当前位置: 仪器信息网 > 行业主题 > >

乙酰水杨酸用于植物细胞

仪器信息网乙酰水杨酸用于植物细胞专题为您提供2024年最新乙酰水杨酸用于植物细胞价格报价、厂家品牌的相关信息, 包括乙酰水杨酸用于植物细胞参数、型号等,不管是国产,还是进口品牌的乙酰水杨酸用于植物细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰水杨酸用于植物细胞相关的耗材配件、试剂标物,还有乙酰水杨酸用于植物细胞相关的最新资讯、资料,以及乙酰水杨酸用于植物细胞相关的解决方案。

乙酰水杨酸用于植物细胞相关的资讯

  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 西北农林科技大学单卫星教授团队发现负调控植物对寄生疫霉菌抗性新机制
    近日,西北农林科技大学旱区作物逆境生物学国家重点实验室单卫星教授团队在国际权威学术期刊《Molecular Plant Pathology》(Q1,IF=5.663)在线发表了题为《The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2》的研究论文,该研究发现了一种新的负调控植物对寄生疫霉菌抗性的类Raf激酶基因,为植物病虫害防控提供新的策略。卵菌是一类独特的植物病原菌,虽然其在系统发育上与真正的真菌相距甚远,但仍然会造成严重的作物减产和环境破坏。为了获得抗病性,植物已经形成了两种方法:动员抗病蛋白和抑制易感因子。研究植物对卵菌病原体易感性的遗传基础是开发新的抗病策略的有效途径之一。寄生疫霉菌(Phytophthora parasitica)在植物中引起破坏性疾病,从作物到树木都有广泛的宿主,已成为卵菌研究的模式病原体。通过使用拟南芥–寄生疫霉菌致病系统(已被证明涉及水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路),科学家们最近又发现了几种植物对寄生疫霉菌的易感因子。例如,与结瘤蛋白相关的MtN21家族基因AtRTP1(拟南芥对寄生疫霉菌1的抗性)通过调节活性氧(ROS)产生、细胞死亡进程和PR1表达来介导植物对寄生疫霉菌的敏感性。然而含有拟南芥VQ基序的蛋白VQ29已经被证明介导植物对寄生疫霉菌的抗性,而不依赖于已知的SA、JA和ET信号通路、亚麻荠素(Camalexin)生物合成和PTI信号。这种差别可以用拟南芥和寄生疫霉菌之间复杂的相互作用来解释。因此,有必要进一步研究植物对该病原菌的防御机制和敏感性。丝裂原活化蛋白激酶(MAPK)级联反应通常由MAPK激酶激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK组成,是植物免疫信号网络中的重要节点,传递来自不同刺激物的信号以调节下游防御反应。植物MAPKKKs由三个家族组成:MEKK家族、类Raf家族和ZIK家族。MEKK激酶通常在上游发挥作用,激活MAPKK-MAPK级联,但类Raf激酶与不同的底物相互作用,参与多种生命活动。与此同时,类Raf激酶也在植物与多种病原体的相互作用中发挥作用。然而,类Raf激酶是否参与植物与疫霉菌的相互作用及其机制仍基本未知。在这项研究中,作者鉴定了一个拟南芥T-DNA突变体,该突变体通过在MAPKKK中插入类Raf基因Raf36而增强了对寄生疫霉菌的抗性。随后作者通过CRISPR/Cas9技术构建raf36突变体,并同时构建了Raf36互补株和过表达转化株,感染实验结果一致表明,Raf36介导了拟南芥对寄生疫霉菌的敏感性。利用病毒诱导的基因沉默实验,作者沉默了烟草中的Raf36同源基因,并通过感染实验证明了Raf36的保守免疫功能。突变分析表明,Raf36的激酶活性对其免疫功能以及与MKK2的相互作用非常重要。作者接着通过构建和分析mkk2突变体、MKK2互补株和过表达转化株,发现MKK2是对寄生疫霉菌感染的反应中的一种阳性免疫调节因子。此外,对mkk2-raf36双突变株的感染实验表明,MKK2是raf36对寄生疫霉菌产生抗性所必需的。综上所述,作者发现一种类Raf激酶Raf36是一种新的植物敏感因子,在MKK2上游发挥作用,并直接以其为靶点,对植物对寄生疫霉菌的抗性进行负性调节。在使用萤火虫荧光素酶互补测定AtRaf36与AtMKK2的相互作用实验中,使用PlantView100植物活体成像系统进行拍摄。论文链接 https://doi.org/10.1111/mpp.13176广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 【文献速递】西北农林科技大学单卫星教授团队发现负调控植物对寄生疫霉菌抗性新机制
    近日,西北农林科技大学旱区作物逆境生物学国家重点实验室单卫星教授团队在国际权威学术期刊《Molecular Plant Pathology》(Q1,IF=5.663)在线发表了题为《The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2》的研究论文,该研究发现了一种新的负调控植物对寄生疫霉菌抗性的类Raf激酶基因,为植物病虫害防控提供新的策略。卵菌是一类独特的植物病原菌,虽然其在系统发育上与真正的真菌相距甚远,但仍然会造成严重的作物减产和环境破坏。为了获得抗病性,植物已经形成了两种方法:动员抗病蛋白和抑制易感因子。研究植物对卵菌病原体易感性的遗传基础是开发新的抗病策略的有效途径之一。寄生疫霉菌(Phytophthora parasitica)在植物中引起破坏性疾病,从作物到树木都有广泛的宿主,已成为卵菌研究的模式病原体。通过使用拟南芥–寄生疫霉菌致病系统(已被证明涉及水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路),科学家们最近又发现了几种植物对寄生疫霉菌的易感因子。例如,与结瘤蛋白相关的MtN21家族基因AtRTP1(拟南芥对寄生疫霉菌1的抗性)通过调节活性氧(ROS)产生、细胞死亡进程和PR1表达来介导植物对寄生疫霉菌的敏感性。然而含有拟南芥VQ基序的蛋白VQ29已经被证明介导植物对寄生疫霉菌的抗性,而不依赖于已知的SA、JA和ET信号通路、亚麻荠素(Camalexin)生物合成和PTI信号。这种差别可以用拟南芥和寄生疫霉菌之间复杂的相互作用来解释。因此,有必要进一步研究植物对该病原菌的防御机制和敏感性。丝裂原活化蛋白激酶(MAPK)级联反应通常由MAPK激酶激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK组成,是植物免疫信号网络中的重要节点,传递来自不同刺激物的信号以调节下游防御反应。植物MAPKKKs由三个家族组成:MEKK家族、类Raf家族和ZIK家族。MEKK激酶通常在上游发挥作用,激活MAPKK-MAPK级联,但类Raf激酶与不同的底物相互作用,参与多种生命活动。与此同时,类Raf激酶也在植物与多种病原体的相互作用中发挥作用。然而,类Raf激酶是否参与植物与疫霉菌的相互作用及其机制仍基本未知。在这项研究中,作者鉴定了一个拟南芥T-DNA突变体,该突变体通过在MAPKKK中插入类Raf基因Raf36而增强了对寄生疫霉菌的抗性。随后作者通过CRISPR/Cas9技术构建raf36突变体,并同时构建了Raf36互补株和过表达转化株,感染实验结果一致表明,Raf36介导了拟南芥对寄生疫霉菌的敏感性。利用病毒诱导的基因沉默实验,作者沉默了烟草中的Raf36同源基因,并通过感染实验证明了Raf36的保守免疫功能。突变分析表明,Raf36的激酶活性对其免疫功能以及与MKK2的相互作用非常重要。作者接着通过构建和分析mkk2突变体、MKK2互补株和过表达转化株,发现MKK2是对寄生疫霉菌感染的反应中的一种阳性免疫调节因子。此外,对mkk2-raf36双突变株的感染实验表明,MKK2是raf36对寄生疫霉菌产生抗性所必需的。综上所述,作者发现一种类Raf激酶Raf36是一种新的植物敏感因子,在MKK2上游发挥作用,并直接以其为靶点,对植物对寄生疫霉菌的抗性进行负性调节。在使用萤火虫荧光素酶互补测定AtRaf36与AtMKK2的相互作用实验中,使用PlantView100植物活体成像系统进行拍摄。论文链接 https://doi.org/10.1111/mpp.13176广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。  为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。  此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 血糖仪检测不准?你是否服用这些药物
    血糖是血液葡萄糖含量的简称。葡萄糖是人体的重要组成成分,也是能量的重要来源。正常人体每天需要很多的糖来提供能量,为各种组织、脏器的正常运作提供动力。所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。血糖不宜过低,也不能过高。当血糖过高的时候,会增加肾小球的滤过压力,甚至会强制破坏肾小球的滤过功能,导致肾单位被破坏。除此之外,对神经、视网膜、心脑血管也有一定程度的损伤。 所以,定期对体内血糖水平进行监测是十分必要的。空腹时,全血血糖的正常值为3.9~6.1mmol/L,可换算为70~110mg/dL,凡是在此范围内的空腹全血血糖值都属于正常情况。长期服用一些药物会导致血糖值出现偏差,造成药物性高血糖。如降压药物、降脂药物、抗病毒药物、抗菌药物、免疫抑制剂、抗精神病类药物、糖皮质激素等。这些药物在用于治疗非血糖相关性疾病时,通过损害胰岛β细胞分泌功能而致胰岛素分泌不足,或降低外周组织对胰岛素的敏感性,进而致血糖升高。另外,服用一些药物短期内不会对血糖造成明显影响,检测时却会误导血糖仪,如对乙酰氨基酚、维生素C、水杨酸、尿酸、 胆红素、甘油三酯、麦芽糖、木糖等。其中,维生素C具有抗氧化作用,会影响血糖的测定,大部分在医院使用的血糖检测设备是通过葡萄糖氧化酶法检测血糖,葡萄糖氧化酶具有氧化的作用,而维生素C具抗氧化的效果,这会减弱葡萄糖氧化酶的氧化效果,从而导致测量值偏低。在日常生活中,血糖监测能够直接了解机体实际的血糖水平,有助于我们判断自身的健康情况,在疾病预防中起到重要作用。
  • 2019版《珀金埃尔默中药及天然药用植物分析文集》发布
    珀金埃尔默最新推出《珀金埃尔默中药及天然药用植物分析文集》,基于珀金埃尔默独具优势的原子光谱、分子光谱、色谱与质谱等技术在中药和药用植物分析中的深入应用,精选出涉及杂质元素、营养元素和活性成分分析,指标成分定量,农药残留和真菌毒素检测,复杂药物样品前处理,分析方法验证和药物生产中的质量控制等领域的相关文献,为中药与药用植物的安全性、有效性使用提供强有力的支持!内容先睹为快!第 1 篇《ICP-MS测定糖尿病人药膳常用中药中的微量元素》本文通过NexION ICP-MS准确、快速分析糖尿病人药膳中经常添加的川贝、知母、麦冬、党参、葛根、黄芪、桑叶、山楂、生地、熟地、太子参、天花粉和薏苡仁等13种常用中药中的铬 (Cr)、锰 (Mn)、铜 (Cu)、锌 (Zn)、硒 (Se) 和钒 (V) 等6种微量元素,探讨各种微量元素与其降血糖活性的关系,为药膳或中药治疗糖尿病提供可靠的实验方法依据,并为药理研究提供方法参考。第 2 篇《ICP-MS 分析啤酒花中的有毒和营养元素》珀金埃尔默 NexION ICP-MS结合Titan MPS微波消解样品制备系统能够对啤酒花样品中的30种有毒和营养元素进行准确可靠的分析,分析采用标准和碰撞模式,完成每个样品分析仅需 100 秒,并通过分析相应NIST 标准植物材料验证所用方法的准确度。第 3 篇《药用工业大麻中重金属的消解、测定和方法验证》本文按照USP 通则233中所述方案,使用珀金埃尔默NexION 1000 型ICP-MS结合Titan MPS微波消解样品制备系统,对药用工业大麻样品中的重金属进行了准确可靠的分析,并在方法准确性、重复性、耐用性等方面按照USP 通则233的要求进行了验证,分析结果全面符合USP 通则 233检验方案的接受标准。第 4 篇《GC-FID 和 GC-MS 定性定量分析药用工业大麻中的活性成分四氢大麻酚和大麻二酚》使用Clarus 690氢火焰 (FID) 气相色谱快速、准确测定工业大麻中的活性成分四氢大麻酚 (THC) 和大麻二酚 (CBD),以用于评定用于药用性质的工业大麻植物材料;Clarus SQ8 气相色谱与质谱联用 (GC-MS) 快速、准确识别确定THC 和CBD,用于大麻性质及含量确认的法律安全测试。第 5 篇《满足工业大麻农药残留和真菌毒素监管要求的液质联用分析方法》使用珀金埃尔默QSight三重四级杆液质联用(LC-MS/MS)分析添加在工业大麻提取物中的所有66种农药(含典型的需要GC-MS/MS方法分析的强疏水性农药和含氯农药)和 5 种真菌毒素。采用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及简单的乙腈溶剂提取方法,所有分析物的测定回收率在70% - 120%,符合美国加州相关法规规定。第 6 篇《HPLC 测定人参根茎中的皂苷》本文介绍了一种同时测定7种皂苷的高效液相色谱(HPLC)方法,7种皂苷在6分钟内实现基线分离,方法线性相关系数0.997,方法精密度RSD≤ 1.2%,回收率97% - 108%。第7 篇《中药黄连的红外光谱快速质量控制》使用傅里叶变换红外光谱法与衰减全反射(ART)附件技术,确认中药黄连中小檗碱的存在,对含有小檗碱的三种药材进行区分鉴别。测定过程简单快速,无需对样本进行复杂繁琐的分离提取。第 8 篇《正红花油指标成分的红外光谱定量分析》使用傅里叶变换红外光谱结合偏最小二乘法建立校正模型,对正红花油中的水杨酸甲酯、丁香酚和 α-蒎烯含量进行准确测定,结果与气相色谱方法一致。傅里叶变换红外光谱结合衰减全反射(ART)附件技术,在保证成分含量测试准确度的前提下,达到缩短测定时间,降低检测成本,是对正红花油及类似产品进行简单快速质控的有效方法。资料下载扫描下方二维码,即可获取珀金埃尔默中药及天然药用植物分析文集关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • “癌王”为何如此具有攻击性 胰腺癌细胞转移新机制揭示
    胰腺癌的侵袭性很强,患者预后很差,5年生存率仅为5%,而大多数与胰腺癌相关的死亡是由于肿瘤转移侵入了其他器官。在eLife发表的一项研究中,日本大阪大学研究人员揭示了一种以前未知的胰腺癌转移机制,这种分子机制或是开发有效靶向治疗的第一步。  该项研究分析了人类胰腺肿瘤组织,并证明一种名为ARL4C的小信号蛋白会在胰腺癌患者中过表达。关于这种蛋白质功能的初步研究结果表明,它可能与胰腺癌细胞的迁移和侵袭能力有关。  为了对此进行研究,并确认ARL4C在侵入胰腺癌细胞中的位置,研究人员精心设计了一个模拟癌细胞侵入人体的实验。他们创建了一个3D培养装置,可监测侵入周围胶原凝胶的癌细胞,并通过显微镜观察其中含有荧光标记的ARL4C对活细胞的侵袭。  研究人员原田秋和解释说:“我们发现ARL4C定位于细胞表面所谓的侵袭性伪足,其功能类似于侵袭足类,但在结构上与侵袭足类不同。”侵袭足类是癌细胞用来侵入其他组织的细胞腹面产生的足状突起,而侵袭性伪足比侵袭足类更长,直径更大,并从细胞前端延伸。“在这些伪足中,ARL4C招募了另一种称为IQGAP1的蛋白质(其在包括胰腺癌在内的多种癌症中也高度表达),它将一种称为MMP14的酶运输到伪足中,允许癌细胞打破并侵入胶原凝胶或细胞外基质。”  研究人员希望这种新机制的揭示有助于胰腺癌的治疗。具体来说,就是采用反义寡核苷酸(ASO)的治疗方法。ASO是单链DNA的短分子,在细胞内起作用以影响(阻断)蛋白质的产生。靶向ARL4C的ASO能够抑制植入在免疫缺陷小鼠胰腺的胰腺癌细胞的淋巴结转移。如果ARL4C被阻断,癌细胞的侵袭性较弱,扩散的可能性就较小。  研究人员称,该项发现尽管只是初步的,但为胰腺癌这种极具侵袭性的癌症开辟了有希望的新治疗途径,并阐明了其转移机制。
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。  此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。  市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 从造纸厂走出的顶尖科学家|未来科学大奖得主柴继杰
    8月16日上午,从北京传来消息,西湖大学植物免疫学讲席教授柴继杰荣获“未来科学大奖—生命科学奖”。  与他一同分享这个奖项的,是中国科学院遗传与发育生物学研究所研究员周俭民,两人在植物免疫上的研究合作,跨度将近20年。  颁奖词写道:“奖励他们为发现抗病小体并阐明其结构和在抗植物病虫害中的功能做出的开创性工作。”  柴继杰刚刚入职西湖,但很多人对这个名字并不陌生。不仅因为他是中国大陆首位“德国洪堡教授”,还有他颇为传奇的人生经历。  这是一位从造纸厂走出的世界顶尖科学家。  柴继杰教授  1. 纸浆  柴,这个字拆开来看,是“此木”,就是“这个木头”。柴继杰似乎注定和植物有缘。  初中毕业时,他倔强地拒绝接替父亲的岗位。父亲是烤烟的一把好手,在烟草收购站工作,在上世纪70年代末,那是可以领细粮的“国家工作”。作为热带植物的烟草,想要在辽东半岛存活,得掐准时间。春末在大棚育苗,然后移栽到大田上,两个月可以收割。烟草茂盛时,比人还高。1980年的夏天,14岁的柴继杰穿梭其间,帮着家里收烟叶子。他没考上重点高中,但无论如何,普通高中他一定要去。七年后,他从大连轻工业学院造纸专业毕业,被分配到丹东鸭绿江造纸厂,做助理工程师,离家比较近。那份工作,那个专业,他说不上喜欢或不喜欢,只是因为报考大学选专业的时候,稀里糊涂就选了。  鸭绿江造纸厂老照片  把木头变成纸浆,是一个艰难的过程。造纸厂的水循环中有大量微生物,如果不及时处理,在高温下发酵变臭,添加物中还有各种含硫物质,味道难闻。再加上蒸汽和水流的噪音,让人避之不及。工人们的牌局就是在这样的氛围中进行的,柴继杰偶尔也会加入。虽然他并不觉得造纸厂的环境有多么难以忍受,但隐隐感觉这并不是他想要的生活。上大学和工作期间,柴继杰曾两次到访北京。他至今仍记得第一次见到立交桥时的震撼,飞驰的汽车、城市的繁华,让他莫名心动。柴继杰回忆说:  对当时的普通人来说,最有效也是最好的改变命运的办法,就是读书。  柴继杰对这次突围有着清晰的考虑。首先,他想去北京 其次,他觉得石油化工有行业优势,所以选择报考石油化工科学研究院。他对自己很有信心,他在大学里的考试成绩不错,尤其是化学相关的学科。  柴继杰花了半年时间备考,笔试通过后,石科院专门派人来造纸厂对他考察,对方很疑惑,这名考生居然来自工厂,且已经工作四年。考察人员走之前,留下一句话:“竟是这样的环境。”柴继杰被应用化学专业录取了。研究生期间的补贴比他在工厂的工资还高,他很开心。1994年,他继续读博,考入中国协和医科大学,误打误撞进入晶体学领域。晶体学是一个伏笔,1994年也是一个伏笔。 这一年,人类首次克隆出植物的相关抗病基因。植物没有动物一样的抗体免疫系统,只能通过不断进化获得防御机制,甚至和病原体协同进化。早在上世纪40年代,美国植物病理学家弗洛尔提出著名的“基因对基因”假说。该假说认为当病原体侵入植物时,会释放出“毒性因子”。在很多情况下这些毒性因子会阻碍植物的生长发育,促进病原体生长。但是在有些植物存在相应的受体,会“感知”这些病原体的“毒性因子”,从而引起植物的免疫反应。而这些配体和受体,都是双方基因表达出来的。另一个伏笔是蛋白质晶体学,柴继杰在博士期间的研究方向。蛋白质是参与所有生命活动的重要成员。本质上,它们通过基因来合成。作为一个“密码本”,基因的序列决定了蛋白质的氨基酸序列。不同的蛋白质有不同氨基酸序列,形成不同排列组合、空间折叠,即蛋白质的三维结构。如果条件合适,蛋白质会形成有序“堆积”,即晶体。在显微镜下,蛋白质晶体看上去与宝石很像。蛋白质晶体会对x射线产生衍射。通过收集衍射数据,可以计算出蛋白质的三维结构。蛋白质的三维结构对认识其作用机制具有非常重要的意义。这两个伏笔已经暗暗交织在一起,影响了柴继杰未来的人生走向。尽管读博士期间的柴继杰只是对科研很感兴趣,还说不上理想。事实上,一直到申请普林斯顿的博后时,他身上“造纸厂出身”的标签依然醒目:起点低,基础差,英语也不行。听到类似的声音,柴继杰也不反驳,任凭皱纹在微笑中绽放。他从来没觉得自己不行。很少有人知道,他考入的那所普通高中,在1983年的夏天,他是唯一考上本科的学生。只是没几年,这所“微不足道”的学校就被撤销了。他从唯一的一个,成了孤独的一个。  2. 冷泉  冷泉颇有禅意,以此命名的一个港湾,其实位于纽约长岛之上,《了不起的盖茨比》就是以长岛为背景。那是一战后、经济大萧条之前,纸醉金迷的爵士时代。而冷泉港实验室始建于1890年,也不知见证了多少个跌宕起伏的时代,这里对生命研究的探索一直在持续。把蛋白样品装入液氮罐,放到后备箱,就可以出发去冷泉港了。施一公开车,副驾驶坐着柴继杰。冷泉港的同步辐射光源时间非常紧张,需要预约。同步辐射光源能量相比普通衍射仪光源高得多,通常可以大大提高晶体衍射的分辨率。所以一旦预约上,一般都会连续实验,不分昼夜。冷泉港实验室给施一公和柴继杰提供了一个休息室,只有一张床位,两人每次都争着把床位让给对方,自己打地铺。柴继杰是施一公的博士后。1998年,施一公正在普林斯顿大学组建自己的实验室,翻到了柴继杰的简历,他觉得这个人很“邪乎”,居然在最基层的造纸厂工作了四年,还能再考上研究生。按捺不住好奇心,施一公拨通了北京的电话。他觉得眼前这个比他还大一岁的博士后申请人,能从造纸厂一路坚持下来,一定有他的过人之处。新入职的两位博士后到普林斯顿大学报到的第一天,施一公在实验室旁边的会议室里,认认真真地讲述了研究课题要求和初步的实验设计,讲完后,其中一位博后去准备实验了,剩下柴继杰站在那里没有动:  “一公,你能不能再讲一遍?”柴继杰问。  “你听懂多少?”施一公反问。  “我,可能大部分没太听懂……”柴继杰略显尴尬地说。  施一公很无奈,不得不从头开始,一点一点从基础教起。以至于后来柴继杰回忆起这段历史时还很得意,因为他的生物学实验技术都是施一公亲自传授,绝对的嫡传。是啊,不然呢?柴继杰似乎自带“免疫体质”,这些他都没有太放在心上。他听从了施一公的建议,每天坚持阅读英文报纸及文献,以及,把烟戒了。因为吸烟要下楼,浪费时间。 那些年,在反复开往冷泉港的小车上,正驾驶和副驾驶位置上的两个人,年龄相仿,一个是普林斯顿最年轻最拼的教授之一,一个是在33岁的时候重拾生物学的博士后。  一个愿意等待奇迹,一个愿意相信奇迹。等到普林斯顿的樱花五开五落,柴继杰终于找到了做科研的感觉,也发了不错的文章。他自信满满,但依然不敢说有什么梦想。他一度考虑到工业界工作,施一公把他劝住了,对他说了一句:  继杰,你肯定会后悔的。  当时,北京生命科学研究所(北生所)刚刚组建,在美国招聘独立实验室负责人(PI)研究员,所长是王晓东,也是著名的生物化学家。施一公带着他驱车前往面试地点康涅狄格纽黑文。柴继杰还是坐副驾驶。这一趟旅程之后,他希望自己有“独立驾驶”的机会。  这是北生所第一次招聘PI,一共13位候选人进入最终的面试。面试地点就设在纽黑文国际机场附近的一家酒店。一天面试下来,大家投票,6人顺利入选,柴继杰排在第七位,个别评委对他的潜力仍然存疑。王晓东问施一公:“柴继杰的潜力究竟如何?你给句话吧。”施一公径直回复:“如果继杰和我竞争同一个高难度课题,我的胜率大约50%。”大家释然。经过五年的博士后训练,柴继杰在科学研究上已自信满满。回国之前,他找施一公长聊,他说:“施老师啊,我走了以后,谁和你一起做难的课题啊?”这话说得,就好像傲娇的孙悟空离别唐僧——师傅啊,以后谁帮你打妖怪?而施一公的千言万语,其实早就写入给柴继杰的推荐信里。按照惯例,柴继杰看不到推荐信的内容,所以施一公说了什么,他至今无从知晓。  3.草木  回国后的第二年,柴继杰又重新点燃了香烟,复吸了。这一年他39岁,已近不惑。北京生命科学研究所刚成立,也就二十几个实验室,红色四层建筑。柴继杰的实验室在二楼,对面是周俭民的实验室,中间隔着一些共用的实验设备。周俭民致力于研究植物和微生物相互作用机理,接下来即将发生的合作,正是一种植物撮合的——烟草。柴继杰经常和周俭民一起抽烟。柴继杰一次次掐灭烟头,却逐渐燃起了真正的热情——接下来20年他真正要施展的领域——植物免疫。  周俭民(左)和柴继杰(右)  植物可以说是人类文明的基石之一,特别是农作物。柴继杰经常提起爱尔兰大饥荒,1845年到1850年间,爱尔兰人口锐减了四分之一,起因就是晚疫病菌的卵菌造成的马铃薯腐烂。科幻电影里也展现出这种忧虑——《星际穿越》一开场,农作物的枯萎病蔓延,最后只剩下玉米艰难生存。可人类对植物免疫知之甚少,水杨酸就是最有代表性的故事。古希腊人就知道咀嚼柳树皮可以减轻分娩痛苦。直到1828年,化学家从柳树皮中提炼出少量活性成分。1898年,乙酰水杨酸被合成,这就是著名的解热镇痛药物阿斯匹林。但直到阿斯匹林畅销全球差不多一个世纪后,人类才搞清楚,水杨酸是植物免疫机制中的一种信号分子,最初用来做验证实验的植物恰好就是烟草。周俭民和柴继杰开始合作的时候,虽然前人已经提出了“基因到基因”的理论,并通过遗传方法克隆到的一些抗病基因,但植物的这些抗病蛋白究竟是如何工作的,工作机制是什么,基本一片空白。而理解这一机制,对更好利用抗病蛋白具有重要意义。柴继杰和周俭民从2004年开始合作,直到2007年才有了一些关于抗病蛋白的初步结果。他们描述了这样一场战斗。一边是番茄中抗性蛋白Pto,一边是病原菌产生的效应蛋白AvrPto。Pto伪装成“空城”, AvrPto像是病原菌的先头部队,一旦先头部队误入空城,城上的Prf蛋白就会燃起烽火,传递战事信号。这后来被称为“诱饵模型”,他们捕获到了AvrPto-Pto的结合状态,并通过与周俭民实验合作,探索其免疫机制,这项成果发表在Nature上。虽然这项工作在认识抗病蛋白作用机理的道路上迈了一步,但是仅仅是万里长征的第一步。但受限于当时的技术条件,柴继杰和同事在植物免疫领域的探索“沉寂”了好些年,他们也会做一些植物抗病蛋白之外的研究,保持实验室的科研节奏。植物不会动,没有血液循环,但进化出复杂的免疫机制,每一个细胞,就是一个部队。仅仅是在细胞膜上,就有很多蛋白质肩负着对抗病原体的任务,它们像一个个哨兵,守卫着植物健康生长。神奇的是,柴继杰和团队更多地是用昆虫细胞来表达植物抗病蛋白,表达效果更好。研究植物竟然是借助昆虫细胞,生命进化遥相呼应,正如我们对卑微生命的语言描述,常把两者放在一起:草木虫豸。  4.花环  熟悉施一公的人都知道,他喜欢给学生上课,也喜欢和年轻学生交流。2005年,施一公在清华讲课,台下一位自称来自北大的女生提问,问题很精彩,引起了施一公的关注,问她,你是谁的学生?  “柴大老板。”女生回答说。  “哪个柴大老板?”施一公似乎听懂了,  故意反问。  “柴继杰,柴大教授!”女生得意地回答。  “哦,继杰啊,是我的学生。”施一公故  意漫不经心地笑着说。  “我们柴老师觉得,他是青出于蓝而胜于蓝!”女生话语里透着几分骄傲。  这段对话,同样让施一公倍感骄傲。直到今天,柴继杰仍是他实验室培养出来的最得意的博士后之一。施一公在很多地方不断重复这个故事,在他看来,“输在起跑线上”并不那么重要,关键还是后程发力。柴继杰主攻的植物免疫大致分成两个层面,细胞膜上,由膜表面识别受体(PRR)直接识别病原体,包括受体激酶和受体蛋白两种 细胞内,由核苷酸结合和富含亮氨酸重复序列受体(NLR),识别病原体的效应因子,从而引发免疫效应。根据N端结构域不同,NLR又可以分为CNL和TNL。2013年前后,柴继杰和团队在PRR领域的研究已经取得多项突破,他们发现,不仅是植物免疫、还包括植物生长发育,二聚化是植物受体激酶活化的最小单位,而受体蛋白的活化也遵循“二聚化”的基本规律。这些发现可以为培育广谱抗病作物品种提供理论基础。2017年又是一个转折点。凭借受体激酶的研究,柴继杰与合作者获得国家自然科学二等奖。同年,柴继杰获得德国“洪堡教席奖”,前往普朗克植物育种研究所继续开展研究。  在清华,柴继杰经常是第一个到实验室,最后一个走。“我们很怀疑,柴老师有没有逛过清华园。”柴继杰的同事说。普朗克植物育种研究所一派田园风光,这所创建近百年的研究所,拥有自己的试验田和温室大棚。每到傍晚时分,柴继杰会如期穿梭在其中,一边快走锻炼身体,戴着耳机听音乐,一边思考这一天来的研究工作。以及,他彻底戒掉了香烟。  柴继杰在德国  2019年,更大的突破接踵而至。柴继杰团队揭示CNL类抗病蛋白ZAR1的不同状态,识别到病原体信号时,五个ZAR1蛋白会聚合到一起,形似一朵紫金花。柴继杰和周俭民为它取名为“抗病小体”,这被认为是植物免疫领域里程碑事件。“抗病小体”的激活,会引发植物免疫反应和细胞死亡。“抗病小体”的外形和施一公研究过的凋亡体有一种呼应,凋亡体是花环形,而两者都可以和细胞死亡相关。看到结构后,柴继杰展现出一种敏锐的直觉,虽然结构相似,但后者功能可能不同。“抗病小体”的中心有一个凸起的结构,柴继杰猜测可能和细胞膜通道或膜孔有关。之后,柴继杰和周俭民合作以及其他老师合作,发现 “抗病小体”可以抵达细胞膜,形成钙离子通道,进而引发后续的免疫反应。2020年,柴继杰和团队继续突破,发现TNL类抗病蛋白RPP1四聚化后,会产生全新的核苷类化合物,作为“第二信使”,从而起始植物的免疫和死亡通路。这是2022年柴继杰和合作者连续发表五篇关于植物抗病蛋白的文章。快吗?柴继杰对此的回答是:我们为此准备了近20年。  柴继杰在植物房  现在,柴继杰和他的团队,已经打扫好新的实验室,包括几间植物房,播下了种子,包括拟南芥、水稻,还有本氏烟草。这些都是理想的模式植物。柴继杰画了一张图,上面是植物免疫的各种模式,其中还标注了很多问号。在西湖大学,他要把这些问号拉直,并且探索帮助植物提高免疫的新机制和方法。植物房里的种子刚刚冒出苗头。柴继杰对新环境很喜欢,他的实验室在西湖大学云栖校区,这是杭州著名的风景区之一,周围低山环绕。曾经,他向往都市生活去考了研究生,但现在他更喜欢草木虫豸。曾经,他为了能继续上学拒绝烟叶田,但现在却心甘情愿地在实验室种上烟草。时间给他画了一个圈,就像一个花环。
  • 中科院昆明植物研究所预算96万元采购流式细胞仪,需NMPA和SFDA认证
    7月5日,中国科学院昆明植物研究所流式细胞分析仪采购项目在线公开招标,预算金额为96万元人民币。用于植物倍性鉴定,用于遗传进化、开展倍性育种和杂交育种等相关工作。招标项目的潜在投标人应在www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层获取招标文件,并于2024年07月26日 09点30分(北京时间)前递交投标文件。包号货物名称数量交货期指定到货港项目现场(交货地点)1流式细胞分析仪1套30天昆明机场中国科学院昆明植物研究所指定地点总则1、工作条件除非在技术规格中另有说明,所有仪器、设备和系统都应符合下列要求:1.1 适于在气温为摄氏-40℃~+50℃和相对湿度为90%的环境条件下运输和贮存。1.2 适于在电源220V(±10%)/50Hz、气温摄氏+15℃~+30℃和相对湿度小于80%的环境条件下运行。能够连续正常工作。1.3 配置符合中国有关标准要求的插头,如果没有这样的插头,则需提供适当的转换插座。1.4 如产品达不到上述要求,投标人应注明其偏差。如仪器设备需要特殊工作条件(如水、电源、磁场强度、温度、湿度、动强度等)投标人应在投标书中加以说明。2、验收标准除非在技术规格中另有说明,所有仪器、设备和系统按下列要求进行验收:2.1 仪器设备运抵安装现场后,买方将与卖方共同开箱验收, 如卖方届时不派人来, 则验收结果应以买方的验收报告为最终验收结果。验收时发现短缺、破损, 买方有权要求卖方负责更换。2.2 验收标准以中标人提供的投标文件中所列的指标为准(该指标应不低于招标文件所要求的指标)。任何虚假指标响应一经发现即作废标,卖方必须承担由此给买方带来的一切经济损失和其它相关责任。2.3 验收由采购人、中标人及相关人员依国家有关标准、合同及有关附件要求进行,验收完毕由采购人及中标人在验收报告上签名。3、如在具体技术规格中有本总则不一致之处,以具体技术规格中的要求为准。具体技术规格1、用途:用于植物倍性鉴定,用于遗传进化、开展倍性育种和杂交育种等相关工作。2、主机配置:2.1、激光器及检测通道:配置3根激光器,波长分别为485nm±3nm、 630nm±3nm、400nm±5nm;8个荧光检测通道,包含FSC、SSC等10个检测参数。2.2、光激发及收集系统:固定的光激发系统和光收集系统、无需操作人员调整;光纤信号导入检测系统,散射光和荧光信号通过连续反射信号收集系统。2.3、检测系统:仪器能检测前向散射光、侧向散射光、8色荧光,配置≥8个检测器;检测器采用独立(非共线)主流的高灵敏度全数字化光电倍增管(PMT)。2.4、荧光检测灵敏度:荧光灵敏度: FITC≤ 3MESF,PE≤ 5 MESF(需提供国内权威机构检测报告)。2.5、荧光补偿:数字化矩阵补偿,可实现实时补偿、脱机补偿和自动补偿。2.6、液流系统:采用不间断正压压力泵(非注射泵或蠕动泵)上样方式。2.7、分析速度:细胞获取速度需≥10000细胞/秒。2.8、最小样本量:≤30ul,适合微量样本和稀有样本的检测,以便节省珍贵样本及后续染色抗体的使用量,节约实验成本。2.9、脉冲处理信号:≥3参数(同时分析脉冲高度、宽度、面积)。2.10、有动态反馈的压力控制系统,可以控制压力变化在±0.005 psi范围内。2.11、交叉污染率:≤0.1%2.12、CV值:≤2%(全峰宽)。2.13、仪器性能质控:能够提供质控软件和质控品在内全套的质控体系,自动检测仪器性能,以保证检测结果的可靠性。2.14. 具有国内NMPA认证及SFDA认证,符合国际标准;2.15 生产厂家需获得ISO13485质量管理体系认证。3、配置要求:3.1软件配置:操作系统、数据获取分析软件、临床自动报告软件;3.2硬件配置:流式细胞分析仪主机一套、显示器一套、打印机一套、3KVA稳压电源一套、鞘液清洗液一套、计算机工作站一套。
  • 选好方法开发的柱子—ACE方法开发工具包
    方法开发成功的第一步——选好柱子色谱分析中色谱柱的选择是方法开发过程中重要的一步,对于分离效率具有重大影响。一旦选错了色谱柱,将会无谓地延长和消耗方法开发和优化的时间、资金和精力。许多实验室常常限制色谱柱的选用,常会将其方法建立在一种主流的色谱柱化学(例如惯用的端基封口的C18 色谱柱)上。然而,还有更多改善后的固定相、填料基质可供方法开发时筛查选择性和提高分离之用。ACE方法开发工具包,为方法开发智能解决方案 l 性能优越且独特,规格齐全l 不同机制之间相互作用,显著增加选择性和分离度l 固定相的差异,直接节约方法重建的时间成本l 专业高端,价格便宜,节约经费样品: 1) 甲硝唑,2) 4-羟基苯甲酸,3) 3-羟基苯甲酸, 4) 苯甲醇, 5) 苯甲酸, 6) 杨梅素, 7) 对甲酚, 8) 普萘洛尔, 9) 对羟苯甲酸乙酯, 10) 呋塞米, 11) 苯甲醚, 12) 1,3,5-三硝基苯, 13) 甲苯, 14) 尼美舒利, 15) 甲芬那酸, 16) 1,2,3-三氯苯ACE高级方法开发工具包(一)l 包含ACEC18,C18 ACE-AR和ACE C18-PFP固定相l 适合零起点的常规方法开发l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 特别推荐用于含有芳香环的化合物 (1)ACE-C18 l 高纯、超惰性碱灭活硅胶,可避免硅羟基与分析物的次级作用。l 在 酸性、碱性和中性化合物高效极佳分离;l 与其它品牌色谱柱相比,更适用于碱性物质分离分析相似:SunFire C18 、Luna C18(2)、Zorbax XDB、Hypersil GOLD ODS等 (2)ACE-C18 ARl C18、苯基(Ph)两种键合相的特性融入单一键合相中,结合两种键合相的优势,形成独特的选择性。耐受100%水相。l 应用于方法筛选开发中单独C18或Ph无法实现的复杂混合物分离和具有吸电子基团的异构体分离。如:卤素,硝基,酮,酯和酸、芳香族烃、类固醇、含硫化合物 (3)ACE-C18 PFP l C18、五氟苯(PFP)两种键合相的特性融入单一键合相中,结合两种键合相的优势,形成独特的选择性。耐受100%水相。l 应用于方法筛选开发中单独C18或PFP无法实现的复杂混合物分离和具有供电子基团的异构体分离。如:酚类,芳族醚和胺,芳香烃、类固醇、紫杉烷类化合物样品:1) 4-乙酰氨基苯酚, 2) 4-氨基苯甲酸, 3)4-羟基苯甲酸, 4)咖啡因, 5)2-乙酰氨基苯酚, 6)3-羟基苯甲酸, 7)水杨酰胺, 8)N-乙酰苯胺, 9)苯酚, 10)乙酰水杨酸, 11)苯甲酸, 12)山梨酸, 13)水杨酸, 14)phenylacetin, 15)水杨醛样品:1)1,2,3-三甲氧基苯 2)1,2,4-三甲氧基苯 3)1,2-二甲氧基苯 4)1,4-二甲氧基苯5)甲氧基苯 6)1,3-二甲氧基苯 7)1,3,5-三甲氧基苯 8)中性分子ACE扩展方法开发工具包(二)l 包含ACESuperC18,ACE CN-ES和ACEC18-Amide固定相l 使用ACESuperC18可根据目标物在低,中,高pH值的选择性变化进行方法筛选l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l ACEC18-Amide和ACE CN-ES阶段都提供了另一种选择,特别是对于极性分子 (1)ACE Super C18 l 专利的EBT固定相键合封端技术l 中低极性选择和高PH耐受性(1.5-11.5)l 高比例缓冲盐条件下的LC/MS实验,稳定性极佳l 多种规格符合UPLC和HPLC要求且均达到高效相似:Xbridge 、Xttra、EcosilExtend、MG Ⅱ等 (2)ACE CN-ES l 采用高纯惰性硅胶表面与CN基间扩展长的烷基链键和方式,增加了C18的稳定性和疏水性。l 较传统短烷基链接的氰基柱有更耐水(100%)、更稳定、更长柱寿命。l 多应用于强极性、极性、非极性的混合物的共同分离、三键或双键化合物分析、正反两相兼容;方法筛选开发中传统短链CN无法实现的复杂混合物分离。 (3)ACE C18-Amide ? 超长烷烃与C18链间嵌入酰胺基团,提高极性,酸性,碱性和酚类化合物的分离,耐受100%纯水相,扩展烷烃链技术还提供了更长的柱寿命。相似:symmtrysheild C18、Zorbax Bouns、sigmaDiscoveryRP Amide C16 、Ecosil EPS样品: 1)尼扎替丁 2)沙丁胺醇 3)阿米洛利 4)N- acetylprocainamide 5)喹喔啉 6)对羟基苯甲酸甲酯 7)对-甲酚 8)利血平 9)胡椒素 10)甲苯 11)非洛地平样品:1)间苯二酚2)邻苯二酚3)2-甲基间苯二酚4)4-甲基儿茶酚5)3-甲基儿茶酚6)4-硝基儿茶酚样品:1)甲硝唑2)苄醇3)双氢4)香草醛5)对羟基苯甲酸甲酯6)1,2-二硝基苯ACE UltraCore方法开发工具包(三)l 包含核壳型填料ACEUltraCore SuperC18和SuperPhenylHexyl优异封端技术固定相l 利用在低,中,高pH值的选择性变化进行方法筛选l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 超惰性核壳粒子和封装键合技术(EBT?)提供优异的峰形 ACE UltraCore(核-壳) ????l 高效率2.5μ m和5μ m实心核颗粒,快速分析。l两种选择性互补的键合相SuperC18和Super PhenylHexyl(苯基-已基),为方法开发提供了便捷。l超惰性硅胶表面采用独特的封装键合技术(EBT),高PH稳定性(PH1.5-11.5)。l 细小分散的硅胶颗粒附着在超强度实芯核表现出超高的柱效和低的背景压力,实现普通HPLC上完美的UHPLC效率和性能。相似:Aglient Proshell ,waters CORTECS? 、Thermo Scientific Accucore、Kinetex等 人参皂苷分离分析对比图:样品:1)吡哆醇 2)对氨基苯甲酸 3)泛酸 4)叶酸 5)d-生物素 6)氰钴胺素 7)核黄素ACE生物分析300?方法开发工具包(四)l 包含ACE C18-300,ACE C4-300和ACE苯基-300固定相l 适合零起点蛋白质和多肽的方法开发l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 超惰性300?阶段提供优异的峰形和重现性 ACE 300? 系列超惰性HPLC柱 l 采用了先进的技术制造,几乎消除硅醇基和金属污染对肽,蛋白质、其他高分子量的生物大分子分离的负面影响l 该系列的超惰性特性体现在如流动相中仅使用低至0.005%的TFA仍能保持很好的峰对称度;而市面上其他品牌的300?系列大多使用0.01%TFA就表现出了很差的峰型,从而间接降低了灵敏度的运行能力。样品:1)甘氨酸 - 酪氨酸 2)催产素 3)血管紧张素Ⅱ 4)神经降压素ACE 分 析 方 法 包 推 广 大 促—— 为方法开发提供智能的解决方案惊喜一 高质低价,让实验结果给你大吃一惊!!!一套超级优惠的方法包(相同规格新颖固定相的2支或3支高性能多填料类型色谱柱),只需1支ACE色谱柱的市场价格!! 惊喜二 丰富好礼,价值500元大礼任你选!!!即日起凡成功订购一套并成功关注广州绿百草微信公众号的客户,即送价值500元的京东礼品~ ~ 多定多得,数量有限!还等什么?赶紧联系 广州绿百草 咨询吧!活动时间:2015年11月1日- 2015年12月31日 注:本活动最终解释权归广州绿百草生物科技有限公司所有英国ACE色谱技术有限公司 致力于解决色谱应用领域的挑战而开发各系列产品,以满足色谱分析工作的要求。极限的性能、合理价格的产品以及优质的技术服务,在世界范围内的制药、生物技术公司、 大学、医院、科研机 构、政府机构以及环境与工业过程质量控制行业中获得了无与伦比的声誉。更多英国ACE的产品信息、应用实例及资料,请联系ACE一级代理商 —— 广州绿百草生物科技有限公司
  • 五洲东方参加中国植物学会植物细胞生物学专业委员会2010年学术年会
    2010年10月29-31日,由中国植物学会细胞生物学专业委员会主办的中国植物学会细胞生物学专业委员会2010年学术年会在风景秀丽的中国南京紫金山山麓的国际会议大酒店召开。来自包括清华、北大、上海交大、武大、浙大、南大、中国农大、南京农大,以及中科院系统等在植物学领域的院士既学者教授超过300位参与了这次会议。五洲东方作为特邀赞助商也参加了本次会议,并在大会上由产品经理刘凯敏做了《全自动梯度准备与分离系统》的专题报告。两天的主题会议中,各位知名学者教授从多个方面阐述了植物在发育遗传中的信号转导既调控机制。需要特别注意的是植物在不同光合作用条件下,或在高光强、低温、干旱、高盐等逆境胁迫下的调控机理正在成为新的研究热点,而此类研究往往需要良好的植物培养条件。比如可以调控不同光谱(红、蓝、远红等)条件下的培养箱(三色光培养箱),可以调控不同湿度、温度(零下15℃到60℃)、光强(最高1200umol/m2/s)并可根据各种培养条件进行温/湿/光编程的培养箱。同时,对植物细胞组分的精确分离也成为研究后期的重要步骤。基于上述热点,众多老师对我公司的美国PERCIVAL植物培养箱以及加拿大BIOCOMP全自动密度梯度制备和分离系统表现出了浓厚的兴趣。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑英文名:Omeprazole主成分化学名:5-甲氧基-2-[[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基]-1H-苯并咪唑主成分分子式:C17H19N3O3S主成分cas登记号:73590-58-6主成分分子量:345品种简介:奥美拉唑,主要用于十二指肠溃疡和卓-艾综合征,也可用于胃溃疡和反流性食管炎;静脉注射可用于消化性溃疡急性出血的治疗。与阿莫西林和克林霉素或与甲硝唑与克拉霉素合用,以杀灭幽门螺杆菌。 第九种:通用名:雷尼替丁英文名:Ranitidine主成分化学名:1,1-Ethenediamine, N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N' -methyl-2-nitro-主成分分子式:C13H22N4O3S主成分cas登记号:66357-35-5主成分分子量:314.40品种简介:雷尼替丁与西咪替丁一样是目前应用最广泛的治疗溃疡病的药品。由英国葛兰素(glaxo)公司开发。1976年由英国普赖斯(price)等合成,1979年布拉德肖(bradshaw)阐明其药理,1980年贝斯塔(berstad)报告用于十二指肠溃疡有效,1981年上市,在世界近百个国家应用。我国于1985年由上海第六制药厂生产。 第十种:通用名:辛伐他汀英文名:Simvastatin主成分化学名:舒降脂 辛伐他丁(1S,2S,6S,8S,8aR)-1,2,6,7,8,8a-六氢-3,7-二甲基-8-[2-[(2R,4R)-四氢-4-羟基-6-氧代-2H-吡喃-2-基]乙基]-1-萘酚 2,2-二甲基丁酸酯 辛伐他汀 塞瓦停 斯伐他汀 西伐斯汀 辛伐司他汀主成分分子式:C25H38O5主成分cas登记号:79902-63-9主成分分子量:418.57品种简介:辛伐他汀是他汀类的降血脂药物,用于控制血液中胆固醇的含量以及预防心血管疾病。辛伐他汀是土曲霉发酵产物的合成衍生物。CATO全力支持药物一致性的政策,并提供以上优质的10个品种杂质!Amlodipine氨氯地平Amoxicillin阿莫西林Cefradine头孢拉定Cephalexin头孢氨苄Clarithromycin克拉霉素Ibuprofen布洛芬Metformin二甲双胍Omeprazole奥美拉唑Ranitidine雷尼替丁Simvastatin辛伐他汀
  • 我国著名植物细胞工程专家陈惠民教授逝世
    著名植物细胞工程专家、山东大学生命科学学院陈惠民教授于2010年9月14日辞世,享年89岁。  1980年,陈惠民教授最先将小麦叶片通过组织培养再生植株,成为我国小麦组织培养的奠基人。陈惠民教授科研团队在国际上率先创立了小麦体细胞杂交转移异源染色体小片段的新技术(获国家发明专利),选育了国际首例高产、耐盐/耐旱的小麦渐渗系新品种山融3号和多个新种质;在小麦基因工程育种方面,获得世界上首例抗大麦黄矮病毒的转基因小麦新种质,该成果被国家科委评为“1995年全国十大科技成就”之一。陈惠民教授治学严谨,淡泊名利,追求真理,成就斐然,以渊博的知识精心培育了很多优秀学生,以大仁大爱无私帮助过许多同事和学生,以自己独特的人格魅力影响和教育着他的学生,曾被评为山东大学先进工作者、山东大学优秀教师和驻济高校十大杰出教工,并荣获“山东大学特殊贡献奖”、“全国老教授科教兴国贡献奖”和“全国民主同盟先进个人”称号等。(http://www.shunstar.com.cn)
  • 胰腺癌早期诊断|细胞外囊泡检测技术
    癌症的早期诊断是提升患者后期生存率的关键,但大部分癌症患者往往确诊时已是中晚期,极大增加了治疗难度和治疗负担。如:胰腺癌早期症状不明显,因此只有5%的胰脏癌能在早期被诊出,大多胰腺癌患者初诊时已为末期,无法手术切除,其他治疗方式效果也不佳,十年存活率约为1%,是预后最差的癌症之一。发展胰腺癌早期诊断方法是提高该类癌症早诊率的重要手段。近日,美国加州大学研究团队在《Communications Medicine》杂志上发表题为“Early-stage multi-cancer detection using anextracellular vesicle protein-based blood test”的文章,发现了通过检测血液中细胞外囊泡(Extracellular Vesicles,EVs)的相关标志物,有望为胰腺癌早筛早诊提供新方法。前期研究表明,利用EVs作为诊断的靶标,通过人工智能的方式来分析EVs中含有的肿瘤蛋白,可以推测恶性肿瘤的恶性程度,具有早期诊断癌症的潜力。该研究根据EVs蛋白谱开发了一种基于血液EVs的生物标志物分类器,用于检测早期胰腺癌和其他多种癌症。使用团队开发的分离系统从血浆中纯化EVs,相对于传统的离心方法,在保证分离得到的EVs纯度足够高的情况下,操作更简便。通过对I期和II期癌症患者及对照组的初步研究,分析血浆中EVs的13种相关蛋白标记物,诊断出95.7%的I期胰腺癌,特异性超过99%,证实了该技术具有较好的特异性和灵敏度。该筛查技术对于早期癌症检测有潜在的应用价值,有望为胰腺癌及其他癌症的早诊提供新的方法,推动癌症早筛发展,提升癌症患者的整体存活率。论文链接:https://www.nature.com/articles/s43856-022-00088-6
  • 北京林业大学植物细胞壁拉曼光谱大数据分析取得新突破
    近期,北京林业大学材料学院许凤教授团队在植物细胞壁拉曼光谱大数据处理技术上取得新突破。该技术成果构建了基于主成分分析的植物细胞壁拉曼光谱聚类分析方法,相关研究成果“Method for Automatically Identifying Spectra of Different Wood Cell Wall Layers in Raman Imaging Data Set”发表在《Analytical Chemistry》上。该期刊为美国化学会旗下国际分析化学领域顶级期刊,最新影响因子5.636,五年影响因子5.966。  拉曼光谱成像技术具有信息丰富、制样简单、对样品无损伤等特点,近年来已成为研究植物细胞壁局部化学的重要工具。然而,拉曼光谱分类技术落后,严重制约了光谱数据的深入挖掘及科学运用。传统的分类技术通过导出实验数据进行手动分析,不但费时费力,人为因素干扰严重,更会造成数据浪费,甚至丢失重要信息。针对这一问题,许凤教授团队经过探索创新,基于细胞壁超微结构特点,率先采用数学统计学结合自主研发的计算机程序分析处理植物细胞壁拉曼光谱数据,建立了快速分辨细胞壁不同形态学区域拉曼光谱的新方法。该方法能够根据植物拉曼光谱的自身特点,对所获海量拉曼光谱数据进行自动、准确、快速分类,将为植物细胞壁化学组分拉曼光谱定量研究提供理论依据。论文投稿期间,审稿人一致评价该方法创新性突出,对生物质相关领域的研究具有重要意义。  发表在《Analytical Chemistry》上的论文第一作者为北京林业大学材料学院林产化学加工工程学科2014级博士研究生张逊,论文发表获得国家杰出青年科学基金的资助。目前,在许凤教授的指导下,张逊正开展基于该技术的相关研究,希望在植物细胞壁拉曼光谱的定量分析上能有新的突破。
  • Cell:无丝氨酸饮食,也许是对抗最致命胰腺癌的法宝
    一项研究发现,胰腺癌细胞通过向神经发出信号来避免饥饿,信号传递给神经,就会分泌营养,促进肿瘤生长。这是一项针对癌细胞,小鼠和人体组织样品进行的实验结果,相关论文发表在11月2日的Cell杂志上。胰腺导管腺癌(PDAC),也就是最致命的胰腺癌,五年生存率低于10%。此类肿瘤会促进压迫血管的致密组织的生长,从而减少诸如丝氨酸之类的血源性营养物质的供应。这种氨基酸是蛋白质的基本组成部分,也是癌细胞增殖所必需的。纽约大学格罗斯曼医学院等处的研究人员发现,饥饿的胰腺癌细胞会分泌一种叫做神经生长因子的蛋白质,该蛋白质向神经细胞发送信号,指导它们进入肿瘤,进一步发现这些轴突能分泌丝氨酸,帮助胰腺癌细胞避免,饥饿并恢复其生长。文章通讯作者,纽约大学Alec Kimmelman博士说,“神经将营养从血液中转移到胰腺肿瘤微环境中,这是一种一种令人着迷的适应能力,也许可以通过干扰这种特性来研发治疗方法。”研究发现,饥饿的丝氨酸胰腺癌细胞利用了将mRNA链(DNA指令的副本)翻译成蛋白质的过程。密码子将mRNA分子链的骨架解码为氨基酸,核糖体会读取每个密码子,让它们以正确的顺序将氨基酸连接在一起,但是如果缺少可用的氨基酸,核糖体就会失速。出乎意料的是,研究小组发现,丝氨酸饥饿的胰腺癌细胞显著降低了六个丝氨酸密码子中的两个(TCC和TCT)被翻译成氨基酸链的速度。在丝氨酸饥饿的情况下,这种变异性使癌细胞将某些蛋白质的产生减至最少(以保持饥饿时的能量储存),但继续建立诸如神经生长因子(NGF)之类的压力适应性蛋白质,而这种蛋白质恰好由少数TCC编码和TCT密码子。之前的研究NGF和其他因素会刺激神经生长成胰腺肿瘤,促进肿瘤生长。而最新研究是第一个表明轴突,即传递信号的神经元细胞的延伸,能通过在营养缺乏的区域分泌丝氨酸来为癌细胞提供代谢支持。一项2016年的研究表明,此类细胞向附近的星状细胞发送信号,导致它们将自己的细胞部分分解为可被肿瘤利用的构件。然后2019年12月进行的一项研究发现,胰腺癌细胞还劫持了一个称为巨胞饮作用的过程,正常细胞利用该过程通过其外膜吸收营养。有趣的是,这项新研究发现星状细胞和巨胞饮作用不能为这些癌细胞提供足够的丝氨酸生长,还是需要轴突递送。这项研究指出,喂食无丝氨酸饮食的PDAC肿瘤小鼠的肿瘤生长速度降低了50%。为了超越单纯饮食所能达到的效果,研究人员还使用美国FDA已经批准的一种名为LOXO-101的药物来阻止轴突进入PDAC肿瘤。该药物阻断与神经生长因子(也称为TRK-A)相互作用的神经元表面受体蛋白的活化,从而抑制神经元将其轴突送入肿瘤的能力。这组作者说,仅使用这种药物并不能减慢小鼠中PDAC肿瘤的生长,但是与单独使用饮食相比,与无丝氨酸饮食结合时,它可以使PDAC的生长速度进一步降低50%。研究人员说,这表明神经对于支持丝氨酸剥夺的肿瘤区域中的PDAC细胞生长是必要的。文章一作Robert Banh说:“由于TRK抑制剂已被批准用于某些癌症的治疗,因此在手术后大约40%不能产生丝氨酸的PDAC肿瘤患者中,它们可能与低丝氨酸饮食联合,这种方法是否可以通过限制营养供应来减少肿瘤复发,还需要在临床试验中证实。”
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 康宁AFR与安捷伦在线 LC 的完美结合助力工艺高效开发!
    前言本应用展示了Corning Advanced-Flow Reactor流动化学反应器与Agilent Infinity Lab 在线液相色谱结合使用的能力。概要本文将主要介绍应用康宁低流量连续流微反应器对乙酰基水杨酸(阿司匹林)的水解反应进行研究。通过对反应工艺的参数改变,结合在线安捷伦LC数据分析,可以实时优化反应条件,获得最佳反应结果。图1.乙酰基水杨酸水解反应方程式研究过程一. 实验仪器Corning AFR:低流量反应器(LF)Agilent 1290 Infinity II HPLC 在线检测系统二. 实验方法Corning AFR 是一种可灵活调整的模块化微反应设备,具有独特的康宁心形结构专利设计,可将反应物高效混合及换热以优化反应。图2.反应流程装置图对于所有实验:换热器设置为 86 °C;乙酰水杨酸的浓度为 0.016 M;硫酸的浓度在 0.16、0.375、0.75 和 1.5 M 的浓度范围内变化。停留时间及相应的反应器进料流速变化见表 1。表 1. 乙酰水杨酸和硫酸停留时间和进料流速三. 分析方法作者使用Agilent ZORBAX Eclipse Plus C18,4.6 × 50 mm, 1.8 μm色谱柱,流动相为A:水 + 0.1% 甲酸 B: 乙腈 + 0.1% ,柱温50℃,分析流速2ml/min,暂停时间1.5min,进样体积1 μL 。产物从反应器流出后直接注入到液相色谱仪。取样速度:100 μL/min;等待时间:3.6 秒。每个实验条件时间点,需要系统达到稳态条件。在线 HPLC监测进程中,一旦相关目标分析物在峰面积百分比一致达到稳定,就会记录并分析相关数据。四、结果分析与讨论1. 为确保该反应条件设置能够生成高质量数据,将 0.2 mg/mL 乙酰水杨酸和水杨酸的混合物从Corning LF反应容器泵送到 Agilent Infinity Lab Online LC ,每 3 分钟抽取一次样品并立即进行分析。乙酰水杨酸和水杨酸的峰面积精度分别为 1.1% 和 1.3%,保留时间精度分别为 0.07% 和 0.06%(图 3)图3.乙酰水杨酸和水杨酸HPLC图2. 从Agilent Infinity Lab Online LC的结果从直观上可以快速分析:(A)开始与乙酰水杨酸的反应 (B)大约一半的乙酰水杨酸已经水解为乙酰水杨酸(C)几乎完全反应。图4. 间歇式酸催化水解乙酰水杨酸的研究进展【编者语】流动化学与在线检测最大的优势在于:反应进程一目了然,可以快速改变反应条件; 一次实验可以得到多组反应工艺参数;参数优化后,通过在线检测控制产品质量;康宁反应器可以与多种在线检测设备相结合(红外、拉曼、液相、核磁等)3. 为了优化反应,更仔细地考察停留时间和酸浓度。改变物料在Corning LF反应器中的停留时间,相应地修改了输送硫酸和乙酰水杨酸溶液的注射泵流速(表2)。乙酰水杨酸的温度和浓度分别保持恒定在 86 °C 和 0.016 M。从连续流反应器流出的产物连接到在线 LC 系统,每 3 分钟抽取一次样品。当分析物和产物的面积百分比恒定时达到稳定状态。表2 . 停留时间和LC在线监反应组分的组成及杂质含量4. 综上本实验应用展示了康宁AFR卓越的传质和传热效率,使得反应条件改变响应更及时,无放大效应,易升级放大;采样和结果分析通过安捷伦在线 LC 监控软件进行记录,以本质安全、高效经济的方式实现实验条件监控的完全自动化。总结康宁微反应器不仅可以与LC连用,还可以与Spinsolve 系列NMR 分析仪器连用;对两相或多相液体反应结合Zaiput系列分离器可实现在线分离;连续流反应器与在线检测设备相结合,可以实现药品的快速工艺优化;智能化全连续药品生产已成为可能。参考文献:Agilent Technologies application note, publication number 5994-3528EN, 2021.★康宁一体化合成平台★康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。欢迎您联系我们,共同探讨最新合成技术!康宁“微反应+微分离+在线检测”一体化合成平台
  • FDA批准艾伯维突破性抗癌药Imbruvica一线治疗慢性淋巴细胞白血病(CLL)
    FDA批准艾伯维突破性抗癌药Imbruvica一线治疗慢性淋巴细胞白血病(CLL)美国生物技术巨头艾伯维(AbbVie)抗癌管线近日在美国监管方面传来特大喜讯,FDA已批准突破性抗癌药Imbruvica(ibrutinib)用于慢性淋巴细胞白血病(CLL)患者的一线治疗。此次批准,首次为CLL群体提供了一种无化疗(chemotherapy-free)的一线治疗选择,同时也使得Imbruvica在美国的治疗适应症达到了5个之多。此前,Imbruvica已获FDA批准用于:复发性或难治性套细胞淋巴瘤(MCL)、经治慢性淋巴细胞白血病(CLL)、携带17p删除突变的CLL、Waldenstrom巨球蛋白血症(WM)。在美国,大约有11.5万例慢性淋巴细胞白血病(CLL)患者,每年新增约1.5万例。CLL患者多为老年患者,平均诊断年龄为71岁。此次批准,标志着CLL临床治疗的一个重大飞跃,将为CLL群体提供除传统化疗之外的一种新的一线治疗选择。Imbruvica最初由美国医药巨头强生(JNJ)与Pharmacyclics公司共同开发,之后,强生在去年3月计划以超过170亿美元收购Pharmacyclics,但却被艾伯维以210亿美元成功抢婚。通过此次收购,艾伯维获得了这款“钱”途无量且与自身肿瘤学管线完美互补的突破性抗癌药Imbruvica在美国市场的销售权,该药在美国监管方面先后获得了突破性药物资格、优先审查资格、加速批准及孤儿药地位。去年,Imbruvica在美国已获批的4个适应症,为艾伯维带来了近10亿美元的收入。业界对Imbruvica的前景也十分看好,预计该药的年销售峰值将突破50亿美元。此次,Imbruvica一线治疗CLL新适应症的获批,是基于一项随机、多中心、开放标签III期RESONATE-2(PCYC-115)临床研究的数据,该研究在269例初治(既往未接受治疗)慢性淋巴细胞白血病(CLL)或小淋巴细胞淋巴瘤(SLL)老年患者(年龄≥65岁)中开展,调查了Imbruvica相对于苯丁酸氮芥(chlorambucil)的疗效和安全性。根据独立审查委员会(IRC)的评估结果,与苯丁酸氮芥相比,Imbruvica显著延长了无进展生存期(中位PFS:未达到 vs 18.9个月),疾病进展或死亡风险显著降低84%,达到了研究的主要终点。此外,与苯丁酸氮芥相比,Imbruvica也与显著更高的IRC评估的总体缓解率相关(ORR:完全缓解+部分缓解,82.4% vs 35.3%,p<0.0001)。Imbruvica治疗组有5例(占3.7%)实现完全缓解,苯丁酸氮芥治疗组有2例(占1.5%)实现完全缓解。Imbruvica(ibrutinib)是一种首创的口服布鲁顿酪氨酸激酶(BTK)抑制剂,通过抑制肿瘤细胞复制和转移所需的BTK发挥抗癌作用。Imbruvica能够阻断介导恶性B细胞不可控地增殖和扩散的信号通路,帮助杀死并降低癌细胞数量,延缓癌症的恶化。在临床试验中,Imbruvica单药及组合疗法针对广泛类型的血液系统恶性肿瘤展现出了强大的疗效,包括慢性淋巴细胞白血病(CLL)、套细胞淋巴瘤(MCL)、Waldenstrom巨球蛋白血症(WM)、弥漫性大B细胞淋巴癌(CLBCL)、滤泡性淋巴瘤(FL)、多发性骨髓瘤(MM)及边缘区淋巴瘤(MZL)等。
  • 美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥
    美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥 由中国分析测试协会主办的&ldquo 第十三届北京分析测试学术报告会暨展览会(BCEIA)&rdquo 于2009年11月25日至28日在北京展览馆隆重举行。 德祥科技总代理的美国最新*产品(*号:US Patent No. 6,566,145)DPX高效萃取吸管及装置携手德祥在BCEIA 2009首次精彩亮相。 美国DPX 公司位于美国哥伦比亚,主要生产SPE固相萃取小柱等样品前处理装置及耗材,DPX高效萃取吸管是其最新*技术。图一 美国DPX公司高层Habben先生和德祥集团CEO Stephen 这是继年初在美国匹兹堡展会后的又一次完美亮相,DPX作为展会最新的*产品引起了广泛的关注。DPX&mdash 高效移液萃取,它是SPE固相萃取的一个*技术,不同于以往所有SPE萃取技术。DPX采用业界领先制造商的吸附剂材料,萃取时,样品与松散的吸附剂在类似移液器吸嘴的DPX吸管中充分混合,样品与吸附剂形成一种均相混合凝胶体,然后经过洗提,快速完成萃取。因此,萃取效率及质量均达到最高。DPX与SPE方法的对比这意味着: ★ 最少的成本 ★ *的萃取容量 ★ 无溶剂蒸发 ★ 环保无污染 ★ 只需简单的培训 本次展出了多功能全自动Gerstel MPS-2和DPX手动萃取装置(24孔位),DPX在食品、农残、药物分析等领域有着广泛的应用,能够完全取代现有的SPE前处理方法。本次展出吸引了众多客户的关注和咨询,并现场成功敲定了多笔订单!图二 DPX和多功能全自动 Gerstel MPS-2联用 图三DPX手动萃取装置(24孔位)DPX高效萃取吸管针对于不同性质样品有多种填料。 1. DPX-CX:基于阳离子交换机制,磺酸修饰的高聚合物。 应用范围: ● 可卡因及其代谢物活性组分 ● 阿片类药物,如*,可待因,羟考酮等。 ● 苯丙胺,甲基苯丙胺和MADA ● PCP(五氯酚) ● 美沙酮,派替啶,甲喹酮(镇静剂) ● 三环抗抑郁药、苯二氮类药物 此填料可完全取代市场上的Strata-XC,Prexa PCX,SCX等产品 2. DPX-RP:基于反相保留机制,是一种反相吸附剂,即高度交联的聚苯乙烯-二乙烯基苯共聚合物。 应用范围: ● 血液和尿样中四氢大麻酚及羧基-四氢大麻酚的提取 ● 尿样中的巴比妥类药物 ● 水果和蔬菜中的有机氯,有机磷,拟除虫菊酯农药残留 此填料可完全取代市场上的ENV PS-DVB,SDB-L,ENV,ENVI-ChromP等SPE产品。 3. DPX-Q:依据美国农残检测新方法QuEchERS 而生产的新型萃取吸管,不仅可以完全取代DPX-RP并且扩展了其应用, 应用范围:  可用于水果和蔬菜中绝大多数杀虫剂的萃取,  对于极性较大的杀虫剂如乙酰甲胺磷也具有很强的保留,回收率较高。 DPX-Qg萃取吸管:其吸附剂使用一种&ldquo 高品质&rdquo 的石墨碳黑,是专业去除植物样本中叶绿素的*选择,在不影响本身样品基质的基础上,高效去除色素,避免色素对色谱仪器的危害. 4.DPX-WAX:阴离子交换萃取吸管。包含高分子聚合物吸附剂。 应用范围:  水杨酸,脂肪酸,四氢大麻酚;  从农产品中、可可豆中提取农药,组织标本中提取药物;  可用于从临床尿液中提取有机酸。 相当于安捷伦的SAX,Si-SAX小柱。 现正提供DPX试用装,欢迎联系德祥各地办事处申请试用。 德祥作为美国中国和香港地区总代理,将致力于为食品,农残,环境等众多领域的客户提供*的产品及服务。 更多产品详情和后续报道,请关注:www.tegent.com.cn 客服热线:4008 822 822
  • 聚焦氢化植物油反式脂肪酸 标准或20日前公布
    一则关于“植物奶油”的报道,好似一场速成的化学课,让消费者一夜之间认识了“氢化油”这个名词。  随着“问题”氢化植物油频频被媒体曝光,有关食品安全的话题再度牵动了人们敏感的神经。  同时,在部分企业人士看来,氢化植物油暗藏食品灾难的说法并不能完全“站得住脚”。有企业人士表示:“反式脂肪酸在天然食品里也存在,只要量控制得好,就没什么健康问题。”  江南大学油脂专家王兴国表示,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其定义和在国内的生产、使用量进行公布,具体时间在本月20日前。届时,有关氢化油的真相才可能真正呈现在大众面前。  11月10日,《每日经济新闻》记者调查发现,国内能够生产氢化油的企业并不如人们想象的那么多。  同时,氢化油即植物奶油的说法也遭到专家质疑。“植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”11月10日,江南大学食品学院博导、油脂专家王兴国告诉《每日经济新闻》记者,“氢化油只是植物奶油、植脂末中可能的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”  氢化油厂商难觅踪迹  自CCTV2曝光了植物奶油的乱象之后,氢化油“一夜成名”。  不过,记者调查发现,在全国范围内,氢化油的生产商上并没有想象中的那么多。“你要的氢化油我们没有。”11月10日,上市公司安徽丰原生化的一位油脂销售人员如此告诉《每日经济新闻》记者,“我们从来没生产过。”  “我们没有氢化油。”11月10日,记者咨询了多家从事油脂生产、加工的上市企业,对方均表示不生产该产品。  为何日前报道中“大量存在于各种食品当中”的氢化油却在上游市场难觅踪迹?是企业想避避风头,还是确有其事?湖南金健植物油有限责任公司一位工作人员表示,“事实上,制造氢化油的成本很高,对生产机器有着较高的要求,我们不生产。”  王兴国在接受媒体采访时也表示:“中国一年消耗的食品专用油和烹饪油在2300万吨左右,其中90%是用棕榈油做的,氢化油只占很小一部分。”  一位广州地区的油脂企业的技术人员说,“据我所知,国内生产氢化油的企业只有几家。”  聚焦“反式脂肪酸”  为何氢化油又成为媒体眼中的恶魔?有学术界人士认为,将植物奶油与氢化油画上等号是一种误读。真正对人体造成危害的元凶,是“反式脂肪酸”。  “植物奶油与氢化油不是一个概念,将两者混为一谈是一种误导。”王兴国表示,“氢化油只是植物奶油、植脂末中的一个成分,不能混为一谈,也有一些不添加氢化油的植物奶油。”  一位上海主要生产植脂奶油企业的人士表示,“植物奶油并不等于氢化油,但是在某些植物奶油的生产中,需要加入氢化油,而氢化油中则含有少量的反式脂肪酸。”  不过,在部分媒体报道中,认为植物奶油又称为氢化油,两者为一种物质。  王兴国告诉《每日经济新闻》记者,中国粮油协会油脂分会正在起草一份关于氢化油的说明文件,将具体就其特质和在国内的使用量进行公布,具体时间在本月20日前。届时,关于植物奶油、氢化油的争论或将有一个定论。  资料显示,反式脂肪酸才是对人体造成损害的“元凶”。其最常见存在于速溶咖啡伴侣、奶精之中,还包括如方便面、饼干、酥皮面包、薯片这样的速食品。反式脂肪酸的大量摄入,会导致心血管疾病的几率是饱和脂肪酸的3~5倍,甚至还会损害人们的认知功能。此外,人造脂肪还可能诱发肿瘤(乳腺癌等)、哮喘、2型糖尿病、过敏等疾病。  在11月9日卫生部召开的新闻发布会上,卫生部有关人士表示,正组织开展反式脂肪酸风险监测评估工作。  值得关注的是,卫生部于昨日公布了《食品安全国家标准管理办法》,规定了食品安全国家标准规划和制(修)订计划的内容及制订程序、标准起草过程要求、公开征求意见要求、标准审查程序、标准批准发布形式及实施后的管理等。根据这一规定,自今年12月1日起,任何公民、法人和其他组织都可以提出食品安全国家标准立项建议。
  • 用于植物油快速质控的自动计算法以及品质鉴定
    Peter J. Lee、Yoji Ichikawa、Roger R. Menard和Alice J. Di Gioia沃特世公司,美国马萨诸塞州米尔福德市引言植物油是食品、化妆品和个人护理品的重要成分,主要来自于世界各地的22种油料作物。生产加工、贮存、运输和销售各环节都对植物油的质量起着至关重要的作用。偶发事件和故意事件均会导致植物油的交叉污染。现已颁布了包括315/93/EEC、2568/91/EEC、EC 333/2007和EC 640/2008在内的多部法规,要求鉴定植物油的品质,并避免污染,从而保障公共健康和公平交易1。 为了确保产品质量,满足法规要求并维护公司最有价值的资产&mdash &mdash 品牌形象,植物油公司对植物油的生产过程,从原料到成品全过程进行监控。目前,植物油分析主要依靠气相色谱法(GC)和高效液相色谱法(HPLC)。气相色谱法要求在分析前进行衍生化,这既耗时又费力2。为了实现完全分离,普通的高效液相色谱法要求使用卤代溶剂或使用会使运行时间更长的非卤代溶剂3-6,。自卤代溶剂被认识到具有致癌作用后,卤代溶剂的使用在大多数实验室受到了限制。因此,人们对用于植物油质量控制和品质鉴定更有效的分析工具的需求日渐增加。 ACQUITY UPLC系统是新一代液相色谱平台。使用UPLC/PDA/ELSD/质谱检测器,可以更快进行筛选、在不使用卤代溶剂7-10条件下对植物油的表征建立高分离度的方法。只需一次进样,超高效液相色谱(UPLC)系统就能得到多种类型的数据,产生重现好的指纹图谱数据,鉴别甘油三酸酯的组分,并评估植物油氧化和分解程度。与普通的高效液相色谱相比,超高效液相色谱缩短了分析时间,减少了溶剂用量,并能从一次进样中提供更高分离度并带有更多信息的色谱图。因此,超高效液相色谱法的性价比更高。本技术文献描述了用于植物油质控和品质鉴定的更为高效的系统解决方案,即使用UPLC和EmpowerTM 2软件的用户自定义字段的计算功能,自动定量并报告植物油样品是否符合用户设定的质控标准。此方案不再需要人工计算,从而避免了可能的人为误差并能够快速而准确地报告关键信息。掌握了准确、及时的结果,决策者就能提高交货效率和产量,即减少不合格产品,避免产品召回,并最大限度地减少责任诉讼。本文的实验部分提供了关于自定义字段计算的例子,并附有其详细步骤。实验样品准备:食用油,购买自当地的食品杂货店。用2-丙醇将食用油样品稀释为6 mg/ml的溶液,以备分析之用。超高效液相色谱条件:超高效液相色谱系统: ACQUITY UPLC,PDA检测器软件: Empower 2PDA参数:检测波长: 195-300nm采样率: 20 pts/s过滤响应速度: 快超高效液相色谱参数:色谱柱: ACQUITY BEH C18 2.1 x 150 mm弱洗脱: 2-丙醇(每次洗脱用量:500 &mu L)强洗脱: 2-丙醇(每次洗脱用量:500 &mu L)充填洗脱: 10%的CH3CN水溶液(每5分钟)流动相A: CH3CN流动相B: 2-丙醇柱温: 30° C进样量: 2 &mu L(满环定量)梯度条件:时间 (min) 流速 (mL/min) %B 曲线0 0.15 10 &mdash 22 0.15 90 6平衡色谱柱和UPLC系统条件:时间 (min) 流速 (mL/min) %B 曲线 0 0.13 100 &mdash 18 0.13 10 1121.5 0.7 10 1124.5 0.15 10 1125 0.15 10 11说明:运行样品组之前,先进一针空白试样2-丙醇;该检测值被用作PDA 3D谱图的空白扣除。用于鉴定特纯天然橄榄油A质量的质控 标准:为了便于演示,我们从纯天然橄榄油A的典型色谱图中选取六个峰。选择其中的一个峰作为标记峰,其余的峰为指示峰。&ldquo 峰面积比(指示峰面积除以标记峰面积)± 3xSTDEV&rdquo 用作指示峰的质控标准。1. 指示峰3O(峰面积OOL/标记峰面积)0.84或0.86,则合格;否则不合格。2. 指示峰OOL(峰面积OOL/标记峰面积)1.18或1.21,则合格;否则不合格。3. 指示峰LLO(峰面积LLO/标记峰面积)0.39或0.41,则合格;否则不合格。4. 指示峰LLL(峰面积LLL/标记峰面积)0.039或0.045,则合格;否则不合格。5. 指示杂质峰(杂质峰面积/标记峰面积)0.42,则合格;否则不合格。创建计算峰面积比自定义字段的步骤11 :1. 点击&ldquo 配置系统&rdquo ,进入配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所需的项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口(图1)。5. 在字段类型中选取&ldquo 峰&rdquo ,在数据类型中选取&ldquo 实数(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo 打开&ldquo 选择来源&rdquo 窗口,如图2所示。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;不要勾选&ldquo 全部或没有&rdquo 以及&ldquo 丢失峰&rdquo 选项;点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口,如图3所示。7. 将面积/IS[面积]输入至字段中;点击&ldquo 下一步&rdquo ,打开&ldquo 数值型参数&rdquo 窗口(使用默认值)。8. 点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。9. 输入新的字段名(例如,此处所用的字段名是&ldquo Ratio _IS&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。10. 点击&ldquo 完成&rdquo ,这样就创建了一个名为&ldquo Ratio_IS&rdquo 的自定义字段,用于计算峰面积比,如图4所示。创建自定义字段并根据特定指示峰面积比的标准确定&ldquo 合格&rdquo 或&ldquo 不合格&rdquo 的步骤如下:1. 点击&ldquo 配置系统&rdquo ,打开配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所选择的工作项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口,如图1所示。5. 在字段类型中选择&ldquo 峰&rdquo ,在数据类型中选取&ldquo 布尔(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 选择来源&rdquo 窗口。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;选择&ldquo 全部或没有&rdquo 选项,在弹出窗口中点击&ldquo 是&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口。7. 将以下公式输入至字段中:GTE(3O[Ratio_IS],0.841)E(3O[Ratio_IS],0.859])*EQ(Name,&ldquo 3O&rdquo )+NEQ(Name,&rdquo 3O&rdquo )*-1*500008. 点击&ldquo 下一步&rdquo ,打开&ldquo 翻译定义&rdquo 窗口,如图5所示。9. 在&ldquo 0&rdquo 旁边,输入&ldquo 不合格&rdquo ;在&ldquo 1&rdquo 旁边,输入&ldquo 合格&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。10. 输入一个名称(例如,此处使用的是&ldquo Oly_OOO&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。11. 点击&ldquo 完成&rdquo ,这就创建了一个名为&ldquo Oly_OOO&rdquo 的自定义字段用于检验峰面积比(OOO峰面积除以标记峰面积)是否符合指示峰OOO的质控标准,如图6所示。重复进行第1-8步,以确定其余的指示峰是否合格:对于指示峰OOL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(OOL[Ratio_IS],1.18)E(OOL[Ratio_IS],1.21])*EQ(Name,&ldquo OOL&rdquo )+NEQ(Name,&ldquo OOL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_OOL&rdquo ,创建字段&ldquo Oly_OOL&rdquo ,以检验峰面积比(OOL峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLO,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLO[Ratio_IS],0.39)E(LLO[Ratio_IS],0.41])*EQ(Name,&ldquo LLO&rdquo )+NEQ(Name,&ldquo LLO&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_LLO&rdquo ,创建字段&ldquo Oly_LLO&rdquo , 以检验峰面积比(LLO峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLL[Ratio_IS],0.039)E(LLL[Ratio_IS],0.045])*EQ(Name,&ldquo LLL&rdquo )+NEQ(Name,&ldquo LLL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_ LLL&rdquo ,创建字段&ldquo Oly_ LLL&rdquo , 以检验峰面积比(LLL峰面积除以标记峰面积)是否符合质控标准。对于杂质指示峰,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GT(Impurity[Ratio_IS],0.42)*EQ(Name,&rdquo Impurity&rdquo )+NEQ(Name,&ldquo Impurity&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_Impurity&rdquo ,创建字段&ldquo Oly_ Impurity&rdquo ,以检验峰面积比(杂质峰面积除以标记峰面积)是否符合质控标准。本方法用定时组功能计算杂质峰的总和:1. 在&ldquo 编辑处理方法&rdquo 窗口中,选择&ldquo 定时组&rdquo 标签,如图7所示。2. 在&ldquo 名称&rdquo 字段中输入杂质名称,在&ldquo 开始时间&rdquo 字段中输入&ldquo 3&rdquo ,在&ldquo 结束时间&rdquo 字段中输入&ldquo 13.6&rdquo 。3. 勾选&ldquo 不包括已知峰&rdquo 字段。在处理方法中标记选定的标记峰和指示峰:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 组分&rdquo 标签。2. 将保留时间为9.81 min的峰名称改为IS,在&ldquo 峰标签&rdquo 字段中输入&ldquo 标记峰&rdquo ,如图8所示。3. 将保留时间为13.79 min的峰名称改为3L,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLL&rdquo 。4. 将保留时间为14.85 min的峰名称改为2LO,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLO&rdquo 。5. 将保留时间为15.87 min的峰名称改为2OL,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOL &rdquo 。6. 将保留时间为16.85 min的峰名称改为OOO,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOO&rdquo 。在处理方法中创建命名组的步骤:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 命名组&rdquo 标签。2. 在&ldquo 名称&rdquo 栏中输入3O、LLL、LLO、OOL和Oly,如图9所示。3. 分别将OOO、3L、2LO、2OL和IS从&ldquo 单峰组分&rdquo 拖至各自相应的命名组中,如图9所示。创建合格或不合格报告模板的步骤:1. 点击&ldquo 方法&rdquo 标签,选择一份报告,右击该报告;选择&ldquo 打开&rdquo ,以显示&ldquo 编辑报告方法&rdquo 窗口。2. 在&ldquo 编辑报告方法&rdquo 窗口中选择&ldquo 新建&rdquo ,打开&ldquo 新方法/组&rdquo 窗口。3. 选择&ldquo 创建新报告方法&rdquo ,勾选&ldquo 使用报告方法/组向导&rdquo 选项;然后点击&ldquo 确定&rdquo ,打开&ldquo 报告方法模板向导&rdquo 。4. 选择&ldquo 单个报告&rdquo ,然后点击&ldquo 下一步&rdquo ,打开&ldquo 新方法向导&rdquo 窗口。5. 在报告类型中选择&ldquo 单个&rdquo ,然后点击&ldquo 完成&rdquo ,显示一个报告方法模板。6. 在色谱图上右击,选择&ldquo 属性&rdquo ,打开&ldquo 色谱图属性&rdquo 窗口(图10)。7. 选择&ldquo 峰标签&rdquo ,勾选&ldquo 仅使用峰标签&rdquo ,然后点击&ldquo 确定&rdquo 。8. 右键单击&ldquo 表&rdquo ,选择&ldquo 属性&rdquo ,打开&ldquo 表属性&rdquo 窗口。9. 选择&ldquo 峰&rdquo 标签,勾选&ldquo 峰组&rdquo 。10. 点击&ldquo 表&rdquo 标签,然后在树形结构中点击所需的峰。双击每个指示峰,以将相应的自定义字段添加到结果表格中,如图11所示。11. 点击&ldquo 确定&rdquo ,输入该报告模板的名称(例如,此处显示的名称是&ldquo 特级天然橄榄油质控报告&rdquo ),然后在工具栏中点击&ldquo 保存&rdquo 。结果和讨论不使用卤代溶剂做流动相的普通高效液相色谱法很难分离植物油的主要组分&mdash &mdash 甘油三酸酯。图12为普通高效液相色谱法(2根5&mu m粒径颗粒填充的150mm长的C18柱,蒸发光散射检测器ELSD)得到的大豆油的典型色谱图,使用乙腈和二氯甲烷作为流动相,实现该分离需要60多分钟。由于二氯甲烷在240nm以内具有紫外吸收,这会干扰甘油三酸酯的紫外吸收(最大波长吸收值约210nm),因此使用蒸发光散射检测器(ELSD)进行检测。ACQUITY UPLC系统的设计特点是使用小颗粒装填技术的高效色谱柱,以进行更快速、更灵敏和更高分离度的分离。UPLC的溶剂传送系统能承受高达15,000 psi的背压,因此能够使用2-丙醇等高黏度溶剂进行植物油分析。由于2-丙醇对植物油的溶解性好12、低毒,透射度限制低,便于对甘油三酸酯进行紫外检测,因此2-丙醇被选作强洗脱液。图13为关于同一大豆油样品的10张叠加的紫外色谱图说明UPLC法的重现性,此分离使用1.7&mu m粒径的2.1 x 150mm的 BEH C18色谱柱,乙腈/2-丙醇作为流动相,整个运行时间缩短为22分钟。图12和图13比较,具有相似的甘油三酸酯峰型,但UPLC法具有更高的分离度,更短的运行时间。数据表明不使用致癌溶剂作为流动相,使用 UPLC分离植物油中的组分具有明显优势。用于植物油分析的乙腈/2-丙醇流动相的UPLC系统可使用PDA、ELSD和MS检测器,不像其他用于普通高效液相色谱法的溶剂。一次进样便可得到多种数据类型,并可以产生可重现的指纹图谱数据7,通过质谱法鉴别甘油三酸酯组分10,并用PDA多波长扫描测定植物油的氧化程度8。目前已知植物油具有特征的甘油三酸酯比,这对植物油指纹图谱5-8的鉴别很有用。如图14-16所示,核桃油、葡萄籽油、芝麻油、特级天然橄榄油A、特级天然橄榄油B、榛子油、茶籽油、玉米油、加拿大低酸油、高油酸葵花籽油和普通葵花籽油的紫外色谱图证实,每种油样品都具有独特的色谱类型,即相对峰强度。为了高效使用峰强度比进行品牌质控和质量鉴定,Empower 2软件的自定义字段计算功能可根据用户设定的质控标准自动将原始色谱数据转换为合格或不合格报告。以特级天然橄榄油A为例说明该改进的方法。图17为特级天然橄榄油A的叠加紫外色谱图和峰面积。甘油三酸酯的峰面积从最强峰(OOL)到最弱峰(LLL)其RSD值(n=6)0.9%。共有20多个可见峰,任一峰都能被用作标记峰或指示峰,用以计算峰面积比。为了便于讨论,将之前确定的甘油三酸酯的峰OOO、OOL、LLO和LLL选作指示峰10,将仅出现在橄榄油产品中、通过紫外检测观察到的保留时间为9.8分钟的强峰选作标记峰13。由于大多数廉价的蔬菜油和降解油具有很多保留时间低于13.6分钟的其它强峰9,因此可用定时组功能(图7)创建杂质指示峰,以监测是否存在污染。该杂质指示峰是指标记峰之外的保留时间介于3-13.6分钟的所有峰的总和。通过创建自定建自定义字段&ldquo Ratio_IS&rdquo (图4),可用Empower 2软件自动计算峰面积比(指示峰面积除以标记峰面积)。表1总结了峰面积比的结果以及STDEV值。&ldquo 峰面积比± 3xST-DEV&rdquo 被用作每个指示峰的质控标准。由于地理和其它种植条件的差异,植物油的某一特定类型会存在差异。该数值在比较其它植物油样品是否符合基于特定油品的质控标准方面具有极大的价值。现在,Empower 2软件能够使用自定义字段计算、命名组、定时组和报告模板(如图6、7、9、10和11所示),根据特级天然橄榄油A的质控标准,自动计算并报告样品合格与否的结果。图18为特级天然橄榄油A的典型Empower质控报告。该报告表明所有指示峰均符合质控标准。Empower软件的这些高级功能避免了人工计算步骤,因此能避免可能出现的人为误差。昂贵的特级天然橄榄油通常会被掺入廉价橄榄油和其它植物油(例如大豆油和榛子油)。图19为一份特级天然橄榄油B的报告。所有指示峰均表明该特级天然橄榄油B未通过根据特级天然橄榄油A制定的质控标准。在该色谱图中存在保留时间13.6 min的额外峰,这些数据清楚地表明两种品牌的橄榄油样品存在差异,并证实并非所有市售的特级天然橄榄油的品质都相同。图20为一份掺入9%榛子油的特级天然橄榄油A的报告。所有指示峰均表明该掺假样品不符合质控标准。而且,根据特级天然橄榄油A制定的同一质控标准也应用于分析其它植物油(图14-16),同样掺入1%大豆油或1%玉米油的特级天然橄榄油A,均不合格。之前描述的是使用UPLC-TOF和集成软件工具检测橄榄油掺假的化学计量方法14。本技术文献为植物油质控和品质鉴定提供了可供选择的另一种解决方案。本方法可完全自动地获取并处理数据,从而生成明确的合格或不合格报告。结论具有Empower 2 软件的ACQUITY UPLC系统能不需要衍生化和卤化溶剂,且能快速分析植物油样品并进行品质鉴定。UPLC系统得出的数据具有良好的重现性、精确性和准确性,而且简单易懂。分离速度比普通高效液相色谱法快三倍,所消耗的溶剂量减少8倍,所产生的有害废物也减少8倍;从而能够节省成本,提高安全性。ACQUITY PDA检测器能产生高分离度和高重现性的数据,这有助于轻松建立用于制定每种品牌植物油的质控和品质鉴定标准的指纹图谱数据。借助Empower 2软件的自定义字段计算功能,关键的产品质控数据可从原始数据中准确得出并根据用户设定的标准快速传送,有效地出具简单易懂的合格或不合格报告。决策者能根据这些重要信息及时做出决定,从而提高生产率。使用本UPLC方法,植物油公司能够轻松自信地鉴定产品的品质和质量。与植物油产品纯度方面利益相关的其他行业,例如化妆品公司、个人护理品公司和食品公司,也将从本方法中受益。参考文献1. http://www.fediol.org/5/pdf/legislation.pdf2. VG Dourtoglou et al. JAOCS, Vol.80, No.3: 203-208, 2003.3. LCGC, The Application Notebook, Sept 1, p51, 2006.4. A J Aubin, C B Mazza, D A Trinite, P McConvile. Analysis of Vegetable Oils byHigh Performance Liquid Chromatography Using Evaporative Light ScatteringDetection and Normal Phase Eluents. Waters Corporation, No. 720002879EN,2008.5. P Sandra et al J Chromatogr. A 974: 231-241, 2002.6. International Olive Oil Council standard method COI/T.20/Doc. No. 20 2001.7. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 1):Olive Oil Quality & Adultration. Waters Corporation, No. 720002025EN, 2007.8. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 2)Olive Oil Quality & Adultration. Waters Corporation, No. 720002026EN, 2007.9. P J Lee, and A J Di Gioia. ACQUITY UPLC/ELS/UV: One Methodology for FFA,FAME and TAG Analysis of Biodiesel. Waters Corporation, No. 720002155EN,2007.10. P J Lee and A J Di Gioia. Characterization of Tea Seed Oil for Quality Controland Authentication. Waters Corporation, 720002980en, 2009.11. Empower\help\Custom Field Calculation.12. F O Oyedeji et al Characterization of Isopropanol Extracted Vegetable Oils. JApplied Sci. 6: 2510-2513, 2006.13. The marker (Oly) peak at 9.8 min was well detected by UV but had weak MSresponse with APCI positive ionization mode. According to the SQD MS spectra,the marker peak is not a triglyceride. High resolution mass spectrometers withexact mass capabilities are needed in order to properly elucidate its chemicalstructure. However, it is not necessary to have peak identification for this QCand authentication methodology.14. P Silcock and D Uria. Characterization and Detection of Olive Oil AdulterationsUsing Chemometrics. Waters Corporation No. 720002786en, 2008.
  • Cytek向湖北武汉捐赠流式细胞仪,助力一线抗击疫情!
    责任 / 与 / 使命新型冠状病毒疫情爆发以来, 疫情抗战一线对各种医疗物资的需求仍在持续增加。Cytek公司作为医疗行业的一份子,一直关注着疫情的发展,同样也承担共同抗击疫情的责任与使命。/ 捐赠 /近日,Cytek中国分公司上海厦泰生物科技有限公司经过与一线的多次沟通,决定向疫情最为严重的湖北地区(湖北武汉中部战区医院)捐赠一台Cytek公司自主研发的分析型流式细胞仪(Cytek DxP Athena),为奋战在一线的医务工作人员贡献来自Cytek人的一份力量。仪器已于本周运达武汉。/ 流式细胞仪 /流式细胞仪主要用于新型冠状病毒肺炎的诊断和治疗过程中,对淋巴细胞亚群和细胞因子风暴的检测。在国家卫健委发布的《新型冠状病毒感染的肺炎诊疗方案(试行第六版)》,北京协和医院关于“新型冠状病毒感染的肺炎”诊疗建议方案(V2.0)等诊治指南中,均提到了淋巴细胞亚群,细胞因子等的检测需求。Cytek希望通过捐赠仪器的方式,为一线医务人员开展流式细胞术相关检测提供更多便利,以协助医务人员尽快了解感染者的免疫状态,更好的判断疾病进展及预后,为诊治患者提供更多可靠的依据。
  • 植物免疫抑制与广谱抗病机理研究取得重要发现
    9月30日,国际学术期刊Cell在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究团队与国内外研究者合作完成的研究论文。该研究揭示了水稻钙离子感受器ROD1精细调控水稻免疫反应,从而减低广谱抗病引起的生存代价,平衡生殖生长-产量性状。  作为世界近一半人口的主要粮食来源,水稻的产量和品质受到各种病原菌的严重影响。发掘广谱持久的抗病品种是控制水稻病害的有效策略。然而,随着病原菌的不断进化,植物抗病基因所建立的免疫屏障易被不断变化的病原菌毒性效应蛋白所攻克,这类病原菌效应蛋白攻击并操纵植物的靶标,抑制抗病性。这类植物靶标往往是感病基因。近年来,人们发现可通过对植物感病基因的操控,也可以实现对病原菌的广谱抗性,成为植物抗病育种的新技术。  该研究组通过对水稻资源库和育种群体的大规模筛选,鉴定到一份对腐生真菌病害纹枯病具有高度抗病的隐性遗传稳定材料,定名为rod1 (resistance of rice to diseases 1)。rod1对水稻的三大病害纹枯病、稻瘟病和白叶枯病均具有高抗的特性,说明该基因调控的免疫反应具有独特性。为此,他们前后用了15年的时间,解析有关分子和生化机制,探讨该基因的抗病育种应用潜力。他们的研究证明,ROD1基因编码一个新的钙离子感受器,通过识别钙离子信号与脂类结合,将过氧化氢酶CatB招募到细胞质膜,直接在膜区降解活性氧,从而在没有病原菌侵染时抑制免疫反应,促进穗原基发育,有利于水稻的产量性状。而两个E3泛素连接酶RIP1和APIP6靶定ROD1并介导其降解,保证了对病原菌的有效防卫反应。因此,RIP1/APIP6-ROD1以及ROD1-CatB组成了相互制约并高度有序的信号级联通路,对水稻免疫反应进行精细调控。更有意思的,该研究还发现稻瘟病菌分泌的效应蛋白AvrPiz-t具有与ROD1类似的β折叠结构,也可以与RIP1/APIP6以及CatB互作,与ROD1有功能上的替代性,也即病原菌模拟并操控了ROD1的免疫抑制系统,实现其成功的侵染。  进一步,他们通过对水稻不同栽培品种和农家种的基因组序列进行分析,发现ROD1编码序列存在一个单核苷酸多态性变异位点,导致功能氨基酸的改变。该变异将水稻分成两种类型,一种是广泛存在于籼稻、具有较强田间抗性的A型,另一种是在粳稻中富集且较感病的C型。从地理分布来看,含有A型ROD1的品种主要种植于高温高湿、水稻病害易于流行的低纬度地区;而C型ROD1则主要存在与高纬度地区的水稻品种中,说明作物抗病性受地域起源的选择。  综上,该研究揭示了一条以ROD1为核心的植物免疫抑制信号通路和蛋白三维结构模拟(structural mimicry)所介导的植物-病原菌共进化模型。该研究同时说明植物能够选择与气候条件相适应的免疫策略,以达到最佳的抗病与生长发育适应性的平衡。他们还发现ROD1的功能在禾谷类作物中是保守的,并提出了可以通过操纵感病基因实现广谱抗病的新策略,对培育稳产高抗的作物品种具有重要参考价值。  该研究得到国家自然科学基金、中科院战略性先导科技专项、科技部重点专项等的资助。
  • 植物提取物的前景分析--“它”具有权威发言权
    p style="text-align: center "img width="598" height="148" title="4444.jpg" style="width: 539px height: 118px " src="http://img1.17img.cn/17img/images/201704/insimg/cb2775ae-cfc0-49d9-aa29-dedf08ad738f.jpg"//pp  产品定义/pp  植物提取物是以植物为原料,按照对提取的最终产品的用途的需要,经过物理化学提取分离过程,定向获取和浓集植物中的某一种或多种有效成分,而不改变其有效成分结构而形成的产品。按照提取植物的成份不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等 按照性状不同,可分为植物油、浸膏、粉、晶状体等。[2]/pp  市场供求/pp  植物提取物有许多不同品种[3] ,这些产品供需随年份及各种市场因素不断变化,供需不平衡的情况时有发生。/pp  ① 产品供给影响  由于植物提取物行业原材料为农林产品,容易受天气、病虫害、播种面积等因素影响,不同年份的原材料收购价格及数量会出现波动,原材料价格波动使天然植物提取物产品的价格、产量会有一定程度的变动,发生市场供需失衡。/pp  ② 市场需求影响/pp  多数生产企业对海外市场需求认识有限,可能对市场需求缺乏科学和长期准确判断。当某一产品市场需求较好时,短期内会出现供不应求的市场失衡情况,但随着市场信息的传播,大量企业会一拥而上重复生产,导致产品供大于求。/pp  生物碱/pp  是一类复杂的含氮有机化合物,具有特殊的生理活性和医疗效果。如麻黄中含有治疗哮喘的麻黄碱、莨菪中含有解痉镇痛作用的莨菪碱等。/pp  苷类又称配糖体/pp  由糖和非糖物质结合而成。苷的共性在糖的部分,不同类型的苷元有不同的生理活性,具有多方面的功能。如洋地黄叶中含有强心作用的强心苷,人参中含有补气、生津、安神作用的人参皂苷等。/pp  挥发油/pp  又称精油,是具有香气和挥发性的油状液体,由多种化合物组成的混合物,具有生理活性,在医疗上有多方面的作用,如止咳、平喘、发汗、解表、祛痰、驱风、镇痛、抗菌等。药用植物中挥发油含量较为丰富的有侧柏、厚朴、辛夷、樟树、肉桂吴茱萸、白芷、川芎、当归、薄荷等。/pp  单宁(鞣质)/pp  多元酚类的混合物。存在于多种植物中,特别是在杨柳科、壳斗科、蓼科、蔷薇科、豆科、桃金娘科和茜草科植物中含量较多。药用植物盐肤木上所生的虫瘿药材称五倍子,含有五倍子鞣质,具收敛、止泻、止汗作用。/pp  其他成分/pp  如糖类、氨基酸、蛋白质、酶、有机酸、油脂、蜡、树脂、色素、无机物等,各具有特殊的生理功能,其中很多是临床上的重要药物。/pp  综合各国的立法范畴和概念及使用情况,植物提取物这个概念是可以被各国所接受与认可的,也是传播草药在各国通用的共性表达方式。中国植物提取物的出口额早在1999年就已超过中成药的出口额。在欧美国家,植物提取物及其制品(植物药或食品补充剂)有着广泛的市场前景,已发展成一个年销售额近80亿美元的新兴产业。/pp  中国的植物提取物总体上是属于中间体的产品,目前的用途非常广泛,主要用于药品、保健食品、烟草、化妆品的原料或辅料等。用于提取的原料植物的种类也非常多,目前进入工业提取的植物品种在300种以上。/pp  产品功效——遏制癌症/pp  美国科学家说,他们通过对膀胱癌的研究,证实了绿茶提取物能有效遏制癌肿瘤发展,同时不损害健康细胞。由美籍华人科学家领导的这个研究小组认为,绿茶提取物可能成为一种有效的抗癌药物。/pp  这一成果当天发表在《临床癌症研究》杂志上。主持这项研究的加利福尼亚大学洛杉矶分校副教授饶建宇说,他们的成果“增进了对绿茶提取物作用机理的理解”。如果人们对绿茶提取物遏制肿瘤的机理有所了解,就能确定哪种类型的癌症患者能从绿茶提取物中受益。/pp  研究人员在论文中写道,癌肿瘤的发展与癌细胞的扩散运动密切相关,癌细胞要运动,就必须启动一个被称为“肌动蛋白重塑”的细胞进程。一旦这一进程被激活,癌细胞就能够侵入健康的组织,导致肿瘤扩散。而绿茶提取物能破坏“肌动蛋白重塑”进程,使得癌细胞粘附在一起,其运动受到阻碍,此外它还能使癌细胞加快老化。/pp  饶建宇说,癌细胞具有“侵略性”,而绿茶提取物打破了它“侵略”的路径,能限制癌细胞,使其“局部化”,使癌症治疗和预后工作都变得相对简单。/pp  此前,已经有一些研究成果揭示了绿茶提取物对包括膀胱癌在内的许多癌症具有效果,它能够引起癌细胞过早凋亡,并阻断肿瘤组织的血液供应。饶建宇对新华社记者说,他们研究小组的一些成员正在验证绿茶提取物对胃癌等其他癌症的效力。/pp  他说,与以前类似的研究不同,他们使用的绿茶提取物,其成分和饮用的绿茶非常相似,这意味着常饮绿茶可能有某种抗癌效果,至少可以增强人体对癌症的防御能力。不过研究人员也认为,目前他们只实验了有限的几个膀胱癌细胞系,要揭示绿茶的抗癌机理还有待进一步的研究。/pp  其他科学家当天评论说,这一研究成果进一步证实了绿茶在预防和治疗癌症方面所具有的潜力。尤其在膀胱癌治疗方面,新成果有助于发现膀胱癌的易感者,降低发病率。/pp  产品功效——抗氧化性/pp  自1900年Gomberg提出自由基(tripheylemthylradical)学说以来,人们对自由基的研究逐渐加深。传统合成的抗氧化剂虽然抗氧化能力比较强,但长期食用有潜在的毒性,有的甚至会产生致畸、致癌作用,因此愈来愈受到人们的排斥 而蜂花粉是蜜蜂从花朵上采集的花粉粒,含有黄酮类、维生素、激素、核酸、酶类和微量元素等,具有抗衰老作用,是良好的抗氧化食品。葛 根 、杜仲叶、 枸 杞 、 枳 椇 子 、 茯 苓 、 五 味 子 、 银 杏 、 竹叶、柠檬、柑橘和蜂胶的抗氧化作用均已得到实验证明。因此,从天然产物中筛选具有抗氧化和清除自由基活性的物质对食品和医药工业都有重要意义。/pp/p
  • 揭示抗病毒感染本质,军事医学研究院取得重大科研突破
    p img src="https://img1.17img.cn/17img/images/201902/uepic/1f580e19-84cb-45d7-bfe6-2c8008729134.jpg" title="1.jpg" alt="1.jpg" style="text-align: center "//pp style="text-align: center "从左至右依次为:论文第一作者何新华、戴江、黄怡娇,论文通讯作者李涛br//pp  中青在线北京2月22日电(邵龙飞 中国青年报· 中青在线记者 王裴楠)病毒感染因其变异性强、传播迅速等特点成为重大疫情防控的主要挑战,对机体抗病毒机理的深刻认识是应对病毒感染的关键所在,日前,我国科学家在该领域取得重要突破。军事科学院军事医学研究院李涛博士和张学敏院士团队经过近5年潜心研究,成功发现细胞“门神”——环鸟腺苷酸合成酶(cGAS)抵抗病毒感染关键调控机理。这也是新的军事科学院调整组建后,在生命科学基础研究领域取得的重要科研突破之一。/pp  北京时间2月22日凌晨,国际顶级学术期刊《Cell》(《细胞》)在线发表了相关研究论文。该院戴江博士、博士生黄怡娇以及何新华博士是文章的共同第一作者。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/a2b51919-3e48-4231-ac02-a6b8bf221ffc.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "科研团队成员共同观测分子影像并交流发现/pp  据了解,strong当病毒入侵机体时,其自身遗传物质(如DNA等)会不可避免地被带入到宿主细胞中,继而导致机体针对这些外源DNA迅速做出强烈的免疫应答以清除病毒感染,甚至不惜以伤及自身为代价,这是病毒感染导致致死性炎症的主要原因/strong。其中,strongDNA感受器cGAS蛋白质在DNA从细胞内部触发免疫和自身免疫反应中起到了关键作用/strong。此外,除感受病毒入侵,cGAS的异常激活也是系统性红斑狼疮、AGS综合征等一类自身免疫疾病的关键致病因素。“寻找有效控制cGAS活性的手段并探究其调控机制,对抵抗病毒感染、重大传染病防控及自身免疫疾病的治疗都至关重要。”李涛博士介绍说。/pp  围绕这个关键科学问题,李涛博士团队和张学敏院士团队展开了联合科研攻关,旨在从cGAS的调控机理研究入手,寻找控制cGAS激活的手段,以期为抗病毒感染和相关疾病的治疗寻找新的突破。经过近5年的深入研究,strong该团队发现乙酰化修饰是控制cGAS活性的关键分子事件,并揭示了其背后的调控规律/strong。在药物设计专家何新华博士的具体参与下,研究人员综合利用生物质谱及色谱分析等技术,并通过特异位点乙酰化抗体等进行生物化学验证,最终发现strong乙酰水杨酸(阿司匹林)可以强制cGAS发生乙酰化并抑制cGAS的活性/strong。随后,研究人员利用实验动物和AGS病人的细胞进一步验证了他们的发现。/pp  军事医学研究院院长张士涛介绍说,由于cGAS在疾病发生和治疗中的重要作用,其干预手段一直是国际前沿领域的热点竞争方向,许多国际制药集团和科研团队都在试图寻找cGAS的干预手段。李涛博士和张学敏院士团队从机理研究入手,聚焦前沿、独辟蹊径,挖掘出百年老药阿司匹林可以通过乙酰化作用抑制cGAS激活。该工作不仅揭示了阿司匹林作用于人体的全新靶点和分子机制,还可能为一类目前无药可治的自身免疫疾病提供治疗方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/2243182b-e22d-44bd-a244-cf480c9f05a1.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "李涛博士与团队科研人员在实验室/pp  在这一国际竞争激烈的前沿领域取得重要科研成果是军事科学院坚持从实验抓起大力推动科研创新的一个缩影。军事科学院领导表示,该院把抓好科学实验作为打造高水平军事科研机构的关键举措之一,他们系统梳理技术清单,调整资源投向投量,科学确定重点加强科研方向和重点培育科研方向,自主设计重大科研工程,重点抓好科研实验环境建设。目前,仅军事医学研究院就有3个国际组织指定实验室,1个国家重大科技基础设施,3个国家重点实验室。strong张学敏院士领衔的团队是“国家自然科学基金创新研究群体”,也是蛋白质组学国家重点实验室、抗毒药物与毒理学国家重点实验室的组成部分。/strong/pp  今天,人类仍然面临着病毒感染的严重威胁。据悉,人类迄今已经认识的病毒可能仅占自然界病毒种类的1%。因此,如何在源头上掌握应对病毒感染及其所致重大疫情的主动权,是摆在科研人员面前的一项重要而艰巨的任务。张学敏院士说,该工作通过对抗病毒感染本质规律的揭示,使我们未来在应对重大疫情时,不仅对控制已知病毒感染具有手段,还有望对未知病毒感染具备应对能力。/p
  • CytoSense在线型浮游植物流式细胞仪首次国内应用
    多年来,CytoSense流式细胞分析仪结合EasyClus软件 (TR Project)为位于默兹河的荷兰Eijsden水质监测站提供了诸多有价值的监测数据(见www.fytoplankton.nl),该监测站由荷兰水司(Rijkswaterstaat)水生生物分析实验室直接管理。随着中荷两国间的水利合作关系的密切推进,CytoBuoy 公司藻类监测设备和技术将用于荷兰基础设施与环境部公共工程与水管理总司(Rijkswaterstaat)和中国太湖流域管理局(TBA)之间的联合监测项目。类似的操作系统将被安装在太湖水质野外监测站。 荷兰Eijsden水质监测站的Cytosense 本次项目的主要目标之一是建立有害藻华藻铜绿微囊藻动态变化自动评估机制。CytoSense专为浮游植物监测设计,可直接分析大尺寸范围的浮游藻类、团体结构,特殊的流体工艺设计同时可以避免脆弱的藻类结构遭到破坏,其出色的技术设计可实现藻类动态变化的实时监控。该技术可在完整的藻类粒径谱范围内对生物量进行线性评估。同时Easyclus软件(TR Project)用于支持藻类的快速分类与定量,同时可实现数据的批量化处理。 太湖局专家在野外调查船上操作CytoSense 太湖局专家赴荷兰参加技术培训 为促进本次国际合作项目的成功,2016年5月2日-6日,UNESCO-IHE 、荷兰水司(Rijkswaterstaat)水生生物分析分析实验室、CytoBuoy 公司及TP Project 公司在荷兰代尔伏特对太湖流域管理局的专家做了为期一周的CytoSense流式细胞仪培训课程。5月21日,泽泉科技作为CytoBuoy 公司在中国唯一的代理商,陪同CytoBuoy 公司CEO Mr. George Dubelaar 一起参观了无锡太湖流域管理局实验室,并就后期合作的技术及商务细节进行了探讨。 CytoSense 发明人回访太湖局流式细胞使用情况 在线系统合作项目会议 8月18日,Cytosense 在线监测系统在太湖望虞河口水质自动监测站安装试运行。CytoBuoy公司及泽泉科技工程师太湖局专家共同参与了设备的安装测试。目前设备运行正常,CytoBuoy应用科学家Lucyna将在中国协助TBA与荷兰水司的水质专家完成为期一个月的数据测试交流及优化设置工作。 在线系统安装试运行 现场安装培训 在线系统的成功运行首次实现流式细胞技术与在线监测技术真正结合,在此基础上,我们将不断努力,旨为科研工作者在藻类监测、研究工作提供更多新的方法和思路。
  • GE HC推出用于快速有效在靶细胞中释放腺病毒信号通道传感物的试剂系统
    2005年11月13日华盛顿 DC消息——今天在华盛顿 D.C.的神经科学协会的会议上,通用电气医疗集团(GE Healthcare)宣布推出了Ad-A-Gene Vectors,一种范围广泛,随时可用,经过证实了的腺病毒载体基因释放试剂系统,随着快速开展瞬间细胞信号检测的实现,它为引导化合物分布,药物靶证实和基础研究提供了更多可能性。作为这系统的第一个产品,由于允许研究工作者在各种各样的细胞类型范围内,包括与疾病状态生理学有关的细胞类型中有效地研究细胞信号,所以该系统对二级 筛选和前期药物研发有很大帮助。按照惯例,研究工作者已经创作出了这些明显需要时间和分子生物学工作经验的方法。但是,使用Ad-A-Gene Vectors的话,就不需要有这种工作经验,并且节省时间,因为它提供了一种随时可用的试剂系统用于简单并高效地通过病毒转导将信号通道传感物释放到哺乳动物细胞中。研究工作者们只要简单地将Ad-A-Gene Vectors加进细胞培养基中,并且该转基因将在24小时之内被细胞表达,随时可用于检测。此外,这种随时可用的系统减少了错误并提供可重复的结果, 因为每批Ad-A-Gene Vectors的功能都是经过了证实和检测的。通用电气医疗集团Discovery Systems的产品开发副总裁 Burczak 说道:“由于研究工作所用的相关细胞类型越来越多,Ad-A-Gene Vectors能满足日益增长的,需要有一些方法能提供一种系统生物学的一体化和整体观察的需求。现在,研究工作者们有了一种在细胞内研究根本疾病路径的方便方法。此系统已经能够应用在开展药物治疗以及基础生物学研究中。在该产品的开发中,我们试图使它能用起来更简便,并且能与更多细胞类型兼容。”Ad-A-Gene Vectors既能和广范围的初级细胞也能和转化细胞一起使用,因此,研究工作者们能从有关细胞获得信息数据。该载体同样允许在一个细胞中进行多种路径的访问。这一点在药物靶证实中是特别有用的,因为它能让研究工作者们看到药物是如何能破坏各种路径的。每种复制缺损重组腺病毒制品包括编码一种蛋白质靶的基因或者融合进了EGFP(emerald FP)或者融合进了一种编码一个应答因子的基因中,该应答因子是控制报告基因,硝基还原酶[NTR(nitroreductase)]表达的。在开发Ad-A-Gene Vectors时,通用电气医疗集团获得了McMaster大学病理学和分子医学教授Frank Graham博士的许可,他是全球在分子病毒学领域中,特别是在腺病毒生物学方面最权威的研究者之一。Graham博士说道:“我们非常高兴地看到,我们在腺病毒和基因转移方面的工作促进开发了一批非常高效的用于基因递送的载体。 我深信通用电气医疗集团的技术将为研究工作者提供强有力的研究工具,用于在人工培养的哺乳细胞中有效地转移DNA和高效表达基因。在腺病毒载体的许多优点中,Ad-A-Gene Vectors DNA是不整合进寄主细胞基因组中的,因此传感物的表达和功能活性是不会受任何一种整合过程影响的。”通用电气医疗集团目前正在出售8种Ad-A-Gene Vectors,并预期在今年年底将有50种能大量供货。除试剂系统技术之外,通用电气医疗集团还为高通量细胞分析提供硬件和软件,以使生命科学研究工作者能在细胞内研究根本的疾病路径。
  • 淘宝直播:嫦娥5号引发的联想:NMT如何用于植物微重力研究?(1)
    淘宝直播:嫦娥5号引发的联想:NMT如何用于植物微重力研究?(1)主讲人:许越前美国航空航天局研究员中关村NMT产业联盟 理事长直播时间:2020年 12月8日 下午16:00重播时间:2020年 12月9日 下午20:00 2020年 12月10日 上午08:00关键词:NMT、直播、植物微重力
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制