当前位置: 仪器信息网 > 行业主题 > >

邻乙酰基羟基马桑毒素对

仪器信息网邻乙酰基羟基马桑毒素对专题为您提供2024年最新邻乙酰基羟基马桑毒素对价格报价、厂家品牌的相关信息, 包括邻乙酰基羟基马桑毒素对参数、型号等,不管是国产,还是进口品牌的邻乙酰基羟基马桑毒素对您都可以在这里找到。 除此之外,仪器信息网还免费为您整合邻乙酰基羟基马桑毒素对相关的耗材配件、试剂标物,还有邻乙酰基羟基马桑毒素对相关的最新资讯、资料,以及邻乙酰基羟基马桑毒素对相关的解决方案。

邻乙酰基羟基马桑毒素对相关的论坛

  • 乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8,别名阿基瑞林,是一种优质的祛皱化妆品原料, 其抗皱活性高, 副作用小,已在各高端化妆品系列中应用。【详情请咨询国肽生物】它能局部阻断神经传递肌肉收缩讯息,影响皮囊神经传导,使脸部肌肉放松,达到平抚动态纹、静态纹及细纹;有效重新组织胶原弹力,可以增加弹力蛋白的活性,使脸部线条放松,皱纹抚平改善松弛。可用于化妆品内,作为抗皱成分,且效果极佳。产品参数----乙酰基六肽-8/阿基瑞林中文名称:乙酰基六肽-8/阿基瑞林/六胜肽/乙酰六胜肽-3英文名称:Acetyl Hexapeptide-8/Argireline/Acetyl Hexapeptide-3, CAS号:616204-22-9纯度:≥99%分子量 :888.91g/mol分子式 :C34H60N14O12S外观:白色粉末或液体储存条件:2 ℃~8 ℃包装规格(粉末):1g, 10g, 100g包装规格(液体):20ml/瓶,1KG/瓶应用:化妆品原料功效与应用----乙酰基六肽-8/阿基瑞林抗皱抗衰老改善皮肤质量脸部、颈部和手护理品可添加到美容护肤品中,如乳液、面膜、早晚霜、眼部精华液等作用机理----乙酰基六肽-8/阿基瑞林乙酰基六肽-8参与竞争 SNAP - 25 在融泡复合体的位点, 从而影响复合体的形成。当融泡复合体稍有不稳定, 囊泡不能有效释放神经递质, 从而致使肌肉收缩减弱,防止皱纹的形成。[img=,690,143]https://ng1.17img.cn/bbsfiles/images/2020/10/202010141430498557_1196_3531468_3.jpg!w690x143.jpg[/img]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物

  • 乙酰基六肽-8

    乙酰基六肽-8英文名:Acetyl Hexapeptide-8CAS:616204-22-9【详情请咨询国肽生物】化学式:C34H60N14O12S分子量:888.91序 列:Ac-Glu-Glu-Met-Gln-Arg-Arg-NH2结构式产品特性:1. 能局部阻断神经传递收缩信息,影响皮囊神经传导,使脸部肌肉放松 ,达到平抚动态纹,静态纹和细纹。2. 功效可以与A型肉毒素媲美 ,但是又避开了肉毒素又必须注射和使用成本高昂的缺点,具有与肉毒杆菌素注射相同的除皱效果质量标准:外观:白色粉末分子量:888.9+水分:8%肽含量:80%纯度:95%氨基酸组份:应用:抗皱,保湿提高皮肤弹性和色泽产品推荐用量:0.01%-0.05%包装:10g,50g,100g/塑料瓶储存:阴凉,干燥避光处保存,在冰箱中2-8度保存保质期:以上储存条件下2年机理:乙酰基六肽-8参与竞争 SNAP - 25 在融泡复合体的位点, 从而影响复合体的形成。当融泡复合体稍有不稳定, 囊泡不能有效释放神经递质, 从而致使肌肉收缩减弱,防止皱纹的形成。国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物

  • 2-乙酰基-1-吡咯啉gcms检测

    [color=#444444]遇到一个大大的问题做试验做了7个月了,就是检测不到大米中的2-乙酰基-1-吡咯啉,不出峰,用的spme萃取,热电的质谱,DB wax柱子,以前有老师在日本做的效果十分明显,用的铂金埃尔默的质谱,其他的都一样,当然地点也不一样,请大家帮我分析一下,这是什么原因造成的?谢谢[/color]

  • 【分享】神经毒素:鱼腥藻毒素

    1 神经毒素神经毒素主要包括:鱼腥藻毒素如鱼腥藻毒素-a (Anatoxin-a)、鱼腥藻毒素-a(s) (Anatoxin-a(s))、高类鱼腥藻毒素-a (Homoanatoxin-a);麻痹性或瘫痪性贝毒素(Paralytic Shellfish Poisoning, PSP)如石房蛤毒素(Saxitoxin)、新石房蛤毒素(Neosaxitoxin)和膝沟藻毒素(Gonyautoxin)等;腹泻性贝毒素(Diarrhetic Shellfish Poisoning, DSP)如大田软海绵酸(Okadaic acid, OA)和鳍藻毒素1-3(Dinophysistoxin, DTX)等;记忆丧失性贝毒素(Amnesic Shellfish Poisoning, ASP);神经性贝毒素(Neurotoxic Shellfish Poisoning, NSP)及西加鱼毒素(Ciguatera Fish Poisoning, CFP)( 尹伊伟,2000)。鱼腥藻毒素-a是一种低分子质量的生物碱(图1-2),相对分子质量为165(Hitzfeld B C, 2000-II)。目前发现鱼腥藻、颤藻、束丝藻(Aphanizomenon)、柱孢藻(Cylindrospermum)和微囊藻可以产生鱼腥藻毒素-a。高类鱼腥藻毒素-a (图1-3)是从美丽颤藻(O. formosa)中分离到的一种鱼腥藻毒素-a的同系物,它用丙酰基替代了鱼腥藻毒素-a中C-2上的乙酰基。鱼腥藻毒素-a是神经递质乙酰胆碱的类似物,它可与乙酰胆碱受体结合,但乙酰胆碱酯酶或真核生物中的任何酶均不能降解它。它与乙酰胆碱受体结合后可使肌肉因过度兴奋而痉挛,如果动物的呼吸系统受到影响,动物会因窒息而死亡。鱼腥藻毒素-a(s)是N-羟基鸟嘌呤的单磷酸酯(图1-4),到目前为止仅从北美洲发现,由水华鱼腥藻(A.flos-aquae)和A.Lemmermannii产生。鱼腥藻毒素-a(s)可以阻止乙酰胆碱酯酶对乙酰胆碱的降解,使肌肉因过度兴奋而痉挛(Henriksen P, 1997)。 图1-2 鱼腥藻毒素-a分子结构图Figure 1-2 Structure of anatoxin-a 图1-3 高类鱼腥藻毒素-a分子结构图Figure 1-3 Structure of homoanatoxin-a 图1-4 鱼腥藻毒素-a(s)分子结构图Figure 1-4 Structure of anatoxin-a(s)麻痹性贝毒素是一类烷基氢化嘌呤化合物,形似三环化合物,是一种非蛋白质毒素。分子结构如图1-5所示。类似于具有两个胍基(guanidyl)的嘌呤核,为非结晶、水溶性、高极性、不挥发的小分子物质,在酸性条件下稳定,碱性条件下发生氧化,毒性消失;毒素遇热稳定,并不被人的消化酶所破坏。其中毒性最强的为STX、neoSTX、GTX1、GTX3和dcSTX(1300Mu• μmol-1),但其他几种毒素很容易水解成毒性成份。其来源生物均为甲藻,如有毒膝沟藻(Gonyaulax)、亚历山大藻(Alexandrum)和Pyrodinium等。麻痹性贝毒的强度是通过转换成STX的毒性来表达的。这些毒素主要是由海洋中的赤潮藻甲藻产生的,可在贝类中累积进而危害人类。由于这些毒素最早是从摄食有毒藻类的贝类体内发现,故被称作贝毒。在淡水中PSP主要存在于水华束丝藻(Aph. flos-aquae)、卷曲鱼腥藻(A.circinalis)、Lyngbyawollei和C. raciborskii中(Bialojan C, 1988)。麻痹性贝毒素也是到目前为止赤潮藻毒素中分布最广、危害最大的一类,主要包括石房蛤毒素及其四氢呋喃衍生物,发现的有近三十种(表1-1),由分子结构中R4基团的不同,可分为四类:氨基甲酸酯类、N-磺酰氨甲酰基类、脱氨甲酰基类和脱氧脱氨甲酰基类。其中石房蛤毒素(STX)已被收入《化学武器公约》中禁止化学品的第二类清单。我国也将PSP毒素列为贝类产品的常规检测指标之一。 图1-5 麻痹性贝毒素分子结构图Figure 1-5 Structures of Paralytic Shellfish Poisons (PSPs)麻痹性贝毒是一类神经肌肉麻痹剂,可以作用于细胞膜上的钠通道使之关闭,抑制动作电位的产生,使乙酰胆碱不能释放,从而导致神经麻痹。其毒理作用为阻断细胞钠离子通道,造成神经系统传输障碍而产生麻痹作用。对人体的中毒量为600~5000Mu,致死量为3000~30000Mu,目前尚无对症解毒剂。PSP的毒性为LD50=3.4×10-9。联合国卫生组织规定,100g贝类可食部分的PSP毒力超过80ug(400Mu)时不得食用(丘建文,1991)。海洋生物中,由于贝类对麻痹性贝毒具有极强的抵抗性,因此这种毒素就在贝类体内储存积累,人类或动物食用这些有毒贝类会产生一系列神经麻痹症状,严重的可能致命。由于其对人类健康造成危害,因此成为赤潮毒素中最受关注的一种,许多国家已在贝类生产、贸易过程中,对此毒素制订了严格的监测和管理条例。与贝类相比,鱼类对这种毒素却极为敏感。腹腔注射时,其对鱼类的半致死剂量(LD50)为(4~12)×10-6,口服为(100~750)×10-6,给药后5~15min,鱼类即失去平衡,0~60min就出现死亡。因此,在此类赤潮发生时,常出现鱼类大量死亡现象,欧洲的北海及北美的东北海岸都曾发生因麻痹性贝毒中毒的大规模死鱼事件,死亡的鱼类有玉筋鱼和鲱鱼等。值得注意的是,本来源于藻类的贝毒,许多是通过浮游动物的摄食而传递给鱼类,从而引起鱼类的死亡。因此,麻痹性贝毒对鱼类的危害,既可通过藻细胞本身的胞外分泌物也可通过摄食染毒的其他动物使鱼类中毒。不过由于麻痹性贝毒对鱼类的毒性很高,毒素不会在鱼体内大量残留,中毒死亡鱼体肌肉内的残留毒素含量很低。我国虽未有因麻痹性贝毒中毒而引起鱼类死亡的报道,但已有产生这类毒素的藻类赤潮发生,而且能产生麻痹性贝毒的藻类在我国海域普遍存在,因此,应高度警惕这类赤潮的发生(尹伊伟,王朝晖等,2000)。2 脂多糖内毒素脂多糖内毒素是蓝藻细胞壁的组成部分,由脂A、核心寡糖和O特异多糖组成,其中脂A分子结构式如图1-6所示。目前已从裂须藻(Schizothrix calcicola),颤藻,鱼腥藻,微囊藻和Anacystis中分离到。蓝藻脂多糖内毒素的脂A与格兰氏阴性细菌的脂多糖不完全相同,种类更多,而且往往含有少量的磷酸。脂多糖内毒素包括细胞毒性生物碱(Alkaloid)、皮肤毒性生物碱和刺激性毒物——脂多糖(Lipopolysaccharides, LPS) (Metcalf J S, 2004)。

  • 乙酰基五肽-1

    乙酰基五肽-1

    乙酰基五肽-1英文名:Acetyl Pentapeptide-1CAS/化学式:C32H52N10O9【[b]详情请咨询国肽生物[/b]】分子量:721.0序 列:Ac-Arg-Lys-Asp-Val-Tyr-NH2结构式[img=,453,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010291412035605_9200_3531468_3.jpg!w453x283.jpg[/img]产品特性:促进胶原蛋白生成,修复受损肌肤,抗衰老,提高肌肤弹性 ,使肌肤充满活力。质量标准:外观:白色或者类白色粉末分子量:721.0水分:8%肽含量:80%纯度:95%醋酸:15%应用:脸部,眼部和颈部抗皱抗衰老的膏霜,乳液,精华产品推荐用量:0.005%-0.01%包装:10g,50g,100g/塑料瓶储存:阴凉,干燥避光处保存,在冰箱中2-8度保存保质期:以上储存条件下2年国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物[img=,690,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010291412297505_5281_3531468_3.jpg!w690x143.jpg[/img]

  • 欧盟投票禁止3-乙酰基-2,5-二甲基噻吩

    欧洲食品安全局(EFSA)于近日公布一份科学意见,并在5月16日发布的报道中称:“调味物质3-乙酰基-2,5-二甲基噻吩(3-acetyl-2,5-dimethylthiophene)具有基因毒性(可破坏DNA,即细胞遗传物质),因此关系到人类健康安全。该毒性物质不应该被刻意添加到食物链中。” EFSA并未进行暴露评估,因此其在新闻发布会上表示,消费者从食品中受到的该物质的暴露预计将非常小。 3-乙酰基-2,5-二甲基噻吩被用于给予食品烤坚果味。该物质仅有少数制造商生产,其整体使用率较低(据报告在欧盟内的年使用量为2.3千克)。 英国食品标准局(FSA)已收到通知,虽然英国食品行业该物质的使用量极少,但已对含有3-乙酰基-2,5-二甲基噻吩的食品进行调整。 将该物质从批准调味物质列表中移除的决定受到了所有成员国的支持,并将受到欧洲议会和理事会的监督管制。 欧盟将采纳该决定,并将于7月初生效。此原料在GB2760中,国标编号为S0572 (原编号 I1600),FEMA号为3527.

  • 【求助】求N6_三氟乙酰基_L_赖氨酸检测方法

    求HPLC检测N6_三氟乙酰基_L_赖氨酸 含量的方法,标准方法里面要用到0.25%KH2PO4,但我们实验室暂时没有,所以我就用了醋酸先代替调了一下PH到3~4,结果我的C18柱子堵的厉害,基线飘个不停.

  • PriboFast○R 系列多功能净化柱,超值体验霉菌毒素检测新技术

    霉菌毒素是由霉菌或真菌产生的有毒有害物质。在土壤中,在植物上,包括谷物、饲草和青贮饲料均可发现霉菌毒素。霉菌毒素对粮食、饲料的污染已是一个全球性热点问题。目前已知的霉菌毒素高达几百种,而食品、饲料、饮料、药材行业中危害较大的主要是以黄曲霉毒素(Aflatoxin),赭曲霉毒素A(Ochratoxin A),单端孢菌毒素(Trichothecenes),玉米赤霉烯酮(Zearalenone),烟曲霉毒素(Fumonisin)和串珠镰刀菌素(Moniliformin)发生较多,由于霉菌毒素种类繁多、结构复杂多样,这就造成实际生产中,真菌毒素的定量检测成为困扰我们的重要难题之一,对于这些毒素的检测样品的净化处理显得尤为重要。目前霉菌毒素的检测方法包括薄层色谱法、酶联免疫法、免疫亲和柱净化高效液相色谱法。但薄层色谱法操作繁琐、污染大、定量差、耗时长;而酶联免疫法虽操作简单、灵敏度高,但特异性差,假阳性高;免疫亲和柱高效液相色谱法成本太高, 对于高黄曲霉毒素含量的样品偏差较大。迫切需要一种样品处理简便易行、快速准确、灵敏度高、检测限低,检测成本低廉的检测方法和技术。尤其液相色谱分离技术具有分析速度快、样品用量少、灵敏度高、分离和测定一次完成,得到越来越多行业和单位的应用,然而整个过程样品前处理的好坏将直接导致测量结果的准确与否,对样品净化的方法要求更高。Pribolab推出的新一代霉菌毒素净化柱产品,在创新发展了霉菌毒素检测的样品处理技术基础上,可以保证整个检测一开始就具有较高的重现性和可靠性。现代前处理技术在要求净化效果的同时,越来越追求方法的快速及易操作性,PriboFastR系列多功能净化柱采取的方法就是多重机制吸附杂质并快速萃取净化的方法,,它将极性、非极性及离子交换等多类官能基团作为复合吸附填料作为填充剂填充到柱体中,这些填料可以选择性的吸附样品中的如脂类、蛋白类和色素等主要杂质吸附,同时将待测目标物(如中黄曲霉毒素 玉米赤霉烯酮等各种霉菌毒素)留在样液中,从而达到净化和富集的目的。使用PriboFastR 系列多功能净化柱,能够及时快速地对从食品、饲料、饮料、药材中提取的待检液进行净化,过柱净化后的样品可以用于检测黄曲霉毒素、 玉米赤霉烯酮、呕吐毒素、雪腐镰刀菌烯醇、3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪腐镰刀菌烯醇等多种霉菌毒素。与一般的固相萃取柱(SPE)和亲和柱相比,多功能净化柱无需活化、上样、洗脱等步骤,能够将食品或饲料提取液中的杂质与真菌毒素进行一步分离,使用快捷、方便,减少萃取步骤,有效保证分析的更加准确可靠,降低检测成本,有效提高检测效率。广告嫌疑的内容部分已经过编辑(弗雷德)

  • 黄曲霉毒素的危害

    什么是黄曲霉毒素  黄曲霉毒素(Aflatoxins)是生长在食物及饲料中的黄曲霉和寄生曲霉代谢的一组化学结构类似的产物,特曲霉也能产生黄曲霉毒素,但产量较少,目前已分离鉴定出的黄曲霉毒素有17种,主要是黄曲霉毒素B1、B2、G1、G2以及由B1和B2在体内经过羟化而衍生成的代谢产物M1、M2等。黄曲霉毒素的基本结构为二呋喃环和香豆素,B1是二氢呋喃氧杂萘邻酮的衍生物,含有一个双呋喃环和一个氧杂萘邻酮(香豆素),前者为基本毒性结构,后者与致癌性有关。B1的毒性(其毒性比氰化钾毒性高)及致癌性极强且耐热(B1的分解温度为268℃左右,一般烹调加工破坏很少),在天然污染的食品中以B1最为多见。 黄曲霉毒素分布  黄曲霉毒素主要存在于霉变的花生、谷物、果仁和大米等食物中;在水中的溶解范围为10毫克/升~20毫克/升, 可大量溶解于氯仿、甲醇、二甲基亚砜等中等极性的有机溶剂中,不溶于己烷、石油醚和乙醚;易被碱或强氧化剂破坏;进入人体后主要经消化道吸收,大部分分布 在肝脏、肾脏,少部分分布在血液、肌肉、脂肪组织中,其在体内的代谢过程主要为羟基化作用、去甲基作用和环氧化作用。

  • 藻类毒素——麻痹性贝毒中毒

    【关键词】标准物质 食品安全 标准样品 内容摘要:含有毒素的藻类通过食物链毒化海洋鱼、贝类,人类食用染毒的贝类可发生食物中毒或死亡。麻痹性贝类毒素是海洋贝类毒素中比较普遍的一种,中毒严重者可危及生命。这种毒素原产于海洋有毒藻类中,但主要积累在海产贝类体内,人或动物摄食之后,毒素会对神经肌肉产生麻痹作用而使之中毒,故称之为麻痹性贝类毒素。 赤潮是海洋内浮游生物(主要是藻类)暴发性繁殖引起海洋水体变色、变味的一种有害生态异常现象,是一种严重恶化海洋环境,破坏海洋渔业资源和沿海旅游业,并严重威胁人类健康的海洋自然灾害。海洋中众多的鱼、贝类动物以食藻为生,而某些种系的海藻为了生存会产生一些使食藻动物拒食或毒化的有毒次级代谢物——化学毒素。 含有毒素的藻类通过食物链毒化海洋鱼、贝类,人类食用染毒的贝类可发生食物中毒或死亡。与有害赤潮相关的赤潮藻毒素(贝毒素)中毒主要有五大类:①麻痹性贝毒中毒(Paralytic Shellfish Poisoning,PSP);②腹泻性贝毒中毒(Diarrheic:Shellfish Poisoning,I)S1c’);③神经性贝毒中毒(Neurotoxic:Shell。fish Poisoning,NsP);④记忆丧失性贝毒中毒(Amne—sic Shellfish Poisoning,AsP);⑤西加鱼毒中毒(("igtJatera)。世界各国及地区沿海赤潮的发生及人类食用海洋贝类中毒患病事件在次数、规模上呈现上升趋势食品安全标准为80ttg石房蛤毒素(或等价)/100g贝类鲜肉 土豆:欢迎分享资料,但是打广告是不允许的。

  • 带你了解16种常见的真菌毒素

    带你了解16种常见的真菌毒素

    [align=center][font='黑体'][size=24px]带你了解[/size][/font][font='黑体'][size=24px]16种常见的真菌毒素[/size][/font][/align][font='仿宋'][size=20px]前言:随着社会进步和发展,人们对食品中真菌毒素关注越来越多,相关的检测方法和设备也是与日更新,大家对常见真菌毒素了解也是越来越深入,但对于一些接触较少或刚接触的真菌毒素检测工作的人来说,真菌毒素类别和关系还是有些模糊,本文从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱多组分检测的16种真菌毒素入手,简单的梳理归纳这些种毒素性质和常用信息,以其对从事真菌毒素检验的同行带来些许帮助,不当之处,欢迎指正探讨。[/size][/font][font='仿宋'][size=20px][color=#222222]1 [/color][/size][/font][font='仿宋'][size=20px]真菌[/size][/font][align=left][font='calibri'][size=13px]瑞典生物学家林奈(1707~1778),等将生物界分成植物和动物两界,这种最早的两界系统,该系统把细菌类、藻类和真菌类归入植物界,把原生动物类归入动物界。一直沿用到 20 世纪 50 年代,后来陆续发展三界系统,四界系统,五界系统以及目前流行六界系统,真菌逐步有了自己的界,与[/size][/font][url=https://baike.so.com/doc/5327659-5562831.html][font='calibri'][size=13px]植物界[/size][/font][/url][font='calibri'][size=13px]、动物界、等区别。[/size][/font][/align][align=left][font='calibri'][size=13px]真菌,是一种具[/size][/font][url=https://baike.baidu.com/item/%E7%9C%9F%E6%A0%B8/5952616?fromModule=lemma_inlink][font='calibri'][size=13px]真核[/size][/font][/url][font='calibri'][size=13px]的、产孢的、无叶绿体的[/size][/font][url=https://baike.baidu.com/item/%E7%9C%9F%E6%A0%B8%E7%94%9F%E7%89%A9/1398395?fromModule=lemma_inlink][font='calibri'][size=13px]真核生物[/size][/font][/url][font='calibri'][size=13px]。通常分为三类,即酵母菌、霉菌和蕈菌(大型真菌)。真菌是生物界中很大的一个类群,世界上已被描述的真菌约有 1万属12万余种,估计只是所有存在的一小半,有一多半未被发现。[/size][/font][/align][align=left][font='calibri'][size=13px]2 真菌毒素[/size][/font][/align][align=left][font='calibri'][size=13px]真菌毒素由真菌产生的具有生物毒性的次级代谢产物,由多种真菌产生,几乎所有的农作物都可能被污染,已知的真菌毒素多达400多种,化学性质稳定,耐高温、耐持久、耐加工过程中的各种处理,普遍具有致癌、 致畸和致突变等作用。[/size][/font][/align][align=left][font='calibri'][size=13px]一般而言,真菌毒素由4种霉菌属所产生:曲霉菌属(主要分泌黄曲霉毒素、赭曲霉毒素等)、青霉菌属(主要分泌橘霉素等)、麦角菌属(主要分泌麦角毒素)、镰孢菌属(主要分泌玉米赤霉烯酮、呕吐毒素、T-2毒素、串珠镰孢菌毒素).[/size][/font][/align][font='仿宋'][size=20px] [/size][/font][font='仿宋'][size=20px]真菌毒素的形成与真菌生长繁殖的环境条件密切相关,大部分真菌在20~28℃都能生长,在30~100℃,真菌生长显著减弱,在0℃几乎不能生长。温度25~33℃、相对湿度85%~95%的环境最适合真菌的生长和繁殖,也最容易形成真菌毒素。[/size][/font][font='仿宋'][size=20px]3多组分测定常见的16种真菌毒素[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348009182_6354_1849932_3.jpeg[/img][font='仿宋'][size=20px]3.1单端孢霉烯族化合物[/size][/font][font='仿宋'][size=20px]一组由某些镰刀菌种产生的生物活性和化学结构相似的有毒代谢物。分为A型与B型两组。目前已知天然污染谷物和饲料的A型主要有T-2毒素、HT-2毒素、二醋酸藨草镰刀菌烯醇,B型有雪腐镰刀菌烯醇、脱氧雪腐镰刀菌烯醇和镰刀菌烯醇X。性质稳定,在烹调过程中不易破坏。其毒作用为较强的细胞毒性、免疫抑制作用及致畸作用,部分有弱的致癌作用。[/size][/font][font='仿宋'][size=20px]3.1.1单端孢霉烯族化合物A族[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348006061_1460_1849932_3.png[/img][font='仿宋'][size=20px]单端孢霉烯族化合物A族主要有上图中5种,多组分检测涉及[/size][/font][font='仿宋'][size=20px]T-2[/size][/font][font='仿宋'][size=20px]和HT-2两种,[/size][/font][font='仿宋'][size=20px]T-2毒素是由多种真菌,主要是三线镰刀菌产生的单端孢霉烯族化合物(trichothecenes,TS)之一。它广泛分布于自然界,是常见的污染田间作物和库存谷物的主要毒素,对人、畜危害较大。T-2毒素为白色针状结晶,在室温条件下相当稳定,放置6~7年或加热至100~120℃1小时毒性不减。T-2毒素带有酯基,用碱处理后水解成相应的醇。[/size][/font][font='仿宋'][size=20px]HT-2是[/size][/font][font='仿宋'][size=20px]由T-2毒素在体内转变成的毒性更强的代谢产物[/size][/font][font='仿宋'][size=20px]。[/size][/font][font='仿宋'][size=20px]3.1.2单端孢霉烯族化合物B族[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348014544_6268_1849932_3.png[/img][font='仿宋'][size=20px]B族主要有上图5种,其中呕吐毒素(deoxynivalenol, DON),化学名为3α, 7α, 15一三羟基草镰孢菌-9-烯-8-酮,主要由禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌、拟枝孢镰刀菌、粉红镰刀菌、雪腐镰刀菌等镰刀菌产生,由于它可以引起猪的呕吐而得名,欧盟分类标准为三级致癌物。可溶于水和极性溶剂,如含水甲醇、含水乙醇或乙酸乙酯等,[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348010661_493_1849932_3.png[/img][font='仿宋'][size=20px]B 型化合物在 C - 8 位置上有羰基,DON、雪 腐 镰 刀 菌 烯 醇 ( NIV) 等 属 于 这 一组,依据 DON 乙酰化的位置不同,将 DON 的化学型 又 分 为 3 - 乙酰脱氧雪腐镰刀菌烯醇 ( 3 - ADON)和 15 - 乙酰脱氧雪腐镰 刀 菌 烯 醇 (15 -ADON)[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348017219_1145_1849932_3.png[/img][align=left][/align][align=left][font='calibri'][size=13px]NIV往往与脱氧雪腐镰刀菌烯醇同时存在于赤霉病粮食中。其急性毒性较脱氧雪腐镰刀菌烯醇强,也具有较强的细胞毒性,抑制免疫系统,造成血清总蛋白下降,碱性磷酸酶、谷草转氨酶活性升高等,并具有胚胎毒性作用。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348018440_9957_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.2玉米赤霉烯酮[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348013893_5279_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.3 伏马菌素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348020530_6115_1849932_3.png[/img][/align][align=left][font='calibri'][size=13px]3.4黄曲霉毒素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348021595_9945_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.5 赭曲霉素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348022688_54_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.6杂色曲霉素[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348018503_9085_1849932_3.png[/img][/align][align=left][font='calibri'][size=13px]4 各种农作物中易污染的真菌毒素[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348025686_2365_1849932_3.png[/img][/align]

  • 霉菌毒素检测的技术问题,请尽管问:)

    本人这些年一直在从事霉菌毒素检测相关的工作. 当然论坛里有很多潜水大侠呀,不过看起来很忙:)用过的方法有, 薄层层析,酶联免疫试剂盒,荧光光度法, 高效液相法;前处理用过的方法有,液液萃取,固相萃取,多功能净化柱,免疫亲和柱,分子免疫印迹, mini小柱..处理的样品有, 各种原粮, 各种复合饲料,发酵物, 果汁,果浆,果粉,谷朊粉,各类奶粉,液体奶,植物油,各种食品加工品, 中药, 香料, ....做过的项目有: 黄曲霉毒素B1,B2,G1,G2,M1,M2, 玉米赤霉烯酮,呕吐毒素,赭曲霉毒素,伏马毒素B1,B2, 展青霉素,桔霉素,T2,HT2,DAS, Neosolaniol,3-乙酰脱氧雪腐镰刀菌烯醇(3 Acetyl DON) ,5-乙酰脱氧雪腐镰刀菌烯醇 (15 Acetyl DON),雪腐镰刀菌烯醇( Nivalenol),镰刀菌烯酮-X, 国家对食品,饲料, 药材中霉菌毒素越来越重视,出口这一块也是抓的越来越紧.所以,本人愿意就相关问题预以协助,说的不合适的地方,请高手手下留刀!让这个行业的门槛变的更低,技术能力更高....

  • 求乙酰基咪唑水解产物检测方法

    求乙酰基咪唑水解产物检测方法

    1-乙酰咪唑相关信息如图所示。水解产物是否为咪唑和乙酸?产品的体系为乙醇,水和多肽。乙酰咪唑是用来合成多肽时封闭和试剂,要求检测残留量,如果水解产物是咪唑的话,很想知道咪唑的检测方法(残留量),当然是越快速的越好。定性检测。谢谢各位!http://ng1.17img.cn/bbsfiles/images/2011/08/201108291337_312722_1665695_3.jpg

  • 肉毒梭状杆菌和肉毒素

    鉴于目前恒天然奶粉出肉毒杆菌一事,一起学习一下肉毒杆菌和肉毒素。肉毒杆菌的全名叫肉毒梭状杆菌(也叫肉毒梭菌Clostridium botulinum),是一种革兰氏阳性厌氧杆菌,其生长繁殖及产毒的最适温度为18~30℃。肉毒杆菌广泛分布于土壤、淤泥及动物粪便中,其中土壤是重要污染源,它可借助食品、农作物、水果、海产品、昆虫、禽类等传播到各处。肉毒杆菌家族一共兄弟7个,本身其实没有毒性,但其中有4个能在厌氧环境下(比如肠道、密闭发酵食品)产生肉毒毒素。食品在加工、贮藏过程中被肉毒杆菌污染,食前对带有毒素的食品又未加热或未充分加热,就易引起中毒。在我国的新疆、青海等少数民族地区几乎每年都会出现自制发酵肉制品导致的肉毒中毒、甚至死亡。肉毒毒素(botulinum toxin,AX)是肉毒杆菌产生的含有高分子蛋白的神经毒素,是目前已知在天然毒素和合成毒剂中毒性最强烈的生物毒素,它主要抑制神经末梢释放乙酰胆碱,引起肌肉松弛麻痹,特别是呼吸肌麻痹是致死的主要原因。肉毒毒素真正被大众了解,是因为一些明星注射肉毒来除皱。虽然这个毒素的毒性比较大,一点点就能毒死人,但它本身对热不稳定,煮开几分钟就破坏掉了,真正难解决的是它的芽孢。肉毒杆菌在感觉不舒服的时候就像作茧一样用一些蛋白和糖类物质把自己包起来,然后就能“刀枪不入”,一般的加工手段都杀不死它。等它重新进入合适的环境,比如人的肠道,它又能苏醒过来继续干坏事。成人由于肠道里面的菌群早已站稳了脚跟,少量的肉毒杆菌是斗不过这些“地头蛇”的,因此对成人的危险性相对较小。但婴儿尤其是1岁以下的小宝宝,正常菌群还处于建设阶段,这个时候肉毒杆菌来捣乱的话,有可能对宝宝造成较大影响。  我国乃至全世界都没有乳粉中肉毒杆菌的限量标准,因为肉毒杆菌在乳品中并不是常见的污染物,而标准的管理是要考虑成本的,正因如此,各国都不把它写入标准。但这并不意味着根本不管,比如这次恒天然是在企业的质量控制中发现的问题。用标准管理有限的问题,用过程的控制实现更全面的安全保障,这才是科学的食品安全管理理念。对于负责任的大企业,其质控项目数量和质控要求都是远远高于国家标准要求的。

  • 【讨论】临床运用内毒素定量检测的意义!!!!

    1、抗生素在杀菌或抑菌的同时促进了内毒素的释放,临床已见有抗生素使用后,出现脓毒性休克的先例。2、经研究发现,不同抗生素中诱发内毒素释放的作用存在差异,即头孢他啶培福新依米配能阿米卡星;在拮抗革兰阴性菌的抗生素中,碳青霉烯类优于头孢菌素类。3、避免应用亚治疗量的抗生素,不但最终未能达到杀菌目的,反而会促进耐药菌的形成,更有促进内毒素释放的负面作用。资料来源于《中华烧伤杂志》肖光夏教授快速鉴别诊断细菌性和非细菌性感染和炎症。早期判断革兰氏阴性细菌感染情况。相关疾病的早期诊断与病情监控。帮助临床医生筛选适当的药物。 评价临床治疗及预后情况,提高临床治愈率,降低死亡率。

  • 【女性健康】爱美的美眉们: 关于肉毒素美容,给大家长一下见识

    生物除皱之一……肉毒素美容美容手术 肉毒素除皱现在风糜全球,现在我们来认识一下这个倍受国家首脑和明星们追捧的美容产品。 肉毒素又名肉毒杆菌肉毒素A,是一种神经毒素。1970年首先用于治疗儿童斜视,后又用于睑痉挛及半侧面肌痉挛,都取得较高的成功率。A型肉毒素是美国FDA批准的可用于注射的第一种微生物复合蛋白,必须有严格的质量规范及严格控制剂量。近几年来肉毒素用于治疗面部皱纹,被证明是非常有效的的生物制剂。 肉毒素历史: 1 1897年,Van Ermengem分离成功。 2 1920年,Sommer得到天然型肉毒素。 3 1946年,Schantz获得晶体型肉毒素。 4 1949年,Burgen阐明了其作用机制,并用于肌肉痉挛治疗。 5 1980年,Scott用于眼肌痉挛。 6 90年代以来用于除皱。 那么肉毒素是怎样起到除皱效果的呢? 首先,肉毒素注射入肌肉部位后,作用于神经肌肉运动终板(也就是神经末梢与肌肉接触部位),作用外周胆碱能神经末梢,抑制周围运动神经突触前膜释放乙酰胆碱,引起肌肉暂时性松弛性麻痹。肉毒素可能通过两种途径引起松弛性麻痹,(1)抑制胆碱乙酰转移酶活动或封闭从突触间隙中吸收的胆碱,从而阻碍与辅酶A合成乙酰胆碱;(2)抑制乙酰胆碱的释放。这样,神经冲动不能有效传导到表情肌,导致肌肉收缩在一定程度上障碍,引起肌肉松弛,从而舒展皱纹。 我们知道,面部的皱纹在很大程度上是由表情肌收缩引起的,比如皱纹是眉间的皱眉肌收缩引起,形成川字纹,鼻背的横形皱纹是降眉肌收缩引起的,鱼尾纹是由眼轮匝肌收缩引起的,抬头纹是由额肌收缩引起的,脖子上的皱纹是颈阔肌收缩引起的。如果这些肌肉不能有效收缩,则这些相对应的皱纹就不会出现。 目前在美容中的应用范围:适用于消除眉间纹,额纹,鱼尾纹,颈阔肌纹,鼻背纹,治疗咬肌肥大,小腿腓肠肌肥大等。腋臭,多汗症等。 使用注意事项: 1 禁用: (1)孕妇、哺乳期妇女 (2)重症肌无力症、多发性硬化症患者 (3)上睑下垂者 (4)有心肝、肺、肾等内脏疾病者 (5)身体过敏体质者。 2 低温保存,溶解后4小时内用完,用不完者必须丢弃。 3粉状肉毒素必须保存于-20——-5摄氏度情况下,保质期为两年 肉毒素除皱的优点确实非常明显:如操作容易,见效快,立竿见影。非常适合现代有一定经济实力,要求效果好,无明显恢复期的微创美容群体。 唯一的缺点就是半年就要注射一次,有些人可能会想:太麻烦了。不过也可想一想:好多人花大把的钱买高档的化妆品和频繁出入高档美容SPA会所,而肉毒素一针就可以解决这些问题,虽然半年注射一次,但比较起来,所需时间和费用远比平常生活美容要低得多。 在门诊,经常有年轻女孩要求除皱的,其实她们是肉毒素的最佳人群,现在越来越多的人接受这种午间微创注射除皱。特别适合于小康的人群。 肉毒素的化学去神经支配作用已获得丰硕成果,并成功地应用于美容整形外科领域。治疗是安全、有效、可预测、微创和可重复。其在面颈部活动性肌肉上的暂时性作用,以及其后产生的消除表面皱纹的作用,使肉毒素成为美容外科面部年轻化中一有效的辅助治疗手段。如果由有经验的医生对经过仔细挑选的患者进行操作,这一治疗方法可对衰老的面部年轻化提供一可行的非手术疗法的选择。

  • 急求:1-乙酰基咪唑纯度检测方法!!!!!!!!!!

    CAS:2466-76-4分子式:C5H6N2O分子质量:110.11熔点:93-96℃中文名称:1-乙酰咪唑英文名称:1-acetyl-imidazol;1-acetyl-1h-imidazol;n-acetylimidazole;1-acetylimidazole性状描述:无色结晶。熔点103-105℃。极易水解。生产方法:咪唑与乙酸异丙烯酯反应在50毫升圆烧瓶中,加入0.2g(0.03mol)咪唑,20ml乙酸异丙烯酯和几滴浓硫酸。将混合物在60℃保温1h。蒸馏除去少量的乙酸异丙烯酯和丙酮。剩余物用水碳酸钠处理。倾出液体。在空气浴中蒸发至干。得粗品3.1g,产率94%,熔点93-96℃。现经乙酸异丙烯酯重结晶,熔点达到101.5102.5℃。用途:作乙酰化试剂,供生化研究用。提示:大部分词条有不同角度的多个解释,欲全面了解请查看下面的“更多相关内容”。 结构式:http://www.chemyq.com/xz/img/img2/2466-76-4.gif

  • 如何将土霉素峰与相邻的2-乙酰-2-去酰胺土霉素峰分离度提高,使其完全 分离开?

    我用液相色谱仪测土霉素原料的杂质时,按照2010年版兽药典一部的规定配置的流动相及相关样品和对照品,土霉素主峰按规定是12分钟出来,可是却4分钟就出来了,且和相邻的2-乙酰-2-去酰胺土霉素未完全分离开,两峰相连的部分在基线上方,柱温25度,这样按外标法计算峰面积时,2-乙酰-2去酰胺土霉素的峰的比例就偏大,超出杂质范围例如,且土霉素峰含量降低了。之后又将柱温设为40度,依旧没有多大改善,如何将两个峰完全分离开且延长出峰时间?(注:两峰相对保留时间约为1.1,这个是正确的)。流动相醋酸铵溶液【0.25mol/L醋酸铵溶液:0.05mol/L EDTA二钠溶液:三乙胺(100:10:1),用醋酸调节PH值至7.5,】:乙腈=88:12

  • 真菌毒素与黄曲霉毒素是那些?

    黄曲霉毒素是天然存在的霉菌产生的一种毒素,已经被证明对人体容易产生癌症,是一类致癌物质。美国联邦政府有关法律规定人类消费食品和奶牛饲料中的黄曲霉毒素含量不能超过20ppb,人类消费的牛奶中的含量不能超过0.5ppb。而其它动物饲料中的含量不能超过300ppb。黄曲霉毒素是一类真菌(如黄曲霉和寄生曲霉)的有毒的代谢产物,它们具有很强的致癌性,主要存在于谷物、坚果、棉籽以及一些与人类血液,动物饲料相关的产品中。黄曲霉毒素M1是黄曲霉毒素B1的羟基化代谢产物,也是一种强致癌物质。牛乳及其制品是易受到黄曲霉毒素M1污染的食品之一。黄曲霉毒素 M1的检测方法有高效液相色谱法(HPLC),薄层层析法(TLC),酶联免疫法(ELISA)等。而使用黄曲霉毒素M1 免疫亲和柱则能够快速而准确的提纯纯化并浓缩样品中黄曲霉毒素M1组分,使得后面的分析更加轻松简单。PriboFast黄曲霉毒素总量亲和层析柱可选择性吸附样品液中的黄曲霉毒素(B1,B2,G1,G2),从而对黄曲霉毒素总量(B1,B2,G1,G2)样品起到非常针对性的纯化作用,过柱净化后的样品液可直接用于液相进行黄曲霉毒素总量(B1,B2,G1,G2)含量的检测。亲和层析柱与HPLC配合使用可达到快速测定的目的,以改善信噪比,可提高检测方法的准确度。PriboFast黄曲霉毒素总量亲和柱用于定性、定量检测谷物、副食品、酒类等食品和饲料等样本中的黄曲霉毒素总量(B1,B2,G1,G2)时的样品前处理。柱容量:≥200ng 回收率:80-90%可用于快递纯化检测牛奶,奶粉等样本中的黄曲霉毒素M1。

  • [申精]热原和细菌内毒素介绍

    热原和细菌内毒素 一、热原(progon) 医院临床在使用药品注射剂时,常有发生冷感、寒战、发热、头痛、恶心、呕吐、肤色灰白、休克、严重时导致死亡,这种症状称为热原反应。 为提高药品质量和用药安全,人们对热原进行了广泛的研究,直到1923年Seibert提出了用家兔检测热原的方法。在1942年美国药典首先将家兔热原检查项收入药典成为法定方法,中国药典1953年版开始收载该方法,随后的世界各国药典都以动物热原检查法作为药品质量监测的方法之一。 家兔热原检查法的优点,可在规定时间里观察到家兔的体温变化,相应反应了热原质引起哺乳类动物复杂的体温反应过程。所以,在半个多世纪以来热原检查法,为保障药品质量和用药安全发挥了重要作用。 但随着制药工业的发展和临床用药的要求,该方法的局限性越来越明显。这种热原检查法,只局限于某种药物进入体内(血循环)是否能引起体温变化或热原反应作为判断药品是否污染热原的方法,已不能满足医药工业发展的需要。其缺点: ①标准化程度低,无法判断检查样品中存在的热原质到底是什么或是哪一种物质。 ②由于试验动物家兔是处在被细菌污染的环境中,通过吸入或皮肤感染细菌内毒素而被免疫,导致动物的个体差异较大。 ③试验动物受到药品的药理活性干扰,而影响体温变化(如放射性药品、抗生素、生物制品等),实验结果难以判断。 ④设备及实验费用昂贵(如建设动物房、水电、动物饲料等耗费),做一种药品需要几百元/次,而鲎试剂仅几十元/次。 综上情况分析,鲎试验法可避免以上动物热原检查法的不足,该技术的成功和应用真可谓是药品质量监控一场大革命。 什么是热原?目前国内外仍未有统一的认识,但从国内外文献报道中,一个共同的意见,都普遍认为:它是指细菌内毒素的脂多糖。 欧洲药典委员会副主席J.Van Noordwijk提出:“严格地讲,不是每一种热原都具有脂多糖的结构,但所有已知的细菌内毒素脂多糖都有热原活性”。在药品生产质量管理规范(GMP)条件下,药品生产的质量控制一般可以接受的观点是:不存在细菌内毒素意味着不存在热原。 二、细菌内毒素(Endotoxin) 细菌内毒素是革兰氏阴性菌细胞壁上的一种脂多糖(Lipoply Saccharide)和微量蛋白(Protein)的复合物,它的特殊性不是细菌或细菌的代谢产物,而是细菌死亡或解体后才释放出来的一种具有内毒素生物活性的物质。其化学成分广泛分布于革兰氏阴性菌(如大肠杆菌、布氏杆菌、伤寒杆菌、变形杆菌、沙门氏菌等)及其它微生物(如衣原体、立克次氏体、螺旋体等)的细胞壁层的脂多糖,其化学成份主要是由O-特异性链、核心多糖、类脂A三部分组成。(附图1) 、O—特异性链:位于脂多糖分子最外层的多糖链,是由3—5个单糖(一般不多于25个)连成为一个多糖链。其单糖包括戊糖、氨基戊糖、已糖、氨基已糖、脱氧已糖等,单糖的种类、位置和排列顺序和空间构型,因菌种不同而异。因此,它决定菌体热原的特异性。 核心多糖:核心多糖的变异性较小,位于类脂A和0—特异性链(内层)之间,在结构上分为内核心和外核心。外核心含有数种己糖,包括葡萄糖、半乳糖、乙酰氨基葡萄糖等组成。内核心含有庚糖及特殊的酮糖(3-脱氧-D-甘露糖-辛酮糖KDO)。这部分结构对不同菌株的LPS基本相似,而且KDO是以不耐酸的酮糖链与类脂A的氨基葡萄糖连接,是构成内毒素脂多糖的核心部分。 类脂A:位于LPS分子结构的外层,是由氨基葡萄糖、磷酸和脂肪酸(10—18C)组成,故称之为糖磷脂,也是细菌外膜的一种,形成单体聚合物。具有疏水性(强)和亲水性(弱)的双相性。但是,类脂A可从O-特异链及核心多糖分离出来,游离的类脂A可自身凝聚成大分子的复合体而难溶于水,并具有生物活性。所以,类脂A(Lipida)是内毒素多种生物活性或毒性反应的主要基团。该基团没有种属特异性,所以各属细菌的类脂A结构相似,其毒性反应相似。如发热、血液流动力学改变、弥漫性血管内凝血,并导致休克等。 由于类脂A有4条主链和2条支链的脂肪酸与内酰胺连接组成,所以提纯的内毒素LPS是极为不稳定的。这就要求内毒素应在低温条件下保存,在工作中内毒素稀释应尽可能地缩短时间,并要现配现用。 三、内毒素的生物活性与疾病的相关性 据文献报道,在很早期(约19世纪末)的意大利学者Centanne通过菌属自溶的方法,从革兰氏阴性杆菌中提取出一种类似毒素的物质,因为这种物质对动物体产生致热活性的同时,亦产生出一种病理学病性反应,而被命名为致热毒素(Pyrotoxina)。同时由德国的Buchner也从多种细菌中提取到相似的致热毒素,并证实了这种毒素在导致白细胞数目的改变同时,具有增强机体对细菌感染时的免疫能力。因此建立了“发热疗法”。 在美国纽约的临床医师,William B• Coley用加热法杀死录杆菌和化脓性链球菌,将上清滤液用于各种恶性肿瘤(特别是肉瘤)的治疗,取得较好的疗效。他将这种细菌上清液命名为Coley氏毒素。此后murrayJ.Shear 证实Coley氏毒素中具有抗肿瘤作用的物质为内毒素。 直到1933年Boivin等学者在研究鼠伤寒杆菌的致病机理时,从鼠伤寒杆菌中提取出内毒素。在50年代以后,对内毒素的化学成分和化学结构的研究得到迅速发展。经过大量实验表明,内毒素具有极强的生物学活性,特别是革兰氏阴性菌感染和静脉注射提取的内毒素溶液时,可导致动物体发生内毒素休克和死亡。 内毒素的致病机理,主要是由于革兰氏阴性杆菌(如大肠杆菌、沙门氏杆菌、伤寒杆菌,布氏杆菌、变形杆菌金黄色葡萄球菌等)和其它微生物(病毒、立克次氏体、衣原体螺旋体等)感染时,这类菌属随病灶渗液进入血液循环,并扩散到各种组织器官和体液细胞内繁殖,这类菌属在体内死亡和解体后,才稀放出大量的细菌内毒素脂多糖(LPS),据初步实验表明,当机体内毒素浓度國值 0.005ng/ml时,可诱生内源性热原质如肿瘤坏死因子、白细胞介素和β2—干扰素等。这些因子刺激体温调节中枢导致机体发热,细菌内毒素直接或间接作用于肝脏和胰腺时,可使肝细胞损伤,使糖原异生酶(如葡萄糖—6—6磷酸酶、糖原合成酶)的活性降低,抑制糖原的异生和分解。同时内毒素作用于胰腺导致胰腺功能障碍,并形成胰岛素抵抗,造成血糖升高致使并发心肌炎和心肌肿大的系列高血糖症状。所以,革兰氏阴性菌属感染或在病灶中的细菌进入体液细胞繁殖,当其死亡或解体后产生的内毒素,可多次进入血液,引起反复发作,其病理变化极为广泛,几乎所有的器官和组织都可被侵犯,而引起各器官的功能障碍。其中以网状内皮系统最常见,淋巴、脾、肝、肾、骨髓中均有上皮细胞增生,形成肉芽肿,以肝脏有肉芽肿外,还可发生冲血、水肿和肝细胞坏死,最终导致肝硬化的发生。其它器官亦有相似的毒性反应。

  • 【分享】微囊藻毒素介绍

    一、概述随着社会工业化进程的加快,人类在工农业生产及日常生活中,向水体排入大量含氮、磷的污染物,加速了湖泊的富营养化(Eutrophication),藻类(Algae)由此而获取丰富的营养而大量繁殖。最近的调查表明,亚太地区54%的湖泊富营养化,欧洲、非洲、北美洲和南美洲的比例分别是53%,28%,48%和41%,我国则是60%。在富营养化的淡水水体中,当有适宜的化学物理条件时,水体中的藻类短时间内大量繁殖并聚集的生态异常现象称为水华(Water Blooms, 也称湖靛);这一现象若发生在海洋里则通常称为赤潮(Red Tide)。淡水水体富营养化危害最大的一个表征是水华的出现,每年夏、秋季节,在一些淡水湖泊均会形成大量水华,致使水质日趋恶化。当水华出现时,水面被厚厚的蓝绿色湖靛所覆盖,甚至在岸边大量堆积。在藻体大量死亡分解的过程中,不但散发恶臭,破坏景观;同时大量消耗水中溶解氧,使鱼类窒息死亡;尤其是藻类能释放生物毒素——藻毒素(Algae Toxins),这些类次级代谢产物严重危害人类和其他生物的安全。随着富营养化的加剧,藻类水华发生的频率和幅度也增加,有毒水华对水环境的危害和生物安全更日益引起广泛的关注。淡水中蓝绿藻属(Cyanobacteria,Blue-green Algae)分泌产生的蓝藻毒素是目前已经发现的污染范围最广,研究最多的一类藻毒素。其中的微囊藻毒素LR (Microcystin-LR)是目前已知的毒性最强的、急性危害最大的一种淡水蓝藻毒素。由于未及时地检测水质情况的污染变化及采取相应的控制措施,致使这些毒素富集于鱼类或贝类中并通过食物链传递,直接存在于饮用水或娱乐用水中,严重威胁人类的健康,全球已经发生了多起有关藻毒素中毒并引起死亡的事故。近年来淡水藻类污染已成为一个全球性的环境问题。

  • 不容小觑的呕吐毒素

    不容小觑的呕吐毒素

    文/武风娟 华测检测[color=black]近几年在食品药品监管部门组织的食品安全监督抽检中,发现个别小麦粉产品中脱氧雪腐镰刀菌烯醇([/color][color=black]DON[/color][color=black],也称呕吐毒素)超过食品安全国家标准限量值。何为呕吐毒素?被呕吐毒素污染的食品可以吃吗?吃了会中毒吗?呕吐毒素污染的原因是什么?有哪些健康风险?如何防控?[/color][b][color=black]何为呕吐毒素?[/color][/b][color=black]脱氧雪腐镰刀菌烯醇[/color][color=black](deoxynivalenol[/color][color=black],[/color][color=black]DON)[/color][color=black],属单端孢霉烯族化合物,是禾谷镰刀菌、雪腐镰刀菌、燕麦镰刀菌和串珠镰刀菌等镰刀菌属的菌种引起的谷物赤霉病的重要指示性毒素,因易引起猪的呕吐,又称为呕吐毒素([/color][color=black]Vomitoxin[/color][color=black])。它是一种全球性的污染谷物的霉菌毒素之一,广泛分布在粮谷类农作物中,在大麦、小麦、燕麦和玉米中含量较高,在水稻、高粱、黑麦中含量较低,呕吐毒素也可通过饲料进入动物体内而导致肉制品被污染。上世纪[/color][color=black]70[/color][color=black]年代初日本的[/color][color=black]Yoshizawa[/color][color=black]和[/color][color=black]Morooka[/color][color=black]等首次分离了这种真菌毒素,阐明了其结构,并将其命名为[/color][color=black]4-deoxyni-valenol (DON)[/color][color=black]。这类毒素化学性质非常稳定,耐热、耐压、耐弱酸、耐储藏,在加工、储存及烹调过程中不能破坏其结构,加碱或高压处理才可破坏部分毒素,对人类健康造成很大威胁。目前已经被联合国粮农组织和世界卫生组织确定为最危险的自然发生食品污染物。[/color][b][color=black]谷物中呕吐毒素污染广泛存在[/color][/b][color=black]谷物呕吐毒素污染全球范围内易多发,主要原因是谷物在田间受到禾谷镰刀菌等真菌侵染,导致小麦发生赤霉病和玉米穗腐病,在适宜的气温和湿度等条件下繁殖并产毒,严重污染小麦、玉米等粮食及其制品。该毒素在谷物储藏期间,由于未经充分干燥或不当储存,也可能产生,目前在世界范围都难以做到根本防治。[/color][color=black]谷物赤霉病主要分布在潮湿的温带地区,我国大部分地区又恰恰处于这一地区,这是我国呕吐毒素污染较为严重的原因之一,在长江、淮河、黄河流域呈多发态势,多雨年份呕吐毒素的污染状况更为严重。[/color][b][color=black]呕吐毒素的危害[/color][/b][color=black]呕吐毒素,化学名称为[/color][color=black]3α,7α,15-[/color][color=black]三羟基[/color][color=black]-12,13-[/color][color=black]环氧单端孢霉[/color][color=black]-9[/color][color=black]烯[/color][color=black]-8[/color][color=black]酮,分子式为[/color][color=black]C[sub]15[/sub]H[sub]20[/sub]O[sub]6[/sub][/color][color=black],相对分子质量为[/color][color=black]296.32[/color][color=black],属[/color][color=black]B[/color][color=black]型单端抱霉烯族化合物,广泛分布于自然界,对人类和动物健康有极大危害。其[/color][color=black]12,13-[/color][color=black]环氧环为毒性基团,可与核糖体结合,造成核糖体毒性压力效应,激活多种蛋白激酶,调节基因表达,抑制蛋白合成并产生细胞毒性,对人和动物的免疫功能、繁殖功能产生明显的影响。[/color][align=left][img=,690,434]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011837206086_2066_3051334_3.jpg!w690x434.jpg[/img][/align][color=black]呕吐毒素[/color][color=black]DON[/color][color=black]通过污染的小麦、大麦、玉米等原料进入食品和饲料中,家禽食用污染的饲料后,使[/color][color=black]DON[/color][color=black]少量进入牛奶、肉和蛋中从而间接影响人类健康。低剂量[/color][color=black]DON[/color][color=black]可能引起动物的食欲下降、体重减轻、代谢紊乱等,大剂量可导致呕吐。人摄食被[/color][color=black]DON[/color][color=black]污染的谷物制成的食品后可能会引起厌食、呕吐、腹泻、头疼、头晕等以消化系统和神经系统为主要症状的真菌毒素中毒症,有的病人还有乏力、全身不适、颜面潮红,步伐不稳等似酒醉样症状(民间也称醉谷病),症状一般在[/color][color=black]2[/color][color=black]小时后可自行恢复。老人和幼童等特殊人群,或大剂量中毒者,症状会加重。国内外对[/color][color=black]DON[/color][color=black]致癌、致畸、致突变的毒性的研究结果不完全一致,但多数研究均表明[/color][color=black]DON[/color][color=black]具有致畸、胚胎毒性,可能是一种潜在的致癌物质,但国内外无其致癌作用的明显报道,因此其致癌作用尚无定论,但流行病学研究发现,[/color][color=black]DON[/color][color=black]的含量与食管癌的发生呈正相关。[/color][color=black]1993 [/color][color=black]年国际癌症研究机构([/color][color=black]IARC[/color][color=black])将呕吐毒素列入第[/color][color=black]3[/color][color=black]类,即尚不明确对人类是否有致癌作用,与咖啡因等同类。[/color][color=black]2001[/color][color=black]年联合国粮农组织[/color][color=black]/[/color][color=black]世界卫生组织([/color][color=black]FAO/WHO[/color][color=black])食品添加剂联合专家委员会([/color][color=black]JECFA[/color][color=black])第[/color][color=black]56[/color][color=black]次会议通过科学评估首次制定了呕吐毒素的暂定每日最大耐受摄入量([/color][color=black]PMTDI[/color][color=black])为[/color][color=black]1μg/kg b.w[/color][color=black],即一个体重为[/color][color=black]60kg[/color][color=black]成年人的每日最大摄入量不超过[/color][color=black]60[/color][color=black]微克。进一步的代谢学研究发现呕吐毒素的乙酰基衍生物经代谢转化后可变成呕吐毒素,增加了总的[/color][color=black]DON[/color][color=black]毒性,在此基础上,[/color][color=black]2010[/color][color=black]年[/color][color=black]JECFA[/color][color=black]第[/color][color=black]72[/color][color=black]次会议将其[/color][color=black]PMTDI[/color][color=black]值变成组[/color][color=black]PMTDI[/color][color=black]值,包括脱氧雪腐镰刀菌烯醇,脱氧雪腐镰刀菌烯醇的[/color][color=black]3-[/color][color=black]乙酰基衍生物和[/color][color=black]15-[/color][color=black]乙酰基衍生物,其值维持为[/color][color=black]1μg/kg b.w[/color][color=black];其组急性参考剂量([/color][color=black]Group ARfD[/color][color=black])为[/color][color=black]8μg/kg b.w[/color][color=black]。根据评估结果,在食品安全限量范围内的呕吐毒素并不会对消费者的健康构成风险。[/color][b][color=black]各国对呕吐毒素的限量要求[/color][/b][color=black]由于脱氧雪腐镰刀菌烯醇污染的广泛存在,全球主要国家和地区都制定了脱氧雪腐镰刀菌烯醇限量标准。我国的《食品安全国家标准[/color][color=black]食品中真菌毒素限量》([/color][color=black]GB 2761-2017[/color][color=black])中规定谷物及其制品脱氧雪腐镰刀菌烯醇的限量为[/color][color=black]1000 μg/kg[/color][color=black]。《饲料卫生标准》([/color][color=black]GB 13078-2017[/color][color=black])中规定饲料原料和饲料产品脱氧雪腐镰刀菌烯醇的限值为[/color][color=black]1-5mg/kg[/color][color=black]。美国的[/color][color=black]FDA[/color][color=black](食品及药物管理局[/color][color=black])[/color][color=black]规定食品中的呕吐毒素[/color][color=black]DON[/color][color=black]的安全标准是[/color][color=black]1mg/kg[/color][color=black],呕吐毒素[/color][color=black]DON[/color][color=black]的含量超过[/color][color=black]1mg/kg[/color][color=black]时就会对人及牲畜的健康产生损害,饲料用小麦及小麦制品中呕吐毒素[/color][color=black]DON[/color][color=black]的允许限量不得超过[/color][color=black]4mg/kg[/color][color=black]。欧盟制定的呕吐毒素[/color][color=black]DON[/color][color=black]限量标准相对较严,[/color][color=black]DON[/color][color=black]限量范围为[/color][color=black]200-1750μg/kg[/color][color=black],加拿大的为[/color][color=black]600-2000μg/kg[/color][color=black],日本的为[/color][color=black]1100μg/kg[/color][color=black]等。[/color][color=black]2015[/color][color=black]年国际食品法典委员会([/color][color=black]CAC[/color][color=black])首次颁布了[/color][color=black]DON[/color][color=black]限量标准,规定未加工的谷物中[/color][color=black]DON[/color][color=black]限量为[/color][color=black]2000μg/kg[/color][color=black],谷物制品中限量为[/color][color=black]1000μg/kg[/color][color=black],谷物基婴幼儿食品中限量为[/color][color=black]200μg/kg[/color][color=black]。根据风险评估结果,食品中[/color][color=black]DON[/color][color=black]含量在食品安全标准规定限量范围内不会对消费者的健康构成风险。[/color] [table=554][tr][td=4,1] [align=center]《食品安全国家标准食品中真菌毒素限量》(GB 2761-2017)[/align] [/td][/tr][tr][td] [align=center][b][color=black]项目[/color][/b][/align] [/td][td] [align=center][b][color=black]食品类别(名称)[/color][/b][/align] [/td][td] [align=center][b][color=black]限量([/color][color=black]μg/kg[/color][color=black])[/color][/b][/align] [/td][td] [align=center][b][color=black]检验方法[/color][/b][/align] [/td][/tr][tr][td] [align=center]脱氧雪腐镰刀菌烯醇(呕吐毒素)[/align] [/td][td] [align=left]谷物及其制品 玉米、玉米面(渣、片) 大麦、小麦、麦片、小麦粉[/align] [/td][td] [align=center] 1000 1000[/align] [/td][td] [align=center]GB 5009.111[/align] [/td][/tr][/table][color=black] [/color] [table=573][tr][td=5,1] [align=center]《饲料卫生标准》(GB 13078-2017)[/align] [/td][/tr][tr][td] [align=center][b][color=black]项目[/color][/b][/align] [/td][td=2,1] [align=center][b][color=black]产品名称[/color][/b][/align] [/td][td] [align=center][b][color=black]限量([/color][color=black]mg/kg[/color][color=black])[/color][/b][/align] [/td][td] [align=center][b][color=black]试验方法[/color][/b][/align] [/td][/tr][tr][td=1,5] [align=center]脱氧雪腐镰刀菌烯醇(呕吐毒素)[/align] [/td][td] [align=center]饲料原料[/align] [/td][td] [align=center]植物性饲料原料[/align] [/td][td] [align=center]≤5[/align] [/td][td=1,5] [align=center]GB/T 30956[/align] [/td][/tr][tr][td=1,4] [align=center]饲料产品[/align] [/td][td] [align=center]犊牛、羔羊、泌乳期精料补充料[/align] [/td][td] [align=center]≤1[/align] [/td][/tr][tr][td] [align=center]其他精料补充料[/align] [/td][td] [align=center]≤3[/align] [/td][/tr][tr][td] [align=center]猪配合饲料[/align] [/td][td] [align=center]≤1[/align] [/td][/tr][tr][td] [align=center]其他配合饲料[/align] [/td][td] [align=center]≤3[/align] [/td][/tr][/table][b][color=black]近三年呕吐毒素的监管现状[/color][/b][color=black]根据国家、地方食品安全抽检不合格信息汇总情况,自[/color][color=black]2016[/color][color=black]年至今,粮食加工品的抽检合格率均在[/color][color=black]98%[/color][color=black]以上,其中小麦粉共检出[/color][color=black]150[/color][color=black]批次不合格,[/color][color=black]120[/color][color=black]批次检出脱氧雪腐镰刀菌烯醇(呕吐毒素)超标,占整体不合格小麦粉样品的[/color][color=black]80%[/color][color=black]。[/color][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011837428587_7923_3051334_3.jpg!w690x416.jpg[/img][color=black]备注:数据来源于食安通网站食品抽检信息与分析模块[/color][color=black]在[/color][color=black]120[/color][color=black]批次呕吐毒素超标的样品中,有检测数据的共[/color][color=black]112[/color][color=black]批次,呕吐毒素的检测值在[/color][color=black]1000μg/kg-5000μg/kg[/color][color=black]之间,其中分布在[/color][color=black]1000μg/kg-2000μg/kg[/color][color=black]之间的样品最多,占总体的[/color][color=black]68.75%[/color][color=black],[/color][color=black]4000μg/kg -5000μg/kg[/color][color=black]之间样品仅[/color][color=black]3[/color][color=black]批次,不足总体的[/color][color=black]3%[/color][color=black]。[/color][align=left][b][color=black]呕吐毒素的检测值分布情况[/color][/b][/align][table=576][tr][td] [align=center][b][color=black]呕吐毒素检测值[/color][color=black] [/color][color=black](单位:[/color][color=black]μg/kg[/color][color=black])[/color][/b][/align] [/td][td] [align=center][b][color=black]1000-2000[/color][/b][/align] [/td][td] [align=center][b][color=black]2000-3000[/color][/b][/align] [/td][td] [align=center][b][color=black]3000-4000[/color][/b][/align] [/td][td] [align=center][b][color=black]4000-5000[/color][/b][/align] [/td][/tr][tr][td] [align=center]检测值分布数量[/align] [/td][td] [align=center]77[/align] [/td][td] [align=center]24[/align] [/td][td] [align=center]8[/align] [/td][td] [align=center]3[/align] [/td][/tr][tr][td] [align=center]占比情况[/align] [/td][td] [align=center]68.75%[/align] [/td][td] [align=center]21.43%[/align] [/td][td] [align=center]7.14%[/align] [/td][td] [align=center]2.68%[/align] [/td][/tr][/table][color=black]食品添加剂联合专家委员会([/color][color=black]JECFA[/color][color=black])制定的呕吐毒素的暂定每日最大耐受摄入量([/color][color=black]PMTDI[/color][color=black])为[/color][color=black]1μg/kg b.w[/color][color=black],以一个体重为[/color][color=black]60kg[/color][color=black]成年人计算含不同浓度呕吐毒素的样品的每日最大摄入量。含[/color][color=black]1000μg/kg[/color][color=black]呕吐毒素的样品,每日的最大允许摄入量为[/color][color=black]60mg[/color][color=black],含[/color][color=black]5000μg/kg[/color][color=black]呕吐毒素的样品,每日的最大允许摄入量仅为[/color][color=black]12mg[/color][color=black],超过最大允许量,则会对身体健康产生影响。[/color][align=center][b][color=black]含不同浓度呕吐毒素的样品的最大允许摄入量[/color][/b][/align] [table=553][tr][td] [align=center][b][color=black]呕吐毒素浓度[/color][color=black] [/color][color=black](单位:[/color][color=black]μg/kg[/color][color=black])[/color][/b][/align] [/td][td] [align=center][b][color=black]1000[/color][/b][/align] [/td][td] [align=center][b][color=black]2000[/color][/b][/align] [/td][td] [align=center][b][color=black]3000[/color][/b][/align] [/td][td] [align=center][b][color=black]4000[/color][/b][/align] [/td][td] [align=center][b][color=black]5000[/color][/b][/align] [/td][/tr][tr][td] [align=center]最大允许摄入量 (单位:mg)[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]30[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]12[/align] [/td][/tr][tr][td=6,1] [align=left]备注:呕吐毒素的PMTDI为1 μg/kg b.w,以一个体重为 60 kg 成年人的每日最大摄入量计算[/align] [/td][/tr][/table][b][color=black]小麦粉中呕吐毒素超标原因[/color][/b][color=black]小麦粉中的呕吐毒素主要由小麦本身含带,生产加工未能实现小麦中呕吐毒素清除。研究表明,小麦面粉中呕吐毒素的阳性检出率为[/color][color=black]87%[/color][color=black],麸皮检出率则相对更高,达到[/color][color=black]97%[/color][color=black]以上。从小麦中呕吐毒素生长部位来看,主要存在于外部果皮之中,因而外部麸皮较加工后形成的小麦粉来说,呕吐毒素的含量更多,但小麦粉中呕吐毒素的含量也足以影响人体健康。[/color][color=black]小麦粉的呕吐毒素来源主要有两种原因,一是小麦生产加工未能除去的小麦原有的真菌产生的呕吐毒素。小麦生长过程中可能由于雨水太多,造成小麦在成熟季节遭受严重的雨水浸透,引发有毒菌类生长,这些菌类与温度、湿度、通风以及日照等因素息息相关,我国处于亚热带和温带气候区域,小麦生长极易受到潮湿温热气候影响受到毒素菌类污染,赤霉病便是最为突出的表现。含有呕吐毒素的小麦在生产加工成小麦粉的过程中,由于正常加工不能改变其化学性质,仅仅是物理加工显然不能够对其毒素造成影响,故而小麦粉中呕吐毒素含量往往较高。二是小麦粉自身存储不当引起的霉变产生呕吐毒素。小麦粉加工生产后储存过程中由于环境较为潮湿引起端孢霉烯族毒素生长,往往也称为“发霉”,从而使小麦粉中含有一定的呕吐毒素,而这些在小麦粉生产后包装便无法进行检测,从而更容易影响人体健康。[/color][b][color=black][/color][color=black][img=,690,182]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011838079833_7342_3051334_3.jpg!w690x182.jpg[/img][/color][/b]相关建议[color=black]对于一个以面食为主食的家庭来说,每日的面食摄入量很容易超过每日的最大允许摄入量,所以应引起社会的关注。针对呕吐毒素污染问题,应加强“从田间到加工过程”的全链条风险控制,构建全程质量安全追溯体系,关键环节层层把关,减低污染风险。[/color][color=black]加强抗病品种培育、轮作倒茬、疫情预报和病害防治工作,特别是在小麦抽穗扬花等时段加大谷物真菌污染的防控力度,从源头杜绝和减少污染。加强粮食收购和储运监测的监管,严控污染小麦进入食品流通和加工环节。[/color][color=black]企业应加强原料质量把关,包括加强原料产地污染情况调研,提升原料现场收购呕吐毒素快速检测能力,合理确定检测频次,避免采用超标粮食作为食品原料。[/color][color=black]监管部门应当密切关注原粮污染监测调查情况,对重点地区产出的粮食及其制品加强抽查和监督管理,必要时强制企业对其制品标注原产地和呕吐毒素检测含量。[/color][color=black]消费者日常应妥善保存家中的谷物类食品,选购谷物类食品时,应该选择正规可靠企业生产,且产品标识(名称、质量等级、商品量、贮存条件、保质期、生产日期、生产许可证、生产者或者销售者等)清楚的商品,开封后尽快使用,剩余的产品应按照贮存条件妥善保存,避免二次污染;注意食品摄入的多样性,可以大米、小麦、玉米等多种主食轮流使用;注意更换不同品牌及不同产地的产品,以降低呕吐毒素在体内长期累积的风险。[/color]

  • 伏马毒素与食道癌!

    伏马毒素主要是由串珠镰刀菌菌f.moniliforme和f.proliferatum在一定温度和湿度条件下繁殖所产生的次级代谢产物。到目前为止,发现的伏马菌素有FA1、FA2、FB1、FB2、FB3、FB4、FC1、FC2、FC3、FC4和FP1共11种。粮食在加工、贮存、运输过程中易受上述两种真菌污染,特别是当温度适宜时,更利于其生长繁殖,从而产生出一类结构性质相似的毒素,其中FB1是其主要组分占60%以上,其毒性也最强。因此,伏马毒素可以通过粮食加工、饲料生产等过程对畜牧业乃至人类健康产生较严重的危害。FB1对食品污染的情况在世界范围内普遍存在,主要污染玉米及玉米制品,其污染的饲料主要为以玉米为原料的饲料。1996年我国对玉米、小麦等粮食作物中FB1污染进行调查。发现不同地区均有不同程度污染。我国食道癌高发区林县的玉米伏马菌素污染率为48%。因此,人们怀疑该地区食道癌高发与食用污染此毒素玉米相关。该毒素已被世界卫生组织列为近年来首先进行研究的几种霉菌毒素之一。早在1988年南非科学家就对食道癌发病率高和低的地区进行过调查,食道癌发病率与主食玉米受伏马毒素污染呈正相关,进一步的动物试验也得到了相同的结果。1994年中国学者和日本学者对食道癌高发区的河南省林县进行了一次调查,发现该地区主食玉米中伏马毒素水平高达30~50mg/kg,发霉玉米中伏马毒素最高值达118.4mg/kg。目前伏马毒素引发食道癌的机理还不清楚,需进一步确证和研究。Pribolab®(普瑞邦)应用免疫亲和柱净化,利用高效液相色谱仪和荧光检测器检测可提供伏马毒素测定的HPLC检测方案,得出的结果准确可靠,检出限好,是一种很好的检测伏马毒素的方法。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制