当前位置: 仪器信息网 > 行业主题 > >

没食子酸单水合物标准品

仪器信息网没食子酸单水合物标准品专题为您提供2024年最新没食子酸单水合物标准品价格报价、厂家品牌的相关信息, 包括没食子酸单水合物标准品参数、型号等,不管是国产,还是进口品牌的没食子酸单水合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合没食子酸单水合物标准品相关的耗材配件、试剂标物,还有没食子酸单水合物标准品相关的最新资讯、资料,以及没食子酸单水合物标准品相关的解决方案。

没食子酸单水合物标准品相关的资讯

  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style="text-align: center "strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="text-align: center "国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp  附件:批准建设的企业国家重点实验室名单/pp style="text-align: right "科 技 部/pp  附件/pp style="text-align: center "strong批准建设的企业国家重点实验室名单/strong/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg"//pp /p
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。  在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。  合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》(GB 1903.65-2024)等7项食品营养强化剂标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。(可点击相关话题:47项食品国家标准解读)本次发布的《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》等7项食品营养强化剂质量规格标准包括2项修订标准和5项制定标准,规定了各类食品营养强化剂的范围(包括生产工艺等)、化学名称、分子式、结构式、相对分子质量、感官要求、理化指标以及配套的检验方法等内容。标准名称检测方法相关仪器GB 1903.65-2024  食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)含量(以 C20H32O2甘油三酯计),w/% ;检验方法采用GB5009.168 食品安全国家标准食品中脂肪酸的测定。匀浆机、气相色谱仪、恒温水浴锅、电子天平、、离心机、旋转蒸发仪。GB 1903.66-2024  食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法)GB 1903.67-2024  食品安全国家标准 食品营养强化剂 植物甲萘醌(维生素K1)含量以总植物甲萘醌和顺式植物甲萘醌计;检测方法采用该标准附录A3方法。电子天平、 液相色谱仪。GB 1903.68-2024  食品安全国家标准 食品营养强化剂 钼酸铵含量以(NH4)6Mo7O244H2O 计],w/%;检测方法采用GB/T657 化学试剂四水合钼酸铵(钼酸铵)中5.3方法。电子天平、烘箱。GB 1903.69-2024  食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷含量以5'-单磷酸尿苷(以干基计),w/%;检测方法采用该标准附录 A 中 A.4方法。电子天平、 紫外分光光度计。液相色谱仪、pH计。GB 1903.70-2024  食品安全国家标准 食品营养强化剂 电解铁含量以铁(Fe),w/%计;检测方法采用该标准附录 A 中 A.4方法。电子天平、 恒温水浴锅GB 1903.71-2024  食品安全国家标准 食品营养强化剂 全反式视黄醇含量以全反式视黄醇计。检测方法采用该标准附录中 A.4方法。电子天平、 液相色谱仪。上述标准均为与《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)配套的食品营养强化剂质量规格标准。标准发布能够更好地适应我国食品营养强化剂生产和使用需求,促进相关行业的健康发展。点击图片获取更多标准解读 》》》》》》
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    centerimg style="width: 285px height: 300px " title="" alt="" src="http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height="300" hspace="0" border="0" vspace="0" width="285"//centerp  钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。/pcenterimg style="width: 402px height: 300px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height="300" hspace="0" border="0" vspace="0" width="402"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄/pp  5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。/pp  水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。/pp  中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。/pp  “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。/pp  经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。/pp  “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。/pp strong 1.研发显微镜核心部件和方法,达到原子水平观测的极限/strong/pp  这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。”/pp  为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。/pp  第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。/pp  科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。”/pp  为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。”/pp  strong2.离子水合物的幻数效应有什么用/strong/pp  江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。/pp  结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。/pp  江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。”/pp  有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。/pp  江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。”/pp  王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。/pp strong 3.水合离子变得可以操控,能为我们带来什么?/strong/pp  据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/pp  王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。”/pp  比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。”/pp  另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。/pcenterimg style="width: 450px height: 292px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height="292" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄/pcenterimg style="width: 450px height: 338px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄/pcenterimg alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height="600" width="439"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄/p
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物Oxalic acid dihydrate6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物Bis[3-(triethoxysilyl)propyl] tetrasulfide40372-72-3D-薄荷醇D-Menthol15356-60-2L-薄荷醇L-Menthol2216-51-51-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-辛醇1-Octanol111-87-55-甲基呋喃醛5-Methylfurfural620-02-0N-环己基甲酰胺N-Cyclohexylformamide766-93-84-甲基-2-戊醇4-Methyl-2-pentanol108-11-2N,N-二甲基-对苯二胺N,N-Dimethyl-p-phenylenediamine99-98-95,6,7,8-四氢-1-萘胺5,6,7,8-Tetrahydro-1-naphthylamine2217-41-6肼二盐酸盐Hydrazine dihydrochloride5341-61-7硫氰酸钾Potassium thiocyanate333-20-0二甲基硫醚Dimethyl sulfide75-18-3聚苯醚Polyphenyl ether31533-76-3叔丁基甲基醚 气相色谱级Tert-Butyl methyl ether1634-04-4七氟丁酸Heptafluorobutyric acid375-22-4甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-53,4-二羟基苄胺氢溴酸盐3,4-Dihydroxybenzylamine hydrobromide16290-26-9N,N-二(羟基乙基)椰油酰胺Coconut diethanolamide(CDEA)68603-42-9/61791-31-9甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-5异冰片基丙烯酸酯Isobornyl acrylate5888-33-5N,N' -二苯基硫脲1,3-Diphenyl-2-thiourea102-08-9聚合氯化铝Aluminum chlorohydrate1327-41-9四丁基氢氧化铵10%溶液Tetrabutylammonium hydroxide solution2052-49-5四丁基氢氧化铵25%溶液Tetrabutylammonium hydroxide solution2052-49-5L-苯基丙氨酸L-Phenylalanine63-91-2无水硫酸铈Cerium(IV) sulfate13590-82-4硫酸铈铵四水合物Ammonium cerium(Ⅳ) sulfate tetrahydrate18923-36-9脂蛋白脂肪酶Lipoprotein Lipase9004/2/8乙二胺≥99.5%标准品Ethylenediamine107-15-3壬二酸Azelaic acid (Nonanedioic acid)123-99-9N,N-二甲基-1-萘胺N,N-Dimethyl-1-naphthylamine86-56-6双(三氟甲烷)磺酰亚胺锂盐Bis(trifluoromethane)sulfonimide lithium salt90076-65-6
  • 2013年3月1日起实施的食品及相关标准汇总
    2013年3月1日起实施的食品及相关标准汇总,根据国家标准委、工信化部公告筛选整理完成,供参考。序号标准号标准名称代替标准号实施日期1GB/T 28803-2012消费品安全风险管理导则 2013-3-12HG/T 4320-2012无机化工产品 气相色谱分析方法通用规则 2013-3-13HG/T 3519-2012工业循环冷却水中苯骈三氮唑测定HG/T 3519-20032013-3-14HG/T 3530-2012工业循环冷却水污垢和腐蚀产物试样的采取和制备HG/T 3530-20032013-3-15HG/T 3539-2012工业循环冷却水中铁含量的测定 邻菲啰啉分光光度法HG/T 3539-20032013-3-16HG/T 4322-2012工业循环冷却水污垢和腐蚀产物中硅酸盐的测定 2013-3-17HG/T 4323-2012循环冷却水中军团菌的检测与计数 2013-3-18HG/T 4325-2012再生水中钙、镁含量的测定 原子吸收光谱法 2013-3-19HG/T 4326-2012再生水中镍、铜、锌、镉、铅含量的测定 原子吸收光谱法 2013-3-110HG/T 4327-2012再生水中总铁含量的测 2013-3-111HG/T 4328-2012水处理剂 氨基三亚甲基膦酸钠盐 2013-3-112HG/T 4329-2012水处理剂 乙二胺四亚甲基膦酸五钠 2013-3-113HG/T 4330-2012水处理剂 二亚乙基三胺五亚甲基膦酸钠盐 2013-3-114HG/T 4331-2012水处理剂混凝性能的评价方法 2013-3-115HG/T 4367-2012化学试剂 苯酚 2013-3-116HG/T 3449-2012化学试剂 甲基红HG/T 3449-19992013-3-117HG/T 3461-2012化学试剂 一水合α-乳糖(α-乳糖)HG/T 3461-19992013-3-118HG/T 3453-2012化学试剂 一水合草酸铵(草酸铵)HG/T 3453-19992013-3-119HG/T 3466-2012化学试剂 磷酸二氢铵HG/T 3466-19992013-3-120HG/T 3465-2012化学试剂 磷酸氢二铵HG/T 3465-19992013-3-121QB/T 2571-2012饮料混合机QB/T 2571-20022013-3-122QB/T 4356-2012黄酒中游离氨基酸的测定 高效液相色谱法 2013-3-123QB/T 4357-2012营养强化剂 5′-胞苷酸 2013-3-124QB/T 4358-2012营养强化剂 5′-腺苷酸 2013-3-1
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 国家标准化管理委员会关于开展2023年《食品添加剂 三聚甘油单硬脂酸酯》等强制性国家标准复审工作的通知
    国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、住房城乡建设部、农业农村部、国家卫生健康委、应急管理部、国家林草局、国家疾控局、国家矿山安监局、国家药监局办公厅(办公室、综合司):为规范强制性国家标准管理,有序推进强制性国家标准复审工作,推动标准复审常态化和制度化,依据《标准化法》和《强制性国家标准管理办法》(以下简称《管理办法》)有关要求,开展2023年强制性国家标准复审工作,有关事项通知如下:一、复审标准范围截至2023年底,实施满5年或距上次复审满5年的强制性国家标准,纳入本次复审范围,已提出修订项目或已列入修订计划的除外,拟开展复审的标准清单见附件1。未列入附件1中的标准也可根据需要纳入复审范围。二、标准复审内容根据《标准化法》及《管理办法》相关规定,从标准的适用性、规范性、时效性和协调性等方面进行复审,复审内容主要包括以下方面:(一)标准的适用性。标准涉及的产品、过程或服务是否已被淘汰,已被淘汰的,应给出“废止”的结论。标准的适用范围是否详细具体,能够覆盖新产品、新工艺、新技术或新服务,适用范围不够具体或不能覆盖新情况的,应给出“修订”的结论。标准规定的内容是否符合强制性标准的制定范围,属于超范围制定的,应给出“修订”(修订转化为推荐性国家标准)或“废止”的结论。(二)标准的规范性。标准技术内容是否可验证、可操作,若技术内容存在不可验证、不可操作的情况,或者标准中未规定证实方法,应给出“修订”的结论。标准是否为全文强制,若标准为条文强制,应给出“修订”的结论。(三)标准的时效性。与产业发展实际水平和健康、安全、环保最新需求相比,标准技术指标及要求是否需要提升,若因标准的指标缺失或要求过低可能导致安全事故或存在较大安全风险,应给出“修订”的结论。与国际国外最新技术法规或标准相比,是否与国际标准或法规主要技术指标一致,若不一致,原则上应给出“修订”的结论。标准的规范性引用文件是否现行有效,若引用的标准已废止或注日期引用的标准已更新,应给出“修订”的结论。(四)标准的协调性。如出现标准与现行相关法律法规、部门规章、其他强制性国家标准或国家产业政策不协调、不一致的情况,应给出“修订”的结论。三、标准复审工作安排标准复审工作分三个阶段开展:(一)第一阶段:工作组复审阶段。组织起草部门可成立复审工作组或委托有关全国专业标准化技术委员会成立复审工作组,开展强制性国家标准复审工作。复审工作组针对附件1中的具体标准,依据标准复审内容,通过问卷调查、标准实施情况统计分析、企业调研、专家论证等方式,开展标准复审,形成每一项标准的《强制性国家标准复审工作报告》(附件2)。(二)第二阶段:专家论证阶段。组织起草部门组织召开专家论证会,对复审工作组形成的《强制性国家标准复审工作报告》进行论证,给出最终的复审结论。(三)第三阶段:材料报送阶段。组织起草部门于2023年11月30日前,将《强制性国家标准复审结论汇总表》(附件3)和各项标准的《强制性国家标准复审工作报告》报送国家标准委。同时,在强制性国家标准制修订子系统中填报各标准的复审信息和报告。四、复审结论的处理国家标准委对组织起草部门报送的复审结论审核后,按照复审结论类别进行分类处理,具体如下:1. 复审结论为“废止”的标准,将通过全国标准信息公共服务平台向社会公开征求意见,并以书面形式征求该强制性国家标准的实施监督管理部门意见。无重大分歧意见或者经协调一致的,我委将以公告形式废止该强制性国家标准。2. 复审结论为“修订”的标准,组织起草部门应在报送复审结论时同步提出修订项目。国家标准委将按照强制性国家标准的立项程序进行办理。3. 复审结论为“继续有效”的标准,将通过全国标准信息公共服务平台向社会告知标准的复审时间。联系人:市场监管总局标准技术司 付允 陈如意联系方式:010-82262614,010-82262616邮箱:chenruyi@samr.gov.cn国家标准技术审评中心 叶子青联系方式:010-65007855邮箱:yezq@ncse.ac.cn附件:1. 2023年复审标准清单2. 强制性国家标准复审工作报告3. 强制性国家标准复审结论汇总表国家标准化管理委员会2023年8月3日(此件公开发布)附件下载国标委发〔2023〕40号-2023年强标复审通知-附件.doc相关标准如下:序号标准编号标准名称主管部门1GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯国家卫生健康委2GB 14891.1-1997辐照熟畜禽肉类卫生标准国家卫生健康委3GB 14891.3-1997辐照干果果脯类卫生标准国家卫生健康委4GB 14891.4-1997辐照香辛料类卫生标准国家卫生健康委5GB 14891.5-1997辐照新鲜水果、蔬菜类卫生标准国家卫生健康委6GB 14891.7-1997辐照冷冻包装畜禽肉类卫生标准国家卫生健康委7GB 14891.8-1997辐照豆类、谷类及其制品卫生标准国家卫生健康委8GB 1986-2007食品添加剂 单、双硬脂酸甘油酯国家卫生健康委9GB 1253-2007工作基准试剂 氯化钠工业和信息化部10GB 1254-2007工作基准试剂 草酸钠工业和信息化部11GB 1257-2007工作基准试剂 邻苯二甲酸氢钾工业和信息化部12GB 12593-2007工作基准试剂 乙二胺四乙酸二钠工业和信息化部13GB 13735-2017聚乙烯吹塑农用地面覆盖薄膜工业和信息化部14GB 15346-2012化学试剂 包装及标志工业和信息化部15GB 19105-2003过氧乙酸包装要求工业和信息化部16GB 19107-2003次氯酸钠溶液包装要求工业和信息化部17GB 19109-2003次氯酸钙包装要求工业和信息化部18GB 21178-2007自反应物质和有机过氧化物分类程序工业和信息化部19GB 28670-2012制药机械(设备)实施药品生产质量管理规范的通则工业和信息化部20GB 21175-2007危险货物分类定级基本程序国家标准委21GB 28932-2012中小学校传染病预防控制工作管理规范国家疾控局22GB 15213-2016医用电子加速器 性能和试验方法国家药监局23GB 2024-2016针灸针国家药监局24GB 9706.14-1997医用电气设备 第二部分:X射线设备附属设备安全专用要求国家药监局25GB 9706.21-2003医用电气设备 第2部分:用于放射治疗与患者接触且具有电气连接辐射探测器的剂量计的安全专用要求国家药监局26GB 11767-2003茶树种苗农业农村部27GB 13078-2017饲料卫生标准农业农村部28GB 18133-2012马铃薯种薯农业农村部29GB 19169-2003黑木耳菌种农业农村部30GB 19170-2003香菇菌种农业农村部31GB 19171-2003双孢蘑菇菌种农业农村部32GB 19172-2003平菇菌种农业农村部33GB 20802-2017饲料添加剂 蛋氨酸铜络(螯)合物农业农村部34GB 21034-2017饲料添加剂 蛋氨酸羟基类似物钙盐农业农村部35GB 21694-2017饲料添加剂 蛋氨酸锌络(螯)合物农业农村部36GB 22489-2017饲料添加剂 蛋氨酸锰络(螯)合物农业农村部37GB 22548-2017饲料添加剂 磷酸二氢钙农业农村部38GB 22549-2017饲料添加剂 磷酸氢钙农业农村部39GB 23386-2017饲料添加剂 维生素A棕榈酸酯(粉)农业农村部40GB 29382-2012硝磺草酮原药农业农村部41GB 29384-2012乙酰甲胺磷原药农业农村部42GB 34456-2017饲料添加剂 磷酸二氢钠农业农村部43GB 34457-2017饲料添加剂 磷酸三钙农业农村部44GB 34458-2017饲料添加剂 磷酸氢二钾农业农村部45GB 34459-2017饲料添加剂 硫酸铜农业农村部46GB 34460-2017饲料添加剂 L-抗坏血酸钠农业农村部47GB 34461-2017饲料添加剂 L-肉碱农业农村部48GB 34462-2017饲料添加剂 氯化胆碱农业农村部49GB 34463-2017饲料添加剂 L-抗坏血酸钙农业农村部50GB 34464-2017饲料添加剂 二甲基嘧啶醇亚硫酸甲萘醌农业农村部51GB 34465-2017饲料添加剂 硫酸亚铁农业农村部52GB 34466-2017饲料添加剂 L-赖氨酸盐酸盐农业农村部53GB 34467-2017饲料添加剂 柠檬酸钙农业农村部54GB 34468-2017饲料添加剂 硫酸锰农业农村部55GB 34469-2017饲料添加剂 β-胡萝卜素(化学合成)农业农村部56GB 34470-2017饲料添加剂 磷酸二氢钾农业农村部57GB 6141-2008豆科草种子质量分级农业农村部58GB 7293-2017饲料添加剂 DL-α-生育酚乙酸酯(粉)农业农村部59GB 7294-2017饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3)农业农村部60GB 7298-2017饲料添加剂 维生素B6(盐酸吡哆醇)农业农村部61GB 7300-2017饲料添加剂 烟酸农业农村部62GB 7301-2017饲料添加剂 烟酰胺农业农村部63GB 9454-2017饲料添加剂 DL-α-生育酚乙酸酯农业农村部64GB 9840-2017饲料添加剂 维生素D3(微粒)农业农村部65GB 9847-2003苹果苗木农业农村部66GB 13458-2013合成氨工业水污染物排放标准生态环境部67GB 19430-2013柠檬酸工业水污染物排放标准生态环境部68GB 21523-2008杂环类农药工业水污染物排放标准生态环境部69GB 21903-2008发酵类制药工业水污染物排放标准生态环境部70GB 21904-2008化学合成类制药工业水污染物排放标准生态环境部71GB 21905-2008提取类制药工业水污染物排放标准生态环境部72GB 21906-2008中药类制药工业水污染物排放标准生态环境部73GB 21907-2008生物工程类制药工业水污染物排放标准生态环境部74GB 21908-2008混装制剂类制药工业水污染物排放标准生态环境部75GB 21909-2008制糖工业水污染物排放标准生态环境部76GB 3544-2008制浆造纸工业水污染物排放标准生态环境部
  • 青海“可燃冰”如何发现?意义媲美大庆油田
    可燃冰  近日,青藏高原发现“可燃冰”的消息备受各方关注。这种“冰与火”奇妙结合的新型能源,是如何被发现的?为何在海拔高、自然环境严酷的青藏高原得以发现?它的发现经历了怎样的艰辛和曲折?又将带给人们怎样的希望和梦想?记者对此进行了深入的采访。  能源危机下的“新希望”  2009年6月,在海拔4000多米的祁连山南缘,一簇火苗的燃烧,成为一个足以令亿万国人为之沸腾的消息:地质工作者在此成功钻获“可燃冰”样品,我国成为世界上第一个在中低纬度冻土区发现“可燃冰”的国家。  “可燃冰”,又叫“可燃水”、“气冰”、“固体瓦斯”,学名叫天然气水合物。它外表像冰,却遇火即燃,比人们平时使用的天然气更为纯净,使用方便、清洁无污染,是一种名副其实的绿色能源,全球公认的尚未开发的最大新型能源。  “可燃冰”在世界范围内分布广,资源量大。据科学家预测,“可燃冰”储量是现有天然气、煤炭、石油全球储量的两倍,是常规天然气的50倍。有科学家估计,海底“可燃冰”的储量够人类使用1000年。  据推算,目前已经发现的石油储备量还可用40年,天然气还可用70年,煤炭还可用190年,也正是如此,“后石油时代”用什么作为能源成了各国致力研究和勘探的问题。“可燃冰”的发现让陷入能源危机的人类看到了希望。  早在19世纪30年代,“可燃冰”即进入人类视野。1965年,苏联首次在西西伯利亚永久冻土带发现“可燃冰”矿藏,并引起多国科学家关注。率先开始勘测研究的是日本,如今,已拥有7口钻井,属于领先水平。美国则从2000年起将“可燃冰”作为政府项目,与各大学和私营公司合作,进行勘测和实地研究。据称到目前为止,美国政府已花费超过1500万美元。另外,加拿大、印度、韩国、挪威等国也纷纷开始投入勘探项目。  目前,世界上已经有30多个国家和地区开展“可燃冰”的研究勘探。我国于2002年同时启动海域和陆域“可燃冰”的研究和勘探,于2007年在南海发现了“可燃冰”。  据介绍,我国“可燃冰”的资源潜力为803.44亿吨油当量,仅占全球资源量的0.4%。接近于我国常规石油资源量,约是我国常规天然气的2倍。  “不放过任何一个地质信息”  事实上,“可燃冰”在我国陆域的“现身”可以追溯到40多年前,但由于种种原因,这种神奇能源在过去很长时间里与人们擦肩而过。  青海省木里地区地势高耸,群山连绵。这里海拔4100米左右,高寒缺氧、气候恶劣,然而却蕴藏着丰富的煤炭资源。据了解,有多家地勘单位自上世纪60年代以来在这一带冻土区从事勘查时,就多次发现不明气体,但均未做进一步研究。  据“可燃冰”项目负责人之一——中国煤炭地质总局青海煤炭地质105队队长、总工程师、教授级高工文怀军介绍,这一带“可燃冰”的发现最早可以追溯到2004年。这年11月,105队在这里进行煤炭勘查时,钻孔内开始涌出不明气体,点火燃烧,由于气体涌出量很大,影响到钻探施工,迫使这个钻孔因未见到可采煤层而报废。  但是地质人员并没有放过这一现象,那一瞬间,“可燃冰”这一名词在他们脑海中如灵光闪过。他们采集了这种气体进行分析,对涌气的孔段做了详实的记录,积累了可靠的原始地质资料。  地质工作者思考的是:这种气体和过去多次遇到的煤层气是否一样?抑或,它是一种新的尚不了解的物质?或者,它就是传说中的“可燃冰”?!他们期待着再次与这种神秘气体的相遇。  2006年5月,105队再次在这一地区进行煤炭勘查,又发现类似不明气体。地质人员细心观察发现,这种气体的涌出孔段不在煤层中,可以确定不是煤层气。那么它是什么呢?他们采样化验发现,这次发现气体的成分与前次大致接近。  之后,105队请中国地质科学院勘探技术研究所张永勤、中国科学院矿产资源研究所祝有海等权威专家就上述情况进行了交流、探讨,大家一致认为,该地区可能存在“可燃冰”。  2008年开始,105队与中国地质科学院资源所、勘探所共同合作开展《青藏高原冻土带天然气水合物调查评价》项目。11月5日,首次发现含天然气水合物岩心段,这一成果得到了国内外专家的学术认定。  在此基础上,国土资源部2009年又部署了一批钻探实验井,6月再次钻获“可燃冰”实物样品,经当今世界上最先进的激光拉曼光谱仪检测,显示出标准的“可燃冰”特征光谱曲线。此后施工中均发现“可燃冰”。  从2004年发现疑似“可燃冰”,到2006年基本确定“可燃冰”的存在,再通过2008—2009年的工作,经钻探取得样品,通过测试证实了在高海拔冻土区存在“可燃冰”的事实。  文怀军分析说:木里地区“可燃冰”是煤层气的水合物。其成矿机理大致是:煤层气向上溢散,而上面有冻土层的覆盖,在高压、低温的条件下二者形成“可燃冰”。它的成分除了甲烷,还有少量乙烷、丙烷等气体,是一种“新型可燃冰”,非常值得研究。  “可燃冰”在青海的发现,为我国增加了一个重要的新矿种,对我国战略能源意义重大。更有专家认为,“可燃冰”的发现可媲美当年发现大庆油田。  国土资源部总工程师张洪涛初略估算,我国陆域“可燃冰”远景资源量至少有350亿吨油当量,可供中国使用近90年,而青海省的储量约占其中的1/4。  克服高原极端天气条件  “在一定意义上,正是每一个地质工作人员在每一次的勘查中都坚持了‘对任何地质信息不放过’的认真工作态度,为‘可燃冰’发现奠定了基础。这一点来说,‘105队’木里项目组全体地质工作人员功不可没。”  文怀军感慨地说:“‘可燃冰’项目之所以能取得重大突破,不仅是各级领导、各个部门关心支持的结果,更是项目组成员及各协作单位团结拼搏、共同努力的结果,是集体智慧的结晶。”  自2003年以来,105队一直奋战在木里地区,克服了高寒缺氧、气候条件极端恶劣且装备落后、缺少后勤保障、生产条件差的不利因素。白天在风雪交加中紧张的卸车、立塔,晚间围着火炉卧雪观天,苦等黎明,头痛、胸闷、气短、腿肿各种高山反应对他们已成家常便饭……  凭着战胜一切困难的信心和勇气,这些高原地勘人不仅战胜了自然,也战胜了自我,被誉为“特别能吃苦、特别能战斗,特别能团结、特别能忍耐、特别能奉献”的“高原铁军”。  说起这个,105队的当家人——队长文怀军有一肚子的苦水:“七八月都下雪,把帐篷都压塌了。”但就是在这样艰苦的生产、生活条件下,来自各地的科学家、专业技术人员和施工人员,齐心协力、不辱使命,用“小米加步枪”的干法,仅用较少的资金投入,成功实现了我国陆域“可燃冰”的重大发现,是一个典型的投入少、产出大的项目。  据了解,105队1950年建队,1965年从吉林省成建制调入青海。他们提交的各类煤炭资源储量高达38亿吨,占青海已探明储量的74%。长期的地质工作,使他们积累了大量的基础地质资料,掌握了该地区的地层沉积和构造规律,同时培养了一批具有专业水平的各类技术人员,为“可燃冰”的重大发现提供了技术资料和队伍等多方面的保障。  青藏高原蕴藏神奇宝藏  青海之所以成为我国陆域“可燃冰”的首个“现身地”,与这里独特的地理地貌环境有密切关系。  首先,青海有着面积广、厚度较大的冻土带资源,为“可燃冰”的存在提供了地质条件。  其次,青海木里有着丰富的煤炭资源,为“可燃冰”的形成提供了可能的资源条件。  第三,青海木里的交通条件和后勤保障措施是我国大面积冻土带地区中条件较好的,这为“可燃冰”发现提供了有力支持。  文怀军说,青海木里煤田含“可燃冰”岩层段埋藏浅,只有130-300多米,这为“可燃冰”开采带来很大有利条件。并且这里的冻土层较薄,只有80-120米,也为将来的工程和科研带来极大便利。“‘可燃冰’的开发有望在这里取得突破。”  “不过,这将是一个比较漫长的过程。”文怀军说,因为“可燃冰”开采面临的环保问题较为严峻,需要研究探索如何既能开发利用,又不伤害环境。特别是在生态脆弱的青藏高原。  神奇的大自然,蕴藏着奥秘无限,等待着人类的科学探索。探索无限,人类的希望也无限。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • 青海成功研制出诃子酸、诃黎勒酸、胡麻苷等六种藏药标准样品
    p  由中国科学院西北高原生物研究所承担的6个国家天然产物标准样品研制项目近日通过专家评审。/pp  2006年,藏医药被列入第一批国家级非物质文化遗产名录,近年来,藏医药在保持传统的同时,积极探索标准化、国际化发展方向。/pp  据中科院西北高原生物研究所研究员李玉林介绍,他所在的科研团队于2015年启动“6个国家天然产物标准样品研制项目”,与山东省分析测试中心联合协作,近10名科研人员刻苦攻关,以诃子酸、诃黎勒酸、胡麻苷、雏菊叶龙胆酮、大麦黄苷和皀草黄苷6种藏药材中的特征性活性化学成分为研究对象,研制出国家天然产物标准样品。/pp  “这六种标准品,对解决过去存在的不同成分质量差异难题具有重要意义,意味着藏药从传统作坊走向标准化产业化又迈进一步。”长期致力于藏药标准化研究的李玉林说。/pp  “藏药化学标准品的研制,对于藏药材标准升级、藏药现代化研究工作及推动藏医药产业发展具有重要的价值。”青海省科技厅组织专家对项目成果进行评审和验收,来自青海省药品监督管理局审评中心的国家药典委员刘海青说,研究成果对于解决藏药标准化的技术瓶颈问题具有重要示范意义和应用前景。/ppbr//p
  • 国生产力促进中心协会发布《特殊医学用途配方食品蛋白质( 氨基酸)组件中氨基酸的测定 高效液相色谱法》团体标准
    各相关单位:根据国家标准化管理委员会、民政部制定的《团体标准管理规定》 及《中国生产力促进中心协会标准管理办法》(试行)的相关要求, 《特殊医学用途配方食品蛋白质(氨基酸)组件中氨基酸的测定 高效液相色谱法》团体标准已按规定程序完成编制,现予以正式发布。本标准自2024年5月30日实施。 特此公告。 附件:《特殊医学用途配方食品蛋白质(氨基酸)组件中氨基酸的测定 高效液相色谱法》团体标准目录中国生产力促进中心协会 2024年5月22日
  • 聚焦氢化植物油反式脂肪酸 标准或20日前公布
    一则关于“植物奶油”的报道,好似一场速成的化学课,让消费者一夜之间认识了“氢化油”这个名词。  随着“问题”氢化植物油频频被媒体曝光,有关食品安全的话题再度牵动了人们敏感的神经。  同时,在部分企业人士看来,氢化植物油暗藏食品灾难的说法并不能完全“站得住脚”。有企业人士表示:“反式脂肪酸在天然食品里也存在,只要量控制得好,就没什么健康问题。”  江南大学油脂专家王兴国表示,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其定义和在国内的生产、使用量进行公布,具体时间在本月20日前。届时,有关氢化油的真相才可能真正呈现在大众面前。  11月10日,《每日经济新闻》记者调查发现,国内能够生产氢化油的企业并不如人们想象的那么多。  同时,氢化油即植物奶油的说法也遭到专家质疑。“植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”11月10日,江南大学食品学院博导、油脂专家王兴国告诉《每日经济新闻》记者,“氢化油只是植物奶油、植脂末中可能的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”  氢化油厂商难觅踪迹  自CCTV2曝光了植物奶油的乱象之后,氢化油“一夜成名”。  不过,记者调查发现,在全国范围内,氢化油的生产商上并没有想象中的那么多。“你要的氢化油我们没有。”11月10日,上市公司安徽丰原生化的一位油脂销售人员如此告诉《每日经济新闻》记者,“我们从来没生产过。”  “我们没有氢化油。”11月10日,记者咨询了多家从事油脂生产、加工的上市企业,对方均表示不生产该产品。  为何日前报道中“大量存在于各种食品当中”的氢化油却在上游市场难觅踪迹?是企业想避避风头,还是确有其事?湖南金健植物油有限责任公司一位工作人员表示,“事实上,制造氢化油的成本很高,对生产机器有着较高的要求,我们不生产。”  王兴国在接受媒体采访时也表示:“中国一年消耗的食品专用油和烹饪油在2300万吨左右,其中90%是用棕榈油做的,氢化油只占很小一部分。”  一位广州地区的油脂企业的技术人员说,“据我所知,国内生产氢化油的企业只有几家。”  聚焦“反式脂肪酸”  为何氢化油又成为媒体眼中的恶魔?有学术界人士认为,将植物奶油与氢化油画上等号是一种误读。真正对人体造成危害的元凶,是“反式脂肪酸”。  “植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”王兴国表示,“氢化油只是植物奶油、植脂末中的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”  一位上海主要生产植脂奶油企业的人士表示,“植物奶油并不等于氢化油,但是在某些植物奶油的生产中,需要加入氢化油,而氢化油中则含有少量的反式脂肪酸。”  不过,在部分媒体报道中,认为植物奶油又称为氢化油,两者为一种物质。  王兴国告诉《每日经济新闻》记者,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其特质和在国内的使用量进行公布,具体时间在本月20日前。届时,关于植物奶油、氢化油的争论或将有一个定论。  资料显示,反式脂肪酸才是对人体造成损害的“元凶”。其最常见存在于速溶咖啡伴侣、奶精之中,还包括如方便面、饼干、酥皮面包、薯片这样的速食品。反式脂肪酸的大量摄入,会导致心血管疾病的几率是饱和脂肪酸的3~5倍,甚至还会损害人们的认知功能。此外,人造脂肪还可能诱发肿瘤(乳腺癌等)、哮喘、2型糖尿病、过敏等疾病。  在11月9日卫生部召开的新闻发布会上,卫生部有关人士表示,正组织开展反式脂肪酸风险监测评估工作。  值得关注的是,卫生部于昨日公布了《食品安全国家标准管理办法》,规定了食品安全国家标准规划和制(修)订计划的内容及制订程序、标准起草过程要求、公开征求意见要求、标准审查程序、标准批准发布形式及实施后的管理等。根据这一规定,自今年12月1日起,任何公民、法人和其他组织都可以提出食品安全国家标准立项建议。
  • 征求《食品中抗坏血酸的测定》等8项标准意见的函
    国卫办食品函〔2013〕325号  工业和信息化部、农业部、商务部、工商总局、质检总局、食品药品监管总局(国务院食品安全办)办公厅,粮食局、标准委、认监委办公室,各有关单位:  根据《食品安全法》及其实施条例的规定,我委组织制定了《食品中抗坏血酸的测定》等8项食品安全国家标准(征求意见稿)。现征求你单位意见并向社会公开征求意见,请于2013年12月20日前将意见反馈表(附件2)以传真或电子邮件形式反馈我委。  传  真:010-52165414  电子信箱:spbz@cfsa.net.cn食品中抗坏血酸的测定等八项食品安全国家标准征求意见稿及编制说明.zip食品安全国家标准征求意见反馈稿.doc 国家卫生计生委办公厅    2013年10月18
  • 国家药监局:脑蛋白水解物注射液药品标准不完善
    据国家药监局网站消息,为确保公众用药安全,国家药监局日前通知要求各地进一步加强对脑蛋白水解物注射液的监督检查。  通知称,在全国开展注射剂类药品生产工艺和处方核查工作中,发现脑蛋白水解物注射液品种在药品标准和执行工艺处方等方面存在着较为突出的问题,主要是企业选用猪脑原料的质量标准不完善 企业之间现行生产工艺差别较大 猪脑水解所用的蛋白酶种类、酶量及水解温度、时间等不一致,甚至有补加氨基酸的行为。针对上述突出问题,部分地区已采取了控制措施。  通知指出,一、要充分认识到脑蛋白水解物注射液在产品质量方面存在的安全风险,各地应在注射剂类药品生产工艺和处方核查工作的基础上,积极组织力量认真做好监督检查工作。要建议辖区内脑蛋白水解物注射液生产企业主动停止该品种的生产,并要求脑蛋白水解物注射液生产企业按相关技术要求,组织开展改进工艺和质量控制方法的研究工作,在相关工艺改进和质量标准未经批准前,暂不宜恢复生产。  二、对于生产企业认为其脑蛋白水解物注射液生产工艺合理、质量可控,继续进行生产的,所在地省级食品药品监督管理局应对其生产全过程予以跟踪检查,并对监督生产的产品进行现场抽样,由省级药品检验所检验。  凡生产企业存在未按批准变更生产处方工艺生产,或在制成品中补加氨基酸等违法违规行为,以及现场抽样检验不合格的,应依法予以严厉查处。  三、国家局将组织有关专家开展脑蛋白水解物注射液有效性、安全性评价工作,组织对脑蛋白水解物注射液生产工艺的改进、质量控制标准的提高工作,并在此基础上提出监管措施和改进意见。
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 中药“有毒”是误读:欧美用食品标准来管中药
    中药重金属超标是个老话题。海外消费者对中药存在误解,西医理念和中医理念不一致。  最近,中药重金属超标问题引起了人们的广泛关注。实际上,这在中药领域是个老话题。盘点这些所谓&ldquo 超标&rdquo 事件,一个最为鲜明的特点是:出口转内销。境外市场发现超标毒中药,经媒体报道后在国内形成轩然大波。香港卫生署发布公告称,一批同仁堂健体五补丸被检测出汞含量超标,另外两款产品牛黄千金散及小儿至宝丸的朱砂成分含量超标。  朱砂所含&ldquo 汞&rdquo 和水银之&ldquo 汞&rdquo 是两回事,此&ldquo 汞&rdquo 非彼&ldquo 汞&rdquo 。国家药典委员会首席专家钱忠直教授认为,汞对人体的毒性,很大程度上取决于它的存在形式,而朱砂的主要成分为硫化汞(HgS),是典型的共价键化合物,化学性质稳定,溶解度极小,甚至不溶于盐酸和硝酸,难以在胃中分解被人体吸收进入体内。因此,对朱砂和含朱砂中成药的毒性评价,不能简单套用&ldquo 汞&rdquo 的毒性数据来进行折算,应区分药物中含有的是什么形态和价态的汞。将汞毒性套在朱砂身上,是不符合化学原理的。在此事件之前,华润三九集团生产的治疗偏头疼中药正天丸在英国被认为可能含有毒性,因为正天丸中含有乌头草,这是一种曾被古希腊人视为&ldquo 毒药之王&rdquo 的药草,可能对心脏或者神经系统有毒性。华润三九集团相关人员表示,正天丸说明书中披露的处方包含的附片为附子的炮制品。附子是毛茛科植物乌头的子根加工品,而乌头为毛茛科植物乌头的母根,附子与乌头入药部位不同。因此,经过炮制后,附子所含乌头类生物碱毒性大大降低。  汉森制药旗下拳头产品四磨汤被曝出含致癌物槟榔。原因是国外2003年有一篇文章,列出槟榔、烟草等118种致癌物质。文章对东南亚、马来西亚、泰国、印度进行了流行病学调查,调查显示长时间咀嚼槟榔的人口腔癌发病率要高一些,结论说长期咀嚼槟榔可能诱发口腔癌。&ldquo 嚼槟榔&rdquo 与&ldquo 槟榔入药&rdquo 有根本区别,此槟榔非彼槟榔。中国工程院院士李连达总结出几点&ldquo 不一样&rdquo :一是所用原料部位不一样。&ldquo 嚼槟榔&rdquo 所用槟榔是&ldquo 幼果&rdquo ,而药用槟榔使用成熟的果仁。二是炮制加工不一样。&ldquo 嚼槟榔&rdquo 用石灰水浸泡,再加上碱性、刺激性很强易引起口腔黏膜损伤。中药槟榔则须经炮制、加工、提取、除杂,有明显的解毒作用。三是入口方式不一样。&ldquo 嚼槟榔&rdquo 有的人一嚼几个小时,而中药槟榔是汤剂口服,不会长时间刺激口腔黏膜。四是用量不一样。&ldquo 嚼槟榔&rdquo 没有限时,属于大量、无限制的使用。而中药用槟榔一天一般是3&mdash 5克。  中国中药协会会长房书亭认为,中药有毒主要是海外消费者对中药存在误解,西医理念和中医理念不一致。如果单纯地把它们作为一个化学分子看待,那药就成了害人的毒药 如果当作一个有机整体看待,它就是治病的良药。中药之害在医不在药。中药临床是否安全的关键,不在于自身是否有毒性,而是在于临床能否合理应用  &ldquo 龙胆泻肝丸事件&rdquo 始于上个世纪90年代至本世纪初。由于外国人不懂中医药、不按中医理论辨证,给病人长期使用含马兜铃酸的中药减肥致使一些人肾脏受损。一些西方国家媒体借机大肆炒作,最终多达70余种中药材遭到株连,酿成了&ldquo 马兜铃酸事件&rdquo 。  中国中医科学院中药研究所研究员梁爱华指出,在国内,中药是遵中医理论、辨证施治,出问题较少。国外用法不同,没有在中医理论指导下使用,出现问题是正常的。不能在国外一出问题,遭到禁用,国内就觉得问题不得了。中西药都有不良反应,关键是要合理使用。  &ldquo 临床中,我从未发现一例患儿因使用朱砂或含有朱砂的中成药出现不良反应。&rdquo 北京东直门中医院儿科教授徐荣谦说,朱砂在临床上主要用于危、急、重病症。中医最著名的、用于急救的&ldquo 成药三宝&rdquo 安宫牛黄丸、局方至宝丸、紫雪丹的配方中都含有朱砂。凤凰卫视主持人刘海若在英国被西医宣布为脑死亡,回国采用中医治疗后,竟然又可以说话、走路了。治疗过程中,起重要作用的就是安宫牛黄丸。  古人说:&ldquo 药之害在医不在药&rdquo 。离开中医的整体观,不懂辨证论治和君臣佐使,乱用或滥用中药,就容易出问题。诚如清代医家徐灵胎所言:&ldquo 虽甘草、人参,误用致害,皆毒药之类也。&rdquo 古来亦有&ldquo 医不三世,不服其药&rdquo 之说,意指中医如果没有深厚的中医药知识,不服其药。  全国政协委员王承德说,中药有毒与无毒,关键是能否对证治疗。只要对证治疗,有毒的也安全。不对证治疗的,无毒的也有毒。他希望正确认识中药的毒性问题。  中国中医科学院柳长华研究员指出,朱砂等含汞中药引发毒性反应的主要原因,是错误地将含汞药物作为保健药物,超量、超时使用。中医服药讲究&ldquo 中病即止&rdquo ,&ldquo 有病病受之,无病体受之&rdquo ,只要在医生指导下,按照安全剂量、用药时间服用,就不会引发毒性反应。  北京市中医局有关负责人表示,含重金属等矿物如朱砂、自然铜、石膏等入药是中医的传统,《神农本草经》就有记载。经过数千年的临床实践,许多老专家临床上应用矿物药治疗病症,常能起到一般药物所没有的积极作用,所以,含重金属矿物药是中医药特色和优势的组成部分。实际上,中药临床是否安全的关键不在于自身是否有毒性,而是在于临床能否合理应用。很多毒性药,只要应用得当,通过复方配伍和辨证论治,就能在临床上起到很好的治疗作用。&ldquo 实际上,毒性不仅仅存在于中药与中成药身上,许多西药也存在对人体脏器的损伤作用。比如使用庆大霉素就存在致聋危险与肾损伤的危险,但是在科学用药、保证剂量的前提下,多数药品的毒副作用对人体不构成威胁。&rdquo 梁爱华说。  钱忠直强调,是药三分毒。所有的药上市批准,找不到一个百分之百安全的药。吃药一点风险都没有,这样的药是找不到的。而医生根据经验指导患者服药,就可以有效地规避药品风险。  欧美国家采用食品标准检测中药。所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。很多国家和地区,包括香港、东南亚国家、日本在内,对于中药重金属的限量标准,采用的是食品标准。特别是在欧美国家,并不承认中药是药。中药是以食品、保健品等名义出口的,欧美国家采用的是食品标准对中药进行检测。钱忠直指出,药品并不像食品一样大量地、经常地食用,是短期内在医生的指导下限量服用。药品重金属的含量,不能简单地用食品的标准来代替,只能是参考。王承德认为,用食品标准来管中药,限制含重金属中药的使用,导致中医大夫不敢使用,许多有特色的中医治疗方法失传,大大降低了中医的治疗效果。李连达不无担心地说,这个有毒应该禁用,那个有毒应该禁用,没完没了,如果这样搞下去,什么中药都不能用了。这不仅仅是一个品种、一味药的问题,而是关系到整个中医药事业的发展。梁爱华说,国际上以某一单一成分是否有毒,来判定中药药材是否有毒,这是欠科学的。  所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。当朱砂做成中成药时,测定其中有毒的游离可溶性汞,目前国际上采用的方法均是消解破坏法,其结果是,在破坏和消除了有机物干扰的同时,不溶性的朱砂(HgS)分解成了有毒的Hg2+、Hg+。测定的物质和人们服用的物质不是同一种形态。所以,会得出中成药汞超标几十倍、几百倍的报告结论。  柳长华认为,中药讲究用药性治病,而西药根据成分治病。中西医之间存在很大差别,用西医标准来评价中医,本身就是对中医的不尊重。化学测汞采用的是原子吸收法,检测出的是朱砂中所有汞成分,而不仅是游离汞。因此,以此指责中药有毒是不合理的。  钱忠直介绍,含朱砂中成药安全性质量控制的一个关键问题,就是要建立能够选择性测定不同形态和价态汞的方法。这个课题国家药典委员会正委托上海药检所在研究,有望在2015年版中国药典中收载。  推动中药质量评价体系研究,已成为我国中药产业发展面临的重要课题。钱忠直指出,药品重金属限量标准是一项全新的工作,应在保证安全的前提下,综合考虑资源的有效性等多方面因素,不断积累数据,最后形成科学的限量标准。
  • 质检总局、标准委批准发布192项国家标准
    5月12日,国家质检总局、国家标准委发布了192项国家标准。该批国家标准中,制定128项,修订64项 强制性标准29项,推荐性标准163项。标准名称、编号及实施日期在《中华人民共和国国家标准公告》(2011年第6号)中向社会发布。序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 620-2011化学试剂 氢氟酸GB/T 620-19932011-12-012GB/T 623-2011化学试剂 高氯酸GB/T 623-19922011-12-013GB/T 628-2011化学试剂 硼酸GB/T 628-19932011-12-014GB/T 636-2011化学试剂 硝酸钠GB/T 636-19922011-12-015GB/T 641-2011化学试剂 过二硫酸钾(过硫酸钾)GB/T 641-19942011-12-016GB/T 644-2011化学试剂 六氰合铁(Ⅲ)酸钾(铁氰化钾)GB/T 644-19932011-12-017GB/T 645-2011化学试剂 氯酸钾GB/T 645-19942011-12-018GB/T 646-2011化学试剂 氯化钾GB/T 646-19932011-12-019GB/T 647-2011化学试剂 硝酸钾GB/T 647-19932011-12-0110GB/T 648-2011化学试剂 硫氰酸钾GB/T 648-19932011-12-0111GB/T 651-2011化学试剂 碘酸钾GB/T 651-19932011-12-0112GB/T 653-2011化学试剂 硝酸钡GB/T 653-19942011-12-0113GB/T 655-2011化学试剂 过硫酸铵GB/T 655-19942011-12-0114GB/T 657-2011化学试剂 四水合钼酸铵(钼酸铵)GB/T 657-19932011-12-0115GB/T 659-2011化学试剂 硝酸铵GB/T 659-19932011-12-0116GB/T 661-2011化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)GB/T 661-19922011-12-0117GB/T 664-2011化学试剂 七水合硫酸亚铁(硫酸亚铁)GB/T 664-19932011-12-0118GB/T 666-2011化学试剂 七水合硫酸锌(硫酸锌)GB/T 666-19932011-12-0119GB/T 675-2011化学试剂 碘GB/T 675-19932011-12-0120GB/T 677-2011化学试剂 乙酸酐GB/T 677-19922011-12-0121GB/T 687-2011化学试剂 丙三醇GB/T 687-19942011-12-0122GB/T 688-2011化学试剂 四氯化碳GB/T 688-19922011-12-0123GB/T 1156-2011旋套式注油油杯GB/T 1156-19792011-10-0124GB/T 1271-2011化学试剂 二水合氟化钾(氟化钾)GB/T 1271-19942011-12-0125GB/T 1274-2011化学试剂 磷酸二氢钾GB/T 1274-19932011-12-0126GB/T 1281-2011化学试剂 溴GB/T 1281-19932011-12-0127GB/T 1288-2011化学试剂 四水合酒石酸钾钠(酒石酸钾钠)GB/T 1288-19922011-12-0128GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分:漏斗法GB/T 1479-19842012-02-0129GB/T 1479.2-2011金属粉末 松装密度的测定 第2部分:斯柯特容量计法GB/T 5060-19852012-02-0130GB/T 3683-2011橡胶软管及软管组合件 油基或水基流体适用的钢丝编织增强液压型 规范GB/T 3683.1-20062011-12-0131GB/T 3915-2011工业用苯乙烯GB 3915-19982011-11-0132GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的测定GB/T 4698.2-19962012-02-0133GB/T 4698.7-2011海绵钛、钛及钛合金化学分析方法 氧量、氮量的测定GB/T 4698.7-1996,GB/T 4698.16-19962012-02-0134GB/T 4698.14-2011海绵钛、钛及钛合金化学分析方法 碳量的测定GB/T 4698.14-19962012-02-0135GB/T 4698.15-2011海绵钛、钛及钛合金化学分析方法 氢量的测定GB/T 4698.15-19962012-02-0136GB/T 5158.1-2011金属粉末 还原法测定氧含量 第1部分:总则 2012-02-0137GB/T 5158.2-2011金属粉末 还原法测定氧含量 第2部分:氢还原时的质量损失(氢损)GB/T 5158-19992012-02-0138GB/T 5158.3-2011金属粉末 还原法测定氧含量 第3部分:可被氢还原的氧 2012-02-0139GB/T 5158.4-2011金属粉末 还原法测定氧含量 第4部分:还原-提取法测定总氧量GB/T 5158.4-20012012-02-0140GB 6249-2011核动力厂环境辐射防护规定GB 6249-19862011-09-0141GB/T 6548-2011瓦楞纸板粘合强度的测定GB/T 6548-19982011-09-1542GB 7063-2011汽车护轮板GB 7063-19942012-01-0143GB/T 8005.2-2011铝及铝合金术语 第2部分:化学分析 2012-02-0144GB/T 9082.1-2011无管芯热管GB/T 9082.1-19882011-10-0145GB/T 9082.2-2011有管芯热管GB/T 9082.2-19882011-10-0146GB/T 10597-2011卷扬式启闭机GB/T 10597.1-1989,GB/T 10597.2-19892011-12-0147GB 11291.1-2011工业环境用机器人 安全要求 第1部分:机器人GB 11291-19972011-10-0148GB 11557-2011防止汽车转向机构对驾驶员伤害的规定GB 11557-19982012-01-0149GB 11568-2011汽车罩(盖)锁系统GB 11568-19992012-01-0150GB/T 12688.1-2011工业用苯乙烯试验方法 第1部分:纯度和烃类杂质的测定 气相色谱法GB/T 12688.1-19982011-11-0151GB/T 12688.3-2011工业用苯乙烯试验方法 第3部分:聚合物含量的测定GB/T 12688.3-19902011-11-0152GB/T 12688.4-2011工业用苯乙烯试验方法 第4部分:过氧化物含量的测定 滴定法GB/T 12688.4-19902011-11-0153GB/T 12688.5-2011工业用苯乙烯试验方法 第5部分:总醛含量的测定 滴定法GB/T 12688.5-19902011-11-0154GB/T 12688.8-2011工业用苯乙烯试验方法 第8部分:阻聚剂(对-叔丁基邻苯二酚)含量的测定 分光光度法GB/T 12688.8-19982011-11-0155GB/T 12688.9-2011工业用苯乙烯试验方法 第9部分:微量苯的测定 气相色谱法 2011-11-0156GB/T 13306-2011标牌GB/T 13306-19912011-10-0157GB/T 14405-2011通用桥式起重机GB/T 14405-19932011-12-0158GB/T 14406-2011通用门式起重机GB/T 14406-19932011-12-0159GB 14569.1-2011低、中水平放射性废物固化体性能要求 水泥固化体GB 14569.1-19932011-09-0160GB 14587-2011核电厂放射性液态流出物排放技术要求GB 14587-19932011-09-0161GB/T 14627-2011液压式启闭机GB/T 14627-19932011-12-0162GB/T 15354-2011化学试剂 磷酸三丁酯GB/T 15354-19942011-12-0163GB 15580-2011磷肥工业水污染物排放标准GB 15580-19952011-10-0164GB 17930-2011车用汽油GB 17930-20062011-05-1265GB/T 18623-2011地理标志产品 镇江香醋GB 18623-20022011-11-0166GB/T 18691.1-2011农业灌溉设备 灌溉阀 第1部分:通用要求 2011-10-0167GB/T 18691.2-2011农业灌溉设备 灌溉阀 第2部分:隔离阀 2011-10-0168GB/T 18691.3-2011农业灌溉设备 灌溉阀 第3部分:止回阀GB/T 18691-20022011-10-0169GB/T 18691.4-2011农业灌溉设备 灌溉阀 第4部分:进排气阀GB/T 18693-20022011-10-0170GB/T 18691.5-2011农业灌溉设备 灌溉阀 第5部分:控制阀GB/T 19793-20052011-10-0171GB/T 26124-2011临床化学体外诊断试剂(盒) 2011-11-0172GB/T 26125-2011电子电气产品 六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定 2011-08-0173GB/T 26378-2011粗梳毛织品 2011-09-1574GB/T 26379-2011纺织品 木浆复合水刺非织造布 2011-09-1575GB/T 26380-2011纺织品 丝绸术语 2011-09-1576GB/T 26381-2011合成纤维丝织坯绸 2011-09-1577GB/T 26382-2011精梳毛织品 2011-09-1578GB/T 26383-2011抗电磁辐射精梳毛织品 2011-09-1579GB/T 26384-2011针织棉服装 2011-09-1580GB/T 26385-2011针织拼接服装 2011-09-1581GB 26386-2011燃香类产品安全通用技术条件 2011-09-1582GB 26387-2011玩具安全 化学及类似活动的实验玩具 2011-09-1583GB/T 26388-2011表面活性剂中二噁烷残留量的测定 气相色谱法 2011-09-1584GB/T 26389-2011衡器产品型号编制方法 2011-09-1585GB/T 26390-2011浸渍纸层压木质地板用表层耐磨纸 2011-09-1586GB/T 26391-2011马桶垫纸 2011-09-1587GB/T 26392-2011慢回弹泡沫 复原时间的测定 2011-09-1588GB/T 26393-2011燃香类产品有害物质测试方法 2011-09-1589GB/T 26394-2011水性薄膜凹印复合油墨 2011-09-1590GB/T 26395-2011水性烟包凹印油墨 2011-09-1591GB/T 26396-2011洗涤用品安全技术规范 2011-09-1592GB/T 26397-2011眼科光学 术语 2011-09-1593GB/T 26398-2011衣料用洗涤剂耗水量与节水性能评估指南 2011-09-1594GB/T 26407-2011初级农产品安全区域化管理体系 要求 2011-09-0195GB/T 26408-2011混凝土搅拌运输车 2012-01-0196GB/T 26409-2011流动式混凝土泵 2011-07-0197GB 26410-2011防爆通风机 2012-01-0198GB 26451-2011稀土工业污染物排放标准 2011-10-0199GB 26452-2011钒工业污染物排放标准 2011-10-01100GB 26453-2011平板玻璃工业大气污染物排放标准 2011-10-01101GB/T 26454-2011造纸用单层成形网 2011-09-15102GB/T 26455-2011造纸用多层成形网 2011-09-15103GB/T 26456-2011造纸用异形丝干燥网 2011-09-15104GB/T 26457-2011造纸用圆丝干燥网 2011-09-15105GB/T 26458-2011脂肪烷基二甲基氧化胺 2011-09-15106GB/T 26459-2011纸、纸板和纸浆 返黄值的测定 2011-09-15107GB/T 26460-2011纸浆 零距抗张强度的测定(干法或湿法) 2011-09-15108GB/T 26461-2011纸张凹版油墨 2011-09-15109GB/T 26462-2011种子发芽纸 2011-09-15110GB/T 26463-2011羰基合成脂肪醇 2011-09-15111GB/T 26464-2011造纸无机颜料亮度(白度)的测定 2011-09-15112GB 26465-2011消防电梯制造与安装安全规范 2012-04-01113GB/T 26466-2011固定式高压储氢用钢带错绕式容器 2011-12-01114GB/T 26467-2011承压设备带压密封技术规范 2011-12-01115GB/T 26468-2011承压设备带压密封夹具设计规范 2011-12-01116GB 26469-2011架桥机安全规程 2012-04-01117GB/T 26470-2011架桥机通用技术条件 2012-04-01118GB/T 26471-2011塔式起重机 安装与拆卸规则 2011-12-01119GB/T 26472-2011流动式起重机 卷筒和滑轮尺寸 2011-12-01120GB/T 26473-2011起重机 随车起重机安全要求 2011-12-01121GB/T 26474-2011集装箱正面吊运起重机 技术条件 2011-12-01122GB/T 26475-2011桥式抓斗卸船机 2011-12-01123GB/T 26476-2011机械式停车设备 术语 2011-12-01124GB/T 26477.1-2011起重机 车轮和相关小车承轨结构的设计计算 第1部分:总则 2011-12-01125GB/T 26478-2011氨用截止阀和升降式止回阀 2011-10-01126GB/T 26479-2011弹性密封部分回转阀门 耐火试验 2011-10-01127GB/T 26480-2011阀门的检验和试验 2011-10-01128GB/T 26481-2011阀门的逸散性试验 2011-10-01129GB/T 26482-2011止回阀 耐火试验 2011-10-01130GB 26483-2011机械压力机 噪声限值 2012-01-01131GB 26484-2011液压机 噪声限值 2012-01-01132GB 26485-2011开卷矫平剪切生产线 安全要求 2012-01-01133GB/T 26486-2011数控开卷矫平剪切生产线 2012-01-01134GB/T 26487-2011壳体钣金成型设备 通用技术条件 2011-10-01135GB 26488-2011镁合金压铸安全生产规范 2012-05-01136GB/T 26489-2011纳米材料超双亲性能检测方法 2012-02-01137GB/T 26490-2011纳米材料超双疏性能检测方法 2012-02-01138GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法 质量损失法 2012-02-01139GB/T 26492.1-2011变形铝及铝合金铸锭及加工产品缺陷 第1部分:铸锭缺陷 2012-02-01140GB/T 26492.2-2011变形铝及铝合金铸锭及加工产品缺陷 第2部分:铸轧带材缺陷 2012-02-01141GB/T 26492.3-2011变形铝及铝合金铸锭及加工产品缺陷 第3部分:板、带缺陷 2012-02-01142GB/T 26492.4-2011变形铝及铝合金铸锭及加工产品缺陷 第4部分:铝箔缺陷 2012-02-01143GB/T 26492.5-2011, , , , DIV变形铝及铝合金铸锭及加工产品缺陷 第5部分:管材、棒材、型材、线材缺陷 2012-02-01144GB/T 26493-2011电池废料贮运规范 2012-02-01145GB/T 26494-2011轨道列车车辆结构用铝合金挤压型材 2012-02-01146GB/T 26495-2011镁合金压铸转向盘骨架坯料 2012-02-01147GB/T 26496-2011钨及钨合金废料 2012-02-01148GB/T 26497-2011电子天平 2011-10-01149GB/T 26498-2011工业自动化系统与集成 物理设备控制 尺寸测量接口标准(DMIS) 2011-10-01150GB/T 26499.1-2011机械 科学数据 第1部分:分级分类方法 2011-10-01151GB/T 26499.2-2011机械 科学数据 第2部分:数据元目录 2011-10-01152GB/T 26499.3-2011机械 科学数据 第3部分:元数据 2011-10-01153GB/T 26499.4-2011机械 科学数据 第4部分:交换格式 2011-10-01154GB/T 26500-2011氟塑料衬里钢管、管件通用技术要求 2011-10-01155GB/T 26501-2011氟塑料衬里压力容器 通用技术条件 2011-10-01156GB/T 26502.1-2011传动带胶片裁断拼接机 2011-10-01157GB/T 26502.2-2011传动带成型机 2011-10-01158GB/T 26502.3-2011多楔带磨削机 2011-10-01159GB/T 26502.4-2011同步带磨削机 2011-10-01160GB 26503-2011快速成形机床 安全防护技术要求 2012-04-01161GB 26504-2011移动式道路施工机械 通用安全要求 2012-04-01162GB 26505-2011移动式道路施工机械 摊铺机安全要求 2012-04-01163GB/T 26506-2011悬臂筛网振动筛 2011-10-01164GB/T 26507-2011石油天然气工业 钻井和采油设备 地面油气混输泵 2011-10-01165GB 26508-2011园林机械 坐骑式草坪割草机 安全技术要求和试验方法 2012-04-01166GB 26509-2011园林机械 以汽(柴)油机为动力的步进式草坪割草机 安全技术要求和试验方法 2012-04-01167GB/T 26510-2011防水用塑性体改性沥青 2011-09-01168GB 26511-2011商用车前下部防护要求 2013-01-01169GB 26512-2011商用车驾驶室乘员保护 2012-01-01170GB/T 26513-2011润唇膏 2011-12-01171GB/T 26514-2011互叶白千层(精)油,松油烯-4-醇型[茶树(精)油] 2011-11-01172GB/T 26515.1-2011精油 气相色谱图像通用指南 第1部分:标准中气相色谱图像的建立 2011-11-01173GB/T 26515.2-2011精油 气相色谱图像通用指南 第2部分:精油样品气相色谱图像的利用 2011-11-01174GB/T 26516-2011按摩精油 2011-10-01175GB/T 26517-2011化妆品中二十四种防腐剂的测定 高效液相色谱法 2011-10-01176GB/T 26518-2011高分子增强复合防水片材 2011-12-01177GB/T 26519.2-2011工业过硫酸盐 第2部分:工业过硫酸钾 2011-12-01178GB/T 26520-2011工业氯化钙 2011-12-01179GB/T 26521-2011工业碳酸镍 2011-12-01180GB/T 26522-2011精制氯化镍 2011-12-01181GB/T 26523-2011精制硫酸钴 2011-12-01182GB/T 26524-2011精制硫酸镍 2011-12-01183GB/T 26525-2011精制氯化钴 2011-12-01184GB/T 26526-2011热塑性弹性体 低烟无卤阻燃材料规范 2011-12-01185GB/T 26527-2011有机硅消泡剂 2011-12-01186GB/T 26528-2011防水用弹性体(SBS)改性沥青 2011-09-01187GB 26529-2011宗教活动场所和旅游场所燃香安全规范 2011-10-01188GB/T 26530-2011地理标志产品 崂山绿茶 2011-11-01189GB/T 26531-2011地理标志产品 永春老醋 2011-11-01190GB/T 26532-2011地理标志产品 慈溪杨梅 2011-11-01191GB/T 26533-2011俄歇电子能谱分析方法通则 2011-12-01192GB/T 26572-2011电子电气产品中限用物质的限量要求 2011-08-01   注: 1. GB 6249-2011《核动力厂环境辐射防护规定》、GB 14569.1-2011《低、中水平放射性废物固化体性能要求水泥固化体》、GB 14587-2011《核电厂放射性液态流出物排放技术要求》、GB 15580-2011《磷肥工业水污染物排放标准》、GB 26451-2011《稀土工业污染物排放标准》、GB 26452-2011《钒工业污染物排放标准》、GB 26453-2011《平板玻璃工业大气污染物排放标准》等7项国家标准由环境保护部、国家质量监督检验检疫总局发布。  2. 更正:2011年第2号《中华人民共和国国家标准公告》中,第512项GB/T 26326.2-2010《离线编程式机器人柔性加工系统第2部分:砂带磨削加工系统》的标准编号调整为:GB/T 26153.2-2010。
  • 上海甄准生物进口品牌贵金属催化剂现货促销了!
    上海甄准生物进口品牌贵金属催化剂现货促销了!上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为&ldquo 指定供应商&rdquo ,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:美国AccuStandard、APSC、MPBio、Sigma-Aldrich、NIST,爱尔兰Reagecon、Megazyme,英国LGC、Ultra,Iduron、日本和光(WAKO)、Shodex,德国Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EDQM、加拿大TRC标准物质等。现货产品:品名ItemCAS #Purity规格产地(1,5-环辛二烯)氯铑(I)二聚体Chloro(1,5-cyclooctadiene)rhodium(I), dimer12092-47-698%500mgUSA氯化铑(III) 水合物Rhodium(III) chloride hydrate20765-98-438% Rh1gGB窗体顶端窗体底端三氯化钌 水合物Ruthenium(III) chloride hydrate14898-67-0Reagent Plus5gUSA1,3,5-三氮杂-7-磷杂金刚烷1,3,5-Triaza-7-phosphaadamantane53597-69-697%2gUSA三苯基膦氯化铑Wilkinson' s catalyst14694-95-2Metal Content 11.10%5gGermany更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832
  • ISCO泵-探索新能源概念
    01 概述全球经济严重依赖于能源,能源供应我们的食物生产、建造我们的家园并驱动我们的交通工具。没有能源,我们所熟悉的许多事物将会停止运转。随着中国和印度等国家经历快速经济增长,能源需求以及化石燃料的成本持续上升。为了满足这一增长的需求,开发替代能源来源变得越来越重要。研究与开发对于此过程至关重要,需要最高等级的设备来获得准确可靠的结果。Teledyne ISCO 注塞泵是开发替代燃料的绝佳工具,从实验室规模到试验工厂都能派上用场。能源来源或用于燃料和化学品的原材料可以分为两类:传统的和非传统的。传统能源来源是通过现有技术获得的,例如石油(原油)、煤炭和天然气,而非传统来源则需要更新和/或更复杂的技术,通常需要更大的投资。非传统能源过去在成本上不具备竞争力,但随着能源价格的上涨,现在可能成为一种可行的替代品。非传统能源来源包括:&bull 页岩油(美国)&bull 油砂/重油(委内瑞拉-加拿大)&bull 生物质(任何植物或动物材料)&bull 甲烷水合物替代性或非传统燃料可以从任何传统来源中提取,例如煤炭,而不是石油。然而,这一术语通常更多地用于指代来自可再生能源的可再生燃料,如生物质。可再生燃料包括:&bull 乙醇&bull 生物柴油&bull 非化石甲烷&bull 氢气02 石油(原油)自 1858 年在加拿大安大略省的石油泉首次钻探油井以来,石油的使用已大大扩展。如今,90% 的车辆使用的燃料都源自石油,全球的需求预计还将上升,这将给石油生产带来更大的压力。油井的生产寿命在达到某个高点后会开始下降。在这一点上,可以采用如增强型石油回收(EOR)等技术来维持石油生产水平。评估可能的技术需要复制油藏条件(如温度和压力)进行测试。这种称为岩心驱替的测试,能确定岩石对各种流体的渗透性,并需要使用高性能注射泵等精密设备。 我们每天使用的物品都来自常规和非常规石油。世界对原油的依赖远远超出汽油和其他燃料等更明显的需求。来自石油的其他产品包括许多药物和软膏、塑料、化妆品和洗涤剂。橡胶制品、防腐剂、密封剂和铺路材料也来自石油。世界的石油供应以及我们获取石油的能力,对这些以及其他许多日常产品的成本和可用性产生了深远的影响。03 油页岩油页岩含有干酪根,一种沉积岩中发现的复杂有机化合物混合物,从中可以提取液态烃。干酪根不是原油,但可以被加工成原油替代品,或称为合成原油(syncrude),然后进一步加工成常用的石油产品。这一过程本身需要能源投入,这影响了其与原油的成本竞争力。油页岩矿床遍布全球,但世界上已知储量的 64% 集中在美国。随着世界能源价格上涨,油页岩将受到更多关注。04 细砂油砂主要位于加拿大和委内瑞拉,由类似糖浆的石油(沥青)组成,其开采和加工难度远大于传统石油。因此,需要采用非常规技术进行提取,如露天开采和原位开采。最常见的原位过程涉及用蒸汽加热沥青,降低粘度,使其能以更传统的方式被泵送出来。提取后,必须将沥青升级为较轻的合成原油,以便通过标准管道运输并进一步精炼。由于技术上更具挑战性、能源密集度更高,因此成本也更高,使得油砂成为一种非常规石油来源。05 煤炭煤炭满足了全球 25% 的能源需求,尤其是电力生成方面。不幸的是,它也是最大的二氧化碳排放源。按照目前的消耗率,世界的煤炭储量可以持续超过预计的 150 年。世界上超过 50% 的煤炭储量位于美国、俄罗斯、中国和印度。拥有超过 25% 的可开采煤炭,美国拥有世界上最大的煤炭储备。除了作为主要的热能和发电能源外,煤炭还有许多其他潜在用途。例如,煤炭是替代原油产品如化学品、汽油和柴油燃料的一种可行原料。将煤炭转化为其他产品使用的最常见过程是煤制液体(CTL)和气化(合成气)。CTL 创造了一种合成原油,可以通过传统方式进一步加工。合成气,也称为水煤气,可以直接替代天然气,或通过费托合成过程进一步加工成其他燃料、化学品或塑料。尽管煤炭目前是二氧化碳排放的主要来源,但目前正在进行研究,通过从发电厂或转化过程中捕获二氧化碳,并将其封存在地质构造中来减少这些排放。由于在转化过程中二氧化碳始终被包含,因此移除相对容易,从而成本效率高。全球范围内,采用减排/封存技术的公司可以通过税收节省和/或减排积分来抵消其成本。然后,二氧化碳可以被封存或用作提高石油或天然气采收率的技术,这具有双重好处,即提高采收率和进一步减少二氧化碳排放。煤制液体煤制液体(CTL)可以是一种直接技术,使用溶剂在热量和压力下溶解粉状煤炭,从而创造出一种合成原油,这种原油可以进一步加工成燃料和化学品。合成原油具有使用现有炼油厂和分配系统的潜力优势。06 天然气天然气主要由 70-90% 的甲烷组成,用于发电厂、家庭供暖、运输和塑料制造。天然气通常位于油田中,提供了部分石油位移压力。非常规天然气典型情况下,非常规天然气包括那些不使用先进技术难以开采的沉积物。非常规天然气包括:&bull 深层气(深度在15,000英尺或以下的沉积物)&bull 致密气(被限制在不透水的地质构造中,如非多孔岩石)&bull 含气页岩&bull 煤层甲烷&bull 甲烷水合物煤层煤层通常包含被困的天然气,这些气体曾经通过焚烧处理,但现在有许多用途。甲烷水合物甲烷水合物由被困在冰冻水晶体中的甲烷(天然气)组成。它们存在于海底沉积物中,以及加拿大和俄罗斯的永久冻土区域。也被称为“燃烧的冰”,如果能够开发出恢复这种能源的方法,这个潜在的燃料来源可能为世界提供大量的能源。07 合成气气化是一种将含碳原料(如煤或生物质)转化为合成气的过程,合成气由一氧化碳和氢气组成。合成气,曾被称为“水煤气”,在 20 世纪 50 年代前的美国和 70 年代的英国常被用于烹饪和供暖。与天然气相似,合成气可以直接用作相对清洁的燃料,或通过费托催化转化过程进一步加工成液体形式。煤或生物质的气化是通过以下吸热“水煤气”反应实现的:C + H2O → H2 + CO合成气的形成也可能是天然气转化为氢气的中间步骤:CH4 + H2O → CO + 3H2除了 CO 和 H2,合成气还可能含有二氧化碳和氮气,因此必须进一步净化才能用于生产化学品和燃料。一氧化碳和 H2 可以加工成甲醇和其他化学品。液态气化的一个缺点是,净化和转化过程能源密集,因此涉及额外的成本,以转化为燃料。费托合成过程费托合成过程涉及一氧化碳的氢还原反应,通过催化化学反应将气化得到的合成气转化为各种液态烃:(2n+1)H2 + nCO → CnH(2n+2) + nH2O(其中n是正整数)这些液态烃随后可以进一步加工成合成油或燃料。生物质气化(BG)与费托合成(FT)过程的结合因其在生产可再生生物燃料方面的巨大潜力而备受关注。08 乙醇乙醇,或称谷物酒精,主要用作燃料或燃料添加剂。乙醇通过特定类型的酵母发酵生产,这些酵母将糖代谢为乙醇和二氧化碳,反应如下:C6H12O6 → 2 CH3CH2OH + 2 CO2在巴西,大多数乙醇由甘蔗制成,而在美国,乙醇由玉米制成,玉米也是一种相对供应不足的食品。目前,正在研究从木质纤维素生产乙醇,木质纤维素由纤维素、半纤维素和木质素组成。这种类型的乙醇,称为纤维素乙醇,可以由非食品来源生产,如柳枝稷和木屑。09 甲醇甲醇可以是各种化学和燃料产品的原料。它也可以直接用作燃料或作为汽油添加剂,类似于乙醇。目前,大多数甲醇是由化石燃料(如煤和天然气)衍生的合成气生产的。它也可以很容易地扩展到非常规来源,如油砂、油页岩、煤层甲烷、致密气、甲烷水合物和生物质。通过以下反应,生物质替代方案将使甲醇成为一种可再生资源:生物质 → 合成气(CO,H2)→ CH3OH10 生物柴油生物柴油是一种通过将植物油或动物脂肪化学转化为脂肪酸甲酯(酯交换)制成的生物燃料,可以单独使用或与传统柴油混合使用。虽然生产生物柴油有几种方法,但最常见的是涉及甲醇和氢氧化钠的间歇过程:特别是在美国和加拿大,生物柴油最常见的标准是ASTM D6751。符合性测试通常需要气相色谱仪。11 甘油生物柴油的广泛使用导致了全球甘油过剩,甘油是植物油酯交换反应的一种副产品。甘油有许多常见用途,包括化妆品、药品、食品和饮料、溶剂、肥皂、润滑剂和纺织品。然而,正在进行研究以确定其他用途,如氢气和乙醇生产以及燃料添加剂。甘油的其他转化方法包括:氧化、氢化、氢解、醚化和缩合。12 热解/加氢作用在生物燃料行业,脂肪酸甲酯必须转化为碳氢化合物,以便更好地与现有炼油厂基础设施相兼容。热解是在没有氧气的情况下加热和分解有机材料的过程。快速热解,涉及非常快速的加热,是这个过程的更高效版本。碳氧键分解成更热力学稳定的二氧化碳,从而产生碳氢化合物。热解相比气化的一个优势是它需要较少的热量,因此能量消耗更少。一个缺点是高水分含量,必须在进一步处理前去除。加氢是指分子氢的催化反应,以去除氧键,从而产生碳氢化合物。这两个过程都产生了最终结果为更简单的化合物,然后可以进一步精炼成可再生的生物燃料,以及精细化学品和脂肪。引用1) U.S. Department of Energy. 2008.2) Oil Sands Discovery Centre. “The Oil Sands Story.” Feb.20083) Hagenbaugh, Barbara. June 2006 “High Cost of Oil CouldPut Many Jobs at Risk.” USA Today. June 2008.
  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
  • 科技部批准建设2个企业国家重点实验室
    p style="TEXT-ALIGN: center"strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="TEXT-ALIGN: center"国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp style="TEXT-ALIGN: right"  科 技 部/pp style="TEXT-ALIGN: center"img title="QQ截图20171226084811.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/0852b6bc-ba13-45ce-be1b-9e416847900f.jpg"//pp/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制