当前位置: 仪器信息网 > 行业主题 > >

法罗培南钠盐半五水合物标

仪器信息网法罗培南钠盐半五水合物标专题为您提供2024年最新法罗培南钠盐半五水合物标价格报价、厂家品牌的相关信息, 包括法罗培南钠盐半五水合物标参数、型号等,不管是国产,还是进口品牌的法罗培南钠盐半五水合物标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法罗培南钠盐半五水合物标相关的耗材配件、试剂标物,还有法罗培南钠盐半五水合物标相关的最新资讯、资料,以及法罗培南钠盐半五水合物标相关的解决方案。

法罗培南钠盐半五水合物标相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。  在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。  合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style="text-align: center "strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="text-align: center "国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp  附件:批准建设的企业国家重点实验室名单/pp style="text-align: right "科 技 部/pp  附件/pp style="text-align: center "strong批准建设的企业国家重点实验室名单/strong/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg"//pp /p
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    centerimg style="width: 285px height: 300px " title="" alt="" src="http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height="300" hspace="0" border="0" vspace="0" width="285"//centerp  钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。/pcenterimg style="width: 402px height: 300px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height="300" hspace="0" border="0" vspace="0" width="402"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄/pp  5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。/pp  水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。/pp  中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。/pp  “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。/pp  经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。/pp  “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。/pp strong 1.研发显微镜核心部件和方法,达到原子水平观测的极限/strong/pp  这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。”/pp  为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。/pp  第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。/pp  科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。”/pp  为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。”/pp  strong2.离子水合物的幻数效应有什么用/strong/pp  江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。/pp  结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。/pp  江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。”/pp  有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。/pp  江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。”/pp  王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。/pp strong 3.水合离子变得可以操控,能为我们带来什么?/strong/pp  据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/pp  王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。”/pp  比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。”/pp  另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。/pcenterimg style="width: 450px height: 292px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height="292" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄/pcenterimg style="width: 450px height: 338px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄/pcenterimg alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height="600" width="439"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄/p
  • 我国自主研发拉曼光谱探针助力南海首次发现裸露“可燃冰”
    p  日前,我国新一代远洋综合科考船“科学”号在执行中国科学院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”的航次中,船上搭载的“发现”号遥控无人潜水器携带我国自主研发的拉曼光谱探针,在我国南海海域首次发现了裸露在海底的“可燃冰”,并证实其为天然气水合物。这一成果形成的研究论文日前在国际权威学术期刊《地球化学 地球物理学 地球系统学》上在线发表。/pp  据中科院海洋研究所特聘研究员、课题负责人张鑫介绍,通过“发现”号无人潜水器携带的深海激光拉曼光谱探针,科考团队在我国南海约1100米的深海海底探测到两个站点存在裸露在海底的可燃冰。经拉曼光谱探针现场探测,证实其为标准的I型水合物。/pp style="text-align: center "img width="450" height="276" title="QQ截图20170925083353.jpg" style="width: 450px height: 276px " src="http://img1.17img.cn/17img/images/201709/noimg/90eac4cc-7b2e-4455-88be-da8921bd2583.jpg" border="0" vspace="0" hspace="0"//pp  据悉,“科学号”通过其配备的“发现”号无人潜水器携带自主研发的国际上首台可以直接插入天然气水合物的RiP拉曼光谱探针,在我国海域首次发现了裸露在海底的天然气水合物。这也是在国际上首次使用原位拉曼光谱数据证实快速生成的天然气水合物并非单一的笼型结构,其内部其实存在大量的甲烷、硫化氢等自由气体。/pp style="text-align: center "img width="450" height="421" title="QQ截图20170925084236.jpg" style="width: 450px height: 421px " src="http://img1.17img.cn/17img/images/201709/noimg/551c3e3d-f083-41df-83b4-b0f02884f980.jpg" border="0" vspace="0" hspace="0"//pp  据介绍,2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,科研人员在南海圈定了裸露在海底的疑似“可燃冰”精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015-2016年,科研人员自主研发了世界首台可以直接插入高温热液喷口(450 oC)进行原位探测的系列化拉曼光谱探针,可对深海热液流体、冷泉流体、“可燃冰”和沉积物孔隙水进行原位化学成分分析,成为了本次发现的主要高技术手段。原位探测技术可以避免传统取样方式由于从深海海底到海面之间巨大的温度、压力等环境因素变化导致的样品物理化学性质的变化,已成为国际深海研究的热点。/pp style="text-align: right "  (整理自央视新闻、科技日报、青岛早报等)/pp /p
  • Nature Medicine:武阳丰团队证实,低钠盐可安全降血压、减少心血管事件
    2023年4月13日,北京大学武阳丰教授团队在 国际顶尖医学期刊Nature Medicine上发表了题为: Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial 的研究论文。 该研究发现, 将养老院厨房中的普通盐更换为富钾低钠盐,在2年干预期间,入住老人的收缩压平均下降7.1mmHg,舒张压平均下降1.9mmHg,主要心血管事件减少40%。 与此同时,逐步减少厨房供盐的措施未能取得成功,24小时尿钠、血压及主要心血管病事件均未见显著下降。 高血压是中国居民发生心血管病的最主要危险因素。减少人群钠摄入是全球公认的高血压及慢性病防治重要策略。然而,世界卫生组织的最新报告表明:实现“到2025年将钠摄入量减少30%”的全球目标仍面临巨大的困难和挑战。 集体养老人群中低钠盐和逐步减少厨房供盐的干预效果和安全性评价 (DECIDE-Salt) 研究,正是为了探索适合全人群推广的有效减钠策略。它试图通过一项严格设计的整群随机对照试验,同时评价两种减盐策略的有效性和安全性:一是用富钾低钠盐替换普通食盐,二是逐步减少厨房供盐量。 食用富钾低钠盐作为一种减盐策略,在降低钠摄入的同时,增加钾的摄入,能够实现“双重降压”。阶梯式逐步减少厨房供盐是研究团队开发的一项创新干预策略,以每3个月为一个阶梯,每次减少5%-10%的厨房供盐,试图使养老人群在不知不觉中实现减少钠摄入。 DECIDE-Salt研究于2017年至2020年期间,在山西省长治县和阳城县、陕西省西安市和内蒙古自治区呼和浩特市四地共48所养老机构中开展,纳入1612名符合入组条件 (55岁以上且测量了基线血压) 的入住老人作为评价干预效果的研究对象。研究采用2×2析因、整群随机对照设计,将养老机构按所在地区分层,随机分组。分别于第6、12、18和24月进行随访,测量血压并了解主要心血管病事件发生情况。 研究结果显示:在有效性方面:与24家仍食用普通盐的养老院老人相比,24家更换为富钾低钠盐的养老院老人收缩压、舒张压分别平均降低-7.1mmHg、-1.9mmHg;主要心血管病事件显著减少40%;全因死亡减少16%,但未达到统计学显著性;24小时尿钾显著升高,尿钠下降但未达统计学显著性水平。 在安全性方面:与食用普通盐的养老院老人相比,更换为富钾低钠盐的养老院老人,化验检出高血钾增加、低血钾减少;两年间仅发生3例持续高血钾 (血钾5.5mg/dL) ,低钠盐组2例,普通盐组1例,但均未发生不适症状或其他不良反应;化验检出高血钾的51人中,发生2例死亡,低钠盐组与普通盐组各1例,分别死于髋骨骨折后并发症和肺癌。“阶梯式逐步减少厨房供盐”策略未能取得成功,所有观察指标,包括24小时尿钠、收缩压、舒张压及主要心血管病事件等在逐步减供组和常规供应组间均未见到显著性差异。低钠盐组和普通盐组在基线和干预期间收缩压的变化低钠盐组和普通盐组干预期间心血管事件累计发生风险 2021年武阳丰教授团队发表于《新英格兰医学杂志》 (NEJM) 的SSaSS研究显示, 在患有脑卒中或未控制的高血压人群中使用低钠盐替换普通盐,可显著降低脑卒中、心血管事件和全因死亡风险。与SSaSS研究相比,DECIDE-Salt的研究人群更加宽泛,有一半的养老院在城市,有脑卒中或冠心病的老人仅占1/3,近40%血压正常,近1/4的人基本健康。即使如此,DECIDE-Salt仍取得了远较SSaSS研究更好的降压效果和更好的减少主要心血管病事件的效果。这说明只要能够较好地解决依从性,确保长期坚持食用低钠盐,就会取得良好的心血管病防控效果。 与既往所有的低钠盐临床试验不同,DECIDE-Salt没有将患有慢性肾病或正在服用保钾药物的老人排除在外,而是采取了较为严格的高钾血症高危人群监测计划来及时发现和处理研究期间可能发生高钾血症的情况。研究中,有5.5%的老人患有慢性肾病、5.3%长期卧床、8.3%正在服用有保钾作用的药物。尽管如此,研究结果表明,低钠盐组未增加临床高钾血症和其他严重不良事件。这些结果说明养老人群中推广应用低钠盐是较为安全的,也间接说明将低钠盐向其他发生高钾血症风险较低的人群(如年轻人)推广将更加安全。 DECIDE-Salt研究课题负责人、我国著名心血管病防治专家武阳丰教授指出: DECIDE-Salt的研究结果,为中国减盐行动选择合适的减盐策略提供了重要的循证决策依据。低钠盐简单、易行、安全、有效,具有很大的公共卫生价值,值得政府、企业和社会各界大力推广。消费者应尽可能采用低钠盐替代普通食盐,进行烹饪、调味和腌制食物。论文链接:https://www.nature.com/articles/s41591-023-02286-8
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 制药界晶型专家共襄盛举,赛默飞世尔科技赞助晶云药物第二届晶型专题培训
    由苏州晶云药物科技有限公司主办的第二届药物晶型专题技术培训于2011年9月16日在上海张江药谷圆满闭幕,本次培训共吸引了来自全国各地80多家制药企业近200名科研和管理人员参加。药物晶型一直是国际制药业关注和致力研究的重点问题。近年来,随着我国药品审评机构对药品注册管理的进一步完善,国内制药业逐渐认识到药物晶型研究的重要性和我们与国际制药界之间的差距。为了进一步提高国内制药业对药物晶型研究的认识,解决当前药物研发过程中出现的困难和问题,共同推进国内制药行业整体水平的提高及促进行业内深入广泛的交流,晶云药物今年3月成功举办了国内首届药物晶型专题培训,收到业界同仁一致好评。应广大药界客户的要求,经过一段时间的精心筹备,晶云药物9月在上海张江药谷再次举办培训。晶云药物为此次培训精心设计了一系列适合制药界晶型药物研究者学习和讨论的课程。本次培训的内容涵盖了药物多晶型研究,药品质量研究工作中晶型问题,水合物晶型,无定形药物,药物共晶,药物结晶工艺的开发和优化,结晶工艺应用于手性药物分子的提纯和优化,固态核磁共振在药物晶型研究中的应用等一系列关于药物晶型研发方面的精彩报告。作为此次会议的赞助商,赛默飞世尔科技分子光谱拉曼产品经理张衍亮博士应邀做了DXR显微拉曼光谱仪在药物晶型研究方面的技术与应用。凭借不断创新傅立叶红外与拉曼光谱仪发展名闻于世的基础,赛默飞世尔推出的最新一代 DXR激光拉曼光谱仪用于高速筛选多晶形物和重结晶研究。其优异光机电自动化设计使拉曼光谱仪具有高度智能自动化,并且仪器设计超级稳定,彻底解决了拉曼光谱使用难问题。任何人都可以自行更换激光器及光栅, 并且任何人都可以非常容易进行激光光路与拉曼信号的准直,而无需打开光谱仪。本次培训也特别邀请到了国家药检所,上海市、浙江省和苏州市药检所以及国内知名科研院校的十几位晶型研究领域的专家和领导。在大家的共同参与和互动下,培训效果显著,两天的培训还安排了专家讨论,由药监所,研究院,高校和制药企业的晶型研究和结晶工艺开发专家共同参与讨论,和学员一起对中国药物晶型研究的现状和未来,挑战和前景展开了热烈的讨论。专家们就学员们关心的热点问题,包括如何提高中国仿制药质量,缩小与国外原研药之间的差别,如何培养中国药物晶型研究的后备人才等发表了自己的看法。专家们一致认为,培养药物固态研发和药物结晶工艺专业人才任重而道远,需要通过药监所,研究院,高校和制药企业的各种形式的紧密合作来共同推动。晶云首席执行官陈敏华博士表示,晶云正考虑在一些高校设立药物晶型研究和药物结晶工艺开发的奖学金,以鼓励更多的优秀学生参与药物晶型的研究工作,不断提高中国制药界固态药物研发的整体实力。晶云将会为这些优秀学生提供实习和工作机会,并为这些学生开放其处于世界先进水平的的药物晶型研究和结晶工艺开发技术平台。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。欲了解更多信息,请浏览公司网站: www.thermofisher.com。 关于晶云药物(www.crystalpharmatech.com)晶云药物科技有限公司是中国首家专注于药物晶型研究的公司,为全球各制药公司提供药物晶型研究和药物固态研发领域的专业技术服务。公司总部设立在苏州工业园区生物纳米园,在美国新泽西州设有分部。领导团队由中美科学家及管理人员共同组成,用国际化的先进理念领导和管理公司。核心团队成员过去在美国默克,美国百时美施贵宝以及罗氏等全球领先的制药公司直接负责和从事药物晶型研究和药物固态研发,共积累了在该领域40多年的研发和管理经验,曾共同负责和管理过超过200个药物分子的晶型研究,拥有40多项药物晶型专利,在各类国际学术期刊发表过100多篇论文。研发团队成员晶型研究经验丰富,技术力量雄厚,其中海外博士约占30%,硕士占50%,学士占20%。团队利用掌握的核心技术开发出中国在药物晶型研究及药物固态研发领域的首个高新技术平台,并通过该平台为全球各制药公司提供该领域的高级技术研发服务。公司拥有享有自主知识产权的高新技术和高新仪器,不仅保证技术平台填补了国内在该领域的空白,而且使其处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,包括原料药及其中间体的盐类,共晶和多晶的筛选和评估,原料药和制剂的专业表征和评估,药物结晶工艺的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。凭借晶云团队丰富的经验,高质量和高效率的专业服务,自2010年成立以来已经与全球四十多家制药企业建立合作关系,成为其在药物晶型研究和药物固态研发领域的紧密合作伙伴。随着晶云的不断发展,晶云将会一如既往秉持客户至上的服务理念,力求为越来越多的客户提供始终领先于科技前沿的高级技术服务。
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。■ 水溶性维生素系列标样产品编号产品名称CAS包装目录价VIT-001N维生素B1盐酸盐 / 硫胺素Vitamin B1 hydrochloride67-03-81 g¥195C 17455500硝酸硫胺 / 维生素B1硝酸盐Thiamine mononitrate532-43-40.25 g¥432C 17561000硫代硫胺素Thiothiamine299-35-41 g¥540VIT-002N维生素B2 / 核黄素Vitamin B283-88-51 g¥195C 16813610核黄素磷酸钠Riboflavine-5 phosphate sodium130-40-50.25 g¥432VIT-003N维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B658-56-01 g¥195VIT-004N抗坏血酸 / 维生素CVitamin C50-81-71 g¥195C 10303100抗坏血酸钙盐Ascorbic acid calcium salt5743-28-20.25 g¥432C 10303900抗坏血酸钠盐 / 维生素C钠盐L-Ascorbic acid sodium salt134-03-20.25 g¥396C 10303930维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate137-66-60.25 g¥432VIT-005N烟酸 / 吡啶-3-羧酸 / 尼克酸Vitamin B359-67-61 g¥195VIT-006N烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide98-92-01 g¥195C 15521030烟酸苄酯Nicotinic acid-benzyl ester94-44-00.25 g¥360VIT-007N叶酸Vitamin M59-30-31 g¥195VIT-008ND-泛酸 / 维生素B5D-Pantothenic acid79-83-40.1 g¥370C 15844500D-泛酰醇D-Panthenol81-13-00.5 g¥936CA15845000泛酸钙单水合物Pantothenic acid calcium salt63409-48-30.25 g¥360VIT-009N-R1D-生物素 / 维生素H / 辅酶RVitamin H58-85-50.1 g¥195VIT-010N-R1维生素B12Vitamin B1268-19-90.025 g¥234VIT-WSK-R1-SET水溶性维生素套装,包括:VIT-001N to VIT-010N10 units¥1,264■ 脂溶性维生素系列标样产品编号产品名称CAS号规格目录价VIT-012N维它命EVitamin E10191-41-00.1 g¥273CA17924320维生素E醋酸酯Vitamin E acetate7695-91-20.5 g¥540VIT-013N胆骨化醇 / 维生素D3Vitamin D367-97-00.1 g¥273CA17924100骨化二醇Vitamin D3 25-hydroxy monohydrate63283-36-30.05 g¥1,134VIT-014N维生素A棕榈酸酯Vitamin A palmitate79-81-20.1 g¥1,206VIT-015N维生素E醋酸酯Vitamin E acetate7695-91-20.1 g¥273VIT-016N维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K184-80-00.1 g¥273VIT-017N维生素K2Vitamin K211032-49-80.1 g¥1,556VIT-018N维生素K3 / 甲萘醌 Vitamin K358-27-50.1 g¥273VIT-019NBETA-胡萝卜素b-Carotene7235-40-70.01 g¥389CA10290900beta-阿扑-8' -胡萝卜醛8' -Apoaldehyde1107-26-20.05 g¥936VIT-020N维生素 E 琥珀酸酯Vitamin E succinate4345-03-30.1 g¥273VIT-022N维生素D2Vitamin D250-14-60.1 g¥273VIT-FSK-R2-SET脂溶性维生素套装,包扩:VIT-012N to VIT-022N10 units¥2,457■ 相关分析耗材产品产品编号产品名称规格目录价116481甲醇 99.9% [HPLC/ACS]4 L¥180134752乙腈 99.9% [HPLC/ACS]4 L¥400187553水 [HPLC]4 L¥375904802乙醇 95%500 mL¥22S02001C18 柱,150 mm× 4.6 mm, 5 &mu m1 支¥2,500S02302C18 柱,250 mm× 4.6 mm, 5 &mu m1 支¥2,800S010125-3002AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960S010525-3002AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960ZTLMGL-4.1针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相)100 片/包¥150WKLM-4.2微孔滤膜 Ф50 0.45 &mu m (有机相)100 片/包¥210901275J&K 瓶口分配器(5.0-50.0 mL)1 支¥2,000958945J&K单道手动可调移液器(100-1000 &mu L)1 支¥645928429J&K磁力搅拌器(数显、加热、不锈钢)1 台¥3,1125182-0553螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫)100 个/包¥5275182-0728聚丙烯螺纹瓶盖(无隔垫)100 个/包¥1095183-4759高j绿色隔垫(带预穿孔)50 个/包¥699CER-001-11.5 mL标准毛细储存瓶1 个¥2405183-2086400 &mu L 脱活的玻璃平底内插管500 个/包¥1,4415183-4696单细径锥不分流衬管25 个/包¥6,0305183-4693单细径锥,带玻璃毛不分流衬管5 个/包¥1,4605188-5365衬管O形圈10 个/包¥1435188-5367进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包)1 个¥389
  • 第二轮通知|第五届“新能源材料检测技术发展与应用”网络会议
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2022年11月30日-12月2日,仪器信息网与广州能源检测研究院、广东省动力电池安全重点实验室、国家化学储能材料及产品质量检验检测中心(广东)、国家烃基清洁能源产品质量检验检测中心(广东)将联合举办第五届“新能源材料检测技术发展与应用”网络会议,分设四个专场。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、主办单位仪器信息网,广州能源检测研究院,广东省动力电池安全重点实验室,国家化学储能材料及产品质量检验检测中心(广东),国家烃基清洁能源产品质量检验检测中心(广东)二、会议时间2022年11月30日-12月1日三、会议形式线上直播,直播平台:仪器信息网网络讲堂平台本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2022/ (内容更新中)或扫描二维码报名四、会议日程1.专场安排第五届“新能源材料检测技术发展与应用”网络会议时间专场名称11月30日全天新能源电池检测技术专场12月1日上午储能材料检测技术专场12月1日下午清洁能源之氢能源材料检测技术专场12月2日上午其他清洁能源材料检测技术专场2.详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:新能源电池检测技术专场(11月30日)09:00锂离子电池失效分析及回收再利用李丽(北京理工大学 教授)09:30待定赛默飞世尔科技分子光谱10:00岛津光谱技术在新能源新材料测试中的应用曹亚南(岛津企业管理(中国)有限公司 光谱产品专员)10:30待定王愿习(天目湖先进储能技术研究院 技术经理)11:30待定沈 越(华中科技大学 教授)12:00午休14:00锂离子电池的失效分析解析整体解决方案韩广帅(同济大学 上海智能新能源汽车科创功能平台有限公司 副总经理)14:30Fischione真空互联可控环境离子束切割技术在锂电行业中的应用葛小敏(上海微纳国际贸易有限公司 应用工程师)15:00岛津XPS在新能源材料领域的解决方案蔡斯琪(岛津企业管理(中国)有限公司 产品专员)15:30主流动力电池热-电特性检测及本质原因分析张江云(广东工业大学 副教授)16:00待定周永超(中国机械科学研究总院集团有限公司/中机寰宇认证检验股份有限公司 新能源事业部 副部长)专场2:储能材料检测技术专场(12月1日上午)09:00关键储能材料检测技术与案例分享邵丹(广州能源检测研究院 主任工程师 / 高级工程师)10:00球差电镜在新能源材料研发中的应用林岳(中国科学技术大学 特任教授)10:30待定弗尔德11:00待定高标(武汉科技大学 教授)专场3:清洁能源之氢能源材料检测技术专场(12月1日下午)13:30新能源氢能市场发展和展望宋中林(广州市氢能和综合智慧能源产业发展联合会 副会长兼常务副秘书长)14:00加氢站承压设备安全风险与检测技术探讨段志祥(中国特种设备检测研究院 氢能室主任)14:30待定何广利(北京低碳清洁能源研究院 氢能技术总监/高工)15:00氢燃料电池系统及测试技术发展叶长流(佛山市清极能源科技有限公司 副总经理)15:30待定邓凡锋(中国测试技术研究院化学研究所 副研究员)16:00氢能源及其在交通运输领域中的应用潜力与发展趋势周飞鲲(佛山仙湖实验室 特聘研究员)16:30绿电电解制氢电极材料评价及测试技术唐阳(北京化工大学化学学院 副教授)专场4:其他清洁能源材料检测技术专场(12月2日上午)09:00海域天然气水合物资源开发现状与展望张郁(中国科学院广州能源研究所 研究员)09:30Cu系甲醇合成催化剂之原位电镜表征蒋复国(北京低碳清洁能源研究院 分析表征中心经理)10:00待定朱俊杰(南京大学 教授)10:30中国核能利用现状及展望王海鹏(生态环境部核与辐射安全中心 高级工程师)五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:会议官网:https://www.instrument.com.cn/webinar/meetings/xny2022/ (内容更新中)或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容杨编辑:15311451191,yanglz@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn仪器信息网广州能源检测研究院广东省动力电池安全重点实验室国家化学储能材料及产品质量检验检测中心(广东)国家烃基清洁能源产品质量检验检测中心(广东)2022年10月26日附:往届会议回顾1)第四届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny2021/ 2)第三届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny2020 3)第二届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny/4)第一届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/iESM
  • 中国自主研发首个深海原位拉曼光谱实验室在南海实现常态化运行
    工作人员为仪器设备的吊装做准备工作。 吴涛 摄中国科学院海洋研究所(简称“中科院海洋所”)7日发布消息称,经过近三年的试验验证,依托自主研发的世界首套深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统,该所研究团队在南海构建了中国首个深海原位拉曼光谱实验室,并实现了对冷泉(海底天然气渗漏)喷口流体、天然气水合物(可燃冰)动力学过程、冷泉生物群落的长期原位观测与现场实验。研究团队负责人、中科院海洋所研究员张鑫表示,其团队自2008年开始使用拉曼光谱系统对深海热液、冷泉活动的理化环境进行相关研究。此次构建的深海原位光谱实验室实现了深海热液冷泉探测从“看一看”到“测一测”的跨越。科考船回收仪器设备。中科院海洋所供图张鑫介绍说,受成本限制,此前使用的基于ROV(遥控无人潜水器)等深潜器的单通道拉曼光谱探测系统,存在单点、间断探测等不足,无法适应深海热液冷泉不同喷口流体成分各异、非稳态的热液冷泉流体连续喷发等实际应用情景,因此需要一个针对深海热液冷泉活动理化环境开展坐底式的长时、连续、多点原位探测系统,实现对深海的长期原位观测与可控实验。张鑫说,作为深海原位光谱实验室的核心部件,由该团队自主研发的世界首套深海多通道拉曼光谱探测系统,创新采用光学系统分时复用技术设计,通过光路切换开关,切换4个通道的拉曼探头与激光器、光谱仪等光学器件的光学通路,实现4个通道的拉曼探头对舱内关键光学器件的分时复用,进而实现对深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。同时,该系统具备在线调试、离线自容模式,可根据深海目标物及探测环境的实际情况决定光谱探测参数、制作模板文件,且可实现自动开关机,并按照模板文件采集光谱,完成光谱采集后自动保存光谱,适应深海长期布放。据介绍,深海原位光谱实验室的搭建是在深海ROV的辅助下完成的,深海多通道拉曼光谱探测系统上4个通道的拉曼探头会被深海ROV放置在不同的探测区域,实现对深海热液冷泉物理化学环境进行长期原位观测。探测完毕后,将再次借助深海ROV收回探头,等待科考船对其完成回收。张鑫说:“深海热液喷口流体对海洋环境的影响范围可达四千余公里。深海探测可辅助研究热液冷泉等极端环境对于海洋生态与全球气候变化的影响,并可探究生命是否起源于海洋等科学假说。”据悉,该研究得到国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。目前,该深海原位拉曼光谱实验室已在中国南海实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,并在深海冷泉、热液等区域常态化运行。
  • 五院士支招破解我国能源困境
    “‘我国石油还能开采40年’的说法不科学,该数据是拿探明的存储量除以每年的消费量简单得出的,而实际上每年都有新的石油、天然气等资源被勘探出来。”  近日,五位中科院院士——地质学家李德生、物理化学家田昭武、无机化学家徐如人、真菌学家庄文颖、电工学家严陆光,与20位青年科学家在天津大学畅谈能源和资源的可持续发展。  李德生等在会上建议,解决我国未来能源安全问题,应在开源节流的基础上,从加强科学研究和人才培养等方面入手。  开源节流 突围困局  李德生介绍说,我国实际石油的存储量为332亿吨,目前已探明84亿吨 天然气资源量为22万亿立方米,2010年年底探明5.71万亿立方米,尚有五分之四未被探明 煤层气资源量为11万亿立方米,目前探明量仅占1%。  研究结果表明,照目前的开采速度,常规矿物能源可以一直持续到22世纪。  尽管如此,李德生表示,我国能源发展仍面临着不小的压力,未来除保证一定的化石能源产量外,我国也应重视发展如页岩气、页岩油等非常规油气资源。  虽然页岩气与页岩油开发存在高成本、高消耗、高污染以及低产出的问题,但李德生表示,“这些非常规资源一定会为我国的能源资源发展作出贡献” 。  田昭武、严陆光也指出,未来能源资源“开源”仍须在太阳能、风能、生物质能等新能源技术领域多做功课。  而要使能源资源实现可持续发展,要“开源”,更须“节流”。  李德生指出,我国已提前10年打破了2020年能源消耗量的红线——去年,国内原油消费量已达4.5亿吨,超过2020年消耗量达4.2亿吨的红线 目前汽车保有量也远超预计,达2亿多辆,远超2020年达到1亿辆的红线。  “这么多的汽车等于是把化工厂搬到城市里,这对于城市环境的损害非常大。因此,解决这个问题是我们降低交通能耗、减少环境污染的重点。”田昭武表示。  技术为基 加强应用  “在能源科学研究方面,产学研一体化是研究的前提。”田昭武表示。  他认为,我国当前在太阳能等能源开发技术方面已掌握较高技术,但科研与应用之间还存在很多隔阂,难以缓解能源紧缺的现状。  以电动汽车为例,由于未能很好地解决电池在能量、成本、寿命等方面的问题,电动车尚不能被广大用户接受。  在可再生能源开发方面,我国的风能、太阳能虽然产能较强,但由于与电网的输电能力不匹配,很多时候,生产出来的电力无法进入电网,被白白浪费。  严陆光指出,除新能源以外,核聚变能、天然气水合物、深层地热能、海洋能等4类能源的未来可利用空间也十分巨大。  然而,按照目前相关研究的进展情况,核聚变能预计下个世纪才能使用 位于海洋深处的天然气水合物,属于新型化石能源,存储量比化石能源还高,但当前面临的最大难题是如何开采。  以人为本 重在创新  “我国生物质能源研究和其他国家处于同一起步阶段,因此,科研人员不应一味地跟风作研究,要结合当前的国家重大需求独立创新。”庄文颖表示,青年科学家应尽力寻找有较大研究潜力和良好应用前景的研究方向。  她同时指出,优秀的人才是关系到实现能源资源开发利用与促进可持续发展的重要因素。她希望青年科学家和高校教师提高对青少年科普教育的重视程度。  徐如人指出,当前的很多基础问题在我国学术界没有得到充分的重视,这将严重制约我国今后的科研创新工作。  他举例说,我国稀土资源虽然很丰富,但主要用于出口,很少被科研单位利用。  他建议相关领域的青年学者要对诸如稀土材料功能与结构关系等基础问题进行更加深入的研究。  “这些问题都是制约能源研究进一步发展的障碍,希望年轻人仔细研究需求与市场,通过技术创新解决我国能源资源发展的困境。”徐如人说。
  • 从“十三五”规划看仪器仪表的发展机遇
    3月17日中共中央发布了中华人民共和国国民经济和社会发展第十三个五年规划纲要,今天我们仪控工程网的小编梳理一下“十三五”期间仪器仪表未来五年的发展方向。  一、仪器仪表在能源行业的应用  能源行业是仪器仪表重要的应用行业,《十三五规划纲要》在第三十章建设现代能源体系中指出,深入推进能源革命,着力推动能源生产利用方式变革,优化能源供给结构,提高能源利用效率,建设清洁低碳、安全高效的现代能源体系,维护国家能源安全。同时,提出“十三五”期间能源领域八大重点工程。  未来五年您值得关注的能源行业有:  水电:统筹水电开发与生态保护,坚持生态优先,以重要的流城龙头水电站建设为重点,科学开发西南水电资源。  2.风电、光伏、光热:继续推进风电光伏发电发展,积极支持光热发电。  3.核电:以沿海核电带为重点,安全建设自主核电示范工程和项目。  4.生物质能、地热能、沿海潮汐能:加快发展生物质能、地热能,积极开发沿海潮汐能资源。  5.完善风能、太阳能、生物质发电扶持政策。  6.煤炭:大力推进煤炭清洁高效利用。限制东部,控制中部和东北,优化西部地区煤炭资源开发,推进大型煤炭基地绿色化开采和改造,鼓励采用新技术发展煤电。  7.油气:加强陆上和海上油气勘探开发,有序开放矿业权,积极开发天然气、煤层气、页岩油(气)。推进炼油产业转型升级,开展成品油质量升级行动计划,拓展生物燃料等新的清洁油品来源。  “十三五”期间这些工程与你相关  1.高效智能电力系统  加快建设抽水蓄能电站、龙头水电站、天然气调峰电站等优质调峰电源,推动储能电站,能效电厂示范工程建设,加强多种电源和储能设施集成互补,提高电力系统的调节能力及运行效率。  2.煤炭清洁高效利用  实施煤电节能减排升级与改造行动计划,对燃煤机组全面实施超低排放和节能改造,使所有现役电厂每千瓦时平均煤耗低于310克、新建电厂平均煤耗低于300克,鼓励用背压式热电机组解决供暖,发展热电冷多联供,提高煤炭用于发电消费比重。  3.可再生能源  以西南水电开发为重点,开工建设常规水电6000万千瓦,统筹受端市场和输电通道,有序优化建设“三北”、沿海风电和光伏项目。加快发展中东部及南方地区分散式风电、分布式光伏发电。实施光热发电示范工程。建设宁夏国家新能源综合示范区,积极推进青海、张家口等可再生能源示范区建设。  4.核电  建成三门、海阳AP1000项目。建设福建福清、广西防城港“华龙一号”示范工程。开工建设山东荣成CAP1400示范工程。开工建设一批沿海新的核电项目,加快建设田湾核电三期工程。积极开展内陆核电项目前期工作。加快论证并推动大型商用后处理厂建设。核电运行装机容量达到5800万千瓦,在建达到3000万千瓦以上。  5.非常规油气  建设沁水盆地、鄂尔多斯盆地东缘和贵州毕水兴等煤层气产业化基地。加快四川长宁—威远、重庆涪陵、云南昭通、陕西延安、贵州遵义—铜仁等页岩气勘查开发。推动致密油、油砂、深海石油勘探开发和油页岩气综合开发利用。推进天然气水合物资资源勘查与商业化试采。  6.能源输送通道  建设水电基地和大型煤电基地外送电通道,在大气污染防治行动12条输电通道基础上,重点新建西南、西北、东北等电力外送通道。加强西北、东北和西南陆路进口油气战略通道和配套干线管网建设。完善以西气东输、陕京线和川气东送为主的天然气骨干管网。  7.能源储备设施  建成国家石油储备二期工程,启动后续项目前期工作,加强成品油储备库建设,建设天然气储气库,提高储气规模和调峰应急能力。在缺煤地区和煤炭集散地建设中转储运设施,完善煤炭应急储备体系,扩大天然气铀储备规模。  8.能源关键技术装备  加快推进煤炭无人开采、深井灾害防治、非常规油气勘探开发、深海层常规油气开发、低阶煤中低温热解分质转化、700℃超超临界燃煤发电、第四代核电、海上风电、光热发电、大规模储能、地热能利用、智能电网等技术研发应用。提升第三代核电、百万千瓦级水电机组、高效锅炉和高效电机等装备制造能力。突破大功率电力电子器材、高温超导体材料等关键元器件和材料的制造及应用技术。  观点:  能源领域一直是仪器仪表重要的用户领域,从能源方面来看:  1.国家的能源支持方向有了大的调整,将以清洁能源作为主导发展方向。  2.国家未来五年的能源的发展逐渐将从粗放型的生产改变为精益生产,同时对仪器仪表及系统的要求也会相应提高。  3.随着国际原油价格不断下跌,空气、水资源污染日益严重,煤炭、石化行业转型升级是关键。煤炭限制开发、提倡开采油气,落后产能的煤电、炼油企业将逐渐进行新技术改造或者淘汰。  4.对于仪器仪表行业来讲,能源行业的转型升级,既是机遇又是挑战,不过技术和质量仍是不变的竞争力。  二、仪器仪表与“十三五”制造强国战略  仪器仪表是信息采集、测量、传输、控制的基础,是奠定工业基础,发展工业信息化、智能化的基石。“十三五发展规划纲要”中对工业基础、智能制造做出了引导思路。  这些政策与您有关  在《十三五规划纲要》“第二十二章实施制造强国战略”中,提出:  1.强化基础领域标准、计量、认证认可、检验检测体系建设。  2.实施高端装备创新发展工程,明显提升自主设计水平和系统集成能力。  3.实施智能制造工程,加快发展智能制造关键技术装备,强化智能制造标准、工业电子设备、核心支撑软件等基础。  4.加强工业互联网设施建设、技术验证和示范推广,推动“中国制造+互联网”取得实质性突破。  5.培育推广新型智能制造模式,推动生产方式向柔性、智能、精细化转变。  6.鼓励建立智能制造产业联盟。实施绿色制造工程,推进产品全生命周期绿色管理,构建绿色制造体系。  7.推动制造业由生产型向生产服务型转变,引导制造企业延伸服务链条、促进服务增值。推进制造业集聚区改造提升,建设一批新型工业化产业示范基地,培育若干先进制造业中心。  三、仪器仪表与全方位开放和“一带一路”  改革开放30多年以来,越来越多的国产仪器仪表随着国际项目走出国门,随着我国工程质量的提高,国产仪器仪表质量和技术的升级,国产仪表越来越受到更多国家的认知和欢迎。中国仪器仪表将在未来5年在国际舞台大放异彩。  1.全方位开放  完善对外开放区域布局。支持沿海地区全面参与全球经济合作和竞争,发挥环渤海、长三角、珠三角地区的对外开放门户作用。(如支持宁夏等内陆开放型经济试验区建设,支持中新(重庆)战略性互联互通示范项目。推进双边国际合作产业园建设。探索建立舟山自由贸易港区等。)  2.国际产能和装备制造合作  以钢铁、有色、建材、铁路、电力、化工、轻纺、汽车、通信、工程机械、航空航天、船舶和海洋工程等行业为重点,采用境外投资、工程承包、技术合作、装备出口等方式,开展国际产能和装备制造合作,推动装备、技术、标准、服务走出去。建立产能合作项目库,推动重大示范项目建设。引导企业集群式走出去,因地制宜建设境外产业集聚区。加快拓展多双边产能合作机制,积极与发达国家合作共同开拓第三方市场。建立企业、金融机构、地方政府、商协会等共同参与的统筹协调和对接机制。完善财税、金融、保险、投融资平台、风险评估等服务支撑体系。  3.“一带一路”建设  秉持亲诚惠容,坚持共商共建共享原则,开展与有关国家和地区多领域互利共赢的务实合作,打造陆海内外联动、东西双向开放的全面开放新格局。 推动与沿线国家发展规划、技术标准体系对接,,推进沿线国家间的运输便利化安排,开展沿线大通关合作。建立以企业为主体、以项目为基础、各类基金引导、企业和机构参与的多元化融资模式。(推动中蒙俄、中国-中亚-西亚、中国-中南半岛、新亚欧大陆桥、中巴、孟中印缅等国际经济合作走廊建设,推进与周边国家基础设施互联互通,共同构建连接亚洲各次区域以及亚欧非之间的基础设施网络。)  四、“十三五”期间仪器仪表企业该如何自我建设  1.支持企业瞄准国际同行业标杆全面提高产品技术、工艺装备、能效环保等水平,实现重点领域向中高端的群体性突破。  2.加强质量品牌建设实施质量强国战略,全面强化企业质量管理,开展质量品牌提升行动,解决一批影响产品质量提升的关键共性技术问题,加强商标品牌法律保护,打造一批有竞争力的知名品牌。  3.建立企业产品和服务标准自我声明公开和监督制度,支持企业提高质量在线检测控制和产品全生命周期质量追溯能力。  4.鼓励企业并购,形成以大企业集团为核心,集中度高、分工细化、协作高效的产业组织形态。  除此之外,建立商品质量惩罚性赔偿制度。国家还将完善质量监管体系,加强国家级检测与评定中心、检验检测认证公共服务平台建设,为仪器仪表的创新、发展注入了新的活力。
  • 标准解读|食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量
    5月11日,GB 2763.1-2022《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》正式实施,本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021配套使用。最新发布的《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)在广泛征求社会意见、有关部门意见和向世界贸易组织(WTO)成员通报的基础上,经国家农药残留标准审评委员会、食品安全国家标准审评委员会技术总师会议及秘书长会议审查通过,由国家卫生健康委、农业农村部和市场监管总局于2022年11月11日发布,将于2023年5月11日起实施。本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021食品安全国家标准 食品中农药最大残留限量》配套使用。GB 2763.1-2022除前言外,主体部分依然由范围、规范性引用文件、术语与定义、技术要求、索引五大部分组成。一、范围GB 2763.1-2022规定了食品中112种农药共290项最大残留限量。二、规范性引用文件GB 2763.1-2022规范性引用文件共涉及GB/T5009.174花生大豆中异丙甲草胺的残留量的测定等37个检测方法三、技术要求该部分是GB 2763.1-2022的重点部分。其中每种农药的技术要求均由主要用途、ADI值、残留物、最大残留限量表、检测方法构成,主要新增和修订内容如下:1. GB 2763.1-2022规定了112种农药290项最大残留限量。2. 其中22种为新农药项目,新标准规定了22种农药中51 项最大残留量限量。3. 具体新增和修订的农药项目及残留限量可下载标准查看。GB2763.1-2022食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量.pdf
  • 从大国可燃冰的开发博弈到可燃冰的开采技术
    p  strong仪器信息网讯 /strong2017年5月,几个大国都发出了有关可燃冰的消息。中国18日宣布在南海试采可燃冰成功。此前,美国于12日宣布正在墨西哥湾开展可燃冰钻探研究,日本也于4日宣布从近海可燃冰中提取出了甲烷。此前包括俄罗斯、加拿大、印度等国家已经加入了这个开采行列。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/noimg/d7e78e9a-ab48-497d-af9c-7a47147be596.jpg" title="1.jpg" style="width: 606px height: 82px " width="606" vspace="0" hspace="0" border="0" height="82"//pp  span style="color: rgb(0, 176, 240) "strong可燃冰的优点/strong/span/pp  什么是可燃冰?中国科学技术大学合肥微尺度物质科学国家实验室副研究员袁岚峰介绍,可燃冰的结构是甲烷为主的有机分子被包在水分子组成的“笼子”里,由于甲烷是天然气的主要成分,所以其学名是天然气水合物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/d6819cd3-6d4f-44db-b5b5-e27a4d9b3142.jpg" title="1.jpg"//pp style="text-align: center "strong可燃冰的结构/strongbr//pp  它之所以被称作“可燃冰”,一方面是因为既含水又呈固体,看来像冰,另一方面,甲烷与水分子结合很弱,外界稍加扰动就可以让其分离出来,很容易点燃。/pp  甲烷是清洁燃料,燃烧后只生成二氧化碳和水,如果替代煤炭,将有助于解决空气污染问题。/pp  可燃冰储量巨大,广泛分布于全球大洋海底、陆地冻土层和极地之下。有专家估计,其资源量相当于全球已探明传统化石燃料碳总量的两倍。因此,可燃冰是一种有重大战略意义的未来能源。/pp  “目前全球生产模式主要依靠的传统化石能源总会耗尽,而可燃冰可能大大延长这个时间,为人类开发新能源提供缓冲。”袁岚峰说。/pp  strongspan style="color: rgb(0, 176, 240) "大国竞相探索/span/strong/pp  可燃冰的优点吸引了全球大国竞相研究开采手段。/pp  美国能源部下属的国家能源技术实验室12日宣布,正与得克萨斯大学奥斯汀分校等机构合作,于5月在墨西哥湾深水区开展可燃冰开采研究,11日已经开始了一次钻探。/pp  美国十分重视可燃冰研究,2000年曾通过《天然气水合物研究与开发法案》。此后美国能源部多次拨款支持可燃冰研究,最近一次是在2016年9月,宣布投入380万美元支持6个新的可燃冰研究项目。开展本次钻探的得克萨斯大学奥斯汀分校就是受支持的项目方之一。/pp  日本经济产业省资源能源厅4日宣布,日本石油天然气金属矿物资源机构成功从日本近海海底埋藏的可燃冰中提取出甲烷。此次试验开采海域位于爱知县和三重县附近的太平洋近海,估计该海域拥有的可燃冰储量达1.1万亿立方米,是日本天然气年消费量的约10倍。/pp  这是日本第二次开采可燃冰。2013年,日本尝试过开采海底可燃冰并提取了甲烷,但由于海底砂流入开采井,试验仅6天就被迫中断。本次试验持续12天后也因出砂问题中断,未能完成原计划连续三四周稳定生产的目标,12天产气量只有3.5万立方米。/pp  《日本经济新闻》19日说,日本希望在21世纪20年代开始可燃冰商业化项目,但现在看来还需要时间研发相应技术。日本资源能源厅石油天然气课长定光裕树表示,由于日本开采试验没有达到目标,可能不得不调整商业化的时间。/pp  span style="color: rgb(0, 176, 240) "strong特殊国情加大开采难度/strong/span/ppspan style="color: rgb(0, 176, 240) "strong  /strongspan style="color: rgb(0, 0, 0) "我国可燃冰主要分布在南海海域、东海海域、青藏高原冻土带以及被冻土带,根据粗略估算,其资源量分别为64.97*10sup12/supmsup3/sup、3.38*10sup12/supmsup3/sup、12.5*10sup12/supmsup3/sup、2.8*10sup12/supmsup3/sup。其中南海北部陆破的可燃冰资源量达185亿吨油当量,相当于南海深水勘探已探明的油气地质储备的6倍,达到我国陆上石油总量的50%。此外,在西沙海槽已初步圈出可燃冰分布面积5242平方千米,其资源估算达到4.1万亿立方米。而且在我国东海和台湾省海域也存在大量可燃冰。经过海内外专家学者多年探测研究证实中国台湾省西南面积约77000平方千米的海域蕴藏着极为丰富的可燃冰球。据科学家估算,远景资源至少有350亿吨油当量。并且已在南海北部神狐海域和青海省祁连山永久冻土带取得了可燃冰实物样品。/span/span/pp  中国此次试采可燃冰成功,也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。截至18日,本次试采连续产气超过一周,最日高产量3.5万立方米,累计产气12万立方米。/pp  但是可燃冰要商业化还有许多障碍,比如降低开采成本、降低环境影响等。/pp  span style="color: rgb(0, 176, 240) "strong现阶段的开采技术/strong/span/ppspan style="color: rgb(0, 176, 240) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/5b267c40-309e-4c34-945f-fd962351f0ab.jpg" title="2.jpg" style="width: 496px height: 433px " width="496" vspace="0" hspace="0" border="0" height="433"//pp style="text-align: center "strong降压法开采原理/strongbr//ppspan style="color: rgb(0, 176, 240) "  span style="color: rgb(0, 0, 0) "降压法是通过降低压力而使天然气水合物稳定的相平衡曲线移动,从而达到促使水合物分解的目的。一般是在水合物层之下的游离气聚集层中降低天然气压力或形成一个天然气空腔(可由热激发或化学试剂作用人为形成),使与天然气接触的水合物变得不稳定并且分解为天然气和水。在该方法中,由于没有额外的热量注人水合物开采层,分解所吸收的热量必须由周围物质提供,但是当水合物分解吸收的热量达到一定程度,水合物周围环境温度降低会抑制水合物的进一步分解研究表明,这种方法在气体全面分解过程中有利于控制开采气体的流量,适合于那些储藏中存在大量自由气体的水合物储层,是现有水合物开采技术中经济前景比较好的开采技术。br//span/span/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c1160ce-86a8-4c95-b3eb-4b67c33ba6f1.jpg" title="3.jpg" style="width: 493px height: 330px " width="493" vspace="0" hspace="0" border="0" height="330"//pp style="text-align: center "strong综合法开采原理/strong/pp  综合法是综合利用降压法和热开采技术的优点对天然气水合物进行有效开采。其具体方法是先用热激法分解天然气水合物,后用降压法提取游离气体。目前,这种方法已得到了人们的广泛推祟,已投产的俄罗斯Messoyakha气田和加拿大Mackensie气田均以该法为主要开采技术,其技术在国内具有良好的应用前景。br//pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201705/ueattachment/af556450-90e6-48f0-93cf-1eeee0ed2983.pdf"新型洁净能源可燃冰的研究发展.pdf/a/p
  • 百灵威权威提供“地沟油”检测标样
    &ldquo 地沟油&rdquo 是y个泛指概念,是对各类劣质油的统称,y般包括潲水油、煎炸废油、食品及相关企业产生的废弃油脂等。&ldquo 地沟油&rdquo 对人体的危害j大,长期食用可能会引发癌症。 虽然g家明令禁止将废弃油脂再加工进行使用或者销售,但出于利益驱使,个别不法企业或个人仍冒天下之大不韪,造成每年几百万吨的&ldquo 地沟油&rdquo 流向餐桌,给民众食品安全带来严重威胁。目前,我g还没有专门针对&ldquo 地沟油&rdquo 的检测标准。据了解,北京市食品安全监控中心在筛查了&ldquo 地沟油&rdquo 可能涉及的80多个技术检验项目后,已经找到了包括多环芳烃(PAHs)、胆固醇、电导率和特定基因组成等4类能够排查&ldquo 地沟油&rdquo 的有效指标,初步建立了&ldquo 地沟油&rdquo 检测的指标体系。百灵威作为分析化学l域的引l者,以维护民众的生命安全为己任,整合全球优秀产品资源,提供专业的、品种齐全的检测标样,为&ldquo 地沟油&rdquo 的检测保驾护航!针对性强、价格低廉、具有溯源性纯品、液标等多种规格液标具有多种溶剂、多种浓度产品经过ISO 9001:2000、ISO 17025:1999质量认证产品经过了NIST、NVLAP和EPA认证订购标样附带质检报告、材料安全数据卡■ 混标产品名称:PAHs Solution Mix(多环芳烃混标)产品编号:Z-013-17溶剂:0.2 mg/mL in CH2Cl2 : MeOH(1:1)包装:1 mL组分数量:16种编号CAS英文名称中文名称浓度(mg/mL)156-55-31,2-Benzanthracene苯并(a)蒽0.2283-32-9Acenaphthene二氢苊0.23208-96-8Acenaphthylene苊0.24120-12-7Anthracene蒽0.2550-32-8Benzo(a)pyrene苯并(a)芘0.26205-99-2Benzo(b)fluoranthene苯并(b)荧蒽0.27191-24-2Benzo(g,h,i)perylene苯并(g,h,i)二萘嵌苯0.28207-08-9Benzo(k)fluoranthene苯并(k)荧蒽0.29218-01-9Chrysene屈0.21053-70-3Dibenz(a,h)anthracene二苯并(a,h)蒽0.211206-44-0Fluoranthene荧蒽0.21286-73-7Fluorene芴0.213193-39-5Indeno(1,2,3-cd)pyrene茚并(1,2,3-cd)芘0.21491-20-3Naphthalene萘0.21585-01-8Phenanthrene菲0.216129-00-0Pyrene芘0.2※若需要混标中的具体单标请致电400-666-7788垂询!■ 单标■ 氘代单标CAS英文名称中文名称浓度包装1718-53-21,2-Benz(a)anthracene D12氘代苯并(a)蒽2.0 mg/mL in CH2Cl21 mL15067-26-2Acenaphthene D10氘代苊4.0 mg/mL in CH2Cl21 mL93951-97-4Acenaphthylene D8氘代苊烯10 ng/&mu L10 mL1719-06-8Anthracene D10氘代蒽2.0 mg/mL in CH2Cl21 mL93951-66-7Benzo(g,h,i)perylene D12氘代苯并(g,h,i)苝10 ng/&mu L1 mL1719-03-5Chrysene D12氘代屈4.0 mg/mL in CH2Cl21 mL13250-98-1Dibenzo(a,h)anthracene D14氘代二苯并(a,h)蒽10 ng/&mu L10 mL93951-69-0Fluoranthene D10氘代荧蒽ampule of 50 mg1 EA81103-79-9Fluorene D10氘代芴10 ng/&mu L10 mL1146-65-2Naphthalene D8氘代萘4.0 mg/mL in CH2Cl21 mL1517-22-2Phenanthrene D10氘代菲0.2 mg/mL in CH2Cl21 mL4.0 mg/mL in CH2Cl21 mL1718-52-1Pyrene D10氘代芘0.5 mg/mL in Acetone1 mL※更多氘代单标请致电400-666-7788垂询!■ 氟代单标CAS英文名称中文名称浓度包装17521-01-65-Fluoroacenaphthylene5-氟代苊烯10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL113600-15-09-Fluorobenzo[k]Fluoranthene9-氟代苯并(k)荧蒽10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mLN/A1-Fluorochrysene1-氟代屈10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL36288-22-93-Fluorochrysene3-氟代屈10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL1691-66-33-Fluorofluoranthene3-氟代荧蒽10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL343-43-12-Fluorofluorene2-氟代芴10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL321-38-01-Fluoronaphthalene1-氟代萘0.1 mg/mL in Acetone1 mL523-41-12-Fluorophenanthrene2-氟代菲10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL440-40-43-Fluorophenanthrene3-氟代菲10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL1691-65-21-Fluoropyrene1-氟代芘10 &mu g/mL in Toluene1 mL100 &mu g/mL in Toluene1 mL※更多氟代单标请致电400-666-7788垂询!■ 黄曲霉毒素类、胆固醇CAS英文名称中文名称备注包装1162-65-8Aflatoxin B1黄曲霉毒素 B1定性用对照品5 mgAflatoxin B1 solution黄曲霉毒素 B1 (液标)标样20 &mu g/mL in methanol1 U7220-81-7Aflatoxin B2黄曲霉毒素 B2定性用对照品2 mgAflatoxin B2 solution黄曲霉毒素 B2 (液标)标样3 &mu g/mL in benzene:acetonitrile (98:2)1 U1165-39-5Aflatoxin G1黄曲霉毒素 G1定性用对照品2 mgAflatoxin G1 solution黄曲霉毒素 G1 (液标)标样3 &mu g/mL in benzene:acetonitrile (98:2)1 U7241-98-7Aflatoxin G2黄曲霉毒素 G2定性用对照品1 mgAflatoxin G2 solution黄曲霉毒素 G2 (液标)标样3 &mu g/mL in benzene:acetonitrile (98:2)1 U6795-23-9Aflatoxin M1黄曲霉毒素 M1定性用对照品0.25 mgAflatoxin M1 solution黄曲霉毒素 M1 (液标)标样10 &mu g/mL in acetonitrile1 U6885-57-0Aflatoxin M2黄曲霉毒素 M2定性用对照品0.25 mg57-88-5Cholesterol胆固醇标样0.25 g※更多产品欢迎致电400-666-7788垂询!■ 配套溶剂■ 色谱溶剂高纯度:HPLC分析中无干扰峰低含水量:避免了正相色谱柱的失活低 UV 背景吸收:避免了鬼峰及得出错误的结论优异的批次稳定性:更换批次时无需更改 HPLC 标准方法低挥发、低残留:使用前无需过滤,减少了色谱柱的污染并防止了系统堵塞■ 产品列表(以下产品可提供20 L / 200 L包装)CAS产品编号英文名称中文名称包装67-56-1116481Methanol, 99.9% [HPLC/ACS]甲醇1 L / 4 L982150Methanol, 99.8% [HPLC/PREP]甲醇(制备j)4 L/20 L/200 L75-05-8134752Acetonitrile, 99.9% [HPLC/ACS]乙腈1 L / 4 L925301Acetonitrile, 99.9% [HPLC/PREP]乙腈(制备j)4 L/20 L/200 L110-54-3133516Hexane, 95% [HPLC/ACS]正己烷1 L / 4 L141-78-6300999Ethyl acetate, 99.9% [HPLC/ACS]乙酸乙酯1 L / 4 L67-66-3508435Chloroform, 99.9% [HPLC/ACS]氯仿1 L / 4 L109-99-9990407Tetrahydrofuran, 99.8% [HPLC/ACS]四氢呋喃4 L※更多色谱溶剂欢迎致电400-666-7788垂询!■ 离子对试剂离子对试剂是高效液相色谱专用试剂,y般是将离子性化合物添加到流动相中以促使离子与带电荷分析物形成配对离子,达到可靠的分析效果。百灵威不仅可提供系列化磺酸类(酸性)或铵盐类(碱性)离子对试剂,而且可以根据实验要求,定制从5 g 至1 kg多种包装。CAS产品编号英文名称产品名称包装207605-40-12568821-Pentanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]戊烷磺酸钠y水合物5 g/25 g/100 g/500 g207300-91-22389191-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]己烷磺酸钠y水合物5 g/25 g/100 g/500 g207300-90-12353851-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]庚烷磺酸钠y水合物5 g/25 g/100 g/500 g207596-29-01653021-Octanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]辛烷磺酸钠y水合物5 g/25 g/100 g/500 g22767-49-33587891-Pentanesulfonic acid sodium salt,99% [HPLC grade]戊烷磺酸钠5 g/25 g/100 g2832-45-35738321-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]己烷磺酸钠5 g/25 g/100 g22767-50-61491161-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade]庚烷磺酸钠25 g/100 g5324-84-51945001-Octanesulfonic acid sodium salt, 99.5% [HPLC grade]辛烷磺酸钠5 g/25 g/100 g※更多离子对试剂欢迎致电400-666-7788垂询!■ 配套仪器耗材■ 液相色谱柱高度的柱间重现性高度可控的单分子层形成和封尾技术高选择性,提高了分离效率适合分离酸性、中性和碱性化合物,以及多肽和蛋白等产品编号产品名称适用pH范围特征包装S02001C18液相色谱柱柱长:150× 外径4.6 mm填料直径:5 µ mpH 2-7★ 母体为高纯度(99.999%)硅胶;★ 均y且完全呈球状的硅胶粒径,可以在低压力下使用;★有理想的端基封尾处理,既不会有碱性化合物吸附问题,也不会有酸性化合物吸附问题;★ 即使是在酸性条件下,也有着较高的耐受性。1 PakS02302C18液相色谱柱柱长:250× 外径4.6 mm填料直径:5 µ mpH 2-71 PakS02303C18 WpH液相色谱柱 柱长:150× 外径4.6 mm填料直径:5 µ mpH 1-10★ 保留能力强,与母体成分的分离更容易;★ 均y且完全呈球状的硅胶粒径,使用压力小,给泵带来的负担更小;★ 高惰性,不论酸性化合物还是碱性化合物,都能得到尖锐的峰型;★ 硅胶纯度高,可用于分析金属配合物;★ pH1-10,即使使用强碱性溶离液也能维持高性能。 1 PakS02304C18 WpH液相色谱柱柱长:250× 外径4.6 mm填料直径:5 µ mpH 1-101 Pak※更多液相色谱柱欢迎致电400-666-7788垂询!■ J&K-Abel气相色谱柱高性能:低流失、独特的去活技术高惰性:能得到更尖锐的锋形高选择性:更高的信噪比高的柱间稳定性:提高了分离效率,保证了结果的重现性创新型设计:保证更长的色谱柱使用寿命产品类型:聚硅氧烷色谱柱聚合乙二醇(PEG)色谱柱PLOT色谱柱熔融石英管产品编号型号规格耐受温度S010125-3002AB-1, 30 m × 0.25 mm × 0.25 &mu m-60 to 325/350 19091Z-433S011125-3002AB-1MS, 30 m × 0.25 mm × 0.25 &mu m-60 to 325/350 19091S-933S010525-3002AB-5, 30 m × 0.25 mm × 0.25 &mu m-60 to 325/350 19091J-433S011525-3002AB-5MS, 30 m × 0.25 mm × 0.25 &mu m-60 to 325/350 19091S-433S016125-3002AB-1701, 30 m × 0.25 mm × 0.25 &mu m-20 to 280/300 122-0732S016132-3002AB-1701, 30 m × 0.32 mm × 0.25 &mu m-20 to 280/300 123-0732S016225-3014AB-624, 30 m × 0.25 mm × 1.40 &mu m-20 to 260 122-1334S016253-3030AB-624, 30 m × 0.53 mm × 3.00 &mu m-20 to 260 125-1334S012025-3002AB-INOWAX, 30 m × 0.25 mm × 0.25 &mu m40 to 260/280 19091N-133S018653-3030AB-PLOT Q, 30 m × 0.53 mm × 30.0 &mu m-80 to 280/290 19095P-QO4S011125-3002-G5AB-1MS Builtin-Guard 30 m,0.25 mm,0.25 &mu m with 5 m Guard Column-60 to 325/350※更多气相色谱柱欢迎致电400-666-7788垂询!■ 其它配套仪器耗材产品编号产品名称包装3581025加热磁力搅拌器1台3810025RCT 基本型磁力搅拌器1台1572500磁力搅拌子1PKE03935569手动单道可调式移液枪,1000-5000 µ L1支E02901275瓶口分液器,5-50 mL1个WX-7009-0020-18247 R95 有机蒸气异味防护口罩,120个/箱1箱5982-3236SCX Polymer - Box, 50 x 3 mL tubes, 60 mg50支/盒959741-902Eclipse Plus C18, 2.1 x 50 mm,1.8 µ m, 600 bar1支BR36849100 mL, DURAN, NS 14/23, -stoer1套5182-0714Screw cap vials, clear 100/PK 透明螺口2 mL样品瓶1盒WKLM-2.1微孔滤膜Ф50 0.2 &mu (水)混合纤维素100片/包WKLM-4.1微孔滤膜Ф50 0.2 &mu (有机)尼龙6100片/包RJGL1L-C溶剂过滤器(1 L) 杯300 mL 瓶1000 mL,PTFE滤板1套5982-911012 Port Vacuum Extraction Manifold Assy1套※更多产品欢迎致电400-666-7788垂询!
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物Oxalic acid dihydrate6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物Bis[3-(triethoxysilyl)propyl] tetrasulfide40372-72-3D-薄荷醇D-Menthol15356-60-2L-薄荷醇L-Menthol2216-51-51-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-辛醇1-Octanol111-87-55-甲基呋喃醛5-Methylfurfural620-02-0N-环己基甲酰胺N-Cyclohexylformamide766-93-84-甲基-2-戊醇4-Methyl-2-pentanol108-11-2N,N-二甲基-对苯二胺N,N-Dimethyl-p-phenylenediamine99-98-95,6,7,8-四氢-1-萘胺5,6,7,8-Tetrahydro-1-naphthylamine2217-41-6肼二盐酸盐Hydrazine dihydrochloride5341-61-7硫氰酸钾Potassium thiocyanate333-20-0二甲基硫醚Dimethyl sulfide75-18-3聚苯醚Polyphenyl ether31533-76-3叔丁基甲基醚 气相色谱级Tert-Butyl methyl ether1634-04-4七氟丁酸Heptafluorobutyric acid375-22-4甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-53,4-二羟基苄胺氢溴酸盐3,4-Dihydroxybenzylamine hydrobromide16290-26-9N,N-二(羟基乙基)椰油酰胺Coconut diethanolamide(CDEA)68603-42-9/61791-31-9甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-5异冰片基丙烯酸酯Isobornyl acrylate5888-33-5N,N' -二苯基硫脲1,3-Diphenyl-2-thiourea102-08-9聚合氯化铝Aluminum chlorohydrate1327-41-9四丁基氢氧化铵10%溶液Tetrabutylammonium hydroxide solution2052-49-5四丁基氢氧化铵25%溶液Tetrabutylammonium hydroxide solution2052-49-5L-苯基丙氨酸L-Phenylalanine63-91-2无水硫酸铈Cerium(IV) sulfate13590-82-4硫酸铈铵四水合物Ammonium cerium(Ⅳ) sulfate tetrahydrate18923-36-9脂蛋白脂肪酶Lipoprotein Lipase9004/2/8乙二胺≥99.5%标准品Ethylenediamine107-15-3壬二酸Azelaic acid (Nonanedioic acid)123-99-9N,N-二甲基-1-萘胺N,N-Dimethyl-1-naphthylamine86-56-6双(三氟甲烷)磺酰亚胺锂盐Bis(trifluoromethane)sulfonimide lithium salt90076-65-6
  • 厉害了我的国--国产成果获国际权威认可!
    p  据央视报导,中科院海洋研究所的“科学”号考察船执行中科院海洋先导专项期间,通过其配备的“发现”号无人潜水器携带自主研发的RiP拉曼光谱探针,在我国南海海域首次发现了裸露在海底的天然气水合物,并证实其为标准的I型水合物。昨日,这一成果在国际权威学术期刊《地球化学、地球物理学、地球系统学》在线发表,标志着其获得了国际权威认可。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201709/noimg/6a5a6d46-e024-493c-9cd5-d3d24a1a7133.jpg" title="图片4.jpg"//pp  我们的星球超过一半的区域被2000米以上的深海海水所覆盖。深海海底不但蕴藏着丰富的石油、天然气、天然气水合物、金属结核、热液和硫化物等矿产资源,还存在着极端生命现象(深海生物基因资源),这些资源具有重大的经济和战略价值。随着陆地能源的日趋紧张,深海探测与资源开发技术在海洋环境研究和深海资源的开发进程中发挥了不可替代的作用。可以说,谁先掌握了深海调查探测与资源开发的先进技术,谁就掌握了世纪海洋战略发展的主动权。/pp  从19世纪末英国“挑战者号”第一次实现环球海洋科学考察以来,深海一直是国际海洋科学研究的前沿和孕育重大科学发现的摇篮。特别是第二次世界大战以后,以美国为代表的世界强国高度重视“蓝海战略”,极大增加了对深海研究的投入。/pp  受制于深海探测装备的落后,我国在深海探索与研究中长期处于“望洋兴叹”地步,与海洋大国地位不符。/pp 2000 年以前我国主要是围绕地质构造和海底矿产资源开展了部分勘查工作。进入21 世纪以来,随着我国国力的增强,深海研究也逐步实现由单一资源调查(多金属结核)向探测与科学研究相结合的综合科学考察的战略性转变。2005 年我国首次在西南印度洋发现热液喷口,2007 年证实了天然气水合物在南海的大量存在并进而启动“南海深部过程演变计划”,以及后续启动的“973”计划“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”、“典型弧后盆地热液活动及其成矿机理”等,推动了我国深海研究的发展。而“蛟龙”号7 000 m 载人深潜器的研制成功,标志着我国在深海研究方面的实力提升。特别是,随着“科学”号海洋综合考察船的投入使用和中科院 A 类战略性先导科技专项“热带西太平洋海洋系统物质能量交换及其影响”的实施,实现了我国深海大洋科考能力跨越式发展。/pp  据中科院海洋所研究员张鑫介绍,此次重要发现就是自2013年我国启动中科院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”五年以来,在深海冷泉和可燃冰原位探查方面积累的丰富经验和成果的集中体现。/pp  天然气水合物俗称“可燃冰”,一般分布在深海沉积物或者大陆永久冻土中,而裸露在海底表面的可燃冰需要大量的深海冷泉流体作为气源,因此极难存在,在全球也鲜有报道。/pp  2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,我国科研人员在南海圈定了裸露在海底的疑似可燃冰精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015年—2016年,我国科研人员自主研发了世界首台可以直接插入高温热液喷口(450℃)进行原位探测的系列化strongspan style="color: rgb(0, 112, 192) "RiP拉曼光谱探针/span/strong,成为我国南海海域首次发现了裸露在海底的天然气水合物发现的主要高技术手段。“有了这枚探针,我们无须取样,直接让‘发现’号水下机器人带着探针下海,就可以当场进行化学成分分析,探测出可燃冰。”/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201709/noimg/aabfdd5a-23cf-4609-9f8d-59d6f3a73418.jpg" title="图片2.png"//pp  2016年9月,张鑫作为首席科学家,带领科考队员在我国南海约水深1100米处发现了两个站点存在裸露于海底的可燃冰,一个站点分布在冷泉化能极端生物群落中,成为这些生物的能量源,另一个站点位于一个活动的冷泉喷口内壁。而且,科研人员在国际上首次使用原位拉曼光谱数据,证实快速生成的可燃冰并非单一的笼型结构,其内部存在大量的甲烷、硫化氢等自由气体。/pp  原位拉曼分析是一种原位或远程分析样品的方法,无需把样品提取出来,也不需要把样品带到拉曼光谱仪所在现场。据了解,远程原位拉曼常常通过光纤来实现,由光纤把拉曼探头耦合到拉曼光谱仪上(可以距离分析点几百米远)。一束光纤用于把激光传输到样品上,另一束光纤则把样品的拉曼信号传到标准的拉曼光谱仪和探测系统。两束光纤都连接到一个小巧紧凑的拉曼探头上,探头把激光聚焦到样品上,并收集拉曼信号。/pp  此次深海探测“可燃冰”使用的拉曼光谱原位定量探测系统(RiP系统)由中科院海洋所自主研制,依托深海ROV平台开展近海底原位探测,在突破激光拉曼光谱仪及探针等关键器件技术攻关后,进行了系统轻型化改造和双控制系统的升级。RIP系统采用的拉曼光谱具有非接触、无损并且可多组分同时探测的优点,尤其适用于深海热液喷口、海底冷泉等极端环境下的原位物质成分探测与分析。/pp  再探海斗深渊,屡破世界纪录。我国南海“可燃冰’的探测发现证实,海斗深渊不再是中国科学家的禁区,中国科学家有能力在这一世界前沿科学领域开创性地开展科研工作,为人类科技进步作出应有贡献。/p
  • 国产低场核磁不简单,“北京波谱年会”等你到来
    低场核磁共振技术具有快速无损测量的特点,在多孔介质孔隙结构表征与基础物性研究方面具有很大优势,应用于天然气水合物研究已有近20年历史,核磁测井也成为天然气水合物钻探测井的常用手段,是测定天然气水合物储层原位渗透率的有效方法。天然气水合物是一种国际公认的潜在替代能源,也是我国第173号矿种,在南海有着广泛的分布和可观的储量。在水合物的检测方法中,NMR以其快速、无损、绿色、在线、数据形式丰富等特点受到诸多青睐。2017年和2020年,我国先后在南海北部成功实施两轮天然气水合物试采,产气效率远超预期,但是要达到商业开采水平仍需要克服多重挑战。其中,含天然气水合物土的渗透率测定及其演化过程预测是面临的重多挑战之一,迄今为止也并未得到很好的解决。近日,中国地质调查局青岛海洋地质研究所吴能友所长团队,通过测定不同天然气水合物含量条件下含天然气水合物土的横向弛豫率,揭示了不同孔隙赋存形式天然气水合物对横向弛豫率的影响规律,基于此对渗透率预测及孔隙结构表征提出了修正建议,为含天然气水合物土低场核磁共振技术定量分析提供了重要的科学依据,对解决含天然气水合物土的渗透率测定问题有重要的指导意义。文章《Nuclear Magnetic Resonance Transverse Surface Relaxivity in Quartzitic Sands Containing Gas Hydrate》发表在《Energy & Fuels》上,感兴趣的读者可自行查看。该研究采用的低场核磁共振系统由青岛海洋地质研究所与苏州纽迈分析仪器股份有限公司联合研发,型号为MesoMR23-060H,该中尺寸核磁共振成像分析仪,搭配低温高压系统,主要用于天然气水合物、冻土冻融等过程的研究。近两年来,液体、固体、低场以及成像核磁,连续波和脉冲顺磁共振波谱均取得明显进步。为了进一步促进波谱学的健康发展,加强学术交流与合作,了解波谱新技术和交叉学科的最新进展,由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2021年度北京波谱年会”将于2021年5月14日-16日在北京世纪金源香山商旅酒店召开。本次会议以“不断进步的磁共振波谱”为主题,在液体、固体、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告。会议交流形式包括大会报告、分会报告和墙报等。会议特别邀请了活跃在我国的青年专家知名专家作波谱前沿技术与应用新进展报告,期间组织波谱厂家进行新产品技术报告及仪器展示。旨在提高波谱学开发和应用水平,推动波谱技术交流与推广。大会报告报告最新的磁共振方法和应用,技术报告以应用和技术支持为主,青年论坛以在读和刚刚毕业学生为主,墙报展示最新进展。会议将评选优秀青年报告和墙报,并给予适当物质和精神奖励。会期两天,诚邀波谱工作者和相关专业的学者积极参与!2021年度波谱年会日程安排.pdf
  • 明天播!赠书|新能源之储能、清洁能源检测技术专场预告
    2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。明天(11月30日),将为大家直播储能材料检测技术专场、清洁能源检测技术专场。直播间还将设置分享赠书、发红包等活动,欢迎报名参会!一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 分享赠书活动将会议直播间分享朋友圈集赞10个,即可获得由袁志刚编著的《碳达峰碳中和:国家战略行动路线图》书籍一本,具体兑换方式见直播间管理员通知,欢迎参与活动。五、 “清洁能源检测技术”专场预告时间报告题目演讲嘉宾清洁能源检测技术(11月30日上午)09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员六、“储能材料检测技术”专场预告时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员七、 嘉宾简介及报告摘要(按分享顺序)张郁 中国科学院广州能源研究所 研究员【个人简介】张郁研究员主要从事天然气水合物领域的相关工作,包括复杂沉积物体系天然气水合物实验与理论、天然气水合物高效开采技术、天然气水合物钻采安全等方面,获2018年国家技术发明二等奖,2019年广东省自然科学一等奖,2013年广东省科学技术一等奖,入选2019年“广东特支计划”本团创新团队。主持国家自然科学基金,广东省促进经济发展专项资金项目课题等项目11项。共发表SCI论文85篇,获授权国家发明专利36件,美国专利7件,参与编制标准2项。担任可再生能源学会天然气水合物专业委员会与中国计量测试学会热物性专业委员会委员。【摘要】与传统油气藏不同,天然气水合物以固体的形式赋存于沉积物的孔隙或者裂隙,因此其不能像天然气或者原油直接依赖于自身的流动性而实现流动,必须吸收由储层、外界环境、或者人工提供的能量,将其分解成甲烷和水,方可能在沉积物中流动。沉积物的渗流能力决定了气水在储层中的流动,对水合物开采效果具有重要的影响,是天然气水合物开采模拟与方案制定中必须的关键基础物性。水合物存在时沉积物的渗流规律与孔隙空间的微观几何结构密切相关,水合物样品的合成以及在孔隙结构中复杂的赋存形式造成了含水合物沉积物渗流实验相对困难。本报告介绍了天然气水合物体系渗流特性测定的相关技术方法以及取得的部分研究进展与结果。张玮 捷欧路(北京)科贸有限公司 应用工程师【个人简介】现任日本电子应用工程师,主要负责FIB-SEM双束系统及氩离子截面抛光仪的样品测试、技术应用以及培训工作,具有丰富的聚焦离子束、双束系统、扫描电镜等理论基础和应用经历。硕士毕业于新南威尔士大学材料科学专业,主研方向为天然生物材料的压电性质和实际应用,积累了丰富的测试样品制备、超微切片、扫描电镜、原子力显微镜等测试研究经验。本科毕业于河北科技大学金属材料工程学系,主要学习方向为合金钢的热处理方案设计和力学性能优化。【摘要】本报告将从TEM设备联用、STEM快速检测、硬件更新,三个方面介绍JEOL年初发布的新一代高性能FIB-SEM双束系统。同时将介绍JEOL专门针对新能源汽车电池制造业开发的PCI颗粒物监测软件系统。肖立新 北京大学 教授【个人简介】肖立新,日本东京大学博士毕业,现为北京大学物理学院教授,博士生导师。英国皇家化学学会会士,中国材料学会太阳能分会秘书长、国际信息显示学会(SID) 中国北区执委会学术副主席、中国光学工程学会光显示专业委员会常务委员。 长期从事光电功能材料及器件方面的研究,如有机发光材料及其器件,光伏材料及其器件物理等。主持过多次国家自然科学基金,承担973项目子课题。发表国际学术论文160余篇及申请专利共30余件,入选2020全球前2%顶尖科学家“年度影响力”榜单。编著《钙钛矿太阳能电池》(第一、二版),译著《有机电致发光-从材料到器件》,参与编著《锂离子电池》。2015年度教育部自然科学一等奖(第一完成人)。【摘要】从介绍钙钛矿太阳能电池的关键问题出发,阐述非铅钙钛矿材料的重要性,继而介绍非铅钙钛矿材料的研究进展,通过分析目前存在的问题,进一步阐述非铅钙钛矿太阳能电池的瓶颈所在,从而阐述如何突破瓶颈。魏静 北京理工大学 特别副研究员【个人简介】北京理工大学材料学院,特聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一或通讯作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文20余篇,其中ESI高被引论文3篇,热点论文3篇,总被引次数超过2000。研究领域:新型能源材料与器件;钙钛矿光电材料与器件。【摘要】钙钛矿太阳能电池(PSCs)的光电转换效率已经超过26%,但寿命远低于工业所需的25年,严重限制了其商业应用。目前报道的多数钙钛矿电池在水分、光照、热或其他因素的干扰下都会严重失效。对此,我们通过设计新型电子传输材料和结构来提高钙钛矿器件的稳定性。本工作首先研究了钙钛矿薄膜的退化机理,之后通过优化电子传输层(ETL),特别是开发新型紫外惰性电子传输材料及基于聚合物矩阵网络的低温介孔结构,来提高PSCs在潮湿环境或光照下的工作稳定性。我们制备了ITO/UV惰性ETL/ Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio-MeOTAD/Au结构的太阳能电池,其功率转换效率达到21%,光稳定性得到明显改善。优化后的器件在一个太阳光强下持续光照,最大功率点电压下工作600小时后,保持99%以上的初始性能。在进一步的工作中,需要深入研究PSCs的复杂降解机理,在此基础上开发更具针对性的薄膜改性方法和新型器件结构。张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。八、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 免费学习+直播抽奖!第六届“新能源材料检测技术发展与应用”网络会议全日程公布!
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。为回馈线上参会者的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会!点击此处报名 以下为本次会议的全日程时间报告题目演讲嘉宾中日科学家论坛暨氢能源发展与检测技术(11月28日 全天)点击报名 》》》09:00致辞唐海霞北京信立方科技发展股份有限公司 CEO09:05致辞足立正之(Masayuki Adachi)日本分析仪器工业协会(JAIMA) 会长09:10利用氢能实现碳中和的趋势和未来发展冈崎 健(OKAZAKI Ken)东京工业大学 名誉教授10:10质子交换膜燃料电池车用氢气检测技术与应用实践张祎玮中石化石油化工科学研究院 高级工程师10:40岛津GC在氢能及锂电池应用介绍李学伟岛津企业管理(中国)有限公司 系统气相专员11:10午休14:00氢能产业发展现状及趋势何广利国家能源集团北京低碳清洁能源研究院氢能(氨能)技术中心 副主任(主持工作)14:30高精度FTIR气体分析仪MAX-IR用于车用氢气燃料中杂质的分析姜建清赛默飞世尔科技(中国)有限公司 高级应用工程师15:00广州氢能产业发展及应用宋中林广州市氢能和综合智慧能源产业发展联合会 执行会长15:30利用原子力显微镜原位、多参数表征电极表界面过程岳俊培布鲁克(北京)科技有限公司 应用科学家16:00质检助力氢能产业高质量发展洪晏忠中汽院新能源科技有限公司 氢能产品测试评价部部长惊喜纷飞—幸运红包等你来抢!新能源电池检测技术(11月29日 全天)点击报名 》》》09:30新能源电池及其材料检测技术邵丹广州能源检测研究院 主任/高级工程10:00岛津光谱技术助力新能源材料解决方案曹亚南岛津企业管理(中国)有限公司 光谱产品专员10:30日立电镜新能源材料分析检测解决方案周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长11:00光学显微镜在新能源汽车检测中的应用王海银徕卡显微系统(上海)贸易有限公司 工业显微镜应用工程师11:30钒电解液检测解析胡俊平湖南省银峰新能源有限公司/江西银汇新能源有限公司 质量控制部部长,研发部副部长12:00午休14:00动力电池测试评价技术马小乐中汽研新能源汽车检验中心(天津)有限公司 平台总监14:30电位滴定仪&卡尔费休水分仪在新能源行业的应用龚雁瑞士万通中国有限公司 产品经理15:00牛津仪器显微分析技术在新能源材料中的应用陈帅牛津仪器科技(上海)有限公司 应用科学家15:30HORIBA拉曼光谱在新能源电池材料中的应用研究代琳心HORIBA科学仪器事业部 应用工程师16:00无机碳硫氧氮氢分析仪以及火花直读光谱仪在新能源汽车行业的应用王元慈艾力蒙塔(上海)贸易有限公司 产品专员16:30PAT技术在锂电材料工艺开发中的应用赵长兴梅特勒托利多科技(中国)有限公司 市场开发专员17:00二次电池层状正极材料失效的原子机制闫鹏飞北京工业大学 教授惊喜纷飞—幸运红包等你来抢!清洁能源检测技术(11月30日 上午)点击报名 》》》09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员惊喜纷飞—幸运红包等你来抢!储能材料检测技术(11月30日 下午)点击报名 》》》14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员16:30动力电池安全性多维参数的测评与仿真林春景重庆理工大学 副教授惊喜纷飞—幸运红包等你来抢!
  • 【网络研讨会】先进表征技术助力水泥行业智能化升级
    【网络研讨会】先进表征技术助力水泥行业智能化升级近日,工业和信息化部印发《建材工业智能制造数字转型行动计划(2021-2023年)》工信厅原【2020】39号,为建材行业在数字信息化、智能化方面的发展指明方向。要求建材企业提升智能制造关键技术创新能力,实现生产方式和企业形态的根本性转变。 水泥行业作为建材重点细分行业,要重点形成数字规划设计、智能工厂建设、自动采选配矿、窑炉优化控制、磨机一键启停、设备诊断运维、生产远程监控、智能质量控制、能耗水耗管理、清洁包装发运、安全环保管理、固废协同处置等集成系统解决方案。 马尔文帕纳科X射线荧光、X射线衍射、激光粒度仪等多种质量、过程控制仪器设备自上世纪 90 年代装备于中国水泥行业以来,仅X射线类分析设备在水泥行业的装机量已近400台,产品遍及华新、海螺、山水、中联、华润、南方、亚泰、金隅等全国各大水泥生产企业,仪器精度和稳定性都备受用户肯定。 其可以用于水泥行业的产品有:元素分析、跨带元素分析、游离氧化钙分析、水合物物相鉴定、固废危废分析、粒度(细度)分析、在线粒度(细度)分析、自动化实验室等多种解决方案,为水泥企业数字化、智能化升级提供有力支持。 11月5日(周五),马尔文帕纳科将举办《水泥企业实验室智能化网络研讨会》,邀请多位应用专家针对水泥生产过程中的每一个环节:从矿山开采、堆场管理、生料制备、熟料烧成到水泥生产,讨论各种先进的分析检测设备帮助您实现质量、效率最大化的可能,完整的解决方案和经典的案例分享,为水泥企业成功智能化升级提供可以借鉴的理论和经验。并对您日常仪器的使用和维护在线答疑。即刻注册报名,开启线上学习时间,期待与您连线! 研讨会日程安排2021年11月5日 14:00 - 16:00时间报告内容14:00-14:15马尔文帕纳科:先进科技助力水泥行业打造智能实验室14:15-15:00质量控制的核心:多核XRF集成智能化 WROXI CEMENT水泥行业专用软件包 Smart Manager云控制每台仪器,释放数据的潜力 案例分享15:00-15:30精准和靠的矿物成分检测:XRD在水泥行业智能实验室的应用 自动化集成 案例分享15:30-16:00激光粒度分析技术在水泥行业智能实验室的应用 减少过粉磨,节约能耗:在线粒度分析 全自动实验室 Insitec Cement Labsizer 案例分享 主讲人信息 薛石雷 先生资深X射线分析顾问原任帕纳科亚太区XRF产品经理,帕纳科亚太区应用实验室经理,马尔文帕纳科交叉业务发展经理。曾任教于在北京化工大学和PE公司工作。 熊佳星 先生XRF 产品经理2010 年毕业于中国科学技术大学,化学物理专业硕士;2012 年加入荷兰帕纳科公司,负责其在中国 XRF 产品的应用及产品工作,现担任中国区XRF 产品经理。 张绍杰 先生建材行业销售经理2006 年毕业于南京理工大学,热能工程专业硕士,开始从事中子活化在线分析应用工作 ,2010年加入荷兰帕纳科公司,曾担任中子活化产品应用工程师、销售工程师,现任马尔文帕纳科公司建材行业销售经理。
  • 海洋科技“划重点”:未来五年可燃冰开采、深海探测“大有可为”
    p  时隔两年,参与《“十三五”海洋领域科技创新专项规划》(以下简称《规划》)制定的上海交通大学任平研究员终于盼来了“十三五”海洋科技发展顶层设计正式面世。日前,《规划》由科技部、国土资源部、国家海洋局联合印发。/pp  “海洋科技创新是提高海洋实力的战略支撑,是海洋强国建设的核心任务。”任平告诉科技日报记者,“十三五”是落实建设海洋强国重大部署,实施创新驱动发展战略的关键时期,《规划》在深入分析世界海洋科技发展新趋势的基础上,查找制约我国海洋科技创新的主要因素,在若干领域布局基础研究和应用技术研究,进一步建设完善国家海洋科技创新体系,提升我国海洋科技创新能力。/pp  strong“十三五”有望实现万米下潜/strong/pp  海洋强国战略的实现依赖于深海关键技术与装备能力的提升,而由于高压、低温、高温等极端环境条件的限制,深海技术与装备一直是国际海洋工程技术研究的难点和最前沿,也是制约我国实施深海战略的关键技术瓶颈。/pp  任平告诉记者,深海潜水器是发展深海技术的引擎和集成平台,也是开展深海科学研究、资源开发的重要支撑,相关技术的进步将促进深海装备配套技术和新兴产业发展。/pp  开展潜水器谱系化工程,这是《规划》提出的重要目标。“十三五”,我国将通过《深海技术与装备》专项的实施,形成3—5个国际前沿优势技术方向、10个以上核心装备系列产品,满足我国在深海领域的重大需求、为形成我国自主的深海产业提供技术和人才支撑。/pp  具体来说,包括开展深海空间站研制 全海深(最大工作深度11000米)潜水器研制及深海前沿关键技术研究,争取在“十三五”实现万米下潜 深海通用配套技术及1000—7000米级潜水器作业及应用能力示范 深远海核动力平台关键技术研发。/pp  科技部相关负责人介绍,“十三五”我国将形成深海运载、探测装备谱系化和配套能力,提升深海作业支持能力以及深水油气和矿产资源开发方面的自主技术能力,最终目的是希望通过技术装备研发,带动整个国家装备制造能力的进步。/pp  strong形成可燃冰开采试验能力/strong/pp  “海洋高技术已成为国家竞争力的重要标志。”任平说,本世纪以来,在国家连续3个五年计划的支持下,我国的海洋科学和技术取得了巨大的进步,然而,在日趋激烈的海洋资源的争夺中,我国海洋资源开发能力亟待提高,特别是深海资源开发能力。/pp  比如,在海洋油气开发方面,我国仍以300米以浅的海洋油气开发为主,尚未系统掌握深水油气勘探开发技术,大量深水油气勘探开发核心技术与设备不得不依赖进口,核心技术不足已成为我国进军海外深水油气的重要瓶颈。在南极磷虾资源调查、捕捞、深度加工等诸多技术方面,我国与挪威、日本等国仍有至少20—30年的差距。目前国际海底矿产资源活动重点逐步由资源勘探向开发过渡,而我国尚不具备海底资源规模化开采技术。此外,生物基因资源利用、生物多样性保护、公海保护区建设等与资源有关的热点问题都需要有力的科技支撑。/pp  为此,《规划》提出实施深水能源、矿产资源精细勘探与试采技术工程示范,实现核心技术和装备国产化,全面提升海洋资源自主开发能力,为海洋强国建设提供支撑。/pp  比如,开展海洋油气工程新概念、新技术研究,开发深水油气勘探核心技术和工程装备,结合“大型油气田及煤层气开发”重大专项,形成1500米到3000米深水油气资源自主开发能力 开展海洋天然气水合物成藏、成矿机理以及安全开采等基础问题研究,开发精确勘探和钻采试验技术与装备,形成海底天然气水合物(又称可燃冰)开采试验能力 开展大洋矿产成矿机理与分布规律等科学问题研究,开发高效勘探核心技术研究及深海采矿系统设计,研制集矿与输送装备,完成1000米海深集矿、输送等技术海上试验。/pp  strong实现大型深海探测装备共享/strong/pp  该人士认为,《规划》一大亮点是,提出重点建设国家重大基础设施和海洋技术创新平台,优化海洋科技创新基地布局。/pp  如今我国深海探测与作业技术实现重大进展,在深海耐压舱、深海浮力材料、深海推进器、深海液压控制、深海通信与定位技术、深海机械手等方面均取得了突破,取得了“蛟龙”号载人潜水器、“海马”号4500米级遥控潜水器、“海燕”号深海滑翔机等一批重大成果。预计到“十三五”末,我国将是国际上拥有最多大深度载人潜水器的国家。/pp  在上述人士看来,这给管理者提出的新命题是如何通过共享机制实现资源最优化及高效应用,实现大型深海探测装备共享。/pp  《规划》同时提出,要建立资源共享的机制,建立海洋科学观测数据、海洋微生物菌种/基因等资源的共享制度,推动科学观测、技术研发、产业培育、海洋管理等环节的相互融合,建立强有力海洋科技任务的一体化实施体系,建立与中央财政科技计划管理改革方案相适应、与海洋事业发展的重大工程紧密结合的协同创新机制,提高科研产出效率。/pp  该人士表示,与陆地相比,海洋相关数据获取更难、成本更高,正因为如此,共享才显得更为必要。“比如美国的海洋科技创新之所以领先,其中很重要的一点是建立了有效的共享机制。”/p
  • 如海光电┠拉曼光谱法为药物晶型的鉴别“添柴”助力
    了解固体药物的晶型有多重要?简单回答,合适的药物晶型能够提高药物的生物活性、API的热力学稳定性、制剂的稳定性,且利于制剂成型,故其重要性,不言而喻。近年来,固体药物晶型专利授权门槛的提高,也能看出国家知识产权局对于药物晶型领域新颖性、创新性研发越来越重视,所以如何才能搞明白在研药物的晶型呢?下面小编列出了目前检测固体药物晶型的常用方法,一起来看看吧。检测方法原理优点缺点XRD通过X射线衍射分析晶体结构能精确计算晶体间距无定型结构难以用XRD进行评估DSC通过晶体的吸热/放热反应分析晶体的稳定性和熔点能观察晶体的属性无法定义晶体的结构红外吸收光谱利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析。能提供丰富的结构信息研磨可能会导致药物晶型的改变Raman通过分析受激光辐射产生的散射光来分析化学结构样品制备简单,没有特殊要求难以通过Raman分析晶体的jue对结构近几年,由于拉曼光谱指纹图谱的特性,利用拉曼光谱法来识别固体药物不同晶型的研究和应用层出不穷。近日,我们利用如海光电的高性能便携式拉曼光谱仪Raman11510成功地区分了包括谷氨酸、氯霉素、阿立哌唑在内的固体药物的不同晶型,充分展示了拉曼光谱法在鉴别不同药物晶型应用场景中的发展前景。Raman11510Raman11510是一款具备专业水平的便携式拉曼光谱检测系统,内置高性能红外增强型光纤光谱仪,提高了800nm的近红外波段的信号灵敏度,使得785 nm拉曼光谱的信号得到显著增强。在面对需要高灵敏度的研究场景,如晶型鉴别、蛋白质研究时,能够捕获到细微的拉曼信号。不同晶型的固体药物仅仅有晶型上的区别,而物质组成没有区别,其差异非常小,但我们使用Raman11510便携式拉曼光谱仪的检测结果表明,这种细微的差异在拉曼光谱的“火眼金睛”下还是无可遁形。不同晶型固体药物的拉曼谱图如下图所示,在谱图中我们标出了较为显著的光谱差异部分。图1:谷氨酸α晶型和β晶型的拉曼光谱图图2:氯霉素A、B两种晶型的拉曼光谱图图 3:阿立哌唑A、B、D三种晶型的拉曼光谱图2019年11月至2019年12月期间我们进行了多次药物晶型拉曼光谱的测定的实验。实验数据表明,谷氨酸、氯霉素、阿立哌唑不同晶型的单晶在每次测定所得拉曼光谱图中的主要散射峰的形状、位置、强度及其差别均明显可辨。由此也说明了拉曼光谱法具有良好的准确性、重现性和耐用性,从而可以为原料药成品的晶型分析,结晶过程中离线与在线原位监测控制等过程分析技术的建模提供依据。随着拉曼光谱法在药物分析研究中的不断深入,可以说目前在药物分析领域,拉曼光谱技术是一项未来极具发展潜力的药物分析方法。拉曼光谱法最早被美国药典(USP)收载为通用分析方法,随后又被《欧洲药典》和《英国药典》等收载为药物晶型检测方法。值得关注的是,2010年版的《中国药典》将拉曼光谱法作为指导原则收载,2015年版修订为理化分析通则方法,2020版又再次对拉曼光谱法部分进行修订,这无疑会大大推动拉曼光谱法在药品全生命过程中的应用发展。国家药典委员会官网截图:药典摘文:现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。拉曼光谱既适合于化学鉴别和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制,例如:化学分析:原料药活性成分,辅料的鉴别和定量;物理分析:固态(如多晶和水合物)和晶型的鉴别和量;过程分析:生物和化学反应,合成、结晶、制粒、混合、干燥、冻干、压片、装填胶囊和包衣。在《中国药典》2020修订版中介绍了拉曼光谱的很多优势,而手持式拉曼光谱仪能更好的诠释这些优势:如海光电的蓝牙手持式拉曼光谱仪将光谱仪器、采集分析软件、光谱数据管控三个核心功能有机结合,实现了设备管理、用户管理以及数据管理分层级管理,为现场检测提供了方便、有效的工具。《中国药典》zui新修订版中还增加了低波数包括太赫兹光区的拉曼光谱对于鉴定、表征药品有重要意义的表述,如海光电的低波数拉曼光谱仪EVA3000-LW能够检测到66—200cm-1波数范围内显著的拉曼光谱,在药物分析和晶型鉴别领域有巨大的应用潜力。相信未来拉曼光谱定能成为制药行业中药物研发与生产过程中最有力的工具之一!
  • ​质谱技术助力我国科学家在月壤中首次发现分子水!
    从中国科学院物理研究所获悉,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员陈小龙、副研究员金士锋、博士研究生郝木难等,联合北京科技大学副教授郭中楠、天津大学工程师殷博昊、中国科学院青海盐湖研究所研究员马云麒、郑州大学工程师邓丽君等,在嫦娥五号带回的月球样本中,发现了月球上一种富含水分子和铵的未知矿物晶体——ULM-1。这标志着科学家首次在月壤中发现了分子水,揭示了水分子和铵在月球上的真实存在形式。该研究成果近日在学术期刊《自然-天文学》(Nature Astronomy)在线发表。月球上是否存在水,对于月球演化研究和资源开发至关重要。对1969年至1972年采集的阿波罗样品的研究表明,月壤中未发现任何含水矿物。此后,月球不含水成为月球科学的基本假设,这对认识月球火山演化、月地起源等问题产生了重要影响。1994年,研究人员通过克莱门汀探测器对月球两极进行观测,提出极区永久阴影区的月壤中可能存在水冰。2009年,月船一号搭载的月球矿物绘图光谱仪发现,月球表面存在太阳风导致的羟基和/或水分子信号。同年,月球观测和传感卫星以2.5公里/秒的速度撞击了月球永久阴影区,而对撞击尘埃的遥感测量显示了水的信号。近年来,遥感数据表明月球光照区有水分子存在的迹象。针对当年采集的阿波罗月球样品,科学家运用高灵敏度的表征技术,在部分玻璃和矿物中发现了百万分之一量级的“水”(H+、OH-或H2O),但没有水分子存在的确凿证据。富含水分子和铵的未知矿物晶体——ULM-1和成分组成我国嫦娥5号采集的月壤样品属于最年轻的玄武岩,是迄今为止纬度最高的月球样品,为月球水的研究提供了新机遇。我国科研人员开展的这项研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为(NH4,K,Cs,Rb)MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。ULM-1是如何被发现的?中国科学院物理研究所/北京凝聚态物理国家研究中心副研究员金士锋说,科研人员在1.5克细如尘埃的月壤中筛选了数千个晶体颗粒,绝大多数是已知矿物。ULM-1晶粒大小和月壤里大部分颗粒大小差不多,直径仅有零点几毫米。科研人员在挑选样品时发现, ULM-1质地非常软且外观透明,猜测其中含有水。研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为NH4MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。“我们认为,ULM-1是月火山喷发的产物,其中的水是月球本身的水。”金士锋说,目前认为月球“水”的来源主要有几种可能:一是太阳风粒子与月表物质相互作用产生的羟基物质;二是撞击月球的彗星或陨石带来的水和含羟基物质;三是月球原生水。科研人员推测,几十亿年前,月球火山喷发时,喷出的水蒸气、氨、氯化氢等气体和月壤反应,形成了ULM-1。为了确保这一发现的准确性,该研究进行了严格的化学和氯同位素分析。纳米二次离子质谱数据表明,该矿物的Cl同位素组成和地球矿物显著不同,与月球上的矿物相符。研究人员对该矿物化学成分和形成条件进行分析,进一步排除了地球污染或火箭尾气作为这种水合物的来源。该六水矿物的存在为月球火山气体的组成给出了重要的约束。热力学分析显示,当时月球火山气体中水的含量下限与目前地球中最为干燥的伦盖火山相当。这揭示了复杂的月球火山脱气历史,对探讨月球的演化过程具有重要意义。这种水合矿物的发现揭示了月球上水分子可能存在的一种形式——水合盐。与易挥发的水冰不同,这种水合物在月球高维度地区(嫦娥5号采样点)非常稳定。这意味着,即使在广阔的月球阳光照射区,也可能存在这种稳定的水合盐。这为未来月球资源的开发和利用提供了新的可能性。
  • 记海洋三所科学仪器共享平台建设
    推动科技资源向社会开放共享,是我国近年来的重要科技政策之一。2012年,自然资源部第三海洋研究所筹建科学仪器共享平台(以下简称共享平台),旨在打破大型仪器设备的部门化、单位化、个人化现象,提高大型仪器设备使用效率,充分发挥其科研价值和社会价值。  此前,大型仪器设备普遍存在重复购置、管理分散、使用封闭、利用率不高等情况。同时,专职实验技术人员配备不足,使仪器设备功能无法充分开发,导致“高档低用”现象。  共享平台自成立以来,建立了基于物联网的大型仪器设备监控管理与服务网络,实现了科学仪器资源的有效集中和开放共享,共享仪器管理系统已成为海洋三所科研仪器资源信息发布与展示的权威窗口,也是用户查询和共享仪器委托测试服务的有效渠道。  目前,共享平台已成为以稳定同位素检测、放射核素监测、海洋油气及水合物化探、环境生态样品分析为显著特色的综合性仪器共享平台。通过组建专业化的分析技术团队,有效提高了仪器的使用率和共享率,使共享仪器在国家重大科技支撑计划、国家科技攻关计划、近海海洋综合调查、南北极考查、大洋考察等科研项目中发挥作用,有力地保障了科研项目的顺利实施,并服务地方经济、支撑高技术产业发展。  至此,海洋三所逐步实现了科学仪器有效集中、开放共享,助力科研的高效管理,实现了科学仪器和科研资源从“相加”到“相乘”的进阶发展。  强化归类统筹,主攻特色优势  面对数额巨大、重复购置和分散放置的大型仪器,共享平台归类统筹管理。依照应用领域、功能原理和学科优势,将247台/套共享仪器,划分为电子光学仪器、质谱仪器、色谱仪器、核辐射探测、X射线仪器、制药工艺仪器等18大类。对于数量较多和具有学科优势的仪器,再按仪器功能和应用领域化分细类。  为切实促进平台整体技术水平提升,满足一线科研人员实际检测需求,共享平台在充分考量自身优势方向的基础上,确立了稳定同位素分析测试、海洋油气及水合物化探分析测试、有机地球化学分析测试、环境地质生态分析测试等多个重点发展方向,实现以点带面,重点突破的发展模式。  在稳定同位素分析测试方向,共享平台开发了固体样品微量氮和硫同位素,水中硝酸盐、亚硝酸盐、铵盐氮氧同位素,无机盐(磷酸银和硫酸盐等)氧同位素等多种分析测试方法,测试和仪器改装技术处于国内领先地位。共享平台与国内多家科研单位和高校合作,客户遍布82个城市、172家企事业单位,分析技术和服务能力得到广泛认可。  在海洋油气及水合物化探分析测试方向,共享平台承担了青岛海洋地质研究所、广州海洋地质调查局、中石化无锡石油地质所关于东海特征区域甲烷勘探、先导区沉积物同位素分析、南海重点区水合物资源调查等项目,完成了约10个航次、上万份水合物区沉积物及孔隙水的分析测试工作。  在有机地球化学分析测试方向,共享平台通过增配有机测试人员,建立分析检测方法,开放共享相关色谱质谱仪器。截至目前,年均使用机时超过3000小时,测试样品超过10000件,在海洋三所海洋活性化合物资源挖掘、海洋天然产物标准物质研制、海洋环境有机污染物及生物标志物监测等方面发挥了重要作用。同时,共享平台结合市场需求,为多个高新企业发展提供有机分析测试服务,产生了良好的社会效益。  环境地质生态分析测试方向,除承接大量常规性调查类分析测试任务外,共享平台在元素原位无损微区分布特征、海水稀土富集检测技术等业内难点或热点技术领域实现突破。例如,通过能谱检测技术在铁锰结核、富钴结壳和多金属热液硫化物等多种矿产中的应用,进行高分辨的多元素空间分布检测、可视化展示,对比分析不同元素在矿物的空间分布,对了解矿物成因、品位以及评估其经济价值有重要指示作用。  加强制度建设,明确奖惩机制  共享平台作为海洋三所技术支撑部门,独立运行管理,全面负责海洋三所大型科学仪器的集约化管理。  购置管理方面,共享平台协助海洋三所资产处及所采购审核小组,按照“大型仪器设备申购审查管理流程”和“采购审核小组审核规则”对大型仪器的采购进行审核评议,规范仪器设备采购流程,从源头上避免仪器重复购置。新购仪器验收后,按照申购论证时制定的共享方案,及时在所级共享平台网站进行信息公开,将符合条件的仪器推送到国家网络管理平台和省市各级仪器平台进行开放共享。共享后的仪器设备,根据海洋三所《大型科研仪器设备开放共享管理办法》进行运行管理和考核。  共享平台通过一系列统筹管理及激励制度的执行,切实盘活资源。对于仪器共享做出突出成绩的个人和部门,给予共享运行经费补助;同时在海洋三所职工年度考核评价办法中,将仪器共享工作与年度考核结果和追加绩效额度分配挂钩。对于不履行共享义务或共享情况差的个人和部门,根据情节严重性,核减部门修缮购置资金或限制购置仪器设备。  加强人才培养,建设学科梯队  大型仪器设备通常是集物理、化学、电子信息、光学等于一体的综合性高科技产品,设计精密、操作复杂,要求实验技术人员具备扎实的理论知识、良好实操技能和丰富应用经验。海洋三所建立了由27人组成的大型仪器操作管理队伍,是一支结构合理、高效精干的学科梯队。  仪器管理员和专业测试人员是保证实验室正常运转的关键因素。共享平台定期组织学术报告、专项技术交流与培训,鼓励实验人员对负责的仪器设备和所从事的学科领域进行深入研究,不断积累经验,提高专业知识水平。目前已组织技术培训30余批次,总培训人数超过1000人次。  目前,一套成熟的人才优化制度已经形成。共享平台以自主培训、好中选优为主,适时、适当引进成熟人才,设立实验人员专业能力晋级方向,从系统掌握相关理论知识、独立完成测试工作到仪器方法的优化开发,新测试理论的创新等环节,落实人才培养。注重对研究生和专业技术人才的培养,鼓励研究生积极参加测试方法研究,培养能独当一面的应用型复合人才。共享平台作为厦门海洋职业技术学院毕业生实习基地,对毕业生进行分析测试技能的公益系统培训,为社会培养仪器分析专业技术人才贡献力量。  总结共享方法,形成特色经验  多年来,共享平台形成了一套提升共享方法和成果的特色经验。  ——及时了解科研需要,加强新测试技术开发,有效促进科研业务发展。  共享平台建设应秉持“技术优先,服务科研”导向,根据科研人员的实际需求确定发展方向,加强重点领域的新测试方法开发。目前,共享平台致力于全流程的把控,从提供上游样品前处理方案的优化,到下游数据的分析处理乃至按科研人员要求进行图形化展示,一步到位实现了从样品到可直接应用测试结果的过程。  ——归纳总结测试方法,及时发表相关的技术成果。稳定同位素分析测试方向经过多年积累,建立了碳、氮、氢、氧、硫同位素等多种在国内外技术领先的检测方案,相关成果形成论文及专利共十余篇(项),充分表明共享平台在该测试方向处于国内技术领先地位。支持主、微量元素分析及有机分析等测试方向开发。仅2020年,共整理各测试方向方法论文和专利共20篇(项)。  ——建立国内行业标准方法和标准物质的研制。共享平台积极参与国内行业标准方法的制定和标样的定值工作,于2021年发布地方标准《水中硝酸盐氮同位素测定化学转化法》(DB35/T 20062021),主要适用于地表水、地下水和海水中硝酸盐氮同位素组成的测定。该标准对于生态环境损害鉴定评估和污染溯源方面有重要价值。  ——升级改造现有仪器,研发制造更好仪器。共享平台致力于仪器设备的升级改造,以提升检测能力范围,并为未来国产设备或部件替代进口设备打下基础做好准备。设备升级改造主要集中在平台优势项目稳定同位素技术相关设备,主要包括:通过设备改造提高设备检出限,提升检测能力,以解决业内检测难点问题;提升设备耐用性,或减少检测过程废气等因素对环境的危害,确保安全生产等。  ——定期举办培训,交流前沿进展。共享平台积极参与和推动行业内技术交流,定期牵头举办业内人员培训及学术研讨活动,促进国内相关行业科研水平的整体提高。先后举办了全国稳定同位素质谱新技术开发与应用暨南极水样定值交流研讨会、天然气水合物地球化学探测与分析技术培训研讨班等,交流科研前沿领域最新发展方向和研究进展。  ——加强国际合作,引进设备技术。近年来,海洋三所与新西兰政府下设专业农业检测机构林肯研究中心签署合作协议,初步确定了双方在科研、技术领域的合作方向;全面配合国际原子能机构(IAEA)主导的稳定同位素技术开发和新的行业标准的建立,筹备成立IAEA放射性和稳定同位素技术协作中心;与国际知名仪器公司合作,组建培训实验室,引进最新的设备和测试技术… …   优化质量管理,发挥示范作用  今后,共享平台将持续进行质量管理体系优化和信息化网络平台建设,在仪器共享方面继续发挥先锋带头示范作用。坚持“技术引领,质量为先,服务至上,合作共赢”理念,在现有服务全国200多家科研、高校院所的基础上,争取三年内实现测试用户数量增加一倍。  通过海洋三所总体规划,建立翔安基地测试中心,着眼引领国家海洋实验测试方向;立足资源、环境和生物领域对分析测试的需求;服务行业管理和标准制定;提高测试服务能力,加强国际合作,关注测定方法的开发和仪器设备的研制工作。争取5~10年将海洋三所翔安基地测试中心建成海洋领域国内领先和国际知名的仪器共享平台。  通过互相学习和共享经验传递,形成自然资源部内部良性循环,各单位充分发挥自身学科优势,建立别具特色的仪器共享平台,整体提升测试技术的学科化、专业化和高效化。积极响应全国各科学仪器共享平台的建设,实现仪器资源的全国共用共享,让其发挥更大科研价值和社会经济价值。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制