当前位置: 仪器信息网 > 行业主题 > >

水苏糖水合物来源于块茎

仪器信息网水苏糖水合物来源于块茎专题为您提供2024年最新水苏糖水合物来源于块茎价格报价、厂家品牌的相关信息, 包括水苏糖水合物来源于块茎参数、型号等,不管是国产,还是进口品牌的水苏糖水合物来源于块茎您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水苏糖水合物来源于块茎相关的耗材配件、试剂标物,还有水苏糖水合物来源于块茎相关的最新资讯、资料,以及水苏糖水合物来源于块茎相关的解决方案。

水苏糖水合物来源于块茎相关的资讯

  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。  在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。  合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style="text-align: center "strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="text-align: center "国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp  附件:批准建设的企业国家重点实验室名单/pp style="text-align: right "科 技 部/pp  附件/pp style="text-align: center "strong批准建设的企业国家重点实验室名单/strong/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg"//pp /p
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    centerimg style="width: 285px height: 300px " title="" alt="" src="http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height="300" hspace="0" border="0" vspace="0" width="285"//centerp  钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。/pcenterimg style="width: 402px height: 300px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height="300" hspace="0" border="0" vspace="0" width="402"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄/pp  5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。/pp  水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。/pp  中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。/pp  “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。/pp  经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。/pp  “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。/pp strong 1.研发显微镜核心部件和方法,达到原子水平观测的极限/strong/pp  这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。”/pp  为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。/pp  第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。/pp  科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。”/pp  为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。”/pp  strong2.离子水合物的幻数效应有什么用/strong/pp  江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。/pp  结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。/pp  江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。”/pp  有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。/pp  江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。”/pp  王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。/pp strong 3.水合离子变得可以操控,能为我们带来什么?/strong/pp  据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/pp  王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。”/pp  比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。”/pp  另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。/pcenterimg style="width: 450px height: 292px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height="292" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄/pcenterimg style="width: 450px height: 338px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄/pcenterimg alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height="600" width="439"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄/p
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 镉大米再现!镉,你到底来源于哪?
    云南销毁15万斤大米,镉大米再次引起大众关注!大米是中国大部分地区人民的主要食品,镉是一种环境污染物,通过ICPMS可快速的检测食品、环境等样品中的镉含量,借助高灵敏度的仪器希望通过溯源可以找到污染的源头,确保大米的质量安全。 近日,云南发现米线重金属超标,溯源发现镉大米并销毁15万斤。 大米含有稻米中近64%的营养物质和90%以上的人体所需的营养元素, 镉并不是人体必需元素,而且是一种环境污染物。 急性镉中毒症状主要表现为恶心、流涎、呕吐、腹痛、腹泻,继而引起中枢神经中毒症状,严重者可因虚脱而死亡 。 长期摄入含镉食品,镉可在生物体内富集,其生物半衰期为10~30年,且生物富集作用显著,即使停止接触,大部分以往蓄积的镉仍会继续停留在人体内,从而引起慢性中毒,使肾脏发生慢性中毒及软骨病。世界卫生组织将镉列为重点研究的食品污染物;国际癌症研究机构(IARC)将镉归类为人类致癌物,会对人类造成严重的健康损害;美国毒物和疾病登记署(ATSDR)将镉列为第7位危害人体健康的物质;我国也是将镉列为重点监控指标之一。 根据《GB 2762-2017 食品安全国家标准 食品中污染物限量》,谷物及其制品镉限量如下:根据《GB 5009.15-2014食品中镉的测定》及《GB 5009.268-2016食品中多元素的测定》,镉的测定可以采用原子吸收石墨炉法和电感耦合等离子体质谱法。 不管是大米检测还是其可能的来源土壤、大气等,岛津均可提供完备的解决方案。岛津ICPMS-2030系列 ICPMS-2030测定大米中多元素的含量 样品前处理方法称取0.4g(精确至0.0001g)试样于聚四氟乙烯微波消解罐中,加入4 mL HNO3,盖上消解罐盖,放入微波消解仪消解。消解结束后冷却至室温,打开密闭消解罐,将消解液转移至 50 mL容量瓶中,用超纯水定容至刻线,摇匀,待测。 仪器测定条件实验结果ICPMS-2030测定土壤中多种金属元素的含量 样品前处理方法称取0.1g(精确至0.0001g)试样于聚四氟乙烯微波消解罐中,加入6 mL王水,盖上消解罐盖,放入微波消解仪中按照下表程序消解。消解结束后冷却至室温,打开密闭消解罐,用慢速定量滤纸将提取液过滤至50 mL容量瓶中,待提取液滤尽后,用0.5 mol/L的硝酸清洗消解罐内壁至少3次,清洗液一并过滤至容量瓶中,用超纯水定容至刻线,摇匀,待测。实验结果
  • 创新技术利用智能手机无创持续检测你的血糖水平变化
    上周日AI医学讲座中分享了有关血糖、血压、心脏健康和认知变化等四项至关重要的健康指标检测及可穿戴+AI技术应用。今天又有新突破进展——利用智能手机直接监测血糖变化。研究人员开发了一种新方法,利用可见光和近红外传感器,如智能手机或智能手表中的传感器,无创性估计血糖水平。这一创新技术应用将为糖尿病患者和血糖偏高的人提供了一个最便捷、且无痛的血糖监测替代方案。目前检测血糖水平,已经进入了无创/非侵入性血糖检测时代,但是仍需要微小刺入皮肤后检测血液。由于血液中的葡萄糖在近红外区域没有独特的吸收峰,将其与血液中其他成分或物质区分开一直存在技术挑战。日本科学家通过研究并发明了一种创新方法,利用氧合血红蛋白和脱氧血红蛋白振荡之间的相位延迟(异步性)检测血糖水平变化。通过在健康受试者的试验验证,使用智能手表和带有高亮度LED的定制智能手机支架测量这一相位延迟,验证了与血糖水平变化形成相关性。这项技术可以在现有的数字化设备(智能手机、手表、挂件)以非侵入性方式监测血糖水平,为糖尿病患者检测血糖带来了颠覆性改变。与此同时,上周美国FDA也发出警告称,在不刺穿皮肤情况下出于医疗目的测量血糖水平的智能手表或戒指可能不准确,应该避免使用。这一警告是针对越来越多声称能以非侵入性方式测量血糖水平的手表或戒指可穿戴设备。FDA声明目前尚未授权和认可任何此类可穿戴设备。
  • 网红燕窝是糖水?燕窝的坑到底有多少
    1网红即食燕窝事件A“即食燕窝”非燕窝11月19日,职业打假人王海在微博发布了一份某网红所售燕窝的检测报告。结果显示,直播间所销售的“即食燕窝“,看看产品说明,其实在食品中类别属于是风味饮料,其即食燕窝的主要成分就是糖水,和燕窝根本没有任何关系。网红销售即食燕窝的行为属于挂羊头卖狗肉。B配料表中添加剂即食燕窝的配料里加了海藻酸钠和乳酸钙,钙剂会导致海藻酸钠形成凝胶,也就是产品说明上的固形物,这就是视觉上很多人误以为的燕窝。C唾液酸的检测唾液酸,是燕窝中的珍贵营养成分,是一种天然存在的碳水化合物。从网上发布的这次检测报告不难看出,网红“即食燕窝”的成分中虽然确实存在“唾液酸”,但含量却少得可怜。唾液酸检测标准采用的是SN/T 3644-2013出口燕窝及其制品中唾液酸的测定方法,此标准采用分光光度法和液相色谱-质谱/质谱确证方法。需要说明的是燕窝一定含有唾液酸,但含有唾液酸不一定是燕窝,因为唾液酸的来源很多。目前即食燕窝这类食品,国家还没有出台相应的强制标准。稍有权威性的非强制标准GH/T 1092-2014《燕窝质量等级》,也仅针对干制的燕窝原料。2燕窝造假燕窝是一种传统天然滋补食品。由于燕窝的价格较高,因此有不少伪劣、掺假的产品混于市场, 燕窝常见的假冒材料有:猪皮、银耳、木薯粉、鱼胶等,作假方式上有涂胶、染色、注水等。清华大学孙素琴教授利用ATR探头FTIR光谱法直接测定了5种天然燕窝和1种市售燕窝样品的光谱图,据不同天然燕窝的红外特征谱均可鉴别,另外可以区别燕窝中是否掺有猪皮屑和银耳。此种方法与传统鉴别方法相比更直观、更可靠。红外光谱仪猪皮+银耳的红外光谱与燕窝的红外光谱的对比3燕窝的坑还有哪些?即使是真燕窝,也还有一些想不到的风险。天生的燕窝中含有鸟羽、鸟粪、树枝以及一些其它的杂质。去除这些杂质的过程很繁琐,所以很多商家为了清理燕窝方便,添加了漂白剂漂白。近年来,燕窝中亚硝酸盐超标等新闻也并不少见。另外,燕窝因为具有美容养颜的功效,深受女性消费者的喜爱。激素类化合物常被非法添加于一些具有美容养颜功效的燕窝中,人体从外界摄入大量激素物质后, 会造成体内激素代谢的紊乱,严重影响健康。为了预防和监测此类非法添加的食品安全事件,PerkinElmer建立了燕窝中激素类的检测方法。液质联用仪图2.激素类化合物提取离子色谱图,孕激素类化合物浓度为0.05ng/mL(图A),雌激素类化合物浓度为0.2ng/mL(图B)参考文献[1]燕窝质量等级:GH/T 1092-2014[S],2014.[2]中华人民共和国国家质量监督检验检疫总局. 出口燕窝及其制品中唾液酸的测定方法:SN/T 3644-2013 [S],2014.想要了解更多应用及产品,请扫码获取。
  • 左旋葡聚糖定位PM2.5来源助力大气新规
    近日,生态环境部发布《关于征求4项大气颗粒物源解析标准意见》。其中:左旋葡聚糖类物质被正式列入大气颗粒物重要监测指标成分之一。左旋葡聚糖类物质是什么?又为什么可以监测大气颗粒物呢? 这一切要从“生物质燃烧”说起̷生物质燃烧,主要指森林火灾或者秸秆焚烧等,特别在秋冬季节,生物质燃烧在中国北方区域成为雾霾的主要原因。各地政府相继启动了禁烧令,但是偷烧秸秆的情况仍屡见不鲜。明确的来源解析可以为追踪违法者提供支持。 生物质燃烧的过程会同时排放左旋葡聚糖(1,6-脱水-β-D-吡喃葡萄糖)及其立体异构体甘露聚糖、半乳聚糖,因排放量大且在大气环境中稳定存在,被视为生物质燃烧的特征指示物质,通过计算聚糖物质的组成比例,还可以判断出具体的燃烧木材种类。 这一特性可以用于分析大气颗粒物中不同生物质燃烧源的类型和所占比例。通过计算左旋葡聚糖与有机碳(OC)的相互关系,还可以识别生物质燃烧的远距离输送,因此,该3种聚糖类物质是识别污染源和利用受体模型进行源解析中的重要指示物,对其实现快速、准确定量具有现实意义。 究竟如何快速、准确地测定左旋葡聚糖类物质呢? 赛默飞提供大气颗粒物中左旋葡聚糖及其异构体最全解决方案 1、离子色谱法(IC)《环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 离子色谱法(试行)》采用高效阴离子交换色谱-脉冲安培检测法测定大气颗粒物中糖和糖醇的解决方案,无需繁琐的样品前处理和衍生化反应,操作简单,直接进样,灵敏度高可以达到μg/L 级别。大气颗粒物中的糖类物质分析 Dionex ICS-6000 HPIC作为一款顶级离子色谱系统,专为需要扩展离子分析领域的用户而设计,满足日常分析及研究人员对仪器操作便利性、耐用性和快速分析的性能要求。 Dionex ICS-6000 HPIC 一款真正模块化、配置灵活性极高的高性能色谱系统,强大的系统设计可在高达 5000 psi 的压力下运行,并获得一致可靠的结果。其特点如下:● 模块化设计,可灵活选配单双系统,满足不断发展的分析需求● 平板交互界面,PEEK™ 材质的Viper 接头,良好人机交互与易用性● 自动追踪 IC 耗材的使用情况和性能,最大化工作效率● 无试剂离子色谱–淋洗液生成(RFIC-EG™ )技术自动制备淋洗液● HPAE-PAD 可以分析从单糖到低聚糖的碳水化合物 2、气相色谱-质谱法(GC-MS) 此次发布的《环境空气和废气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 衍生化-气相色谱-质谱法(征求意见稿)》以及中国环境监测总站发布的《环境空气颗粒物源解析监测技术方法指南(试行)》中,通过检测左旋葡聚糖、甘露聚糖和半乳聚糖等化合物含量,来确认污染物的来源,以期更好地控制污染。 除了标准中的左旋葡聚糖、甘露聚糖和半乳聚糖以外,正构烷酸也被认为是植物燃烧的示踪物,同时,主要来源于厨房油烟的甾醇类化合物,也可作为餐饮源的示踪物。通过监测正构烷酸和甾醇,也可以用于监测污染物来源。 正构烷酸(C9-C30)、胆固醇、豆甾醇、β-谷固醇、1,6-酐-B-D-吡喃(型)葡萄糖总离子流图 赛默飞GC-MS方案符合法规要求,通过Dionex™ ASE™ 350 加速溶剂萃取仪加速溶剂萃取提取后,采用Triplus RSH-ISQ7000 GC/MS在线衍生-气质联用法,不仅可以测定颗粒物中的左旋葡聚糖类物质,也可同时测定正构烷酸、甾醇类化合物。该方法省去了离线手动衍生的烦扰,使该方法前处理更简单快速、自动化程度更高。 RSH自动衍生化样品过程Dionex™ ASE™ 350 加速溶剂萃取仪Triplus RSH-ISQ7000 GC/MS 方案优势:● 从样品前处理至仪器分析,均为全自动化完成,节省样品前处理时间。● ASE萃取,只需要20min即可完成样品的萃取。● TriPlus RSH样品处理平台,能够自动实现样品的衍生化,减少人为操作的繁琐程度,提高数据的稳定性● ISQ 7000系列GC/MS,具有超高仪器灵敏度及稳定性,同时具有NeverVent技术,实现仪器的24×7全天候运行 赛默飞色谱与质谱 PM 2.5 来源解析监测综合解决方案点击查看大图 治理雾霾,控制大气污染,需要我们搞清楚其具体组成成份及成因。由于大气PM2.5颗粒物来源广泛,组成复杂,包含很多类物质如无机元素、水溶性离子、有机物等,从而需要不同的分析监测方法。 赛默飞全套的分析仪器及卓越的检测方案,可为您提供全面且完善的综合解决方案! 守护蓝天白云,赛默飞义不容辞 大气颗粒物源解析,有助于政府监管部门对空气污染进行精细化管理,精准控制污染源,此项工作意义深远,赛默飞离子色谱是您不可多得的科研助手。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 创新来源于客户反馈——访布鲁克德国高端红外应用专家吴瑕博士
    p  strong仪器信息网讯/strong 2018年4月10-13日,国际分析、生化技术、诊断和实验室技术领域两年一次的盛会——德国analytica 2018在慕尼黑举办,仪器信息网亲赴现场为大家带来第一手的信息。analytica 2018上,布鲁克推出了科研型傅立叶变换红外光谱仪(FT-IR)INVENIO 等新产品。为了了解INVENIO的主要创新,以及红外光谱未来发展趋势等,仪器信息网采访了布鲁克德国高端红外应用专家吴瑕博士。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/8bd34d70-2717-42bf-b7a5-6a4bb9303a8c.jpg" title="xianc.jpg"//pp style="text-align: center "strong布鲁克德国高端红外应用专家 吴瑕博士/strong/pp  span style="color: rgb(0, 112, 192) "strong新品INVENIO:最多的检测器/strong/span/pp  此次analytica 2018,布鲁克光谱参展的仪器有11台之多,不过只有唯一的一台是新推出的新品,那就是INVENIO。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/984b9460-8c0a-4348-8606-d0c07c16109d.jpg" title="INVENIO.jpg"//pp style="text-align: center "strong科研型傅立叶变换红外光谱仪(FT-IR)INVENIO/strong/pp  INVENIO是一款偏向用于科研的光谱仪,不过与传统印象中体积笨重、外观沉闷的科研仪器不同,INVENIO的外形比较“靓丽”。如,仪器状态显示由原来的单个LED指示灯改进为一个色带,不同颜色代表着仪器处于正常运行或故障等状态,更加明显、直观。并且据吴瑕博士介绍,INVENIO使用感受也非常的简便。INVENIO可以连接到互联网,通过电脑、集成触控屏、其他pad三种方式进行操作,更加方便。而且,INVENIO还设计有适合制药企业用户的验证程序,内里包含完全符合FDA监管规则的现代化数据库,方便跟踪、监督整个实验过程和数据处理,确保数据完整性。/pp  INVENIO采用了创新的MultiTect检测器技术,其允许控制多达5个检测器,如MIR或FIR DTGS、InGaAs、硅二极管、GaP,可覆盖从远红外到紫外可见的整个光谱范围(波长范围28000~15cm-1)。而且,INVENIO还设计了一个额外的DigiTect检测器位置,用户可使用一些其他特殊探测器(如MCT)。针对有的客户可能会偶尔进行一些简单的样品分析工作,而又不想麻烦地移除主样品仓的配件,INVENIO设计了第二个样品仓即Transit通道,而且该样品仓自带检测器。吴瑕博士总结到,“MultiTect、DigiTect、Transit总计下来,INVENIO可配备多达7个检测器,几乎是常规FT-IR的2倍。而且,7个检测器间可自动切换,简便了用户的操作。”/pp  “虽然INVENIO是面向全球用户的,但是由于中国市场的不容忽视,而且来自中国客户的反馈也非常多,INVENIO中一些创新技术都是针对中国客户需求而设计的。如7个检测器间可自动切换、第二个样品仓、五档全自动衰减器、发射实验直通光路等设计就是基于中国客户的反馈。”吴瑕博士说到,“接下来我们将在中国展开大规模的新品推广活动。”/pp  span style="color: rgb(0, 112, 192) "strongFT-IR技术与应用发展:新技术引入与多技术联用/strong/span/ppspan style="color: rgb(0, 112, 192) "  /span最后,编辑问到对于FT-IR技术与应用发展的看法,吴瑕博士表示,“FT-IR技术已经比较成熟,全面创新较难,不过其技术上升空间仍然很大。FT-IR核心的光源、干涉仪、检测器三个方面的巨大进步就会带来FT-IR仪器性能的革命性进展。例如光源的革命性创新就在未来不远处等着我们呢。”说到这里,吴瑕博士着重介绍了量子级联激光器(Quantum Cascade Lasers, QCL)技术。近年来QCL飞速发展,它的光能强、信号强,进而使光谱的信噪比高,相信其很快就可以普遍用于FT-IR。另外,由于电子元器件技术的快速发展,FT-IR的新型检测器不断涌现,而且检测器的体积在不断减小。/pp  谈到FT-IR的应用发展方向,吴瑕博士认为,一些新技术的引入,如成熟的QCL用于FT-IR,将会使FT-IR的性能大幅提升,原来很多需要同步辐射光源技术的研究工作,现在可以用FT-IR来进行了。另外,联用技术仍然有很大的应用前景。除了常见的与热重分析等联用外,FT-IR还可与表面纳米分析相关技术联用进行薄膜分析 FT-IR与测试橡胶等样品拉伸性能的仪器联用,使得其物理性质的变化有了谱图作为依据 另外,FT-IR与椭偏仪的联用将可能同时提供样品的吸收率和折射率,为全面了解样品性质提供可靠依据。/pp  strong后记/strong/pp  采访中让编辑记忆深刻的是,吴瑕博士在布鲁克负责科研型光谱仪的应用、市场、研发,乃至销售的整个流程。这与大多数仪器公司的情况有所不同,一般来说,公司内一个人的工作范畴很少涉及这么多不同的环节。对此吴瑕博士说到,很多科研型客户通常需要的是特殊的、非常规的解决方案,所以,了解客户的需求要从应用谈起、从研发做起,做到全方位的跟踪。/pp  吴瑕博士介绍,“我们的研发创新时时刻刻都在进行,有小的改进、也有大的技术创新。而我们创新的‘源泉’是客户的反馈。我们通常通过对市场走向等进行观察、直接与客户交流等方式获得反馈,因为市场份额变动等也是客户的间接反馈。”/ppbr//p
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • XRDynamic 500 | 让止痛药的药剂更精确,更安全!
    固定剂量复方止痛药X 射线衍射法固定剂量复合剂 (FDC) 描述的是在单一剂型种包含一种以上活性药物成分(API)的药物。结合不同的 APIs 可以提高药物的效力或帮助抵消副作用。在质量控制和生产研发中,精确确认FDC中不同 APIs 的比例至关重要;XRD 被证明是这种测试的最理想工具。简介据世界卫生组织统计,头痛是最常见的神经系统疾病之一,估计有 50% 的成年人每年至少头痛一次。止痛药是专门为缓解头痛症状而配制的,通常作为非处方药和处方药提供。由于头痛可能是由不同的,并且有时是多种因素引起的,因此以不同方式影响身体的多种 APIs 的复合剂可以提高镇痛的效果。在此类固定剂量复合剂 (FDCs) 中,产品中不同镇痛药的比例至关重要。因此,物相组成的确定和确认是研发和质量控制过程中的重要步骤,这通常使用 X 射线衍射(XRD)进行表征。在本应用报告中,确定了市售的抗头痛药物的物相组成,即三种不同成分(乙酰水杨酸、对乙酰氨基酚和咖啡因)的FDC。研究了不同结晶和无定型辅料的存在,并通过 Rietveld 方法定量拟合最终确定了三种组分的比例。实验样品制备FDC 以片剂形式购买,并在玛瑙研钵中手工研磨成细粉。将粉末填充在直径为 1 mm 的毛细管中用于 XRD 测试。X 射线衍射测试衍射测试是在安东帕的自动化多用途粉末 X 射线衍射仪 XRDynamic 500 上进行的,衍射仪配有毛细管旋转台和 Primux 3000 密封管 Cu靶 X 射线源。入射光路使用椭球 Ni/C 多层膜反射镜聚焦 X 射线束的水平透射几何,毛细管在其中旋转时进行测试。结果定性分析本报告中检测的样品包含三种主要成分:乙酰水杨酸(ASA)、对乙酰氨基酚(扑热息痛)和咖啡因。FDC 的衍射图案显示出几个尖锐的布拉格峰,清楚地表明存在结晶相。与文献数据模拟的所有三种 APIs 的粉末图样直接比较表明,测试数据的大多数反射都与模拟非常吻合,无论是在峰值位置还是强度(图1)。 数个反射峰 (见于12.5°, 16.5°, 19.2°, 19.6°, 20°, 21.3° 和 23.8° 2θ) 无法与 API 相关,因此需要进一步分析。图 1:将 FDC 样品的测试衍射图与从所有三种已知 APIs 模拟的图谱进行比较。无法解释的反射标有 *。三个最强的无法解释的反射的放大视图显示为镶嵌。比较从文献数据模拟的 α-乳糖水合物的衍射图与 FDC 衍射图清楚地表明,乳糖的最强反射与迄今为止 API 未解释的峰位置一致(图 2)。图 2: 测试的 FDC 衍射图谱与 α-乳糖水合物的模拟图谱比较。对数坐标绘制 FDC 图谱清楚地揭示了广泛的特征,表明除了已经确定的晶相之外,还有其他非晶成分(图3)。图 3: 对数坐标绘制测试FDC衍射谱图和由所有结晶组分和背景拟合模拟的谱图。定量分析图4 显示了基于 Rietveld 精修的 FDC 的定量评估结果。图 4: 测试的FDC 衍射谱和定量拟合后的拟合谱图的比较。还绘制了拟合和测试谱图之间的差异以及拟合的背景。在拟合程序后,模拟数据的所有反射位置和强度都与测试数据吻合良好。通过安东帕的 XRDanalysis PRO 软件中的自动 Rietveld 拟合顺序进行拟合,使用具有 12 个系数的 Chebyshev 多项式来描述背景。选定的拟合 R 值在表 1 中给出。表1: FDC 样品定量拟合的选定的 R 值。表2:不考虑无定形组分,从定量拟合结果计算的相对和绝对质量。以所有结晶组分值为M(all)=600 mg 和用于APIs 的值为 M(all)=500 mg 进行计算。绝对质量是由从Rietveld 精修获得的相对质量和用作样品片剂的质量计算出。这种近似是有缺陷的,因为无定形成分的相对数量是未知的,因此尚不清楚药片的总质量中有多少是由四个结晶相组成的。为了给出更真实的近似值,在计算成分的相对重量时忽略了乳糖,将三种APIs 的总和看成100。由于结构中存在可见的非晶峰,因此也可以对非晶进行量化(图5)。为此,假定线性背景代表理想化的预期背景。背景上方的区域被分配为一个无定形的驼峰,在21.3° 2θ 处 FWHM 约为8°。图 5: FDC 测试的谱图和基于 Rietveld 精修的定量分析后模拟谱图的比较。还绘制了理想化的线性背景和非晶物相的贡献。计算出无定形相的相对质量为 19%,再次假定片剂为 600 mg,其绝对质量为 114 mg。表 3 中给出了结晶和无定形组分的相对和绝对质量。表3:对 M(all)=600 mg,所有结晶和无定形组分的定量拟合计算的相对和绝对质量根据制造商的说法,一粒 600 mg 的药片应含有 500 mg 的 API,这意味着计算出的 114 mg 的无定形比预期的要大。因此,API 物相的绝对质量都比预期的少约 10 mg。然而,由于绝对质量的这些差异仅转化为相对质量高达 3% 的偏差,因此它们完全在这种定量拟合的误差范围内。此外,与表 2 中的值相比,考虑到无定形相的定量分析提供了更合理的值,并且还允许在相对质量中包含乳糖-水合物。还应该提到的是,用于量化无定形成分的理想化背景只是一个近似值,选择不同的背景参数可以改变结果。在这种情况下,当量化无定形成分时,这会导致固有的不准确性。解决此问题的一种可能解决方案是测量仅包含结晶 APIs 而没有任何无定形材料的样品,并将这种图样的背景与 FDC 样品衍射谱图进行比较。结论实验清楚地表明,粉末 X 射线衍射是确定研发和质量控制药物材料中物相组成的强有力工具。即使在非常低的浓度下,也可以确定结晶辅料和无定形组分的存在和数量。由于物相确定和定量拟合可能很困难,特别是对于包含不同浓度的多相体系,因此必须使用具有高分辨和良好信噪比的衍射仪,XRDynamic 500 已被证明是完美用于此类应用的仪器。
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 新!全球首个“CAR-T治疗艾滋病”发明专利来源于武汉科技大学
    p style="text-indent: 2em text-align: justify "11月20日,武汉科技大学生命科学与健康学院张同存、顾潮江两位教授收到国家知识产权局寄来的发明专利证书,发明名称是“一种治疗HIV(艾滋病病毒)感染的嵌合抗原受体的重组基因构建及其应用”。这是全球首个“应用CAR-T免疫细胞治疗艾滋病”的发明专利。br//pp style="text-indent: 2em text-align: justify "“该专利创造性地开发出‘能杀伤HIV病毒感染细胞的CAR-T’治疗的全新途径,有望彻底治愈在地球横行了近40年的艾滋病,为目前存活的4000多万艾滋病患者带来生机。”全球艾滋病研究专家、美国西奈山大学Volsky DJ教授评价说。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/a591d6a7-3d2f-4a79-84d7-8846d1e2bc13.jpg" title="微信图片_20181128133631.jpg" alt="微信图片_20181128133631.jpg"//pp style="text-align: center "张同存教授(右)、顾潮江教授(左)做实验/pp style="text-align: justify text-indent: 2em "艾滋病是由感染HIV病毒引起的传染病,HIV病毒攻击人体免疫系统,使人体易于感染各种疾病,病死率较高。虽然全世界众多医学研究人员付出了巨大的努力,但至今尚未研制出根治艾滋病的特效药物。br//pp style="text-align: justify text-indent: 2em "张同存、顾潮江两位教授应用CAR-T免疫细胞治疗艾滋病的方法是,先采集患者的血液,分离出T细胞,在体外运用基因工程手段重新设计CAR-T细胞,并大量扩增到上十亿、上百亿个,然后输回患者体内。该CAR-T细胞在体内能特异识别并摧毁被HIV病毒感染的细胞,中和血液中HIV,与抗HIV病毒药物联合应用,将有望彻底治愈艾滋病。/pp style="text-indent: 2em "span style="text-align: justify "张同存教授是国内最早从事CAR-T研究和临床治疗的学者之一,顾潮江教授从事艾滋病机理研究十多年。3年前,两人联手,专攻“应用CAR-T免疫细胞治疗艾滋病”,成功建立了世界上第一个嵌合HIV-1感染动物模型,并利用该模型开展了药代、毒理、致瘤、分布等分析实验研究,充分验证了临床的安全性。/spanbr//pp style="text-indent: 2em "span style="text-align: justify "他们于2017年10月在国际临床实验注册中心完成CAR-T免疫细胞技术治疗艾滋病的临床注册,并在全球率先开展人体临床研究试验。目前治疗了两例HIV患者,一例治疗3个月,HIV病毒指标迅速下降;一例治疗9个月,已完全清除HIV病毒,在全球率先取得突破性进展。/spanbr//pp style="text-indent: 2em "span style="text-align: justify "目前,国内外普遍使用“鸡尾酒”疗法治疗艾滋病,即联合多种抗病毒药物治疗,患者必须终生服药抑制病毒,有严重的毒副作用,一旦治疗中断,就会直接威胁HIV感染者的生命。CAR-T免疫细胞治疗艾滋病,不仅能中和血液中的HIV病毒,而且还能杀死潜藏处于休眠状态的已感染HIV病毒细胞,更加安全、有效、彻底地治愈艾滋病。/spanbr//pp style="text-indent: 2em "span style="text-align: justify "张同存教授表示,目前正在加强与有相关医院的合作,招募携带HIV病毒的志愿者,扩大临床实验,积累临床病例,同时寻求研发资金,助推实现产业化,尽快研制出治愈艾滋病的CAR-T新药,让携带HIV病毒的全球患者受益。/spanbr//pp style="text-indent: 2em "span style="text-align: justify "同时,张同存教授团队还在积极研究针对血液肿瘤、实体肿瘤的新型CAR-T产品。目前,已完成治疗血液肿瘤临床病例350多人,取得优于国内外的临床疗效。/span/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/144.html" target="_blank"span style="text-align: justify color: rgb(0, 112, 192) "strong艾滋病的临床检测会用到流式细胞仪,用于检测受试者的外周血CD4+细胞数,点击下方进入流式细胞仪专场查看更多:/strong/span/a/pp style="text-indent: 2em "span style="text-align: justify color: rgb(0, 112, 192) "strong/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/zc/144.html" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/e84084ce-2898-4e9a-94b5-0db6756f686c.jpg" title="流式细胞仪.png" alt="流式细胞仪.png"//a/pp style="text-indent: 2em "span style="text-align: justify color: rgb(0, 112, 192) "strong/strong/spanbr//p
  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃图1. 每分钟10℃加热速率下药物材料的DSC测试结果图2. 熔融峰放大后在111℃显示出肩峰图1所示为每分钟10°C常规加热速率下药物材料的DSC测试结果。样品显示出单一的熔融吸热峰,起始熔融温度为107.4°C,没有显示出明显的多晶现象。对熔融峰进一步观察,可以在高温侧发现一个很小的肩峰。对这一熔融转变进行放大,如图2所示,该药物样品在111°C附近确实存在肩峰,这是存在多晶型现象的有力标志。利用晶型转变的时间特性,能够对可能存在的多晶型现象进行检验;改变DSC加热速率 (含时间依赖性或速率),可以识别可能存在的多晶型。图3. 每分钟3℃加热速率下药物材料的DSC测试结果以每分钟3℃的低加热速率对该特定样品进行分析,DSC测试结果如图3所示,该药物样品明确显示出多晶型现象。样品在107.2℃发生熔融后随即进行结晶,如109℃ 的放热峰所示。要对紧随多晶熔融转变的结晶峰进行检测和分辨,确实需要如珀金埃尔默DSC 8500这样的具有很高分辨率的功率补偿型DSC仪器。作为对比,本实验也采用了高性能的热流型DSC仪器对该药物多晶型样品进行分析,即便在低加热速率下也无法检测到这三个转变过程 (不稳定晶型熔融、结晶、稳定晶型熔融) 的存在。主要原因是热流型DSC的炉体质量较大 (150g),响应速率远低于功率补偿型DSC。如本研究结果所示,对于很多药物材料来说,具有极高分辨率的DSC仪器是成功且完整地检测到多晶型现象的必要条件。实验2卡马西平多晶型DSC测试测试条件升温速率:10/50/100/150/200/250℃min-1;样品质量:~5mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:100℃~240℃在检测到多晶型存在的情况下,需要对各晶型成分进行定量。使用DSC方法对晶型进行定量的逻辑是:通过将测量得到的晶型熔融峰面积与100%纯净的晶型熔融焓值比较,计算对应晶型在样品中的百分比。实际测试中,由于低温晶型熔融后可能存在重结晶现象,易对高温的熔融峰归属判定产生误导。同时,由于结晶峰与熔融峰相近,会干扰熔融峰面积的计算,难以确定真实的熔融焓值。卡马西平(Carbamazepine)是治疗癫痫病和神经性疼痛的药物,存在多个晶型。某卡马西平样品在常规测试条件(10℃/min)下,其DSC曲线如图4所示。可以看出,低温晶型(晶型III)在熔融后(红色虚框内吸热峰),出现了放热峰(蓝色虚框),该峰对应于熔融部分的重结晶。在更高的温度区间,可观察到晶型I的熔融峰(绿色虚框)。在高温区间检测到的晶型I熔融峰可能来源于原始样品,也可能来源于晶型III熔融后重结晶,亦或是两者都有。因此,在当前的常规测试条件下,难以进行归属。另外,由于晶型III的熔融和重结晶峰部分重叠,也无法准确计算晶型III的熔融焓值。图4 每分钟10℃加热速率下卡马西平的DSC测试结果按照结晶的理论,重结晶是一个动力学控制的过程,重结晶程度与结晶时间关系很大。因此,如果能够通过改变测试条件,缩短熔点不同的两个晶型间的时间跨度,就可以抑制低温晶型熔融后的重结晶。功率补偿型DSC的小炉体设计,使得快速地升降温成为可能,从而为这类体系的分析提供了技术保证。在本例中,使用不同的快速升温速率进行同一种类样品的考察,结果如图5所示。可以看到,随着升温速率的提高,DSC曲线中晶型I的熔融峰面积逐渐减小;在250℃/min的升温速率下,晶型I熔融峰完全消失,这意味着:1在前述慢速升温下得到的DSC曲线中,晶型I完全来自于低温晶型III熔融后的重结晶,原始样品中并没有晶型I的存在;2晶型I的熔融峰消失,表明在当前测试条件下,晶型III没有重结晶,此时量测到的熔融峰完全不受晶型III重结晶放热的干扰,从而可以准确计算纯净的晶型III熔融焓值(109.5J/g)。图5 不同升温速率下卡马西平DSC测试结果基于以上测试结果,继续在快速升温抑制重结晶的条件下测试真实的混合晶型样品,就可以通过前面得到的晶型III熔融焓值,准确计算晶型III和晶型I的比例,如图6所示。图6 卡马西平混合晶型样品在每分钟250℃加热速率下DSC测试结果总结珀金埃尔默功率补偿型DSC 8500既可以提供许多药物材料的多晶型检测所需要的极高灵敏度,又可以提供非常卓越的分辨率。对于新药研发行业来说,多晶型检测非常重要,因为多晶型现象对于药物有效成分进入血液循环的速率有很大的影响,也会影响到药物的储存期。功率补偿型DSC的小炉体设计具有很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在上述研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC仪器则无法检测到该样品的多晶型现象 (结晶过程)。另外,通过功率补偿型DSC实现的快速升温测试,可以抑制药物分子低温晶型重结晶,从而更可靠地判断样品的晶型情况,进而准确计算各晶型相对含量。扫描下方二维码即刻获取相关资料
  • ​质谱技术助力我国科学家在月壤中首次发现分子水!
    从中国科学院物理研究所获悉,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员陈小龙、副研究员金士锋、博士研究生郝木难等,联合北京科技大学副教授郭中楠、天津大学工程师殷博昊、中国科学院青海盐湖研究所研究员马云麒、郑州大学工程师邓丽君等,在嫦娥五号带回的月球样本中,发现了月球上一种富含水分子和铵的未知矿物晶体——ULM-1。这标志着科学家首次在月壤中发现了分子水,揭示了水分子和铵在月球上的真实存在形式。该研究成果近日在学术期刊《自然-天文学》(Nature Astronomy)在线发表。月球上是否存在水,对于月球演化研究和资源开发至关重要。对1969年至1972年采集的阿波罗样品的研究表明,月壤中未发现任何含水矿物。此后,月球不含水成为月球科学的基本假设,这对认识月球火山演化、月地起源等问题产生了重要影响。1994年,研究人员通过克莱门汀探测器对月球两极进行观测,提出极区永久阴影区的月壤中可能存在水冰。2009年,月船一号搭载的月球矿物绘图光谱仪发现,月球表面存在太阳风导致的羟基和/或水分子信号。同年,月球观测和传感卫星以2.5公里/秒的速度撞击了月球永久阴影区,而对撞击尘埃的遥感测量显示了水的信号。近年来,遥感数据表明月球光照区有水分子存在的迹象。针对当年采集的阿波罗月球样品,科学家运用高灵敏度的表征技术,在部分玻璃和矿物中发现了百万分之一量级的“水”(H+、OH-或H2O),但没有水分子存在的确凿证据。富含水分子和铵的未知矿物晶体——ULM-1和成分组成我国嫦娥5号采集的月壤样品属于最年轻的玄武岩,是迄今为止纬度最高的月球样品,为月球水的研究提供了新机遇。我国科研人员开展的这项研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为(NH4,K,Cs,Rb)MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。ULM-1是如何被发现的?中国科学院物理研究所/北京凝聚态物理国家研究中心副研究员金士锋说,科研人员在1.5克细如尘埃的月壤中筛选了数千个晶体颗粒,绝大多数是已知矿物。ULM-1晶粒大小和月壤里大部分颗粒大小差不多,直径仅有零点几毫米。科研人员在挑选样品时发现, ULM-1质地非常软且外观透明,猜测其中含有水。研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为NH4MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。“我们认为,ULM-1是月火山喷发的产物,其中的水是月球本身的水。”金士锋说,目前认为月球“水”的来源主要有几种可能:一是太阳风粒子与月表物质相互作用产生的羟基物质;二是撞击月球的彗星或陨石带来的水和含羟基物质;三是月球原生水。科研人员推测,几十亿年前,月球火山喷发时,喷出的水蒸气、氨、氯化氢等气体和月壤反应,形成了ULM-1。为了确保这一发现的准确性,该研究进行了严格的化学和氯同位素分析。纳米二次离子质谱数据表明,该矿物的Cl同位素组成和地球矿物显著不同,与月球上的矿物相符。研究人员对该矿物化学成分和形成条件进行分析,进一步排除了地球污染或火箭尾气作为这种水合物的来源。该六水矿物的存在为月球火山气体的组成给出了重要的约束。热力学分析显示,当时月球火山气体中水的含量下限与目前地球中最为干燥的伦盖火山相当。这揭示了复杂的月球火山脱气历史,对探讨月球的演化过程具有重要意义。这种水合矿物的发现揭示了月球上水分子可能存在的一种形式——水合盐。与易挥发的水冰不同,这种水合物在月球高维度地区(嫦娥5号采样点)非常稳定。这意味着,即使在广阔的月球阳光照射区,也可能存在这种稳定的水合盐。这为未来月球资源的开发和利用提供了新的可能性。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 中药的秘密----红外光谱揭示中药炮制过程的真相
    中药起源悠久,许多中药品种都需要经过炮制,炮制是中药制作中的一个关键工序,会直接影响中药的药效,炮制过程中药物究竟发生了什么变化?现代光谱仪器为您揭示。 地黄因其地下块根为黄白色而得名地黄,其根部为传统中药之一,最早出典于《神农本草经》。依照炮制方法在药材上分为:生地黄和熟地黄。生地黄,性凉味甘苦,功用清热凉血、养阴生津;熟地黄,性温味甘,功用滋阴补血、益精填髓,二者药性及功效不同。因此,生地黄炮制加工成熟地黄,其炮制质量对保证其药性及功效非常重要。“黑如漆,甜如饴”,是熟地黄传统经验,但并没有客观标准量化这一过程。如何有效的控制炮制过程,从而达到最佳的药效呢?河南牧业经济学院樊克锋教授,使用PerkinElmer高性能红外光谱仪,通过测试炮制过程中地黄光谱的变化,揭示了炮制过程的真相。图1 酒炖熟地炮制过程样品粉末颜色变化地黄富含低聚糖类,其中以水苏糖为主。生地经炮制加工成熟地,主要就是低聚糖转化成单糖。谱图变化重点在1200cm-1~900cm-1波段和900cm-1~700 cm-1两个波段,前者主要就是糖的C-O(H)键弯曲振动吸收,后者主要是糖环的不同振动吸收。图2 地黄炮制过程红外光谱图(1200cm-1~900cm-1波段和900cm-1~700 cm-1波段)“甜如饴”,是由于低聚糖水解所得单糖。谱图表现上,1050 cm-1主强峰由单强峰变为1026和1058 cm-1双强峰、831-797-771 cm-1波段的山形峰变817-797-777 cm-1的阶梯峰。“黑如漆”,是由于水解所得的果糖能与氨基酸反应成蛋白黑素。水苏糖水解得到的大部分果糖与地黄所含氨基酸反应生成了蛋白黑素,同时使得果糖的含量减少到与分解所得的葡萄糖含量之比接近1:5,出现了~777cm-1的特征峰。 生地炮制成熟地过程主要就是糖转化过程,而糖分的转化在红外谱图上有明显特征。因此,地黄炮制的过程,不论是地黄生物形态(色味)、药学性质(性味功效)变化,都可以通过红外光谱特征进行判断跟踪,保证地黄达到可靠的药效。表1酒炖熟地炮制过程中红外光谱与化学成分、生物形态及药学性质等变化的相关性分析关于珀金埃尔默:作为全球领先的科研仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涵盖医学诊断、科研和分析仪器等。我们在全球拥有9000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和售后服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2016年,珀金埃尔默年营收达21亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默公司的信息,请访问珀金埃尔默全新上线的中文官方网站。
  • 血糖仪检测不准?你是否服用这些药物
    血糖是血液葡萄糖含量的简称。葡萄糖是人体的重要组成成分,也是能量的重要来源。正常人体每天需要很多的糖来提供能量,为各种组织、脏器的正常运作提供动力。所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。血糖不宜过低,也不能过高。当血糖过高的时候,会增加肾小球的滤过压力,甚至会强制破坏肾小球的滤过功能,导致肾单位被破坏。除此之外,对神经、视网膜、心脑血管也有一定程度的损伤。 所以,定期对体内血糖水平进行监测是十分必要的。空腹时,全血血糖的正常值为3.9~6.1mmol/L,可换算为70~110mg/dL,凡是在此范围内的空腹全血血糖值都属于正常情况。长期服用一些药物会导致血糖值出现偏差,造成药物性高血糖。如降压药物、降脂药物、抗病毒药物、抗菌药物、免疫抑制剂、抗精神病类药物、糖皮质激素等。这些药物在用于治疗非血糖相关性疾病时,通过损害胰岛β细胞分泌功能而致胰岛素分泌不足,或降低外周组织对胰岛素的敏感性,进而致血糖升高。另外,服用一些药物短期内不会对血糖造成明显影响,检测时却会误导血糖仪,如对乙酰氨基酚、维生素C、水杨酸、尿酸、 胆红素、甘油三酯、麦芽糖、木糖等。其中,维生素C具有抗氧化作用,会影响血糖的测定,大部分在医院使用的血糖检测设备是通过葡萄糖氧化酶法检测血糖,葡萄糖氧化酶具有氧化的作用,而维生素C具抗氧化的效果,这会减弱葡萄糖氧化酶的氧化效果,从而导致测量值偏低。在日常生活中,血糖监测能够直接了解机体实际的血糖水平,有助于我们判断自身的健康情况,在疾病预防中起到重要作用。
  • 蒙牛称牛奶致癌物超标问题饲料来源已查明
    究竟是什么原因导致的蒙牛牛奶中含强致癌物质黄曲霉毒素M1?对此,蒙牛方面昨日(12月27日)表示,问题原因已查明,是因为牛吃了霉变的饲料所致。对于这批问题饲料的来源也已经查明,但结果有待公布。  蒙牛内部已查出结果  12月24日,国家质量监督检验检疫总局公布了近期对全国液体乳产品进行抽检结果公告,蒙牛乳业(眉山)有限公司生产的一批次产品被检出黄曲霉毒素M1超标140%。  在黄曲霉毒素M1超标事件曝光之后的第三天,蒙牛乳业前日回应表示,事件原因已经查明,是奶牛食用霉变饲料引发的。但当时称对于这批饲料及奶源来源于哪里,暂时无法追查。  昨日,蒙牛集团发言人卢建军在接受本报记者采访时表示,这个问题已经查明,但结果有待公布。“从专家的判断以及蒙牛内部的判断,问题肯定是出在饲料的霉变这个问题上,这点已经毋庸置疑。”卢建军昨日表示,“目前内部对此已经有一个查出的结果了,但是目前这个信息还没有到我手上。”  “这是个别问题”  卢建军强调,这是个别问题,饲料的霉变是因为饲料的储存不当造成的,并不是普遍现象。  蒙牛眉山的奶源构成是怎样的?卢建军并未向记者介绍。他只是表示,蒙牛整个奶源供给的构成是80%来自牧场,20%来自农户奶站。  公开资料显示,眉山基地是蒙牛的第24个基地,也是蒙牛在西南地区的首个生产基地,设计日处理鲜奶800吨。2009年,现代牧业洪雅牧场与眉山基地同日竣工,为后者提供奶源。  质监部门已立案调查  另据成都商报报道,眉山市质监局副局长袁勤前日称,已对蒙牛乳业眉山分公司下发整改通知。此事经初查,蒙牛纯牛奶一批次产品被检出黄曲霉毒素M1超标不存在人为添加,只是一个偶发事件。目前,质监部门已立案调查,查实后将按规定给予高额处罚。
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • “100家实验室”专题:访北京锦绣大地技术检测分析中心有限公司
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。2009年6月3日,仪器信息网工作人员参观访问了本次活动的第十八站:北京锦绣大地技术检测分析中心有限公司。  北京锦绣大地技术检测分析中心有限公司成立于1998年,是一家独立法人单位,已于2002年通过北京市质量技术监督局的计量认证(CMA认证),于2005年通过中国合格评定国家认可委员会(CNAS)认可并被其指定为有机产品认证检测机构,可出具权威、科学的第三方检测报告。 左:北京市质量技术监督局计量认证(CMA认证)证书右:中国合格评定国家认可委员会(CNAS)认可证书    据中心主任赵孟彬教授级高工介绍:中心可对食品、饲料、水质、土壤、肥料、食品包装材料、一次性卫生材料、保健品等按标准方法进行分析检测,样品主要来源于所属集团公司生产的产品、农副产品批发市场销售的商品、认证基地与产品基地的样品、外送抽检样品及自送样品等,“为了蔬菜、食品能够及时上市,我们每日还安排了晚班”。  中心目前有专业工作人员20余人,占地1200多平米,设有综合办公室、无机室、有机室、微生物室、质量控制室等,安全报警、空气流通、温度控制等设施齐全,环境条件良好。中心现配有安捷伦气质联用仪、沃特世超高效液相色谱质谱联用仪、安捷伦气相色谱仪、安捷伦液相色谱仪、珀金埃尔默原子吸收分光光度计、科创海光原子荧光分光光度计、戴安离子色谱仪、岛津紫外分光光度计、赛默飞世尔酶标仪、Organomation氮吹仪、Sigma低温离心机、新科微波消解仪、天大天发智能崩解仪等检测仪器及配套设备170余台。赵孟彬主任强调,中心会定期检定这些仪器,并有专人负责对其维护和保养,“有的仪器已经用了七、八年,现在仍然能完好地进行检测工作”。工作掠影  中心设有企业博士后科研工作站,已经培养博士后10名,其中包含分析检测博士后3名,研究领域涉及农业无土和有机栽培、动物繁殖与克隆、干细胞与转基因技术、湿地生态环境、食品安全与营养等。  在工作管理上,中心采取电子化的管理模式,工作人员通过软件系统办公;在提高人员工作素质上,中心采取提高学历、请专家授课、交流讨论的方式,开展了法律法规与安全培训、基础理论与数据统计培训、操作技能与专业外语培训,并通过考核评审建立人员档案。  问及中心的发展方式,赵孟彬主任说:“通过参加能力验证、实验室间的比对,以及参与制定检测方法和定值项目,提高了中心的检测水平,加强了对分析过程各环节的质量控制,自然也能逐渐扩大中心在市场中的影响和知名度”。迄今为止,中心已多次参加这些项目及活动,基本取得满意的成绩。目前,中心已制定了15个企业标准,参与制定国家标准和行业标准14个,申请并承担多个国家资助项目。  北京锦绣大地检测中心外景  谈及业务发展,赵孟彬主任介绍到:中心将依据开始实施的《食品安全法》、《食品营养标签管理规范》以及相关的生态环境法律法规,积极开展食品安全、营养标签标示以及与环境领域相关的检测工作,积极参加项目研发、标准方法制定工作,高度关注相关的国内外科技发展动态与报道,保持中心工作的可持续性发展。   附1:北京锦绣大地技术检测分析中心有限公司检测项目介绍检测项目分类检测项目食品安全方面(包括饲料)农药残留:有机磷类、有机氯类、拟除虫菊酯类、氨基甲酸酯类;兽药残留:氯霉素、四环素、土霉素、金霉素、磺胺类、克伦特罗(瘦肉精)、己烯雌酚、伊维菌素、孔雀石绿、喹乙醇、硝基呋喃类、喹诺酮类等;违法添加的非食用物质:三聚氰胺、苏丹红、甲醛、硼酸与硼砂、溴酸钾、富马酸二甲酯等;添加剂:防腐剂、甜味剂、增白剂、色素等;食品中污染物:重金属、硝酸盐、亚硝酸盐、多氯联苯等;食品中真菌毒素;致病菌微生物;对人体有毒有害物质食品营养与标签标示能量、蛋白质、脂肪、碳水化合物、钠、饱和脂肪酸、胆固醇、糖(单/双糖)、膳食纤维、维生素(维生素A、D、E、K、B1、B2、B6、B12、C、叶酸、烟酸、泛酸)、微量元素(钙、磷、钾、钠、镁、铁、锌、碘、硒、铜、氟、铬、锰、钼)等保健品保健品功效成分中的大豆异黄酮、银杏黄酮、原花青素、淫羊藿、多糖、水苏糖、茶多酚、绿原酸、白藜芦醇和普利醇、红景天、核苷酸、番茄红素、总皂甙、人参皂甙、齐墩果酸、熊果酸等微生物大肠菌群、细菌总数、乳酸菌、酵母菌、霉菌、商业无菌、致病菌(沙门氏菌、志贺菌、金黄葡萄球菌)等环境参数(水质、土壤)多环芳香烃、挥发性有机物VOCs、半挥发性有机物SVOCs、重金属、COD、BOD、溴酸盐、农药残留及总磷、总氮、氨氮、酸根阴离子及常规检测等肥料全磷、全氮、全钾、铜、锌、铁、锰、有机物总量等   附2:北京锦绣大地技术检测分析中心有限公司联系方式  电话:(010)88206688-8267   (010)88207530  传真:(010)88207529  Email:dadijiance@vip.sina.com  网址:www.glac.com.cn
  • H7N9禽流感病毒来源初定
    基因重配模式初步揭示,病毒可能来自于欧亚大陆迁徙至东亚地区的野鸟所携带的禽流感病毒和中国上海、浙江、江苏等地的鸭群和鸡群所携带禽流感病毒发生的基因重配。  近日,中国科学院微生物研究所病原微生物与免疫学重点实验室(CASPMI)研究人员对人感染H7N9禽流感病毒基因进行分析,初步揭示了病毒可能来自于欧亚大陆迁徙至东亚地区的野鸟所携带的禽流感病毒和中国上海、浙江、江苏等地的鸭群和鸡群所携带禽流感病毒发生的基因重配。  祸起鸟禽病毒基因重配  “病毒重配是自然界很常见的现象,不同病毒可以通过宿主之间的接触交换其基因片段。”4月9日,中国科学院微生物研究所病原微生物与免疫学重点实验室副主任刘文军在接受《中国科学报》记者采访时说。  该实验室对中国疾病预防控制中心(CDC)提供的H7N9病毒基因数据进行的分析结果显示,在H7N9病毒的8个基因片段中,H7片段来源于浙江鸭群中分离的禽流感病毒,并可追溯至东亚地区野鸟中分离的相似病毒 N9片段与东亚地区野鸟中分离的禽流感病毒同源。其余6个基因片段(PB2、PB1、PA、NP、M、NS)来源于H9N2禽流感病毒。据病毒基因组比对和亲缘分析显示,H9N2禽流感病毒来源于中国上海、浙江、江苏等地的鸡群。  “此次疫情之所以发生在长三角地区,可能是因为欧亚大陆迁徙至韩国等东亚地区的携带H亚型(包括H7N3和H7N9亚型禽流感病毒)的野鸟经过中国长三角地区时,接触到浙江鸭群,病毒产生重配使鸭群携带H7亚型病毒,并和浙江、上海等地携带H9N2禽流感病毒的鸡群接触,最终基因重配成为新型禽流感病毒H7N9。”CASPMI从事生物信息分析的副研究员刘翟在接受《中国科学报》记者采访时说。  对于此前有媒体称H7N9病毒是“中韩混血”,刘文军纠正说,野鸟是不断迁徙的,没有国籍,不能说H7N9病毒是两国混血。  该团队的研究结果还显示,H7N9禽流感病毒暂未发现在猪群中进化的痕迹,猪在这次病毒基因重配中未发挥中间宿主作用。这一结果也否定了此前一些人关于H7N9病毒可能来源于黄浦江死猪的猜疑。  死亡率高或因病毒变异  这种在禽类身上呈现低致病性的病毒,在人身上却极具破坏力,病毒会在人的肺部疯狂复制,导致病情发展迅速,死亡率也很高。  “血凝素(HA)像一把钥匙,使病毒获得入侵人类或牲畜细胞的通道 神经氨酸酶(NA)帮助病毒破坏细胞受体,并使新复制合成的病毒扩散 剩余的6个基因片段协作,完成病毒大量在细胞体内复制的过程。”刘翟解释说。  刘翟表示,三个步骤的配合缺一不可,哪一个失衡,都可造成病毒力量弱化,不足以对人体起到杀伤作用。但不幸的是,在新型的H7N9禽流感病毒中,这三个步骤高效配合,也因此对人体造成了极大破坏。  该实验室研究人员表示,新型H7N9禽流感病毒感染人类,并导致高死亡率,可能源于病毒变异。目前已观察到N9的变异,其基因片段比一般的N9基因片段短一些,但尚不知这种变异导致何种具体后果。  而在此次的研究过程中,H7基因片段和惯常的H7并未有太大不同。但在决定人—禽受体结合的特异性上,出现了关键氨基酸的变化。这种变化对人的影响有待进一步的科学评估,因为此前H7亚型禽流感病毒感染人的案例曾有发生。  疫苗不能滥用  据了解,禽类中HA共有16种亚型,NA有9种亚型,两者可以组合成144种不同的病毒亚型,目前已发现130余种。  刘文军指出,要想研究出针对各类流感的疫苗仍存在困难。因为流感变异速度非常快,很难预测会发生哪些变异。同时,疫苗也不能滥用,否则可能会加快病毒变异速度。  然而,他指出,流感病毒研究的重要性并不亚于艾滋病或乙肝。流感病毒可能通过飞禽、家畜家禽等多种宿主来传播,很难切断其中任何一种传播途径,主动预防非常困难。  流感病毒对人类危害非常大。如1918年至1919年西班牙型流行性感冒就曾导致全世界约10亿人感染、2500万到4000万人死亡。  对于下一步的研究,刘文军表示,CASPMI将继续追踪研究H7N9的感染机制,为下一步防控工作提供理论基础。
  • “含糖饮料”没告诉你的秘密-糖度含量引领健康生活
    世界卫生组织(WHO)曾调查了23个国家人口的死亡原因,得出结论:嗜糖之害,甚于吸烟,长期食用含糖量高的食物会使人的寿命明显缩短,并提出了"戒糖"的口号。营养调查还发现,尽管吃糖可能并不直接导致糖尿病,但长期大量食用甜食会使胰岛素分泌过多、碳水化合物和脂肪代谢紊乱,引起人体内环境失调,进而促进多种慢性疾病。"微糖"含糖量惊人,相当于10颗方糖,一点也不"微"。检测也发现,民众以为含糖量应该是全糖三分之一的"微糖"饮料,其实含糖量都超过三分之二。 入伏以来,果汁饮料是老百姓的消暑必备首选。但是你知道吗?其实果汁饮料的主要成分就两种,分别是水和白砂糖。还含有柠檬酸、柠檬酸钠、维生素C、食用香精等辅料。这篇文章我们就好好谈谈糖的问题!你知道了这些还不够,你知道一瓶饮料中到底含多少糖吗?酒泉检验检疫局的工程师将用仪器检测的数据告诉你。 将ATATGO(爱拓)全自动折光仪RX-5000a和分析天平开机预热30分钟,将预包装饮料打开,倒入于高脚杯中,用吸管吸取一滴饮料放入仪器中进行检测。按下开始键,开始检测。三分钟以后,仪器响起了滴滴声,检测完成。检测结果会让你大吃一惊!!! 纳尼?饮料中的含糖量有11.1%,这么高啊! 然后工程师用电子天平称量了一颗硬糖的重量,一颗糖有多重呢?马上为您揭晓?如果1瓶饮料按照450毫升算的话,饮料中含有50.4克糖,相当于你短时间内喝掉了12.5块糖。当然各位也不需要紧张糖类是碳水化合物的一种,我们平时摄入的食物80%以上是碳水化合物,只要不暴饮暴食,相信对我们的健康没有影响。有小朋友的家长要引起注意啊! 本实验通俗易懂,灵感来源于日常生活的点点滴滴。还有一个好办法,想要知道饮料的含糖量,可以看饮料包装上面的营养成分表,营养成分表中的碳水化合物含量就可以简单明了的告诉你答案哦. 该饮料的营养成分 果汁含量大于等于5%甘肃酒泉检验检疫局综合实验室食品检测工程师史海军工作照(供稿:甘肃酒泉检验检疫局) 所以果汁饮料之外的其它茶饮料样品的糖度测量可以参考此操作进行。欲了解更多产品资讯,或有样品需要测试请联系ATAGO中国分公司:www.atago-china.com 020-38393021,竭诚为您服务。 ATAGO(爱拓)中国市场部(宣)
  • 北京市发布PM2.5来源解析 生活源与工业源贡献相当
    p  据北京市发布的细颗粒物(PM2.5)来源解析研究成果,本地排放贡献中,移动源、扬尘源、工业源、生活面源和燃煤源分别占45%、16%、12%、12%和3%。这也意味着,生活源已占北京本地大气污染排放12%,基本与工业源相当。/pp  北京市环境科学研究院副院长石爱军进一步解释说,在北京,生活源占比越来越高。生活源污染排放主要来源于市民的“吃、穿、住、行”等日常生活。比如所有带香味的日用消费品都含有挥发性有机物(VOCs),特别是香水、发胶、空气清新剂、杀虫剂、清洗剂等气雾剂,“日用消费品中的挥发性有机物含量都较高”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/73f4fcd0-b748-47da-94ed-1f1ff617fc79.jpg" title="发胶.jpeg" alt="发胶.jpeg"//pp  香水、发胶、空气清新剂等污染数值是怎样测算出来的?12%这样的数据能否令人信服?在美国等其他国家,也会把这些生活源算作污染源吗?该如何控制?/pp  日用品部分污染物排放甚至达机动车尾气3倍/pp  香水、发胶、空气清新剂等对空气的污染主要是在使用时会排放挥发性有机物(VOCs)。VOCs是挥发性有机物的总称,包括烷烃、芳香烃类、烯烃类、卤烃类、酯类、醛类、酮类等8大类化合物,共300多种。由于VOCs是比较活泼的气体,会二次生成PM2.5、PM10或臭氧。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/0f872223-3f91-43a0-800b-6025e3c97d24.jpg" title="空气污染.jpeg" alt="空气污染.jpeg"//pp  中国工程院院士、北京大学教授唐孝炎说,VOCs排放牵涉的面非常广,涉及生活各个方面。如衣物干洗店主要使用四氯乙烯、石油溶剂、清洗助剂,这些化学品中VOCs含量较高,产生的VOCs排放量不容忽视。“北京奥运会之前,所有紧急措施都准备完善,但在7月25-27日出现较大的空气污染,8月5日污染继续上升。这时,原环保部除了派6000个督察员到各地监督外,北京市还采取洗衣场全部停工措施,到7日晚上污染情况好转。”/pp  “平时不起眼的因素,在紧要时刻起关键作用。”唐孝炎说。/pp  “又如香水、空气清新剂等,使用过程中会有香精等挥发,就产生VOCs。”国家城市环境污染控制技术研究中心研究员彭应登在接受科技日报记者专访时说,部分日用消费品中的挥发性有机物含量较高。/pp  美国《科学》杂志刊登的一项研究也显示,含有从石油提取化合物的日化用品,如各种家居清洁剂、杀虫剂、香水等,对城市空气的污染水平与机动车尾气相当。/pp  该研究负责人、美国国家海洋和大气管理局化学部门的科学家布赖恩· 麦克唐纳说,“随着机动车排放水平不断降低,城市空气其他主要污染源的比重日益上升。”/pp  麦克唐纳及其同事在洛杉矶市对通过监管机构检测的日化用品进行了污染水平分析评估,然后与当地机动车尾气等其他空气污染源进行了比对。结果显示,日化用品的污染水平已达到或超过了洛杉矶市的机动车尾气污染。该研究还发现,在某些细微颗粒物排放指标上,日化用品甚至大大超过了机动车尾气,甚至达到了后者的3倍。/pp  生活源污染排放数据总体准确/pp  “生活源已占北京市本地大气污染排放的12%,这个12%是根据一个城市或地区日用消费品用量的统计数据估算出来的。”彭应登解释说,一个城市或地区的卖场、超市中每日销售的日用消费品量,在商务或行业统计部门都有相应的数据,然后再根据各日用品流通、使用过程中排放的VOCs量再折算出来。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/39363103-3792-43f7-a328-5db871a2dc61.jpg" title="香水.jpeg" alt="香水.jpeg"//pp  “尽管一些小型非主流购买渠道,还有部分在淘宝、京东等网上购买的日用品数量一时难以统计进入,又比如从广东买了香水在北京使用等,还存在一定误差。不过,这个生活源污染排放数据总体上还是准确的。”彭应登说,我国与西方国家有所不同,我国是从计划经济进入市场经济的,目前计划经济的统计渠道还在,特别是大型企业、商业部门的数据比较容易被商务和行业部门获得,数据整体上还是靠谱的。/pp  彭应登说,其中的餐饮油烟统计数据并非是依据商务或行业统计部门,这是环保部门根据污染源排放清单的台账算出来的。目前,我国还没有专门针对居民日常生活中的厨房油烟污染控制措施。但湖南长沙已经开始试点,由地方政府、发改部门等牵头,高校的餐饮抽油烟机净化效率超过87%。净化后得到的“地沟油”制成肥皂,然后再用肥皂跟周边社区居民更换。“居民用自己厨房抽油烟机中的废油更换肥皂,试点效果很好。”/pp  对室内空气质量影响更大/pp  麦克唐纳等研究显示,由于日用化学品的消费很大一部分发生在建筑物内,因此,其使用过程中产生的VOCs对室内空气质量的影响更大。以美国洛杉矶地区为例,化学产品挥发物对于室内空气的影响7倍于其对室外空气污染的贡献。/pp  “美国的加州、洛杉矶等地区容易发生光化学烟雾,VOCs是这些地区控制的重点。”彭应登说,尽管欧美等国家要求刷墙等必须使用“水漆”而非“油漆”,印刷必须使用“水墨”而非“油墨”,不过,更多的控制措施都是针对工业、机动车的,对个人生活类用品,VOCs控制要求并非很严格。/pp  彭应登说,目前,我国VOCs控制思路也在转变,正在走向精细化、精准化。“如北京的干洗店,对每公斤衣物干洗剂种类、用量等都有了明确规定。”/pp  从2017年9月1日起,京津冀三地统一实施《建筑类涂料与胶黏剂挥发性有机化合物含量限值标准》。《标准》核心起草单位晨阳水漆技术总工胡中源说,这属于京津冀地区首个统一强制性环保标准。“保守估算,此举将减少建筑类涂料和胶黏剂VOCs排放量20%以上”。/p
  • 成本不足1美元!南洋理工大学研发出糖尿病炎症快检设备
    最近,新加坡南洋理工大学(NTU)医学院的科学家研发出一款可以允许医生在几分钟内找出糖尿病患者是否存在炎症的装置。目前普遍使用的诊断程序是通过常规的全血计数来检测,检查结果需要近数小时的等待时间。南阳理工大学医学院Boehm教授和HOU博士手持共同设计的新型糖尿病炎症快检设备。  新检测套件方法简便成本低  与原治疗手段需要收集患者一管血不同的是,新的测试套件仅需要一滴血,便可以检测糖尿病患者是否患有由于异常免疫细胞活化引起的炎症反应。  目前使用的传统检查手段需要人工对各种血液细胞进行分离,即费时又费力,而这些工作在新的测试套件上完全实现了自动化。  此外,这项新加坡生产的测试套件还可能降低检测的价格。该项操作的成本不足一美元。  套件关键芯片发明者侯翰伟  南阳理工大学李光前医学院高级研究员侯翰伟设计出了该测试套件的关键芯片。侯博士解释说,“通过在芯片上设计非常微小的通路,我们能够像血液离心器及其一样,将不同大小的血细胞分离开来。”  白细胞是构成我们身体的免疫系统的关键组成成分,其也是中性粒细胞的重要类型之一,人类受到感染或炎症侵袭时的第一道防线。侯博士表示,“分析这些分离的嗜中性粒细胞可以帮助判断炎症的发病情况,并判断该糖尿病患者的感染风险是否会增加。”侯博士的新设备及研究结果已于今年早些时候刊登在了《科学报告期刊》上。《科学报告》是自然出版集团(Nature)下颇具学术影响力的综合性科学期刊。在显微镜下展示新型糖尿病炎症快检设备如何分类特定的白细胞  世界1/10的人受糖尿病影响  糖尿病一种严重影响着世界总人口数10%的健康疾病。国际糖尿病联合会(IDF)于2015年预估了新加坡糖尿病患者的占比约为国家总人口数的10.53%,在全球的发达国家中排名第二位。  2型糖尿病是糖尿病中最常见的类型,治疗方式主要为改变不良的生活习惯、药物治疗、胰岛素治疗等。如果糖尿病患者可以分为基于其炎症状况和血糖水平进行综合分组,医生便可以通过分析这些数据更好地选择最适合他们的治疗方案。  新的生物标记物:中性粒细胞  南洋理工大学的调查小组发现中性粒细胞可以使用作为确定是否糖尿病患者是否患有炎症的生物标记物。使用新的测试套件,中性粒细胞可以很容易从血液样本中提取出来。除了单纯的通过细胞计数,通过对其形态及和功能的观察可以对更有效地诊断糖尿病炎症。  健康的个体中,中性粒细胞可以在血液中自由流动。当发生急性炎症时(如细菌或病毒的感染),它们的流速会减慢,并沿血管壁滚动。当他们移动到接近感染部位后,他们会冲破血管壁并移动到受损部位。糖尿病患者的中性粒细胞流动速度更快,这意味着冲破血管壁用以对抗感染的中性粒细胞数量将减少。  侯博士解释,流速加快的中性粒细胞与胆固醇及c-反应蛋白水平(炎症的生物标志物)密切相关,因此它可以帮助医生更好地判断患者的免疫状态。  该团队预计新检验仪器可在三五年内推出市场。  南阳理工大学研究小组发现,除了控制血糖水平外,现有治疗糖尿病的药物能够改变中性粒细胞的流速。南阳理工大学医学院代谢疾病研究项目科研主任Bernhard Boehm教授补充到,二甲双胍和普伐他汀等药物可以减轻动脉粥样硬化等心血管疾病的风险。动脉粥样硬化可能导致糖尿病患者动脉中发生脂肪积聚从而导致心脏病发作。Boehm教授说,“通过这样做,这些药物可能会促进中性粒细胞功能的发挥,中性粒细胞是动脉粥样硬化的关键驱动因素。但进一步的研究将指出这些药物的精确相互作用及是否能发挥任何有益的效果。”  “这个新的测试套件可以搜集糖尿病患者面临的风险因素,进而推进糖尿病管理。它将引导并改善病人护理,促进慢性病自我管理以及全民的健康。”获得更多的生物标志物功能及中性粒细胞流速数据,可以使医生更好地确定病人的健康状态。  该项芯片是多学科共同努力的结果(Boehm教授的医学支持,南洋理工大学机械与航空航天工程系助理教授 Holden Li的工程学支持)。侯博士与助理教授 Holden Li紧密合作制造了芯片并收集了中心粒细胞的流动速度。  侯博士未来计划与医学院及陈笃生医院中的临床科学家通力合作。他计划在糖尿病患者治疗过程中对该设备进行更大规模的研究,以发现通过中性粒细胞流速而调整治疗方案是否存在影响。
  • 陕科大陈庆彩团队: 三维荧光光谱法(EEM)鉴定大气颗粒物中发色团物质的种类和来源 |前沿用户报道
    大气发色团是气溶胶中可以吸收太阳光的一类有机物质,可能对全球气候产生影响。大气发色团也可能通过形成三线态进而催化产生活性氧物质,因此对大气气溶胶的老化过程也具有重要潜在贡献。充分的了解大气发色团的理化性质和来源是掌握它们对环境的影响的本质要求。三维荧光光谱法(EEM)是鉴定环境中发色团物质的重要仪器分析方法,近年来已被频频的应用到大气气溶胶研究领域中。然而,当前EEM方法应用于大气领域进入了瓶颈时期。随着EEM方法广泛应用和深入研究,研究者们开始怀疑EEM方法是否具有区别气溶胶来源和物质种类的能力,因为多数情况下发现样品的EEM谱图具有非常相似的形貌。这样就限制了EEM方法更加广泛的应用于研究大气发色团来源、形成和消去过程。可喜的是,近日陕西科技大学陈庆彩研究团队,利用三维荧光光谱(EEM)研究,对大气颗粒物化学结构和来源进行了分析。在该项工作中,陈庆彩等人演示了EEM方法是有能力分辨大气颗粒物中不同类型发色团以及来源的,并构建了大气发色团与其来源、化学种类的对应关系。这项工作突破了一定的方法瓶颈,对于EEM方法在气溶胶研究领域的应用起到了关键推动的作用,或将促进大气发色团来源和大气化学过程的研究。研究过程1. EMM助力大气颗粒物来源和组成的初步分析研究团队分别采集了城市、一次燃烧源和二次气溶胶样品,利用EMM方法和 PARAFAC模型调查了不同发色团在不同种类气溶胶样品中的含量,讨论了EEM方法在分辨发色团类型以及样品来源的能力。通过对实际大气颗粒物样品进行分析,从整体轮廓分析,确实发现实际样品具有相似的EEM光谱外貌特征。这个结果也是当前研究者们担心的事情:到底EEM方法是否可以区分不同来源和组成的大气颗粒物样品?图1(a)为大气颗粒物萃取样品WSM和MSM的平均EEM光谱图以及它们的差光谱 (b)和(c)表示样品EEM光谱之间相关系数的四分位图和频率分布图针对这个值得怀疑的问题,团队人员研究了不同来源大气颗粒物样品,包括各种燃烧源样品(生物质燃烧、煤炭燃烧、汽车排放和做饭排放样品)和二次气溶胶样品。研究发现,不同种类样品的荧光性能是不同的,其中:生物质燃烧和煤炭燃烧样品的荧光效率是大的而汽车尾气样品和二次气溶胶样品相对较小另外发现,鉴定出的不同种类发色团,在不同来源样品中的相对含量也是不同的这些结果直接解答了上述疑问,确认:EEM方法可以用来区别不同气溶胶来源。图2 依据不同发色团(C1-C8)在不同污染物上的相对载荷鉴定出发色团来源,以及不同来源发色团在WSM和MSM样品中的相对含量2. PARAFAC 模型:一种系统的来源和成份分析图谱进一步,研究人员基于改进的PARAFAC 模型对大气气溶胶中发色团的来源和化合物的种类归属进行了研究。在这一步骤,该团队开创性的将大气颗粒物化学组分融合进EEM图谱的PARAFAC分析,进而对各种大气发色团的来源进行了鉴定。结果显示有一半左右的发色团来源被鉴定出来了,并发现了几个有意思的结果,比如:发现发色团的沙尘暴一次来源和光化学形成的二次来源,分析了季节变化中沙尘暴发生、光强度变化对发色团类型和含量的影响。该工作还利用优化的PARAFAC分析方法,把几种典型的有机化合物的EEM谱图耦合进了模型解析,进而对发色团的可能化学物质属性进行了归属。结果显示了苯酚类发色团是重要的水溶性发色团,而PAHs是水不溶性发色团的重要类型。图3 EEM区域和对应的大气发色团可能化学结构和来源图中不同彩色区域表示本研究鉴定的大气发色团来源对应区域,不同彩色数字球表示本研究鉴定的大气发色团对应化合物种类区域后研究人员总结了当前人们的认知和该项工作的主要结论,形成了一个可用于发色团化学物种和来源的依据图谱(图3),这个图谱对于今后EEM方法应用与于大气气溶胶的来源和化学转化研究提供了重要参考和研究途径。小结由上述研究可知,本研究工作提供了不同种类大气发色团对应来源以及化合物类别鉴定依据。这其中重点在于演示了不同发色团在不同气溶胶样品中的含量是不同的,从而说明EEM方法是有能力分辨不同类型发色团以及样品类型的。这项研究也构建了大气发色团与其来源、化学种类的对应关系。他们鉴定出了样品中大约一半的荧光物质所对应的来源和化合物种类,结果提供了大气发色团来源以及化合物类别鉴定依据,这将大大促进了EEM方法应用于研究大气发色团来源和大气化学过程,对于EEM方法在气溶胶研究领域应用起到了推动的作用。本研究中的三维荧光光谱法和大量光谱采集采用的是HORIBA Aqualog光谱仪完成,该仪器在EEM图谱快速获取、数据校正等方面的优势,为研究的顺利进行提供了不少便利。tips: 想了解更多荧光光谱仪的解决方案,点击阅读原文提交需求,HORIBA工程师会尽快联系您~论文原文&作者该研究以 Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis 为题,发表在《Science of The Total Environment》上作者:陈庆彩通讯作者:陈庆彩、杜林通讯单位:陕西科技大学环境科学与工程学院、山东大学环境研究院Doi: 10.1016/j.scitotenv.2020.137322文章链接:https://doi.org/10.1016/j.scitotenv.2020.137322 课题组介绍:陈庆彩,男,山东人,博士,副教授,博士生导师。毕业于日本名古屋大学,取得理学博士学位。陕西省“百人计划”,陕西科技大学大气污染控制团队负责人,名古屋大学特邀教员,日本大气化学学会会员。主要研究方向为气溶胶化学,包括有机气溶胶、大气棕碳(BrC)、长寿命自由基(EPFRs)等。参与和主持中国国家自然科学基金等十余项科研项目;已在ES&T等权威期刊一作/通讯发表20余篇学术论文;获得国家和软件注册权10余项。ORCID:http://orcid.org/0000-0001-7450-0073个人主页:https://hj.sust.edu.cn/info/1015/1394.htm 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • ISCO泵-探索新能源概念
    01 概述全球经济严重依赖于能源,能源供应我们的食物生产、建造我们的家园并驱动我们的交通工具。没有能源,我们所熟悉的许多事物将会停止运转。随着中国和印度等国家经历快速经济增长,能源需求以及化石燃料的成本持续上升。为了满足这一增长的需求,开发替代能源来源变得越来越重要。研究与开发对于此过程至关重要,需要最高等级的设备来获得准确可靠的结果。Teledyne ISCO 注塞泵是开发替代燃料的绝佳工具,从实验室规模到试验工厂都能派上用场。能源来源或用于燃料和化学品的原材料可以分为两类:传统的和非传统的。传统能源来源是通过现有技术获得的,例如石油(原油)、煤炭和天然气,而非传统来源则需要更新和/或更复杂的技术,通常需要更大的投资。非传统能源过去在成本上不具备竞争力,但随着能源价格的上涨,现在可能成为一种可行的替代品。非传统能源来源包括:&bull 页岩油(美国)&bull 油砂/重油(委内瑞拉-加拿大)&bull 生物质(任何植物或动物材料)&bull 甲烷水合物替代性或非传统燃料可以从任何传统来源中提取,例如煤炭,而不是石油。然而,这一术语通常更多地用于指代来自可再生能源的可再生燃料,如生物质。可再生燃料包括:&bull 乙醇&bull 生物柴油&bull 非化石甲烷&bull 氢气02 石油(原油)自 1858 年在加拿大安大略省的石油泉首次钻探油井以来,石油的使用已大大扩展。如今,90% 的车辆使用的燃料都源自石油,全球的需求预计还将上升,这将给石油生产带来更大的压力。油井的生产寿命在达到某个高点后会开始下降。在这一点上,可以采用如增强型石油回收(EOR)等技术来维持石油生产水平。评估可能的技术需要复制油藏条件(如温度和压力)进行测试。这种称为岩心驱替的测试,能确定岩石对各种流体的渗透性,并需要使用高性能注射泵等精密设备。 我们每天使用的物品都来自常规和非常规石油。世界对原油的依赖远远超出汽油和其他燃料等更明显的需求。来自石油的其他产品包括许多药物和软膏、塑料、化妆品和洗涤剂。橡胶制品、防腐剂、密封剂和铺路材料也来自石油。世界的石油供应以及我们获取石油的能力,对这些以及其他许多日常产品的成本和可用性产生了深远的影响。03 油页岩油页岩含有干酪根,一种沉积岩中发现的复杂有机化合物混合物,从中可以提取液态烃。干酪根不是原油,但可以被加工成原油替代品,或称为合成原油(syncrude),然后进一步加工成常用的石油产品。这一过程本身需要能源投入,这影响了其与原油的成本竞争力。油页岩矿床遍布全球,但世界上已知储量的 64% 集中在美国。随着世界能源价格上涨,油页岩将受到更多关注。04 细砂油砂主要位于加拿大和委内瑞拉,由类似糖浆的石油(沥青)组成,其开采和加工难度远大于传统石油。因此,需要采用非常规技术进行提取,如露天开采和原位开采。最常见的原位过程涉及用蒸汽加热沥青,降低粘度,使其能以更传统的方式被泵送出来。提取后,必须将沥青升级为较轻的合成原油,以便通过标准管道运输并进一步精炼。由于技术上更具挑战性、能源密集度更高,因此成本也更高,使得油砂成为一种非常规石油来源。05 煤炭煤炭满足了全球 25% 的能源需求,尤其是电力生成方面。不幸的是,它也是最大的二氧化碳排放源。按照目前的消耗率,世界的煤炭储量可以持续超过预计的 150 年。世界上超过 50% 的煤炭储量位于美国、俄罗斯、中国和印度。拥有超过 25% 的可开采煤炭,美国拥有世界上最大的煤炭储备。除了作为主要的热能和发电能源外,煤炭还有许多其他潜在用途。例如,煤炭是替代原油产品如化学品、汽油和柴油燃料的一种可行原料。将煤炭转化为其他产品使用的最常见过程是煤制液体(CTL)和气化(合成气)。CTL 创造了一种合成原油,可以通过传统方式进一步加工。合成气,也称为水煤气,可以直接替代天然气,或通过费托合成过程进一步加工成其他燃料、化学品或塑料。尽管煤炭目前是二氧化碳排放的主要来源,但目前正在进行研究,通过从发电厂或转化过程中捕获二氧化碳,并将其封存在地质构造中来减少这些排放。由于在转化过程中二氧化碳始终被包含,因此移除相对容易,从而成本效率高。全球范围内,采用减排/封存技术的公司可以通过税收节省和/或减排积分来抵消其成本。然后,二氧化碳可以被封存或用作提高石油或天然气采收率的技术,这具有双重好处,即提高采收率和进一步减少二氧化碳排放。煤制液体煤制液体(CTL)可以是一种直接技术,使用溶剂在热量和压力下溶解粉状煤炭,从而创造出一种合成原油,这种原油可以进一步加工成燃料和化学品。合成原油具有使用现有炼油厂和分配系统的潜力优势。06 天然气天然气主要由 70-90% 的甲烷组成,用于发电厂、家庭供暖、运输和塑料制造。天然气通常位于油田中,提供了部分石油位移压力。非常规天然气典型情况下,非常规天然气包括那些不使用先进技术难以开采的沉积物。非常规天然气包括:&bull 深层气(深度在15,000英尺或以下的沉积物)&bull 致密气(被限制在不透水的地质构造中,如非多孔岩石)&bull 含气页岩&bull 煤层甲烷&bull 甲烷水合物煤层煤层通常包含被困的天然气,这些气体曾经通过焚烧处理,但现在有许多用途。甲烷水合物甲烷水合物由被困在冰冻水晶体中的甲烷(天然气)组成。它们存在于海底沉积物中,以及加拿大和俄罗斯的永久冻土区域。也被称为“燃烧的冰”,如果能够开发出恢复这种能源的方法,这个潜在的燃料来源可能为世界提供大量的能源。07 合成气气化是一种将含碳原料(如煤或生物质)转化为合成气的过程,合成气由一氧化碳和氢气组成。合成气,曾被称为“水煤气”,在 20 世纪 50 年代前的美国和 70 年代的英国常被用于烹饪和供暖。与天然气相似,合成气可以直接用作相对清洁的燃料,或通过费托催化转化过程进一步加工成液体形式。煤或生物质的气化是通过以下吸热“水煤气”反应实现的:C + H2O → H2 + CO合成气的形成也可能是天然气转化为氢气的中间步骤:CH4 + H2O → CO + 3H2除了 CO 和 H2,合成气还可能含有二氧化碳和氮气,因此必须进一步净化才能用于生产化学品和燃料。一氧化碳和 H2 可以加工成甲醇和其他化学品。液态气化的一个缺点是,净化和转化过程能源密集,因此涉及额外的成本,以转化为燃料。费托合成过程费托合成过程涉及一氧化碳的氢还原反应,通过催化化学反应将气化得到的合成气转化为各种液态烃:(2n+1)H2 + nCO → CnH(2n+2) + nH2O(其中n是正整数)这些液态烃随后可以进一步加工成合成油或燃料。生物质气化(BG)与费托合成(FT)过程的结合因其在生产可再生生物燃料方面的巨大潜力而备受关注。08 乙醇乙醇,或称谷物酒精,主要用作燃料或燃料添加剂。乙醇通过特定类型的酵母发酵生产,这些酵母将糖代谢为乙醇和二氧化碳,反应如下:C6H12O6 → 2 CH3CH2OH + 2 CO2在巴西,大多数乙醇由甘蔗制成,而在美国,乙醇由玉米制成,玉米也是一种相对供应不足的食品。目前,正在研究从木质纤维素生产乙醇,木质纤维素由纤维素、半纤维素和木质素组成。这种类型的乙醇,称为纤维素乙醇,可以由非食品来源生产,如柳枝稷和木屑。09 甲醇甲醇可以是各种化学和燃料产品的原料。它也可以直接用作燃料或作为汽油添加剂,类似于乙醇。目前,大多数甲醇是由化石燃料(如煤和天然气)衍生的合成气生产的。它也可以很容易地扩展到非常规来源,如油砂、油页岩、煤层甲烷、致密气、甲烷水合物和生物质。通过以下反应,生物质替代方案将使甲醇成为一种可再生资源:生物质 → 合成气(CO,H2)→ CH3OH10 生物柴油生物柴油是一种通过将植物油或动物脂肪化学转化为脂肪酸甲酯(酯交换)制成的生物燃料,可以单独使用或与传统柴油混合使用。虽然生产生物柴油有几种方法,但最常见的是涉及甲醇和氢氧化钠的间歇过程:特别是在美国和加拿大,生物柴油最常见的标准是ASTM D6751。符合性测试通常需要气相色谱仪。11 甘油生物柴油的广泛使用导致了全球甘油过剩,甘油是植物油酯交换反应的一种副产品。甘油有许多常见用途,包括化妆品、药品、食品和饮料、溶剂、肥皂、润滑剂和纺织品。然而,正在进行研究以确定其他用途,如氢气和乙醇生产以及燃料添加剂。甘油的其他转化方法包括:氧化、氢化、氢解、醚化和缩合。12 热解/加氢作用在生物燃料行业,脂肪酸甲酯必须转化为碳氢化合物,以便更好地与现有炼油厂基础设施相兼容。热解是在没有氧气的情况下加热和分解有机材料的过程。快速热解,涉及非常快速的加热,是这个过程的更高效版本。碳氧键分解成更热力学稳定的二氧化碳,从而产生碳氢化合物。热解相比气化的一个优势是它需要较少的热量,因此能量消耗更少。一个缺点是高水分含量,必须在进一步处理前去除。加氢是指分子氢的催化反应,以去除氧键,从而产生碳氢化合物。这两个过程都产生了最终结果为更简单的化合物,然后可以进一步精炼成可再生的生物燃料,以及精细化学品和脂肪。引用1) U.S. Department of Energy. 2008.2) Oil Sands Discovery Centre. “The Oil Sands Story.” Feb.20083) Hagenbaugh, Barbara. June 2006 “High Cost of Oil CouldPut Many Jobs at Risk.” USA Today. June 2008.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制