当前位置: 仪器信息网 > 行业主题 > >

核糖醇侧金盏花醇标准品

仪器信息网核糖醇侧金盏花醇标准品专题为您提供2024年最新核糖醇侧金盏花醇标准品价格报价、厂家品牌的相关信息, 包括核糖醇侧金盏花醇标准品参数、型号等,不管是国产,还是进口品牌的核糖醇侧金盏花醇标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核糖醇侧金盏花醇标准品相关的耗材配件、试剂标物,还有核糖醇侧金盏花醇标准品相关的最新资讯、资料,以及核糖醇侧金盏花醇标准品相关的解决方案。

核糖醇侧金盏花醇标准品相关的论坛

  • GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第二法 (NQAD)

    GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第二法 (NQAD)

    [align=center]GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定-NQAD[/align]《GB 5009.279-2016 食品安全国家标准食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第二法中推荐使用蒸发光散射检测器对4种糖醇进行检测。本实验室使用资生堂高灵敏度气溶胶通用型检测器NQAD对该项目进行检测。使用资生堂氨基柱CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. × 250 mm(GQAD 05507)依据国标方法进行分析,可以实现4种糖醇的良好分析(见图1)。[img=,678,525]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030937_01_2222981_3.png[/img][img=,611,257]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030937_02_2222981_3.png[/img]进一步对标准曲线进行绘制,依据国家标准,以峰面积为纵坐标,标准工作液浓度为横坐标,以赤藓糖醇浓度为0.14 mg/mL, 0.21 mg/mL, 0.28 mg/mL, 0.35 mg/mL, 0.42 mg/mL, 0.49 mg/mL,木糖醇、山梨醇、麦芽糖醇浓度为0.10 mg/mL, 0.15 mg/mL, 0.20 mg/mL, 0.25 mg/mL, 0.30 mg/mL, 0.35 mg/mL的混合系列标准工作液,进行标准曲线绘制。如图2~5所示,赤藓糖醇在0.14 mg/mL~0.49 mg/mL浓度范围内,木糖醇、山梨醇、麦芽糖醇在0.1 mg/mL~0.35 mg/mL浓度范围内线性良好,相关系数R[sup]2[/sup]均在0.99以上。[img=,534,330]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_01_2222981_3.png[/img][img=,573,327]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_02_2222981_3.png[/img][img=,573,326]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_03_2222981_3.png[/img][img=,556,342]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_04_2222981_3.png[/img]注:图中色谱峰线条不平滑是由于图像在复制过程中解像度问题引起的。

  • GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第一法(RI)

    GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第一法(RI)

    [align=center][b][color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定([/color][color=black]RI[/color][color=black])[/color][/b][/align][align=center][b][color=black][/color][/b][/align][align=left][/align][color=black][/color][align=left][color=black]本实验根据《[/color][color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第一法,使用示差折光检测法[/color]对[color=black]木糖醇、山梨醇、麦芽糖醇、赤藓糖醇[/color][color=black]4[/color][color=black]种[/color]标准品进行分析,并对标准曲线进行考察。[/align][align=center][/align][align=center][img=,600,163]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100910_01_2222981_3.png[/img][/align][align=left]使用资生堂氨基柱CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. [color=black]× [/color]250 mm(GQAD 05507)依据国标方法进行分析,可以实现4种糖醇的良好分析(见图1)。 [/align][align=center][/align][align=center][img=,690,336]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100911_01_2222981_3.png[/img][/align][align=center][/align][align=center][/align][align=left]进一步,依据标准,配制1.6 mg/mL, 2.4 mg/mL, 3.2 mg/mL, 4.0 mg/mL, 4.8 mg/mL, 6.0 mg/mL系列标准工作液,以峰面积为纵坐标,标准工作液浓度为横坐标,绘制标准曲线。[/align][align=left]如图2~5,[color=black]赤藓糖醇、木糖醇、山梨醇、麦芽糖醇[/color]在1.6mg/mL~6.0 mg/mL浓度范围内线性良好,相关系数R[sup]2[/sup]均在0.999以上。[/align][align=center][/align][align=center][img=,582,328]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100911_03_2222981_3.png[/img][img=,547,322]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100912_01_2222981_3.png[/img][/align][align=center][img=,563,326]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100913_01_2222981_3.png[/img][/align][align=center][img=,560,320]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100917_01_2222981_3.png[/img][/align][align=center][/align]综上,依据《[color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第一法,[/color]使用资生堂CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. × 250 mm(GQAD 05507)色谱柱,以示差折光检测器进行检测,对[color=black]木糖醇、山梨醇、麦芽糖醇和赤藓糖醇[/color]标准品能够得到良好分析结果。在1.6 mg/mL~6.0 mg/mL浓度范围内绘制标准曲线,相关系数R[sup]2[/sup]均在0.999以上,能够得到良好线性关系。[align=center][/align]注: 图中色谱峰线条不平滑是由于图像在复制过程中解像度问题引起的。

  • CNS_19.006_山梨糖醇和山梨糖醇液

    刘琦[align=center][/align][align=center]第[size=21px]1[font='times new roman'][size=21px]章基本信息[/size][/font][/size][/align]山梨糖醇别名山梨醇,英文名是Sorbitol、D-Glucitol、Sorbol、D-Sorbitol。分子式是C6H14O6,分子量为182.17,密度为1.489 g/cm3,沸点为295℃。是蔷薇科植物的主要光合作用产物。山梨糖醇液是含67%~73% D-山梨糖醇的水溶液。毒性试验显示,内服过量会引起腹泻和消化紊乱。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539566336_8129_1608728_3.jpeg[/img]1.1 理化性质1.1.1物理性质山梨糖醇为无色针状结晶,或白色晶体粉末,无臭,有清凉甜味,难溶于有机溶剂,它耐酸,耐热性能好,与氨基酸,蛋白质等不易起美拉德反应。山梨糖醇液为无色,透明稠状液体。依结晶条件不同,熔点在88~102℃范围内变化,相对密度约1.49。易溶于水(1g 溶于约0.45mL水中),微溶于乙醇和乙酸。山梨糖醇液为清亮无色糖浆状液体,有甜味,对石蕊呈中性,可与水、甘油和丙二醇混溶[1],pH值为6~7。山梨糖醇有清凉的甜味,其甜度约为蔗糖的50%~70%。1g 山梨糖醇在人体内产生16.7kJ热量。食用后在血液内不转化为葡萄糖,也不受胰岛素影响。作为甜味剂使用不会引起龋齿。山梨糖醇具有良好的保湿性能,可使食品保持一定的水分,防止干燥,还可防止糖,盐等析出结晶,能保持甜,酸,苦味强度的平衡,增强食品的风味,由于它是不挥发的多元醇,所以还有保持食品香气的功能。[size=14px]1.1.2[size=14px]化学性质山梨糖醇的化学性质相对稳定,不燃烧,不腐蚀,不挥发;浓度高时具有抗微生物的特性。有旋光性,略有甜味,具有吸湿性,能溶解多种金属,高温下不稳定。能参与酐化、酯化、醚化、氧化、还原和异构化等反应[color=#333333],并能与多种金属形成络合物[4]。山梨糖醇不含醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。[/color][/size][/size][align=center]第[size=21px]2[font='times new roman'][size=21px]章功能及应用[/size][/font][/size][/align]山梨糖醇有吸湿,保水作用,在口香糖[color=#333333],糖果[color=#333333]生产中加入少许可起保持食品柔软,改进组织和减少硬化起砂的作用。用量为百分之八左右,在面包,糕点中用于保水目的,使用量为百分之二左右,用于甜食和食品中能防止在物流过程中变味,还能螯合金属离子,用于罐头饮料和葡萄酒[color=#333333]中,可防止因金属离子而引食品混浊。根据《食品安全国家标准 食品添加剂使用标准》(GB2760-2014)中规定:山梨糖醇和山梨糖醇液的功能有甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂(如表1[2])。[/color][/color][/color][align=center]表1山梨糖醇和山梨糖醇液 sorbitol and sorbitol syrup[/align]CNS号 19.006,19.023 INS号 420(i),420(ii)功能 甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂[align=center]允许使用范围及限量[/align]食品分类号食品名称最大使用量/(g/kg)备注01.04炼乳及其调制产品按生产需要适量使用淡炼乳(原味),调制炼乳02.0302.02类以外的脂肪乳化制品,包括混合的和(或)调味的脂肪乳化制品(仅限植脂奶油)按生产需要适量使用仅限植物奶油03.0冷冻饮品(03.04食用冰除外)按生产需要适量使用03.04食用冰块除外04.01.02.05果酱按生产需要适量使用 04.02.02.03腌渍的蔬菜按生产需要适量使用 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)按生产需要适量使用仅限油炸坚果与籽类05.01.02巧克力和巧克力制品,除外05.01.01以外的可可制品按生产需要适量使用 05.02糖果按生产需要适量使用 06.03.02.01生湿面制品(如面条、饺子皮、馄饨皮、烧麦皮)30.0 07.01面包按生产需要适量使用 07.02糕点按生产需要适量使用月饼除外07.03饼干按生产需要适量使用 07.04焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)按生产需要适量使用仅限焙烤食品馅料09.02.03冷冻鱼糜制品(包括鱼丸等)0.5仅当水分保持剂使用时,其最大使用量调整为20g/kg12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水除外)按生产需要适量使用14.01包装饮用水除外。固体饮料按稀释倍数增加使用量16.06膨化食品按生产需要适量使用 16.07其他(豆制品工艺)按生产需要适量使用仅限豆制品工艺16.07其他(制糖工艺)按生产需要适量使用仅限制糖工艺16.07其他(酿造工艺)按生产需要适量使用仅限酿造工艺09.04.01熟干水产品按生产需要适量使用仅限使用山梨糖醇09.04.02经烹调或油炸的水产品按生产需要适量使用仅限使用山梨糖醇09.04.03熏、烤水产品按生产需要适量使用仅限使用山梨糖醇[table][/table]它是在日本最早允许作为食品添加剂使用的糖醇之一,用于提高食品保湿性,或作为稠化剂之用。可作甜味剂,如常用于制造无糖口香糖。也用作化妆品及牙膏的保湿剂、赋形剂,并可用作甘油代用品。2.1功能2.2.1甜味剂山梨醇是一种只含羟基官能团的碳水化合物,具有低热甜味剂的性质。2000年6月国际粮农和卫生组织食品法典委员会确认山梨醇、木糖醇、麦芽糖醇、乳糖醇、甘露醇等可作为食品添加剂加到食品中,制作无糖甜食品。在欧美发达国家中,以山梨醇等替代食糖生产糖果、点心等各类食品已十分普遍,发展趋势非常明显,其中最突出的是口香糖。在日本,各种食品和糖果都广泛使用山梨醇为甜味剂[3]。2.1.2膨松剂具有多羟基结构的山梨糖醇还具有降低水分活度,控制结晶、改善或保持柔软度的性质[],故在食品工业中经常将山梨糖醇作为一种膨松剂使用。在糖果制造中使用山梨糖醇可抑制蔗糖结晶,加上山梨糖醇本身具有的保湿性,可赋予糖果柔软的质感。在冰制品和冰激凌中可降低冰点,使产品柔软,易于勺食,且同样可抑制产品中糖类重新结晶[5]。2.1.3乳化剂山梨糖醇含有6个羟基,可与许多有机酸发生酯化作用。山梨糖醇脱水与脂肪酸合成的山梨醇脂肪酸酯统称为司盘类表面活性剂,是优良的食品乳化剂[6],可改善缩短乳化进程。在面包生产过程中可防止面包中淀粉凝沉,改善面团的加工性能;生产的糕点外观美,食用性好。还可以广泛应用于冰淇淋以及豆奶生产中。山梨糖醇制取脱水山梨醇酐,再与棕榈酸单酯化制得的司盘40,可用作印刷油墨及多种油品的乳化剂。其中,作为食品添加剂,山梨醇酐硬脂酸酯(司盘60)、山梨醇酐单棕榈酸酯(司盘65)、山梨醇酐单油酸酯(司盘80)均已经列入食品添加剂使用卫生标准中,可应用于椰子汁、果汁、牛乳、奶糖、冰淇淋、面包、糕点、麦乳精、人造奶油和巧克力等食品中[5]。2.1.4水分保持剂山梨醇的多羟基结构使其具有与水结合的性质,并具有控制食品黏度和质构、保持湿度、改善脱水食品的复水性质等作用。山梨醇的良好吸湿性,使其在潮湿的环境下会吸收一些水分,当湿度降低时,山梨醇则释放一些水分,进而建立一种湿度平衡[7],能够防止食品干裂,使食品柔软,保持新鲜度,延长有效期,防止变质。因此,山梨糖醇经常作为保湿剂应用于焙烤食品中。在饼干蛋糕和酥皮糕点中加入适量的山梨糖醇,可防止产品干裂,且有助于产品的外观。但山梨糖醇不适宜用于脆酥食品中。此外,山梨糖醇与其他糖类共存时会出现吸湿性增加的现象,使用时需特别注意[5]。2.1.5稳定剂山梨糖醇不含有醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。有一定的生理活性,能防止类胡萝卜素和食用脂肪及蛋白质的变性。在浓缩牛乳中加入山梨糖醇可延长保存期,对鱼肉酱、果酱蜜饯也有明显地稳定和长期保存的作用,山梨糖醇属于不挥发性多元醇在保持食品香气方面有较好的作用。粉末和液体形式的山梨糖醇均可保持香气和滋味,因而可作咖啡、茶、巧克力饮料和加香饮料等产品的稳定性的无糖载体[8]。山梨糖醇还能螯合金属离子,用于饮料和葡萄糖酒,可以防止金属离子引起的浑浊[font='calibri'][[font='calibri']9]。近年开发成功的中成药产品,如双黄连口服液、双黄连粉针和安宫牛黄丸、清开灵输液等,既保持了中药的综合药效,又具有西药使用方便的特点,添加少量山梨糖醇,可起到稳定药效和防止沉淀的作用。2.1.6[size=14px]增稠剂可用于酒类、清凉饮料的增稠。2.1.7其他作用①山梨糖醇与甘露醇都是具有扩张细胞外液容积作用的高渗脱水利尿药。中国药典规定[10],临床用甘露醇输液为20%的过饱和溶液。温度较低时,甘露醇易结晶析出 (见表2[11] )。[/size][/font][/font][align=center][size=12px]表2甘露醇在水中溶解度与温度的关系[/size][/align]温度[font='calibri'] /[font='calibri']℃ 010203040D-[size=14px]甘露醇10.413.718.625.234.6/g ( 100 g H2O) - 1[/size][/font][/font][table][/table]可见甘露醇输液20℃以下易结晶析出,而我国大部分地区冬季室温低于20℃,用药前需预热使之溶解,不仅给临床用药尤其是急救用药造成困难,也易引起患者的猜疑,造成医患之间的矛盾。在甘露醇输液生产中加适量山梨醇,配成复方甘露醇输液,即可防止甘露醇结晶析出,且疗效相同[12]。②冷冻保护剂:美国批准的 Neupogen(人粒细胞集落刺激因子)的新剂型,即是在其制剂中用山梨糖醇代替甘露醇作为保护剂,可使 Neupogen在冷冻环境时,仍能保持其生物活性[13]。目前甘露醇的价格是山梨糖醇的3~5倍(最高时达 10倍),用山梨糖醇代替甘露醇能达到同样效果,既可降低成本,而且原料来源更广。随着基因工程的高速发展,大量的基因因子需要保护,山梨糖醇在这方面的应用将更为广阔。2.2山梨糖醇的价值[font='calibri']2[font='calibri'].2.1山梨糖醇的直接药用价值山梨糖醇具有利尿、脱水的特性,能降低颅内压,防止水肿,可作为药物直接使用,用于脑水肿、青光眼;也用于心肾功能正常的水肿少尿;口服可作缓泻剂或糖尿病患者的蔗糖代用品。临床制剂有山梨醇注射液、山梨醇铁注射液、复方氨基酸注射液等。山梨醇在复方氨基酸中所起的作用主要有: ①可提高氨基酸的利用率;②平衡注射液中碳氮之比;③可避免葡萄糖灭菌时引起糖中醛基与氨基酸中的氨基发生美拉德反应而产生焦色素,并且也不易产生热原;④使伤口、创面部位尽量保持干燥,加快愈合,避免感染等。2[size=14px].2.2山梨糖醇可作为药用辅料山梨糖醇能与多种辅助形剂配伍 (与氧化剂禁配 ),广泛用于药物的固体分散剂、填充剂、湿润剂、稀释剂、胶囊的增塑剂、甜味剂、矫味剂、软膏的基质等作辅料。其不同用途的用量见表3[14]。[/size][/font][/font][align=center]表3山梨醇在药用辅料中不同用途和用量[/align]用途代替甘油和丙二醇润滑剂口服和外用溶液的赋形剂防止糖浆和酏剂结顶无糖甜昧剂增稠剂片剂粘结度和水份控制剂明胶和纤维膜增塑剂供注射用稀释剂DSS、四环素、抗坏血酸、复合维生素 B、维生素和铁盐的赋形浓度/%25~903~1525~90 15~3025~9025~903~105~2010~25以下25~90[table][/table][size=14px]2.2.3[size=14px]山梨糖醇的其他用途①制备维生素C[color=#333333]山梨糖醇可用于生产维生素C的原料,其经发酵和化学合成可制得维生素C。制药行业,VC合成消耗山梨醇的量最大,占全世界山梨糖醇总消耗量的16% (我国高达50% )。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539569529_9169_1608728_3.jpeg[/img]以传统山梨糖醇制备维生素C的工艺过程(二步发酵法)如下:[/color][/size][/size][align=center][/align]②其他合成树脂和塑料,分离分析低沸点类含氧化合物等。也用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液、稠化剂、硬化剂、杀虫剂等。用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液,用于低沸点含氧化合物、胺类化合物、氮或氧杂环化合物的分离分析。还用于有机合成。利用山梨醇所具有的保湿性能,用作牙膏、化妆品、烟草的调湿剂。是甘油的代用品,保湿性较甘油缓和,口味也较好。可以和其他保湿剂并用,以求得协同的效果。也用于医药工业作为制造维生素C的原料。也可用于工业表面活性剂的原料,用它生产斯盘和吐温类的表面活性剂。以山梨糖醇和环氧丙烷为原料,可以生产具有一定阻燃性能的聚氨酯硬质泡沫塑料。[color=#333333]在医药工业中,山梨[color=#333333]糖[color=#333333]醇经过硝化生成的失水山梨醇酯是治疗冠心病的药物。[/color][/color][/color][align=center][font='times new roman'][size=21px]第三章[font='times new roman']来源和合成[/font][/size][/font][/align]3.1 自然来源山梨糖醇广泛分布于自然界植物果实中,在梨、桃、苹果中广泛分布,含量约为1%~2%,1872年法国化学家Joseph Boussingault首先从山梨树果汁中分离而得[15]。常温下有液体和固体2种状态:液体山梨醇为50%~70%的水溶液,无色、无臭、味甜,pH值为6~7,10%水溶液的旋光度[a] 20d为-1.98°;固体山梨醇为白色针状、片状、粒状结晶粉末,极易溶于水,味道清凉爽口,甜度约为蔗糖的60%[15]。3.2人工合成山梨糖醇的产品规格主要有50%山梨醇液、70%山梨醇液和结晶山梨醇等[3]。山梨糖醇的生产包括氢化法、电化学法和发酵法。3.2.1催化加氢法氢化法是目前最常用的生产方法。催化加氢法所用原料主要是葡萄糖,少数工艺以淀粉、蔗糖、纤维素等为原料。以淀粉、蔗糖等生产山梨糖醇。步骤:①通过酶法或酸法将其转化成葡萄糖,②再催化加氢制备山梨糖醇[16]。1942年,日本首次采用葡萄糖催化加氢法生产山梨醇;其后,德国罗莱班公司采用固定床反应器催化加氢生产山梨醇[17-18]。目前,国内外普遍采用葡萄糖催化加氢法工业化生产山梨醇。生产装置:①间歇式,②连续式。工业上目前较多采用高压柱形反应器的连续式氢化新技术。将葡萄糖溶液通过高压泵连续注入装有固体块状催化剂的柱式反应器中,反应一段时间后排出即为山梨糖醇。催化器在反应器中处于静状态,没有搅拌和冲击的影响,而葡萄糖溶液和氢气连续不断的通过催化剂的表面,使氢化反应均匀完全。连续氢化所得的山梨糖醇溶液经过离子交换树脂精制通过升膜式或降膜式蒸发器脱水浓缩即可得液体山梨糖醇成品,进一步结晶即为结晶状山梨糖醇。催化剂是该技术的关键因素[19],传统工艺多使用Ni基催化剂。3.2.2山梨糖醇的电化学法生产技术[20]电化学法制备山梨糖醇,是通过电解法在阴极上将葡萄糖或果糖还原为山梨糖醇。与催化加氢法相比,电化学法具有工艺流程短、安全性高、产物易分离提纯、生产过程中废物排放少等优点。但由于转化率低(约70%),且每次电解只能在一个电极上合成一种产品,导致成本较高,因此电化学法生产山梨糖醇至今仍未实现工业化。直到20世纪80年代中叶,Park和Pintauro等提出了成对电氧化和还原工艺,即在同一个电解槽内同时合成葡萄糖酸盐和山梨糖醇,使得电化学法制备山梨糖醇的技术有了巨大的进步。成对电氧化和还原工艺以葡萄糖为原料,以NaBr为催化剂,加入辅助电解质Na2SO4,在50℃~60℃进行成对电化学反应。溴离子首先在阳极表面上失去电子生成溴分子,继而与葡萄糖作用,生成葡萄糖酸内酯中间体,在水溶液中与葡萄糖酸存在平衡,由于溶液中还有Na盐或Ca盐,则进一步生成葡萄糖酸盐,以避免葡萄糖酸内酯在阴极被还原。葡萄糖在阴极表面上获得2个电子被还原成山梨糖醇。因为山梨醇和甘露醇是同分异构体,所以有小部分的葡萄糖还原会成为甘露醇。3.2.3山梨糖醇的发酵法生产技术[20-21]长期以来山梨糖醇的生产都只有氢化法,直到1984年有报道利用一种生成乙醇的微生物Zymomonasmobilis可将果糖和葡萄糖的混合物转化为乙醇,且山梨糖醇的生成是与葡萄糖脱氢形成葡萄糖内酯的反应同时进行。Zymomonasmobilis最初是从发酵龙舌兰、棕榈和蔗糖等植物汁中分离得到的,经过生物转化来生产山梨糖醇和葡萄糖酸。用渗透性试剂(如甲醇或洗涤剂等)浓缩Zymomonasmobilis细胞处理后,葡萄糖酸和山梨醇产率分别为94%~95%和98%~99%。但这种生产方法操作麻烦,成本也高,目前仅限于实验室研究。[size=14px]3.2.4[size=14px]其他合成方法(1):将配制好的53%葡萄糖水溶液加入高压釜,加入葡萄糖重量0.1%的镍催化剂。经置换空气后,在约3.5MPa、150℃、pH8.2-8.4条件下加氢,终点控制残糖在0.5%以下。沉淀5min后,将所得山梨糖醇溶液通过离子交换树脂精制即得。原料消耗定额:盐酸19kg/t、液碱36kg/t、固碱6kg/t、铝镍合金粉3kg/t、口服糖518kg/t、活性炭4kg/t。(2):采用淀粉糖化所得精制葡萄糖,中压连续或间歇加氢制得。(3):将53%的葡萄糖水溶液(事先用碱液调pH=8.2~8.4)和葡萄糖质量0.1%的镍铝催化剂加入高压釜,排尽空气后进行反应,控制温度150℃,压力3.5MPa:当葡萄糖含量达0.5%以下,反应即达终点。静置沉淀、过滤。滤液用强酸性苯乙烯系阳离子交换树脂001×7及强碱性系铵Ⅰ型[color=#333333]阴离子交换树脂201×7进行精制,去除镍、铁等杂质,即得成品D-山犁醇。[/color][/size][/size][align=center][font='times new roman'][size=21px]第四章[font='times new roman']对人体的影响[/font][/size][/font][/align]4.1 [font='calibri']利尿作用山梨糖醇在人体内小部分被转变成糖原,大部分不被代谢,以原形经肾小管排出。山梨糖醇静滴后,可使血浆渗透压增高、组织脱水,经肾小球滤过,几乎不被肾小管重吸收,从而起到利尿作用。[font='calibri']4.2防止龋齿由于蔗糖能被口腔中的微生物利用,易引起龋齿,多吃不利牙齿健康。而山梨糖醇在口腔中不被龋齿的链球菌所利用,并能使口腔中的pH值略微上升,是一种防龋齿的甜味剂。4.3[size=14px]代替蔗糖,适用于一些特殊人群由于蔗糖能直接引起血糖浓度的变化,高血压、高血脂、糖尿病患者和肥胖症患者等对蔗糖敏感的人群不适用。而在哺乳动物及人体系统中,山梨糖醇通过山梨醇脱氢酶氧化成果糖,然后进入果糖-1-磷酸酯途径代谢,代谢与机体内的胰岛素无关,不受胰岛素的控制,最终代谢物为二氧化碳和水,在血液中不转化为葡萄糖,对血糖值和尿糖没有影响。因而使用山梨糖醇代替蔗糖,对糖尿病患者山梨醇比蔗糖更易忍受。所以可避免糖尿病、肥胖症、肝病、胆囊炎等患者的不适。Wheeler等研究了2种氢化淀粉水解物14:8:78和7:60:33(山梨糖醇:麦芽糖醇:其他更高聚合度的低聚糖醇)与葡萄糖相比,对无糖尿病者、非胰岛素依赖型糖尿病患者及胰岛素依赖型糖尿病患者血糖的影响,结果表明,对于所有的试验组,因摄入氢化淀粉水解物而增加的胰岛素量显著低于葡萄糖,氢化淀粉水解物引起的总血糖反应也都显著低于葡萄糖。这除了氢化淀粉水解物中葡萄糖含量较低的原因外,还可能由于山梨糖醇对葡萄糖吸收有抑制作用[22-23]。4.4其他此外,山梨糖醇还可刺激胰腺分泌胰脂肪酶等,促进胰岛素释放,使肝胆汁分泌增加,山梨糖醇不被胃酶分解,在肠中滞留时间比葡萄糖长,有润肠作用[24]。但是人体肠道可能吸收的山梨醇量不多于10g~20g,如摄入量过多,会引起渗透性腹泻[20]。[/size][/font][/font][align=center][font='times new roman'][size=21px]第五章[font='times new roman']违规事件[/font][/size][/font][/align]5.1 EBay停售在线拍卖公司EBay Inc(EBAY)2012年3月22日宣布,在意大利周末发生患者服用网购有毒山梨糖醇致死事件后,已在全球范围阻止在其网站上出售这种产品。而此前,国内也曾爆出味千就包装面过量使用添加剂的报道,当时味千回应称,2010年1月内地机构宣布在面制品允许添加山梨糖醇[25]。[size=14px]5.2[size=14px]雀巢添加剂2013年1月份的《进境不合格食品、化妆品信息》显示,雀巢一批巧克力棒因违规使用化学物质山梨糖醇而被销毁。2013年3月上海出入境检验检疫局销毁了2.7吨雀巢巧克力棒。被销毁的雀巢巧克力棒含有过高的山梨糖醇,这是一种甜味剂,过量使用可能导致肠道问题。上海出入境检验检疫局宣传部工作人员表示,上海出入境检验检疫局确销毁过一批雀巢巧克力棒,但外媒报道的时间不对。该工作人员称,在国家质量监督检验检疫总局的官方网站公布了这一信息。“外媒的报道也是从总局网站上摘抄的,但不知为什么他们把时间说成了本周。”经调查得知,被检出问题的雀巢产品具体是“雀巢奇巧榛子味牛奶巧克力脆谷棒”这款产品,产地意大利,不合格原因是违规使用化学物质山梨糖醇。信息显示,上海出入境检验检疫局总共查获2.7吨雀巢巧克力棒,已采取销毁方式处理。在日本山梨糖醇作为食品甜味剂,使用范围和限量如下:清凉饮料为百分之一到三,蛋白在百分之三左右,巧克力为百分之四左右。山梨糖醇的最大使用量是40g/kg,但一般都不会达到那么高的值,所以一般情况就是分为可用和不可用,“违规使用[color=#333333]”应该就是不可用。那么既然按照《食品添加剂使用标准》的规定,山梨糖醇可以用于巧克力和巧克力制品,而巧克力棒属于糕点,因而推测可能是进口申报的时候报的不是糕点,而导致与我国质量标准不符[26]。[/color][/size][/size][align=center][font='times new roman'][size=21px]第六章发展前景[/size][/font][/align]我国山梨糖醇产业发展迅猛,20世纪90年代,产能约为30 kt/a,2005年约为550 kt;2013年达到1200 kt[27];2015年年末,全国总产能突破3000 kt。我国山梨糖醇产能大幅跃升,成为山梨醇出口大国[28]。 近年来,国内产能超过100 kt/a的山梨糖醇生产厂家主要有:长春大成实业集团有限公司(350 kt/a)、山东天力药业有限公司(400 kt/a)、茌平县同创生物技术有限公司(200 kt/a)、利达(柳州)化工有限公司(160 kt/a)、山东青援食品有限公司(140 kt/a)、罗盖特(中国)精细化工有限公司(120 kt/a)、秦皇岛骊华淀粉股份有限公司(100 kt/a)、诸城兴贸玉米开发有限公司(100 kt/a)、山东鲁维制药有限公司(100 kt/a)、山东鲁洲集团(100 kt/a)等[27]。随着山梨醇产能的激增,其下游产业的需求量趋于饱和,因此,对山梨醇的下游应用及提高产品附加值提出了更高的要求[29]。6.1[font='calibri']前景期望[font='calibri']山梨糖醇具有优良的性能,低廉的价格,是全球消费量最大的糖醇,约占糖醇总消费量的1/3。山梨[size=14px]糖醇近年已成为世界食品工业界的新宠,随着经济技术在我国快速发展,山梨醇行业将呈快速上升趋势,其市场前景也将是一片光明。[/size][/font][/font][align=center][font='times new roman'][size=21px]参考文献[/size][/font][/align][1] 李凤林、黄聪亮、余蕾.食品添加剂:化学工业出版社,2008.[2] 《食品安全国家标准食品添加剂使用标准》(GB2760-2014).[3] 周日尤,伍玉碧. 我国山梨醇工业的现状与发展 [J]. 现代化工, 2000(9):49-51.[4] 山梨醇化学性质.化学网[引用日期2014-6-20].[5] Smith.Jim,Hong-Shum.L. ,姜竹茂.食品添加剂实用手册 [M]. 北京:中国农业出版社,2005:396-406.[6] 张晓英,赵统领. 山梨醇的制备与应用 [J]. 中国食品添加剂, 2001(5):49-50.[7] O. R. Fennema,王璋,等. 食品化学(第三版)[M]. 北京:中国轻工业出版社,2003:664-666.[8] 金树人. 中国糖醇行业的形势与发展动态[J]. 牙膏工业, 2006(2):47-48.[9] 潘道东. 功能性食品添加剂 [M]. 北京:中国轻工业出版社, 103-105.[10] 中华人民共和国药典 ( 95年版二部 ) [ M ].北京: 化学工业出版社 , 1995.[11] 丁绪淮 ,等 .工业结晶 [ M ]. 北京: 化学工业出版社 , 1995.[12] 郑云鹏 .复方甘露醇注射液防止结晶试验 [J]. 中国药学杂志 , 1989, ( 7): 417-418.[13] 罗青波. 国内外“三醇”产销现状分析 [ N ].医药经济报 , 1999-12-27(3).[14] 上海医药管理局科技情报所 . 药用辅料手册 [ M ]. 1988.[15] 汪薇,罗威,罗立新,等. 山梨醇的研究开发进展 [J]. 中国食品添加剂,2004(1):77-80.[16] 孙然,刘超超,李海亮. 山梨醇的主要应用及生产工艺分析 [J]. 中国高新技术企业,2008(9):99-100.[17] Klein J C,Hercules D M. Surface analysis by X-ray photoelectron spectroscopy and auger electron spectroscopy of molybdenum-doped Raney nickel catalysts[J]. Anal Chem, 1984,56(4):685-689.[18] 徐三魁,王向宇,梁丽珍. 葡萄糖加氢制山梨醇催化剂研究 及发展趋势[J]. 现代化工,2006,26(11):29-31.[19] 袁长富,李仲良,卢春山,等. 山梨醇制备及转化催化剂研 究进展[J]. 化工生产与技术,2007,14(1):34-37.[20] 郑建仙. 功能性糖醇 [M]. 北京:化学工业出版社,2005: 114-145.[21] 朱建良,吴振兴. 生物法制备山梨醇的研究进展 [J]. 化工时刊, 2006(5):47-51.[22] 杨程芳,郑建仙. 功能性糖醇—氢化淀粉水解物 [J]. 中国食品 添加剂,2005(3):113-117.[23] WHEELER M L, FINEBERG S E, FINEBERG N S, et al. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters [J]. Diabetes Care, 2002,25:1277-1282.[24] 尤新. 淀粉糖品生产与应用手册(第一版)[M]. 北京:中国轻工业出版社,1997:326-342.[25] EBay全球停售山梨糖醇,因意大利发生致死事件.[26] 2.7吨雀巢产品山梨糖醇超标被销毁. 新华网[引用日期2013-03-08].[font='calibri'][27] [font='calibri']江镇海. 山梨醇的市场应用现状与发展趋势[J]. 上海化 工,2014,39(12):33-35.[28] [size=14px]王成福,庞颂,杜瑞锋. 异山梨醇制备技术研究[J]. 轻工 科技,2017(6):52-54.[29] Ruppert A M,Weinberg K. Hydrogenolysis goes bio:from carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem Int Edit,2012,51(11):2564-2601.[/size][/font][/font]

  • 【讨论】提取纯化 含量 标准品

    [color=#fe2419]自制提取纯化的化学药品纯度经检测达到99%可否做检测原植物中含量的标准品用?[/color][b][color=#000000]自制从中药中提取纯化的单一化学成分,药品纯度经检测达到99%可否做检测原植物中含量的标准品用?这样的标准品是否可以拿来发文章,即是说文章是否可以接受这样的标准品测出的含量?[/color][/b]

  • 【分享】卫生部关于指定D-甘露糖醇等58个食品添加剂产品标准的公告(2011年第8号)

    2011年 第8号 根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,我部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。 特此公告。 附件: 1.D-甘露糖醇等58个食品添加剂产品标准目录(见下文) 2.D-甘露糖醇等58个食品添加剂产品标准 二○一一年三月十八日

  • 【原创】粗多糖含量测定中标准品的选择之二

    苯酚-硫酸法是一种常用的检测粗多糖含量的方法,其原理是苯酚-硫酸试剂可与游离的寡糖、多糖中的己糖、糖醛酸起显色反应,在480-490 nm处有最大吸收值,吸收值与糖含量呈线性关系。此法是先用标准品多糖制作标准曲线后,再通过多糖的显色反应测定吸光度,然后根据其在曲线上的位置推算出多糖的浓度从而推算其含量。此法操作简单、快速、灵敏、重复性好,对每种多糖仅需制作一条标准曲线[1]。目前大家研究较多的、生物活性较高的一些真菌多糖,如香菇多糖、灵芝多糖、姬松茸多糖、猴头菇多糖、灰树花多糖等[2],在结构上大多是以β-(1→3)、β-(1→4)或β-(1→6)糖苷键连接的葡聚糖,另外,分子量也一般分布在十几万到几十万之间。因此,由北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证的《粗多糖含量的测定方法》中建议使用50万分子量的葡聚糖作为标准品[3]。为行业内粗多糖含量的测定统一了标准,使各企业之间多糖类产品更具有可比性。燕麦β-葡聚糖是一种β-(1→3)-(1→4)键接的线性葡聚糖,在结构、粘度等其他物理性质上与常见的植物和真菌多糖很相似,适合作为植物、真菌来源多糖含量测定的标准品。但由于多糖纯化困难,市面上不少葡聚糖纯度较低,不适合作为标准品。下面,我们来比较两种不同纯度的燕麦β-葡聚糖产品作为多糖标准品的区别。1 材料与方法1.1 实验材料高纯度燕麦β-葡聚糖PS-Con-Ⅰ由武汉百特纯大分子科技有限公司提供,纯度大于97%(其中,另外3%主要是结合水),低纯度燕麦β-葡聚糖由某食品研究所提供,纯度约50%,苯酚、浓硫酸均为化学纯。1.2 实验方法样品溶解:高纯度燕麦β-葡聚糖经70℃水浴,15min后完全溶解。低纯度燕麦β-葡聚糖70℃水浴,30min后仍有不溶物,升高溶解温度至90℃后继续溶解30min,仍有少量不溶物,过滤。溶液配制:配制0.1mg/ml葡聚糖标准溶液,50mg/ml苯酚溶液备用。标准曲线的制作:精密吸取葡聚糖标准液0.10,0.40, 0.80,1.20,1.60,2.00ml(分别相当于葡聚糖0.01,0.04,0.08,0.12,0.16,0.20mg),补充水至2.0mL,加入苯酚溶液1.0ml,混匀,再加入浓硫酸5ml,混匀,沸水浴2分钟,混匀,冷却后用分光光度计在485nm波长处以试剂空白溶液为参比,测定吸光度值(A),以A为横坐标,葡聚糖含量C为纵坐标绘制标准曲线。2 结果与分析2.1 样品溶解高纯度燕麦β-葡聚糖溶解速度较快,溶液澄清透明,说明此产品溶解性良好。低纯度燕麦β-葡聚糖难以溶解,且溶解1h后仍有不溶物存在,说明此产品溶解性差,杂质较多。 2.2 标准曲线下表为两种标准品分别配制不同葡聚糖浓度(含量)反应后得到的吸光值:葡聚糖含量(mg)0.010.040.080.120.162.00高纯度标样吸光值0.0530.0800.2000.2620.3530.450低纯度标样吸光值0.0010.0550.1130.1730.2400.320通过数据处理,得到标准曲线如下:高纯度燕麦β-葡聚糖 C=0.4657A-0.0068 (R=0.9955)低纯度燕麦β-葡聚糖 C=0.609A+0.0101(R=0.9985)比较这两个标准曲线发现,当待测样品吸光值一定,使用低纯度葡聚糖作为标准品得到的标准曲线计算葡聚糖含量值时,明显高于高纯度标准品。究其原因,低纯度葡聚糖所含杂质较多,在作为标准品时,部分杂质不能溶解,却计入了标准品葡聚糖总量,因此,使得结果偏高。另外,即使溶解的物质中,也有可能存在部分不能参加反应的蛋白等杂质,同样会造成结果偏高。由以上数据和分析可以得出,测定粗多糖含量不能使用低纯度葡聚糖作为标准品,应尽量选用高纯度葡聚糖标准品,按照国家建议方法和行业标准进行检测,这样才能保证各企业多糖系列产品在含量和纯度上的可比性,有利于规范企业行为和保健品市场。参考文献[1] 胡居吾,范青生,肖小年. 粗多糖测定方法的研究. 江西食品工业. 2005, 1[2] 李明元. 真菌粗多糖测定方法的研究. 食品研究与开发. 2007, 5[3] 粗多糖的测定方法. 北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证. 食品伙伴网

  • 【转帖】粗多糖含量测定中标准品的选择之二

    苯酚-硫酸法是一种常用的检测粗多糖含量的方法,其原理是苯酚-硫酸试剂可与游离的寡糖、多糖中的己糖、糖醛酸起显色反应,在480-490 nm处有最大吸收值,吸收值与糖含量呈线性关系。此法是先用标准品多糖制作标准曲线后,再通过多糖的显色反应测定吸光度,然后根据其在曲线上的位置推算出多糖的浓度从而推算其含量。此法操作简单、快速、灵敏、重复性好,对每种多糖仅需制作一条标准曲线[1]。目前大家研究较多的、生物活性较高的一些真菌多糖,如香菇多糖、灵芝多糖、姬松茸多糖、猴头菇多糖、灰树花多糖等[2],在结构上大多是以β-(1→3)、β-(1→4)或β-(1→6)糖苷键连接的葡聚糖,另外,分子量也一般分布在十几万到几十万之间。因此,由北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证的《粗多糖含量的测定方法》中建议使用50万分子量的葡聚糖作为标准品[3]。为行业内粗多糖含量的测定统一了标准,使各企业之间多糖类产品更具有可比性。燕麦β-葡聚糖是一种β-(1→3)-(1→4)键接的线性葡聚糖,在结构、粘度等其他物理性质上与常见的植物和真菌多糖很相似,适合作为植物、真菌来源多糖含量测定的标准品。但由于多糖纯化困难,市面上不少葡聚糖纯度较低,不适合作为标准品。下面,我们来比较两种不同纯度的燕麦β-葡聚糖产品作为多糖标准品的区别。1 材料与方法1.1 实验材料高纯度燕麦β-葡聚糖PS-Con-Ⅰ由武汉百特纯大分子科技有限公司提供,纯度大于97%(其中,另外3%主要是结合水),低纯度燕麦β-葡聚糖由某食品研究所提供,纯度约50%,苯酚、浓硫酸均为化学纯。1.2 实验方法样品溶解:高纯度燕麦β-葡聚糖经70℃水浴,15min后完全溶解。低纯度燕麦β-葡聚糖70℃水浴,30min后仍有不溶物,升高溶解温度至90℃后继续溶解30min,仍有少量不溶物,过滤。溶液配制:配制0.1mg/ml葡聚糖标准溶液,50mg/ml苯酚溶液备用。标准曲线的制作:精密吸取葡聚糖标准液0.10,0.40, 0.80,1.20,1.60,2.00ml(分别相当于葡聚糖0.01,0.04,0.08,0.12,0.16,0.20mg),补充水至2.0mL,加入苯酚溶液1.0ml,混匀,再加入浓硫酸5ml,混匀,沸水浴2分钟,混匀,冷却后用分光光度计在485nm波长处以试剂空白溶液为参比,测定吸光度值(A),以A为横坐标,葡聚糖含量C为纵坐标绘制标准曲线。2 结果与分析2.1 样品溶解高纯度燕麦β-葡聚糖溶解速度较快,溶液澄清透明,说明此产品溶解性良好。低纯度燕麦β-葡聚糖难以溶解,且溶解1h后仍有不溶物存在,说明此产品溶解性差,杂质较多。 2.2 标准曲线下表为两种标准品分别配制不同葡聚糖浓度(含量)反应后得到的吸光值:葡聚糖含量(mg)0.010.040.080.120.162.00高纯度标样吸光值0.0530.0800.2000.2620.3530.450低纯度标样吸光值0.0010.0550.1130.1730.2400.320通过数据处理,得到标准曲线如下:高纯度燕麦β-葡聚糖 C=0.4657A-0.0068 (R=0.9955)低纯度燕麦β-葡聚糖 C=0.609A+0.0101(R=0.9985)比较这两个标准曲线发现,当待测样品吸光值一定,使用低纯度葡聚糖作为标准品得到的标准曲线计算葡聚糖含量值时,明显高于高纯度标准品。究其原因,低纯度葡聚糖所含杂质较多,在作为标准品时,部分杂质不能溶解,却计入了标准品葡聚糖总量,因此,使得结果偏高。另外,即使溶解的物质中,也有可能存在部分不能参加反应的蛋白等杂质,同样会造成结果偏高。由以上数据和分析可以得出,测定粗多糖含量不能使用低纯度葡聚糖作为标准品,应尽量选用高纯度葡聚糖标准品,按照国家建议方法和行业标准进行检测,这样才能保证各企业多糖系列产品在含量和纯度上的可比性,有利于规范企业行为和保健品市场。参考文献[1] 胡居吾,范青生,肖小年. 粗多糖测定方法的研究. 江西食品工业. 2005, 1[2] 李明元. 真菌粗多糖测定方法的研究. 食品研究与开发. 2007, 5[3] 粗多糖的测定方法. 北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证. 食品伙伴网[em0805]

  • 【原创大赛】食话实说 | 月饼中的麦芽糖醇

    [size=16px]最近,一则【吃了XX低糖月饼出现腹泻】的话题在网上热议。起因是某品牌定制的低糖配方月饼在食用后,部分人出现腹泻的情况。品牌方立刻道歉,称由于采购环节中经验不足,忽略了用来替代蔗糖的麦芽糖醇可能会导致一部分人不耐受,产品将进行召回。[/size][align=center][size=16px]低糖月饼怎么会使人腹泻呢?[/size][/align][align=center][size=16px]和大家一样的好奇,[/size][/align][align=center][size=16px]小C也在深扒这件事情背后的真相![/size][/align][align=center][size=16px]下面我们从国家标准规定的角度来说一说。[/size][/align][b][size=20px]01低糖配方月饼,何为“低糖”?[/size][/b][size=16px]通常月饼的含糖量和脂肪含量比较高,品牌考虑广大人群对健康饮食的追求,特定制“低糖配方”月饼,那什么是“低糖”?[/size][size=16px]首先,小C先科普下“糖”的定义![/size][size=16px]GB/Z 21922《食品营养成分基本术语》中将“糖”定义为“所有的单糖和双糖”。[/size][align=center][img]https://p4.itc.cn/q_70/images01/20210913/52235823e9eb4105bdd2325b2725b058.png[/img][/align][size=16px]其次,明确“低糖”或“无糖”的声称条件![/size][size=16px]GB 28050《食品安全国家标准 预包装食品营养标签通则》规定:[/size][align=center][img]https://p7.itc.cn/q_70/images01/20210913/e73e1428e47b4fc2965bd2521cea1328.png[/img][/align][size=16px]所以,“低糖配方”月饼指的是100g月饼中糖含量≤5g。[/size][b][size=20px][/size][size=20px]02低糖配方月饼,为何添加“麦芽糖醇”?[/size][/b][align=center][img]https://p0.itc.cn/q_70/images01/20210913/2557384f425241839b27834e30894bae.png[/img][/align][align=center][color=#919191](配料表 图源网络)[/color][/align][size=16px]从上图可以看到,该品牌为了达到低糖目的,同时保证口感,用麦芽糖醇替代“糖”,其甜度高、热量低。[/size][size=16px]常见的糖醇类代糖还有:山梨醇、木糖醇、甘露醇、赤藓糖醇等。[/size][size=16px]这便是低糖配方月饼吃起来甜甜的主要原因。[/size][b][size=20px][/size][size=20px]03月饼添加“麦芽糖醇”,是否符合国家安全标准要求?[/size][/b][size=16px]符合![/size][size=16px]GB2760《食品安全国家标准 食品添加剂使用标准》中规定:糕点中麦芽糖醇和麦芽糖醇液可以按生产需要适量使用。[/size][align=center][img]https://p2.itc.cn/images01/20210913/b38a0e8c91584db387711e3c066855df.png[/img][/align][align=center][color=#919191](GB 2760 部分内容截图)[/color][/align][b][size=20px]04月饼添加“麦芽糖醇”,可能是致泻原因?[/size][/b][size=16px]可能![/size][size=16px]生活中的确存在少部分人对麦芽糖醇、赤藓糖醇等糖醇不耐受。因为糖醇在肠胃内不被吸收,或者吸收量小。不被吸收的糖醇就会积聚在肠道内,提升了肠道内的渗透压,打破了肠道平衡,进而引发腹泻腹胀等症状[sup]?[/sup]。[/size][b][size=20px][/size][size=20px]小C温馨提示:[/size][/b][size=16px]日常生活中,食品中微生物指标超标也是导致腹泻的常见原因之一。[/size][size=16px]所以,大家不要盲目追求低糖,还是要根据自己的身体情况选择适合的,符合国家食品安全标准的食品。[/size]参考资料:[1]: 谢邀,为什么无糖月饼会成为泻药?-果壳网

  • 【讨论】木糖醇不能随便叫

    木糖醇、山梨醇、麦芽糖醇……这样的名词越来越多出现在了食品中,普通消费者根本搞不清。记者昨从宁波市质监局获悉,宁波马上将启动《食品中木糖醇、山梨醇、麦芽糖醇、甘露糖醇、乳糖醇和异麦芽酮糖醇的测定》的国家方法标准起草工作。  有关专家介绍,许多食品生产企业在食品中添加木糖醇等代糖物质,但相关研究表明某些代糖物质对人体有致病的可能性。我国目前在检测代糖食品方面的方法标准尚属空白。宁波将启动的这项国家方法标准起草工作将于2008年年底前完成。

  • CNS_19.018_赤藓糖醇

    [align=left][font='宋体'][size=24px]赤藓糖醇[/size][/font][font='宋体'][size=24px]的性质及国标测定方法[/size][/font][/align][size=24px]游臻[/size][size=24px]时 间:2021.[/size][size=24px]7[/size][align=center][font='黑体'][size=20px]赤藓糖醇的性质及国标测定方法[/size][/font][/align][size=16px]摘 要[/size][size=16px]:[/size][size=16px]赤藓糖醇,一种天然活性物质,被广泛应用于食品、医药保健品、日化产品和化工产品中。近年来,随着人们对于营养健康的关注度逐渐增加,学者对其理化及生物学特性研究的不断深入,赤藓糖醇的安全性得到证实,应用范围逐渐扩大。为此,本文对赤藓糖醇的理化特性[/size][size=16px]、[/size][size=16px]来源[/size][size=16px]、[/size][size=16px]提取方法[/size][size=16px]、[/size][size=16px]应用[/size][size=16px]、[/size][size=16px]检测方法[/size][size=16px]、[/size][size=16px]检测标准[/size][size=16px]进行了简要介绍,从机理和应用的角度阐述了赤藓糖醇在不同领域的研究。[/size][size=16px]因为[/size][size=16px]赤藓糖醇独特的代谢方式,使其被应用于糖尿病、葡萄糖不耐受症等特殊人群的功能食品中。赤藓糖醇的防龋性、抗氧化性、保湿性和不可燃性等特性使其在医药、日化领域的应用不断扩展。[/size][size=16px]关键词[/size][size=16px]:赤藓糖醇;性质;检测;应用;生产[/size][size=18px]一、[/size][size=18px]赤藓糖醇的理化性质[/size][size=18px]与生理性质[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的性质[/size][/font][size=13px]赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为[/size][size=13px]1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,[/size][size=13px]其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]1][/size][/font][font='宋体'][size=14px](1) [/size][/font][font='宋体'][size=16px]赤藓糖醇的甜度[/size][/font][size=13px]赤[/size][size=13px]藓糖[/size][size=13px]醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的[/size][size=13px]70%~80%。[/size][size=13px]与其他甜味剂混合使用具有改善、协调味质[/size][size=13px]的[/size][size=13px]作用,如赤藓糖醇与高甜味剂甜菊[/size][size=13px]糖[/size][size=13px]苷以[/size][size=13px]1000:(1~7)混合使用,可有效掩盖甜菊[/size][size=13px]糖[/size][size=13px]苷[/size][size=13px]的后苦味;将[/size][size=13px]20%以上的赤藓糖醇与白砂糖并用,其后[/size][size=13px]味和甜味比白砂糖更为理想;溶液中[/size][size=13px]1%~3%的赤藓糖[/size][size=13px]醇能有效掩饰刺激性口味,改善溶液的口感和风味[/size][size=13px];与糖精,阿斯巴甜等甜味剂混合使用,甜味特性良好,可以掩盖人工合成甜味剂的不良味感。[/size][font='宋体'][size=14px](2) [/size][/font][font='宋体'][size=16px]赤藓糖醇的稳定性[/size][/font][size=13px]赤[/size][size=13px]藓糖醇在热[/size][size=13px],[/size][size=13px]酸,碱条件下[/size][size=13px]稳定,[/size][size=13px]适用的酸碱范围为[/size][size=13px]pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。[/size][font='宋体'][size=14px](3) [/size][/font][font='宋体'][size=16px]赤藓糖醇的结晶性[/size][/font][size=13px]赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为[/size][size=13px]20℃、相对湿度为90%的环境中,放置5d后的吸湿增[/size][size=13px]重,麦芽糖约为[/size][size=13px]17%,蔗糖约为10%,而赤藓糖醇仅为2 %左右。[/size][font='宋体'][size=14px](4) [/size][/font][font='宋体'][size=16px]赤藓糖醇的溶解热[/size][/font][size=13px]赤藓糖醇在[/size][size=13px]20℃时溶解度仅为37%,大约是山梨醇[/size][size=13px]溶解度的[/size][size=13px]50%,在制作高甜度食品时,为防止结晶析出,[/size][size=13px]保持食品的质构稳定,应和其他糖醇混合使用。赤藓糖醇溶解热高是葡萄糖的[/size][size=13px]3倍,为-96.86kJ/kg,溶于水会吸[/size][size=13px]收较多的能量,食用时有一种凉爽的口感特性。赤藓糖醇结晶性好,不吸潮,在[/size][size=13px]20℃、相对湿度为90%时仍不吸[/size][size=13px]潮,特别适用于加工巧克力糖果等食品。[/size][font='宋体'][size=14px](5) [/size][/font][font='宋体'][size=16px]赤藓糖醇的[/size][/font][font='宋体'][size=16px]渗透压[/size][/font][size=13px]由于赤藓糖醇分子小,分子量仅为蔗糖的[/size][size=13px]1/3左右,[/size][size=13px]能大大地降低水分活度。[/size][size=13px]25℃、36%的水溶液,水分活度[/size][size=13px]为[/size][size=13px]0.91;而赤藓糖醇渗透压高,20℃、15%的水溶液渗透[/size][size=13px]压为[/size][size=13px]1861mosm/kg,是蔗糖的3.2倍,山梨醇的1.8倍。赤[/size][size=13px]藓糖醇的这一特性有利于提高食品的防腐能力,延长食品的[/size][size=13px]保质[/size][size=13px]期。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]2][/size][/font][font='宋体'][size=16px]2.赤藓糖醇的生理性质[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]1)赤藓糖醇的代谢[/size][/font][font='宋体'][size=13px]赤藓糖醇在小肠易于吸收,大部分能进入血液中循环,仅有少量直接进入大肠中作为碳源发酵。由于人[/size][/font][font='宋体'][size=13px]体缺乏代谢赤藓糖醇的酶系,进入血液中的赤藓糖醇不能被消化降解,只能透过肾从尿液中排出体外,这一独特的代谢特征,决定了赤藓糖醇低热值的特性。据文献报道[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],进入机体内的赤藓糖醇有约[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]经小肠吸收并从[/size][/font][font='宋体'][size=13px]尿液中排出,[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]左右进入大肠,进入大肠中的最多有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]被细菌利用,其他经由粪便排出体外。由此得知,摄入的赤藓糖醇只有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]代谢产能,为人体提供能量,而赤[/size][/font][font='宋体'][size=13px]藓糖醇的能量值为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]k[/size][/font][font='宋体'][size=13px]cal/g[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]kcal/g[/size][/font][font='宋体'][size=13px],仅为蔗糖能量[/size][/font][font='宋体'][size=13px]的[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],是所有多元糖醇甜味剂中能量最低的一[/size][/font][font='宋体'][size=13px]种。[/size][/font][font='宋体'][size=13px]由于进入机体的赤藓糖醇进入大肠的量很少,因此不会造成不吸收物质可能带来的腹泻及肠胃胀气等副作用,所以赤藓糖醇具有很高的耐受性,是糖醇中耐受性最高的一种。由于人体缺乏代谢赤藓糖醇的酶系,进入机体的赤藓糖醇大部分由尿液排出,其代谢途径与胰岛素无关或很少依赖胰岛素,所以对糖代谢没有影响。食用含赤藓糖醇的食品对糖尿病患者等糖限量的特殊消费群体是安全的。[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]2)赤藓糖醇的非致龋齿特性[/size][/font][font='宋体'][size=13px]由于口腔中的细菌,特别是金黄链球菌[/size][/font][font='宋体'][size=13px]([/size][/font][font='宋体'][size=13px]Streptococcus mutans)[/size][/font][font='宋体'][size=13px]不能利用和发酵赤藓糖醇,所以不会引[/size][/font][font='宋体'][size=13px]起口腔牙表面[/size][/font][font='宋体'][size=13px]pH[/size][/font][font='宋体'][size=13px]值下降产生牙斑,导致龋齿。[/size][/font][size=18px]二[/size][size=18px]、[/size][size=18px]赤藓糖醇的生产[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]化学法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]化学合成法[/size][/font][font='宋体'][size=13px]是[/size][/font][font='宋体'][size=13px]由丁烯二醇与过氧化氢反应,其中丁烯二醇是由乙炔和甲醛先制成2[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]丁烯[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 1,4 [/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 二 醇, 然后将其水溶液与活性镍催化剂混合并加[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]阻化剂氨水,在[/size][/font][font='宋体'][size=13px]0.5[/size][/font][font='宋体'][size=13px] M Pa压力下通[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]氢化,得到赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖醇产品。以淀粉为原料的化学合成法是将淀粉用高碘酸法生成双醛淀粉,再经氧化裂解生成赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]和其他衍生物[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]化学合成生产赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]的工艺方法存在流程长、成本高、污染严重、条件要求高、产品安全性差等不足,无法与发酵法比拟,因此目前研究和应用最多的是以淀[/size][/font][font='宋体'][size=13px]粉为原料的发酵法来生产赤藓糖醇的工艺方法。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]发酵法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]发酵法是以淀粉水解葡萄糖为原料,经耐高渗酵母菌株发酵产生赤藓糖醇及少量的核糖醇,丙三醇等副产物,经分离,提取,精制,获得高纯度的赤藓糖醇产品。产品的收率大约为5[/size][/font][font='宋体'][size=13px]0%[/size][/font][font='宋体'][size=13px]。与化学合成法相比,具有条件温和,易于控制,环境友好,污染少,产品安全,原料来源丰富,成本低等优点,更易于实现规模生产。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4][/size][/font][font='宋体'][size=18px]三[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的应用[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在食品工业的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇经过急性、亚急性、慢性毒性试验等动物 试验以及人体试验确认安全无毒、食用安全性较好, 允许添加量较高,不易引起腹泻或胃肠等不适感。1990 年日本食品法规批准赤藓糖醇可直接作为食品配料; 1997年通过美国食品与药品管理局(FDA)批准,获美 国FDA安全食品配料(GRAS)认[/size][/font][font='宋体'][size=13px]证和允许在标签上标 注“有益于牙齿健康”;1999年世界粮农组织(FAO)和 世界卫生组织(WHO)联合组成的食品添加剂专家委员 会(JECFA)批准赤藓糖醇作为食用甜味剂,无需规定 ADI值;1999年澳大利亚和新西兰食品监督局(AN 、A)批准赤藓糖醇作为食用配料,我国在GB 2760-86标准 中也允许其在食品中应用。 [/size][/font][font='宋体'][size=13px]由于赤藓糖醇的热、酸稳定性好,在一般性食品加工条件下,几乎不会引起褐变或分解现象,在硬糖生产时高温熬煮也不会引起褐变。赤藓糖醇的热稳定性高使巧克力生产的精炼可以在更高的温度下进行,进一步促进巧克力风味的形成,改善产品的品质。赤藓糖醇的吸湿性差,在湿度为90%的环境也不易吸潮,这一特性对巧克力、口香糖等食品加工很有利。赤藓糖醇的高吸热性使得产品食用后具有持久的爽口清凉感觉,对改善口香糖、清凉性固体饮料和糖果的品质十分重要。赤藓糖醇甜味爽净,在与蛋白糖、甜菊糖等高甜度甜味剂复配时可有效地掩盖其后苦味;赤藓糖醇还可以降低酒精的异味,改善蒸馏酒和葡萄酒的口感与风味,在蔬菜汁饮料中使用,可有效地抑制蔬菜饮料特有的不良口味;在饮用咖啡时添加可有效地抑制咖啡的涩味。赤藓糖醇的耐热和耐酸等特性,使得巴氏高温或超高温等杀菌工艺对以赤藓糖醇为甜味剂的饮料外观品质均不会产生影响。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在医药生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇的防龋特性是近年来赤藓糖醇的一个应用热点。张帆等通过体外的人工龋实验证实,赤藓糖醇和牛奶的混合液具有抑制变异链球菌在生物膜中黏附生长,促进脱矿牙釉质再矿化的作用,可以在一定程度是阻止龋病的发展。未来,赤藓糖醇-牛奶混合液,作为一种安全、营养的食品,极有可能成为替代加氟牛奶成为另一条防龋的有效途径。李维丹实验表明赤藓糖醇对牙周炎的主要致病菌牙龈卟啉单胞菌有明显抑制作用,并能降低其在牙骨质表面的黏附作用,为牙周病的防治提供了新的方向。[/size][/font][font='宋体'][size=13px]此外,赤藓糖醇还能抑制多种龋病致病链球菌及耐氟菌的生长和产酸。目前,越来越多的防龋产品使 用赤藓糖醇代替传统的氟化物和抗生素。赤藓糖的抗氧化性,不仅是添加到柠檬汁饮料中保护 VC,还可以应用为一种体内抗氧化剂,防止身体的氧化应激损伤。韩春妮等通过设计实验表明,赤藓糖醇可减轻 H2O2 对 PC12 细胞的氧化损伤程度,具有体外抗氧化损伤的作用,为赤藓糖醇应用于预防和治疗机体氧化应激引起的糖尿病及其并发症提供了理论基础。在链脲佐菌素诱导的糖尿病大鼠实验中,赤藓糖醇不仅是一种极好的自由基清除剂和抑制剂,还具有保护内 皮细胞层的作用。此外,研究还表明,赤藓糖醇对2,2-偶氮二异丁基脒二盐酸盐引起的大鼠溶血有抑制作用,对减轻高血糖症引起的血管损伤起到积极作用。此外,赤藓糖醇的吸湿性低、分散性好、口感优良、与各种药物兼容性好等特性,正越来越多的应用于药片包衣、药剂辅料、吸入剂药物载体或赋形剂等诸多领域[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在日化品生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇因其防龋齿性,促进牙菌斑分解,有利于维持口腔健康等优势已被应用于牙膏中, KAO(花王)、LG 竹盐炫润白系列牙膏都添加有赤藓糖醇。另外,赤藓糖醇不仅具有和甘油相同的保湿及改善肌肤粗糙的效果,而且黏稠性低、有清凉效果,已被日本资生堂用于多个系列的护肤品中[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=18px]四[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的检测[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]高效液相色谱法[/size][/font][font='宋体'][size=13px]根据[/size][/font][font='宋体'][size=13px]GB 26404-2011[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]利用高效液相色谱仪和示差折光检测器,色谱条件为流动相是重蒸蒸馏水;色谱柱为[/size][/font][font='宋体'][size=13px]氢型大孔径阳离子交换树脂填充柱,树脂包含大网格磺化聚苯乙烯[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]二乙烯基苯[/size][/font][font='宋体'][size=13px]共聚物,交联度为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],颗粒大小为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]微米;流速为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]ml[/size][/font][font='宋体'][size=13px]/[/size][/font][font='宋体'][size=13px]min;柱温为6[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]摄氏度;进样量为1[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]L。[/size][/font][font='宋体'][size=13px]实验步骤为[/size][/font][font='宋体'][size=13px]准确称取0.25g 在105℃下干燥4h后的赤藓糖醇标准品[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个[/size][/font][font='宋体'][size=13px]50mL容量瓶中,用流动相溶解,稀释定容至刻度[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]再[/size][/font][font='宋体'][size=13px]确称取2.0g在105℃下干燥4h后的赤藓糖醇试样[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]最后[/size][/font][font='宋体'][size=13px]在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录60min的色谱图。赤藓糖醇的出峰时间根据标准品的出峰时间定性。重复实验两次,得到平均峰面积值[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]结果计算[/size][/font][font='宋体'][size=13px]赤藓糖醇含量以赤藓糖醇([/size][/font][font='宋体'][size=13px]C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px])的质量分数 w[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]计,数值以%表示,按公式计算:[/size][/font][font='宋体'][size=13px]式中: m[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──称取的赤藓糖醇标准品质量的数值,单位为克(g); m[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g); A[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──试样液色谱图中赤藓糖醇平均峰面积值的数值; A[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中赤藓糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px] 实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于0.5%。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]7[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]灼烧残渣的测定[/size][/font][font='宋体'][size=13px]准确称取2g试样,精确至0.0001g,置于800℃±25℃下灼烧至恒重的坩埚中,缓缓加热直至试 样完全碳化。将碳化的试样冷却,用0.5 mL的硫酸润湿残渣,继续加热至硫酸蒸汽逸尽,并在800℃ ±25℃的高温炉中灼烧残渣至恒重[/size][/font][font='宋体'][size=13px]灼烧残渣以质量分数[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]计,数值以[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]表示,按公式计算[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──残渣和空坩埚的质量的数值,单位为克(g);m[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──空坩埚的质量的数值,单位为克(g);m──称取的试样质量的数值,单位为克(g)。[/size][/font][font='宋体'][size=13px]实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.05%[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]还原糖(以葡萄糖计)的测定[/size][/font][font='宋体'][size=13px]准备[/size][/font][font='宋体'][size=13px]葡萄糖溶液:0.75mg/mL。费林溶液A:称取34.66 g硫酸铜(CuSO[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]5H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O),溶于水中,完全溶解后,用水稀释至500 mL,贮存于密闭容器中。费林溶液B:称取173g酒石酸钾钠(KNaC[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]4H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O)和50g氢氧化钠(NaOH),溶于水中,完全溶解后,用水稀释至500 mL,贮存于橡胶塞玻璃瓶内。 [/size][/font][font='宋体'][size=13px] 分析步骤[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]准确称取约0.5 g试样,精确至 0.0001 g,转移至一个 20 mL 烧瓶中,加入2mL水,溶解、混合,此为试样液。移取2mL葡萄糖溶液,置于另一烧瓶中。分别往两个烧瓶中加入1mL费林溶液 A和1mL费林溶液 B,加热至沸腾后冷却。溶液形成红棕色沉淀。[/size][/font][font='宋体'][size=13px]若葡萄糖溶液反应液较试样液反应液混浊,则判定为合格。[/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]核糖醇和丙三醇的测定[/size][/font][font='宋体'][size=13px]参考色谱条件同[/size][/font][font='宋体'][size=13px]赤藓糖醇测定的参考色谱条件。准确称取核糖醇标准品和丙三醇标准品各 0.025g,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm 微孔滤膜过滤。试样液制备:准确称取2.0g在105℃下干燥4h后的赤藓糖醇试样,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录 60 min 的色谱图。核糖醇和丙三醇的出峰时间根据对应标准品的出峰时间定性。重复实验两次,得到平均峰面积值。[/size][/font][font='宋体'][size=13px]结果计算核糖醇和丙三醇的含量分别以质量分数w[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]和w[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]计,数值均以%表示[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──称取的核糖醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──试样液色谱图中核糖醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中核糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──称取的丙三醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──试样液色谱图中丙三醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中丙三醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]取两次平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.01 %[/size][/font][font='宋体'][size=18px]五[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的国家标准[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]在产品中的使用量[/size][/font][font='宋体'][size=13px]赤藓糖醇在国家标准中规定在产品中适量使用,没有明确的限制标准,这是因为赤藓糖醇安全性较高并且在产品中过量使用时反而会使产品的外观口感等质量指标大幅度下降,从而影响产品的销售。所以国标中对产品中赤藓糖醇的使用量并没有限制量。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的质量标准[/size][/font][font='宋体'][size=13px]感官要求标准,[/size][/font][font='宋体'][size=13px]色泽[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]白色[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]滋味[/size][/font][font='宋体'][size=13px]要求[/size][/font][font='宋体'][size=13px]有甜味[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]组织状态[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]结晶性粉末或颗粒[/size][/font][font='宋体'][size=13px]理化指标为[/size][/font][font='宋体'][size=13px]赤藓糖醇[/size][/font][font='宋体'][size=13px](以[/size][/font][font='宋体'][size=13px] C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4 [/size][/font][font='宋体'][size=13px]计,以干基计),w/% [/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]99.5~100.5[/size][/font][font='宋体'][size=13px]干燥减量,[/size][/font][font='宋体'][size=13px]w/% ≤ 0.2 [/size][/font][font='宋体'][size=13px]灼烧残渣,w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]还原糖(以葡萄糖计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.3 [/size][/font][font='宋体'][size=13px]核糖醇和丙三醇(以干基计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]铅([/size][/font][font='宋体'][size=13px]Pb)/(mg/kg) ≤ 1 [/size][/font][font='宋体'][size=13px]参考文献[/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]肖素荣,李京东.赤藓糖醇的特性及应用[J].中国食物与营养,2008(05):26-28.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥.低热值甜昧剂——赤藓糖醇[J].食品与发酵工业,2007(09):132-135.[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]3]尤新.尤新食品发酵论文选[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]M].北京:中国轻工业出版社,2005.272[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]274[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]]李树东,宋微,魏春红,曹龙奎.发酵法生产赤藓糖醇的研究综述[J].农产品加工(创新[/size][/font][font='宋体'][size=13px]版),2009(12):50-52.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥,李丕武.低热值甜味剂赤藓糖醇的研究现状及应用[J].中国酿造,2006(12):1-3+16.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]李俊霖,郭传庄,王松江,王建彬,隋松森.赤藓糖醇的特性及其应用研究进展[J].中国食品添加剂,2019,30(10):169-172.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]GB 26404-2011, 食品安全国家标准 食品添加剂 赤藓糖醇[s].[/s][/size][/font]

  • 【分享】卫生部监督局关于公开征求D-甘露糖醇等58个指定食品添加剂标准意见的函

    卫监督食便函〔2011〕4号 各有关单位:根据《食品安全法》及其实施条例的规定,按照卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)的要求,拟指定D-甘露糖醇等58个食品添加剂标准。现公开征求意见,请于2011年1月14日前按下列方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。附件:D-甘露糖醇等58个食品添加剂.rar 二○一一年一月五日

  • 【分享】高密度脂蛋白胆固醇的检测方法及标准化研究进展

    众多流行病学研究证实,高密度脂蛋白胆固醇(HDL-C)水平与动脉粥样硬化(AS)呈负相关。美国Framingham的研究显示,HDL-C每减少0.026 mmol/L(1 mg/dl),冠心病(CHD)发生的风险将增加2%~3%。目前临床上已广泛采用HDL-C 众多流行病学研究证实,高密度脂蛋白胆固醇(HDL-C)水平与动脉粥样硬化(AS)呈负相关。美国Framingham的研究显示,HDL-C每减少0.026 mmol/L(1mg/dl),冠心病(CHD)发生的风险将增加2%~3%。目前临床上已广泛采用HDL-C下降作为CHD危险因素指标。低HDL-C是CHD的主要危险因素,而高HDL-C被认为是负危险因子,具有保护性。作者参考美国国家胆固醇教育计划(NCEP)有关文件及新近文献资料,对HDL-C检测方法及标准化问题作一简述。 一、HDL的生物化学 与乳糜微粒(CM)、极低密度脂蛋白(VLDL)和低密度脂蛋白(LDL)相比,高密度脂蛋白(HDL)是密度最大的脂蛋白(d=1.063~1.210kg/L)。其组分中蛋白质(Pro)、磷脂(PL)、胆固醇(chol)和甘油三酯(TG)各约占50%、25%、20%和5%。HDL中Pro主要是载脂蛋白(apo)AI和AII;chol占总胆固醇(TC)的25%~35%,酯化胆固醇(CE)和游离胆固醇(FC)之比约为3∶1。HDL可通过酶和受体的作用,将周围组织的chol移至肝脏降解处理,同时抑制细胞结合和摄取LDL-C,阻止chol在动脉壁的沉积,故HDL被认为是AS的预防因子。

  • 冰雪之中冰凌花

    冰凌花,出生在冰天雪地的冬季,当所有的植物都被大雪覆盖、吞噬,只有它,屹立着,不惧风雪与寒冷。冰凌花花朵金黄,顶冰而出,因此,便获得“林海雪莲”之美称,它不仅具有极好的观赏价值,作为药材,同样具有良好的功效。  那么,在各种花的花语中,冰凌花的花语是什么呢?现在就跟小编一起去看看吧!  冰凌花的花语:无私的爱、勇敢的爱  冰凌花,学名:侧金盏花,毛莨科,多年生林下植物。别名金盏花、金盅花、冰了花、冰凌花、冰凉花、冰里花、冰溜花和福寿草等,辽宁地区称之为雪莲花。由于其特有的生物学特殊性和药物疗效,并在早春有很好的观赏价值,被人们称为东北山区林下神草,是一种很有希望开发价值的林下植物。  侧金盏花植株矮小,有傲春寒的特性,金黄色的花朵,顶冰而出,素有“林海雪莲”之美称。开放的时间正是冬末春初冰雪尚未消融的极为寒冷时节。它有很好的观赏价值。其花茎为1.5~4cm。东北各省,日本、朝鲜、苏联和欧洲均有分布。  “春寒料峭,冻杀年少”,在未消融的冰雪中,一点点绿萼黄顶的花蕾,悄悄的钻出冻土,一朵朵像葵花型状、金钱大小的“金盘”歪着脸绽放。人们按花的型态,命名为侧金盏花,可谓惟妙惟肖。西方神话里传说,美貌少年阿多尼斯,为了安慰为自己的死而悲伤的恋人维纳斯,转世为侧金盏花。因此,它的花语是无私的爱、勇敢的爱!

  • 【谱图】求甜菊糖中要检测微量甲醇、乙醇、甲醛的结果图谱

    客户是做食品添加剂的,甜菊糖中要检测微量甲醇、乙醇、甲醛,客户说用单FID、单填充柱就能做,最小检测量要达到小于1mg/KG,请问单FID、单填充柱能否满足客户的检测需求?而且客户问我们检测的方法(用什么方法,每个步骤怎么去做,要用到哪些药品、用什么填充柱、依据哪个检测标准等等)。现在急需甜菊糖中甲醇、乙醇、甲醛的检测结果图谱,谢谢各位!

  • 测糖蜜还原糖,如何用95%的无水葡萄糖标准品做准确度验证?

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 【求助】检测纯化水电导率的标准方法

    在做纯化水系统验证时,发现在纯化水站检测的纯化水的电导率比QC检测的电导低很多,有时相差1微西门子,我想原因可能是因为1、从取样到检测的时间不同。2、仪器有误差。3、使用的容器不同。4、取样量不同。但我不清楚具体的取样到检测的时间、使用的容器、取样量的标准是什么,请各位大侠帮忙!

  • 气相测甲醇标准品

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]测甲醇标准品,为什么出来的图这么丑??求解方法和图附在下面了[img]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161430200799_1440_5845318_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161430202648_1084_5845318_3.png[/img]

  • 分光测还原糖,如何用95%标准品做准确度验证?

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 分光测还原糖,如何用95%标准品做准确度验证

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 你了解木糖醇和"无糖"吗?

    木糖醇,即戊五醇,为糖醇的一种,是一种可以作为蔗糖替代物的五碳糖醇,是木糖代谢的产物,木糖广泛存在于各种植物中,但由于含量低,提取成本高,故食品生产过程中通过木糖的加氢还原得到木糖醇。木糖醇的甜度与蔗糖相当,但热量比蔗糖低很多。木糖醇在体内的代谢途径与一般糖类不同,不需要胰岛素的参与,大部分分解成二氧化碳从肺部经过呼吸排出体外,不会升高血糖,因此木糖醇常被作为糖尿病人的甜味剂,木糖醇食品:添加有木糖醇的休闲食品都可称为木糖醇食品。看来木糖醇替代白糖是有科学依据的。同时糖尿病人需要注意的是无糖食品,并不是绝对的“无糖”无糖食品:根据国家标准《预包装特殊膳食用食品标签通则》规定,"无糖"的要求是指固体或液体食品中每100克或100毫升的含糖量不高于0.5克。无糖食品里面,可能含有淀粉水解物类作为甜味来源,也就是淀粉糖浆、果葡糖浆、麦芽糖之类。这些糖浆升高血糖、变成能量的效率,未必会比蔗糖慢。曾见过这样的产品,添加了葡萄糖浆或淀粉糖浆,还号称无糖食品。而这些配料,升高血糖的速度甚至可能快于白糖。其次,中国大部分无糖产品都用的是高效甜味剂,特别是合成甜味剂,比如安塞蜜、甜蜜素、糖精、阿斯巴甜等。但是,这些东西的甜度是蔗糖的几百倍。那么如原来的配方中,100克产品要加40克蔗糖,现在只需加零点几克甜味剂就够了,用什么来凑体积呢?一般来说,用来做填充的大都是淀粉、淀粉水解物或糊精之类。所以糖尿病人千万不能被无糖二字蒙蔽哦!

  • 甲醇标准品会过期吗?

    2010年9月从中国计量院购买了一组甲醇标准品(溶于乙醇)证书显示浓度为1毫克/毫升,有效期一年最近刚好打算参加此比对,其中有甲醇项目,问下诸位此甲醇标准品是否可以使用?谢谢

  • 你了解木糖醇和"无糖"吗?

    木糖醇,即戊五醇,为糖醇的一种,是一种可以作为蔗糖替代物的五碳糖醇,是木糖代谢的产物,木糖广泛存在于各种植物中,但由于含量低,提取成本高,故食品生产过程中通过木糖的加氢还原得到木糖醇。木糖醇的甜度与蔗糖相当,但热量比蔗糖低很多。木糖醇在体内的代谢途径与一般糖类不同,不需要胰岛素的参与,大部分分解成二氧化碳从肺部经过呼吸排出体外,不会升高血糖,因此木糖醇常被作为糖尿病人的甜味剂,木糖醇食品:添加有木糖醇的休闲食品都可称为木糖醇食品。看来木糖醇替代白糖是有科学依据的。同时糖尿病人需要注意的是无糖食品,并不是绝对的“无糖”无糖食品:根据国家标准《预包装特殊膳食用食品标签通则》规定,"无糖"的要求是指固体或液体食品中每100克或100毫升的含糖量不高于0.5克。无糖食品里面,可能含有淀粉水解物类作为甜味来源,也就是淀粉糖浆、果葡糖浆、麦芽糖之类。这些糖浆升高血糖、变成能量的效率,未必会比蔗糖慢。曾见过这样的产品,添加了葡萄糖浆或淀粉糖浆,还号称无糖食品。而这些配料,升高血糖的速度甚至可能快于白糖。其次,中国大部分无糖产品都用的是高效甜味剂,特别是合成甜味剂,比如安塞蜜、甜蜜素、糖精、阿斯巴甜等。但是,这些东西的甜度是蔗糖的几百倍。那么如原来的配方中,100克产品要加40克蔗糖,现在只需加零点几克甜味剂就够了,用什么来凑体积呢?一般来说,用来做填充的大都是淀粉、淀粉水解物或糊精之类。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制