当前位置: 仪器信息网 > 行业主题 > >

二硫化四甲基秋兰姆分析标

仪器信息网二硫化四甲基秋兰姆分析标专题为您提供2024年最新二硫化四甲基秋兰姆分析标价格报价、厂家品牌的相关信息, 包括二硫化四甲基秋兰姆分析标参数、型号等,不管是国产,还是进口品牌的二硫化四甲基秋兰姆分析标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二硫化四甲基秋兰姆分析标相关的耗材配件、试剂标物,还有二硫化四甲基秋兰姆分析标相关的最新资讯、资料,以及二硫化四甲基秋兰姆分析标相关的解决方案。

二硫化四甲基秋兰姆分析标相关的资讯

  • 《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》公开征求意见
    近日,国家标准计划《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》进入公开征求意见阶段,反馈日期截止到2023年12月5日,如有任何建议或意见,请有关单位和专家填写征求意见表(详见附件)并反馈至邮箱:shaoyue @graphene-center.org 。本文件由TC279(全国纳米技术标准化技术委员会)归口,主管部门为中国科学院,起草单位为中国科学院半导体研究所、河北大学和泰州巨纳新能源有限公司。本文件规定了使用拉曼光谱法测量二硫化钼薄片的层数的方法。本文件适用于利用机械剥离法制备的、横向尺寸不小于 2 µm的 2H堆垛的二硫化钼薄片的层数测量。化学气相沉积法制备的 2H堆垛的二硫化钼薄片可参照本方法执行。二硫化钼薄片具有优异的电学、光学、力学、热学等性能,在学术届和工业届都引起了广泛的关注,已成为新一代高性能纳米光电子器件国际前沿研究的核心材料之一。二硫化钼薄片作为二维层状材料的代表,其层数或者厚度显著影响其光学和电学等性能。例如,单层二硫化钼薄片为直接带隙半导体,多层二硫化钼薄片为间接带隙半导体,且带隙随层数增加而逐渐降低,但场效应迁移率和电流密度会随之提高,进而通过调控二硫化钼薄片的层数实现与其相关的光电探测器、光电二极管、太阳能电池和电致发光器件的可控性能。所以,快速准确地表征二硫化钼薄片的层数对于其生产制备和相关产品开发具有重要的指导意义,也是深入研究二硫化钼薄片的物理和化学性质的基础和其开发应用的核心。拉曼光谱作为一种快速、无损和高灵敏度的光谱表征方法,已被广泛地应用于二硫化钼薄片的层数测量。比如,单层和多层二硫化钼薄片的拉曼光谱中,高频拉曼振动模——E12g 和A1g的峰位差值随二硫化钼薄片的层数而递增,两层及以上的二硫化钼薄片中低频拉曼振动模——呼吸(LB)模和剪切(S)模的峰位与二硫化钼薄片的层数具有确定的对应关系。同时,对于制备在氧化硅衬底上的二硫化钼薄片,二硫化钼下方硅衬底的拉曼峰的强度也与其上二硫化钼薄片的层数呈现单调变化的关系。因此,利用上述拉曼光谱参数特征,就可以准确地测量二硫化钼薄片的层数。由于不同方法制备的二硫化钼薄片在结晶性和微观结构上存在较大差异,现有任何一种表征方法均不是具有确定意义的通用手段。在实际应用中需要根据二硫化钼薄片的结晶性和微观结构特点来选择一种或多种合适的表征方法对其层数进行综合分析。附件:纳米技术 拉曼光谱法测量二硫化钼薄片的层数(征求意见稿) -- 征求意见表.doc纳米技术 拉曼光谱法测量二硫化钼薄片的层数(征求意见稿).pdf
  • 是时候来了解硫化物在线分析了
    硫成分广泛存在于许多用于烃加工的原料中。含硫成分危害很大,有强烈的气味。而且会引起酸雨,导致催化剂(昂贵)中毒,降低聚合物产量。最麻烦的硫气体是硫化氢(H 2S)、羰基硫(COS)和甲基硫醇、乙基硫醇。根据国内的标准要求,这些化合物是要在ppb水平测定。 硫气体的检测困难在于是挥发性的,也非常活泼的。痕量硫分析系统必须是非常惰性的采样设备、GC设置才能实现ppb级可重复的检测结果。 在线监测流程和原理概况: 气体样品定量被采集到在线的低温冷肼吸附填料内,两级冷肼,一级除水,一级将气体样品中的待测组分冷凝到吸附填料上。然后快速升温加热块将装有吸附填料的吸附管迅速升温,待测组分解析后由载气携带进入分析柱内,进行分离,随后进入检测器得出分析结果。 鉴于此,硫化物在线监测体系需要满足如下条件:1 样品的采集、富集、解析、分离和分析,整个过程要自动运行。2 所有样品流经途径接触到的表面都要经过惰性处理,确保美誉任何吸附。3 加热块的迅速升温。4 电子流量控制技术精准控制载气流量。 分离体系是整个体系很重要的一环,由于是在线分析体系,所以选择更加耐用、更加结实的MXT金属柱就是最好的解决方案。1987年RESTEK第一个开发了金属表面进行硅烷化惰性处理的专利技术,对不锈钢的表面进行惰性处理后,其惰性表面甚至比石英毛细柱的表面的惰性还要好。 针对硫化物分析,一个是最常使用的MXT专用填充柱Rt - XLSulfur 分析化合物:中文名称CAS分子式1 硫化氢7783-06-4H2S2 羰基硫463-58-1COS3 甲硫74-93-1CH4S4 乙硫75-08-1C2H6S5 二甲硫75-18-3C2H6S6二甲基二硫624-92-0C2H6S2 分析谱图:分析条件: 色谱柱Rt-XLSulfur, 1 m, 0.75 mm ID (cat.# 19806)浓度1 mL,50 ppbv进样六通阀切换程序升温:60 C - 230 C ,15 C/min载气He, 恒流量流速:9 mL/min检测器FID
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 超灵敏二硫化钼湿度传感器研究获进展
    p  现阶段对二硫化钼湿度传感器的研究主要受制于加工过程本身引入的残胶对材料表面的污染,影响了其对水分子的吸附,从而导致灵敏度不高或响应时间过长等问题。因而,如何得到具有高灵敏、快速响应时间的二硫化钼湿度传感器成为制约其应用的最主要因素。/pp  针对上述问题,日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)纳米物理与器件实验室利用一种新的金剥离方法,加工得到具有干净表面的二硫化钼场效应晶体管,从而实现了对水分子的灵敏响应。该项工作由实验室博士赵静在研究员张广宇的指导下完成。/pp  据悉,这种加工方法主要是利用二硫化钼与金之间的作用力远大于金与衬底间的作用力,从而可以将多余的二硫化钼样品从衬底上完整地剥离下来,同时保证了用于器件的二硫化钼表面的干净。利用这种方法一方面有效避免了加工过程中经过反应离子刻蚀后表面残胶对器件性能的影响,另一方面大大简化了加工过程,得到了具有超洁净表面的二硫化钼场效应晶体管,其光学、电学性能的显著提高也从另一个方面证明了这种加工方法得到的样品具有更好的性能。/pp  由于利用这种金剥离方法得到的二硫化钼场效应晶体管具有超洁净的表面,因此能够灵敏感知外界湿度变化,大大提高了二硫化钼湿度传感器的灵敏度。除了具有超高灵敏度外,由于二硫化钼表面没有悬挂键,对水分子的吸附是纯粹的物理吸附,因此器件可以很容易地进行脱吸附,有效缩短了响应时间和恢复时间。除此之外,得益于CVD生长的二硫化钼成膜均匀,可以加工得到一系列具有优异性能的二硫化钼湿度传感器阵列,从而对外界不同湿度的空间分布起到定位作用,用来实时监测外界湿度分布的变化。/pp  这种基于超洁净表面的二硫化钼样品加工得到的湿度传感器具有灵敏度高、响应时间和恢复时间短、使用寿命长、空间分辨率高等特性,可以广泛应用于未来无接触定位系统及二维材料多功能柔性传感器阵列领域。/pp/p
  • 北京博赛德直播课程分享丨硫化物的分析应用和便携气质的技术应用分享
    3月4日-6日,我们积极响应当前“停工停课不停学”的号召,举办了三场在线直播课程。课程得到了老师们的积极响应和一致好评,甚BCT有些老师还表示意犹未尽,咨询针对硫化物的分析有无分享,问何时再直播?为响应各位老师的号召,我们又安排了两场精品直播课程,分享给大家:一 硫化物的分析应用分享时间:3月13日 上午10:00—12:00讲师:可贵秋内容概述:1 现有硫化物标准方法解读;2 BCT硫化物分析方案;3 硫化物采样分析常见问题、解决方案及注 意事项二 便携气质的技术应用分享时间:3月17日 上午10:00—12:00讲师:张国振内容概述:1、为什么需要便携式气质?便携式气质和实验室气质的区别;2、便携式气质必须具备的特性及核心技术介绍;3、便携式气质的应用和实际案例。对此课程有需要和感兴趣的专业人士都可以联系我们,参加课程直播。前期三场在线直播课程,从大气VOCs在线监测的难点、常见问题及解决方案,到各类前处理设备:顶空、吹扫捕集、苏玛罐、热解析、热裂解等的技术应用、使用注意事项,再到以苏玛罐系统为主的实验室采样、分析、质控、数据审核的一些实用经验分享,满满的全是干货。前 期 回 放
  • 地质地球所提出硫化物颗粒的高精度硫同位素分析方法
    硫化物是自然界中常见的一类矿物,其形成往往与地质运动或生命活动相关。硫化物中的硫同位素组成是示踪生命活动,厘定地质过程的重要依据。传统离子探针硫同位素分析精度虽然可以达到0.1-0.2 &permil ,但其束斑一般为10-30 &mu m,不适用于微生物活动相关的微细硫化物颗粒(5 mm)和硫化物复杂环带等样品的硫同位素分析。纳米离子探针具有高空间分辨的特点,但通常其分析精度较传统离子探针逊色,前人在~2 mm空间分辨下,硫化物硫同位素分析的精度仅为2-4&permil ,制约了其在地球科学中的应用。  为获得更高的空间分辨和分析精度,中国科学院地质与地球物理研究所地球与行星物理院重点实验室张建超工程师与其合作者以纳米离子探针为平台,开展了超高空间分辨与高精度的硫同位素分析方法研究。QSA效应(电子倍增器无法记录几乎同时到达的两个离子而造成的测量误差)是制约高精度同位素分析的关键因素,该研究创新性地提出了精确校正QSA效应方法,并成功研发了不同空间尺度内硫同位素高精度分析的实验方法,其空间分辨和外部分析精度分别为:~5 mm尺度内分析精度0.3&permil 、 ~2 mm尺度内分析精度0.5&permil 、 ~1 mm尺度内分析精度1&permil 。这一结果是同等空间分辨下最优的分析精度,处于国际领先水平层次,能够满足微米-亚微米尺度的硫化物颗粒(如草莓状黄铁矿)及复杂环带的高精度硫同位素分析的需求。  该研究成果近期发表在国际分析技术刊物Journal of Analytical Atomic Spectrometry 上(Zhang et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry, 2014, 29(10) : 1934-1943)。  地质地球所提出硫化物颗粒的高精度硫同位素分析方法
  • 雷磁DGB-480携手新标准HJ 1226-2021,硫化物无处遁形
    一、背景介绍为了保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,HJ 1226-2021《水质 硫化物的测定 亚甲基蓝分光光度法》于2021年12月16日发布,于2022年3月1日正式实施。HJ 1226-2021《水质 硫化物的测定 亚甲基蓝分光光度法》与GB/T 16489-1996《水质 硫化物的测定 亚甲基蓝分光光度法》相比,主要差异如下: 对比项目GB/T 16489-1996HJ 1226-2021适用范围本标准适用于地面水、地下水、生活污水和工业废水中硫化物的测定。本标准适用于地表水、地下水、生活污水、工业废水和海水中硫化物的测定。方法检出限当取样体积为100 ml,使用1cm 光程比色皿时,方法检出限为 0.005 mg/L当取样体积为 200 ml,使用10 mm光程比色皿时,方法检出限为 0.01 mg/L;使用30mm光程比色皿时,方法检出限为 0.003 mg/L沉淀分离法有删除“酸化-蒸馏-吸收”前处理方法无新增30mm光程比色皿仅用于地下水或低于第|一类标准的低浓度海水的测定,前处理法应采用“酸化-蒸馏-吸收”法。质量保证和质量控制无新增废物处置无新增 二、仪器推荐根据标准要求,我司推荐使用雷磁DGB-480型多参数水质分析仪进行水质硫化物的测定,下面我们来看DGB-480“连线”HJ 1226-2021后的具体表现。 DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、高锰酸盐指数、CODCr、总磷、挥发酚、硫化物等50多种检测项目和方法,方法直接调用,配套雷磁专用试剂盒,测量快速、简便。方便现场测定,并满足实验室分析。● 硫化物检测方法原理经过前处理的样品在硫酸铁铵酸性溶液中与 N,N-二甲基对苯二胺反应,生成亚甲基蓝,再特定波长处测定其吸光度,硫化物含量与吸光度值成正比。● 主要参数参数方法号方法检出限mg/L测量范围mg/L重复性测量误差硫化物42亚甲基蓝法0.010.01-1.002.00%±0.05mg/L● 试剂硫化物试剂包:硫化物试剂A、硫化物显色剂粉剂、硫化物显色剂溶剂、硫化物试剂B硫化物校准液:ρ=100.0mg/L(以S计)● 仪器操作流程 ● 推荐理由HJ 1226-2021标准要求使用分光光度计配套10mm光程和30mm光程比色皿做标准曲线后进行测试,分光光度计体积较大,操作繁琐,不方便移动,无法携带至现场。雷磁DGB-480型多参数水质分析仪,体积小,配套专用试剂和辅助工具,“一箱”搞定现场水质检测。
  • 研究发展出单层二硫化钼低功耗柔性集成电路
    柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟道材料。然而,推动二维半导体柔性集成电路走向实际应用并形成竞争力,降低器件功耗、同时保持器件性能是关键技术挑战之一。 中国科学院物理研究所/北京凝聚态物理国家研究中心研究员张广宇课题组器件研究方向近年来聚焦于二维半导体,在高质量二维半导体晶圆制备、柔性薄膜晶体管器件和集成电路等方向取得了重要进展。近年来的代表性工作包括实现百微米以上大晶畴及高定向的单层二硫化钼4英寸晶圆,进而利用逐层外延实现了层数控制的多层二硫化钼4英寸晶圆;率先实现单层二硫化钼柔性晶体管和逻辑门电路的大面积集成;展示单层二硫化钼柔性环振电路的人工视网膜应用,模拟人眼感光后电脉冲信号产生、传导和处理的功能。 近期,该课题组博士研究生汤建、田金朋等发展了一种金属埋栅结合超薄栅介质层沉积工艺(图1),将高介电常数HfO2栅介质层厚度缩减至5 nm,对应等效氧化物厚度(EOT)降低至1 nm。所制备的硬衬底上的场效应晶体管器件操作电压可以等比例缩放至3 V以内,亚阈值摆幅达到75 mV/dec,接近室温极限60 mV/dec。同时,研究通过优化金属沉积工艺,使得金属电极与二硫化钼之间无损伤接触,避免费米能级钉扎,使接触电阻降低至Rc600 Ωμm,有效地将沟道长度为50 nm的场效应器件的电流密度提升至0.936 mA/μm @Vds=1.5 V。在此基础上,科研人员将该工艺应用于柔性器件的制作。四英寸晶圆尺度下柔性二硫化钼场效应晶体管阵列及集成电路表现出优异的均匀性以及器件性能保持性(图2)。该工作对随机选取500个场效应器件进行测试发现,器件兼具高良率( 96%)、高性能(平均迁移率~70 cm2 V-1 s-1)以及均匀的阈值电压分布(0.96 ± 0.4 V)。当操作电压在降低到0.5 V以下时,反相器依然具备大噪音容限和高增益、器件单元功耗低至10.3 pWμm-1;各种逻辑门电路也能够保持正确的布尔运算和稳定的输出(图3);11阶环振电路可以稳定地输出正弦信号,一直到操作电压降低到0.3 V以下(图4)。 该工作展示了单层二硫化钼柔性集成电路可以兼具高性能和低功耗,为二维半导体基集成电路的发展走向实际应用提供了技术铺垫。相关结果近期以Low power flexible monolayer MoS2 integrated circuits为题,发表在《自然-通讯》(Nature Communications 2023 14, 3633)上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院战略性先导科技专项(B类)等的支持。该研究由物理所与松山湖材料实验室联合完成。
  • 牛津仪器启动二硫化钼生长工艺研究 或将推动下一代纳米电子器件的开发
    据报道,2016年7月4日,英国牛津仪器公司利用其纳米实验室纳米级生长系统,启动了二硫化钼生长工艺研究。  单层硫化钼是一种直接带隙半导体材料,在光电领域具有广泛的应用,如发光二级光、光伏电池、光探测器、生物传感器等,而多层二硫化钼是一种非直接带隙半导体,有望用于未来的数字电子技术。  牛津仪器公司表示,该公司已经开展了广泛的研究,对化学气相淀积工艺进行了优化,开发了纳米实验室系统,这一系统能够处理广泛领域的液态/固态/金属-有机材料,适用于二维材料生长。该系统能够提供在蓝宝石、原子层淀积铝(氧化铝和氧化硅)等各种衬底上生长的能力,也能够淀积硫化钨、二硫化钼等二维过渡金属硫化物。  该工艺的开发及其已经经过验证的成果极度令人振奋,因为纳米实验室等离子处理系统的二维材料处理能力进入到了一个新阶段。拉曼分析表明了单层材料的高品质,原子力显微镜表明了薄膜的平滑和一致性。该公司期待二维材料生长工艺的开发,将推动下一代纳米电子器件的开发。
  • 宁波材料所在二硫化钼电化学行为研究方面取得新进展
    二硫化钼(MoS2)在固体润滑、光电子器件、电化学催化等领域具有广泛的应用,而镧系元素(Ln)掺杂可以对其各类物理化学性质起到不同的调控作用。Ln-MoS2基功能材料、涂层和器件在实际使役环境中的性能和寿命在很多时候与其表面的氧还原反应(ORR)密切相关。比如,表面ORR会增加Ln-MoS2基纳米器件和涂层周围金属部件的电偶腐蚀风险,而与此同时,Ln-MoS2基催化剂在燃料电池领域的应用潜力极大依赖于其阴极反应(即ORR)的活性。系统预测Ln-MoS2表面ORR活性规律并清晰揭示其背后的微观量子化学机理,可以给各类Ln-MoS2体系的实际应用设计、精准性能调控和有效防护提供重要指导。   近期,中国科学院海洋新材料与应用技术重点实验室和中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的研究人员利用第一性原理计算方法,探索了所有15种Ln-MoS2(Ln = La~Lu)体系的ORR活性,不仅发现了Ln杂质对MoS2表面ORR活性的极大促进作用,还观察到ORR活性与Ln杂质原子序数存在一种双周期的依赖关系。本研究工作中,研究人员也通过热力学统计的方法精确模拟了疏松固/液界面上的水环境效应,然后通过构建动力学反应方程组,成功发展了一种电流-电势极化曲线的模拟方法,所得到的极化电流曲线不仅可定量揭示ORR活性,也可以直接对比/指导实验测量。深入的机理分析表明,Ln-MoS2表面ORR活性的增强来源于一种特殊的缺陷电子态配对机制,它会选择性地增强两种ORR中间产物吸附(OH和OOH吸附基团),从而显著减小ORR能垒;而双周期规律则来源于Ln元素中4f-5d6s轨道杂化程度和Ln—S原子成键能力上类似的双周期规律。在此分析基础上,研究人员也为Ln-MoS2体系提出了一种普适的轨道化学机理,对各类电子结构、杂质稳定性、吸附物稳定性和电化学活性中同时出现的双周期规律进行了统一阐述。   相关成果发表于《自然—通讯》(Nat. Commun. 2023, 14, 3256)。该研究得到国家自然科学基金、中国工程物理研究院表面物理与化学重点实验室学科发展基金和国家重点研发项目的资助。镧系元素掺杂二硫化钼对氧还原反应的增强效应(图中显示了模拟所得的电流电势极化曲线以及半波电势所表现出的双周期趋势)
  • LA-ICPMS和SIMS硫化物微量元素和硫同位素原位分析
    p style="text-align: justify "  硫化物(特别是黄铁矿)可形成于各类地质环境中,在金属矿床的成矿早期一直延续到成矿后期。在观察原生硫化物及其在成岩后的变质作用、热液交代作用下生成的增生边、重结晶的次生硫化物时,通过光学显微镜和背散射图像,根据矿化、蚀变期次及矿物共生组合,可将不同结构的硫化物划分为不同期次的产物,再与LA-ICPMS硫化物原位微量元素点分析数据和面扫描图像相对应,就可知悉不同期次的硫化物各自的地球化学特征,即硫化物的地球化学分带性,这对研究沉积作用、变质作用、岩浆作用、热液交代作用如何影响硫化物中微量元素(例如Au元素)的富集行为至关重要。/pp style="text-align: justify "  对于金矿床来说,通过研究硫化物中不同微量元素与Au富集行为的耦合程度,有助于探讨Au在硫化物中的赋存形式及Au在硫化物晶体中的置换反应。藉由LA-ICPMS点分析的时间分辨(time-resolved)信号谱图,还可以获得硫化物样品在同一位置不同深度上的元素丰度分布,进一步讨论Au在硫化物中的赋存状态。/pp style="text-align: justify "  微量元素在硫化物中主要有三种赋存形式:/pp style="text-align: justify "  (1)以固溶体的形式赋存在硫化物晶格中,不可见 /pp style="text-align: justify "  (2)纳米级的矿物包裹体(包裹体直径 0-1μm,如自然金或硫化物Fe-As-Sb-Pb-Ni-Au-S),不可见 /pp style="text-align: justify "  (3)微米级的矿物包裹体,可见。/pp style="text-align: justify "  值得注意的是,这里的“可见”与“不可见”是相对于1930年的显微镜观测水平界定的,“不可见金”/pp style="text-align: justify "  这一表述最早是由Bü rg在1930年使用的。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和高分辨率透射电子显微镜(HR-TEM),直径数十纳米级的矿物包裹体现在已经可以被直接观测。若微量元素以固溶体形式赋存在硫化物晶格中,原来硫化物的晶格将被扭曲变形,通过特定区域的电子衍射谱图(SAED)可以直接观测晶格是否发生扭曲。/pp style="text-align: center "img title="640.webp.jpg" alt="640.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/d7a67cbc-2c52-40d4-805a-59ef459693bd.jpg"//pp style="text-align: center "  俄罗斯某金矿 层状黄铁矿-石英脉中赋存的黄铁矿核部LA-ICPMS时间分辨输出信号谱图/pp style="text-align: justify "  在LA-ICPMS的时间分辨信号谱图上,若某微量元素的信号强度随剥蚀时间的增加而保持平缓或近似平缓,显示束斑剥蚀的纵深线上成分保持均匀性,一般认为该元素可能以固溶体的形式赋存在晶格中 抑或以微米级的硫化物包裹体存在,包裹体中该元素总量少于LA-ICPMS的检测限,信号也不会随时间发生大的波动。/pp style="text-align: justify "  若某微量元素的信号强度随剥蚀时间的增加而出现峰值,则指示着富含该元素的微米级矿物包裹体的存在。Large et al. (2007)采用这种方法确定了微米级的富含Bi-Ag-Au-Te的方铅矿包裹体(图)和富含Au-Te-Ag矿物包裹体(图4b)的存在。这种方法的缺点是不能区分微量元素在硫化物中上述第(1)和第(2)种赋存方式。尽管如此,该方法现被广泛应用于Au在硫化物中的赋存形式的判断。/pp style="text-align: justify "  节选自:范宏瑞等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496/pp style="text-align: justify " 附件:/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201901/attachment/c92b9c13-20c7-4160-b0e4-a9dd0b888c02.pdf"www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf/a/pp /p
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • 应用方案|安杰科技为您送来硫化物测试解决方案,请您查收
    -2价硫的化合物统称为硫化物。地表水以及饮用水中检测的硫化物通常为硫化氢以及可溶性硫化物,硫化物是水体污染的重要指标。硫化氢有强烈的臭鸡蛋味,水中只要含有零点零几mg/L的硫化氢,就会引起异味;硫化氢的毒性也很大,可危害细胞色素、氧化酶,造成细胞组织缺氧,甚至危及生命;另外,硫化氢在细菌作用下会氧化生成硫酸,从而腐蚀金属设备和管道。一、产品介绍安杰科技AJ-1000流动注射分析仪,在《HJ 824-2017 水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《生活饮用水标准检验方法 第5部分:无机非金属指标-N,N-二乙基对苯二胺分光光度法》(GB T 5750.5-2023)等标准基础上进行开发的一款全自动快速分析仪器,该仪器从进样到测试全程采用自动化流程,可以实现无人值守测试,自动数据分析,自动保存报告等人性化功能,具有操作简单测试速度快,结果准确等优点。二、产品优势与传统检测方法对比,AJ-1000有显著的优势:试剂添加上:传统方法需要人工添加各种反应试剂,不仅操作繁琐,而且容易出错同时也存在一定的健康风险;AJ-1000采用蠕动泵自动添加样品以及试剂,全程不需要人工干预,简便快捷不会引入人为误差,同时也最大限度降低了健康风险。反应过程上:传统方法加入试剂后需要等待显色反应达到稳定后再进行检测,显色温度会随环境温度变化,而且样品量大时显色时间很难统一;AJ-1000精确控制反应管路长度并且内置恒温装置,温度、流速以及反应时间均由PC端精准控制,显色稳定,重现性好,大大提高了检测的准确度和稳定性。检测效率上:传统方法需要人工添加各种反应试剂,手动比色,费时费力;AJ-1000采用蠕动泵自动连续进样,所有反应均在毛细管中流动状态下完成,实现了非稳态检测,不需要等待反应完全,大大提高了检测速度。并且检测数据由软件自动处理,可以立即出具检测结果,效率远高于传统方法。准确度上:传统方法精密度10%;检出限0.020mg/L;AJ-1000精密度2%;检出限0.003mg/L。三、技术参数标准曲线的测定精密度的测定检出限的测定
  • 天然气含硫新标5月1日正式实施,SCD硫化学发光检测器轻松应对!
    ☆ 导读 ☆现阶段,能源紧张已成为影响和制约全球发展的关键问题,当前的俄乌局势更加凸显了能源问题对全世界的影响。2021年10月11日国家市场监督管理局和国家标准化管理委员会发布了GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,2022年5月1日正式实施,并替代原来的2014年版本。其中一项重要的变化是0.1~600mg/m3(以硫计)总硫的测定,并规定:通过将不同硫化物的硫含量进行加和,得到总硫含量。天然气中的硫化物杂质对其运输、存储和使用安全及环境均会产生不利影响,不仅会腐蚀设备、污染环境,还会危害人体健康。含硫化合物的种类不同其危害也不尽相同,对于天然气中含硫化合物的测定,岛津硫化学发光检测器(SCD)不仅具有灵敏度高、重复性好、操作简单等优点,还具有硫等摩尔响应、无基质淬灭、自动化程度高等优势,助您轻松应对新标准! ☆ 天然气中含硫化合物的危害 ☆天然气的主要成分是甲烷,来源于常规油气田开发出来的天然气、页岩气、煤层气等。2019年天然气储量数据来源:煤层气行业深度研究报告:“双碳”政策下,如何打造盈利新模式? 我国天然气需求量对外依存度达40%,进口液化天然气(LNG)占中国天然气进口量的60%以上,以澳大利亚占比最高。 数据来源:左图2021年中国液化天然气产量、进出口及需求现状分析,全球最大的LNG进口国_我国_华经_液化,右图2021年我国油气进口来源国分布 - 知乎 天然气中可能的硫化物有硫化氢、氧硫化碳、二氧化硫、甲硫醇、乙硫醇、叔丁硫醇、甲硫醚、乙硫醚、甲基乙基硫醚、四氢噻吩等,这些硫化物对运输、储存和使用安全及环境均会产生不利影响。当其作为燃料不仅会腐蚀输送管道和燃具,而且燃烧后的尾气或者废气还会造成人员中毒,排放到大气中也会引起环境污染;当其作为化工行业的原材料不仅会腐蚀储存容器和反应装置,更会导致贵重的催化剂中毒而失去活性。因此准确检测出天然气中的硫化物含量是非常必要的。 ☆ 新标来袭,岛津方案助您从容应对 ☆天然气作为经济环保的绿色能源和化工原材料倍受关注,在我国的能源安全中越发重要。新标准GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》中介绍GC-FPD、GC-PFPD、GC-MSD、GC-SCD等不同检测器用于0.1~600mg/m3范围内硫化物检测的分析方法。其中,GC-SCD(硫化学发光检测器)方法对硫具有等摩尔响应的特性,在总硫分析方面具有独特的优势,所以得到了大家的广泛认可。 图1. Nexis GC-2030 SCD l 分析条件 标准气体:甲烷中微量硫化氢、氧硫化碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩10种硫化物混合标气。浓度1.0mg/m3天然气中硫化物混合标气进样1.0mL 分析,典型谱图如下:图2. 浓度1.0mg/m3天然气中硫化物标气谱图(1硫化氢、2氧硫化碳、3甲硫醇、4乙硫醇、5甲硫醚、6二硫化碳、7叔丁硫醇、8甲基乙基硫醚、9乙硫醚、10四氢噻吩) l 标准曲线和检出限5瓶混和标气浓度以硫计分别为:1.0mg/m3 、3.0mg/m3、5.0mg/m3、15.0mg/m3、20.0mg/m3。硫化物混合标气重复进样4次,各组分面积重复性均优于1.0%,相关系数R值除甲硫醇和乙硫醇为0.9998外其余8种硫化物都大于0.9999。选择了其中3种硫化物的标准曲线展示见图3。各硫化物的检出限见表1。 图3. 天然气中3种典型硫化物标准曲线表1. 天然气中10种硫化物检出限☆ 结语 ☆“十四五”期间将是我国天然气工业的大发展时期,天然气产量到2025预计达到2500亿方,天然气勘探开发将迎来新的发展。岛津Nexis GC-2030 SCD色谱仪助您轻松应对GB/T 11060.10-2021《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,确保天然气的生产安全、使用安全、运输安全。 本文内容非商业广告,仅供专业人士参考。
  • 微电子所在二硫化钼负电容场效应晶体管上取得进展
    近日,2020国际电子器件大会(IEDM)以视频会议的形式召开。会上,微电子所刘明院士科研团队展示了二硫化钼负电容场效应晶体管的最新研究成果。 功耗是制约未来集成电路发展的瓶颈问题。在栅极中引入铁电新材料的“负电容晶体管”(NCFET)可突破传统场效应晶体管的亚阈值摆幅开关极限,有望在极低电源电压下工作,从而降低功耗并保持高性能。同时,原子层厚度的二硫化钼(MoS2)免疫于短沟道效应,具有较高的迁移率、极低的关态电流和CMOS兼容的制造工艺等优势,是面向先进晶体管的可选沟道材料之一。近期的一些实验显示,MoS2 NCFET能实现低于60mV/dec的亚阈值摆幅。但这些研究仅实现了较长沟道(500 纳米)的器件,没有完全发掘和利用负电容效应在短沟道晶体管中的优势。 针对该问题,刘明院士团队通过对器件参数以及制造工艺的设计与优化,首次把MoS2 NCFET的沟道长度微缩至83 纳米,并实现了超低的亚阈值摆幅(SSmin=17.23 mV/dec 和 SSave=39 mV/dec)、较低回滞和较高的开态电流密度。相比基准器件,平均亚阈值摆幅从220 mV/dec提高至39 mV/dec,沟道电流在VGS=0 V和1.5 V下分别提高了346倍和26倍。这项工作推动了MoS2 NCFET尺寸持续微缩,对此类器件面向低功耗应用有一定意义。 基于上述研究成果的论文“Scaling MoS2 NCFET to 83 nm with Record-low Ratio of SSave/SSRef.=0.177 and Minimum 20 mV Hysteresis”入选2020 IEDM。微电子所杨冠华博士为第一作者。图(a) MoS2 NCFET转移曲线。(b)亚阈值摆幅~沟道电流关系。MoS2 NCFET与MoS2 FET对比数据:(c)转移曲线和(d)输出曲线
  • 苯系物分析用二硫化碳促销
    CNW二硫化碳的纯度大于等于99.9%,苯低含量低,能够满足水、空气、土壤以及室内空气质量监测中苯系物的萃取和含量测定。(&rho =1.26g/ml) 产品货号 产品名称 品牌 规格 报价(元) 促销价(元) 4-114001-0500# (低苯级)二硫化碳 CNW 500ml 1120.00 896.00 截止时间:2010年4月30日 售完为止!
  • 斯珀特发布二硫化碳曝气吸收仪新品
    主要性能◆全样品位:4位。◆大屏幕触摸屏:方便直观操作。◆每个样品可独立调节氮气流量。◆加热方式:恒温水浴。◆可选配封闭气路:实验操作中所有的气体都在密闭空间内,吹出来的气体通过排气管道可直接导出室外或作进一步洗气除害处理,避免了有害气体对操作者的伤害,同时避免了样品的交叉污染。排出气体可通过一个管路直接导出室外,无需在通风橱内进行,大大降低了实验对空间的要求。◆显示方式:数显 控温精度±1℃。创新点:二硫化碳曝气吸收仪是一款专门针对橡胶、化纤、化工原料等行业排放废水中二硫化碳的检测中繁琐、复杂的曝气过程而开发的一款前处理设备。适用国标:GB/T 15504-19965水质 二氧化碳的测定 二乙胺乙酸铜分光光度法二硫化碳曝气吸收仪
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 标准委对1537项拟立项国标征求意见 多项与分析测试相关
    2019年1月3日,国家标准委员会发布通知,对1537项拟立项国家标准项目公开征求意见,征求意见的时间从2019年1月3日开始,截止到2019年1月18日结束。本次公开征求意见的国家标准项目包含多项与分析仪器、分析测试相关标准。有关单位和相关人员可登陆国家标准委网站的计划公示页面,查询项目具体信息和反馈意见建议。仪器信息网摘录部分与分析仪器和分析测试相关的标准如下:项目名称制修订中间馏分油及液体石油产品中脂肪酸甲酯含量的测定红外光谱法修订真空计四极质谱仪的定义与规范制订月球与行星原位光谱探测仪器通用规范制订硬质合金钴粉中硅量的测定分光光度法制订婴幼儿湿巾中5种异噻唑啉酮防腐剂的测定高效液相色谱法制订页岩气组分快速分析激光拉曼光谱法制订微波等离子体原子发射光谱方法通则制订铁矿石碳和硫含量的测定高频燃烧红外吸收法修订铁矿石镍含量的测定火焰原子吸收光谱法修订铁矿石铋含量的测定二硫代二安替吡啉甲烷分光光度法修订天然气在一定不确定度下用气相色谱法测定组成第1部分:分析导则修订天然气气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算修订天然气加臭剂四氢噻吩含量的现场快速测定气相色谱法制订天然气含硫化合物的测定第8部分:用紫外荧光光度法测定总硫含量修订天然气含硫化合物的测定第10部分:用气相色谱法测定硫化合物修订碳化硅单晶中硼、铝、氮杂质含量的测定二次离子质谱法制订松针中聚戊烯醇含量的测定高效液相色谱法制订山楂叶提取物中金丝桃苷的检测高效液相色谱法制订三聚甲醛中杂质含量的测定气相色谱法制订染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测液相色谱质谱法制订铅精矿化学分析方法第16部分:铜、锌、铁、砷、镉、锑、铋、镁、铝含量的测定电感耦合等离子体原子发射光谱法制订铅精矿化学分析方法第15部分:氧化钙含量的测定原子吸收光谱法制订纳米技术水相中无机纳米颗粒的尺寸分布和浓度测量单颗粒电感耦合等离子体质谱法制订纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法(ICP-MS)制订纳米技术硫族化镉胶体量子点的紫外-可见吸收光谱表征修订锰铁、锰硅合金、氮化锰铁和金属锰磷含量的测定钼蓝分光光度法和铋磷钼蓝分光光度法修订锰铁、锰硅合金、氮化锰铁和金属锰硅含量的测定钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法修订锰矿石铜、铅和锌含量的测定火焰原子吸收光谱法修订锰矿石钛含量的测定二安替吡啉甲烷分光光度法修订近红外光谱仪的性能与检验制订化妆品中新铃兰醛的测定气相色谱-质谱法制订化妆品中烷基(C12~C22)三甲基铵盐含量的测定高效液相色谱串联质谱法制订化妆品中壬二酸的检测气相色谱法制订化妆品中人工合成麝香的测定气相色谱-质谱法制订化妆品中林可霉素和克林霉素的测定液相色谱-串联质谱法制订化妆品中二乙二醇单乙醚的测定气相色谱-质谱法制订化妆品中地索奈德等十一种糖皮质激素的测定液相色谱/串联质谱法制订化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定气相色谱法制订化妆品中2,4-二氯苯甲醇的测定高效液相色谱法制订锅炉用水和冷却水分析方法痕量铜、铁、钠、钙、镁含量的测定电感耦合等离子体质谱(ICP-MS)法制订硅铁钙含量的测定火焰原子吸收光谱法修订硅单晶中III、V族杂质含量的测定低温傅立叶变换红外光谱法修订工业用乙二醇试验方法第4部分:紫外透光率的测定紫外分光光度法修订工业用乙二醇试验方法第3部分:总醛含量的测定分光光度法修订锆化合物化学分析方法钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定电感耦合等离子体原子发射光谱法制订高效液相色谱-原子荧光光谱仪联用分析方法通则制订高效液相色谱电感耦合等离子体质谱联用法通则制订纺织品某些动物毛纤维混合物的定性和定量蛋白质组分析液相色谱质谱(LC-ESI-MS)法制订钒铁钒、硅、磷、锰、铝、铁含量的测定波长色散X射线荧光光谱法制订二氧化铀粉末和芯块中碳的测定高频感应炉燃烧-红外检测法(修订GB/T13697-1992)修订杜仲叶提取物中京尼平苷酸的检测高效液相色谱法制订电子电气产品中某些物质的测定第8部分:使用气相色谱质谱联用仪(GC-MS),配有热裂解热脱附的气相色谱质谱联用仪(Py-TD-GC-MS)测定聚合物中的邻苯二甲酸酯制订电子电气产品中某些物质的测定第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚制订电子电气产品中某些物质的测定第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴制订氮化硅粉体中氟离子和氯离子含量的测定离子色谱法制订畜禽肉品质检测水分、蛋白质、挥发性盐基氮含量的测定近红外法制订畜禽肉品质检测近红外法通则制订常见毒品的气相色谱、气相色谱-质谱检验方法第9部分:艾司唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第8部分:三唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第7部分:安眠酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第6部分:美沙酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第5部分:二亚甲基双氧安非他明制订常见毒品的气相色谱、气相色谱-质谱检验方法第4部分:可卡因制订常见毒品的气相色谱、气相色谱-质谱检验方法第3部分:大麻中三种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第2部分:吗啡制订常见毒品的气相色谱、气相色谱-质谱检验方法第1部分:鸦片中五种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第12部分:氯氮卓制订常见毒品的气相色谱、气相色谱-质谱检验方法第11部分:溴西泮制订常见毒品的气相色谱、气相色谱-质谱检验方法第10部分:地西泮制订餐具洗涤剂中三氯生和三氯卡班的测定液相色谱法制订餐具洗涤剂中氯乙酸的测定液相色谱法制订餐具洗涤剂中合成着色剂的测定液相色谱法制订材料表面积的测量 高光谱成像三维面积测量法制订变性淀粉中羟丙基含量的测定——分光光度法制订X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K20、Na20、CaO、MgO含量制订[60]和[70]富勒烯的纯度测定高效液相色谱法制订
  • 一批水质检测标准发布征求意见稿 涉及多种分析方法
    p  今日,生态环境部印发了《水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法》《水质 可吸附有机卤素(AOX)的测定 微库仑法》《水质 硫化物的测定 亚甲基蓝分光光度法》和《地表水监测技术规范》四项国家环境保护标准征求意见稿。/pp  按照《国家环境保护标准制修订工作管理规定》(国环规科技〔2017〕1号)要求,生态环境部现就标准(征求意见稿)征求相关单位意见。相关意见可于2020年6月30日前通过信函或电子邮件的方式将意见反馈至生态环境部,逾期未反馈的按无意见处理。/pp  联系人:生态环境监测司孙娟 滕曼/pp  电话:(010)66556826/66556829/pp  传真:(010)66556826/pp  邮箱:zhiguanchu@mee.gov.cn/pp  地址:北京市西城区西直门南小街115号/pp  邮编:100035/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/57bf5794-58de-4fa3-9f96-e644739b8a74.pdf" title="征求意见单位名单.pdf" style="text-decoration: underline color: rgb(0, 112, 192) font-size: 16px "span style="color: rgb(0, 112, 192) font-size: 16px "征求意见单位名单.pdf/span/a/pp  a href="https://www.instrument.com.cn/download/shtml/951130.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951132.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法(征求意见稿)》编制说明/span/a/pp  本标准规定了测定地表水、地下水、工业废水、生活污水和海水中6种邻苯二甲酸酯类化合物的液相色谱-三重四极杆质谱法。本标准为首次发布。/pp  a href="https://www.instrument.com.cn/download/shtml/951133.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 可吸附有机卤素(AOX)的测定 微库仑法(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951134.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 可吸附有机卤素(AOX)的测定 微库仑法(征求意见稿)》编制说明/span/a/pp  本标准规定了地下水、地表水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准是对《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB 15959-1995)的修订,本次为第 1 次修订。主要修订内容如下:/pp  ——扩充了标准的适用范围 /pp  ——取消了样品吹脱步骤 /pp  ——增加了干扰物质去除方法 /pp  ——增加了质量保证与质量控制章节。/pp  自本标准实施之日起,《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB 15959-1995)废止。/pp span style="color: rgb(0, 112, 192) " /spana href="https://www.instrument.com.cn/download/shtml/951135.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 硫化物的测定 亚甲基蓝分光光度法 (征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951137.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 硫化物的测定 亚甲基蓝分光光度法 (征求意见稿)》编制说明/span/a/pp  本标准规定了测定水中硫化物的亚甲基蓝分光光度法。本标准是对《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)的修订。/pp  本标准首次发布于 1996 年,原标准起草单位为中国石油化工总公司和中国环境监测总站。本次为第一次修订,修订的主要内容如下:/pp  ——修订了适用范围 /pp  ——修订了方法检出限 /pp  ——删除沉淀分离法 /pp  ——增加了“酸化-蒸馏-吸收”前处理方法 /pp  ——增加了测定可溶性硫化物的内容 /pp  ——增加了质量保证和质量控制 /pp  ——增加了废物处理。/pp  自本标准实施之日起,原国家环境保护局 1996年4月26日发布的《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)废止。/pp  a href="https://www.instrument.com.cn/download/shtml/951138.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "地表水监测技术规范(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951140.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《地表水监测技术规范(征求意见稿)》编制说明/span/a/pp  本标准规定了地表水监测的布点与采样,监测项目与分析方法,监测数据处理,质量保证与质量控制,资料整编等内容。本标准的附录A、附录C和附录D为资料性附录,附录B为规范性附录。/pp  本标准是对《地表水和污水监测技术规范》(HJ/T 91-2002)中地表水监测技术规范部分的修订。修订的主要内容如下:/pp  ——增加了附录A,将水样保存和容器的洗涤统一为附录A /pp  ——增加了附录B,明确了地表水总磷现场监测前处理规定 /pp  ——增加了附录C,将资料整编章节中表格统一为附录C /pp  ——增加了附录D,将原附表1统一为附录D,更新了地表水监测项目分析方法 /pp  ——删除了流域监测 /pp  ——修改了适用范围、术语和定义中地表水内容的相关表述 /pp  ——完善了布点与采样、监测项目与分析方法、监测数据处理、质量控制与质量保证、资料整编等相关内容。/pp  自本标准自实施之日起,原标准《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及到地表水监测的部分废止。/p
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以二硫化碳为例
    常温下的二硫化碳(CS2)[1]是一种无色有毒液体,它的沸点很低(46.2℃),具有极强的挥发性。纯的二硫化碳有类似氯仿的芳香甜味,但是通常不纯的工业品因为混有其他硫化物(如羰基硫等)而变为微黄色,并且有令人不愉快的烂萝卜味。工业上二硫化碳作为一种应用广泛的有机溶剂和化工原料,常被用于人造丝、杀虫剂等的制造以及橡胶、农药等的硫化过程。二硫化碳具有细胞毒作用,可破坏细胞的正常代谢,干扰脂蛋白代谢而造成血管病变、神经病变及全身主要脏器的损害[2]。美国、日本规定大气最高容许浓度为10 ppm (30 mg/m3),我国规定的二硫化碳无组织排放厂界浓度不超过10 mg/m3 [3],也是国家相关部门制定的《恶臭污染物排放标准》(GB14554-93)内的重点物种之一。图1 二硫化碳结构式PTR-TOF通常情况下,对二硫化碳的检测分析可以通过差分光学吸收光谱(DOAS)[4],气相色谱/火焰光度检测系统 (GC-FPD)(采样频率为10分钟)[5] 或利用苏玛罐收集样品在利用预浓缩气相色谱(GC-MS)来进行离线检测[6],以及我国标准中提到的二乙胺分光光度法[7]。这些方法一般需要较长的测量时间,实际测量中时间分辨率有所欠缺;其次,这几种方法的测量过程相对比较复杂,需要预浓缩或使用相关的化学试剂,对检测人员的经验和资质技术要求较高。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? 国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览 XX药业厂界走航未知因子判定 ——对氯三氟甲苯为例 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例图2 走航监测中检测到的二硫化碳(CS2+)谱图图3 二硫化碳质谱图位置及信号强度 在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。走航车在园区内某点位的检测中,在m/Q 75.9391的位置检测到较强响应(见图2),经确认,该精确质量所对应的分子离子是CS2+,即二硫化碳(CS2)对应的质谱峰信号。同时,CS2+信号的变化趋势与测量的丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为820 ppbV(时间分辨率1秒)。基于当时西北风向,以及高值点位周边企业环评报告,判断污染很大可能来自于高值点附近某生物制品公司生物酶制剂生产过程(见图4)。图4. 走航片区二硫化碳污染分布图目前对二硫化碳的排放规定较少,在《恶臭污染物排放标准》(GB 14554-1993)中规定二硫化碳一级厂界标准为2 mg/m3,即最高浓度不超过64 ppbV。参考文献1. https://baike.baidu.com/item/二硫化碳.2. GB14554-93,恶臭污染物排放标准.3. R. O. Beauchamp, James S. Bus, James A. Popp, Craig J. Boreiko, Leon Goldberg & Michael J. McKenna (1983) A Critical Review of the Literature on Carbon Disulfide Toxicity, CRC Critical Reviews in Toxicology, 11:3, 169-278, DOI: 10.3109/10408448309128255.4. Yu, Y., Geyer, A., Xie, P., Galle, B., Chen, L., and Platt, U. (2004), Observations of carbon disulfide by differential optical absorption spectroscopy in Shanghai, Geophys. Res. Lett., 31, L11107, doi:10.1029/2004GL019543.5. Cooper, D. J., and Saltzman, E. S. (1993), Measurements of atmospheric dimethylsulfide, hydrogen sulfide,and carbon disulfide during GTE/CITE 3, J. Geophys. Res., 98( D12), 23397– 23409, doi:10.1029/92JD00218.6. 朱海俭,黄学敏,曹利,邱钢,韩超,宋文斌.预浓缩与GC-MS联用分析垃圾填埋场恶臭气体[J].中国环境监测,2012,28(4):91-94.7. GB/T 14680-1993,空气质量 二硫化碳的测定 二乙胺分光光度法
  • 橡胶硫化特性的测试 (包括门尼焦烧和硫化曲线)
    硫化是橡胶制品制造工艺中最重要的工艺过程之一。 就是使橡胶大分子链由线性变为网状的交联过程,从而获得良好物理机械性能和化学性能。 橡胶的硫化性能是反映橡胶在硫化过程中各种表现或者现象的指标,对进行科研、指导生产具有很大的实用价值,硫化性能主要包括焦烧性能、正硫化时间、硫化历程等,测定橡胶的硫化性能方法很多。其中以硫化仪和气泡点分析仪最佳。 ⑴ 门尼粘度计法 门尼粘度计法不但能测定生胶门尼粘度或混炼胶门尼粘度,表征胶料流变特性,而且能测定胶料的触变效应,弹性恢复、焦烧特性及硫化指数等性能,因此它是最早用于测定胶料硫化曲线的工具。虽然门尼粘度计不能直接读出正硫化时间,但可以用它来推算出硫化时间。 ⑵ 硫化仪法 硫化仪是近年出现的专用于测试橡胶硫化特性的试验仪器, 类型有多种。按作用原理有二大类。第一类在胶料硫化中施加一定振幅的力,测定相应变形量如流变仪;第二类是目前通用的一类。这一类流变仪在胶料硫化中施加一定振幅变形,测定相应剪切应力,如振动圆盘式流变仪。 3.1 橡胶门尼焦烧试验 胶料的焦烧是胶料在加工过程中出现的早期硫化现象,每个胶料配方都有它的焦烧时间(包括操作焦烧时间和剩余焦烧时间)。在生产中应控制此段时间的长短。如果太短,则在操作过程中易发生焦烧现象或者硫化时胶料不能充分流动,而使花纹不清而影响制品质量甚至出现废品,如果焦烧时间太长,导致硫化周期增长,从而降低生产效率。当前测定焦烧时间广泛使用的方法是门尼焦烧粘度计(测定的焦烧时间称为门尼焦烧时间),此外也可以用硫化仪测其胶料初期时间(t10)。 3.1.1 门尼焦烧的试验原理 用门尼粘度计测定胶料焦烧是在特定的条件下, 根据未硫化胶料门尼粘度的变化,测定橡胶开始出现硫化现象的时间。 3.2 橡胶硫化特性测定 为了测定橡胶硫化程度及橡胶硫化过程过去采用方法有化学法(结合硫法、溶胀法),物理机械性能法(定伸应力法、拉伸强度法、永久变形法等),这些方法存在的主要缺点是不能连续测定硫化过程的全貌。硫化仪的出现解决了这个问题,并把测定硫化程度的方法向前推进了一步。 硫化仪是上世纪六十年代发展起来的一种较好的橡胶测试仪器。广泛的应用于测定胶料的硫化特性。硫化仪能连续、直观地描绘出整个硫化过程的曲线,从而获得胶料硫化过程中的某些主要参数。 上岛 硫化试验仪(无转子) 型号:VR-3110 在规定的温度下,混合橡胶放在上下平板膜腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化。可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其它因素的变化求出硫化特性的试验机。 上岛 气泡点分析仪型号:VR-9110 气泡点分析仪是能在需要的最小限度抑制橡胶的硫化时间的测试机,而对车胎、皮带、防振橡胶等产品的硫化工程控制有效。对生产性提高、能源消减、摩耗特性或者耐久性等产品特性的提高有益。 橡胶硫化不够时看到的内部气泡在硫化工程中控制 ,知道每种材料的最佳硫化时间。
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限0.5 ppb,是一种非常可靠的解决方案。同时结合PLSV嵌入式密封阀技术(对整个系统性能有着重要作用),和我们先进创新的信号处理以及先进的GC平台,大大提高了整体技术,成为现市场中强大而简单的解决方案。未来几个月,将有更多类似的系统投入全球使用。案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 0.5ppb 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质1ppb):纯化5N氦气方案应用详情请联系:fzhu@asdevices.cn
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U / mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 500多项国家标准征求意见 多项涉及分析仪器
    近日,国家标准委对《淀粉术语》等517项拟立项推荐性国家标准项目开始公开征求意见,其中包括《合格评定 过程认证方案指南与示例》。征求意见截止时间为2021年1月29日。其中涉及仪器类的标准有34项,涉及到的仪器品类包括气相色谱仪、电感耦合等离子体发射光谱法、分光光度计、液相色谱-质谱仪、离子色谱仪等多个品类。具体情况如下:序号项目中文名称制修订截止日期1天然气 含硫化合物的测定 第12部分:用激光吸收光谱法测定硫化氢含量修订2021/1/292表面化学分析 原子力显微术 用于纳米结构测量的原子力显微镜探针柄轮廓原位表征程序制订2021/1/293疑似毒品中甲基苯丙胺检验 气相色谱、气相色谱-质谱、液相色谱和液相色谱-质谱法修订2021/1/294蜂蜜中17-三十五烯含量的测定 气相色谱质谱法制订2021/1/295锰铁、锰硅合金、氮化锰铁和金属锰 碳含量的测定 红外线吸收法、气体容量法、重量法和库仑法修订2021/1/296表面抗菌不锈钢 第1部分:电化学法修订2021/1/297微束分析 分析电子显微术 线状晶体表观生长方向的透射电子显微术测定方法制订2021/1/298化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法制订2021/1/299硅铁 磷含量的测定 铋磷钼蓝分光光度法修订2021/1/2910化学试剂 试验方法中所用制剂及制品的制备修订2021/1/2911环境试验设备检验方法 第21部分:振动(随机)试验用液压式振动系统修订2021/1/2912环境试验设备检验方法 第14部分:振动(正弦)试验用电动式振动系统修订2021/1/2913色漆和清漆 涂料中水分含量的测定 气相色谱法制订2021/1/2914表面化学分析 水的全反射X射线荧光光谱分析制订2021/1/2915表面化学分析 二次离子质谱 静态二次离子质谱相对强度标的重复性和一致性制订2021/1/2916油菜蜂蜜中丁香酸甲酯的测定 反相高效液相色谱法制订2021/1/2917表面化学分析 扫描探针显微术 采用扫描探针显微镜测定几何量:测量系统校准制订2021/1/2918电子电气产品中PBBs、PBDEs、BBP、DBP、DEHP、DIBP的同时测定 气相色谱-质谱法制订2021/1/2919法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法修订2021/1/2920橡胶 全硫含量的测定 离子色谱法制订2021/1/2921染料产品中砷、汞、锑、硒的测定 原子荧光光谱法制订2021/1/2922毛发中55种滥用药物及代谢物检验 液相色谱-质谱法制订2021/1/2923硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法制订2021/1/2924表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准制订2021/1/2925血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验 顶空-气相色谱法制订2021/1/2926镍铁 砷、锡、锑、铅和铋含量 电感耦合等离子体质谱法(ICP-MS)制订2021/1/2927皮革和毛皮 阻燃剂的测定 第1部分:气相色谱-质谱联用法制订2021/1/2928表面化学分析 辉光放电质谱 钼铌合金中痕量元素分析制订2021/1/2929肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法制订2021/1/2930废弃化学品中铜、锌、镉、铅、铬等12种元素形态分布的测定 连续提取法制订2021/1/2931法庭科学 一氧化二氮检验 气相色谱-质谱法制订2021/1/2932表面化学分析 X射线光电子能谱 X射线光电子能谱仪日常性能的评估方法制订2021/1/2933生胶和硫化胶 用电感耦合等离子体发射光谱仪测定金属含量 (ICP-OES)制订2021/1/2934天然气 含硫化合物的测定 第x部分:紫外吸收法测定硫化氢含量制订2021/1/29
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知(附日程安排 )
    p style="text-align: center "img title="1212212.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/174ded8a-e6eb-40a3-b70f-1384506ddb63.jpg"//pp  关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知/pp  各有关单位:/pp  由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。/pp  为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司于2017年8月31日至9月2日在四川成都共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。现将有关事项通知如下:/ppstrong  一、参会对象/strong/pp  与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。/pp strong 二、宣贯及研讨内容/strong/ptable border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 28px "td width="617" height="28" style="padding: 0px 7px border: 1px solid windowtext " colspan="5"p style="text-align: center "strongspan style="font-family: 仿宋 font-size: 16px "会议报告日程/span/strong/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日期/span/p/tdtd width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "时间/span/p/tdtd width="233" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日程安排/span/p/tdtd width="196" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人/span/p/tdtd width="121" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人单位/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "8/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "31/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: windowtext border-right-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: black border-right-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报到/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日上午/span/p/tdtd width="107" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="439" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "欢迎致辞/span/p/td/trtr style="height: 69px "td width="107" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "GB/T 33318-2016/spanspan style="font-family: 仿宋 font-size: 16px "《气体分析/span span style="font-family: 仿宋 font-size: 16px "硫化物的测定硫化学发光气相色谱法》标准条款释义/span/p/tdtd width="88" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "李志昂/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇、合影/span/p/td/trtr style="height: 54px "td width="107" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50-11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技新型硫化学发光检测器提升硫化物分析灵敏度和便利性/span/p/tdtd width="97" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "张劲强/span span style="font-family: 仿宋 font-size: 16px "博士/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "资深气相色谱应用工程师/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 43px "td width="107" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业油品以及气体中硫化物分析方法进展/span/p/tdtd width="103" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "王亚敏/span span style="font-family: 仿宋 font-size: 16px "教授级高级工程师/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国石化石油化工科学研究院(石科院)/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10-14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "午餐、休息/span/p/td/trtr style="height: 48px "td width="72" height="48" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日下午/span/p/tdtd width="107" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="247" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "气质联用法分析聚合级乙烯丙烯中的微量砷化氢、磷化氢及硫化物/span/p/tdtd width="196" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "王春晓/span span style="font-family: 仿宋 font-size: 16px "解决方案开发中心经理/span/p/tdtd width="121" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 45px "td width="107" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业相关气体标准物质的正确使用/span/p/tdtd width="104" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "邓凡锋/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇/span/p/td/trtr style="height: 46px "td width="107" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "环境监测气体分析相关技术法规介绍/span/p/tdtd width="105" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "付强/span span style="font-family: 仿宋 font-size: 16px "科技处处长/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "研究员/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国环境监测总站/span/p/td/trtr style="height: 40px "td width="107" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-17/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "VOCs/spanspan style="font-family: 仿宋 font-size: 16px "气体标准物质在环境污染物监测中的应用/span/p/tdtd width="105" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "周鑫/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "18/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-20/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "晚餐/span/p/td/trtr style="height: 92px "td width="72" height="92" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "2/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px word-break: break-all " colspan="3"pspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。br//spanspan style="font-size: 16px "2/spanspan style="font-family: 仿宋 font-size: 16px "、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。br//spanspan style="font-size: 16px "3/spanspan style="font-family: 仿宋 font-size: 16px "、交流与答疑;/span/p/td/tr/tbody/tablep strong 三、宣贯时间、地点及费用/strong/pp  1、会议时间:2017年8月31日到9月2号(8月31号报到)。/pp  2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /pp  会务组不负责接送,请各位代表自行前往酒店,可参考以下路线:/pp  (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。/pp  (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。/pp  (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。/pp  3、会议费:800元/人(含资料、餐费等费用)。/pp  4、会议住宿费(费用自理):360元/间(标间或大床房)。/pp strong 四、会务承办单位:/strong成都思创睿智科技有限公司 /pp strong 五、注意事项/strong/pp  1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。/pp  2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。/ppstrong  六、报名参会联系方式/strong/pp  秘书处联系人:潘 义(13880777735),(028)84403610 /pp  王维康(18980409695),(028)84403036 /pp  黄慎敏(18111280301),(028)84403036 /pp  秘书处电子邮箱:TC206SC1@126.com /pp  会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。/pp  附件:宣贯会议回执。/pp style="text-align: right "  全国气体标准化专业技术委员会/pp style="text-align: right "  气体分析分技术委员会秘书处/pp style="text-align: right "  2017年8月7日/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201708/ueattachment/94828823-01ef-4fc1-bfbe-93a719fa7451.doc"附件 宣贯会会议回执.doc/a/ppbr//p
  • 中科院大化所高灵敏检测恶臭含硫化合物获新进展
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201605/noimg/80dfc663-4347-4350-99e0-bc5505ecc7f2.jpg" title="1.jpg"//pp  4月30日 中科院大连化物所快速分离与检测李海洋研究团队成功研制了一种光致二溴甲烷阳离子化学电离源,该电离源与质谱技术相结合,显著提高了恶臭含硫化合物的检测灵敏度,该成果已发表在美国化学会Analytical Chemistry上。br//pp  《国家恶臭污染控制标准》规定的八大恶臭气体(硫化氢、甲硫醇、二甲基硫醚、二硫化碳、三甲胺等)绝大部分都为挥发性含硫化合物(VSCs),这些恶臭化合物与人类日常生活环境息息相关,并且具有较高的毒性,ppbv量级就能对人的健康造成伤害。此外,VSCs还是人体呼出气中重要的生物标志物,如硫化氢和二甲基硫为肝硬化和肝昏迷等肝脏疾病相关的标志物。由于VSCs具有较高活性及易吸附等特点,急需一种既快速又灵敏的分析检测技术。/pp  该研究团队利用真空紫外灯(VUV)电离高浓度二溴甲烷试剂气体获得足够多且强度稳定的CH2Br2+试剂离子,CH2Br2+试剂离子进一步与VSCs样品发生高效的电荷转移及离子加和反应,实现VSCs的高灵敏检测。实验结果表明:该离子化源对硫化氢、甲硫醇、二甲基硫等5种常见VSCs的检测限均达到pptv量级,检测时间小于1分钟,此外特异性加和离子[M+CH2Br2]+的存在,增强了物质识别。/pp  该新型检测技术现已成功应用于人体呼出气和下水道气体中痕量VSCs的测量,因其快速高灵敏的检测性能,在医疗诊断和环境化学领域具有广阔的应用前景。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制