当前位置: 仪器信息网 > 行业主题 > >

钆特醇相关化合物标准品

仪器信息网钆特醇相关化合物标准品专题为您提供2024年最新钆特醇相关化合物标准品价格报价、厂家品牌的相关信息, 包括钆特醇相关化合物标准品参数、型号等,不管是国产,还是进口品牌的钆特醇相关化合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钆特醇相关化合物标准品相关的耗材配件、试剂标物,还有钆特醇相关化合物标准品相关的最新资讯、资料,以及钆特醇相关化合物标准品相关的解决方案。

钆特醇相关化合物标准品相关的论坛

  • 怎样确定化合物的标准英文名?

    我采用岛津的气质联用仪测定挥发物,检测结果采用NIST系统确定化合物名称。现在投稿返回意见是核对化合物的中英文名称。我想知道有没有网站可以查询化合物,这些化合物没有错误,就是中英文名称让重新核对下,写其标准名称。如乙酸叶醇酯 3-hexenyl acetate这样的。谢谢!

  • 做硝基呋喃类化合物用的标准品的问题

    做硝基呋喃类化合物检测用的标准品大家都是用的什么呀?有标准中说的是用对照品,有标准中用的是代谢物,不知道这其中有没有什么区别呀?大家都根据哪个标准做的呢?

  • [原创]:TSQ质谱仪化合物条件优化标准操作规程

    [原创]:TSQ质谱仪化合物条件优化标准操作规程

    论坛里技术性帖子较少,近期打算写一系列的帖子,关于TSQ[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的标准操作,大家喜欢的话,我会继续的。今天先谈谈TSQ质谱仪化合物条件优化标准操作规程。注:转载请注明来源及作者,谢谢!一、优化待测化合物ESI质谱条件1 样品导入方式的建立1.1 选择适当长度的Peek管将两端通过接头分别与液相系统和切换阀2号口相连。1.2 选择适当长度Teflon管将一端通过接头与切换阀1号口相连,并将另一端置于废液瓶中。1.3 选择适当长度的Peek管将一端通过接头与切换阀3号口相连,另一端通过三通分别与离子源和样品转移毛细管相连。1.4 将200 uL左右样品溶液吸入250 uL进样注射器中。1.5 将进样注射器通过一个接头和一个二通与样品转移毛细管另一端相连。1.6 按住注射泵黑色释放钮将注射泵手柄升高。1.7 将进样注射器小心置于支架上并将注射泵手柄下移至进样注射器活塞柄顶端。2. 质谱条件优化步骤2.1 在Tune Master界面点击On/Standby激活质谱仪。2.2 选择离子极性模式(正离子或负离子),如需进行正负离子切换,将将Spray Voltage调至0后操作。2.3 进入Compound Optimization Workspace。2.4 在Define Scan窗口选择Q1MS扫描模式和Full Scan扫描类型。2.5 在Optimize Compound Dependent Devices窗口设置下列参数: Spray Voltage设为3500 V Sheath Gas Pressure设为30 arb Aux Gas Pressure设为10 arbCapillary Temperature设为350℃Source CID设为0 V2.6 激活注射泵以5 uL/min流速将进样注射器中的样品溶液导入质谱仪。2.7 激活液相色谱泵选择适当流速将流动相导入质谱仪,观察到待测化合物的准分子离子峰峰强度在10的6次方左右,否则增大进样流速或选用浓度更高的待测化合物溶液(样品浓度一般建议1-10ug/mL,建议用甲醇或乙腈溶解)。2.8 在Compound Optimization界面显示Single Sample窗口,选择MS Only优化模式和Syringe Pump Infusion入口类型选项。2.9 优化Tube Lens Offset、Spray Voltage、Sheath Gas Pressure、Aux Gas Pressure和Source CID获得待测化合物稳定的准分子离子峰。2.10记录并保存准分子离子质谱图。2.11选择MS+MS/MS优化模式设置Parent Mass、Charge State和Num Product对子离子进行优化,优化前完成下列设置: 将Source CID设为0 V 将Collision Pressure设为1.5 mTorr将Quad MS/MS Bias设为-1.0 V2.12接受Collision Energy优化结果,并将Source CID设为优化值(由2.9得到)。2.13记录并保存子离子全扫描质谱图。2.14保存Tune Method文件。3. 注意事项3.1 待测化合物溶液浓度为1-10ug/mL3.2 改变流动相比例和流速后应重新进行对Sheath Gas Pressure和Aux Gas Pressure进行优化3.3 手动优化Capillary Temperature3.4 点击Start开始自动优化程序,优化结束时点击Accept接受优化结果,或者点击Undo后再点击Accept保持优化前的仪器配置3.5 仪器常用参数设置见下表。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605240732_18885_1237095_3.jpg[/img]

  • 标准品和对照品,购买试剂的时候,看到纯度97%的某化合物,这个可用用来液相含量检测吗?

    请教各位前辈,我看到标准品和对照品的定义不同“——[url=https://baike.baidu.com/item/%E5%AF%B9%E7%85%A7%E5%93%81]对照品[/url]和标准品一样是指国家药品标准中用于鉴别、检查、含量测定、杂质和有关物质检查等标准物质,它是国家药品标准不可分割的组成部分。国家[url=https://baike.baidu.com/item/%E8%8D%AF%E5%93%81%E6%A0%87%E5%87%86%E7%89%A9%E8%B4%A8]药品标准物质[/url]是国家药品标准的物质基础,它是用来检查药品质量的一种特殊的专用量具;是测量药品质量的[url=https://baike.baidu.com/item/%E5%9F%BA%E5%87%86]基准[/url];也是作为校正[url=https://baike.baidu.com/item/%E6%B5%8B%E8%AF%95%E4%BB%AA%E5%99%A8]测试仪器[/url]与方法的物质标准。在药品检验中,它是确定药品真伪优劣的对照,是控制药品质量必不可少的工具。[url=https://baike.baidu.com/item/%E5%AF%B9%E7%85%A7%E5%93%81]对照品[/url]:是指用于鉴别、检查、含量测定的标准物质,由国务院[url=https://baike.baidu.com/item/%E8%8D%AF%E5%93%81%E7%9B%91%E7%9D%A3%E7%AE%A1%E7%90%86]药品监督管理[/url]部门指定的单位制备、标定和供应。标准品系是用于生物测定、抗生素或生化药品中含量或效价测定的标准物质,以国际标准品进行标定;对照品除另有规定外,按干燥进行计算后使用。[color=#333333]对照品与标准品是2个不同的概念,中国药典凡例中已有明确的定义:文献中常将2种概念混淆,认为对照品就是标准品,是1种物质2种提法而已,造成错误的原因,可能是有的药品既有对照品,又有标准品。例如,当用微生物法测定[/color][url=https://baike.baidu.com/item/%E5%A4%B4%E5%AD%A2%E5%85%8B%E7%BD%97]头孢克罗[/url][color=#333333]效价时,用头孢克罗标准品,用HPLC或UV法测定时,则用对照品;非那西丁当用作熔点校准物质时,用熔点标准品,测定含量时,用对照品。即使是同一种物质的标准品和对照品,它们的规格、标定方法以及用途都可能是不同的。”[/color][color=#333333]这一大段文字看了还是不甚明白,这样说来,标准品的要求更严格,应该都很贵的,我看一个检测方法还有类似文献的时候,都说用物质A的标准品3.0g,配制标准品溶液~~~~~感觉用量太大了。[/color]那我现在用液相做物质A的含量检测时,外标法,这个时候用标准品还是对照品呢?购买试剂的时候,看到纯度97%的某化合物,这个可用用来液相含量检测吗?我感觉特别混乱了,谢谢各位了

  • 【分享】不同酿酒葡萄品种C6 醛、醇风味化合物的比较

    采用顶空固相微萃取技术(HS-SPME),利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]- 质谱联用技术(GC-MS)对酿酒葡萄浆果中C6 醛、醇类化合物进行定性、定量分析,比较昌黎葡萄酒产区赤霞珠、品丽珠以及梅鹿辄3 种酿酒葡萄在成熟期六碳醇、醛类风味化合物的变化。结果表明:3 种酿酒葡萄浆果中主要的C6 化合物为己醛、己醇、2- 己烯醛、反-2- 己烯醇、顺-3- 己烯-1- 醇等;建立了定量分析葡萄C6 风味化合物的方法,该方法线性关系良好(R2 > 0.99),检测限小于5μg/L,回收率85%~110%,相对标准偏差(RSD)3%~9%,该方法简易、快速、准确,可用于葡萄样品的测定;不同葡萄品种各C6 醛、醇类化合物含量差异极显著:赤霞珠中含有较多的己醇、反-2- 己烯醇、顺-3- 己烯-1- 醇,显著高于其他品种,品丽珠中己醇、顺-3- 己烯-1- 醇含量最低,而C6 醛类化合物含量则以梅鹿辄含量最高,其次为赤霞珠,品丽珠醛类含量最低;C6 醛类化合物对葡萄香气贡献大,而C6 醇类化合物对葡萄香气贡献小。

  • HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    做HJ 648 水质中硝基苯类化合物的检测,15种标准品的色谱峰拖尾,DB-1701柱子,30×0.32×0.25,进样口250°,检测器300°,柱子流量1ml,初温50°保持2min.,以每分钟10°升到200°,保持1min.,再以每分钟12°升到250°,保持2min.,换过非极性的柱子OV-101,分离效果更差,请问这里有没有做过这个标准的老师指导一下。[img=,690,322]https://ng1.17img.cn/bbsfiles/images/2018/12/201812140954328263_5265_1620184_3.png[/img]

  • 化合物标准图谱

    各位高手: 现急需一种化合物的标准图谱,CAS:5549-23-5,在中科院上海化学所的数据库中没查到! 谢谢各位!

  • 【资料】食品动物禁用的兽药及其化合物清单(农业部第193号公告)

    为保证动物源性食品安全,维护人民身体健康,根据《[url=http://www.foodmate.net/law/jiben/162146.html][color=#003278]兽药管理条例[/color][/url]》的规定,我部制定了《食品动物禁用的兽药及其它化合物清单》(以下简称《禁用清单》),现公告如下: 一、《禁用清单》序号1至18所列品种的原料药及其单方、复方制剂产品停止生产,已在兽药国家标准、农业部专业标准及兽药地方标准中收载的品种,废止其质量标准,撤销其产品批准文号;已在我国注册登记的进口兽药,废止其进口兽药质量标准,注销其《进口兽药登记许可证》。 二、截止2002年5月15日,《禁用清单》序号1至18所列品种的原料药及其单方、复方制剂产品停止经营和使用。 三、《禁用清单》序号19至21所列品种的原料药及其单方、复方制剂产品不准以抗应激、提高饲料报酬、促进动物生长为目的在食品动物饲养过程中使用。 食品动物禁用的兽药及其它化合物清单序号兽药及其它化合物名称 禁止用途 禁用动物 1 -兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂 所有用途 所有食品动物 2 性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂 所有用途 所有食品动物 3 具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol Acetate及制剂所有用途 所有食品动物 4 氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂 所有用途 所有食品动物 5 氨苯砜Dapsone及制剂 所有用途 所有食品动物 6 硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂 所有用途 所有食品动物 7 硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂 所有用途 所有食品动物 8 催眠、镇静类:安眠酮Methaqualone及制剂 所有用途 所有食品动物 9 林丹(丙体六六六)Lindane 杀虫剂所有食品动物 10 毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂 所有食品动物 11 呋喃丹(克百威)Carbofuran 杀虫剂 所有食品动物 12 杀虫脒(克死螨)Chlordimeform 杀虫剂 所有食品动物 13 双甲脒Amitraz 杀虫剂 水生食品动物 14 酒石酸锑钾Antimony potassium tartrate 杀虫剂 所有食品动物 15 锥虫胂胺Tryparsamide 杀虫剂 所有食品动物 16 孔雀石绿Malachite green 抗菌、杀虫剂 所有食品动物 17 五氯酚酸钠Pentachlorophenol sodium 杀螺剂 所有食品动物 18 各种汞制剂包括:氯化亚汞(甘汞)Calomel、硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂 所有食品动物 19 性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate苯丙酸诺龙Nandrolone Phenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂促生长 所有食品动物 20 催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定)Diazepam及其盐、酯及制剂 促生长 所有食品动物 21 硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂促生长 所有食品动物 注:食品动物是指各种供人食用或其产品供人食用的动物 二00二年四月

  • 【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    [align=center][b]化妆品中全氟及多氟化合物的快速检测及健康风险评估[/b][/align][b]摘要:[/b]基于在线湍流色谱-串联质谱法,快速检测化妆品中全氟及多氟化合物(PFASs)的赋存水平,并进行健康风险评估。本人在前期工作的基础上(指本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》),对检测参数进行了进一步优化。使得所有目标化合物在0.05至50ng/mL的范围内具有良好的线性关系,检出限为0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。最后,该方法用于10种化妆品中PFASs的检测和风险评估。[b]1 引言[/b]全氟及多氟化合物(PFASs)是一类人工制造的化学物质,化学通式可表示为F(CF2)xR,根据碳链末端的取代基团不同,主要包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs),全氟膦酸(PFPAs),全氟磺酰化合物(POSF),以及全氟磷酸酯(PAPs)等[1]。PFASs中C-F键具有极高的键能,使其具有很好的热稳定性和化学稳定性,此外,碳氟链还具有疏水疏油的特性。自从PFASs发明以后,由于其性能优异,产量不断增加,并广泛应用于日常生活和工业生产的各个领域,包括纺织品,食品包装材料,地毯和皮革的表面处理,消防泡沫和含氟聚合物生产中的高性能化学品)[2]。化妆品已经成为人们生活中必不可少的日用品,化妆品健康风险如何成为民众关心的主要问题。化妆品质量问题、过敏性问题屡见不鲜,其中有毒有机物的组分是造成健康分析的主要原因[3]。已有研究在化妆品中检出一定浓度的PFASs,但是尚存在检测工序复杂,消耗时间长的缺点。本研究使用在线液相色谱质谱联用的方法(建立在本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》一文所建立的方法基础上),快速检测了化妆品中PFASs并对其人体健康风险进行了评估,将有利于了解PFASs的污染现状,更有利于加强对化妆品中有害化合物的监管,降低消费者的健康风险。[b]2 实验部分2.1 材料和仪器[/b]本研究使用的所有天然和同位素标记的PFAS标准品(表1)均购置于惠灵顿实验室(Guelph, Ontario, Canada),所有标准品的纯度均超过98%。乙腈(ACN),甲醇(MeOH)和异丙醇(IPA)均为[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]级溶剂(ThermoFisher Scientific,USA)。醋酸铵(NH4 OAc),( 97%),氢氧化铵(28%),乙酸( 99.8%,HPLC级),甲酸( 98%,HPLC级)和1-甲基哌啶(1-MP, 98%)购置于自Alfa Aesar公司(Ward Hill,MA,USA)。本研究使用的超纯水(18.2 MΩcm)取自Milli-Q Advantage A10系统(Millipore,USA)。液相色谱仪为UltiMate™ 3000(ThermoFisher Scientific,USA),由DGLC-3600RS双梯度快速分离泵,WPS- 3000 TLS自动采样器和带有六通(2P-6P)阀门的TCC-3200柱温箱组成,质谱检测仪为Thermo Quantiva 三重四极杆质谱仪(ThermoFisher Scientific,USA)。整个分析过程由Chromeleon 6.70色谱工作站控制,数据由Xcalibur 3.0软件记录。[align=center][img=,687,567]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008162247_6158_3875454_3.png!w687x567.jpg[/img][img=,690,666]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011015247514_2300_3875454_3.png!w690x666.jpg[/img][img=,663,377]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008398102_4160_3875454_3.png!w663x377.jpg[/img][img=,690,594]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011016297924_4243_3875454_3.png!w690x594.jpg[/img][/align][b]2.2 样品收集及前处理[/b]在超市买不同品牌的化妆品(液体型)10种,取0.5 mL样品放置于1.5 mL离心管内,添加2 ng内标,添加0.5mL 0.1%的甲酸乙腈溶液,12000 r• min-1离心15 min,取上层200微升至进样瓶中,待测。[b]2.3 在线检测[/b]仪器初始位置为样品负载位置,如图1(a)所示,样品经自动进样器注入TurboFlow SPE柱(Cyclone-P,1.0×50 mm,ThermoFisher Scientific,USA),左泵的初始流动相为 1.5 mL min-1,100% A,样品加载1.0 min以清理基质杂质。样品净化后,六通阀切换至样品洗脱位置(图1(b)),将TurboFlow柱保留的分析物解吸并洗脱到分析柱(Zorbax Extend C18,3.0×150mm,3.5μm,Agilent Technologies Inc,USA)上以进一步分离和检测,分析泵流速为0.4 mL min-1。然后,六通阀切换至负载位置(图1(a))。为了保证TurboFlow SPE柱的可重复使用性,样品洗脱后,负载泵要用1 mL min-1 MilliQ-水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)冲洗TurboFlow柱5.5分钟以去除残留的杂质。然后,负载泵的流动相恢复到初始比例以准备下一针样品的进样检测。分析柱温度设定在40℃。加载和分析泵的在线SPE程序和HPLC梯度洗脱条件以及阀切换的时间在表2中列出。[align=center] [img=,564,388]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011009549992_7999_3875454_3.png!w564x388.jpg[/img][/align][align=center][img=,690,414]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011010405402_8677_3875454_3.png!w690x414.jpg[/img][/align]注:a. 1-2:负载位置(0-1 min);b. 1-6: 洗脱位置(1-6 min);c. 负载位置(6-19 min)左泵流动相:A. 0.1% 甲酸水溶液(pH调至4),B. 乙腈和甲醇(体积比1:1),C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1),右泵流动相:A. 2mM醋酸铵缓冲溶液(pH 用氨水调至 10.5), B. ACN和METH(V:V=1:1)的混合溶液中添加5 mM 1-MP,C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)质谱仪使用负离子ESI源多反应监测(MRM)模式进行扫描,母离子和子离子参数如表1所示,待测PFASs采用两个子离子分别作为定性和定量离子,以确保检测方法的准确性。对于PFOS和PFHxS,采用三个扫描离子,分别作为定性、定量和确定性离子,以避免内源性物质共洗脱现象的干扰。MS相关参数设置如下:鞘气,40单位;辅助气,12单位;源电压,2500 V;汽化器温度,350℃ 毛细管温度,400℃;扫描时间0.01秒。[b]2.4 质量保证与质量控制[/b]为防止背景污染的产生,采样、样品前处理以及样品检测过程中均避免使用含氟聚合物材质的器皿或者管路。使用器皿均为聚丙烯材料,并且所有器皿和设备使用前先用甲醇清洗;PFASs测定采用内标法定量,利用一系列浓度的标准溶液(0.05、0. 1、0. 2、0. 5、1、2、5、20、50 ng• mL-1)绘制标准曲线,所有检测物线性相关系数均大于0.99。以信噪比S/N=3时所对应的浓度作为仪器检出限,化妆品中PFASs的检出限范围分别为:0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。表明仪器和检测方法适用于实际样品的分析。在样品前处理过程中,每8个样品添加一个程序空白,以保证检测结果的可靠性;每进样检测10次,进一次标准作为质量控制,查看仪器信号漂移,若检测的标准偏离原始检测值± 20%,则重新绘制标准曲线后再定量。[b]2.5 人体通过化妆品摄入PFASs的量及暴露风险评估[/b]人体每人通过化妆品暴露于PFASs的量为:EDI = DCi* Ci/ BW (ng/kg/day) 其中,人均使用化妆品的量DCi约为5 mL/day [4],成人平均体重BW为65kg。危害指数(hazard index,HI)法是最常用的累积风险评估方法,计算公式如下: HQi= EDIi/Reference valuesiHI=∑_(i=1)^n▒ HQi式中:RVi为第 i 种 PFASs的参考限值;EDI为PFASs的每日暴露量,HQi为第i种PAE的危害因子。HQi代表的是单个物质的暴露风险,而 HI 代表的多个物质总的暴露风险。当 HI 和 HQi 的值小于 1 时,说明人群对该物质的暴露水平较低,处于安全的暴露风险;当 HI 和 HQ 的值大于 1、小于 100 时,代表具有一定的潜在暴露风险;而当它们的值大于 100 时,说明暴露风险较高,处于不安全的水平。[b]3. 结果与讨论3.1 化妆品中PFASs的赋存水平[/b]所有目标PFASs中,共有9种化合物的检出率超过40%,我们进行进一步的浓度分析,PFASs 中PFHxS、PFOS和PFOA的浓度是主要的检出物,但是不同品牌的化妆品中PFASs的浓度差别很大,这三种主要PFASs的平均浓度 ± SD分别为4.30±1.84 ng/mL,6.96±6.04 ng/mL,8.97±9.15 ng/mL。每种化妆品中这9种化合物的浓度及浓度比例见图2(a)、(b)。每种化妆品中单体PFASs的浓度存在很大的差异,并且浓度比例也各有不同,这与每种化妆品的成分、功能及制作原料有关。 [align=center][img=,558,674]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011011125640_2049_3875454_3.png!w558x674.jpg[/img][/align][b]3.2 化妆品中PFAS的风险评估[/b]PFOS和PFOA是检出率和检出浓度最高的化合物,也是关注率最高的化合物,目前国际组织也对这两种化合物的每日暴露安全值进行的估算。根据风险评估公式计算人体每日通过化妆品暴露于PFOS和PFOA的量分别为XX,XX,远低于美国[5]、德国[6]、欧盟[7]制定的每日摄入量安全阈值: PFOS 分别为 25、100、150 ng/kg.b.w/day PFOA 分别为 333、100、1500 ng/kg.b.w/day,危害指数远小于 1,表明 PFOS、PFOA 尚未对人体产生较大的风险。但是如果将所有的化合物作为整体,用总浓度进行风险评估,风险值就会高出很多。因此,未来将更加关注该类化合物在化妆品中的赋存及潜在的毒性效应。[align=center][img=,523,306]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011012564222_4058_3875454_3.png!w523x306.jpg[/img][/align]参考文献[1] Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of exposure science & environmental epidemiology, 2019, 29(2): 131-147.[2] Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2): 101-126.[3] Cousins I T, Herzke D, Goldenman G, et al. The concept of essential use for determining when uses of PFASs can be phased out[J]. Environmental Science: Processes & Impacts, 2019.[4] Ashhami A. Assessment of Extractable Organic Fluorine (EOF) Content and Contribution of Per-and Polyfluoroalkyl Substances (PFASs) in Cosmetic Products[J]. 2017.[5]Roos P H, Angerer J, Dieter H, et al. Perfluorinated compounds (PFC) hit the headlines[J]. Archives of toxicology, 2008, 82(1): 57-59.[6]So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental science & technology, 2006, 40(9): 2924-2929.[7]Fromme H, Tittlemier S A, Vö lkel W, et al. Perfluorinated compounds–exposure assessment for the general population in Western countries[J]. International journal of hygiene and environmental health, 2009, 212(3): 239-270.

  • 【应用数据库有奖问答 8.15(已完结)】棉子糖合成相关糖的检测,检测的化合物是?

    【应用数据库有奖问答 8.15(已完结)】棉子糖合成相关糖的检测,检测的化合物是?

    [b]问题:[b][b][b][b]棉子糖合成相关糖的检测[/b][/b],检测的化合物[/b]是?[/b]答案:化合物:1. 棉子糖 2. 蔗糖 3. 肌醇半乳糖苷 4. 半乳糖 5. 肌醇=======================================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单;yifan1117(注册ID:yifan1117)大川之子,纵横四海(注册ID:chuangu120)sixingxing(注册ID:v2889187)yy_0324(注册ID:yy_0324)初心(注册ID:m3170710)[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/08/201808161104291872_7063_708_3.png!w690x388.jpg[/img][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/08/201808161104315105_7074_708_3.png!w690x388.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][align=center]=======================================================================[/align]方法:HPLC基质:标准品应用编号:102430化合物:1. 棉子糖 2. 蔗糖 3. 肌醇半乳糖苷 4. 半乳糖 5. 肌醇色谱柱:[url=http://www.dikma.com.cn/product/details-5505.html]Dikma CarboPac Ca2+ 300 x 8.0 mm, 6 μm[/url]色谱条件:[b]色谱柱: Dikma CarboPac Ca[sup]2+[/sup] 300 x 8.0 mm, 6 μm (Cat.No: 99304)[/b]流动相: 水流速: 1.0 mL/min检测器: RI柱温: 80 ℃样品: 20 μL1. 棉子糖2. 蔗糖3. 肌醇半乳糖苷4. 半乳糖5. 肌醇文章出处:迪马科技应用实验室关键字:棉子糖,蔗糖,肌醇半乳糖苷,半乳糖,肌醇,CarboPac Ca2+摘要:CarboPac Ca[sup]2+[/sup]检测棉子糖合成相关糖图谱:[img]http://www.dikma.com.cn/UploadImage/edit/images/%e6%a3%89%e5%ad%90%e7%b3%96.jpg[/img]

  • 【原创大赛】乳制品中的碳水化合物知多少?

    【原创大赛】乳制品中的碳水化合物知多少?

    很多朋友都问,乳制品上标注的碳水化合物是什么?下面我带大家一起了解一下牛奶中的碳水化合物。 首先看看一个牛奶的包装,如下图http://ng1.17img.cn/bbsfiles/images/2016/08/201608240846_606403_1644065_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608240847_606404_1644065_3.jpg 上面写着碳水化合4.7%,很多朋友不知道碳水化合物具体说的是什么,下面由我带大家一起了解一下。1.概述 碳水化合物的分子组成一般可用Cn(H2O)m的通式表示,但后来发现有些糖类并不符合上述公式,比如鼠李糖(C6H12O5),脱氧核糖(C5H10O4),并且有些糖还有氮、硫、磷等成分,显然用碳水化合物的名称来代替糖类名称已经不适当,但由于沿用已久,至今还在使用这个名称。碳水化合物可分为单糖、低聚糖、多糖三类。乳制品中最常见的有乳糖和蔗糖,都属于低聚糖。一般纯牛奶的不容许添加蔗糖的,纯牛奶中只含有乳糖。调制乳中为了满足小孩等不同消费者的需求,添加蔗糖以增加乳制品的甜度。2.牛乳的组成介绍牛奶=水+全乳固体全乳固体(总固体)=脂肪+蛋白质+碳水化合物+灰分 脂肪=饱和脂肪酸+不饱和脂肪酸等蛋白质(粗蛋白)=真蛋白+非蛋白氮真蛋白=酪蛋白(约80%)+乳清蛋白+乳白蛋白+乳球蛋白等碳水化合物=乳糖+蔗糖3.糖类简介3.1单糖 单糖是指不能再水解的最简单的多羟基醛或多羟基酮及其衍生物,按所含碳原子数目的不同,称为丙糖、丁糖、戊糖、己糖、庚糖等,或称为三、四、五、六、七碳糖等,其中以己糖、戊糖最为重要。3.2低聚糖 低聚糖是指聚合度小于或等于10的糖类,按水解后所产生单糖分子的数目,低聚糖可分为二糖、三糖、四糖、五糖等,其中最重要的二糖是蔗糖和麦芽糖。低聚糖又分为均低聚糖和杂低聚糖。均低聚糖是由同一种单糖聚合而成的,如麦芽糖,聚合度小于10的糊精。杂低聚糖由不同种的单糖聚合而成,如蔗糖、棉子糖等。根据低聚糖还原性也可以分为还原性低聚糖和非还原性低聚糖。3.3多聚糖 多糖又称为多聚糖,是指聚合度大于10的糖类,分为均多糖和杂多糖。均多糖如纤维素、淀粉等。杂多糖如阿拉伯木聚糖。根据多糖的来源又可分为植物多糖、动物多糖和细菌多糖。4.乳制品中最主要的糖类 乳制品中最终的糖有乳糖和蔗糖,两者都属于双糖。双糖均溶于水,有甜味、旋光性,可结晶。根据还原性,双糖可分为还原性双糖和非还原性双糖。4.1乳糖 乳糖(lactose,milksugar)是哺乳动物乳汁中的主要糖成分,牛乳中含乳糖4.6%-5.5%。乳糖分子是由β-半乳糖和葡萄糖以β-1,4糖苷键结合而成。其溶解度小甜度仅为蔗糖的六分之一,具有还原性,(用滴定法测定乳糖就是利用乳糖的还原性),含有a和β两种立体异构体,a型乳糖的熔点为223℃,β型乳糖的熔点为252℃.有旋光性,常温下,乳糖为白色固体。http://ng1.17img.cn/bbsfiles/images/2016/08/201608240849_606408_1644065_3.jpg 乳糖有助于机体内钙的代谢和吸收,但是对体内缺乏乳糖酶的热论,它可导致乳糖不耐症。乳糖不耐请参看下图:http://ng1.17img.cn/bbsfiles/images/2016/08/201608240850_606409_1644065_3.jpg4.2蔗糖 蔗糖(sucrose,cane sugar)是a-D-葡萄糖的C1与β-D-果糖的C2通过糖苷键结合的非还原糖。在自然界中,蔗糖广泛分布于植物的果实、根、茎、叶、花及种子内,尤其甘蔗、甜菜中量最多。蔗糖是人类需求最大,也是食品工业中最重要的能量型甜味剂,在人类营养上起着巨大的作用。 纯净蔗糖为无色透明的单斜晶体,相对密度1.588,熔点为160℃,加热到熔点,便形成玻璃样晶体,加热到200℃以上形成棕褐色的焦糖。蔗糖味很甜,易溶于水,溶解度随着温度的增加而增加。http://ng1.17img.cn/bbsfiles/images/2016/08/201608240850_606411_1644065_3.jpg5.检测方法 目前国标方法检测糖类采用的国际标准是《婴幼儿食品和乳品中乳糖、蔗糖的测定》,标准号为GB5413.5-2010。其中第一法为高效液相色谱法,试样中的乳糖、蔗糖经提取后,利用高效液相色谱柱分离,用示差折光检测器或蒸发光散射检测器检测,外标法进行定量。 第二法为莱因―埃农氏法,俗称滴定法,也是各个实验室最常用的方法。乳糖:试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。蔗糖:试样经除去蛋白质后,其中蔗糖经盐酸水解为还原糖,再按还原糖测定。水解前后的差值乘以相应的系数即为蔗糖含量。6.总结 碳水化合物是生物体维持生命活动所需能量的主要来源,是合成其他化合物的基本原料,同时也是生命体的主要结构成分。人类摄取食物的总能量中大约80%由糖类提供,因此碳水化合物是人类及动物的生命之源。

  • 流动相(甲醇)决定化合物在液质中的响应???

    最近遇到了几次这样的情况,不同厂商的甲醇对化合物在液质中的响应有很大的影响,国内某厂商的甲醇与Tedia的相比,国产甲醇能够提高化合物的响应,少则1~2倍,多则达10倍,这些情况都出现在正离子模式下,是什么提高了化合物的响应?是甲醇中的杂质吗,色谱纯的甲醇中所含的杂质有规定吗?

  • 新标准发布:土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法

    [align=center][b]土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法Soil and sediment—Determination of 15 ketone and 6 ether compounds—Headspace/gas chromatography-mass spectrometry标准号:HJ 1289—2023[/b]  为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染,改善生态环境质量,规范土壤和沉积物中15 种酮类和6 种醚类化合物的测定方法,制定本标准。本标准规定了测定土壤和沉积物中15 种酮类和6 种醚类化合物的顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法。本标准的附录A 为规范性附录,附录B 和附录C 为资料性附录。本标准为首次发布。[/align][align=center][url=https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202303/W020230314375433652245.pdf]土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法 (HJ 1289—2023)[/url][/align]

  • 食品安全与质量控制——极性化合物分析

    食品安全与质量控制——极性化合物分析

    近几年来频发的食品安全事件,不断的考验着人们的“食神经”,从最普通的食客到国家领导人,食品安全问题已经成为当下人们关注的焦点。不管事因为标准缺失,监管不力,还是因为相关生产者的道德丧失;对于一个分析工作者而言,危机时刻,一份快速、准确的分析结果总能够让我们为此贡献一份光和热的同时,感到安心!为方便大家沟通交流,默克密理博特开设“食品安全与质量控制”论坛专题,在此和大家分享食品分析的一些应用及相关信息,供大家参考。也希望各位在此相互交流,共同提高!专题一:食品中极性、亲水性化合物分析应用一:麻痹性贝类毒素——荧光检测器ZIC®-HILIC色谱条件:色谱柱: SeQ ant® ZIC® Column: SeQuant-HILIC (5 μm, 200Å) PEEK 250x4.6 mm 1.50458.0001检测器: Fluorescence detection (Excitation=350nm, Emission=395nm)流速: 0.7 mL/min流动相 (v/v): A: 10 mM Ammonium formate and 10 mM formic acid in Milli-Q® water (100%)B: acetonitrile and Milli-Q® water with Itot 8 mM Ammonium formate (80:20)温度:室温梯度:Time(min)Solution A (%)Solution B (%)Elution0-24.01882Isocratic24.1-35.03070Isocratic35.1-50.03565Isocratic

  • 十个技巧帮你迅速提高化合物在液质中的响应

    [align=center][b]十个技巧帮你迅速提高化合物在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]中的响应[/b][/align]1、成熟规范的样品制备方法是整个[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析的重要前提。样品预处理各步不能随意省略,如萃取、分离、去盐等。某些化合物必须化学衍生化以适应[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] 要求,如磷酸酯水解。若MS信号实在太低,应考虑换另外的样品处理方法。浓度非常低的样品不能保存太长时间,容器吸附、药物自身分解等原因会使样品浓度降低,标准品工作液现配现做。2、离子化方式需要根据样品的性质而确定:适合ESI(IS):高极性化合物以及大分子,蛋白质、肽类、低聚核苷酸等生物分子;胺类、季铵盐等;含杂原子化合物如氨基甲酸酯等。适合APCI(HN):弱极性/中等极性的小分子,如脂肪酸,邻苯二甲酸等;含杂原子化合物如氨基甲酸酯、脲等,适合。碱性化合物宜用正离子方式,酸性化合物宜用负离子方式,如未知,可能正负都要做,有些化合物正负都出峰,选择灵敏度高的方式,不明确的优先用正离子方式试。3、根据化合物类型选择流动相组成,甲醇-水,乙腈-水或甲醇-乙腈-水,某些化合物只有某种流动相体系才出峰。一般正离子方式用甲醇,负离子方式用乙腈好些,通常有机相比例高些好。梯度的设定:梯度变化太快对离子化效率影响很大,相应源参数也应该改变,如恒定比例流动相能满足分离要求时,尽量不用梯度,尤其定量分析时。流动相中加入甲酸、乙酸铵等可提高正离子化效率,但是否加酸不是绝对的,还要根据LC的分离情况,样品在酸性条件下的稳定性等决定。通常PH值低些+比率高, PH值高些+ 、 +或 +比率高。4、溶解样品的溶剂:用流动相或甲醇、乙腈溶比用含水多的溶剂LC峰系形好。如果常用的流动相不能很好溶解样品,可用少量特殊溶剂先将样品溶解后再用流动相稀释。LC流量在色谱柱和MS允许情况下适当可以压缩峰宽,使峰强度提高。当只有粗色谱柱,只能大流量时可采用三通分流,以适应MS的流量要求。选细色谱柱,如内径2mm,进样量可以小,提高相对浓度,离子化效率,灵敏度。换长一些的色谱柱,对定性分离效果好,但分析时间延长,如峰形仍不理想,可考虑另选其他型号色谱柱。柱后补偿:当不得不用高浓度TFA时,常用异丙醇,解决信号抑制问题。柱后衍生化,增加离子化。5、仪器参数的优化:CAL先校准,用PPG或一已知化合物检验,如偏差不大,可以不用做质量校准,但偏高偏低要心中有数。先用浓度大约0.1-1ppm的标样,通过syringe pump,以5-10ul/min优化COMPOUND项下面的参数,如DP,CE,EP,CXP及CAD等。顺序:Q1 SCAN- PRODUCTION SCAN - MRM 。不同化合物参数有可能差别很大。再接通LC用FIA优化其他参数及源位置, 或接一个三通,样品仍由注射泵进入离子源,同时LC保持需要的流量,优化温度和GAS1及2,CXP,CAD,EP优化后通常不用再改,在保证充分样品离子化基础上,DP低些使母离子丰度提高,总灵敏度相应提高。6、仪器参数的优化:质量范围不要太宽,涵盖待测离子再增加20-30AMU即可。采样时间适当长些噪声低,当同时检测数十对离子时,MRM采样时间可以数十毫秒.同时检测数对离子时,可100-200毫秒。母、子离子输入的质量数值要选准,要根据Q1 SCAN及PRODUCTIONSCAN得到的结果输入,不能只是整数。当不能确定精确质量数时,可选待测质量数上下各0.1AMU,同时数对离子优化,最终找出灵敏度最佳的一对离子。例如321.0-152.0,321.1-152.0,320.9-151.9。若样品较杂,同一化合物要选择几对母、子离子,经进样实验找出哪对有干扰,去掉,保留不易受干扰的1-2对离子。7、根据LC流量和流动相组成确定温度和GAS1及GAS2,当流量大,水相多时,温度及气流要大。离子源喷雾位置是根据LC流量调节的,基本上流量固定位置就固定。调节喷雾电压,但太高有可能放电。调节Q1及Q3分辨率。许多源参数互相影响,需要反复细调, 使信噪比得以改善。8、做完含生物体液样品后,LC需多冲些时间,使吸附到色谱柱上的干扰物完全洗脱下来。若本底高,清洗离子源喷雾针管和oriface,喷雾针可拆下超声清洗,oriface要用无毛纸沾溶剂擦 。清洗管路,可从源上拆下PEEK,或将源从仪器上取下,用SYRINGE PUMP洗,换不同溶剂,极性、非极性、酸等轮番冲洗,最后甲醇/水。9、用过含酸的流动相后,色谱柱,离子源都要用甲醇/水冲,延长仪器寿命。做完MRM后,用手动使仪器处于Q1 SCAN,降温,停大流量LC,最后关气,但管路中最好有些水,不要完全干。10、纯标样分析时,母、子离子的分辨率可都选LOW,S/N提高一倍,而噪声并不增高,若复杂混合物,有基质干扰则不宜选LOW。适当加大进样量可提高响应。也可以采用浓缩样品,测定后再推算回原始浓度。分析后的谱图平滑后可提高信噪比,可多次平滑。当化合物很稳定不易产生碎片,可考虑采用Ar、Xe等原子量较大的气体,以增加碰撞能量。今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习!

  • 化合物纯度的判定

    化合物纯度的鉴定方法,从快速,便宜,简便的要求出发,主要来之于以下几点:一 通过TLC的纯度的鉴定, 我将自己的心得分述如下1 展开溶剂的选择,不只是至少需要3种不同极性展开系统展开,我的经验是首先要选择三种分子间作用力不同的溶剂系统,如氯仿\甲醇,环己烷\乙酸乙酯,正丁醇\醋酸\水,分别展开来确定组分是否为单一斑点.这样做的好处是很明显的,通过组份间的各种差别将组分分开,有可能几个相似组份在一种溶剂系统中是单一斑点,因为该溶剂系统与这几个组分的分子间力作用无显著的差别,不足以在TLC区分.而换了分子间作用力不同的另一溶剂系统,就有可能分开.这是用3种不同极性展开系统展开所不能达到的.2 对于一种溶剂系统正如wxw0825所言,至少需要3种不同极性展开系统展开,一种极性的展开系统将目标组分的Rf推至0.5,另两种极性的展开系统将目标组分的Rf推至0.8,0.2。其作用是检查有没有极性比目标组分更大或更小的杂质。3 显色方法,光展开是不够的,还要用各种显色方法。一般一定要使用通用型显色剂,如10%硫酸,碘,因为每种显色剂(不论是通用型显色剂,还是专属显色剂在工作中都遇到他们都有一化合物不显色的时候),再根据组分可能含有混杂组份的情况,选用专属显色剂。只有在多个显色剂下均为单一斑点,这时才能下结论样品为薄层纯二 通过熔程,判断纯度。原理很简单,纯化合物,熔程很短,1,2度。混合物熔点下降,熔程变长。三,基于HPLC的纯度鉴定,对于HPLC因为常用的系统较少,加之其分离效果好,我们一般不要求选择三种分子间作用力不同的溶剂系统,只要求选这三种不同极性的溶剂系统,使目标峰在不同的保留时间出峰。四,基于软电离质谱的纯度鉴定。如ESI-MS,APCI-MS。大极性化合物选用ESI-MS,极性很小的化合物选用APCI-MS,这些软电离质谱的特点是只给出化合物的准分子离子峰,通过正负离子的相互沟通来确定分子量。如果样品不纯,就会检出多对准分子离子峰,不但确定了纯度,还能明确混杂物的分子量。五,基于核磁共振的纯度鉴定,从氢谱中如果发现有很多积分不到一的小峰,就有可能是样品是样品中的杂质。利用门控去偶的技术通过对碳谱的定量也能实现纯度鉴定。好了,不能再多写了。这里只是对常见的纯度鉴定方法做了一个小结,从快速,便宜,简便的要求出发,以第一点最合要求,往后次之,所以对第一点详加讲述。当然每种方法多有各自的局限性,如基于氢谱的纯度鉴定,如果发现有很多积分不到一的小峰,还有可能使样品中的活泼质子,基于软电离质谱的纯度鉴定,如果混杂物的分子量与目标物一样就无法检出。等等还有很多。这需要大家在工做中积累,思考。要讲的话,我看好几篇都讲不完。最后说一下对化合物纯度的要求,世界上不存在100%纯的化合物。你希望要多高的纯度应该与你的目的有关,例如,如想测核磁共振鉴定结构,一般要求95%的纯度,如果想测EI-MS,纯度越高越好。99%以上。还有,以上的方法都不能区分对应异构体。

  • 国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物郎 蕾1,刘格林1,2,施超欧3*(华东理工大学化学与分子工程学院 分析测试中心,上海 200237)摘要:使用国产离子色谱系统检测饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖,并进行方法学验证。结果表明,5种糖类化合物在各自线性范围内R2不小于0.9990,对葡萄糖、果糖、乳糖、蔗糖和麦芽糖的检出限(RSN=3)分别为3.42 μgL-1、11.4 μgL-1;6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。5种糖类化合物的相对标准偏差均小于2.47%,样品的加标回收率范围在94.13% ~ 114.2%之间,均符合相关检测标准要求,能应用于日常实验室的常规糖分析。为考察国产仪器分析的准确性和评价主要模块的性能,与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000-液相色谱示差检测器系统进行比较,对比结果表明,三者的分析结果一致性良好,其中国产脉冲安培离子色谱系统的检出限和定量限比Thermo仪器高3~4倍,除此之外,国产离子色谱仪器各个模块性能稳定,可满足常规糖类化合物含量的测定,填补国产离子色谱在糖类化合物检测领域的空白。关键词:国产离子色谱仪;国产脉冲安培检测器;饮料;糖类化合物中文分类号:O657.7+5 文献标志码:A Determination of Common Carbohydrate Compounds in Beverages by Ion Chromatography with Pulsed Amperometric Detector Made by MyselfLANG Lei1,LIU Gelin1,2,SHI Chaoou3*(Analysis and Research Center,East China University of Science and Technology,Shanghai 200237)Abstract: Using the self-developed pulse amperometric detector, it is assembled with other domestic instrument components to form a complete set of domestic ion chromatography instruments, and applied to the analysis of glucose, fructose, lactose, sucrose and maltose commonly found in beverages, and methodological verification. The results showed that the R2 of the five carbohydrate compounds was not less than 0.9990 in their respective linear ranges, and the detection limits (RSN=3) for glucose, fructose, lactose, sucrose and maltose were 3.42 μgL-1 and 11.4 μgL-1, respectively. 6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。 The relative standard deviation of the five carbohydrates was less than 2.47%, and the spiked recovery of the samples ranged from 94.13% to 114.2%. All meet the requirements of relevant testing standards and can be applied to daily laboratory testing. And in the full import Thermo ICS-5000+ ion chromatography system and Dionex Ultimate 3000 liquid chromatography difference detector repeated the same experimental process, the comparison results show that the analysis results are consistent, but the domestic amperometer detection limit and quantitative limit is 3 to 4 times higher than the imported instrument, the reason for the exploration is that there is a certain gap between the domestic pump and the inlet pump in the stable output mobile phase. The performance of each module and machine of domestic ion chromatography instrument is stable.Keywords:Domestic ion chromatography Domestic pulse amperometric detector Soft drinks Carbohydrate compounds 糖类是植物和动物的主要能量来源,对生理活动等有着极大影响。食品中常见中的糖主要包括葡萄糖、果糖、乳糖、蔗糖和麦芽糖。目前检测食品中糖的测定方法主要有化学法、酶比色法、酶电极法、高效液相色谱法、气相色谱法,毛细管电泳法和高效阴离子交换色谱法等。其中高效液相色谱法测糖主要包括高效液相色谱-示差折光法、高效液相-蒸发光散射法和高效液相质谱法等。高效液相色谱-示差折光检测法只适用于等度洗脱的测试,且只适用于高浓度含量糖样品的分析,在进行多组分分析时效果不好。高效液相色谱-蒸发光散射法对不挥发的溶质具有较高的检测灵敏度,蒸发发光法不受溶剂成分及温度的影响,能够进行梯度洗脱的测试,适于低聚糖的分析。近年来,该方法主要应用于中药材、烟草、食品中糖含量的测定。高效阴离子交换色谱-脉冲安培(high performance anion exchange chromatography with pulsed amperometric detection,HPAEC-PAD)法采用NaOH为流动相,并添加NaAc。能实现糖醇、单糖、双糖、寡糖、低聚糖、多糖以及糖衍生物的分析。其在检测糖时主要使用金电极的脉冲安培检测器,可检测ugL-1级的糖,不需要进行衍生反应和复杂的样品纯化处理,基体干扰少,有着较好的方法重复性和稳定性。但是,目前国内所有文献安培法测糖的报道都使用进口检测器,未见国产安培检测器的应用报道。目前带脉冲安培检测器的进口离子色谱仪器价格昂贵,维护费用高。因此,开发国产带脉冲安培检测器的离子色谱仪十分必要。本实验使用GI5000离子色谱系统包含脉冲安培检测器,对饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖的分析,进行了相关的方法学实验,并选取了三种市面上常见的含糖饮料进行了检测。与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000液相色谱示差检测器系统进行比较,以此来验证GI5000离子色谱系统在检测糖类化合物方面的性能,从而填补了国产离子色谱仪器对糖类化合物检测的空白,同时考察了国产自研安培检测器和国产泵与进口仪器的性能差距。 1 试验部分 1.1 仪器与试剂GI5000离子色谱系统:包括GI3000软件、四元梯度泵、自动进样器和GI5250安培检测器(包括自研安培检测池、自研参比电极和自研Au工作电极); Thermo ICS 5000+离子色谱系统,包括变色龙7.2软件、SP-DP单元四元梯度泵、AS-AP自动进样器、DC模块(带安培检测器)。Dionex Ultimate 3000液相色谱系统,包括变色龙6.8软件、四元梯度泵、自动进样器、柱温箱和RI-101型示差折光检测器Millipore-Q A10超纯水系统,AL204电子分析天平。5种糖混合标准储备溶液:1.000 gL-1,称取葡萄糖51.0 mg、果糖50.5 mg、乳糖50.5 mg、蔗糖51.0 mg、麦芽糖51.0 mg于50 mL容量瓶中,加入超纯水充分溶解后定容至刻度,储存于于4 ℃冰箱中冷藏保存,可放置半个月。使用时用超纯水稀释到所需质量浓度。可口可乐溶液:先将可口可乐溶液进行超声处理,用0.22 μm的滤膜进行过滤,称取可乐样品126 mg,加入超纯水稀释50倍。样品溶液:将样品1(脉动饮料)和2(茶π饮料)用0.22μm的滤膜进行过滤,再分别称取496 mg和507 mg于50 ml容量瓶中,加入超纯水定容至刻度,得到浓度为9920 mgL-1和10140mgL-1的两份实际样品溶液。使用时用超纯水稀释到所需质量浓度。50% NaOH(W/W)(电子级) 德国Merck公司;D-无水葡萄糖( D-Glucose anhydrous,≥98%) 上海笛柏化学品有限公司;D-果糖(D-Fructose,≥99%)、蔗糖(sucrose,≥99.5%)、麦芽糖(maltose,≥98%) 上海阿拉丁生化科技股份有限公司;无水乳糖(lactose,≥98%) 上海麦克林生化科技有限公司;可口可乐、实际样品1(脉动)和实际样品2(茶π),均为超市购买;实验用水均采用电阻率不低于18.2 MΩcm的超纯水。所有试剂使用前均使用0.22 μm的滤膜过滤。1.2 色谱条件GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统:Dionex CarboPac PA1色谱柱(250 mm×4 mm),Dionex CarboPac PA1保护柱(50 mm×4 mm);柱温为30℃;流量为1 mlmin-1;进样量为25 μL;流动相为200 mmolNaOH溶液;安培检测器电位波形为糖标准四电位。图1为5 mgL-1 5种糖类化合物混合标准溶液在GI5000离子色谱系统中的色谱图。Dionex Ultimate 3000液相色谱系统:Shodex-SP0810色谱柱(8.0 mm×300 mm);柱温70 ℃;流量为1mlmin-1;进样量为25μL;流动相为超纯水。 https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708218665_5415_3389662_3.jpg!w310x240.jpg 图1 5种糖类混合标准溶液色谱图Fig.1 Chromatogram of mixed solution of 5 sugar standards 2 结果与讨论2.1 GI5000离子色谱系统与Thermo ICS-5000+离子色谱系统灵敏度对比实验显示GI5000离子色谱仪器的噪音稳定在0.12 nC,而Thermo ICS-5000+离子色谱仪器的噪音稳定在0.02 nC,探索了造成这种现象的原因,首先将与检测器相连接的安培池体部件进行了拆卸,对自研Au工作电极进行打磨维护,冲洗了自研参比电极,重新组装后安装在Thermo安培检测器上,用Thermo DP泵进行测试,观察Au工作电极噪音的变化,结果发现噪音值稳定在0.02 nC,与进口安培池体噪音一致,排除了自研安培池体部件对噪音的影响。又将自研安培池体转移至GI5250安培检测器上并与Thermo DP泵串联起来进行测试,噪音值稳定在0.06 nC,说明GI5250安培检测器自身和国产泵较进口仪器存在一定差距,但已符合日常的检测灵敏度的要求。2.2 方法学验证1)标准曲线分别配置质量浓度为0.2、0.5、1.0、2.0、5.0 mgL-1的5种糖类化合物混合标准溶液,以质量浓度(x,mgL-1)为横坐标,以峰面积(y)为纵坐标,绘制标准曲线。各组分的线性范围、线性方程、相关系数、检出限(RSN=3)和定量限(RSN=10)见表1,5种糖类化合物在各自线性范围内线性关系R2不小于0.9990,满足分析方法的要求。Thermo ICS-5000+离子色谱系统对葡萄糖、果糖、乳糖蔗糖和麦芽糖的检出限和定量限分别为1.200 μgL-1、4.010 μgL-1;1.830 μgL-1、6.100 μgL-1;2.960 μgL-1、9.860 μgL-1;6.230 μgL-1、20.78 μgL-1;10.15 μgL-1、33.82 μgL-1。 表1 GI5000离子色谱仪测定5种糖类化合物的线性数据和检出限Table 1 The GI5000 ion chromatograph determines linear data and detection limits for five carbohydrate compounds糖类化合物线性范围/(mgL-1)线性方程相关系数检出限/(μgL-1)定量限/(μgL-1)葡萄糖0.2~5y = 621.5x + 24.910.99983.42011.40果糖0.2~5y = 366.7x + 23.920.99966.75922.53乳糖0.2~5y = 328.0x + 39.460.999010.1233.72蔗糖0.2~5y = 218.1x + 21.340.999320.4368.09麦芽糖0.2~5y = 272.5x + 14.950.999031.37104.6 2)进样重复性取适量的浓度为5 mgL-1的5种糖类化合物混合标准溶液于进样瓶中,分两批分别在GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统上重复进样8次,记录所测得的峰高和峰面积,计算RSD实验结果如表2所示,表明葡萄糖、果糖、乳糖、蔗糖和麦芽糖的峰高和峰面积RSD≤2.47%,结果稳定,与Thermo ICS-5000+离子色谱系统检测结果的RSD几乎一致,说明了GI5000离子色谱系统在重复性方面与进口仪器保持一致,性能良好,实验结果稳定可靠。 表2 5种糖类化合物进样重复性考察结果Table 2 Results of repeated sampling of five sugars糖类化合物GI5000Thermo ICS-5000+峰高RSD/(%)峰面积RSD/(%)峰高RSD/(%)峰面积RSD/(%)葡萄糖0.570.481.411.56果糖0.560.481.982.19果糖0.720.912.172.54蔗糖0.932.471.251.40麦芽糖0.841.780.460.51 3)5种糖类化合物加标回收率测定对可口可乐样品进行加标回收率实验,对于样品中含有的糖类化合物,以其质量分数的80%、100%和120%进行加标,重复进样5次,计算峰面积的RSD,检测结果如表3所示,样品的加标回收率范围在94.13%~114.2%之间,相对标准偏差在0.22%~4.14%。经计算得,可口可乐中葡萄糖质量浓度为41.6 gL-1,果糖质量浓度为54.4 gL-1、乳糖质量浓度为1.5 gL-1、蔗糖质量浓度为4.1 gL-1、麦芽糖质量浓度为1.8 gL-1,总含糖量为103.4 gL-1,可口可乐厂家标注碳水化合物总量为104.6 gL-1,误差1.14%,说明检测结果可靠。图2为可口可乐样品色谱图。 表3 5种糖类化合物加标回收率测定结果Table 3 Determination of the recovery rate of five sugars糖类化合物本底/(mgL-1)加标量/(mgL-1)测得量/(mgL-1)回收率/%相对标准偏差/%葡萄糖1.9551.6003.55399.881.802.0003.89997.200.382.4004.21494.130.22果糖2.1401.6003.69397.803.832.0004.07396.650.252.4004.629103.74.14乳糖1.010.8001.885109.40.191.0002.151114.20.231.2002.353111.90.8蔗糖0.7740.8001.54496.250.971.0001.847107.40.171.2002.043105.80.15麦芽糖0.8920.8001.755107.92.721.0001.915102.30.451.2002.128103.00.75https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708335940_9325_3389662_3.png!w424x327.jpg 图2 可口可乐样品色谱图Fig.2 Coca-Cola sample chromatography 2.3 三种仪器检测结果对比离子色谱法中两种实际样品稀释100倍,液相色谱法中两种实际样品稀释10倍。分别在全进口仪器Thermo ICS 5000+离子色谱系统、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪器上重复进样5针,测试结果如表4所示。 表4 实际样品1和样品2中含糖量测定结果Table 4 Measurement results of sugar content in actual sample 1 and sample 2糖类化合物离子色谱法-Thermo安培离子色谱法-GI5000安培液相色谱法-Dionex示差样品1样品2样品1样品2样品1样品2含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)葡萄糖15.8723.1016.6222.1816.3322.08果糖19.7131.1919.9029.5021.5730.86乳糖------------蔗糖12.8523.5512.2823.0911.7223.72麦芽糖------------总含糖量/g/L48.4377.8448.8074.7749.6276.66样品1和样品2厂家标注的总含糖量分别为49 gL-1和75 gL-1。如表4所示,全进口仪器Thermo ICS 5000+测得两种样品的总含糖量分别为48.43 gL-1和77.84 gL-1,GI5000离子色谱系统测得两种样品的总含糖量分别为48.80 gL-1和74.77 gL-1。Dionex Ultimate-3000液相色谱示差法测得两种样品的总含糖量分别为49.62 gL-1和76.66 gL-1。三种仪器的所测得的两种实际样品中糖类化合物总量相差5%以内,结果均较为准确,同时也证明了国产离子色谱仪器性能稳定可靠。三台仪器对两种实际样品的分离色谱图如图3和4所示。https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708443314_437_3389662_3.png!w273x210.jpghttps://ng1.17img.cn/bbsfiles/images/2022/12/202212151708496041_6974_3389662_3.png!w273x210.jpg 图3 样品1和样品2中糖分离色谱图Thermo离子色谱仪(左)、国产离子色谱仪(右)Fig.3 Separation chromatograms of sugars in samples 1 and 2 Thermo ion chromatograph (left), domestic ion chromatograph (right)https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708552407_2039_3389662_3.png!w273x210.jpg 图4 液相-示差法测得样品1和样品2中糖分离色谱图Fig.4 Separation chromatogram of sugar in sample 1 and sample 2 by liquid-differential method 3 讨论与结论 通过将GI5250安培检测器和进口仪器相互串联等实验得到GI5000离子色谱系统的检出限和定量限约为全进口仪器的3~4倍,其原因是GI5250安培检测器自身性能与进口检测器存在差距,并且进口泵在稳定输出流动相上优于国产泵。后续需要针对国产安培检测器和泵性能进一步优化。使用GI5000离子色谱系统检测饮料中糖类化合物,进行了方法学测试,对比了全进口Thermo ICS 5000+仪器的检测结果,验证了GI5000离子色谱系统在检测糖类化合物方面的性能。结果显示,5种糖类化合物在0.2~5 mgL-1范围内线性关系良好,检测的线性相关系数均在0.9990以上,重复性RSD≤2.47%,除麦芽糖外,其余四种糖检出限均在0.1 mg L-1以内,麦芽糖检出限为0.105 mgL-1。NY/T 3902-2021标准中葡萄糖的检出限为0.4 mg L-1、果糖和麦芽糖的检出限为1.2 mgL-1、蔗糖的检出限为0.6 mgL-1,表明GI5000离子色谱系统所测得的结果,均能够满足上述相关标准的要求,可满足日常实验室检测需求。以市面上售卖的可口可乐为样品,对5种糖类化合物进行加标回收实验,5种糖类化合物的加标回收率范围为94.13%~114.2%。相对标准偏差在0.22%~4.14%。测得可口可乐中的5种糖类化合物总量为10.34 g/100 g。分别使用全进口仪器Thermo ICS-5000+、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪检测了脉动和茶π饮料中糖类化合物的含量,三种方法检测的结果几乎一致,证明了GI5000离子色谱系统性能的可靠。 参考文献 佚名. 碳水化合物—化学结构. 淀粉与淀粉糖, 2010(2): 36-44. ZHANG Z, KHAN N M, NUNEZ K M, et al. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 2012, 84(9): 4104-4110.DOI:10.1021/ac300176z. 岳虹, 赵贞, 刘丽君, 李翠枝, 邵建波.高效液相色谱法测定发酵乳饮料中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量.乳业科学与技术, 2017, 040(002): 23-26. 樊宏, 陈强. 乳制品中乳糖直接比色测定方法探讨. 中国卫生检验杂志, 2006, 16(3): 296-297. 钟宁, 侯彩云. 三种乳糖检测方法的比较. 食品科技, 2011, 36(7): 263-265. 中华人民共和国卫生部. GB/T 5009.7—2003 食品中还原糖的测定. 北京: 中国标准出版社, 2003. Zhang J L, Dai X, Song Z L, Han R, Ma L Z, Fan G C, Luo X L,One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer, Sensors and Actuators B: Chemical, 2020, 304. ZIELINSKI A A F, BRAGA C M, DEMIATE M I, et al. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stag. Food Science and Technology, 2013, 34(1): 38-43. DOI:10.1590/S0101-20612014005000003. SHANMUGAVELAN P, KIM S Y, KIM J B, et al. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 2013, 380(20): 112-117. DOI:10.1016/j.carres.2013.06.024. MA C M, SUN Z, CHEN C B, et al. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 2014, 145: 784-788. DOI:10.1016/j.foodchem.2013.08.135. WU X D, JIANG W, LU J J, et al. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chemistry, 2014, 145: 976-983. DOI:10.1016/j.foodchem.2013.09.019. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. DANIEL D, LOPES F S, SANTOS V B D, et al. Detection of coffee adulteration with soybean and corn by capillary electrophoresistandem mass spectrometry. Food Chemistry, 2018, 243: 305-310. DOI:10.1016/j.foodchem.2017.09.140. 张欢欢, 李疆, 赵珊, 等. 毛细管区带电泳-间接紫外检测法快速测定食品中乳糖、蔗糖、葡萄糖和果糖. 色谱, 2015, 33(8): 816-821. 马海宁, 华玉娟, 屠春燕, 等. 毛细管电泳法分析藏红花植物细胞多糖中单糖组成. 色谱, 2012, 30(3): 304-308. DOI:10.3724/SP.J.1123.2011.11015. LV X Y, GUO Y X, ZHUANG Y P, et al. Optimization and validation of an extraction method and HPAEC-PAD for determination of residual sugar composition in L-lactic acid industrial fermentation broth with a high salt content. Analytical Methods, 2015, 7: 9076-9083. DOI:10.1039/c5ay01703c. WANG X, XU Y, LIAN Z N, et al. A one-step method for the simultaneous determination of five wood monosaccharides and the corresponding aldonic acids in fermentation broth using highperformance anion-exchange chromatography coupled with a pulsed amperometric detector. Journal of Wood Chemistry and Technology, 2013, 34(1): 67-76. DOI:10.1080/02773813.2013.838268. ZHANG Y, WU J R, NI Q H, et al. Multicomponent quantification of astragalus residue fermentation liquor using ion chromatographyintegrated pulsed amperometric detection. Experimental and Therapeutic Medicine, 2017, 14: 1526-1530. DOI:10.3892/.2017.4673. Young C S . Evaporative light scattering detection methodology for carbohydrate analysis by HPLC.. Cereal Foods World, 2002, 47(1):14-16. 梁亚丽, 张彦玲, 何颖娜. 糖类化合物分离分析方法进展. 河北化工, 2006, (06): 42-44. 梁智安, 王成龙, 龙飞. 液相色谱示差折光法测定酒中的总糖和还原糖.食品安全质量检测学报, 2018, 9(09): 2188-2194. 陈琴呜, 刘文英. HPLC—ELSD在中药糖类分析中的应用. 中草药, 2008, 39(6): 955-957. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. INDORF C, BODé S, BOECKX P, et al. Comparison of HPLC methods for the determination of amino sugars in soil hydrolysates. Analytical Letters, 2013, 46: 2145-2164. DOI:10.1080/00032719.2013.796558. 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法:NY/T 3902-2021. 2021.

  • 【原创大赛】涂料挥发性有机化合物方法研究分析

    【原创大赛】涂料挥发性有机化合物方法研究分析

    [align=center]涂料挥发性有机化合物方法研究分析 [/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]化工室+高杰[/align][align=left]一、方法概述[/align]本方法采用《溶剂型木器涂料 挥发性有机化合物[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法》将溶剂型木器涂料按产品明示的施工比制备混合试样,搅拌均匀后,称取2g试样,用适量的稀释剂稀释后加入标记物己二酸二乙酯后通过[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]联定性己二酸二乙酯(沸点251°C)之前的组分。用内标法测试其含量二、仪器与试剂及标准品 1.仪器 1.1 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-火焰离子化检测器 1.1 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪2.试剂2.1乙腈:色谱纯,不含任何干扰测试的物质。3.标准品3.1内标:试样中不存在的化合物,且该化合物能够与色谱图上其他成分完全分离,纯度至少为99%;如,邻苯二甲酸二甲酯;领苯二甲酸二乙酯等。3.2标记物:己二酸二乙酯,纯度大于99%3.3校准化合物:甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、苯、甲苯、乙苯、二甲苯、三乙胺、二甲基乙醇胺、2-氨基-2-甲基-1-丙醇、1,2-丙二醇、1,3-丙二醇、二乙二醇、乙二醇单丁醚、二乙二醇单丁醚、二乙二醇乙醚醋酸酯、二乙二醇丁醚醋酸酯、2,2,4-三甲基-1,3-戊二醇。纯度至少为99%,或已知纯度。 4.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件色谱柱:聚二甲基硅氧烷毛细管柱,30m×0.25mm×0.25μm 进样口温度:300℃;检测器:FID,温度300℃:柱温:起始温度45℃保持4min,然后10℃/min升至230℃保持15min 载气流速:1.0ml/min 分流比:分流进样,分流比可调:进样量:1.0ul。三、测试步骤 1 密度 按照产品明示的施工比例制备混合试样,搅拌均匀后,按照GB/T6750-2007的规定测定试样的密度。 2 水分含量 按照GB18582-2009 附录B进行。 3 挥发性有机化合物(VOC)含量四、分析步骤1.校准1.1如果校准中用到的化合物都可以买到,应使用下列方法测定其相对校正因子。分别称取一定量(精确至0.1mg)经过鉴定出的各种校准化合物于配样瓶中,称取的质量与试样中各自化合物的含量应在同一数量级。再称取与待测化合物相同数量级的内标物(3.1)于同一配样瓶中,用适量的稀释剂稀释混合物,密封配样并摇匀。1.2相对校正因子的测试:在与测试试样相同的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件下,优化仪器条件,将适量的校准混合物注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,记录峰面积,计算每种化合物的相对校正因子;若出现未能定性的色谱峰或者校准用的化合物未商品化,假设其相对于邻苯二甲酸二甲酯的校正因子为1.0。2试样的测试2.1试样的配制:按产品明示的施工比制备混合试样,搅拌均匀后,称取1g(精确至0.1mg)以及被测物相同数量级的内标物于配样瓶中,加入适量稀释剂溶剂10mL(2.1)于同一配样瓶中,密封并摇匀。五、结果处理1将1.0ul按照2.1配置的试样注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],记录色谱图,并计算各种保留时间低于标记物化合物峰面积,然后按式1的计算公式分别计算试样中所含的有机化合物质量分数。[align=center][img=,195,87]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071647_01_2904018_3.png[/img][/align][align=left]式中:w漆i,式中挥发性有机化合物i的质量分数,单位克每克(g/g) [/align] Ri,被测化合物i的相对校正因子; mis,内标物的质量,单位为克(g) ms,试样的质量,单位为克(g); Ai,被测化合物i的峰面积; Ais,内标物的峰面积。涂料产品按式(VOC)含量按下列公式计算[align=center][img=,325,103]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071648_01_2904018_3.png[/img].[/align][align=left]式中,ρ(VOC)涂料产品的VOC含量,单位为克每升(g/L) [/align] wi,试样中被测化合物的质量分数,单位为克每克(g/g) ωw,试样中水的质量分数,单位为克每克(g/g); ρs,试样的密度,单位为克每毫升(g/ml) ρw,水的密度,单位为克每毫升(g/ml) 1000,转换因子。六、方法检出限 用10ppm浓度的混合标准品重复10次分别计算每个组分的标准偏差,以三倍的标准偏差作为每个物质的检出限,以综合作为VOC方法的检出限。[align=center][img=,690,304]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071649_01_2904018_3.png[/img][/align][align=center][img=,690,359]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071651_01_2904018_3.png[/img][/align][align=center][img=,690,419]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071653_01_2904018_3.png[/img][/align][align=center][img=,690,222]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071708_01_2904018_3.png[/img][/align][align=center][img=,690,91]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071709_01_2904018_3.png[/img][/align]七、回收率 用不含VOC的空白溶剂,如乙腈,做空白加标回收率,回收率试验值应在80%——110%之间。[align=center][img=,303,401]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071711_01_2904018_3.png[/img][/align][align=center][img=,305,194]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071712_01_2904018_3.png[/img][/align]八、总结本方法中VOC检出限分别为0.319ug/L,0.003 ug/L,0.001 ug/L,0.003 ug/L;本方法的精密度分别为1.35%,0.00,1.41%,2.25%,符合《室内内墙涂料 挥发性有机化合物方法》(GB 18582-2008)中给出卤代烃统一样品的精密度要求.对引用水中卤代烃含量测定方法的检出限、精密度和准确度的评价,本方法测定水中卤代烃数据准确,结果可信。此方法的准确好,测定结果真实可靠,可用于水中卤代烃的测定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制