nbsp & nbsp 放射性是不稳定原子核的重要特性之一。常见的衰变方式有α、β、γ衰变等,而双质子放射性是在质子滴线附近的偶Z核中可能存在的一种奇特衰变方式,即原子核通过同时发射两个质子的方式进行衰变。双质子发射涉及两个质子的关联与相互作用,发射方式比单个质子的发射过程要复杂得多,因此研究十分困难,而发射机制是该衰变方式中最重要的物理问题之一。双质子发射的机制可以分为三种:第一种为级联发射;第二种为直接三体发射;第三种为2He集团发射。前两种方式基本上是无关联的质子发射过程,后一种方式才是人们感兴趣的双质子发射。由于发射出的两个质子间的动量和角度关联包含了核子波函数的具体形态及核子间的相互作用等信息,因而对核结构的研究具有非常重要的科学意义。目前发现的双质子发射核只有少数几个,这给双质子衰变的系统研究带来了很大的困难。世界上各个国家的核物理实验室都在努力发现更多的双质子发射核,并对包括双质子衰变在内的原子核的奇异放射性进行深入系统的实验及理论研究。 /p p style=" text-align: justify " & nbsp & nbsp 上海应物所研究员方德清、博士研究生王玉廷等在兰州重离子加速器装置的放射性次级束流线(RIBLL)上开展了22Al的β缓发衰变实验测量。22Al被注入厚度约为60微米的硅微条探测器时,完全被阻止在硅微条探测器中的22Al先发生β衰变,布局到22Mg的激发态,处于激发态的22Mg将再发生质子、双质子或g等衰变。实验中,探测器阵列同时测量了衰变发射出的单个或两个质子以及g射线。实验测得的带电粒子能量信号与g射线信号的符合,确认了22Mg存在从14.044MeV激发态到20Ne的第一激发态的双质子发射过程。进一步的理论模拟与实验数据比较得出,上述双质子发射过程的机制有约29%的几率为2He集团发射。 /p p style=" text-align: justify " & nbsp & nbsp 关于22Mg的激发态双质子发射现象,上海应物所马余刚团队曾在2015年通过日本理化学研究所的RIPS束线实验测量已明确观测到在包含14.044 MeV态的较大激发能范围内(12.5~18MeV),存在约30%的2He集团发射机制(Physics Letters B 743, 306 (2015))。 & nbsp & nbsp 此次在RIBLL上开展的实验得到的结论与其结果一致,但由于RIBLL上的实验数据中有发射的两质子能量与g射线的符合,完全确定了该双质子发射是从22Mg的14.044 MeV激发态到20Ne第一激发态的衰变过程。该实验测量结果提供了22Mg的IAS存在稀有的2He集团双质子发射的实验证据,对理解丰质子核的奇异衰变性质具有重要意义。 /p p style=" text-align: justify " & nbsp & nbsp 该研究得到了国家重点研发计划、国家自然科学基金委“重离子物理”创新研究群体等项目的共同资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/a7188f8a-092a-42d3-b51b-623256420928.jpg" title=" W020180807411280688274.jpg" / /p p br/ /p
  • 日本团队合成较高性能质子导电性化合物
    据九州大学官网报道,该校山崎仁丈教授等开发出了能预测质子传导性电解质材料的人工智能(AI)模型,然后仅通过一次实验就发现了较高性能的新型质子导电性电解质。这是将实验研究和数据科学相互融合基础上获得的一项成果。  该团队一直致力于固体氧化物燃料电池(SOFC)的电解质材料研究,并将目标聚焦于在350—450℃下工作的质子导电性钙钛矿氧化物。以往他们已了解到要使金属氧化物表达出质子导电性,必须将该构成物质的一部分元素置换为受主元素,以形成δ氧气缺陷,从而引发质子导入反应。此次研究中,研究小组以置换受主元素的钙钛矿氧化物为对象,合成22种钙钛矿氧化物并收集了高精度的质子浓度数据,结合从其他论文中收集的数据,形成了65种钙钛矿氧化物的761个数据,并交给AI进行学习。然后通过变换化合物成分组合,预测了8613种材料的特性,形成材料特性“地图”,根据“地图”指引即通过实验一次合成质子导电性能较高的锶、锡、氧化钪化合物SrSn0.8Sc0.2O3-δ。相关论文在线发表于美国化学会杂志《ACS Energy Letters》。
  • 合肥研究院提出质子提取反应质谱新技术
    可实现对痕量有机和无机化合物的同时监测   近期,中国科学院合肥物质科学研究院医学物理中心光谱质谱研究室在线质谱检测新原理、新方法研究取得进展,发展的质子提取反应质谱(Proton Extraction Reaction Mass Spectrometry, PER-MS)新技术,实现了对痕量有机和无机化合物的同时监测。此项研究工作发表在《质谱国际杂志》(International Journal of Mass Spectrometry)上。   长期以来,以质子转移反应质谱(PTR-MS)为代表的先进在线质谱技术,在环境、生物、医疗健康、公共安全等领域发挥着重要作用,为痕量挥发性有机物(VOC)的快速定量检测提供了高灵敏技术手段。PTR-MS的工作原理是通过反应离子H3O+与被测物质VOC之间的质子转移反应,将VOC转化为(VOC)H+,从而实现VOC的离子化和后续的质谱探测。早在2008年,光谱质谱研究室科研人员研制了我国首台PTR-MS仪器,并在国际上率先将该技术用于炸药、医疗器械溶剂/杀菌剂残留以及易制毒品的快速检测,研究室储焰南研究员受邀编写了Mass Spectrometry Handbook(John Wiley & Sons, 2012)中的PTR-MS章节。但是,由于H3O+与无机化合物几乎不发生反应,因此,以H3O+为反应离子的PTR-MS技术检测不了无机化合物。   为了解决这个问题,光谱质谱研究室科研人员另辟新径,成功制备了负离子OH-,利用反应离子OH-与VOC之间的质子反方向转移反应,即质子提取反应(PER),将被测物质VOC转化为(VOC-H)-,从而实现VOC的离子化和后续的质谱探测 重要的是,OH-可以与无机化合物例如CO2发生反应,将无机物转化为离子例如CO2OH-。因此,新发展的以OH-作为反应离子的质子提取反应质谱PER-MS,不但能检测有机物,而且也可以检测无机物。   该项研究提出的PER-MS技术,不但丰富了在线质谱内容,而且也为痕量有机/无机物的同时检测,提供了一种新手段。相关技术已经申报了国家发明专利。 质子提取反应质谱(PER-MS)原理示意图
  • 我国成功研制高能质子回旋加速器
    世界首台百兆电子伏紧凑型质子回旋加速器首次出束现场。   调束指令发出,低能量的负氢离子在电场和磁场的作用下不断旋转并加速,在达到百兆电子伏后并引出时,荧光靶上出现一道蓝色的光斑。中核集团中国原子能科学研究院自主研发的世界首台100MeV(兆电子伏)质子回旋加速器4日首次调试出束,标志着该院承建的国家重点科技工程&mdash &mdash HI-13串列加速器升级工程的关键实验设施建成,也标志该工程重大里程碑节点的实现。这将使我国跻身少数几个拥有新一代放射性核束加速器的国家。   HI-13串列加速器是我国上世纪80年代初从美国引进的唯一一台大型静电式串列加速器,曾为我国核物理基础研究、核技术应用开发等发挥了重要作用。为适应国内外科学技术发展形势,构筑我国加速器装置先进试验平台,2003年7月,HI-13串列加速器升级工程经原国防科工委批准立项。工程建成后将在已有串列加速器实验室的基础上,逐步形成一器多用、多器合用、多领域、多学科的科学研究平台,填补我国中能强流质子回旋加速器、高分辨同位素分离器和超导重离子直线加速器的空白,达到目前国际同类装置的先进水平,使我国成为少数几个拥有新一代放射性核束加速器的国家之一。 此次建成的100兆电子伏质子回旋加速器直径6.16米,是国际上最大的紧凑型强流质子回旋加速器,也是我国目前自主创新、自行研制的能量最高的质子回旋加速器。它的研制成功,表明我国掌握了特大型超精密磁工艺技术、大功率高稳定度高频技术、大抽速低温真空技术等一批质子回旋加速器核心技术,取得了一系列创新性成果。 据介绍,加速器是核科学研究的重要平台,HI-13串列加速器升级工程建成后,将广泛应用于核科学技术、核物理、材料科学、生命科学等基础研究和能源、医疗健康等核技术应用研究。 中国原子能科学研究院是我国加速器起步和发展的摇篮,1958年,我国第一台回旋加速器在这里建成,开创了我国原子能事业的新时代。60多年来,原子能院引进、开发了各种能量和类型的加速器30多台,为我国低能核物理实验、&ldquo 两弹一星&rdquo 的研究、国民经济发展等做出了重要贡献。
  • 氢能电池质子交换膜检测方案及仪器配置
    在新能源技术飞速发展的今天,氢能电池以其高效、清洁、可再生的特点,成为了未来能源领域的重要方向。质子交换膜(Proton Exchange Membrane, PEM)作为氢能燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)的核心部件,其性能直接决定了燃料电池的整体效率、稳定性和安全性。因此,制定科学合理的质子交换膜检测方案,并配置相应的精密仪器,对于保证氢能电池的质量至关重要。一、质子交换膜检测方案概述质子交换膜检测方案主要包括以下几个方面:气体透过率测试、力学强度测试、厚度均匀性测试以及电化学稳定性测试。这些测试项目旨在全面评估质子交换膜的综合性能,确保其满足燃料电池的使用要求。1. 气体透过率测试气体透过率是评价质子交换膜阻隔性能的关键指标。高气体透过率意味着膜的气体阻隔性能差,会导致氢气和氧气在膜内直接接触,降低电池的开路电压和效率。因此,气体透过率测试是质子交换膜检测的首要任务。测试方法:通常采用压差法进行测试,即将质子交换膜置于测试装置中,通过控制两侧的气体压力差,测量气体通过膜的速率。泉科瑞达WVTR-F1压差法气体渗透仪是这一测试的理想选择,它符合GB/T 20042.3-2022《质子交换膜燃料电池第3部分:质子交换膜测试方法》标准,能够精确测量质子交换膜在各种温度条件下的气体透过率、扩散系数、溶解系数和渗透系数。2. 力学强度测试质子交换膜的力学强度直接关系到其耐机械损伤的能力和燃料电池堆的使用寿命。因此,对质子交换膜进行拉伸强度、断裂拉伸应变、弹性模量和180°剥离强度等力学性能测试至关重要。测试仪器:推荐使用泉科瑞达ETT-01智能电子拉力试验机,该设备集成了拉伸、剥离、撕裂等多种测试功能,采用高精密力值传感器和闭环控制系统,能够准确测量质子交换膜的力学强度参数,满足GB/T 1040.3-2006《塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件》等相关标准。其自动化操作和数据分析功能,可大大提升测试效率和数据准确性,为科研人员提供可靠的力学强度评估依据。3. 厚度均匀性测试质子交换膜的厚度均匀性是影响其导电性能和耐久性的重要因素。不均匀的厚度分布可能导致电流分布不均,进而影响电池的整体性能。因此,采用高精度仪器对质子交换膜进行厚度均匀性测试显得尤为重要。测试仪器:推荐使用泉科瑞达CHY-02膜厚测量仪,该仪器采用接触式测量技术,能够实现对质子交换膜表面各点厚度的快速、准确测量,并生成详细的三维厚度分布图,直观展示膜的厚度均匀性状况。其高测量精度和重复性,确保了测试结果的可靠性和一致性。综上所述,通过科学合理的质子交换膜检测方案及精密仪器的配置,可以全面评估质子交换膜的综合性能,为氢能燃料电池的研发和生产提供有力支持。随着新能源技术的不断进步,我们期待在质子交换膜检测技术方面取得更多突破,推动氢能产业的快速发展。
  • 怀柔50MeV质子回旋加速器正式交付使用
    5月25日,记者从中国科学院国家空间科学中心获悉,位于北京怀柔科学城的怀柔50兆电子伏特(MeV)质子回旋加速器设备完成试运行,正式交付使用。该加速器主要用于开展空间辐射测试,将为空间辐射环境效应测试与分析、空间抗辐射防护设计与应用研究提供测试条件,支撑辐射环境探测及空间辐射环境应用,为我国航天器和航天员的安全保驾护航。在复杂的太空环境中,高能质子是空间辐射的重要来源,且能穿透航天器外壳进入航天器内部,对航天器的芯片和材料造成辐射损伤,对航天员的健康和航天设备的正常工作构成严重威胁。若能在地面通过相关装置模拟出太空的辐射环境,开展相关研究,就能更方便地对辐射环境进行控制,对辐射过程相关参数进行监测,更加深入地了解空间辐射环境效应的规律特征。在此基础上,可以对航天器相关器件和航天服进行抗核加固,使其能够抵抗恶劣的空间环境。但是,目前国内空间辐射效应测试条件较欧美等航天强国还存在差距。2017年开始,中国科学院国家空间科学中心以空间科学系列卫星的抗辐射分析测试为牵引,提出设计要求,由中国原子能科学研究院研制出这套50MeV质子回旋加速器。怀柔50MeV质子回旋加速器设施是北京怀柔科学城第一批交叉研究平台之一的“空间科学卫星系列及有效载荷研制测试保障平台”中的重要组成部分,主要由主磁铁、主线圈、高频系统、真空系统、离子源与注入线、束流管线、控制系统和剂量监测与安全联锁系统等部分组成,加速器结构紧凑、体积小、效率高、调节方便,关键技术指标达到国际先进水平,填补了国内30-50MeV能量段质子辐照试验条件的空白。怀柔50MeV质子回旋加速器于2017年获得立项批复启动建设;2022年7月加速器首次成功出束,进入束流精细调节和试运行阶段;2023年4月完成技术验收测试。加速器在试运行阶段先后为航天科技集团五院、中国航天员训练中心、中国科学技术大学、中国科学院微电子研究所等国内30余家单位开展了单机、电路板级、器件、材料等系列样品的质子辐照实验测试。据悉,未来,怀柔50MeV质子回旋加速器将继续发挥北京怀柔科学城核心区的区位和大科学装置集群测试优势,在光电及线性器件位移损伤效应、低轨道航天器单粒子效应、太阳电池辐射损伤效应、航天员空间环境安全保障等领域的中发挥重要作用。
  • 质子半径精确到0.833飞米
    p   据物理学家组织网近日报道,英国研究人员精确测量出了质子半径:0.833飞米,向解决过去10年来一直困扰物理学家的质子半径之谜迈出了关键一步。解决这一谜团对理解物理定律意义重大,比如描述光和物质如何相互作用的量子电动力学理论。 /p p   科学家们原以为他们知道质子的大小,但2010年,一个物理学家团队测量到质子半径比预期小4%,这让他们困惑不已。至此,研究人员就一直在努力解决这两个质子半径值不一样的难题,这也是当今基础物理学界一个重要的未解之谜。 /p p   此前测量质子半径使用普通的氢,2010年科学家首次使用μ介子氢来确定质子大小。当时,他们研究了一种奇特的原子——其中电子被一个μ介子(电子较重的“表亲”)取代。2017年,科学家使用氢气测得的结果与2010年测得的结果一致 而2018年一项同样使用氢气的实验获得的结果则与2010年前的数值相当。 /p p   在最新研究中,约克大学科学学院的研究人员提出了一种基于电子的新测量方法,来测量质子的正电荷延伸了多远。他们利用自己开发的频偏分离振荡场(FOSOF)技术进行了高精度测量。他们在测量中使用了一束快速氢原子束(由质子通过分子氢气靶产生),新方法使他们能够对质子半径进行基于μ介子的测量,与2010年的测量结果相当。 /p p   本次测量得到的质子半径为0.833飞米,不到万亿分之一毫米,比2010年前普遍认为的半径值约小5%。研究负责人、物理与天文学系的埃里克· 海瑟尔斯教授说:“确定质子大小所需的精确度,让本次测量成为我们实验室尝试过的最困难的一次。经过8年研究,我们终于做到了。” /p
  • 迄今最精确质子质量值有了
    11月30日,据《科学》报道,美国佛罗里达州立大学原子物理学家Edmund Myers和David Fink将两个离子限制在一个电磁陷阱中,让它们连续转动数周,并以极高的精度比较它们的质量。随后,他们得出了迄今为止最精确的质子质量估值:1.007276466574±10-12 amu(原子质量单位)。这串数字可能帮助科学家寻找到新的力。相关研究结果发表于《物理评论快报》。  为确定轻原子核(如质子)质量,科学家运用物理学方法,将质子这样的带电粒子垂直射入磁场,磁场会将其推向一边,这样质子就会以显示粒子质量的频率旋转。在实践中,为了提高测量精度,物理学家通过比较两种不同粒子的频率以测量它们的质量比。  例如,在2020年,Myers和Fink测量了氘核(由一个质子和一个中子组成的原子核)和一个电离氢分子(由两个化学结合的质子组成)的质量比。这两个粒子具有相同的电荷和几乎相等的质量,所以它们以几乎相同的频率运行,增加了测量的精度。  为了使氘核和氢离子在相同的条件下运行,Myers和Fink把它们放在同一个电磁陷阱中,并持续数周。他们将其中一个放置在一个直径4毫米的大轨道上,另一个在陷阱中心40微米的轨道上旋转,每10分钟交换一次。然而,即使是这种技术也不足以确保两个粒子的测量结果是完全可比的。Myers说:“在这10分钟内,磁场会发生变化。”  现在,Myers和Fink已经解决了这个问题。他们重现了麻省理工学院20年前开发的技术,同时旋转氘核和陷阱中心的氢离子。研究人员将离子频率的精度提高了4倍,利用一些理论结果,他们能够确定氘核与质子的质量比为万亿分之四点五。  最后,为了估计质子的质量,Myers和Fink将他们的测量比率与德国马克斯普朗克核物理研究所去年发表的一项对氘核质量极其精确的测量结果相结合。新的质子质量估计的不确定性是国际科学理事会数据委员会官方平均值的1/5。  然而,该结果还不能为质子质量设定一个新的值。Myers和Fink利用电子束从氢分子中撞击出一个电子,从而产生了被捕获的氢离子。这个剧烈的过程使离子带着内部能量振动和旋转。根据量子力学,离子的振动能量或转动能量的量是离散的。当离子每次辐射出振动能量时,实验者可以观察到它的质量在下降。但为了估计它每一步的转动能是多少,Myers和Fink依赖于理论的推论,这带来了一些不确定性。  未参与该研究的中央密歇根大学核物理学家Matthew Redshaw说,即使存在一些不确定性,但数据表明,他们估计的质子质量已经是迄今最精确的值。  荷兰阿姆斯特丹自由大学原子和分子物理学家Jeroen Koelemeij介绍,其团队正在使用激光创造和捕获已知振动和旋转状态下的氢离子。这项技术可能会与Myers和Fink的方法相结合,以减少不确定性。
  • 自由电子激光装置和反质子加速器研究取得进展
    欧洲自由电子激光装置(EXFEL)及反质子和离子研究装置(FAIR)是德国牵头组织的两个国际合作重大科学装置,我国参与了其中部分探测器研制、低温系统研究、高性能波荡器研制、超导材料及特殊材料研究等,主要目的是跟踪国际物理学最前沿的发展趋势、开展相关关键技术研究、锻炼科研队伍、提高基础研究水平。   973计划项目“自由电子激光装置和反质子加速器重大基础研究”自立项以来,在FAIR加速器相关科学问题研究、大型实验探测器研究,EXFEL高性能超长波荡器系统物理及关键技术研究、大型恒温器关键技术研究、超导加速器用超导腔以及大晶粒高纯铌片的研制等方面取得多项重要进展。例如:在反质子加速器重大基础研究方面,完成了大型室温和超导二极磁铁样机的研制,并通过了国内外专家测试,同时完成了非烘烤超高实验真空样机研制和测试,主要性能达到或超过了设计指标,达到国际先进水平 在高性能超长波荡器系统物理及关键技术研究方面,我国研究人员参加了德国组织的波荡器系统总体设计、组织开展样机研究及磁测实验,了解并逐步掌握了高性能波荡器涉及的理论和关键技术 在大型恒温器关键技术研究方面,对最关键的漏热和支撑部件进行专门研究,在液氮冷激、压力、真空、漏率等环节攻克了一系列难关,成功研制出高质量,符合和优于国际标准的EXFEL恒温器样机,样机在零下271度低温实验下,各项指标均优于设计标准,并已经被德国成功应用在其试验装置上,为今后国内各种大型恒温器的研制奠定了研究基础 在超导腔相关的研究方面,研制出了用于超导加速腔的大晶粒高纯高性能的铌片,各项性能指标均能满足要求,并已研制出低电阻玻璃和高计数率MRPC样机。在超导加速器用大晶粒高纯铌片的研制、大晶粒9-CELL超导腔的研制和物理性能研究方面取得重要进展,材料性能达到国际先进水平,东方钽业已列入EXFEL供应商名单 在STAR-TOF MRPC探测器的生产方面,成功研制并批量生产了MRPC探测器,产品合格率超过95%,已提供RHIC-STAR使用。此外,在加速器设计思想、新材料和特殊材料性能探索和使用方面也取得了多项成果。   该项目由中国科学院高能物理所姜晓明研究员为首席科学家,近代物理所、北京大学、清华大学、东方钽业集团等研究单位参加。8月6-7日,项目年会在宁夏银川举行,陈佳洱、王乃彦、陈和生、张焕乔、方守贤、陈森玉、何季麟等来自国内高能物理、加速器和特殊材料研究的专家,科技部基础研究司、中科院基础局负责人参加了会议。
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 赛默飞电镜Apreo2在质子交换膜燃料电池中的应用
    燃料电池作为一种利用氢气或醇类的发电设备,通过电化学反应将氢气或醇类的化学能直接转化为电能,不受卡诺循环(Carnot cycle)的限制,具有高效和清洁的特点,在新能源领域受到广泛的关注,并在航空航天、运载交通和便携移动设备中具有良好的应用前景。 燃料电池按照电解质和工作温度的不同,可以分为:质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFC)、固体氧化物燃料电池(Solid oxide fuel cell,SOFC)、熔融碳酸盐燃料电池(Molten carbonate fuel cell,MCFC)、磷酸盐燃料电池(Phosphoric fuel cell,PAFC)和碱性燃料电池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源车辆领域中具有发展前景的动力源。图1 燃料电池的分类及技术状态 PEMFC的发展可以追溯到20世纪60年代,美国国家航空航天局(NASA)委托美国通用电器公司(GE)研制载人航天器的电池系统。但受当时技术的限制,PEMFC采用的聚苯乙烯磺酸膜在服役时易于降解,导致电池寿命很短。GE随后将电池的电解质膜更换为杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解决了上述问题,但是阿波罗(Appollo)登月飞船却搭载了另一类燃料电池——AFC。受此挫折之后,PEMFC技术的研发一直处于停滞状态。 直到 1983年,加拿大巴拉德动力公司(Ballard Power System)在加拿大国防部资助下重启 PEMFC的研发。随着材料科学和催化技术的发展,PEMFC技术取得了重大突破。铂/碳催化剂取代纯铂黑,并且实现了电极的立体化,即阴极、阳极和膜三合一组成膜电极组件(Membrane electrode assembly,MEA),降低了电极电阻,增加了铂的利用率。20世纪90年代以后,电化学催化还原法和溅射法等薄膜电极的制备技术进一步发展,使膜电极铂载量大幅降低。性能的提升和成本的下降也促使 PEMFC逐渐从军用转为民用图2 燃料电池汽车历史 质子交换膜燃料电池(PEMFC)由阳极、质子交换膜、阴极组成,利用水电解的逆反应,连续地将氢气和氧气通过化学反应直接转化为电力,并且可以通过多个串联来满足电压需求。 PEMFC发电的基本原理:氢气进入燃料电池的阳极流道,氢分子在阳极催化剂的作用下达到 60℃左右后开始被离解成为氢质子和电子,氢质子穿过燃料电池的质子交换膜向阴极方向运动,因电子无法穿过质子交换膜,所以通过另一种电导体流向阴极;在燃料电池的阴极流道中通入氧气(空气),氧气在阴极催化剂作用下离解成氧原子,与通过外部电导体流向阴极的电子和穿过质子交换膜的氢质子结合生成纯净水,完成电化学反应。图3 质子交换膜燃料电池(PEMFC)工作原理 膜电极(Membrane Electrode Assembly, MEA)是燃料电池发电的关键核心部件。膜电极由质子交换膜(PEM)、膜两侧的催化层(CL)和气体扩散层(GDL)组成,燃料电池的电化学反应发生在膜电极中。质子交换膜的功能是传递质子,同时隔离燃料与氧化剂。目前常见的膜材料是全氟磺酸质子交换膜,代表厂家Gore公司的Gore Select增强型质子交换膜、杜邦公司的Nafion系列。 催化剂主要控制电极上氢和氧的反应过程,是影响电池活化极化的主要因素。目前氢燃料电池的催化剂主要为三个大类:铂(Pt)催化剂、低铂催化剂和非铂催化剂。Pt作为催化剂可以吸附氢气分子促成离解,是目前需要商用的;但Pt稀缺性强,我国储量也不丰富,减少铂基催化剂用量是降低燃料电池系统商用成本的重要途径。 气体扩散层的主要作用是支撑催化层,传递反应气体与产物,并传导电流。基材通常为多孔导电的材质,如炭纸、炭布,且用PTFE等进行憎水处理构成气体通道。目前市场上商业化的气体扩散层基材供应商主要包括日本Toray、德国SGL与Freudenberg、加拿大Ballard等。 三位一体检测系统是 Apreo 2 扫描电镜独特的镜筒内检测系统。它由三个探测器组成:两个极靴内探测器(T1、T2)和一个 镜筒内探测器(T3)。这一独特的系统可提供燃料电池膜电极MEA成分、形貌和表面特征等不同层次的详细信息。 图4 赛默飞电镜及三位一体检测系统示意图图5 膜电极MEA示意图对其对应的显微结构 MEA的结构设计和制备工艺技术是燃料电池研究的关键技术,它决定了燃料电池的工作性能。 另外,质子交换膜PEM是燃料电池的核心部件。它的性能高度依赖于燃料电池电堆的堆叠和系统设计,尤其是PEM所经受的工作条件。这项看似微小的技术却是关键所在。燃料电池在实际应用环境中的耐久性是另一个关键性能因素。根据美国能源部的规定,在实际环境中行驶的条件下,燃料电池使用寿命应达到约5,000小时。为了达到这些目标,PEM设计必须考虑两种类型的耐久性,机械耐久性和化学耐久性。 机械耐久性:工作过程中的相对湿度循环会导致PEM的机械性能衰减。相对湿度的升高和降低会引起PEM膨胀和收缩,从而导致MEA中出现裂纹和孔洞。久而久之,这会造成气体渗透增加以及效率损失,并导致燃料电池电堆发生灾难性故障。通常,未经增强的PEM会通过增加厚度来提升耐久性,导致电导率降低,因此功率密度也更低。业内已广泛认可,化学稳定性优异的ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂,三明治结构)可显著减少这种面内膨胀,提高RH循环耐久性,并延长电池电堆的使用寿命。图6 膜电极的横截面显微结构图,ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂) 化学耐久性: 燃料电池需要在恶劣的化学环境中工作。燃料电池工作过程中产生的有害自由基会与离子聚合物 (全氟磺酸树脂是一种离子聚合物)发生反应,造成离子聚合物性能下降,这种性能衰减会造成燃料电池性能的持续下降,增加气体渗透,并导致PEM和燃料电池失效。PEM的化学耐久性不仅受PEM的自身属性影响,还受PEM的工作环境影响。减少PEM厚度有助于改善高温下的性能。因此,对不同结构层厚度的准确测量,就非常重要。 催化层中的催化组分为催化剂,目前Pt/C载体型催化剂是PEMFC常用的催化剂,由纳米级的Pt颗粒(3-5nm)和支撑这些Pt 颗粒的大比表面积活性炭(20-30nm)构成。质子交换膜燃料电池商业化进程中的主要阻碍之一是价格高昂的贵金属催化剂,从而大量的研究工作集中于开发新型催化剂以降低铂载量和增强催化剂的耐久性。催化剂的合成方法决定催化剂的结构、表面形貌和粒径分布等,这也将直接影响催化剂的性能。图7 膜电极组催化层的纳米pt催化剂,3-5nm:(左图)T1探测器检测,(右图)T3探测器检测图8 膜电极组催化层的纳米pt催化剂,3-5nm:VeriosTLD 探测器检测 50万倍和150万倍(底片显示) PEMFC的催化层是由各种不同尺度的颗粒和孔组成的,其内部的物理化学过程十分复杂,包括电化学反应、电子的迁移、氢气和氧气的扩散、质子的迁移和扩散,还有水的迁移、扩散、渗透、蒸发和液化,这一切的实现都离不开催化层的微孔结构。 催化层是由黏结剂( 如Nafion 或PTFE) 黏结起来的 Pt /C 颗粒的团聚体组成的,各颗粒之间有许多的微孔。Watanabe 等将催化层内的孔分为两大类: 一类是颗粒团聚体内部各颗粒之间较小的空隙,被称为主孔(孔径小于100nm的孔属于主孔) 另一类则是各颗粒团聚体之间的空隙,被称为次孔(大于100nm 的孔属于次孔)1。催化层内的电催化反应主要发生在主孔内,而作为黏结剂的PTFE更容易进入次孔,次孔是气体和水传输的主要通道。 备注1:Shin 等实验发现,催化层中只有孔径在70nm 以下的孔才不会被聚合物阻塞住,表明其主、次孔的分界为 70nm;Uchida 等认为主、次孔孔径分界为 40nm,由于全氟磺酸树脂和PTFE-C只会存在于次孔中。 催化层的结构,主要指的就是其微孔结构,由于主孔和次孔的不同作用,不同的微孔总容量和主、次孔容量比将导致迥异的电池性能。根据主、次孔理论,主孔较多时,可增加活化反应位,有利于减少催化层内的活化损失 次孔较多时,有利于质量传输,可减少质量传输损失。因此,维持足够数量的孔隙率和较好的主、次孔比例成为了研究催化层结构优化所要关注的重点。赛默飞电镜的孔径分布软件可满足此需求。图9 催化层结构孔隙率检测 目前,大多数 MEA 的催化层都是由一定比例的电催化剂( 如 Pt /C) 和 Nafion 组成。在常用 MEA中Nafion 在催化层中的作用有以下 3点: ( 1) 将电化学反应活性区扩大延伸至催化层内部,并有效传导质子 ( 2)黏结作用,保持催化层的机械稳定性 ( 3) Nafion上的亲水基团有保湿作用,防止膜脱水。 尽管在催化层中加入一定量的 Nafion 能有效提高催化剂的利用率,但是催化层中 Nafion含量若过多,不仅会大量覆盖 Pt /C 颗粒,阻碍电子传导,还可能阻塞催化层内部的微型孔,导致内部水和反应气体的传输通道受阻,这样会大大减弱电池的性能,尤其是在高电流密度时的性能。因此关于催化层中 Nafion 与催化剂的比例问题,以及如何识别三相1,一直受到研究者们的广泛关注。 备注1:在PEMFC中,位于三相区(3-phase region)的Pt颗粒会参与反应,通常三相区表示载体C、催化剂Pt、离聚物(Ionomer,如全氟磺酸)图10 催化层离聚物与三相反应区。 Apreo 2可以快速识别离聚物/C、Pt/C及三相区 PEMFC的普及和商业化目前还受电池性能和价格的影响,MEA催化层结构的不断改善也是PEMFC 实现商业化的有效途径之一。参考资料1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.苏凯华. 新型质子交换膜燃料电池催化层结构及其性能研究 [D]. 上海: 上海交通大学, 2015.5. 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件 [J]. 化学进展, 20156. 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构 [J]. 化学进展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of themicrostructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
  • “基因检测+靶向治疗”破解卵巢癌治疗难题
    宫颈癌、内膜癌、卵巢癌是妇科领域的三大恶性肿瘤,其中,卵巢癌因死亡率排第一而被称为“妇癌之王”和 “沉默杀手”,其恶性程度高、复发率高、预后差是影响患者生存时间的最突出问题。“任何肿瘤的早期诊断都是治疗中的先决条件,卵巢癌的早期诊断仍是难题,有约70%的患者发现卵巢癌就是晚期状态,这是卵巢癌治疗的最大难点。”10月28日,在“薰衣草花环”公益活动上,北京大学肿瘤医院妇瘤科主任医师高雨农教授接受媒体采访时表示。图为高雨农教授“在中国差不多有1/4的病人存在BRCA基因突变。”高雨农教授表示,有研究发现,一般女性终身发生卵巢癌风险约为1.3%,而BRCA1突变携带者,终身发生卵巢癌风险可高达39%,BRCA2突变携带者,终身发生卵巢癌风险可升高至11%。所以说,对于有卵巢癌家属史的女性而言,BRCA基因检测可以作为预防卵巢癌的手段。《卵巢癌诊疗指南(2022年版)》也强调了基因检测尤其是BRCA检测的重要性。指南提出,对于BRCA1和BRCA2胚系突变携带者,推荐从30—35岁起,开始定期进行盆腔检查、血CA125和经阴道超声的联合筛查。随着临床研究的开展和治疗手段的优化,卵巢癌治疗越来越精准,“手术+化疗+靶向治疗”让患者的生存质量明显改善、生存期不断延长。高雨农教授指出,在治疗的过程中,卵巢癌的治疗是按一定的程序,比如说化疗、手术,包括靶向治疗,甚至部分卵巢癌患者可以通过接受免疫治疗获益,但是有一个非常大的问题就是在治疗过程中很容易出现耐药,耐药以后的卵巢癌治疗起来是非常困难,所以卵巢癌的治疗,尤其是晚期卵巢癌的治疗,它治疗的过程中伴随着她的耐药、复发,治疗再治疗。“卵巢癌现在是慢病状态,它会有一个持续治疗的阶段。”近年来,在卵巢癌的靶向治疗中,我们也能看到长足的进步。例如PARP抑制剂已成为我国卵巢癌患者治疗的重要选择之一。PARP抑制剂是一类新型的上皮性卵巢癌靶向治疗药物,主要通过合成致死机制介绍肿瘤细胞的凋亡,是近年来卵巢癌治疗领域的重大进展。高雨农教授指出,在病人接受了手术化疗的治疗之后,用这样的靶向药物进行维持治疗。这种治疗能够延长患者的复发间隔,从而改善患者的生存期。过去只有手术和化疗,病人只能“等待”复发,没有什么办法能让病人活得更长、复发得更晚,现在PARP抑制剂出现了之后,确实有了很大的改观。对于患者而言,多次复发造成严重的生理和心理负担使患者常常难以坚持治疗,丧失信心,高雨农教授认为,肿瘤患者及家属需要对规范治疗有正确认识,初期的治疗计划对患者十分重要,走一步以后没有回头路,只能往下走,所以很难,肿瘤治疗是需要非常专业的医生,投入治疗,才给患者更多的治愈机会。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制