当前位置: 仪器信息网 > 行业主题 > >

金葡菌

仪器信息网金葡菌专题为您整合金葡菌相关的最新文章,在金葡菌专题,您不仅可以免费浏览金葡菌的资讯, 同时您还可以浏览金葡菌的相关资料、解决方案,参与社区金葡菌话题讨论。

金葡菌相关的资讯

  • 速冻食品新国标为何宽容“金葡菌”
    就在两大速冻食品知名品牌近期相继检出金黄色葡萄球菌(以下简称"金葡菌")而陷于风口浪尖之时,卫生部正在征求意见的速冻食品"新国标",金葡菌却从"不得检出"变为可有限检出。   我国现行《速冻预包装面米食品卫生标准》规定金葡菌等致病菌不得检出。而卫生部今年9月公布的《速冻面米制品食品安全国家标准(征求意见稿)》,将该菌群检测由定性转向定量。即每批产品抽检的5个样品中,至多只能有1个样品每克生制品中检出的金葡菌菌群含量至多为1万个。   在各种行业标准都在趋严的今天,我国对金葡菌的"宽容"引起坊间对新国标开倒车的质疑。记者比较国外同类规定后发现,除个别食品外,国际上也是允许在食品中检出少量金葡菌的。因此,从这个意义上说,新国标并未开倒车。   ●对比国外   检测金葡菌 欧美都有限定   由于饮食习惯的不同,国外标准中很少有专门针对速冻食品的要求。不过,参照其他食品有关金葡菌的要求,还是可以看出,国外的标准同样是以"定量"为主,即允许少量检出,但对检出的菌群数量有严格要求。   美国FDA对速冻食品中金葡菌的规定也是允许检出。如生虾中允许检出不超过每克100个菌群,其他水产品允许检出每克10000个菌群。一些州的标准比较严格,如内布拉斯加州禁止在生蚝、蛤蜊以及海鲜熟食中检出该菌群。   日本的规定相对宽松,肉制品中金葡菌不得超过每克1000个菌群。冷冻食品中,需氧微生物(包括金葡菌)的含量为每克最多3百万个菌群。冷冻贝类食品为每克不得超过10万个菌群。   国际微生物规格委员会(ICMSF)颁布的《食品微生物限量规定》中涉及金葡菌的标准稍多一些。速冻即时的烘焙食品规定为可检出每克100个菌群以下为优质,10000个以上则为超标。   其他如蟹肉、干酪、谷物制品中金葡菌的限量也在100到10000个菌群之间,例外的是婴儿用的干燥食品,标准为不得超过每克100个菌群,每克10个菌群以下为优质。   欧盟对金葡菌的要求最为严格,不过欧盟的规定是针对奶酪、奶粉制品,要求在25克样本中不得检出金葡菌,对于其他食品则无此规定。   ●历史回眸   美日标准宽松 监管却不手软   表面上看,国外的标准比我国现行国标要宽松,但标准的相对宽松并不意味着监管不严。   今年6月,美国FDA就因金葡菌超标召回了一家公司生产的奶酪制品。而近年来著名的因金葡菌超标导致的召回事件,当属日本的"雪印奶粉"事件。   2000年,日本雪印公司奶粉、低脂肪牛奶、酸奶等3种牛奶制品被查出金葡菌毒素超标,造成1.5万名消费者中毒,所有产品被迫全部召回。   之后日本全国近万家食品超市拒售"雪印"大阪工厂生产的低脂牛奶,进而使"雪印乳业公司"的市场占有率,由高高在上的第一位急剧下滑到第三位,公司总裁被迫公开谢罪并引咎辞职。   ●金葡菌   金葡菌是化脓感染中最常见的病原菌,可引起局部化脓感染,也可引起肺炎、心包炎等,甚至败血症、脓毒症等全身感染。据美国疾控中心统计,金葡菌引起的感染病例仅次于大肠杆菌。   金葡菌毒素是世界性的卫生难题,在美国由其引起的食物中毒占到细菌性食物中毒的33%,加拿大的比例更高达45%.   金葡菌虽然"杀伤力"不小,但并不难杀灭,在80℃的高温下,持续加热30分钟可杀死。对于速冻食品而言,只要经过沸水煮(或蒸)熟,金葡菌就可被杀灭,对人体健康不会造成直接危害。   相关新闻:三全承认速冻产品被检测出病菌 已启动召回程序
  • 速冻食品新国标公布 允许限量金葡菌
    对速冻食品中金黄色葡萄球菌超标的争论有了明确答案。昨日(11月25日),卫生部发出通知,今年12月21日起,新国标将正式实施,这意味着,速冻食品中,金黄色葡萄球菌将由不得检出变为限量检出。   此前,三全、思念、湾仔码头等国内知名速冻食品品牌产品,纷纷被检出金黄色葡萄球菌超标,而有品牌公开表示,现行国标,金黄色葡萄球菌是不得检出的,但是当时正在征求意见的新国标里,则可限量检出,如果按照新国标,则产品合格。   而卫生部昨日的通知,也明确,食品安全国家标准《速冻面米制品》(GB19295-2011),将于2011年12月21日起正式施行。卫生部表示,新标准根据致病菌风险评估结果,调整了沙门氏菌、金黄色葡萄球菌的限量规定,使其更具科学性和合理性。   据悉,新国标适用范围包括了饺子、馄饨、包子、粽子、汤圆等速冻预包装食品。卫生部有关负责人说,在2011年12月21日前,鼓励企业按照新标准组织生产经营。自2011年12月21日起,企业必须按照新标准组织生产经营。   ■ 回应   三全食品:已召回并销毁不合格产品   在《速冻面米制品》食品安全国家新标准中,金黄色葡萄球菌的限制数量由原来的“不得检出”改为限量检出。对此,三全食品相关负责人昨日表示,对新国标不便做出评论。   对于新国标的发布,有消费者担心,企业前期被曝光检测出含有金黄色葡萄球菌的产品,在新国标发布后已经属于合格产品,那前期企业召回的产品是否会继续流向市场,未召回完的产品是不是就不再继续召回了?   三全上述负责人昨日表示,依照国家规定,企业已经对检测出的几个不合格批次产品在全国范围内启动了召回程序,召回的产品全部销毁。“已检测出不符合旧国标的产品就要全部召回,召回的产品更不会二次流向市场。”该负责人称。   ■ 追问   “金葡菌”检测标准是否降低?   检验方法已修订,新标准“更科学合理”   多品牌速冻食品被查出金黄色葡萄球菌超出现行标准以来,很多地方的超市采取了下架措施,同时,食品标准也再次陷入“降低门”的质疑中。昨日,作为标准的制定者之一,中国疾控中心营养与食品安全所研究员刘秀梅说,降低的结论是不对的。   刘秀梅说,过去,在微生物检验方法中没有定量的检测方法,也就不可能规定检出这个食品里含有多少致病菌。但是目前,随着引进一些微生物定量检测方法,金黄色葡萄球菌检验方法已被修订,在这一背景下,就可以给金黄色葡萄球菌规定限量值。所以,新标准在采样范围、采样量和限量要求中,应该是更科学、更合理的。   新国标是否被企业“绑架”?   “标准制定借鉴国际相关规定,但也要考虑国情”   企业召回的不合格速冻食品,在12月21日后按新国标可能又合格了。有市民质疑,新国标是否是相关大企业提出?   对此,刘秀梅表示,标准修订的全过程是认真推敲的,指标并不是企业提出来,是专家借鉴了国际食品法典和国际食品微生物标准委员会的规定。   该标准从2006年立项到2008年完成了初步的版本。参与单位是中国食品科学技术学会等。“在这个过程中,有记载的研讨会至少有7次,参与标准研讨和提出意见的有300多人,我们的编制说明就有25页。”   不过刘秀梅坦言,制定的食品安全标准,保证安全是第一,但还要考虑到我国国情和行业产业的发展。她说,国际食品法典委员会2011年新修订的程序手册上说,“(包括标准在内)的风险管理是一个与各利益相关方磋商后,权衡各种政策方案……并在必要时,选择适当的预防和控制措施的过程。”
  • 津津有“卫”丨食品中米酵菌酸质谱分析技术
    自然界中广泛存在的椰毒假单胞菌很容易在食品表面生长,在26摄氏度、中性偏酸的条件下能产生大量米酵菌酸(Bongkrekic acid),分子量486.605。发酵玉米面制品、河粉、肠粉、粿条、米粉等湿米粉,以及银耳和木耳等食物,受椰毒假单胞菌污染而产生米酵菌酸毒的风险比较大。米酵菌酸具有很好的耐热性,正常的烹饪加热无法让其失活,食品一旦产生了米酵菌酸毒素,加热后食用仍可引起中毒。 目前我国仅对银耳中米酵菌酸的最高含量规定为250 μg/KG,其它食品中尚未有具体规定。米酵菌酸结构式 液相色谱质谱联用技术分析食品中米酵菌酸 样品前处理:称取2 g试样(精确至0.01 g)于50mL离心管中,加入25 mL 1%氨水80%甲醇水溶液,充分混匀,超声提取30 min(干样超声前需要暗处放置1 h),10000r/min离心5 min,取上清液5 mL于PAX小柱(阴离子固相萃取小柱,60mg/3 mL,预先用3 mL甲醇和2 mL水活化),待流干后依次用2 mL水和3 mL甲醇淋洗除杂,并弃去所有流出液。最后用5 mL 1%甲酸甲醇溶液洗脱,洗脱液于50℃氮吹浓缩近干,用50%乙腈水定容到1 mL,过滤膜后测定。 液相色谱条件:BEH C18色谱柱(100 mm× 2.1 mm,2.5 μm);柱温:30 ℃;进样体积:5.0 μL;流动相:(A)0.1 %甲酸水溶液和(B)乙腈;流速:0.35 mL/min;梯度洗脱程序:0 ~ 3.0 min,30 % B~90 % B;3.0 ~ 5.0 min,90 % B;5.0 ~ 5.5 min,90 % B~30 % B;5.5 ~ 9.0 min,30 % B。质谱条件:仪器型号:LCMS-8045/50/60系列 ESI—:离子源接口电压:4.5 kV;干燥气:氮气,10 L/min;加热气:空气,10 L/min;碰撞气:氩气;脱溶剂管温度:250 ℃;接口温度:250 ℃;ESI负离子多反应监测模式(MRM):m/z 485.2441.2 (CE 14V,定量离子对),485.2397.2 (CE 18V)。米酵菌酸标准溶液1ng/mL 某阳性米粉样品中检测到米酵菌酸 不管是在餐馆还是在自家厨房,只要这些食物的外观气味出现异常,就应立即停止食用。如果吃了之后身体出现不适,疑似中毒,需尽快催吐,排出胃内容物,以减少毒素的吸收,同时保存好可疑食品,及时就医。 其它相关内容请向岛津索取:1、鱼贝类毒素之质谱分析2、蘑菇毒素之质谱分析3、真菌毒素分析4、生物毒素分析质谱数据库5、食品安全应用文集
  • 质谱追“凶” | 夏日清凉,谨防细菌感染!
    炎炎夏日,舒适又健康的运动莫过于游泳,然而游泳之后有人会出现眼部、耳朵或者皮肤的一些不适症状,这些有可能是泳池水中的微生物所导致的感染。目前,国内对外开放的正规游泳池池水都会用氯进行消毒处理,因为氯溶于水中时能分解成次氯酸和次氯酸盐这两种化学成分,这些化学成分会破解微生物的保护层。有些微生物是能够在氯的威力下被杀灭的,如容易引发淋病的淋病奈瑟菌、容易引发梅毒的梅毒螺旋体、容易引发腹泻的志贺氏杆菌、容易引发肺炎的军团杆菌,以及大肠杆菌、艾滋病毒,都是不能在消毒环境中存活的。但是,有些微生物是不能被消毒剂杀灭的,例如绿脓杆菌,又称铜绿假单胞菌(学名:Pseudomonas aeruginosa),它会引发炎症和脓肿。绿脓杆菌,1882年首先由Gersard从伤口脓液中分离到,是一种革兰氏阴性菌、好氧、呈长棒形的细菌,只有单向的运动性。它是一种机会性感染细菌,且对植物亦是机会性感染的,感染后因脓汁和渗出液等病料呈绿色,故得名。绿脓杆菌的分离培养及电镜照片(图片来源:中国科学院微生物研究所)绿脓杆菌感染可发生在人体任何部位和组织,严重时会引起心内膜炎、胃肠炎、脓胸甚至败血症。所以,当游泳后出现炎症和脓肿就医时,临床能否更快、更准确地鉴定是否为绿脓杆菌感染、或是其它微生物感染,就变得更加的重要了。精准医疗源于精准诊断全自动微生物质谱检测系统,是广州禾信康源医疗科技有限公司(以下简称“禾信康源”)在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向开发的一款基于基质辅助激光解吸电离法(MALDI)的质谱检测系统,主要应用于微生物菌株鉴定、病毒核酸检测、蛋白多肽分析等方面,具有检测通量大、准确可靠、经济快速、样品耗费量少与操作简单等优势。质谱技术应用于细菌等微生物的快速鉴定分析,是利用标准菌株绘制微生物的蛋白质指纹图谱存储形成数据库。再将待检微生物的质谱数据图与数据库中的标准蛋白指纹图谱数据进行比对,从而实现细菌、真菌、分枝杆菌、厌氧菌等微生物的快速鉴定和分型,相比于表型鉴定、生理生化法、化学发光法等传统的微生物鉴定技术,质谱技术在鉴定速度、结果准确率、技术成本、质量控制、操作便捷等各方面都具有明显优势,是微生物检验技术史上一次里程碑式的革新。Figure 1禾信全自动微生物质谱检测系统实测铜绿假单胞菌硬件系统一体化免清洗离子源,集成独创的微小角度激光入射,有效提高灵敏度;智能化、高抽速真空泵系统,进靶即可采样,无需等待;超高频、长寿命固体激光器,信号采集及寿命均优于传统氮气激光器,使得样品分析速度更快,终身免维护;高稳定性信号采集系统,极大提升了仪器的重复性;模块化设计,内置前级泵,整机结构更加紧凑,维护简单。软件系统拥有自主知识产权的自动化控制采集软件,全过程智能化监控仪器状态,可自由切换多个数据库;提供专业的菌种中文名称,无需另外翻译,国内客户使用更便捷;多台云服务器同时执行鉴定,全面提升鉴定效率,可及时完成软件升级与数据库更新。数据库源于中国疾控中心(CDC)多年研究积累,品质保证,包含3500余种、60000余株菌种谱图,满足多应用领域的检测需求;数据库存于云服务器,可随时更新,客户也可根据自身需求建立自己的专属数据库。小贴士:如何找干净的泳池呢?1、看池水;要看水面有无颗粒漂浮,池底有无沉淀,池水的泡沫能否在15秒内消散。以8道泳池为例,站到泳池侧面穿过水面看第四、五泳道线,如果看不到说明水质不好。2、看证件;看看卫生许可证,员工健康证、卫生知识培训合格证等信息是否公示在游泳池旁,是否公示了当日水质情况,包括水温、PH值、余氯浓度、投放消毒药情况、循环水次数或新注入水量等。3、看池底;看看泳池底部,或泳池旁边的出水口,看是否有水源源不断进出的现象。如果有,则说明其水循环消毒装置在正常运作,可放心戏水游泳。4、看设施;正规的游泳池更衣后必须通过强制性淋浴和含有较高余氯的浸脚消毒池可以进入游泳池。
  • 瞬态光谱观察光生电子在金纳米颗粒-蓝细菌杂合体的界面传递
    光能易获取、能量充足,是公认的未来人类最安全、最绿色、和最理想的替代能源之一。天然光合作用可以直接利用光能固定空气中的CO2合成有机物,但光合作用的效率较低(通常低于1%)。近年来发展的半导体材料-微生物人工杂合体系,同时结合了高效捕获光能的半导体材料和高特异性催化的微生物细胞,已经成功实现:(1)使不能利用光能的微生物能利用光能(从不能到能);(2)提高天然光合作用效率(从低效到高效)。但目前,材料吸收光能产生的电子,仅有小部分被微生物细胞利用,因此杂合体系光能到化学能的转化,还远未发挥其潜在优势,其根本原因是材料-微生物界面能量和物质传递和转化机制不清、效率低。北京时间12月23日,南方科技大学机械与能源工程系陈熹翰课题组与中国科学院深圳先进技术研究院合成所材料合成生物学研究中心高翔课题组在ACS Energy Letters合作发表题为 “Ultrafast electron transfer in Au–Cyanobacteria Hybrid for Solar to Chemical Production” 的文章。该工作构建了金纳米颗粒-蓝细菌杂合体,将光能驱动CO2合成化学品的效率提高14%。通过瞬态吸收光谱直接观察到金纳米颗粒(Au)吸收光能产生的电子,可以直接被蓝细菌细胞快速吸收。为解析电子在材料-微生物界面传递机制提供基础。南方科技大学博士生胡秋实、深圳先进技术研究院研究助理胡海涛、博士后崔蕾为文章的共同第一作者。南方科技大学陈熹翰副教授和深圳先进技术研究院高翔副研究员为文章共同通讯作者。作者首先在蓝细菌中构建了甘油的合成通路,该途径以卡尔文循环(CBB)中间代谢物磷酸二羟丙酮(DHAP)为底物,消耗一分子的还原力合成甘油,该工程菌命名为XG608。在光照条件下,成功将CO2固定并转化为甘油。在此基础上,作者向培养体系中添加金纳米颗粒,利用共培养构建了金纳米颗粒-蓝细菌的杂合体,通过吸收光谱分析,观察到杂合体中同时具有金纳米颗粒和蓝细菌的特征吸收峰。此外,金纳米颗粒在525 nm附近吸收较强,与蓝细菌的吸收光谱性能互补,可以潜在提高杂合体的光能捕获效率。通过测试,在光照的条件下,与纯蓝细菌体系相比,杂合体生物量增长了10%,甘油产量增长了14.6%。进一步通过扫描透射电子显微镜 (STEM) 结合能谱(EDS) 分析,发现金纳米颗粒分布在蓝细菌细胞内,有利于材料光生电子向微生物细胞的传递。图1. 金纳米颗粒-蓝细菌杂合体提高光能驱动CO2固定合成甘油的效率随后作者对杂合体展开了原位瞬态光谱学分析(TA),当金纳米颗粒与工程菌XG608结合时,在2 ps内观察到更快的动力学衰减,而在4 ps后动力学衰减变慢,表明金纳米颗粒吸收光能产生的电子可以快速的被工程菌吸收。进一步研究发现,当加入光系统II抑制剂DCMU后,这种衰减特征消失(光系统II功能缺失突变体中也观察到相同结果)。有意思的是,金纳米颗粒电荷转移似乎只在活细胞中可行,黑暗条件,金纳米颗粒TA动力学特征不变,电荷转移过程停止。作者推测,只有活细胞才能作为电子受体来接收光激发的电子。图2. 金纳米颗粒-蓝细菌杂合体原位瞬态吸收光谱分析基于以上的研究,作者提出光激发金纳米颗粒提供了额外电子被光合电子传递链上潜在电子受体接收,进入光合电子传递链,提高光能利用效率,进而提高光能驱动CO2固定合成化学品的效率。图3.金纳米颗粒-蓝细菌杂合体界面电子传递该研究得到了科技部合成生物学重点研发计划、国自然重点项目和面上项目、深圳市基础研究专项重点项目和深圳合成生物学创新研究院的经费支持。
  • 山东冶金科研院复购骏德冻干机----全国土壤三普依然是重点
    山东省冶金科学研究院有限公司成立于1993年,现为隶属于济钢集团的济南市市属国有企业。2022年3月公司入选国务院国资委“科改示范企业”,是高新技术企业、国家第三批专精特新“小巨人”企业、山东省瞪羚企业、“专精特新”中小企业,山东省“一企一技术科技服务型创新企业”;建设有“山东省冶金产业计量测试中心”、济南市工程实验室、济南市企业技术中心,获山东省知名品牌和山东省文明单位荣誉。 山东省冶金科学研究院有限公司主营业务包括标准物质/标准样品研制销售、计量校准、材料理化性能检测、环保监测及综合技术服务、实验室能力验证及咨询、检测仪器和设备开发销售、金属材料研发销售等业务,属于检验检测产业链的业务。 随着2022年第三次全国土壤普查的开始,土壤检测也成为了山东省冶金科学研究院有限公司的关注重点。2022年5月山东省冶金科学研究院有限公司采购了第一台骏德仪器FD-304型号桌面式箱式冻干机。随着工作的深入,2023年新年伊始,山东省冶金科学研究院有限公司又快速购入两台骏德仪器FD-304型桌面式箱式冻干机。 我们在一起 复购是对一个品牌的最大认可,感谢客户的信任,我们骏德仪器将一如既往的用科学、严谨的态度,扎实、精准的仪器性能,可靠、稳定的产品品质来回报广大客户! 更多详情可关注骏德仪器公众号!
  • 津津有卫| 关注食品安全,当心食品中的“隐形杀手”-真菌毒素
    概述 真菌毒素是真菌在适宜环境条件下产生的次级代谢产物,在农作物、食品、饲料及中药中污染较为普遍,目前已知的真菌毒素有400多种,常见的真菌毒素有黄曲霉毒素、赭曲霉毒素、展青霉素、脱氧雪腐镰刀菌烯醇、伏马毒素等。真菌毒素是天然存在而非人为添加的,尽管污染量小,但危害性大。在适宜的环境因素(如温度、湿度)条件下,食品可以直接感染真菌并被其产生的毒素污染,且这种污染可以发生在食品链的任何阶段如生产、加工处理、运输和储藏过程等。据联合国粮农组织(FAO)统计,全球每年有25%的食品会受到不同程度的真菌毒素污染。 真菌毒素的危害 大多数真菌毒素可抑制动物体内蛋白的合成,破坏细胞结构,进而影响动物体肝脏、肾脏等器官的正常运作。人或动物摄入被真菌毒素污染的农、畜产品,或通过吸入及皮肤接触真菌毒素可引发多种毒害作用,如致幻、催吐、皮炎、中枢神经受损,甚至死亡;许多真菌毒素还可在体内积累后产生致癌、致畸、致突变和免疫毒性,这些均对人和动物的生命与健康造成重大威胁。 国内限量及监测 我国食品安全限量标准《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)中规定了6种真菌毒素在不同类别食品中的限量值。由于真菌毒素污染的普遍性和危害的严重性,每年的食品安全监督抽检均包含真菌毒素的检测项目,2022年新版《国家食品安全监督抽检实施细则》中检测的真菌毒素种类与GB 2761-2017一致,食品涉及粮食加工品、食用油、油脂及其制品、调味品、饮料、罐头等17大类食品。小编列出了所测毒素的限量值、检测方法及检测仪器,具体见表1。 表1 真菌毒素列表目前常用的检测真菌毒素的方法有:薄层色谱法(TLC)、酶联免疫法(ELISA)、胶体金法、液相色谱法(HPLC)以及液质联用法(LC-MS/MS),其中LC 和LC-MS/MS最为常用。 在真菌毒素检测方面,岛津开展了大量的工作,推出了多重解决方案。 01液相色谱 黄曲霉毒素柱后化学衍生分析系统该系统具有灵敏度高的荧光检测器以及性能优异的化学反应器,温控精密度高,确保反应效率稳定和良好的重现性;同时高效的软件,可以提高工作效率。 应用示例—中药材莲子中黄曲霉毒素的测定:结果见下图,标准曲线线性方程相关系数均0.999,添加回收平均回收率在78.7~95.0%之间,RSD为0.71~1.44%,重现性试验化合物保留时间和峰面积RSD见下表,从结果可以看出,该系统完全满足检测的需求。 02液相色谱 黄曲霉毒素柱后光衍生系统岛津柱后光衍生系统采用高品质的紫外光源和电路元器件,光源寿命高达9000小时;且衍生系统延迟体积小,衍生效率高;无需化学衍生试剂和高温反应系统,操作简单、安全。PR-1000光化学衍生器可使黄曲霉毒素B1和G1的荧光强度增强4-6倍,满足高灵敏度分析需求。PR-1000光化学衍生器值得一提的是,无论是光衍生系统还是化学衍生系统,都可以基于岛津不同系列的HPLC搭建,可以灵活选择您的配置方案哦。 03i-Series 液相色谱 真菌毒素分析方法包使用内置的二极管阵列检测器及外置的荧光检测器(RF-20AXs),方法包包含专用色谱柱、方法文件、必要组件及使用说明书等; 使用此方法包可在14 min以内实现10种常见真菌毒素的高灵敏度检测。无需衍生的情况下满足各国标准的最低检测要求。 04LC-MS/MS法测定真菌毒素 岛津LC-MS/MS生物毒素数据库包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法及操作指南,帮助用户快速建立分析各种毒素的方法。同时岛津还提供多个LC-MS/MS法测定真菌毒素的应用分享,客户可在岛津官网免费下载。 应用实例:岛津参考标准NY/T 3803-2020饲料中37种霉菌毒素的测定 液相色谱-串联质谱法,建立了37种毒素的LC-MS/MS检测方法。该方法采用正负模式同时扫描的方法,一针进样可在16 min完成37种生物毒素的同时检测;通过方法学考察此方法灵敏度高,分析时间短,结果准确,可用于饲料中多种霉菌毒素的定量检测。 岛津Q-TOF筛查真菌毒素目前,高分辨质谱法在非法物质筛查,未知组分鉴定等多个领域应用越来越广泛,如下面发布的农业农村部公告均采用了高分辨质谱法对化合物进行筛查和确认。 √ 农业农村部公告第312号 饲料中风险物质的筛查与确认导则 液相色谱–高分辨质谱法(LC–HRMS)。√ 农业农村部公告第197号-9-2019 畜禽血液和尿液中150种兽药及其它化合物鉴别和确认 液相色谱-高分辨串联质谱法。 针对真菌毒素,岛津建立了Q-TOF生物毒素数据库,包括GB 2761中毒素在内的50余种真菌毒素的化合物信息及不同碰撞能(CE)下的300多张二级质谱图,可以对常见的真菌毒素进行筛查和确认。 扫码可以在岛津官网下载【生物毒素检测整体解决方案】查看更多精彩内容哦。本文内容非商业广告,仅供专业人士参考。
  • 冯骏:牛津推出业界最大有效晶体面积能谱仪
    p & nbsp & nbsp    strong 仪器信息网讯 /strong 2013年10月23日-26日,“第十五届北京分析测试学术报告会暨展览会(BCEIA 2013))”在北京展览馆隆重举行。牛津仪器参加了此次展会,并向用户集中展示了其在工业分析和纳米分析领域的整体解决方案。展会期间,仪器信息网特别采访了牛津仪器纳米分析部中国区销售经理冯骏。 /p script src=" http://union.bokecc.com/player?vid=CEFD5CEFE2D552ED9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p & nbsp & nbsp   冯骏就牛津仪器纳米分析系列产品做了介绍,如拥有极佳速度和灵敏度的Nordlys EBSD探测器、最大150平方毫米的晶体有效面积及多探测器系统的X-Max SDD能谱仪,拥有完整的能量范围和最佳定量分析能力的Wave波谱仪,以及OmniGIS Ⅱ气体注入系统、OminProbe 400纳米操纵手等。 /p p & nbsp & nbsp   另外,采访中,冯骏对中国目前的能谱市场发展及牛津仪器的市场情况也做了详细分析。他说:“随着中国经济的发展,扫描电镜和透射电镜在中国的需求量也在不断增长。据我们统计,目前中国市场的电镜年需求量在600台左右,其中扫描电镜超过500台,透射电镜也有接近100台的需求量。” /p p & nbsp & nbsp   同时,据介绍牛津仪器的用户群体也在不断扩大,除了高校、科研院所的用户外,牛津仪器的纳米分析产品现在也有不少的工业用户,如宝钢、首钢等。 /p
  • 干货锦囊 | 灭菌隧道降低细菌污染风险
    监管机构更倾向于对注射药物进行灌装后灭菌。但是对于某些产品,例如生物药品,无法进行灌装后灭菌,因为这会对产品产生不利影响。在这些情况下,必须在100级或ISO-5环境中对产品进行无菌灌装。样品瓶必须清洗以去除颗粒,然后在填充之前进行灭菌处理。从历史上看,如果对产品进行灌装后灭菌,通常的做法是将西林瓶从清洗机中直接转移到灌装室。但是,2018年4月发布的《ISPE基线指南第3卷无菌产品制造设施1》中建议对所有西林瓶进行灭菌处理,即使产品会进行灌装后灭菌也是如此。灭菌是从西林瓶表面去除热原的过程,包括消除细菌内毒素。有几种不同的方法可以对西林瓶进行灭菌处理。非常常见和有效的方法之一是使用烘烤干燥。将样品瓶暴露于250°C以上的温度会破坏热原。大多数灭菌过程被设计为至少使内毒素减少至千分之一,甚至百万分之一。灭菌的两种最常见方法是灭菌烘箱和灭菌隧道(见图1),但是这两种方法的风险水平不同。使用灭菌隧道所涉及的风险主要来自隧道内气流的控制。用烘箱灭菌有关的风险包括手动操作西林瓶以及灭菌与灌装之间的停留时间。本文讨论了这些风险和解决方案。 图1 灭菌隧道灭菌隧道与灭菌烘箱灭菌烘箱或灭菌隧道(见图1)都可以完成样品瓶的灭菌工序。在使用灭菌烘箱过程时,在准备区域(通常为C级或ISO-7洁净室)中清洗西林瓶,放在托盘上,然后手动装入烘箱。烘箱位于准备区域和灌装线之间。设计良好的灭菌烘箱有两道门,一道通往准备区,另一道通往灌装线隔离器或无尘室。灭菌过程完成后,西林瓶需要手动转移到灌装线上。灌装工序可能需要几个小时后才能开始。Haag2(2011)的论文中强调了在灌装过程中由于容器内表面暴露在空气中而造成污染的风险,并论证了开口西林瓶与污染风险增加的相关性,即使在A级无菌环境中也是如此。但是在高效的灭菌通道中处理的西林瓶,经过约15分钟的冷却过程,就会自动送入灌装机,污染的风险大大降低。举例说明:我们现在考虑每批生产10,000瓶样品,生产线速度为每分钟50个(假定生产效率为80%)。在常见的商业灌装线上,从开口的西林瓶离开灭菌通道开始,到开始加塞的时间大约为8分钟。但是对于灭菌烘箱,相同批次的最末尾一个西林瓶从烘箱中出来的时间算,暴露时间可能长达250分钟甚至更久。更长的暴露时间使污染风险增加了30倍,这还不包括操作人员手动操作带来的相关污染风险。Rick Friedman(FDA / CDER科学与法规政策副主任)在2019年ISPE无菌会议上的开幕词中,谈到了做出积极选择以最、大的程度降低污染风险,并评论说“所有新的无菌灌装线设计均应采用灭菌隧道而不是灭菌烘箱。”预灭菌西林瓶可能产生的风险购买预先消毒的西林瓶是厂内灭菌工艺的替代方法。在这种情况下,西林瓶的清洗和消毒在另外的地方进行,然后将西林瓶装进双层袋中,然后运到生产现场。供应链复杂性的增加带来了不可避免的风险。比如说,必须对西林瓶供应商进行监控,以确保其在整个灭菌和包装过程中均遵循一定的质量标准。用于包装的薄膜尽量是无颗粒的,并且洗涤,灭菌和包装过程是自动化的,以减少人工操作。下一个要考虑的风险来自运输过程,在运输过程中,玻璃瓶之间的摩擦和碰撞会产生难以清除的玻璃颗粒和碎屑。操作员在手动开包的过程中需要遵循特殊的消毒程序,以确保外部包装上的污染物不会转移到西林瓶中。灭菌隧道相关的质量评估对于大批量生产,灭菌隧道是个显而易见的*选择。但是,从降低风险的角度出发,对于较小的生产规模,也应考虑使用灭菌隧道。专门为小批量应用设计的西林瓶清洗机和灭菌隧道组合占用的空间极小,仅占8英尺(2.5m)。灭菌隧道的主要目的是实现内毒素的对级降低。在选择隧道制造商时,至关重要的是评估制造商的气流设计,以确保洁净室和盥洗室内的压力波动不会影响灭菌过程。对空气质量要求最严格部分是灌装部分。相对于空气质量要求较低的的区域,该区域应始终处于较高的气压下,以防止空气倒流。但是,例如在开关门时,空气处理系统的调节有滞后性,这个时候气压水平会发生波动。这种压力波动可能会影响设计不当的灭菌隧道的性能。一些隧道设计使气流从灌装区到清洗区进行分级流动(见图2)。灌装区域气压的波动会使得冷空气更多从寒冷区域进入热区域,消耗了高温灭菌所需要的热量。图2:从洁净室到热区的级联空气。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域更复杂的隧道设计会对隧道的加热灭菌区加压,从而西林瓶能够始终暴露于适当的温度下(见图3)。西林瓶传送带下方设计了一个气体返回装置,能够形成从冷却区直接到进料区的空气通道。此外,有些设计还配有风扇,可将新鲜空气从制备室通过预过滤器带入热区。对此气流进行严密监视,并精确调节风扇速度以抵消灌装室压力的任何变化。设计*的隧道,在热区加压的情况下,可以控制70Pa的灌装级联过程,而复杂程度较低的装置通常只能控制10-15Pa。热区加压的第二个好处是自然温度梯度,当热区空气与相邻区域的较冷空气混合时会出现自然温度梯度。这样可以提供逐渐变化的温度,从而将因温度剧变引起碎瓶的风险降低。图3:经过加压的热区。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域隧道设计中要考虑的另一个问题是穿过西林瓶传送带的空气速度。空气速度与温度成正比,因此从质量的角度来看,重要的是要尽量小化加热过程中的温度变化。对传送带上的风速进行统一控制的隧道,能够实现更好的过程控制和批次均一性。在隧道两侧都带有回风的隧道(与单侧回风相反)通常在整个传送带上的空气速度变化较小(见图4)。 图4 (左)两侧回风;(右)单侧回风一些单面回风隧道设计结合了气流控制,可以补偿压力梯度,并在传送带的整个宽度上产生非常一致的气流(见图5)。这样的设计能够产生极优结果,消除温度过低的位置,并提供一致的灭菌效果。 图5 速度补偿后的单侧回风 其次,应考虑对灭菌隧道中无法清除的颗粒数量进行原位监测。大多数灭菌通道的设计可在进料区和冷却区进行颗粒计数。但是,迄今为止,只有一家制造商提供了监视加热灭菌区中西林瓶颗粒数量的功能。从热区收集的空气通过热交换器流向颗粒计数器(以避免损坏传感器)。该过程通常记录冷区(灌装区)5秒钟的颗粒计数,再记录5秒钟的热区(加热灭菌区)颗粒计数,再记录5秒钟的进料区颗粒计数,然后在整个生产过程中重复该循环。该解决方案可对所有三个区域进行全面的原位颗粒监控,以实现极其*的过程中质量控制。总结生产注射药物时,必须始终将患者安全放在首位。药品的生产和包装过程很复杂,但是制药行业在降低产品污染风险方面已经取得了重大进展。操作人员是无菌过程中最常见的颗粒和污染物来源。自动化生产极大降低了人员污染的风险。自动化设备很容易用于大规模生产过程。但是,传统上较小规模的生产更多地是通过是手动过程进行的,因此受到污染的风险更高。随着生物药品的发展以及更多定制化药品的出现,药品每批次生产的数量随之降低,设备供应商也相应作出改变,提供机器人灌装设备为这类产线服务。在为小规模生产选择清洗和灭菌设备的时候,必须考虑质量控制问题。现在可以使用自动洗瓶机和灭菌隧道来适应这些高价值的小批量应用。在选择设备时,尺寸、处理量,还有气流设计,都是提供无菌和无颗粒物保证的关键考虑因素。SP隶属于SP Industries.Inc., 是一家知名的科学设备供应商,品牌包括SP VirTis,SP FTS,SP Hotpack,SP Hull,SP Genevac,SP PennTech,SP i-Dositecno等。涉及的产品包括冻干,无菌灌装生产线,离心浓缩,低温循环水浴,玻璃器皿清洗机,恒温恒湿箱等。SP的产品服务于制药,科学研究,工业,航空,半导体和医疗保健等行业。总部位于宾夕法尼亚州的沃明斯特(Warminster),在美国,西班牙和欧洲的英国设有生产工厂,提供遍布全球的销售和服务网络,并提供包括培训和技术支持在内的全面产品支持。参考文献 1.Baseline Guide Vol 3: Sterile Product Manufacturing Facilities, April 2018, ISPE. 2.Mattias Haag, 2011, Calculating And Understanding Particulate Contamination Risk. Pharmaceutical Technology Europe,Volume 23, Issue 3
  • 使用超高效合相色谱分析短杆菌肽
    使用超高效合相色谱(UPC2)分析短杆菌肽 Sean M. McCarthy, Andrew J. Aubin, 和 Michael D. Jones 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离短杆菌肽 ■ 载量线性响应 ■ 准确、高精度分析短杆菌肽的方法 ■ 有可能用于其它疏水性肽和蛋白质 沃特世解决方案 ACQUITY UPC2系统 ACQUITY® SQD ACQUITY UPC2 CSH氟苯基色谱柱 Empower&trade 3软件 关键词 超高效合相色谱、UPC2、疏水性肽、短杆菌肽 简介 用反相液相色谱(RPLC)分析疏水性肽和蛋白质难度很大,因为溶液中经常需要使用洗涤剂保持疏水性物质的稳定性,而这些洗涤剂容易发生聚集和/或沉淀,严重影响它们的回收,这些因素以及其它原因使得难以用RPLC分离疏水性肽和蛋白质。 在本应用纪要中,我们为您介绍一种在ACQUITY UPC2TM系统上使用沃特世(Waters® )超高效合相色谱技术分离典型跨膜肽-短杆菌肽的方法。 短杆菌肽是由芽孢杆菌产生的一种常见和已被良好表征的跨膜肽物质,它被用作对抗革兰氏阳性和某些革兰氏阴性细菌的局部用抗生素,短杆菌肽包括通用组成为甲酰-L-缬氨酸-甘氨酸-L-丙氨酸-D-亮氨酸-L-丙氨酸-D-缬氨酸-L-缬氨酸-D-缬氨酸-L-色氨酸-D-亮氨酸-L-X-D-亮氨酸-L-色氨酸-D-亮氨酸-L-色氨酸-氨基乙醇的一族化合物,其中X取决于短杆菌肽分子,即分别占总短杆菌肽量约87.5%、7.1%和5.1%的革兰氏A(X=色氨酸)、革兰氏B(X=苯丙氨酸)和革兰氏C(X=酪氨酸),1需要交替的D和L氨基酸单元构成_-螺旋状。 我们研究了色谱柱化学品、流动相改性剂和梯度斜率对分离短杆菌肽的影响。采用优化方法分离市场上销售的非处方药物(OTC),将测定的短杆菌肽浓度与标示量进行对比。采用质谱仪测定短杆菌肽的浓度,采用选择离子谱表征每种物质。在ACQUITY UPC2系统上使用我们的方法,可得到线性和可重复的结果&mdash &mdash 测定的OTC制剂浓度为标示量的98.4%。 试验 测试条件 除非另有说明,以下是用于所有色谱最终方法的最佳条件。 UPC2测试条件 UPC2系统: ACQUITY UPC2 检测器: PDA、ACQUITY SQD PDA @ 280nm,分辨率为6 nm(补偿400至500 nm) 色谱柱: ACQUITY UPC2 CSH 氟苯基,3.0 x 100 mm, 1.7 &mu m 柱温: 50 ° C 样品温度: 15 ° C UPC2 ABPR: 1885 psi 进样量: 1 &mu L 流速: 2.0 mL/min 流动相A: CO2 流动相B: 含0.1%TFA的甲醇(除非另有标示) 梯度: 20%至30% B,1.5min SQD条件 离子源: ES+ 锥孔电压: 20 V 毛细管电压:3.7kV 源温度: 150 ° C 脱溶剂气温度: 500 ° C 脱溶剂气体流速: 400 L/hr 锥孔气体流速: 25 L/hr SIR: 922.6,930.3,941.9 数据管理 Empower 3软件 样品描述 用解硫胺素芽孢杆菌(短芽孢杆菌)制备的短杆菌肽从Sigma Aldrich公司购买,将样品溶解在甲醇中制成0.5mg/mL浓度的溶液,如需要,可用甲醇稀释。含有短杆菌肽的非处方软膏是从当地药店购买的。将0.2g软膏溶解在10mL正己烷中,然后用5mL甲醇萃取短杆菌肽,去除甲醇层,用0.2-&mu m的烧结玻璃盘过滤,然后直接进样ACQUITY UPC2系统。 结果与讨论 我们系统性地筛选了四种色谱柱,测定哪种分离效果最佳,结果如图1所示,色谱柱筛选过程可在1小时内非常快速地完成。在我们设定的筛选条件下,BEH 2-EP和BEH色谱柱未检测到谱峰,由于其它色谱柱表现出合适的色谱性能,因而未对这两者的非洗脱原因深入研究,其中ACQUITY UPC2 CSH氟苯基色谱柱检测的色谱峰形最佳,因此采用该色谱柱继续研究。 图1.通过短杆菌肽标准物的色谱峰形和保留时间筛选各种化学特性色谱柱。所有色谱柱规格为3.0x100mm,填装亚-2-微米填料;所有分离条件都采用流动相 A:CO2、流动相 B、含0.1% FA的MeOH、2 mL/min, 3%B至25% B,5min。 为了分离短杆菌肽物质,对酸性改性剂的影响进行了研究,结果表明:使用三氟乙酸(TFA)可得到稍好的峰形,提高了短杆菌肽A和短杆菌肽C之间的分离度,结果如图2所示。已知TFA会抑制质谱电离,但每种物质的信号都足以定量检测治疗制剂,后续将对此进行讨论。对于要求更高灵敏度的应用,可能需要降低TFA浓度或使用甲酸,以达到希望的检测限值。 图2.酸性改性剂对分离短杆菌肽的影响。 当设置好合适色谱条件后,通过减少梯度时间优化分离过程,结果如图3所示,我们能够在1.5分钟时间内使每种短杆菌肽组分的分离度达到1.4或更高,在相同流速下通过减少运行时间增加梯度斜率,不但实现有效分离,同时还将短杆菌肽A的信噪比从336提高至605。 图3.UV 280-nm痕量检测优化分离短杆菌肽A、B和C。 我们测试了最佳分离条件,能够使用单四极杆质谱(SQD)检测每种物质,图4显示:每种物质都被质谱良好分离和检测到,另外每种短杆菌肽物质都显示含有绝大多数的M+2H离子,后续的研究将使用这些参数进行选择离子监测。 图4:每种短杆菌肽物质的总离子图谱-A和加合离子图谱-B-D。选择强度最高的离子评估市场上销售的抗菌制剂中的短杆菌肽含量,对于多肽序列,红色残基是L型同分异构体,黑色残基是D型同分异构体。 为了评估我们的方法是否适用于定量分析市场上销售的非处方药中的短杆菌肽,我们在ACQUITY SQD上使用选择离子监测,结果如图5A所示。我们绘制浓度-峰面积曲线,得到每种物质的校正曲线。结果发现:如图5B-D所示,每种成分在测试范围内都呈线性响应。另外还使用校正曲线测定了非处方药物中的每种短杆菌肽物质浓度。 图5,图A-25.0、12.5、1.25和0.625mg/mL浓度的标准溶液中含有短杆菌肽物质的叠加选择离子谱。图B、C和D-每种短杆菌肽A、B和C各自的MS峰面积线性拟合图。 使用开发的方法评估非处方药物中的短杆菌肽物质的浓度和相对丰度。如图6所示,重复分析结果表明:每种短杆菌肽%RSD值小,计算浓度与标签上的标称值相吻合;我们还发现短杆菌肽物质的相对丰度与文献报道的丰度非常吻合1。 图6. 从抗菌软膏中萃取的短杆菌肽A、B和C的叠加选择离子谱重复进样分析的计算RSD值(N=3)在可接受限值以内,计算丰度与文献报道数值非常吻合1。 结论 正如本应用纪要所展示的,ACQUITY UPC2系统与ACQUITYUPC2色谱柱化学结合使用,可为短杆菌肽提供简单、准确和可重现的分析方法。该工作表明ACQUITY UPC2系统可用于分析疏水性肽,还可能用于分析疏水性蛋白质,例如膜蛋白。 参考文献 1. The Merck Index and Encyclopedia of Chemicals, Drugs, and Biologicals.13th ed. Whitehouse Station, NJ : Merck Research Laboratories 2001. 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • “嗜血”的质谱——关于流感嗜血杆菌和溶血嗜血杆菌的鉴定问题
    p   卫生部临检中心组织的2018年第一次临床微生物室间质评已经结束,但关于流感嗜血杆菌和溶血嗜血杆菌的鉴定问题,在微信朋友圈里谈得正热烈 (见文《溶血 or 流感?傻傻分不清?》)[1]。主要是因为在这次质评中,生化鉴定仪和有些品牌的质谱仪的鉴定结果出错了。令小布自豪的是,布鲁克MALDI Biotyper质谱的鉴定结果与标准答案完全相符!所以小布在这里来一段点评。 /p p   流感嗜血杆菌和溶血嗜血杆菌虽然同属,但属于两个不同的种,致病性和临床意义也大不相同,前者是上呼吸道感染的常见致病菌,而后者是上呼吸道的正常定植菌。小布认为要认真、仔细地把它们区分开,千万不要混淆! /p p   可是这两种菌的亲缘关系很近,用传统的形态学和生化方法难以区分。虽然产荚膜的流感嗜血杆菌可以通过荚膜肿胀实验区别于溶血嗜血杆菌,但有些流感嗜血杆菌是不产荚膜的,通常被认为是无法分型的。同样,虽然有的溶血嗜血杆菌能够通过卫星试验观察到溶血环,但不是所有的溶血嗜血杆菌都能观察到明显的溶血环。 /p p   难道就没有好办法了吗?当然不是! /p p    span style=" color: rgb(31, 73, 125) " strong 质谱是区分流感嗜血杆菌和溶血嗜血杆菌的好方法 /strong /span /p p   早在2013年中国CDC的研究人员就通过质谱图的聚类分析,发现质谱可以把流感嗜血杆菌和溶血嗜血杆菌清楚地分成两类,甚至可以把不同地区来源的菌株进一步细分(见图1)[2]。 /p p style=" text-align: center" strong img src=" http://img1.17img.cn/17img/images/201805/insimg/dfbc448c-6829-4363-bbc8-eb80e5161d6e.jpg" title=" 1.jpg" width=" 450" height=" 409" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 409px " / /strong /p p strong   ▲图1. 流感嗜血杆菌和溶血嗜血杆菌的聚类分析树状图(MALDI Biotyper结果) /strong /p p   2014年荷兰公共卫生区域实验室、荷兰医学中心与布鲁克微生物研发中心共同发表了MALDI Biotyper能够正确鉴定流感嗜血杆菌和溶血嗜血杆菌的文章 [2],专家们通过分析不同来源的277个菌株,发现质谱法与测序法鉴定流感嗜血杆菌和溶血嗜血杆菌的结果几乎完全一致(见表1)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/5e7cf664-5cee-4464-b1b3-ac63e6d76a51.jpg" title=" 2.jpg" / /p p    strong ▼表1.流感嗜血杆菌和溶血嗜血杆菌的MALDI Biotyper质谱法与测序法鉴定结果比较 /strong /p p   另外,布鲁克公司在美国FDA注册进行临床试验的结果显示:通过对74个流感嗜血杆菌和31个溶血嗜血杆菌的检测MALDI Biotyper质谱法鉴定100%正确!(结果摘自布鲁克公司提交美国FDA的报告) /p p   可见,质谱是区分流感嗜血杆菌和溶血嗜血杆菌可以信赖的方法!有些老师不免心生疑问:既然布鲁克质谱的鉴定结果都是正确的,那为什么其它品牌的质谱鉴定错了呢? /p p    strong span style=" color: rgb(31, 73, 125) " 质谱法的数据库和鉴定结果的算法非常重要 /span /strong /p p   原来呀,质谱鉴定微生物时,需要通过软件拿采集到的样品“蛋白指纹图”到数据库里进行逐个比对,因此,数据库建立与比对时所采用的理念与算法,以及数据库的容量,是影响鉴定结果非常重要的因素。 /p p   布鲁克MALDI Biotyper的建库理念是以菌株为单位,数据库中每个条目都是一个独立的菌株。它的比对算法是采用指纹识别中的“模式识别”算法,就是把样品的“蛋白指纹图”与数据库中所有菌株的“蛋白指纹图”快速自动地进行逐个图逐个峰的比较,看看每对比对的“蛋白指纹图”之间有哪些峰是匹配的,哪些峰是不匹配的,以及匹配的谱峰之间相对强度的相关性,从而得到一个综合的匹配分数,并根据分数值告诉我们鉴定的可信程度。 /p p   MALDI Biotyper的算法看上去通俗、简单,正可谓“大道至简”吧,不仅非常实用!而且最大程度上避免了误判!就像警察通过指纹比对来识别罪犯一样,只要数据库里有罪犯的指纹,它就能正确地识别出罪犯 即使数据库里没有罪犯的指纹,它也不会找错,只是告诉我们当前数据库里没有匹配的指纹,只要扩大搜索数据库的范围,定会让罪犯无以循形,不会造成冤假错案! /p p   有些老师可能会问:我们是做菌种鉴定,MALDI Biotyper的数据库为什么不以菌种为单位,而是以菌株为单位建立的呢?难道它能鉴定到菌株吗? /p p   大家知道,微生物种类繁多,每种微生物又包含丰富多样的不同菌株,而同一菌种内不同菌株之间的差异是天然存在的,并和微生物的种类有关,有的种内差异大,有的种内差异小。所以,布鲁克决定在菌株水平上建库,并在选择每个菌种的建库菌株时,尽可能包含差异大的菌株,而剔除差异小的菌株。MALDI Biotyper在菌株水平建库,具有以下优势: /p p    span style=" color: rgb(255, 0, 0) " 给代表性菌株预留了充分的覆盖范围 /span /p p span style=" color: rgb(255, 0, 0) "   避免了数据库不必要的冗余 /span /p p span style=" color: rgb(255, 0, 0) "   容易实现数据库的扩充和更新 /span /p p span style=" color: rgb(255, 0, 0) "   能快速适应分类学的改变 /span /p p   充分发挥了质谱技术分辨能力远远高于传统方法(如生 span style=" color: rgb(255, 0, 0) " /span 化方法)的特点,不丢失种水平之内菌株之间的差异。 /p p   正是由于上述优势,美国CDC、加拿大国家微生物实验室和美国NIH等多家机构也在采用布鲁克的仪器和理念建立数据库并对外开放。 /p p   通过以上对布鲁克MALDI Biotyper质谱的数据库与软件算法的简单介绍,相信各位老师就能理解为什么这次卫生部的质评中,布鲁克质谱的鉴定结果是正确的,也就很好理解为什么美国FDA批准Bruker MALDI Biotyper CA系统作为首个鉴定新型致病菌耳念珠菌(C. auris) 的新方法了[4-6]。 /p p   参考文献 /p p   1. 溶血 or 流感?傻傻分不清? /p p   2. B. Q. Zhu, D Xiao et al. MALDI-TOF MS Distinctly Differentiates Nontypable Haemophilus influenzae from Haemophilus haemolyticus.PLoS One. 2013 8(2): e56139 /p p   3. J. P. Bruin, M. Kostrzewa et al. Identification of Haemophilus influenzae and Haemophilus haemolyticus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis 2014, 33:279–284 /p p   4. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm605336.htm /p p   5. FDA首次批准质谱方法鉴定新型致病菌耳念珠菌 (Candida auris) /p p   6. “布”下天罗地网,防止“耳念”侵袭 /p
  • PURELAB Pulse内EDI技术的杀菌作用
    下载该样本请至:http://www.instrument.com.cn/netshow/SH100857/down_230986.htm PURELAB Pulse内EDI技术的杀菌作用 连续电去离子技术(EDI,Electrodeionization)是一种融合了电渗析技术,离子交换(IX)技 术和阳、阴离子选择透过膜的先进绿色环保的水处理技术。经过反渗透膜处理后的纯水进入EDI模块。 在低压电场的作用下,水中离子在树脂中定向迁移,通过阳、阴离子选择透过膜。这些离子集中到浓水中,浓水既可以排放,也可以再循环使用。 来自EDI模块的去离子水可直接使用,或者进行进一步的处理。 &bull 离子交换树脂与细菌有多种关系。新树脂被H+或OH-离子所覆盖,因此呈现极端的pH环境,从而阻止细菌的生长。但树脂床具有较大的表面积,当部分树脂床用完(H+或OH-离子被Na+和Cl-离子所 代替)后,树脂床仍可为细菌生长提供场所。 &bull EDI技术通过水电解产生的氢离子和氢氧根离子对树脂进行连续再生,因此,树脂可以使用很多年。这就克服了新的树脂使用时会向水中释放有机物的弊端;而有机物是细菌滋生的营养物质。 PURELAB Pulse的优点 除了Pulse模块的优点外,PURELAB Pulse独特的设计、工艺和技术还可增强 Pulse模块的杀菌效果。 &bull Pulse模块内的一个树脂床只含有阴离子树脂。 如表1所示,其 所提供的杀菌性能要优于有些厂家使用的混床式树脂床。 &ndash 无论有无电场,阴离子树脂均有极强的杀菌能力(95%的抑菌作用)。 &ndash 没有电场时,阴阳离子混合树脂的杀菌能力极弱,但带电流时,会有明显的作用(约80%的抑菌作用)。 &ndash 无论是否使用电场,阳离子树脂的杀菌作用均可忽略不计。 &bull 在工作模式下,水箱的水不断经过Pulse模块循环。Pulse模块在循环管路中所处的独特位置保证了持续的杀菌性能(在模块两端四个月总生菌数(TVC)平均抑菌值为 93.4% ),同时管路中无需使用去离子柱,也避免了相应的污染风险。 您可通过以下方式联系我们,了解更多详情: Web: www.elgalabwater.com Email: elga.china@veoliawater.com 服务热线:400-616-8882
  • 质谱仪“电子鼻”可快速嗅出超级细菌
    科技日报讯 抗生素的广泛应用,是现代医学进步的重要标志之一。但抗生素的滥用也催生了一系列&ldquo 超级细菌&rdquo ,它们因异常强大的耐药性而著称,常常令医务工作者们束手无策。然而最近传来了好消息,一种通过电子鼻嗅辨难于检测的超级细菌&mdash &mdash 艰难梭菌的技术已经出现。   据物理学家组织网近日报道,英国莱斯特大学的研究小组研制出一款能够通过嗅探方式快速检测艰难梭菌的&ldquo 电子鼻&rdquo :通过质谱仪来识别艰难梭菌独特的&ldquo 气味&rdquo ,从而快速诊断出患者是否感染艰难梭菌。更重要的是,该团队声称,未来医务工作者们可以通过气味轻易地辨别不同种类的菌株。该项研究成果发表在《代谢组学》杂志网站上。   艰难梭菌又称难辨棱状芽孢杆菌,因难于分离观测而得名,通常寄生在人的肠道内,具有强传染性和抗药性,发病后通常会导致腹泻、发热以及胃痉挛。在不当服用某些抗生素后容易大量繁殖,难以治疗,因此也有超级细菌之称。   莱斯特大学化学部的保尔· 芒克斯教授表示,快速检测并鉴别艰难梭菌是医疗工作者们最迫切需要的技术之一,这项技术将有助于尽快发现感染者,使医护者们能够尽快采取针对性措施,抑制病情的进一步发展。   鉴于艰难梭菌的特殊性,错过最佳治疗时机后,不当治疗和盲目使用抗生素,将会导致患者的高病发率和死亡率,同时造成医疗资源的大量浪费。   麻烦的是,不同菌株的艰难梭菌会在感染者身上产生不同的症状,并且可能需要针对性的不同疗法。而这项鉴别方法不仅能够检测出艰难梭菌的感染者,还能协助医务工作者采取针对性的有效治疗。   不同菌株的艰难梭菌都有着独一无二的&ldquo 气味&rdquo 。研究者称,基于大量的细菌样本的研究发现,不同品系的细菌在质谱仪下会显现出各不相同的&ldquo 化学指纹&rdquo 。现在,他们已经能够通过&ldquo 电子鼻&rdquo 鉴别挥发性有机物(VOCs),从而快速&ldquo 闻&rdquo 出艰难梭菌,这项成果将会大大增强检测的速度和精确度,并可以协助进行不同菌株生长过程的研究。   芒克斯教授说,粪便样本检测是识别该类感染者的重要途径,在临床诊断中借助这项技术,可以利用粪便样本快速筛选出艰难梭菌的感染者。   来自莱斯特大学化学部的安迪· 艾利斯教授说:&ldquo 这项成果为我们带来了新希望。在掌握鉴别不同菌株艰难梭菌鉴别方法的基础上,未来可能会发展出基于少量样本进行快速甚至是瞬间检测的方法,从而推动艰难梭菌感染治疗技术的发展。&rdquo
  • 岛津推出食品中真菌毒素检测整体解决方案
    真菌毒素是由产毒真菌在适宜的环境条件下产生的有毒代谢产物。从古至今一直对人类、动物和植物具有巨大的潜在威胁。例如,黄曲霉毒素即使摄入很小剂量也会引起肝脏的损害、出血性坏死、肝细胞脂肪变性和胆管增生;单端孢霉烯族B类毒素能够导致厌食、呕吐、贫血、出血以及免疫抑制的症状;赭曲霉毒素具有致癌作用、致畸作用、肾毒性等。因此,世界各国对食品中的真菌毒素的限量均做了规定。 我国2011年颁布了最新的《食品安全国家标准 食品中真菌毒素限量》(GB/T 2761-2011),相比GB/T 2761-2005增加了赭曲霉毒素A、玉米赤霉烯酮的指标;修改了黄曲霉毒素B1、黄曲霉毒素M1、脱氧雪腐镰刀菌烯醇及展青霉素限量指标及检测方法。可见我国对真菌毒素在食品中的限量要求越来越高,限制的食品种类也越来越细。欧盟于2006年颁布了《Regulation (EC) No 1881/2006》,对食品中污染物的限量进行规定,2012年又颁布了《Regulation (EC) No 594/2012》,对《Regulation (EC) No 1881/2006》进行了修订,对干果等食品中的赭曲霉毒素A的最高限量作了规定。相对于其他国家来讲,日本的要求最为严格,要求在食品中不得检出黄曲霉毒素。LC-MS/MS的方法由于灵敏度高、定性可靠、前处理简单、分析速度快等优势,应用越来越广泛,有可能最终取代其他检测技术。 岛津公司一直以来致力于检测方案的解决,在自身检测人员努力的同时也十分重视合作单位的合作研究。浙江省疾病预防控制中心理化室在毒素检测方面研究了多年,具有先进的学术力量,在国内外知名期刊上发表学术论文数篇,在国内享有盛誉。2012年,岛津公司和该单位签署了合作项目,意在开发使用岛津三重四极杆质谱仪LCMS-8040检测常见真菌毒素的方法,为岛津的广大用户提供便利。当前该项目已经完成,现将该项目数据与岛津公司分析中心完成的真菌毒素的检测数据一并整理成册,汇编成《食品中真菌毒素检测整体解决方案》,供相关工作者参考。 该方案涉及的检测方法如下:第一部分 LC-MS/MS方法1. LC-MS/MS测定奶粉中的6种黄曲霉毒素2. LC-MS/MS测定玉米中的赭曲霉毒素3. LC-MS/MS定量测定玉米中的伏马毒素含量4. LC-MS/MS测定小麦中的雪腐镰刀菌烯醇及其衍生物5. LC-MS/MS同时测定谷物中的呕吐毒素和玉米赤霉烯酮第二部 LC检测方法6. LC-30A电化学衍生法高灵敏度快速检测黄曲霉毒素7. LC-30A测定牛奶和婴幼儿奶粉中黄曲霉毒素M1的含量8. LC-30A柱前衍生法测定粮食中黄曲霉毒素的含量9. LC-30A快速测定粮食中黄曲霉毒素的含量10. LC-30A测定粮食中赭曲霉毒素A的含量11. LC-30A柱前衍生法测定粮食中伏马毒素的含量12. LC-30A快速测定粮食中脱氧雪腐镰刀菌烯醇的13. LC-30A测定粮食中玉米赤霉烯酮的含量14. 高效液相色谱碘柱后衍生法检测果仁类食品中的黄曲霉毒素15. 高效液相色谱碘柱后衍生法测定中药材酸枣仁中的黄曲霉毒素G2,G1,B2,B1的含量16. 高效液相色谱碘柱后衍生法和光柱后衍生法检测中药材中的黄曲霉毒素 有关详情,请您向“岛津全球应用技术开发支持中心”咨询。 咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津微信平台
  • 华师大精密光谱科技实验室5年引进19人 平均年龄33岁
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/2bb4c1fe-4e10-422a-9b7f-139e933f4d3a.jpg" title=" 136214125_14923885398391n.jpg" / /p p style=" text-align: center " 阿秒团队成员在做实验 /p p   在全国15家数理学部国家重点实验室中,华东师范大学精密光谱科学与技术实验室占得一席。夜晚降临,当学生们在丽娃河畔观赏美景时,有一批人在理科楼实验室“挑灯夜战”———对于灵敏度要求极高的实验,在夜晚做,往往是最好的。 /p p   这是一个与华东师范大学共同成长的实验室,上世纪50年代建校时,华东师大有个分子光谱教研组,到2000年左右,建成了教育部重点实验室,2009年又挂上了国家重点实验室的牌子。 /p p   去年,“国家杰出青年科学基金”获得者吴健从日本、德国留学归来,36岁的他担任重点实验室主任,这也是迄今为止最年轻的国家重点实验室主任。最近,吴健团队自主研制了一套分子多维精密测控平台,已经有多个国外知名课题组慕名来到上海,利用这个平台进行科研工作。 /p p    strong 追求高灵敏高精度高分辨 /strong /p p   1981年诺贝尔物理学奖得主肖洛、2005年诺贝尔物理学奖得主霍尔都在他们的获奖感言中,表达了对华东师范大学精密光谱科学与技术国家重点实验室的感谢,因为测量精度、分辨率和灵敏度的每一次提高,都会推动科技向前发展一步。 /p p   这是一个在时间、空间、频率、温度上不断追求极限的实验室,他们的目标是“三高”———高灵敏、高精度、高分辨。以时间为例,他们是国内较早和较好地掌握飞秒技术的团队。 /p p   飞秒是10的-15次方秒,飞秒与秒的时间差就如同地球到太阳的距离。在这个尺度下,人们能看到分子中原子核的振动,不过想要看到更小的电子和离子的运动,就需要更短的时间尺度———阿秒。 /p p   阿秒是10的-18次方秒,如何获得它是世界级难题。 /p p   在研究中,把时间转换成空间是惯用手法,吴健团队发现,光子不仅有上下振动,还有左右偏振,光场振动一圈的周期是2.6飞秒,把时间投射到360度上,得出的每度时间是7.2阿秒。2013年,吴健团队首次用光场震动的方式做出了阿秒,成果发表在国际期刊《Nat.Commun》上。 /p p   1秒到底有多长?对许多人来说这可能是一辈子都没考虑过的问题。“秒”的定义是时间标准的基础,目前通用“秒”的定义是以原子在微波波段上的跃迁为标准的,而“光钟”的定义则是以原子在光波波段上的跃迁为标准的,它的精度比微波钟要高很多。吴健领导的实验室正在做国内最好的光钟,挑战定义时间精度的极限。 /p p    strong 用“组合拳”攻克世界级难题 /strong /p p   目前,实验室汇聚了59位科研工作者、十几个课题组,近5年来承担的科研任务多达200余项。在这里,每个课题组都“身怀绝技”:有最快的———阿秒团队 有最冷的———用激光法把原子冷却到极度接近绝对零度的纳G(温度单位“卡尔文”)级别,在这个尺度上能获得玻色-爱因斯坦凝聚态 有最懂单光子脾气的———很容易观察光子的能量吸收和变化。由于实验室在速度、频率、冷却、操控方面拥有独树一帜的技术,因此特别善于通过巧妙配置不同的技术解决科学难题,打出漂亮的“组合拳”。 /p p   去年,他们攻克了分子精密测量与调控,建立了国际上第一个、也是迄今唯一的“分子强场电子-离子四体符合测量体统”。这个项目就是把实验室中4个各有所长的团队联合到一起攻关———冷原子团队负责“定”住原子 飞秒团队和光梳团队负责分子成像 善于控制单光子的团队负责观察。由于每个团队都能达到世界级水平,做出的科研成果自然也是世界级的。 /p p    strong 用成就感留住年轻人 /strong /p p   在吴健领导的实验室采访,能感受到比较纯粹的科研氛围。他们会为一时无法找到实验数据与科学规律间的联系而困惑 也会为微观世界一个新现象的发现而喜悦。 /p p   都说留人难,这个国家重点实验室近5年来,吸引了19位平均年龄在33岁的年轻人加入。为何能留住这么多年轻人?吴健道出了其中关键———成就感。 /p p   2012年回国时,36岁的武海滨组建了超冷量子原子气体精密控制实验室,去年他在《科学》上发表论文,揭示强相互作用超冷费米原子气体所隐含的动力学对称性 38岁的吴光研究员主持开发的单光子探测器,已有近30台被国内8家科研单位使用……实验室59人中,入选省部级各类人才计划的共计47人次,而这5年引进的19人中,已经有3人入选国家“青年千人计划”。 /p p   这样的成就感极大地激励着有潜力的年轻人,让他们乐于选择在常人难以想象的尺度上不断精进。 /p p br/ /p
  • 鲜奶检出β-内酰胺酶 长期进服易产生超级细菌
    继三聚氰胺之后,老百姓又要从牛奶行业里学习到一个全新的名词了--β-内酰胺酶。   日前,有网友在宁波的论坛里贴出一份"2012年宁波奶制品抽检不合格清单",此份清单实为"宁波市食品安全委员会办公室"《关于2012年宁波市乳制品评价性抽检结果的通报》。其中,有宁波牛奶、新希望、光明和涌优这4个牛奶品牌的标本检出大肠菌群超标或β-内酰胺酶。   那么β-内酰胺酶到底是什么东西?含有β-内酰胺酶的牛奶有什么危害?市民平时又如何做到健康饮用牛奶?   鲜奶检出β-内酰胺酶   去年,宁波市食安办、市食品药品监管局委托宁波出入境检验检疫局检验检疫技术中心对宁波市2012年下半年市场上销售的乳制品进行了评价性抽检。在《关于2012年宁波市乳制品评价性抽检结果的通报》中指出,全年共抽检鲜奶(巴氏杀菌乳)、酸奶、纯奶(超高温灭菌奶)、婴幼儿配方奶粉4个品种乳制品608批次,不合格63批次,合格率89.64%.4个品种中,酸奶、婴幼儿配方奶粉、纯奶的合格率均为100%.乳制品中的不合格样品均是鲜奶 共抽检鲜奶201批次,63批次不合格,合格率为68.66%.   《通报》中指出,鲜奶合格率较低,原因是部分样品检出大肠菌群超标和β-内酰胺酶阳性。63批次不合格鲜奶中,大肠菌群超标41批次、β-内酰胺酶阳性40批次。大肠菌群超标会引起呕吐、腹泻等症状,危害人体健康安全。而β-内酰胺酶被列入食品中可能违法添加的非食用物质名单,是不能在牛奶中添加的。   检测部门分析,造成鲜奶大肠菌群超标的可能原因包括:生乳在采集、贮存或运输过程中被污染 生产加工过程中消毒杀菌不严 运输、贮存、销售鲜奶过程中冷链断裂导致微生物繁殖。常温下乳制品很容易导致微生物生长,家庭订奶户取奶不及时造成冷链断裂是鲜奶大肠菌群超标的主要原因。   企业质疑检测过程   昨天,宁波牛奶集团在微博上发出声明,当时的抽查是在酷暑时对宁波市整个乳制品市场进行的,在抽检过程中,有可能脱离了2-6℃的保存温度条件而影响了产品的质量。这并不能代表公司2012年全年产品的整体质量。2012年,质监部门共对公司进行鲜奶出厂检验335批次,合格率100%.   针对此次抽检的β-内酰胺酶为阳性,宁波牛奶集团回应称一定为内源性,属于奶牛本身产奶过程带入的,"我们绝对不会添加β-内酰胺酶".   声明中分析,导致鲜奶β-内酰胺酶阳性的主要原因有两个,一个是内源性的即由奶牛体内的耐药菌株产生的 二是为降解牛乳中残留的抗生素而外源性加入的。对内源性β-内酰胺酶的监测方法和判定标准从2009年至今尚无国家标准,也无科学的检验鉴定方法,因此该指标只能作为参考指标,不能直接作为牛奶质量判定标准。而公司的奶源是100%自控化的,无任何中间贩卖环节,自己不会进行添加,那么只可能是内源性的。   杭州新希望双峰乳业有限公司赵总昨天告诉记者,目前还未收到宁波有关部门的通知,但对检测的过程和结果存在疑义。他表示,针对大肠菌群超标的结果,在检测报告的分析中就指出有可能是运输、销售等过程中冷链断裂的原因。以往的现场抽查都是要用冰块保证牛奶的温度,再送到抽检中心进行检测。"最重要的冷链不能断。"赵总说,2012年,公司对大肠菌群的检测上万多次,都是符合标准的。β-内酰胺酶则是奶牛自己产生的,而且去年,公司对β-内酰胺酶也自检过上千次,都未呈现阳性。赵总表示,由于目前未收到任何通知,公司还是正常进行乳制品的生产。   光明乳业股份有限公司华东区帅经理则表示,对有关部门的抽检从头到尾不清楚,目前总部准备对此事进行核实。   β-内酰胺酶可分解抗生素   在这次检测报告中,大肠菌群超标可以用冷链断裂来解释,而β-内酰胺酶从何而来却没有定论。   浙江大学生物化学研究所所长李永泉告诉记者,β-内酰胺酶是一种细菌所特有的分解抗生素的酶,这种酶能分解β-内酰胺类的抗生素,比如青霉素、头孢等都属于β-内酰胺类的抗生素。而β-内酰胺类抗生素是在牛乳生产中应用最广泛的抗生素,用于治疗牛乳腺炎和其他细菌感染性疾病。因此,牛奶中检测出β-内酰胺酶有可能是奶牛体内自身产生的,也有可能是牛奶在加工过程中感染了一些细菌所产生的。   另一种可能就是在加工过程中,人为加入β-内酰胺酶,因为它能分解牛奶中残留的β-内酰胺类抗生素,为抗生素打掩护。《食品卫生微生物学检验鲜乳中抗生素残留检验》标准中,对青霉素、链霉素、庆大霉素等抗生素都设定了标准。李永泉说,β-内酰胺酶可以从细菌中进行提炼,这一技术并不复杂。记者在某电子商务网站上看到,有企业在销售β-内酰胺酶,价格在158元到500元不等。   杭州市畜牧兽医局的有关负责人则表示,在对乳制品进行检测时,并未对β-内酰胺酶进行检测,而是会对部分抗生素进行检测。该负责人表示,一些企业为了增加牛奶中蛋白的含量就添加三聚氰胺,当然也有为了减少抗生素而添加β-内酰胺酶的可能。   β-内酰胺酶存在一定危害   记者查阅相关资料,发现《医药前沿》2012年第17期上有一篇《细菌的耐药性与超广谱β-内酰胺酶》的论文。论文作者于源认为:"自1929年发现青霉素,1940年将其研制成功并用于临床至今,β-内酰胺类抗生素经历了半个多世纪的发展,为治疗人类感染性疾病起了重要作用。目前,用于临床的各类抗生素近200种,其中仅β-内酰胺类抗生素就达130多种。然而随着抗生素的应用,细菌的耐药性随之产生,细菌产生耐药性的原因很多,如产生各种各样的酶,水解、钝化相应抗生素 细胞壁通透性下降或排泄力提高 抗生素作用的靶位发生改变等等。但是β-内酰胺酶仍是细菌对抗生素耐药的主要原因。"   昨天记者还就此采访了浙江大学药理毒理与生化药学研究所所长楼宜嘉,她告诉记者:"微量的β-内酰胺酶对人体不会产生明显的危害。β-内酰胺酶的本质是一种蛋白,摄入体内之后,会被分解,不会长期存在体内。"   李永泉则认为,在偶然的情况下,还是会对人体产生危害的。"假设,病人在服用β-内酰胺类抗生素后,再喝下含有β-内酰胺酶的牛奶,那么抗生素的作用就会减弱,从而影响疾病的治疗。"时间久了,临床上将无药可用,即产生所谓的超级细菌。
  • 伟业计量8月20日食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会
    伟业计量线上研讨会,老时间,老地方,每周五上午九点半伟业计量官网来相见!2021年8月20日(周五)上午9:30分,由北京北方伟业计量技术研究院主办的“食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会”即将开启,欢迎大家锁定伟业计量直播间!直播当天,研讨会讲师、助教将进行在线答疑,您有任何关于课程、研讨会以及伟业计量的问题,都可以在留言区进行提问。另外,我们还为当天参会的观众准备了惊喜活动,让您在兼具趣味性与创意性的视频教学中吸收知识。“食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会”课程表讲师简介:罗双群,副教授,中共党员,硕士研究生,食品检验技师,漯河市青年拔尖人才。主要从事食品检测专业教学工作和管理工作。先后任教《食品理化分析》、《食品微生物检验》和《食品感官评定》。发表论文10余篇,获得食品检测类专利4项、漯河市自然科学学术奖一等奖2项、二等奖4项,主持河南省高等学校重点科研项目1项,主持漯河市科研项目1项,参与并完成省级重点科研项目4项,参与河南省教育教改项目1项。本期线上研讨会课程安排详见下图:食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会时间课题专家课程简介第1节(09:30-10:20)《食品中金黄色葡萄球菌的测定》罗双群《金黄色葡萄球菌的测定》首先介绍了金黄色葡萄球菌的概述和仪器准备,重点介绍金黄色葡萄球菌的操作步骤及要点。10:20-10:30互动答疑、礼品抽取第2节(10:30-11:20)《食品中沙门氏菌的测定》罗双群《沙门氏菌的测定》分别介绍了沙门氏菌的定义、仪器试剂的准备、沙门氏菌的检验程序以及操作步骤及要点。重点从典型沙门氏菌的预增菌、增菌、平板分离、生化试验、革兰氏染色、血清学鉴定等6个方面介绍了沙门氏菌的操作步骤及要点。11:20-11:30互动答疑、礼品抽取 (关注伟业计量公众号(微信号bzwzcom),免费观看线上研讨会)温馨提示:伟业计量线上研讨会将于每周五上午09:30(节假日除外)定期举办。如果您是食品/环境/微生物等检测相关专业老师,有相关检测类课程想与我们交流分享,欢迎您加入伟业计量讲师团队,共享学术赋能,课酬丰厚,期待您的加入!联系助教:手机微信同号:15637658007
  • 乳品中金黄色葡萄球菌和沙门氏菌快速检测的新体系
    食源性致病菌污染是乳制品安全问题的重要隐患之一。乳品中常见的食源性致病菌有金黄色葡萄球菌、沙门氏菌、阪崎肠杆菌等。目前乳品致病菌检测以培养法为主,但此类方法操作较为繁琐并耗时长,不能满足检测时效的需求。在本期的推送中,探索了荧光定量PCR技术在乳品中金黄色葡萄球菌和沙门氏菌快速检测方面的应用,并进行了大量验证试验、实际检测,形成乳品中致病菌快速检测创新体系,该创新体系可以实现金黄色葡萄菌和沙门氏菌24h内完成增菌和检测。缩短了整体检测时间,并降低了检测成本,为进一步改良乳品中致病菌快速检测提供了可参考的数据。珀金埃尔默旗下的良润生物研发出创新检测体系,优化了样品前处理过程,并引入了荧光定量PCR分子检测技术,可以实现金黄色葡萄菌和沙门氏菌在24h内完成增菌和检测。扫描下方二维码,即可下载珀金埃尔旗下良润生物《乳品中致病菌快速检测解决方案》及《微生物快速检测产品信息》另外为更好的了解乳制品企业致病菌的检测需求,精准的提供致病菌检测解决方案,珀金埃尔默旗下良润生物展开线上有奖问卷调查。点击下方链接,即可访问调研页面。https://mp.weixin.qq.com/s/Pu5LRwaQSfCxsOp7ZNbbbg
  • 恒天然仍存菌被指不科学 质检总局不提解禁
    日前,新西兰初级产业部(MPI)检测结果曝乌龙,原本被怀疑含有肉毒杆菌的恒天然浓缩乳清蛋白原料,以及包括婴幼儿奶粉在内的使用该原料的产品中,均未发现肉毒杆菌,而是含有一般不会引发食品安全问题的梭状芽孢杆菌。   乳业专家表示,虽然未涉肉毒杆菌,但产品中存在任何细菌都是不合理的。记者联系质检总局,其表示暂无解禁通知。   恒天然原料未涉肉毒杆菌 质检总局不提解禁   MPI方表示,肉毒杆菌事件是虚惊一场 ,有关部门除了在本国,还在美国的实验室对原料进行检测。195次检测显示肉毒梭状杆菌均呈阴性,证实在恒天然生产的浓缩乳清蛋白粉中发现的细菌,并非可能致命的肉毒梭状杆菌。   8月6日,正在恒天然"涉毒"事件发酵之际,国家质检总局发布,对恒天然集团浓缩乳清蛋白粉和奶粉基粉无限期叫停,直至事件影响确认或问题解决。   对于目前新西兰MPI公布的事件乌龙结果,中国经济网记者联系到了质检总局进出口食品安全局负责奶粉进出口的负责人,其明确表示,暂没有接到任何解禁通知。而对于新报出的梭状芽孢杆菌,同肉毒杆菌一样,是不在进出口日常检测范围内的。   "梭状芽孢杆菌"成始作俑者 专家原料存菌不合理   检测机构为何会出如此 "乌龙"?"梭状芽孢杆菌实际上是不产生毒素的肉毒杆菌分离菌,"也就是说,这两种菌(肉毒杆菌和梭状芽孢杆菌)几乎是一样的,唯一区别在于是否含有负责编码生成肉毒素的基因",新西兰奥克兰大学微生物学专家苏西· 怀尔斯对媒体介绍说。   MPI发布声明称,目前已经确认被发现的有机物是梭状芽孢杆菌。梭状芽孢杆菌不会像肉毒杆菌那样产生会致人中毒的肉毒素。目前还未曾有过由梭状芽孢杆菌引发食品安全问题的报告,但如果这种细菌的某些菌株含量过高,可能导致食物腐坏。对于细菌来源并未详细披露。   检测结果显示并非肉毒杆菌也不能代表恒天然乳清蛋白粉就不存在问题,"实际上,这种蛋白粉里根本就不应该有任何可检出细菌,归根结底其产品依然存在污染,只是危害程度没有之前认为的那么高" ,乳业专家王丁棉在接受采访媒体时表示。   检测结果虚惊企业亿元损失 恒天然或陷巨额赔偿   据相关机构统计,受恒天然肉毒杆菌事件影响,各大超市、母婴店洋奶粉销量平均下跌幅度达到了20%以上。资深乳业专家宋亮也曾表示,涉事企业多美滋、雅培的销售下滑同比大约有四成。   多个奶粉的经销商以及母婴店店主也透露,自从恒天然奶粉出事以来这半个月左右的时间内,涉事的多美滋、雅培和可瑞康,销量均有一定程度的下降,其中最大的降幅达到60%,少的也有10%左右。   《第一财经日报》报道,以受损最严重的多美滋为例,核算了其召回、销毁及其产生的人力、物力损失,约有1.33亿元。此外,由于肉毒杆菌事件带来销量下滑,声誉受损,赔偿金额或远超过此数。   记者联系到多家涉事企业,目前均未表示向恒天然索赔的信息。对于消费者与客户赔偿,恒天然此前一直未启动。对于将面临的赔偿风险,恒天然对中国经济网记者表示,我们正与客户继续保持合作以解决供应链下游的问题,毕竟到目前为止大家关注的重点都在预防性召回上。但作为原料供应商,恒天然将会对直接因此次事件受到影响的客户承担起应有的责任。   长期研究国际法的京都律师事务所合伙人郭庆近日表示,不排除多美滋等企业会主张远超过直接损失的巨额赔偿,但这种情况往往双方会"撕破脸"决裂,正常情况下双方会本着继续合作的态度,协商出双方都能接受的赔偿方案。
  • Ebio Reader TM 3700M飞行时间质谱系统鉴别大肠埃希菌和志贺菌应用
    大肠埃希菌(Escherichia coli,E.coli)和志贺菌(Shigella Castellani)都是具有高度传染性、危害严重的革兰阴性肠道致病菌, 病人感染后的临床表现相似,如发热、水样腹泻、剧烈腹痛等,严重可致死亡。临床上大肠埃希菌和志贺菌的正确鉴定对临床治疗非常关键,因为不同的菌株间有毒力和耐药性的差异,感染不同的致病菌,需要采用不同的治疗方案。从全基因组角度上,大肠埃希菌(Escherichia coli,E.coli)和志贺菌(Shigella Castellani)的平均核苷酸一致率>95% ,保守DNA>69%,符合同一个种的定义,它们在菌落形态及生物学特性方面都非常相似,因此在临床实验室的常规工作中很容易被混淆,影响疾病的准确治疗。即使是通过16S rRNA 测序也只能鉴定到志贺菌-大肠埃希菌,并不能将其准确区分,进一步的鉴定需要依赖生化反应及血清学试验,但是这两种鉴定手段的实验步骤复杂、耗时很长,根本无法满足临床上对时效性的要求。基质辅助激光解吸电离飞行时间质谱( matrixassistedlaser desorption / ionization time of flight massspectrometry,MALDI-TOF MS) 是近年发展起来的一种新型软电离质谱技术,具有快速、准确、操作简便、高通量、低成本等优势,已经被广泛应用于微生物的分型鉴定。由于大肠埃希菌(Escherichia coli,E.coli)和志贺菌(Shigella Castellani)基因水平上同属于一个种,特征性质谱图高度相似,如果仅仅使用目前常用的微生物分型算法进行数据库检索,仍然会有错误鉴定的情况存在。我公司基于自主知识产权的Ebio ReaderTM 3700M飞行时间质谱系统平台,开发出了一套功能强大的人工智能算法,准确区分基因型相近的难辨菌的解决方案,如大肠埃希菌(Escherichia coli,E.coli)和志贺菌(Shigella Castellani),准确度达到95%以上。我们利用Ebio ReaderTM 3700M 分别对福氏志贺菌(Sh.flexneri)、大肠埃希菌(E.coli)以及两种菌株的混合菌进行质谱鉴定以及蛋白质谱图比较分析。激光频率20 Hz,每个样本进行200次激光采集,采集相对分子质量 2000Da~15000Da的蛋白质图谱,通过数据分析软件对采集到的3个样品图谱进行比对分析。3种样品均在 2691、3737、4869、5381、6255、7274、9067、9743、10300 m /z 处出现相似的特征峰,其蛋白质谱图极为相似(图1),如果单纯通过数据库检索的话,极大可能会造成错误鉴定。 图1:大肠埃希菌、福氏志贺菌以及混合菌的质谱图之后,我们分别选取福氏志贺菌51例,大肠埃希菌56例,利用Ebio ReaderTM 3700M飞行时间质谱系统进行质谱分析,通过神经网络软件比对观察两组细菌蛋白峰的差异,并运用强大的人工智能算法将采集到的谱图数据建立分类模型,然后利用此模型进行了盲样鉴定。结果可以将大肠埃希菌和福氏志贺菌完美地区分开,分离度分别达到99.5%和95.4%,混合菌的分类结果显示大肠埃希菌和福氏志贺菌分别为76.2%和23.8%,也说明了此样品为混合样本,且有一定的定量效果(如下表)。 通过软件的聚类分析功能,更加直观地显示我们建立的这套方案可以将大肠埃希菌和福氏志贺菌以及二者的混合菌有效的分离(图2)。 图2:大肠埃希菌、福氏志贺菌以及混合菌的聚类分析在此MALDI-TOF微生物自动鉴定检测系统中,公司使用了自主研发、具有深度学习分析功能的神经网络人工智能软件。通过上述案例证明此套人工智能算法可实现对大肠埃希菌和志贺菌的准确区分鉴定,弥补了质谱技术在鉴定亲缘关系相近菌种能力的不足,达到了精准医疗的目的,对临床诊断及治疗方面具有重要意义。
  • 美国FDA批准首个质谱检测系统检测病菌
    近日宣布 VITEK® MS已经获得美国FDA 的510k医疗器械上市许可。该系统亦在2012年8月提前于美国FDA在中国获得了食品药品监督管理局的上市许可。这将是首个同时在美国和中国获得政府部门批准的用于临床检验使用的基质辅助激光解吸-飞行时间质谱系统。它是VITEK® 家族中最新加入的产品,可用于致病细菌和酵母菌的临床快速鉴定,也是第一种能够在数分钟内检测致病微生物的系统:这项改变&ldquo 游戏规则&rdquo 的技术对改进患者治疗具有重大意义。克利夫兰医学中心最近将这项技术称为&ldquo 2013年十佳医疗技术突破&rdquo 。   &ldquo 生物梅里埃为世界微生物领域带来最具革新的技术已经有很长的历史了,因此作为世界临床病原体检测技术的领导者,我们为在2013年将第一个质谱分析系统带到美国医院检验室而感到非常骄傲,并以此向公司50周年庆献礼,&rdquo 微生物部首席运营官兼副总裁亚历山大 . 梅里埃说。&ldquo 半个世纪以来,生物梅里埃将多种领先的创新诊断技术带进了医院检验室,VITEK® MS作为创新的解决方案之一为改进医疗决策提供可靠信息,这是我们承诺改变微生物诊断的一部分。&rdquo   &ldquo 能够在检验室用一台设备鉴定大约200种不同微生物的能力是及时识别病原微生物方面的一项重大进步,&rdquo 美国食品药品管理局医疗器械辐射健康中心的体外诊断和放射健康中心主任、医学博士阿尔伯特 . 古铁雷斯说道:&ldquo 治病微生物的快速鉴定能大大改进危重病人的治疗。&rdquo   为了获得美国食品药品管理局许可,生物梅里埃提交了一个含有7068个临床分离株的多中心临床研究数据。VITEK® MS与16S核糖体 RNA 基因测序方法(金标准)比较,准确鉴定出以下类别的微生物病原体:厌氧菌、肠杆菌科细菌,革兰氏阳性需氧菌,革兰氏阴性苛养菌,非肠杆菌科革兰氏阴性细菌和酵母菌。与这些微生物的核酸测序结果比较,VITEK® MS的准确率是93.6%。   科学家赞扬该新技术和其在改进公共医疗上的潜力   &ldquo 在与感染疾病的斗争中时间是最宝贵的,而这正是我们所缺乏的。自从分子扩增方法用于鉴定治病病原体,基质辅助激光解吸 - 飞行时间质谱的应用将对临床微生物产生重大影响&rdquo 美国临床病理学会医学技术专家、北岸医疗集团实验室传染病诊断部高级医学总监、霍夫斯特拉北岸大学医学院教授、医学博士克里斯蒂 .C. 吉诺奇奥说:&ldquo 这项技术将使我们传统的微生物鉴定方法发生变革。结合快速的药敏试验,我们能在很短的治疗时间窗口内提供诊断和治疗意见,这将降低发病率和死亡率。&rdquo   华盛顿大学医学院的研究者决定对VITEK® MS进行一项更具挑战的测试,他们这项测试将用VITEK® MS分析十年间收集的最初使用传统手段难以鉴定的微生物样品。   &ldquo 如果我们使用MALDI-TOF MS检测微生物,我们会怎么做?&rdquo 华盛顿大学医学院病理学和免疫学助理教授兼Barnes Jewish Hospital医学主任Carey-Ann Burnham博士说,&ldquo 因此,我们用冷冻冰箱中采集的这些样品测试,所得到的结果十分激动人心。仅仅MALDI-TOF MS这样一个单一的方法能在瞬间高度精确的鉴定几乎所有的分离株。&rdquo   &ldquo Hackensack大学医疗中心始终致力于研究前沿的新技术和治疗方法,以更好的服务患者, VITEK® MS就是另一个很好的证明。&rdquo Hackensack University Health Network总裁兼首席执行官Robert C. Garrett说到,&ldquo 我们正在对该技术给感染病诊断和治疗在速度和准确性上的提高所带来的效益进行研究。误治和抗生素滥用是医疗卫生体系的主要问题,这些问题会延长病人痛苦、增加治疗的花费。我们认为,凭借其更加快速的诊断,进而更早的对病人实施有效治疗, VITEK® MS能够减少我们的药物治疗成本,减少严重感染病患者的住院时间,从而增加我们的效益。&rdquo   VITEK® MS数据库代表了绝大多数困扰人类的细菌和真菌。作为临床微生物学方面的领袖,生物梅里埃拥有全世界最大的菌株库。   对于采用质谱法鉴定微生物的微生物学家来说,通过 VITEK® 2系统,生物梅里埃能够提供综合的工作流程解决方案,确保最佳的用户方便性、完整的样品可追溯性以及结果的质量。所有生物梅里埃系统将会通过 Myla® 基于网络的实验室信息解决方案对数据进行管理。该全面整合系统将大大促进信息和工作流程管理,能够提供 VITEK® MS鉴定和 VITEK® 2药敏检测间的充分连接。
  • 实验显示:烘手机反而会吹脏你的手 菌落数量增近七成
    6月29日,记者测试用烘手机烘干手和自然晾干手的菌落数量。 6月30日,实验人员计算培养皿中的菌落数量。   天天洗手,你有没有想过洗手的方式压根儿不对?尤其是洗过手后还用烘手机吹一下。烘手机不用直接接触,给人感觉很卫生,但实验显示,用烘手机反而会吹脏你的手。   近日,记者在北京一家食品安全一级实验室,模拟平时的洗手环境,分别在一家快餐厅和一家KTV的洗手间用洗手液洗手,并用烘手机烘干。为了对比实验效果,记者洗手后,分别将右手用烘手机烘干、左手自然晾干,并请实验人员分别从手部取样,检测不同方式下手部细菌的情况。   实验结果显示,经过烘干的手比自然晾干的手菌落数量分别增加约67%和28%。   北京一位疾控专家表示,安装烘手机的地方一般比较潮湿,烘手机内容易滋生细菌,因此会测出手部细菌比自然晾干时要多。建议大家用标准的&ldquo 六步洗手法&rdquo ,并自然晾干双手。   实验   实验样品:分别在东三环一家肯德基快餐厅、一家KTV的卫生间洗手,通过烘手机烘干、自然晾干两种方式手干后,分别在手部取样检测   实验地点:北京一家食品安全一级实验室   用烘手机菌落数量增近七成   1、取样:模拟日常洗手习惯,记者分别在实验室附近的肯德基快餐厅和一家KTV内的洗手间洗手,使用同一种洗手液,并错开两次洗手的时间。   为对比实验结果,洗手后,将右手用烘手机烘干,左手则自然晾干。为防止二次污染,需及时回到实验室,并请实验人员分别用一次性快速涂抹棒在记者手部擦拭取样,并放入无菌营养液中。   2、检测:将样品溶液放入9毫升的无菌生理盐水试管中。同时,再稀释一个10倍的溶液样品,分别制成1:10和1:100的样品匀液。将两种不同浓度的溶液样品分别培养基中,常温下培养菌落24小时以上。   实验结果:在肯德基快餐厅内洗手间洗手后,自然晾干后手部菌落数量为30cfu/g(cfu/g是菌落形成单位,表示每克样品中含有的微生物群落总数),用烘手机烘干后手部菌落为50cfu/g,增加约67% 在KTV内洗手间洗手后,自然晾干后手部菌落数量为180cfu/g,用烘手机烘干后手部菌落为230cfu/g,增加约28%。   实验分析:实验技术人员介绍,从两组数据来看,用烘手机烘干后的手部菌落数量均明显高于自然晾干方式,说明烘手机可能吹出了一些细菌。   洗手方式不对细菌多出44倍   1、取样:记者先模拟日常生活中接触一些细菌容易滋生的地方,再简单清洗手心和手背,时间持续在10秒以内,及时到实验室取样。随后记者再次重复接触细菌容易滋生的地方,并采用实验人员建议的正确洗手方式&ldquo 六步洗手法&rdquo ,分别清洗手心、手背、虎口、指尖、指间、指肚等处,持续时间约60秒,并及时到实验室取样。   2、检测:与上述方法相同,将样品溶液放入9毫升的无菌生理盐水试管中,再分别制成1:10和1:100的样品匀液。将两种不同浓度的溶液样品分别培养基中,常温下培养菌落24小时以上。   实验结果:按照&ldquo 六步洗手法&rdquo 的标准方法洗手后,手部菌落数量是120cfu/g 而普通方式洗手后,手部菌落数量高达5300cfu/g。   实验分析:实验技术人员介绍,从实验数据来看,普通洗手方式后手部的菌落数量是标准洗手方式后的44倍左右,建议大家采用&ldquo 六步洗手法&rdquo 。   追访   快餐厅   烘手机只擦外表不会洗内部   昨日记者回访了实验取样的肯德基快餐厅和KTV。   肯德基快餐厅内洗手间的位置靠近入口处,通风条件好,洗手间内不停有保洁人员打扫。一名保洁人员说,每次轮班的人都要把洗手台和烘手机都擦洗几遍,一天至少清洗两三次,但是并不会清洗烘手机内部,也不了解是否会滋生细菌。   相对于肯德基,取样所在的KTV内洗手间环境较阴暗,通风条件较差,且保洁人员并非轮班执勤,保洁人员表示不经常擦洗烘手机。   烘手机厂家   建议每周清洗过滤网及碳刷   根据取样的两台烘手机上标识的产品信息,记者致电了烘手机的生产厂家。一家售后人员介绍,该公司生产的这款烘手机里面有一个过滤网,经常使用的话,过滤网可能容易滋生微生物,最好每周清洁一两次。如果使用超过两年以上或更久,最好直接换掉过滤网。另一家公司工作人员表示,不建议拆开烘手机内部来清洗,因为容易触电并破坏机器。但其生产的烘手机出风口处有一个黑色的碳刷可拆卸,最好一周清洗一两次。   专家说法   暖风温度不足以杀菌   一位北京疾控专家表示,烘手机的工作原理主要就是风和温度,而烘手机吹出的一般是暖风,温度达不到高温杀菌的程度,加之洗手间一般比较潮湿,湿热环境下烘手机内反而容易滋生细菌。因此洗手后用烘手机烘干,手部细菌比自然晾干时还要多也很正常。   专家说,很多人洗手都只是简单冲洗手心、手背,而且不用洗手液或香皂,但是每次洗手至少要洗20秒以上才能有效。同时,建议大家采用&ldquo 六步洗手法&rdquo 。   标准&ldquo 六步洗手法&rdquo   1 掌心相对,手指并拢相互摩擦   2 手心对手背沿指缝相互搓擦,交换进行   3 掌心相对,双手交叉沿指缝相互摩擦
  • 尽早建立菌草技术国家工程研究中心
    菌草新技术是我国拥有自主产权的新技术。该技术发源于福建,是由福建农林大学于上世纪80年代首创的。为了保持和发展我国菌草技术在世界的领先地位,推动我国菌草业发展成为新兴的战略性产业,建议尽早在福建建立菌草技术国家工程研究中心。建议国家发展改革委支持福建省在福建农林大学建立“菌草技术国家工程研究中心”。
  • 中国计量测试学会发布《益生菌活菌计数及代谢活力检测 拉曼光谱法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由青岛星赛生物科技有限公司等单位牵头起草的《益生菌活菌计数及代谢活力检测拉曼光谱法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年3月28日前将《征求意见反馈表》反馈至以下联系方式。联 系 人:周玭 电 话:17196019888地 址:山东省青岛市崂山区株洲路187-1号崂山智慧产业园2号楼1101邮 编:266000 电子邮箱:zhoupin@singlecellbiotech.com 1.《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿2.《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明3.征求意见反馈表 中国计量测试学会2024年2月27日附件1 《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿.pdf附件2 《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明.pdf附件3 征求意见反馈表.doc
  • 单细胞拉曼光谱揭示氮循环功能菌研究获新进展
    p   氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,微生物种类和功能丰富多样,超过99%的环境菌目前无法实现纯培养,因而对环境中固氮菌功能和活性的认识仍非常不足。环境微生物的不可纯培养性,带来了方法学上的挑战。从单细胞水平上研究环境微生物可克服纯培养或富集培养的限制,实现在环境介质下的原位研究。拉曼光谱(包括SERS、常规和共振拉曼)可在单细胞水平上对微生物进行无损检测,并提供微生物组成的指纹图谱。拉曼光谱与稳定同位素标记结合(Stable isotope probing, SIP),利用微生物同化SIP标记底物引起蛋白、脂类、色素的特征拉曼谱峰偏移,已实现从单细胞水平上检测环境功能菌。 /p p   中国科学院城市环境研究所城市土壤与生物地球化学研究组(朱永官团队),在发展单细胞拉曼-15N2SIP技术用于固氮功能菌的研究上做了开拓性工作。针对土壤中的固氮菌,首次建立单细胞共振拉曼与15N2标记联用技术,发掘出15N2相关的指示固氮菌的特征偏移谱峰,即细胞色素c共振拉曼峰的偏移。利用此指示峰,实现在单细胞水平上检测复杂土壤环境中的固氮菌,并利用指示峰的偏移程度,在单细胞水平上,比较了土壤固氮菌的固氮活性。此外,研究组与牛津大学教授Wei Huang合作,针对包括固氮菌在内的多种氮循环(N2、NH4、NO3)功能菌,率先发展表面增强拉曼光谱(SERS)-15N SIP联用技术,利用SERS对微生物中含氮生物分子腺嘌呤的选择性增强,获得不同15N标记氮源引起的细菌腺嘌呤谱峰的显著线性偏移,并利用SERS-15N SIP研究厦门杏林湾水体中细菌对15N2、15NH4Cl、15NO3不同氮源的选择性代谢。上述工作促进了对大量未知环境菌群的深入认识,尤其是氮循环功能菌及其活性的深入解析。 /p p   相关研究成果分别以Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with15N2Labeling为题,发表在Anal. Chem.上;以Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level为题,发表在Anal. Chem.上。研究工作得到了国家重点研发计划和国家自然科学基金等的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95e9fe92-ccc2-4ded-8e88-bac97919cf0d.jpg" title=" W020180807542181390530.jpg" / /p p style=" text-align: center " 城市环境所在发展单细胞拉曼光谱揭示氮循环功能菌研究中取得进展 /p
  • FDA批准质谱仪系统VITEK MS用于鉴定193种不同致病细菌和真菌
    2013.8.21,FDA批准美国第一个质谱仪检测系统用于自动识别已知能导致人体严重疾病的细菌和酵母的上市。该质谱仪系统VITEK MS能鉴定出193不同微生物,可在一系列自动化测试过程中进行192种不同的测试,而且每个测试只需要大约一分钟。   谱仪系统VITEK MS可以鉴别诸如念珠菌、隐球菌和马拉色氏霉菌属组的酵母茵和葡萄球菌科、链球菌科、肠杆菌科、假单胞菌科和类杆属组的细菌,这些酵母茵和细菌跟皮肤感染、肺炎、脑膜炎和血液感染有关。HIV或AIDS、癌症治疗或器官移植后的抗排斥治疗损害或削弱免疫系统的患者特别容易受到这些细菌感染。   VITEK MS采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术,该技术利用激光打破酵母和细菌标本成小颗粒,形成一个独特的微生物模型。VITEK MS在检测系统数据库自动将这些微生物模型与193种已知的酵母和细菌进行比对,从而鉴别微生物。   此与其他要求大量微生物繁殖来检测的鉴别方法相比,质谱分析方法只需要少量的酵母或细菌繁殖,所以只要微生物生长到可视程度后就可以马上开始检测,通常在在18到24小时内。传统的方法需要五天才能得出相同的鉴别结果。   FDA通过新型分类程序审查了VITEK MS,这是对一些新型低中度风险且不完全等同于已知合法市售的医疗设备的调控途径。   VITEK MS再临床上用于鉴别由人体标本培养得到的微生物,它与联合其它临床和实验室发现相互结合,从而辅助诊断细菌和真菌感染。   VITEK MS的制造商为北卡罗来纳州达勒姆的生物梅里埃公司。
  • 岛津共同开发成功高精度细菌识别软件Strain Solution
    &mdash 日本爱知县「知识基地爱知」重点研究项目研究成果&mdash 近日,岛津公司参与的由日本爱知县产业界、学术界、政府合作推进的共同研究项目「知识基地爱知」中的重点研究项目「食的安心・ 安全技术开发项目」获得重要成果。岛津公司与学校法人名城大学农学部・ 田村广人教授共同开发了「对应AXIMA微生物鉴定系统的高精度细菌识别软件Strain Solution」。本软件可以高精度、迅速识别从食品等中分离的细菌。 作为「知识基地爱知」项目核心事业的重点研究项目,在日本文部科学省的支持下展开活动,受爱知县的委托,由公益财团法人科学技术交流财团实施。该项目依托大学等研究机构,由产业界、学术界、政府合作推进研究开发,并谋求通过企业实现事业化・ 产品化。 岛津公司参与的「食的安心・ 安全技术开发项目」,旨在开发高精度、快速检测危险农作物及食品安全的有害化学物质、固态异物、微生物的技术,是有10所大学、6所政府研究机构、24家企业(截止2013年8月1日)参与的大型项目。 爱知县的加工食品产量位居日本第二,县内的食品相关企业超过700家,农作物出产量也非常大。为此,对于高精度・ 快速・ 廉价的安全性测试系统有很高的需求。该项目的成果可望带来良好的经济效益,帮助搞活地方产业、提高食品安全以及降低由食品异物混入事故造成的损失。 岛津公司作为综合精密仪器生产厂家,携长期培育的卓越技术参与了该项目中的Group theme1「农畜产品等中有害化学物质的高端检测装置的开发」以及Group theme3「食品等微生物的高端检测装置的开发」,积极推进研究开发。最近,在Group theme3中开发的食品等分离细菌快速・ 简便识别技术的实用化获得成功,已做为产品销售。此技术使用了岛津基质辅助激光解离离子化飞行时间型质谱仪(MALDI-TOFMS)。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 近红外光谱智能餐具 可扫描食物中细菌
    温哥华两名华裔少年发明了一种智能餐具,可扫描食物中的细菌、过敏原和营养成分。  智能餐具由16岁的马德琳刘和安吉拉王设计,可用于叉子、勺子和筷子等多种形式,使用“近红外光谱”技术分析食物中的分子。  马德琳刘称,不同种类食物的分子以不同方式振动,由此创造出其独特的“光学签名”,智能餐具据此与数据库进行比对,从而识别和确定食物中的特定分子。  马德琳刘在其朋友和亲属遭受幽门螺旋杆菌引起的过敏和感染后萌发了设计智能餐具的灵感。幽门螺旋杆菌可经口口相传,进而感染胃部并导致溃疡。幽门螺旋杆菌在不实行分餐的亚洲国家较为常见,常常通过餐具扩散。  马德琳刘表示,除了检测幽门螺旋杆菌,智能餐具附带的微型光谱仪还能检测过敏原和营养成分。而且,光谱仪在餐后可从叉子、勺子和筷子上取下,以便于清洗。  两位华裔少年设计的智能餐具曾获得去年11月举办的“温哥华创业周末”大奖,目前她们正在对产品进行最终定型以尽快推向市场。
  • 韩国禁止进口带创伤弧菌的海产品
    由于在进口检验中,从泰国产速冻馄饨和饺子中检测出创伤弧菌污染,韩国食品药品管理局(KFDA)于2010年5月13日对泰国含虾馄饨实施禁令并拒绝入境。   人食用被上述病原体污染的海鲜产品(如牡蛎、蛤和螃蟹等)后,或开放伤口接触此物污染的海水后,会受到感染。如果是经食物感染的,健康的成年人会犯肠胃炎,而身体虚弱者则可能导致原发性败血症或死亡。   要确定海产品是否带有创伤弧菌,通常采用ISO/TS 21872-2: 2007和美国FDA细菌分析手册(BAM)中的鉴别和确认方法。KFDA认可这些传统检测方法。除此以外,为节约时间和劳力,一些实验室还采用快速方法,如DNA探针和实时 PCR检测方法。
  • 《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》等2项团体标准公开征求意见
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱 质谱法》2项团体标准公开征求意见的通知.pdf《牛樟精油》(征求意见稿).pdf《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿).pdf征求意见表.docx.doc
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制