当前位置: 仪器信息网 > 行业主题 > >

叔丁氧羰基氨基丙烯酸甲

仪器信息网叔丁氧羰基氨基丙烯酸甲专题为您提供2024年最新叔丁氧羰基氨基丙烯酸甲价格报价、厂家品牌的相关信息, 包括叔丁氧羰基氨基丙烯酸甲参数、型号等,不管是国产,还是进口品牌的叔丁氧羰基氨基丙烯酸甲您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叔丁氧羰基氨基丙烯酸甲相关的耗材配件、试剂标物,还有叔丁氧羰基氨基丙烯酸甲相关的最新资讯、资料,以及叔丁氧羰基氨基丙烯酸甲相关的解决方案。

叔丁氧羰基氨基丙烯酸甲相关的资讯

  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 关于征求《水质 丙烯酸的测定 离子色谱法(征求意见稿)》等四项国家生态环境标准意见的通知
    各有关单位:  为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 丙烯酸的测定 离子色谱法》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。  请于2022年3月21日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。  联系人:生态环境部监测司 杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 丙烯酸的测定 离子色谱法(征求意见稿)     3.《水质 丙烯酸的测定 离子色谱法(征求意见稿)》编制说明     4.环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)     5.《环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)》编制说明     6.环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)     7.《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)》编制说明     8.环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)     9.《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2022年2月17日  (此件社会公开)  附件1征求意见单位名单  中国气象局办公室  生态环境部各流域海域生态环境监督管理局监测与科研中心  各省、自治区、直辖市生态环境监测站(中心)  新疆生产建设兵团生态环境第一监测站  各环境保护重点城市生态环境监测站(中心)  中国科学院生态环境研究中心  中国环境科学研究院  中国环境监测总站  生态环境部环境发展中心  生态环境部南京环境科学研究所  生态环境部华南环境科学研究所  国家环境分析测试中心  河北环境工程学院
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • Vocus PTR-TOF对工业园区环境大气中丙烯监测案例详解
    丙烯是一种无色、无臭、稍带有甜味的有机化合物,分子式为C3H6。丙烯是三大合成材料的基本原料之一,应用范围非常广泛,如常见的聚丙烯生产,丙烯腈、环氧丙烷、异丙醇、苯酚、丙酮、丁醇、辛醇、丙烯酸及其酯类、丙二醇、环氧氯丙烷和合成甘油等的制备1。因此,丙烯也是工业区一种比较常见的污染物,属极易燃品,且具有低毒性,丙烯的泄漏会带来潜在的爆炸和健康风险。当前,对丙烯的测量主要依赖于固定站点气相色谱法,如较为通用的搭配低碳色谱柱的GC-FID/PID法。但较长的色谱分离时间限制了其实时捕捉丙烯的瞬时变化特征,也就无法给园区业主提供及时的决策反馈。另一方面,受限于配套的质谱检测器或者离子源等部件属性,现市面上常见的VOCs走航解决方案对以丙烯为代表的低碳烷烃和烯烃的测量和准确分析存在分析难点和数据疑问。Vocus PTR-TOF质谱仪以较高的时间分辨率和质量分辨率,能够对大气中常见VOCs以及多种园区特征物种的瞬时变化进行实时精确分析。丙烯的质子亲核势为751.6 kJ/mol,属于PTR-TOF仪器可检测的物种之一。本文中我们将详细介绍Vocus PTR-TOF对丙烯的定性定量测量能力和定点结合走航案例。 图1. 质子化丙烯分子峰(m/Q 43.054)在Vocus PTR-TOF谱图上的响应以及相对应的同位素峰丙烯的质子亲核势大于水,能够有效的与水合氢离子(H3O+)发生质子转移反应,在’软’质子转移反应条件下检测到的质子化分子离子峰是C3H7+,其精确质量为m/Q 43.054。实际上在质荷比43整数位置上,除丙烯外,还有其他的物质或者干扰峰存在,比如m/Q43.018, 这是一个含氧的干扰峰,其分子组成为C2H3O+。 由图1可见,这两个峰可以清晰的被VocusPTR-TOF质谱仪分开,二者同位素分布也符合的很好。值得说明的是,如需要清楚分开上述这两个峰,质谱仪的质量分辨率需要达到1500Th/Th或更高(参考‘VOCs走航中同标称质量分子(不完全)列表’一文)。简而言之,Vocus PTR-TOF高分辨率质谱仪就像一套高倍放大镜,能够清晰的将目标物与其他微小干扰峰区别开来,这也是实时分析质谱仪精确定性分析的关键所在。这也意味着,受这些潜在的同标称质量的离子碎片或其他干扰物影响,质量分辨率不到1000的实时分析质谱仪会经常出现‘虚高值’或者‘误报’的情况。值得注意的是,丙烯为代表的C2和C3烷烃、烯烃一般需要特别的低碳色谱柱配合FID检测器才能进行有效监测2,而现市面上的走航应用较多的便携式直接进样EI-四级杆质谱对于丙烯或其他短链烷烯烃检测难度较大。 图2. Vocus PTR-TOF丙烯的灵敏度多点标准曲线利用Vocus PTR-TOF质谱仪,我们测试了丙烯标准气体的灵敏度多点标准曲线,结果如图2所示。可见,Vocus PTR-TOF质谱仪对丙烯有较好响应,其灵敏度可达3245cps/ppbv, 线性关系达到0.9996。高灵敏度意味着较高的响应,这对环境大气中单个ppbv级别的丙烯检测来说,具有非常大的检测优势。图3. Vocus PTR-TOF与GC-FID/MS同期检测的丙烯时序图最后,我们进行在线GC-FID/MS与Vocus PTR-TOF平行运行的检测数据对比(图3)。由于GC-MS/FID的数据时间分辨率为1小时,从图中大致可以看出,两个仪器检测的丙烯浓度具有较好的一致性(一般零点为GC校准时段)。而Vocus PTR-TOF质谱仪的秒级响应,在GC两次报数的空档期内,给园区业主和业务部门提供了更多更及时污染物浓度变化信息(参考‘秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路’一文)。这对工业园区污染物的泄露或其他事故的提前预警至关重。一旦观测到有超出预警范围的浓度时,园区工作人员就可以通过Vocus PTR-TOF发出的实时数据及时采取预警措施,从而为工业园区安全生产带来保障,最大程度的减少对生命安全,生产设备和经济效益的潜在损害。同时,将Vocus PTR-TOF搭载到走航车,从而实现对工业园区区界,厂界和各重点点位的多污染因子(包括丙烯)进行动态网格化监测。如图4所示,我们在某园区内监测到两处丙烯浓度高值污染点,可通过此类方式来发现高污染源,进而有目标性的开展重点监测和排放管控工作。图4. Vocus PTR-TOF质谱仪在某工业园区内丙烯走航监测浓度分布图。绿色线条高度越高,意味着该点位丙烯浓度越高。小结工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。Vocus PTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。除此之外,Vocus PTR-TOF也是园区内异味物质快速检测的优选手段(参考‘国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览’一文)。 感谢中科三清科技提供文中部分数据! 参考文献1 https://baike.baidu.com/item/%E4%B8%99%E7%83%AF/2276398?fr=aladdin2 https://www.restek.com/en/chromablography/chromablography/to-15--pams--to-11a--chinas-hj759--pams--hj683-part-2-deans-switching-and-to-15pams/
  • 你的氨基酸浓缩设备真的耐酸吗?
    氨基酸的存在形态氨基酸在生物体中主要有两种形态存在:一种是游离氨基酸,以游离态存在的单个氨基酸分子,可被直接吸收利用;另一种是水解氨基酸,需要将待检产品中的蛋白质、多肽等氨基酸链水解成单个氨基酸,因此,水解氨基酸反映的是产品中所有氨基酸单位(单个或多个)的组成。 水解氨基酸的前处理方法确定蛋白质的氨基酸组成需要两个步骤:*步水解,即将蛋白质肽键打开,释放出单个氨基酸,然后进行回收。分析样品的多样性造成了样品前处理的复杂性。有研究显示,水解的不合理是影响氨基酸分析正确性的首要原因。第二步分析,即利用色谱技术对水解产物进行定性和定量分析,以确定氨基酸的种类及其含量。由于氨基酸回收的复杂性,需要针对不同类型的氨基酸来选择适合的水解方法,主要有酸水解、氧化水解、碱水解、和酶水解。以下针对较常用的酸水解进行介绍。酸水解法酸水解法是氨基酸分析中较常用的前处理方法, 22种α-氨基酸中大多数可采用酸水解法,即用6M高纯度的盐酸将蛋白质裂解成单个游离氨基酸,随后把残留的盐酸蒸发去除。 水解过程中使用6M HCl进行水解22-24小时,水解后的氨基酸需要取1-2ml溶液放在真空离心浓缩仪中浓缩蒸干,加入2ml水后就继续浓缩蒸干,重复两次上述操作,以保证去除盐酸。高浓度盐酸去除时,由于盐酸的强腐蚀性,常规的浓缩仪的管路、真空泵、腔体等部件容易被腐蚀,所以一款真正耐盐酸的浓缩仪是减少实验室成本的关键。耐强酸的溶剂蒸发工作站市面上的浓缩设备有很多种,但真正能耐受高浓度盐酸、硝酸和TFA的设备却不多见。Genevac EZ-2 4.0溶剂蒸发工作站不仅能耐受6M盐酸,还能实现无人值守、自动停机等功能。 Genevac EZ-2 4.0耐盐酸的核心:1、方便替换的金属全部由哈氏合金或玻璃替代;其余均用特氟龙密封工艺处理;2、离心腔、样品架都通过PTFE密封工艺进行阳极氧化处理;3、聚四氟乙烯制造的蒸汽截止阀和波纹管;4、真空出口连接器采用聚丙烯制造;5、密封圈采用杜邦Kalrez全氟醚橡胶,可耐强酸强碱。其他优势:● Sample Guard&trade 控温系统,防止样品过热;● Dri-Pure防暴沸功能:防止样品暴沸产生交叉污染,避免样品损失;● 样品容器兼容性强、通量高:多种转子可选;● Sample Genie样品转移功能:浓缩后可直接将样品转移至GC小瓶内上机测试,无需二次转移;● 无人值守,自动停机。*图片来源于网络,旨在分享,如有侵权请联系删除目前,国家正针对高校领域设备购置及更新改造提供贷款再补贴,总规模达到1.7万亿元,至 2022 年 12 月31 日止。为响应国家新政,德祥科技推出“高校5大学科仪器耗材推选方案”,旨在助力高校快速落实设备仪器购置及更新改造。具体政策及方案介绍请观看下方视频。
  • 麦当劳肯德基薯条被检出致癌物丙烯酰胺
    &ldquo 麦叔叔&rdquo 和&ldquo 肯爷爷&rdquo 的洋快餐形象可谓风靡全球。做为洋快餐的两大代表,其在中国消费者心目中的地位多年来互有高低,在仲伯之间。  不过,近几年来国内外层出不穷的&ldquo 洋快餐薯条含大量致癌物、反式脂肪酸&rdquo 的消息,也让不少消费者心有余悸。  究竟洋快餐的健康风险有多高?反式脂肪酸可怕吗?麦当劳、肯德基谁的薯条、可乐、汉堡的热量、脂肪含量更健康?  2014年6月,《消费者报道》送检了麦当劳、肯德基、汉堡王三大洋快餐的经典套餐至第三方权威机构进行检测,以期告诉消费者如何安全选食洋快餐。  在本刊此次关于三大洋快餐薯条的检测中,安全性指标选择了可能致癌物丙烯酰胺和反式脂肪酸两项指标,检测结果显示,肯德基和麦当劳的薯条均检出丙烯酰胺,其中肯德基为280&mu g/100g,麦当劳为240&mu g/100g。而两大洋快餐薯条均未检出反式脂肪酸(检出限0.05g/100g)。  丙烯酰胺含量肯德基高于麦当劳  外酥内嫩的薯条,沾上酸甜可口的番茄酱,征服了不少男女老少的胃。  不过,薯条中含有可能致癌物丙烯酰胺一直颇受诟病。2013年,台湾媒体报道,常吃薯条除了发胖,恐怕还有罹癌风险。因为马铃薯一旦碰上120℃以上的高温,就会产生毒性化学物丙烯酰胺。  《消费者报道》此次送检权威检测机构的检测结果显示,肯德基和麦当劳薯条均未检出反式脂肪酸(检出限0.05g/100g),但均含有丙烯酰胺,    肯德基薯条中丙烯酰胺含量比麦当劳高40&mu g/100g的结果,是不是因为用于油炸的油反复使用导致的呢?  复旦大学公共卫生学院营养学教授厉曙光告诉本刊记者,丙烯酰胺含量的高低主要取决于薯条的油炸温度、油炸时间、原料马铃薯的种类以及油的种类。另外,现在没有规定油在使用了多少次后就该倒掉,如果不倒掉,在里面再加点新鲜油都有可能使丙烯酰胺的含量偏高。  为此,本刊记者就薯条的油炸温度、时间以及换油次数联系肯德基、麦当劳两大洋快餐企业,但两家企业均未对该问题作出正面回应。  致癌风险有多高?  2005年,中国卫生部颁布的《食品中丙烯酰胺的危险性评估》报告指出,丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性。该报告还指出,职业接触人群的流行病学观察表明,长期低剂量接触丙烯酰胺会出现嗜睡、情绪和记忆改变、幻觉和震颤等症状,伴随末梢神经病如手套样感觉、出汗和肌肉无力。  目前,丙烯酰胺已在动物实验中被证明可以致癌,但对人体是否能致癌尚不明确。国际肿瘤研究机构(IARC)将丙烯酰胺认定为2A类致癌物即人类可能致癌物,位列砒霜、槟榔等1类致癌物之后。  经本刊记者查阅,中国暂无规定食品中丙烯酰胺的安全限值,而在生活饮用水中,中国限值定为0.5&mu g/L,世界卫生组织(WHO)则限定1&mu g/L。  2009年,国际权威学术期刊《食品和化学毒物学期刊》发表的一篇《食品中丙烯酰胺在人体中的安全摄入水平评估结果》论文指出,当丙烯酰胺的耐受摄入量(TDI)为2.6&mu g/公斤体重每日时,不会引发癌症风险,这相当于一个70公斤重的人,每日TDI为182&mu g 当TDI为40&mu g/公斤体重每日,即一个70公斤重的人每天摄入2800微克时,不会引起神经毒害。  该研究结果的安全性临界值都远超过各国以及其他研究报告中评估的成人正常接触水平。例如,加拿大卫生部认为成人对食品中丙烯酰胺的平均接触水平应为每天0.3-0.4&mu g/公斤体重 瑞典的研究结果为每天约0.5&mu g/公斤体重 美国FDA的估计摄入量为每天约0.4&mu g/公斤体重。  肯德基所属百胜餐饮集团中国事业部回应本刊指,丙烯酰胺普遍存在各种常见食品中。世界卫生组织和联合国粮农组织的报告指出目前还未有科学证据显示丙烯酰胺对人体健康的危害。肯德基所有食品均符合国家相关食品卫生和安全规定。  应减少食用  近几年,国外规避丙烯酰胺致癌风险的举措一直未曾消停。美国食品药品管理局(FDA)2013年11月发布减少食品中丙烯酰胺的行业指导草案 欧洲食品安全局基于食品中的丙烯酰胺可能增加各年龄段消费者的患癌风险,日前发布一份丙烯酰胺研究草案。  那么,面对洋快餐薯条的诱惑,消费者该如何选择?  中国《食品中丙烯酰胺的危险性评估》指出,中国居民食用油炸食品较多,暴露量较大,存在着潜在危害,因此提醒居民改变以吃油炸和高脂肪食品为主的饮食习惯,以减少因丙烯酰胺可能导致的健康危害。  中山大学营养和食品安全教授蒋卓勤评价,所有油炸、烧烤食品的丙烯酰胺含量都会偏高,且温度越高、油炸时间越长,含量越高。丙烯酰胺是公认的致癌物,建议消费者尽量少吃含有该物质的食物。  中国营养协会理事焦通在接受本刊记者采访时也表示,目前对于丙烯酰胺的毒理测试,并没有推广到人体,所以没有一个权威的说法说丙烯酰胺人吃多少会致死。虽然不会立即致死,但是煎炸食品要少吃,根据食品安全理论中的一律原则,具有潜在风险的食物都要尽量减少或者杜绝食用。  而对于这两个品牌的薯条中检测出的丙烯酰胺含量,首都保健营养美食学会执行会长王旭峰表示,一次性摄入不会出现急性毒性症状,但是长期大量的摄入可能就会对身体健康造成影响。  基于本次检测结果,本刊记者粗算出一包肯德基中份薯条含丙烯酰胺310&mu g,而同分量的麦当劳薯条含228&mu g。(如图)如果实在难以抵挡美味,偶尔吃下,消费者可选择份量小、丙烯酰胺含量低的薯条以满足嘴瘾。
  • 《GB/T 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》最新标准解读
    引言氢化丁腈橡胶(简写为HNBR),是丁腈橡胶中分子链上的碳碳双键加氢饱和得到的产物,故也称为高饱和丁睛橡胶。 氢化丁腈橡胶具有良好耐油性能(对燃料油、润滑油、芳香系溶剂耐抗性良好);并且由于其高度饱和的结构,使其具良好的耐热性能,优良的耐化学腐蚀性能(对氟利昂、酸、碱的具有良好的抗耐性),优异的耐臭氧性能,较高的抗压缩永久变形性能;同时氢化丁腈橡胶还具有高强度,高撕裂性能、耐磨性能优异等特点,是综合性能极为出色的橡胶之一。 《GBT 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》介绍了氢化丁腈橡胶以性能特性分为通用类和特殊,按照丙烯腈含量进行了分级以及命名与牌号的规则。阐述了生橡胶和硫化橡胶评价方法。 岛津解决方案 傅里叶变换红外光谱仪傅里叶变换红外光谱仪发射红外光,样品受到频率连续变化的红外光照射时,其分子吸收了某些频率的辐射,引起分子之间的振动和转动,然后通过分析特征吸收可以鉴定化合物的结构,定量成分。,氢化丁腈橡胶的红外图谱应具有明显的丙烯腈(AN)、丁二烯(BD)和氢化丁二烯(HBD)的特征吸收谱带。IRTracer-100 ★ 卓越的灵敏度和可靠性高灵敏度,高速度,高分辨率岛津先进的技术,确保干涉仪的优化和长期稳定性★ 新时代的软件工作站网络化的LabSolutions IR工作站软件标配高质量的标准光谱库快速准确的光谱检索新技术丰富多彩的自动宏程序,省时省力★ 满足多样的应用需求解决“是不是”和“是什么”这两大应用问题强大的单组份和多组分同时定量功能,可实时显示浓度和判定结果良好的可扩展性 差示扫描量热仪差示扫描量热仪(DSC)是材料测试必不可少的工具,此类仪器广泛应用于材料研发、生产及质控。DSC作为质控仪器方法的趋势仍在继续增加。 作为一种新理念,岛津打破了“自动取样器是昂贵、笨重并且专用的机器”的传统观念,推出了代表“内置自动进样器”概念的DSC-60 A Plus。并且,DSC-60 A Plus还使用先进的软件功能来节约成本,提高效率;并且机身小巧,可安装在有限的空间内。 DSC-60 A Plus ★ 通过改进型的DSC探测器提高灵敏度和分辨率★ 优异的信噪比★ 内置的冷却装置★ 操作简单方便的探测器清洁★ 可通过网络传输数据★ 基于OLE的动态报告功能★ 更大兼容Windows的32位应用程序★ 与TA-50系列兼容 试验机岛津材料试验机至今已有100多年的历史,在行业内的探究,钻研,积累了十分丰富的技术与经验。岛津试验机产品线丰富,有电子/液压万能试验机,疲劳实验器,显微维氏硬度计与超显微维氏硬度计,门尼粘度计毛细管流变仪等多系列产品。本文内容非商业广告,仅供专业人士参考。
  • 日本食品安全委员会称应尽量降低丙烯酰胺摄取量
    p  日本a style="color: rgb(255, 0, 0) text-decoration: underline " title="" href="http://www.instrument.com.cn/application/industry-S03.html" target="_blank"span style="color: rgb(255, 0, 0) "strong食品安全/strong/span/a委员会负责就丙烯酰胺(acrylamide)对健康影响作出评估的工作小组7日表示,“应努力尽可能降低摄入量”。加热蔬菜及薯类时会产生丙烯酰胺,该化学物质被指具有致癌性。/pp  丙烯酰胺在国际机构的评估中被划分为“对人可能具有致癌性”的物质。尽管日本人从炸薯条或炒蔬菜中摄取的丙烯酰胺含量仅为通过动物实验确认可致癌量的约千分之一,但工作小组仍慎重地表示“不能说完全不必担忧”。/pp  工作小组的评估显示,日本人每天从食物中摄入的丙烯酰胺推算为每公斤体重0.24微克,低于欧洲的0.4~1.9微克。/pp  日本人丙烯酰胺的摄取量56%来自炸薯条及炒蔬菜,其次为咖啡等饮料,占17%。薯类零食制品及面包等谷物类分别占16%和5%。/pp  丙烯酰胺在新鲜蔬菜中并不存在,但可由氨基酸中的“天冬酰胺”与糖类在超过120度的高温中反应生成,出现在食品中。2002年瑞典科研小组报告称在加工食品中发现了丙烯酰胺,引发关注。/pp  食品安全委员会的评估技术企划推进室室长高崎洋介说:“过分在意丙烯酰胺导致营养不足也不可取。做菜时应注意不要烧得过焦,尽量降低摄取量。”/p
  • 星巴克咖啡竟含致癌物质?丙烯酰胺究竟何方妖孽...
    p  从3月31日起,星巴克霸屏了。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/4a1546f1-1e09-444b-b0d8-d0c2b6296a19.jpg" title="1.jpg"//pp  缘于外媒报道,在3月28日的一项裁决中,因星巴克产品中含有高含量的丙烯酰胺,被美国法院要求在产品上加贴“致癌”警告标签。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/a0f3ce6c-9ec1-483e-b810-c8c480fe25af.jpg" title="2.jpg" width="500" height="500" border="0" hspace="0" vspace="0" style="width: 500px height: 500px "//pp  其实,此次裁决并不仅仅针对星巴克一家企业。根据法庭文件,在被告名单中还包括卡夫食品公司、Green Mountain Coffee Roasters Inc,J.M.Smucker Company,甚至麦当劳在内的薯片、薯条等不少食品。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/e15b80a3-914b-4ca6-a2da-0f7f341bccc2.jpg" title="3.jpg" width="500" height="368" border="0" hspace="0" vspace="0" style="width: 500px height: 368px "//pp  其实,咖啡豆本身并不含丙烯酰胺,而且也不是星巴克添加的,而是在烘培过程中自然出现的。只是由于星巴克本身一直自带话题,才引起大多数媒体和公众都对其保有很高的关注度。尤其是面对“致癌”这样耸人听闻的标签,想不无动于衷都难。/pp span style="color: rgb(255, 0, 0) " strong丙烯酰胺酷爱淀粉和高温/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2ff89b49-18f6-4b20-957c-977ac07dfbd2.jpg" title="4.jpg" width="500" height="331" border="0" hspace="0" vspace="0" style="width: 500px height: 331px "//pp  什么?你还没搞清楚丙烯酰胺到底是何方妖孽?/pp  那好,咱就先来普及一下。此次被美国法院裁决的致癌“罪魁祸首”strong丙烯酰胺,其实就是一种很常见的白色晶体化学物质,也是食物发生“美拉德反应”时的副产物。/strong/pp  国家食品药品监督管理总局官网2014年的文章《关于薯条检出丙烯酰胺》(文章指导专家:吴永宁,国家食品安全风险评估中心首席专家 陈芳,中国农业大学食品科学与营养工程学院教授)一文中提到,食品中的丙烯酰胺主要是由还原糖(比如葡萄糖、果糖等)和某些氨基酸(主要是天冬氨酸)在油炸、烘培和烤制等高温加工过程中发生美拉德反应而生成的。/pp  一般来说,丙烯酰胺的产量和美拉德反应的程度呈正相关,即同一种含淀粉食物,热烹调后颜色越深重,香味越浓郁,丙烯酰胺的产量就会越高。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/noimg/9d7a37e6-75b6-4e7e-b55d-879ad1fce2db.gif" title="5.gif"//pp  这也不是什么最新发现,人们知道丙烯酰胺会在这些食物里出现已经快20年了。/pp  中国农业大学食品科学与营养工程学院副教授范志红解释说:/pp  “丙烯酰胺这种物质其实很常见,不止咖啡里有,包括薯片、炸薯条、大麦茶、烧炒的菜肴等都有。只要一个食物里含有淀粉和有氨基酸,无论油炸还是非油炸,只要达到120度高温加热,都会产生微量丙烯酰胺,而且温度越高、加热时间越长,形成的丙烯酰胺越多。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c168a91c-8323-4786-84f0-feed6d821939.jpg" title="6.jpg"//pp  你以为这就完了吗?远远不止!因为,所有的爆炒素菜,也都可能含有丙烯酰胺!这主要缘于爆炒的烹饪方式,比如爆炒西葫芦的丙烯酰胺含量可以达到每公斤360微克,比炸薯条还高。不过别害怕,下次再炒西葫芦时,最好切成大一点的块状。因为越薄受热越快,越容易释放出丙烯酰胺。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0c404b1b-4005-4c7a-a8dd-5d35f0b73e10.jpg" title="7.jpg"//pp  认识到丙烯酰胺在食物中的危害,世界各国都在呼吁,尽可能减少来自高温加工的谷物类及根茎蔬菜类食品中丙烯酰胺的含量,也就是薯条、薯片、烘焙食品、饼干、蛋糕等。/pp  2017年,原中国食品药品监督管理局也发布了关于食品加工过程中如何控制丙烯酰胺生成量的安全提示,特别提到了油条的消费安全问题。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/a6b0fb6a-21fb-42c9-843b-386083f602ae.jpg" title="8.jpg"//pp  所以,相比于咖啡,以国人的饮食习惯和进食量,我们更应该减少摄入、或者说控制加工温度并控制摄入量的,是各种油条油饼炸糕炸鸡薯片薯条烤鸡翅炸鸡块……而不是刷屏的咖啡焦虑!/pp  span style="color: rgb(255, 0, 0) "strong与具体肿瘤关联尚未发现/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/noimg/da0c6ac2-93f3-43a1-adb1-df815c1ac971.gif" title="9.gif"//pp  丙烯酰胺的确是一种潜在致癌物质。大量动物实验表明,丙烯酰胺具有一定致癌性 并且能够造成神经系统损伤,影响婴儿早期发育,危害男性生殖健康。不过,这些致癌性也只是“疑似”。而且,目前的研究只停留在动物实验阶段,还没有充分证据表明在人类身上具有同样危害。/pp  上海交通大学医学院附属瑞金医院临床营养科营养医师卞冬生虽然认同:/pp  “丙烯酰胺在体外细胞实验和动物实验证实其的确是一种致癌物,”但也表示,目前没有充足的人群流行病学证据可证明人类某种肿瘤的产生与由食物中摄取的丙烯酰胺有明显相关性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/b2b4f5a0-ae7a-4cf3-8fed-ade5406aae95.jpg" title="10.jpg" width="500" height="333" border="0" hspace="0" vspace="0" style="width: 500px height: 333px "//pp  复旦大学附属肿瘤医院肿瘤预防部主任郑莹则认为,长期以来,咖啡和患癌风险之间的关系,是业界研究热点,结论总是无法确定。/pp  现实生活中,能致癌的物质并不罕见。根据国际癌症研究机构发布的列表里,迄今致癌物质达502种,原国家食药监局总局公布的致癌物质也有499种,其中包括人们熟知的PM2.5、加工肉等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/noimg/58e23cb9-84f9-412b-82ee-af8b74705aa6.gif" title="11.gif"//pp  “丙烯酰胺作为咖啡里新发现的致癌物质,应该被消费者所了解,但市民也不必为此过于恐慌。”郑莹补充解释,“还有来源于人群研究的证据表明,饮用咖啡多的人群,罹患子宫内膜癌、肝癌的风险均有所降低。”/pp  其实,任何一种致癌物质都需要达到一定浓度,并且需要持续暴露、接触一定时间以后,才能达到致癌后果。如果单纯讲某一种物质是致癌物,不考虑浓度、暴露时间,本身是不科学的。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/08098787-f871-4266-8692-2b265dc88176.jpg" title="12.jpg" width="500" height="313" border="0" hspace="0" vspace="0" style="width: 500px height: 313px "//pp  解放军309医院营养科主任左小霞同意这一观点。“如果丙烯酰胺算是一种“可能对人类致癌”的物质,没有问题,问题在于首先含有丙烯酰胺的食物还有很多。”/pp  左小霞认为,在我们日常食物中,只要高温煎炸的有碳水化合物、蛋白质的东西都会产生丙烯酰胺。甚至是如果将白糖熬成了红糖、黑糖,那么也会产生丙烯酰胺。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/5ffb23fd-5029-4e02-9cfe-2191184c9868.jpg" title="13.jpg" width="500" height="311" border="0" hspace="0" vspace="0" style="width: 500px height: 311px "//pp  她进一步解释说,在最新版的美国膳食指南中,已经把每天喝3到5杯不加糖不加奶油的咖啡,作为了健康生活方式的一部分。如果想减少丙烯酰胺,还不如平时在家里做饭的时候,注意温度不要过高,比如像爆炒就是一个应当减少的烹调方法,再有炒菜前也可以稍微焯一下。另外做面包的时候可以考虑少放点糖,避免外皮颜色过深。“对了,记得还有少吃薯片、爆米花等食品呃!”/pp  span style="color: rgb(255, 0, 0) "strong想完全避开?别天真了,不可能的/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/fecc756f-78b7-4449-a186-b509780792ba.jpg" title="14.jpg" width="500" height="376" border="0" hspace="0" vspace="0" style="width: 500px height: 376px "//pp  对中国人来说,咖啡对食物中丙烯酰胺的贡献度,最乐观的估计,大约也要排到50名开外。/pp  左小霞解释说,如果是说咖啡里丙烯酰胺的事,可以看看中国国家食品安全风险评估中心给出的数据:一个50公斤体重的成年人,每天摄入2.6μg*50=130μg,也就是10kg咖啡,才会喝到致癌剂量(煮咖啡丙烯酰胺平均剂量 13μg/kg),而10kg咖啡,差不多相当于28杯星巴克中杯咖啡的量!“一天喝8杯水,估计大家都很难做到,更别说28杯咖啡了。所以正常喝咖啡吧,不要操这个心了。”/pp  span style="color: rgb(255, 0, 0) "strong教你几招,如何避免/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/noimg/cc53190a-1363-4687-a9c6-2f1e93f80652.gif" title="15.gif"//pp  但左小霞还是幽默地提醒大家,在买咖啡的时候,尽量选择简单的煮咖啡,少选三合一咖啡。而且,喝咖啡不要过量,否则可能会干扰睡眠。还要注意,不要喝过烫的咖啡,“经常喝超过65℃的任何饮品都会增加食道癌的发生风险。”/pp  对于咖啡致癌这一说法,范志红则表示大可不必惊慌,而应理智对待,想要完全避开是不可能的,但是日常生活中的小细节还是可以注意一下的:/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  在保证做熟、杀灭微生物的前提下,尽量避免过度烹饪食品,比如温度过高、加热时间太长 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  做主食时,建议采用蒸、煮、炖的做法,少用煎、炸、烤 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  最好少吃油条、麻花等油炸食品,炸蔬菜丸子、裹面糊的炸鱼炸虾等也要少吃 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  少吃烤制、煎炸、膨化的薯类制品 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  如果要进行煎、炸、烤烹调,尽量把块切大,把片切厚,这样有利于减少丙烯酰胺 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  馒头片、面包片不要烤得太黄。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/10f7149c-500b-4c5f-9481-a952751f6a60.jpg" title="16.jpg" width="500" height="331" border="0" hspace="0" vspace="0" style="width: 500px height: 331px "//pp  最后,范志红特别尤其提醒儿童、孕妇、哺乳期妈妈要注意。小孩子更喜欢吃各种零食和油炸食品,往往会摄入过多的丙烯酰胺。丙烯酰胺容易被人体吸收,还可能会通过乳汁传递给小宝宝而宝宝的解毒功能相对较弱,要特别注意控制丙烯酰胺的摄入量,妈妈注意少吃油炸高脂食物。/pp  总而言之,/pp  星巴克:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/7a2cc08d-bbbc-44b4-8e19-5a5c5a8a1efb.jpg" title="17.jpg" width="500" height="327" border="0" hspace="0" vspace="0" style="width: 500px height: 327px "//ppbr//p
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 赛默飞LCMS和GCMS法测定烘焙食物中的丙烯酰胺
    陈冰、秦玉荣 事件回顾:距离3月31日“星巴克致癌”刷屏事件已经过去一个大半个月了,朋友圈消停了,网友们也似乎忘记这件事了。然而赛默飞对待食品安全问题向来严谨。追本溯源,事件的起因是一种叫做丙烯酰胺的物质。那么,丙烯酰胺到底是什么? 丙烯酰胺是食物发生“美拉德反应”时的一个副产物。 咖啡里的丙烯酰胺是在烘焙的过程中产生的。美国癌症学会(ACS)指出,只要一个食物里有淀粉,有氨基酸,经过了高温烹饪,那就会产生微量丙烯酰胺,在油炸和烘焙的食品里尤其容易产生。国际癌症研究机构(IARC)把丙烯酰胺列在了致癌名单里,但没有把那些含丙烯酰胺的食物也一起列上。美国癌症学会的原话是:“目前没有任何一种癌症类型的风险增加,是明确和摄入丙烯酰胺相关的。”所以说,抛开剂量谈毒性就是 不(shua) 靠(liu) 谱(mang)。 可是,由于丙烯酰胺分子量较低,极性较高,且缺乏明显的发色团(共轭双键、三键、苯环)等性质,使得定量分析丙烯酰胺很困难。传统上用于测定丙烯酰胺含量的方法有酶联免疫法、溴化法、紫外分光光度法、气相色谱法等。但这些方法检测线高而且操作复杂。那么,有没有一种方法既简单高效又有很高的灵敏度及准确性?且看赛默飞的液质+气质完美解决方案:LCMSMS篇:TSQ Altis/Quantis 赛默飞最新一代三重四极杆液质系统1.检测条件:色谱柱:Syncronis C18 (100x2.1mm,3μm ) 流动相:水 甲醇;梯度洗脱流速:300 μL/min;进样量:20 μL质谱条件(ESI+): 表1.离子源设置的参数喷雾电压/V4000气化温度/℃350鞘气/arb30辅助气/arb5反吹气/arb0离子传输管温度/℃350碰撞气体(Ar)/mTorr1.5扫描模式SRM表2. SRM模式中的离子对信息化合物母离子(Parent)子离子(Product )碰撞能量(CE)S-Lens 电压 丙烯酰胺72.255.3*117544.55427.455*标记为定量离子 2检测结果在所建立方法下,丙烯酰胺仪器检出限为0.05ppb,线性范围为:0.1ppb-1000ppb。分别如图1、图2所示:图1:0.05ppb丙烯酰胺提取离子质谱图图2:0.1-1000ppb浓度范围内丙烯酰胺线性关系图图3:低浓度0.1-5ppb范围放大图(丙烯酰胺线性关系图)选择高于检出限5倍检出限和20倍检出限,即0.25ppb和1ppb重复进样6针计算RSD值,分别为3.5%和1.9%,重复性很好,结果如图4和图5所示。图4:丙烯酰胺0.25ppb进样6针重复性(3.5%)图5:丙烯酰胺1ppb进样6针重复性(1.9%)接下来请看GCMS篇: Thermo Scientific ISQ 7000单四极杆GC-MS系统1)依据《GB 5009.204-2014》标准,前处理衍生化方法,GCMS采用EI SIM监测模式,监测离子见下表:衍生后化合物EI SIM监测模式2-bromo-propenamide106,133, 150,1522-bromo-13C3-propenamide108,136, 153,155色谱图如下:2)拓展标准,前处理依然采用衍生化方法,由于食品样品基质复杂,干扰严重,采用CI源能消除干扰,提高灵敏度,因此GCMS采用PCI SIM监测模式,监测离子见下表,5ppb标准品提取色谱图见下图:衍生后化合物PCI SIM监测模式2-bromo-propenamide167,1692-bromo-13C3-propenamide170,172已经颁布的食品中丙烯酰胺的检测范围为10-50ppb, 而在PCI SIM模式下,方法检出限为2ppb,线性范围为5-1000ppb,如figure 6:3)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用EI SIM监测模式,监测离子见下表:化合物EI SIM监测模式Acrylamide71,55, 443C3-acrylamide74,58 方法检出限为5ppb,线性范围为5-500ppb,如figure 3: 4)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用NCI SIM监测模式,监测离子见下表:化合物NCI SIM监测模式Acrylamide703C3-acrylamide73 方法检出限为2ppb,线性范围为2-500ppb,如figure 4:另外,由于CI源具有高度选择性,可以降低基质干扰提高灵敏度,下图为未衍生化的薯条样品EI SIM和NCI SIM的谱图比对,图中可见,NCI模式下,基线噪音很低,化合物的响应很高,大大提高了灵敏度。针对食品中丙烯酰胺分析,Thermo Scientific ISQ 7000单四极杆GC-MS系统提供各完美解决方案。Thermo Scientific ISQ 7000 优势:1. 具有NeverVent技术,真空锁(VPI)和V-Lock技术可以同时实现不泄真空换离子源(以及EI/CI的切换)和不泄真空换色谱柱功能,业界唯一技术2. 专利的PPINICI技术,单次进样实现不同保留时间和不同扫描时间内正负离子切换,业界唯一技术3. 电子流量同时控制 两种 CI 反应气,分析过程中反应气流速可调 ,业界唯一技术4. “S”型离子通道设计,有效消除中性噪音,提高信噪比和灵敏度,业界唯一技术5. 独一无二的双灯丝设计,灯丝朝向相同的方向以提高性能并受到电子透镜的保护6. ExtractaBrite 离子源和高性能AEI源具备高效的分析物电离能力和高聚焦的离子束,降低了仪器检出限,并确保更高的稳定性以防止可能的污染。
  • 欧盟委员会公布丙稀酰胺检测建议
    近日,欧盟委员会公布了精密检测食品中丙烯酰胺含量的建议。丙烯酰胺是一种致癌和有遗传性的毒性物质,由糖和一种叫做天冬酰胺酸(asparagine)的氨基酸在高温烹煮后产生,作为美拉德反应(Maillard reaction,)而闻名,常见于棕色的油炸和烘烤食品中。  自从2002年发现油炸和烘焙食品中丙烯酰胺含量严重超标后,CIAA(欧盟食品及饮料工业联合会)已设立了toolbox的手段以减少食品中丙烯酰胺的含量。  欧盟委员会意识到了对会员国进行检测的重要性,并要求会员国及时向欧洲食品安全局(EFSA)提供风险信息,时间为每年的6月1日,从2011年6月1日开始。  上个月公布的数据显示,某些类别中丙烯酰胺含量有所下降,如薯片、速溶咖啡、咖啡及替代产品等,大麦和菊苣中的含量则偏高。  新的欧盟委员会建议中表示,应该采用2007年公布的丙烯酰胺条例333/2007,并设定了样品中的最低值。会员国应该对一下10个类别的产品进行检测:  l 即食薯条  l 薯条  l 家常菜种预熟的薯条和土豆产品  l l 早餐谷类食品  l 饼干、薄脆饼干、脆皮面包  l 咖啡和咖啡替代品  l 婴儿食品(非谷物加工类)  l 婴幼儿谷类加工食品  l 其他产品
  • 102家危险化学品生产企业被注销!
    仪器信息网讯近日,江苏省发布公告,注销南京托普化工科技有限公司、江苏金宏涂料有限公司、江苏德发树脂有限公司等102家危险化学品生产企业《危险化学品生产企业安全生产许可证》,终止相关企业的危险化学品生产活动。涉及的化学品包括2-丙烯酸-1,1-二甲基乙基酯、乙炔、醇酸树脂涂料、硫酸、氨基树脂涂料、氨基酸涂料、硝基涂料、锌粉、甲醇、红磷等。囊括了涂料、化工、焦化、日化、新材料、医药、生物科技、颜料、树脂、橡胶等多个行业领域。被注销的企业名单汇总如下:序号企业名称证书编号有效期起始日有效期终止日许可范围1南京托普化工科技有限公司(苏)WH安许证字[A00028]2018-12-282021-12-272-丙烯酸-1,1-二甲基乙基酯(2000吨/年)、2,4,4-三甲基-1-戊烯(98吨/年)***2南京建虹工业气体有限公司(苏)WH安许证字[A00076]2018-7-102021-7-9乙炔[溶于介质的](1116吨/年)***3南京非凡漆业有限公司(苏)WH安许证字[A00139]2016-11-252019-11-24醇酸树脂涂料(1500吨/年)、酚醛树脂涂料(1200吨/年)、丙烯酸酯类树脂涂料(150吨/年)、聚氨酯树脂涂料(150吨/年)、环氧树脂涂料(100吨/年)、氨基树脂涂料(20吨/年)、沥青涂料(10吨/年)***4南京溧水东南漆业有限公司(苏)WH安许证字[A00141]2016-11-102019-11-9氨基树脂涂料(300吨/年)、丙烯酸酯类树脂涂料(300吨/年)、醇酸树脂涂料(300吨/年)、酚醛树脂涂料(300吨/年)、环氧树脂涂料(300吨/年)、沥青涂料(300吨/年)、有机硅树脂(300吨/年)***5南京金彰实业有限公司(苏)WH安许证字[A00241]2018-6-52021-6-4硫酸(11000吨/年)、氨基磺酸(5000吨/年)***6南京云泰化工总厂(苏)WH安许证字[A00258]2018-6-52021-6-4硫酸(105000吨/年)、发烟硫酸(45000吨/年)***7南京金源钢涂有限公司(苏)WH安许证字[A00263]2017-9-222020-9-21氨基树脂涂料(200吨/年)、丙烯酸酯类树脂涂料(500吨/年)、醇酸树脂涂料(3000吨/年)、酚醛树脂涂料(900吨/年)、过氯乙烯树脂涂料(200吨/年)、环氧树脂涂料(800吨/年)、聚氨酯树脂涂料(300吨/年)、聚酯树脂涂料(50吨/年)、沥青涂料(50吨/年)、烯类树脂涂料(50吨/年)、橡胶涂料(100吨/年)、涂料用稀释剂(850吨/年)、醇酸树脂(2000吨/年)、干性醇酸树脂(1000吨/年)***8江苏金宏涂料有限公司(苏)WH安许证字[A00291]2016-11-252019-11-24醇酸树脂(5000吨/年)、酚醛树脂(1000吨/年)、丙烯酸酯类树脂涂料(2350吨/年)、环氧漆固化剂(850吨/年)、硝基涂料(410吨/年)、过氯乙烯树脂涂料(200吨/年)、醇酸树脂涂料(3000吨/年)、酚醛树脂涂料(130吨/年)、沥青涂料(150吨/年)、环氧树脂涂料(850吨/年)、氨基树脂涂料(100吨/年)、橡胶涂料(180吨/年)、涂料用稀释剂(760吨/年)、环氧腻子(20吨/年)***9南京立业工业气体厂(苏)WH安许证字[A00346]2017-7-172020-7-16氧[压缩的](1500吨/年)、氮[压缩的](150吨/年)***10南京江浦星中化工厂(苏)WH安许证字[A00348]2018-1-42021-1-3丙烯酸酯类树脂涂料(100吨/年)、醇酸树脂涂料(100吨/年)、环氧树脂涂料(600吨/年)、环氧漆固化剂(150吨/年)、涂料用稀释剂(550吨/年)***11南京齐正化学有限公司(苏)WH安许证字[A00368]2017-1-172020-1-16正硅酸甲酯(51.19吨/年)、丙基三氯硅烷(115.9吨/年)***12南京巴诗克环保科技有限公司(苏)WH安许证字[A00376]2018-5-42021-5-32-丙醇(400吨/年)、涂料用稀释剂(800吨/年)、香蕉水(200吨/年)、醇酸树脂涂料(20吨/年)、丙烯酸酯类树脂涂料(100吨/年)、硝基涂料(40吨/年)、硝基漆防潮剂(10吨/年)、酚醛树脂涂料(20吨/年)、氨基树脂涂料(70吨/年)、环氧树脂涂料(180吨/年)、环氧腻子(30吨/年)、元素有机涂料(10吨/年)、烯类树脂涂料(10吨/年)***13南京钟腾化工有限公司(苏)WH安许证字[A00388]2016-10-112019-10-10丁烯二酸酐[顺式](20000吨/年)***14无锡市正和工业气体有限公司(苏)WH安许证字[B00023]2017-7-252020-7-24乙炔(585吨/年)***15宜兴市华航工业气体有限公司(苏)WH安许证字[B00057]2018-2-112021-2-10氧[压缩的或液化的](1080吨/年)、氮[压缩的或液化的](600吨/年)***16京瓷化学(无锡)有限公司(苏)WH安许证字[B00433]2017-3-132020-3-12环氧树脂涂料(600吨/年)***17无锡市新万利化工有限公司(苏)WH安许证字[B00683]2018-8-162021-8-15过氯乙烯树脂涂料(700吨/年)、丙烯酸酯类树脂涂料(400吨/年)、醇酸树脂涂料(200吨/年)、涂料用稀释剂(600吨/年)***18无锡万博涂料化工有限公司(苏)WH安许证字[B00745]2018-8-162021-8-15丙烯酸酯类树脂涂料(500吨/年)、涂料用稀释剂(600吨/年)***19江苏和时利新材料股份有限公司(苏)WH安许证字[B00893]2016-11-102019-11-9四氢呋喃(2000吨/年)***20徐州亚东气体厂(苏)WH安许证字[C00017]2018-3-282021-3-27乙炔(150吨/年)***21徐州市聚源溶解乙炔厂(苏)WH安许证字[C00018]2018-7-302021-7-29乙炔(360吨/年)***22徐州市东风气体厂(苏)WH安许证字[C00024]2018-7-102021-7-10乙炔(111.15吨/年)***23徐州腾达焦化有限公司(苏)WH安许证字[C00140]2016-10-112019-10-10氮[压缩的或液化的](200吨/年)、煤气(200000吨/年)、氧[压缩的或液化的](200吨/年)、甲醇(100000吨/年)、杂戊醇(784吨/年)、粗苯(10612吨/年)、煤焦油(43698吨/年)、硫磺(1436吨/年)***24徐州市青年实业有限公司(苏)WH安许证字[C00147]2017-5-172020-5-16不干性醇酸树脂(1000吨/年)、醇酸树脂涂料(1000吨/年)、丙烯酸酯类树脂涂料(500吨/年)、氨基树脂涂料(500吨/年)、环氧树脂涂料(500吨/年)、聚酯树脂涂料(500吨/年)、涂料用稀释剂(1000吨/年)***25江苏唐彩新材料科技股份有限公司(苏)WH安许证字[C00165]2017-1-172020-1-16凹版油墨(1480吨/年)、网孔版油墨(10吨/年)、特种油墨(10吨/年)***26常州市佳美涂料有限公司(苏)WH安许证字[D00018]2018-10-162021-10-15聚酯树脂涂料(51吨/年)***27常州商都制笔有限公司(苏)WH安许证字[D00038]2018-7-102021-7-9硝基涂料(110吨/年)***28常州市武进湟里村前助剂有限公司(苏)WH安许证字[D00214]2018-5-42021-5-3涂料用稀释剂(100吨/年)***29常州市武进永升化工有限公司(苏)WH安许证字[D00257]2018-7-102021-7-9亚磷酸(50吨/年)***30常州中南化工有限公司(苏)WH安许证字[D00289]2018-7-102021-7-9甲醇(20吨/年)***31常州市金恒涂料有限公司(苏)WH安许证字[D00382]2019-2-282022-2-27环氧树脂涂料(300吨/年)、环氧腻子(60吨/年)、元素有机涂料(500吨/年)、涂料用稀释剂(80吨/年)、橡胶涂料(100吨/年)、丙烯酸酯类树脂涂料(390吨/年)***32溧阳振东制氧有限公司(苏)WH安许证字[D00385]2019-1-182022-1-17氧[压缩的或液化的](4200吨/年)、氮[压缩的或液化的](2000吨/年)***33常州康佳涂料有限公司(苏)WH安许证字[D00658]2017-3-132020-3-12丙烯酸酯类树脂涂料(150吨/年)、涂料用稀释剂(105吨/年)、烯类树脂涂料(45吨/年)***34常州市恒泰化工制造有限公司(苏)WH安许证字[D00725]2016-12-122019-12-11丙烯酸酯类树脂涂料(70吨/年)、烯类树脂涂料(100吨/年)、涂料用稀释剂(70吨/年)、环氧树脂涂料(210吨/年)***35常州久日化学有限公司(苏)WH安许证字[D00732]2017-6-162020-6-15盐酸(3000吨/年)、亚磷酸(1800)***36溧阳市辉煌气体有限公司(苏)WH安许证字[D00741]2017-3-272020-3-26氧[压缩的或液化的](300吨/年)、氮[压缩的或液化的](650吨/年)***37常州希柯涂料有限公司(苏)WH安许证字[D00754]2016-12-292019-12-28元素有机涂料(300吨/年)***38苏州开来涂料有限公司(苏)WH安许证字[E00633]2017-4-282020-4-27醇酸树脂(200吨/年)、醇酸树脂涂料(50吨/年)、丙烯酸酯类树脂涂料(50吨/年)、环氧树脂涂料(35吨/年)、氨基树脂涂料(10吨/年)、聚酯树脂涂料(10吨/年)***39韩一化工(昆山)有限公司(苏)WH安许证字[E00753]2017-6-302020-6-29锌粉(10800吨/年)***40南通正达农化有限公司(苏)WH安许证字[F00073]2017-2-102020-2-9磷化铝(210吨/年)***41海门市环宇化工厂(苏)WH安许证字[F00200]2017-2-102020-2-9氨溶液[含氨>10%](220吨/年)、硫酸汞(10吨/年)***42海门市药物化工厂(苏)WH安许证字[F00307]2016-10-112019-10-102-硝基苯酚(1000吨/年)***43南通大鹏化工有限公司(苏)WH安许证字[F00345]2017-1-222020-1-21苯乙腈(500吨/年)、氰基乙酸(550吨/年)***44南通天龙化工有限公司(苏)WH安许证字[F00353]2016-12-122019-12-11乙酰(基)乙烯酮[抑制了的](5000吨/年)、乙酸溶液[含量>10%~80%](7495吨/年)***45江苏容汇通用锂业股份有限公司(苏)WH安许证字[F00377]2018-1-42021-1-3氢氧化锂(2000吨/年)***46南通东港化工有限公司(苏)WH安许证字[F00400]2016-12-292019-12-28三氯乙烯(750吨/年)、四氯乙烯(750吨/年)、六氯乙烷(1000吨/年)***47南通天材科技有限公司(苏)WH安许证字[F00505]2016-12-122019-12-112828项其他类产品(混合戊烷:异戊烷36.9911%,正戊烷34.3569%,环戊烷7.7045%)(4810吨/年)***48连云港海威科技发展有限公司(苏)WH安许证字[G00072]2017-2-102020-2-9甲醇(300吨/年)***49连云港瑞鹏化工有限公司(苏)WH安许证字[G00084]2018-10-312021-10-30红磷(2000吨/年)、正磷酸(50吨/年)***50连云港凤蝶化工有限公司(苏)WH安许证字[G00101]2017-2-272020-2-261,3-二硝基苯(6500吨/年)、2-硝基苯胺(6000吨/年)、3-硝基苯胺(5000吨/年)***51连云港联化化学品有限公司(苏)WH安许证字[G00109]2017-7-172020-7-16正丁醇(24000吨/年)、乙醇[无水](4000吨/年)、丙酮(12000吨/年)***52连云港恒顺化工有限公司(苏)WH安许证字[G00175]2016-3-42019-3-3水杨酸(700吨/年)***53江苏天士力帝益药业有限公司(苏)WH安许证字[H00082]2016-12-292019-12-28甲醇(10吨/年)、乙醇溶液[按体积含乙醇大于24%](8吨/年)、丙酮(6吨/年)***54金湖县晨龙翔实业有限公司(苏)WH安许证字[H00088]2016-11-102019-11-9硫酸(18000吨/年)***55淮安市兴联有机化工有限公司(苏)WH安许证字[H00089]2016-10-112019-10-10三氯化铝[无水](3000吨/年)、盐酸(10吨/年)***56淮安源通电子材料有限公司(苏)WH安许证字[H00114]2017-2-272020-2-26三氯化磷(107吨/年)、盐酸(323吨/年)、三氯氧磷(120吨/年)***57淮安汇波材料科技有限公司(苏)WH安许证字[H00129]2016-11-102019-11-9甲苯(232吨/年)、二甲苯异构体混合物(108吨/年)、2828项其他类(呋喃树脂)(60000吨/年)、2828项其他类(磺酸固化剂)(20000吨/年)***58滨海恒冠医药化工有限公司(苏)WH安许证字[J00017]2016-12-292019-12-28乙醇溶液[按体积含乙醇大于24%](640吨/年)***59滨海县金港华盛气体有限公司(苏)WH安许证字[J00314]2016-12-292019-12-28氢(385吨/年)、氧[压缩的或液化的](2750吨/年)***60江苏鼎龙科技有限公司(苏)WH安许证字[J00324]2017-1-172020-1-16乙腈(10吨/年)、三氯乙腈(20吨/年)、盐酸(100吨/年)***61滨海新东方医化有限公司(苏)WH安许证字[J00333]2017-2-102020-2-91,3-环戊二烯(330吨/年)、1-氯-3-溴丙烷(38吨/年)、乙醇钠乙醇溶液(1920吨/年)、氨溶液[含氨>10%](21.6吨/年)、二氯甲烷(75吨/年)、氢溴酸(250吨/年)、吡啶(212吨/年)、N,N-二甲基苯胺(264.6吨/年)、甲醇(60.75吨/年)、盐酸(157.6吨/年)***62盐城常林生化有限公司(苏)WH安许证字[J00344]2017-3-272020-3-26丙酮(500吨/年)、4-羟基-4-甲基-2-戊酮(3000吨/年)、4-甲基-3-戊烯-2-酮(200吨/年)、盐酸(20吨/年)***63盐城顺恒化工有限公司(苏)WH安许证字[J00364]2016-12-292019-12-28硫酸(47.4吨/年)、氟化钠(1吨/年)、甲醇(12吨/年)***64滨海恒联化工有限公司(苏)WH安许证字[J00380]2016-11-252019-11-24甲醇(700吨/年)、乙醇[无水](500吨/年)、苯胺(1200吨/年)、正丁醇(50吨/年)、3-甲基苯胺(450吨/年)、4-甲基苯胺(170吨/年)、2-甲基苯胺(100吨/年)、N-甲基苯胺(1000吨/年)、N,N-二甲基苯胺(100吨/年)、N-乙基苯胺(200吨/年)、N,N-二乙基苯胺(200吨/年)、N-乙基间甲苯胺(200吨/年)、N,N-二乙基邻甲苯胺(10吨/年)、N-正丁基苯胺(20吨/年)、N,N-二丁基苯胺(5吨/年)、N-乙基对甲苯胺(5吨/年)、N,N-二乙基对甲苯胺(5吨/年)、N-苄基-N-乙基苯胺(10吨/年)***65盐城市华邦化工有限公司(苏)WH安许证字[J00390]2017-3-272020-3-26盐酸(8054.83吨/年)、次氯酸钠溶液[含有效氯>5%](154吨/年)、2,6-二氯苯酚(344.65吨/年)、2,4-二氯苯酚(5000吨/年)***66盐城市坤展化工有限公司(苏)WH安许证字[J00398]2016-10-112019-10-10盐酸(3292吨/年)、2-甲酚(76吨/年)***67响水新联合化学有限公司(苏)WH安许证字[J00399]2016-12-292019-12-28氟代苯(1500吨/年)、氢氟酸(1200吨/年)***68盐城三威化学有限公司(苏)WH安许证字[J00401]2016-11-252019-11-24N-乙基-1-萘胺(56吨/年)、乙酸[含量>80%](22吨/年)***69盐城恰爱娜生物科技有限公司(苏)WH安许证字[J00409]2016-12-122019-12-11杂戊醇(80吨/年)、正丁醇(65吨/年)、2-甲基-1-丁醇(66吨/年)、3-甲基-1-丁醇(217吨/年)、正丁酸(80吨/年)、乙酸异戊酯(150吨/年)、正丁酸乙酯(20吨/年)、异戊酸乙酯(50吨/年)、3-甲基丁醛(2吨/年)***70盐城市龙升化工有限公司(苏)WH安许证字[J00415]2017-2-272020-2-26溴苯(300吨/年)、1,2-二溴乙烷(200吨/年)、三溴甲烷(30吨/年)、三溴化磷(80吨/年)、溴(化)乙酰(30吨/年)、溴(化)丙酰(25吨/年)、溴乙酰溴(100吨/年)、2-溴丁烷(30吨/年)、1-溴-2-甲基丙烷(20吨/年)、3-溴-1-丙烯(150吨/年)、1-氯-2-溴乙烷(25吨/年)、溴(化)乙烷(100吨/年)、1-溴丙烷(350吨/年)、1-溴丁烷(50吨/年)、2-溴丙烷(200吨/年)、1-溴-3-甲基丁烷(80吨/年)、溴代正戊烷(300吨/年)、溴己烷(50吨/年)、溴代环戊烷(5吨/年)、溴乙酸(50吨/年)、废硫酸(685吨/年)、盐酸(256吨/年)、亚磷酸(82吨/年)、氢溴酸(220吨/年)、亚磷酸(14吨/年)、甲醇(77吨/年)、1-氯丙烷(105吨/年)、1-氯丁烷(80吨/年)、2-氯丙烷(65吨/年)、1-氯戊烷(30吨/年)、氯代正己烷(60吨/年)、氯代异丁烷(5吨/年)、1,3-二氯丙烷(50吨/年)、1,4-二氯丁烷(40吨/年)、1,2-二溴苯(15吨/年)、4-溴苯甲醚(25吨/年)、亚磷酸(14吨/年)、甲醇(77吨/年)***71盐城圣奥化工有限公司(苏)WH安许证字[J00452]2016-10-262019-10-25氟化氢[无水](4098.5吨/年)、氟代苯(2000吨/年)、氢氟酸(402吨/年)、亚硝酸钠(126.1吨/年)、硫酸(6399.3吨/年)***72响水恒利达科技化工有限公司(苏)WH安许证字[J00453]2016-12-292019-12-28亚硫酸氢铵(119463.38吨/年)、乙酸[含量>80%](1190.4吨/年)、盐酸(22611.12吨/年)***73建湖县上冈乙炔气有限公司(苏)WH安许证字[J00021]2017-11-202020-11-19乙炔【溶于介质的】(180吨/年)***74盐城广达乙炔气有限公司(苏)WH安许证字[J00023]2017-9-222020-9-21乙炔(100吨/年)***75盐城振阳聚氨酯材料有限公司(苏)WH安许证字[J00111]2018-8-162021-8-15聚氨酯树脂(5000吨/年)***76盐城利民农化有限公司(苏)WH安许证字[J00457]2017-4-102020-4-93-甲基-1-丁烯(80.6吨/年)、盐酸(1886.5吨/年)、甲基叔丁基甲酮(900吨/年)(以上产品生产场所:东厂区);甲醇(198吨/年)、甲硫醚(90吨/年)、乙酸酐(4.9吨/年)、乙醇[无水](36.6吨/年)、盐酸(1589.6吨/年)、乙酸甲酯(5.9吨/年)、丙酮(19.9吨/年)、乙酸乙酯(36.6吨/年)、次氯酸钠溶液[含有效氯>5%](87.61吨/年)(以上产品生产场所:西厂区)***77江苏德发树脂有限公司(苏)WH安许证字[J00091]2017-10-262020-10-25聚氨酯树脂(20000吨/年)***78江苏力禾颜料有限公司(苏)WH安许证字[J00475]2017-1-222020-1-21硫酸(208.2吨/年)、氨溶液[含氨>10%](21091.45吨/年)***79江苏扬农化工股份有限公司(苏)WH安许证字[K00001]2017-4-282020-4-27原乙酸三甲酯(2000吨/年)***80江苏扬农化工集团有限公司(苏)WH安许证字[K00008]2017-5-172020-5-163-氯硝基苯(300吨/年)、2-氯硝基苯(40000吨/年)、4-氯硝基苯(60000吨/年)、过氧化氢溶液[含量 8%](100000吨/年)、乙基环己烷(3000吨/年)、甲基环己烷(6000吨/年)、环己烷(6000吨/年)、1,2,3-三氯(代)苯(1450吨/年)、1,2,4-三氯(代)苯(8550吨/年)、1,2-二氯苯(9000吨/年)、1,4-二氯苯(29000吨/年)、1,3-二氯苯(5000吨/年)、次氯酸钠溶液[含有效氯>5%](15000吨/年)、盐酸(95000吨/年)、氢氧化钠溶液(120000吨/年)、氯苯(80000吨/年)、1,3-二氯-2-丙醇(40000吨/年)、三氯乙醛[稳定的](5000吨/年)***81扬州市普林斯化工有限公司(苏)WH安许证字[K00049]2018-5-222021-5-21盐酸(200吨/年)、1,2-二甲氧基乙烷(80吨/年)、1,3-二氯丙烷(80吨/年)、3-氯-1-丙醇(80吨/年)***82高邮市明义乙炔制造有限公司(苏)WH安许证字[K00058]2018-3-282021-3-27乙炔(200吨/年)***83扬州市经济开发区亿万新型涂料厂(苏)WH安许证字[K00142]2017-1-172020-1-16氨基树脂涂料(100吨/年)、环氧树脂涂料(100吨/年)、丙烯酸酯类树脂涂料(100吨/年)、沥青涂料(100吨/年)***84住精科技(扬州)有限公司(苏)WH安许证字[K00174]2018-11-262021-11-25氨(3000吨/年)、氨溶液[含氨>10%](4800吨/年)***85镇江茂源化工有限公司(苏)WH安许证字[L00004]2018-1-312021-1-30甲醇(700吨/年)、氨溶液[含氨>10%](550吨/年)***86丹阳市安达漆业有限公司(苏)WH安许证字[L00026]2016-12-292019-12-28丙烯酸酯类树脂涂料(100吨/年)、氨基树脂涂料(60吨/年)***87丹阳市万隆化工有限公司(苏)WH安许证字[L00047]2018-5-112021-5-10盐酸(2500吨/年)、苯甲酰氯(1000吨/年)、4-氯苯甲酰氯(1000吨/年)、2-氯苯甲酰氯(1000吨/年)、2,4-二氯苯甲酰氯(1000吨/年)***88丹阳市群杰化工有限公司(苏)WH安许证字[L00135]2016-10-262019-10-25丙烯酸酯类树脂涂料(60吨/年)、聚氨酯树脂涂料(30吨/年)***89丹阳市振邦涂料有限公司(苏)WH安许证字[L00137]2016-10-262019-10-25丙烯酸酯类树脂涂料(300吨/年)***90江苏华元焦化有限公司(苏)WH安许证字[L00176]2017-8-292020-8-28硫磺(1000吨/年)、煤气(166225吨/年)、煤焦油(25000吨/年)、苯(6000吨/年)***91句容玉明化工有限公司(苏)WH安许证字[L00198]2018-12-142021-12-13盐酸(34000吨/年)***92镇江宏鸣橡塑助剂有限公司(苏)WH安许证字[L00205]2016-10-112019-10-10盐酸(1100吨/年)、苯酚(500吨/年)、亚磷酸三苯酯(2500吨/年)***93丹阳市宏光涂料有限公司(苏)WH安许证字[L00224]2016-10-262019-10-25丙烯酸酯类树脂涂料(400吨/年)、醇酸树脂涂料(300吨/年)、聚氨酯树脂涂料(300吨/年)***94镇江市化剂厂有限公司(苏)WH安许证字[L00229]2017-2-102020-2-9乙醇[无水](2000吨/年)、2-丙醇(2000吨/年)、丙酮(800吨/年)、乙酸[含量>80%](800吨/年)、硝酸[含硝酸<70%](3000吨/年)、硫酸(2500吨/年)、盐酸(3000吨/年)、氢氟酸(1000吨/年)、过氧化氢溶液[27.5%>含量>8%](1800吨/年)、氟化钠(100吨/年)、氟化铵(200吨/年)、氟化钾(300吨/年)***95江苏长三角精细化工有限公司(苏)WH安许证字[L00230]2017-4-112020-4-9甲苯(100吨/年)、氯化氢[无水](3036吨/年)、混氯甲苯(52%邻氯甲苯、48%对氯甲苯)(10301吨/年)、4-氯甲苯(4350吨/年)、2-氯甲苯(5650吨/年)、马来酸酐(30000吨/年)、盐酸(10120吨/年)、2,4-二氯甲苯(85吨/年)、2,5-二氯甲苯(10吨/年)、2,6-二氯甲苯(85吨/年)、3,4-二氯甲苯(10吨/年)***96扬中市永勤制氧厂有限公司(苏)WH安许证字[L00247]2016-12-292019-12-28氧[压缩的或液化的](2036吨/年)、氮[压缩的或液化的](3564吨/年)***97靖江市德诚化工有限公司(苏)WH安许证字[M00124]2017-2-102020-2-91,2-苯二胺(200吨/年)***98靖江市天利化工厂有限公司(苏)WH安许证字[M00166]2017-3-132020-3-12二-(2-乙基己基)磷酸酯(300吨/年)、橡胶涂料(300吨/年)***99泰州开源化工有限公司(苏)WH安许证字[M00202]2016-11-252019-11-24苯(13800吨/年)、甲基苯(2600吨/年)、二甲苯异构体混合物(800吨/年)***100泰州凯世通石化有限公司(苏)WH安许证字[M00262]2016-11-102019-11-9溶剂油[闭杯闪点≤60℃](15000吨/年)***101沭阳兆宇酿酒有限公司(苏)WH安许证字[N00077]2016-10-112019-10-10乙醇溶液[-18℃≤闪点<23℃](50000吨/年)、杂戊醇(200吨/年)、乙醛(20000吨/年)、2-丁烯醛(10000吨/年)***102宿迁市福康装饰材料厂(苏)WH安许证字[N00079]2017-1-222020-1-21甲醛溶液(30000吨/年)***
  • 岛津推出《蛋白质测序仪PPSQ在生物药N-末端氨基酸序列分析的应用》方案
    —抗体药、蛋白质药、N-末端甲硫氨酸缺失或焦谷氨酸环化封闭等—? 目前,在制药领域,生物药得到越来越多的关注。生物药是利用DNA重组、细胞融合、细胞培养等生物技术开发出的蛋白质药物、抗体药物等。几乎所有蛋白质合成都起始于N-末端,其序列组成对于蛋白质整体的生物学功能有着重要的影响力,因此蛋白质的序列分析对于生物药效果非常关键。 2015版《中国药典》三部人用重组DNA技术产品总论对生物药的生产及质量控制方面,,针对其蛋白质结构提出技术要求,应测定目标产品的氨基酸序列,并与其基因序列推断的理论氨基酸序列进行比较。因此,N-末端氨基酸序列分析是很多已上市生物药的年检项目,如重组人促红素注射液(CHO细胞) 、重组人粒细胞刺激因子注射液等。此外,国际法规中也有对于生物药N-末端氨基酸序列测定的要求。药品注册的国际协调组织颁布的指导法规ICH-Q6B规定,生物药进行申报时,必须提供N-末端氨基酸序列信息。《欧洲药典》中规定,生物仿制药申报也必须提供N-末端序列。 Edman降解法是蛋白质N-末端测序的常用方法,岛津公司的蛋白质测序仪(Protein Sequencer)PPSQ以Edman降解法为基础,将蛋白质从N-末端顺次切断进行序列分析。此方法具有直接测定、可靠性高的优势。近期,岛津推出新型的蛋白质测序仪PPSQ 51A/53,配备SPD-M30A高灵敏度检测器、软件满足FDA 21 CFR Part 11数据完整性的要求。PPSQ 51A/53梯度系统更是在等度系统基础上,提高检测灵敏度,适合微量样品的氨基酸序列分析。我们应用岛津PPSQ 51A/53A开发了单克隆抗体药、重组蛋白药的N-末端氨基酸序列分析方法,另外,也开发了具有特殊结构的生物药N-末端氨基酸序列分析方法,如甲硫氨酸缺失、焦谷氨酸环化封闭等样品,编写了《蛋白质测序仪PPSQ在生物药N-末端氨基酸序列分析的应用》文集:包括经十二烷基硫酸钠聚丙烯酰胺凝胶电泳分离轻链和重链,从而测定N-末端氨基酸序列的单克隆抗体药贝伐单抗和曲妥珠单抗等;含有特殊结构的如N-末端部分甲硫氨酸缺失的重组人粒细胞巨噬细胞刺激因子注射液原液、N-末端焦谷氨酸环化封闭类单克隆抗体帕尼单抗、含有二硫键的溶菌酶和催产素;用自制的脱盐装置分析具有高浓度盐的蛋白质药物重组人促红素原液(CHO细胞)和重组人粒细胞刺激因子注射液。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 聚丙烯酰胺(PAM)特性粘度及相对分子量的测定方法
    聚丙烯酰胺(PAM)是指由丙烯酰胺单体均聚或与其他单体共聚而成的一类聚合物,通常是由丙烯酰胺单体头尾键接而成,工业也把聚丙烯酰胺分子链中丙烯酰胺单体的含量高于50%的聚合物统称为聚丙烯酰胺。聚丙烯酰胺在常温下为坚硬的玻璃态固体,由于制法不同,产品有白色粉末、半透明珠粒和片状等,具有良好热稳定性。由于聚丙烯酰胺分子侧链存在有酰胺基团,它能以任意比例溶于水,且有很高的反应活性。可以对其进行交联、接枝、改性等,使得聚丙烯酰胺成为水溶性高分子中应用最广泛的聚合物之一,目前广泛应用于石油开采、污水处理、食品加工、农业等领域,被誉为“百业助剂”。石油开采和污水处理是聚丙烯酰胺应用的主要领域:聚丙烯酰胺作为润滑剂、悬浮剂、粘土稳定剂、驱油剂、降失水剂和增稠剂,在钻井、酸化、压裂、堵水、固井及二次采油、三次采油中都有广泛应用,同时聚丙烯酰胺在水处理中也常用于生活污水处理,化工废水,有机化学污水的解决。国标GB/T 17514-2017和GB/T 31246-2014中规定了水处理剂领域中聚丙烯酰胺的质量标准,使用乌氏粘度法测量聚丙烯酰胺的特性黏度及黏均分子量是其中的关键检测内容。这一点在石油的行业标准中也有体现。乌氏粘度法由于它独有的优势被应用于聚丙烯酰胺等材料的质量控制中,但传统的手动黏度测定方法仍存在诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,全自动乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV8000系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗/干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 岛津应用:顶空气相色谱法测定固体废物中丙烯醛、丙烯腈、乙腈
    随着人们对生存环境的关注,对固体废物的毒性硏究越来越受到重视。现阶段对固体废物中毒性研究主要集中在重金属元素含量监测和有效处理等方面,对于固体废物中毒性有机物如丙烯醛、丙烯腈和乙腈的研究还较少见。而在《危险废物鉴别标准 毒性物质含量鉴别》中明确将乙腈、丙烯醛和丙烯腈列为有毒物质,剧毒物质,甚至致癌性物质。这三种物质对人体健康伤害极大,监测它们在固体废物中的含量显得特别重要 本文采用岛津HS-10顶空进样器与GC-2010 Plus气相色谱仪,建立了固体废物中丙烯醛、丙烯腈、乙腈的检测方法。该方法可有效监测固体废物中丙烯醛、丙烯腈、乙腈的含量,为固体废物的有效管理和处置提供依据。 了解详情,敬请点击《顶空气相色谱法测定固体废物中丙烯醛、丙烯腈、乙腈》关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 咖啡中的"隐形杀手":丙烯酰胺
    近日,根据福建省消费者权益保护委员会与福州市消费者权益保护委员会的联合调查,他们通过线上和线下途径,对福州市20家咖啡销售点的59款现场制作的咖啡产品进行了抽样检测(包括线下30款和线上29款)。这些样品涵盖了“瑞幸”、“星巴克”、“幸运咖”、“COTTI COFFEE”等多个知名品牌。(来源:福建省消费者权益保护委员会) 令人关注的是,在这次检测的59款样品中,未发现反式脂肪酸(低于0.0013g/100g的检测限),然而却都检出了较低浓度的致癌物质“丙烯酰胺”。被查出的”丙烯酰胺“,是一种有机化合物,损害人体神经系统,为白色结晶性粉末,溶于水、乙醇、乙醚、丙酮,不溶于苯、己烷。它是一种潜在致癌物,属于2A类致癌物,即:虽然在动物试验中具有明确致癌作用,在人群研究结果中还没得定论。丙烯酰胺存在于很多食物中,除了咖啡外,油条、薯条、烧烤等食物都含有。丙烯酷胺检测方法般包括以下几种:1.液相色谱法: 采用高效液相色谱技术,通过分离、净化、测定来确定丙烯酷胺的含量。2.毛细管电泳法: 采用毛细管电泳技术,通过分离、净化、测定来确定丙烯酷胺的含量。3.光谱法:采用紧外、红外、拉是等光谱技术,通过吸收、散射、振动等特征来确定丙烯酷胺的含量。4.化学发光法:采用化学发光技术,通过与相关反应物的化学反应产生化学发光信号来确定丙爆酷胺的含量。5.气相色谱-质谱联用法:采用气相色谱-质谱联用技术,通过分离、净化、测定来确定丙烯酷胺的含量。小编整理了咖啡中检测丙烯酰胺的解决方案供大家参考: 1. 咖啡中丙烯酰胺含量的测定 2. 根据DIN EN ISO 18862标准,对咖啡中丙烯酰胺的自动SPE净化和LC-MS/MS测定 3. 月旭“舌尖上的卫士”为您把关食品中丙烯酰胺的残留更多丙烯酰胺检测相方案请点击查看涉及相关产品:三重四极杆液质联用仪QSight 400(珀金埃尔默)GERSTEL自动进样器 MPS robotic (GERSTEL( 哲斯泰) )月旭固相萃取装置 (月旭科技 ) 在福建省消费者权益保护委员会微信公众中也提到了,目前我国暂未对咖啡中丙烯酰胺有限制性或禁止性规定。同时,也提醒广大消费者,现制现售咖啡口感醇香浓郁,但不宜多喝,应科学、合理饮用。在购买现制现售咖啡需关注以下几点: 1、消费者在进行咖啡消费前要学习了解一些基本的咖啡常识,比如常见咖啡分类及区别(如美式咖啡、卡布奇诺、拿铁、摩卡等)、了解阿拉比卡和罗布斯塔咖啡豆的区别、留意添加牛奶、风味糖浆等原料的咖啡能量及含糖量相对较高等。 2、消费者在购买咖啡时,要注意查看商家菜单或外卖平台选项上有无含糖分、咖啡因等提示警示,并根据个人口味喜好及身体状况,选择合适的咖啡产品。孕妇及哺乳期妇女、儿童、青少年等敏感人群应尽量不饮用或减少饮用咖啡。 3、不要长期过量饮用咖啡,按每日咖啡因的安全摄取量不超过400 mg,一般每天1至2杯,比较安全。同时咖啡中含有咖啡因、草酸等物质,过量饮用会影响钙质的吸收,增加患骨质疏松的风险、会使人体长时间兴奋、失眠、焦虑,严重的还会造成抑郁、记忆力减退等问题。 4、养成正确咖啡饮用方式。平时喝咖啡水温要控制好,最好不要超过65度,否则会影响口腔粘膜、胃肠粘膜,甚至造成粘膜损伤。注意喝咖啡的时间,尽量选择在用餐后,避免在晚上睡觉前或早上空腹时喝咖啡。酒之后不宜喝咖啡,人在饮酒后会进入精神亢奋状态,如再喝咖啡的话,只会加重人体的兴奋状态,对人体器官的伤害很大。 同时建议各现制现售咖啡商家在严格把控咖啡豆/粉、牛奶、糖浆等原料质量的同时,要在产品销售目录上对香草拿铁等含糖量较高产品、咖啡因含量及不适宜人群等予以警示或作出明确标示,以供消费者选择参考。行业应用栏目简介:(http://www.instrument.com.cn/application/) 【行业应用】是仪器信息网专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。
  • 岛津应用:蛋白质测序仪PPSQ-53A分析贝伐单抗N-末端氨基酸序列
    贝伐单抗是重组的人源化单克隆抗体。2004年2月26日获得FDA的批准,是美国第一个获得批准上市的抑制肿瘤血管生成的药。本文应用 SDS-PAGE(十二烷基硫酸钠聚丙烯酰胺凝胶电泳)将贝伐单抗的重链和轻链进行分离,使用电转印方法将 SDS-PAGE膜上的样品转移到PPSQ使用的PVDF膜上,使用蛋白质测序仪PPSQ-53A对贝伐单抗进行N-末端氨基酸序列分析。实验结果显示测定的重链和轻链的N-末端氨骏序列与理论相符,验证了方法的准确性,表明此方法适合抗体药N-末端的氨基酸序列分析。本文可作为分析抗体药N-末端氨基酸序列分析时的参考。 了解详情,敬请点击《蛋白质测序仪PPSQ-53A分析贝伐单抗N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 解决方案丨生活饮用水中丙烯酰胺的测定
    丙烯酰胺是聚丙烯酰胺的单体,聚丙烯酰胺主要应用于水的净化处理。虽然聚丙烯酰胺被认为是无毒的,但其单体——丙烯酰胺却已被国家癌症中心(IARC)列为IV类致癌物。由于丙烯酰胺的危害较大,它已被我国列入水中优先控制的污染物。我国的《生活饮用水卫生标准》(GB5749-2022)和《地表水环境质量标准》(GB3838-2002)都规定了丙烯酰胺的限值。本文依据GB/T 5750.8-2023《生活饮用水标准检验方法 第8部分:有机物指标》中丙烯酰胺的测定方法,采用睿科Fotector Plus高通量全自动固相萃取仪完成水中丙烯酰胺的富集和洗脱,洗脱液经睿科Auto EVA 80 高通量全自动平行浓缩仪浓缩,再结合高效液相色谱-串联质谱进行定性定量检测。在0.01ug/L的加标水平下,丙烯酰胺的回收率在70.0%-100%之间,RSD值小于5%,表明该方法具有操作自动化、快速和高通量等优点,适合生活饮用水中丙烯酰胺的测定。仪器和耗材1.仪器高效液相色谱-串联质谱仪:岛津高效液相色谱+AB Qtrap 6500三重四级杆串联质谱仪全自动固相萃取仪:Fotector Plus高通量全自动固相萃取仪全自动氮吹浓缩仪:Auto EVA 80 高通量全自动平行浓缩仪固相萃取柱:活性炭固相萃取柱(2g/6mL)2.试剂甲醇 (HPLC),超纯水:电阻率大于18.2MΩ标准物质:丙烯酰胺,纯度不低于99%内标溶液:13C3-丙烯酰胺溶液,母液浓度为1.0 mg/mL样品处理1.样品前处理活化:分别用10mL甲醇和10mL水以4 mL/min的速度活化固相萃取柱;吸附:取100mL水样,加入50μL浓度为100μg/L的13C3-丙烯酰胺内标使用液,混匀,内标物在水中的浓度为0.05μg/L,以5mL/min的速度通过固相萃取柱;干燥:调节气压为25psi,用氮气吹干固相萃取小柱10min;洗脱:用10mL甲醇以1mL/min的速度洗脱固相萃取柱,收集洗脱液。具体方法参数如图-1所示:图-1 Fotector Plus水中丙烯酰胺的固相萃取方法2.浓缩用Auto EVA 80 高通量全自动平行浓缩仪在40℃、1.0 L/min流量的条件下将洗脱液浓缩至近干,加入1.0 mL水涡旋混匀,转移至进样小瓶上机检测。检测条件1.色谱条件色谱柱:极性改性C18色谱柱 (150mm×2.1mm,3.5um)流速:0.3 mL/min柱温:35°C洗脱梯度:A相:0.1%甲酸水溶液;B相:乙腈表-1 梯度洗脱程序时间(min)A(%)B(%)0.09550.509552.5040602.519555.009552.质谱条件采集模式:ESI+干燥气温度:550℃Gas 1:50 Gas 2:50 气帘气:35毛细管电压:5500 V监测离子参数情况见表-2表-2 丙烯酰胺的特征离子及质谱条件 注:*表示定量离子3.TIC谱图图-2 丙烯酰胺TIC谱图(10 ug/L)方法可行性验证为了验证该方法的回收率,本实验向自来水(100 mL)中加入丙烯酰胺标准品(10uL,100 ug/L)进行加标回收验证(n=3),内标法定量。在0.01ug/L的加标水平下,丙烯酰胺的平均回收率为89.43%,相对标准偏差小于5.0%(n=3),满足标准要求。表-3 丙烯酰胺标准添加(10ug/L)回收率及RSD值(n=3)结果与讨论1.本次实验用的活性炭固相萃取小柱规格为2g/6mL,氮吹时间设为10min;而标准中活性炭固相萃取小柱的规格为500mg/6mL,氮吹时间为2min,因此适当增加了氮吹时间。但时间不宜过长,太长将导致回收率降低。2.本实验采用睿科Fotector Plus高通量全自动固相萃取仪取得了优异的回收率和RSD结果,主要是因为睿科全自动固相萃取仪采用精密的注射泵来控制活化和洗脱的体积,通过正压上样,活化、洗脱、上样等步骤流速稳定可控;多个通道同步进行萃取,处理样品通量高。此外仪器在夜间也可以运行,大幅提高了工作效率。
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 国家卫生健康委员会关于桃胶等15种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对桃胶等4种物质申请新食品原料、丝氨酸蛋白酶等6种物质申请食品添加剂新品种、C.I.颜料黑7等5种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件:三新食品公告.pdf国家卫生健康委2023年9月22日一、新食品原料解读材料(一)桃胶桃胶是以蔷薇科李属植物桃树(Prunus persica(L.)Batsch)分泌的胶状物为原料,经采摘、分选、晾晒、清洗、干燥等工艺制成。主要营养成分为膳食纤维、多糖、水分、蛋白质和维生素等。桃胶在我国湖北、江苏及浙江等地区有一定的食用历史,食用方式主要有做汤、粥、羹、甜品等。本产品推荐食用量为≤30克/天。    根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对桃胶的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于桃胶在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。(二)油莎豆本产品的基源植物为莎草科莎草属植物油莎草(Cyperusesculentus L.var.sativus Boeck.),原产于中非洲,在地中海地区被广泛种植,于上世纪五十年代引入我国,目前在我国河北、甘肃和山东等地区种植。申报产品油莎豆为其地下块茎,主要营养成分为碳水化合物、脂肪、膳食纤维、水分和维生素等。欧洲将油莎豆作为普通食品管理;加拿大认为油莎豆奶具有作为食品安全食用的历史。    根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对油莎豆的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。(三)肠膜明串珠菌乳脂亚种肠膜明串珠菌乳脂亚种主要存在于天然发酵的乳制品、干酪、泡菜等中。本产品使用的菌种是从乳制品分离得到的,该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表、国际乳品联合会公报(Bulletin of the IDF 514/2022)的“在发酵食品中证明安全的微生物品种目录”以及丹麦的《食品中使用的微生物菌种名单记录》。本次批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对肠膜明串珠菌乳脂亚种的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。(四)吡咯并喹啉醌二钠盐本产品以食葡萄糖食甲基菌(Methylovorus glucosotrophus)为发酵菌种,经发酵、提取、纯化、结晶、干燥等工艺制成。吡咯并喹啉醌二钠盐天然存在于多种食物如牛奶、鸡蛋、菠菜等中。我国已于2022年批准合成法制得的吡咯并喹啉醌二钠盐为新食品原料。吡咯并喹啉醌二钠盐在美国被作为“一般认为安全的物质(GRAS)”管理,可作为原料用于能量饮料、运动饮料、电解质饮料等食品;欧盟和加拿大作为膳食补充剂或天然保健食品。本产品推荐食用量为≤20毫克/天(即含量为98%的吡咯并喹啉醌二钠盐推荐食用量为≤20毫克/天,超过该含量的按照实际含量折算)。    根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对吡咯并喹啉醌二钠盐的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于吡咯并喹啉醌二钠盐在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)丝氨酸蛋白酶    1.背景资料。地衣芽孢杆菌(Bacillusli cheniformis)来源的丝氨酸蛋白酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。    2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化胰凝乳蛋白的水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(二)乳酸镁    1.背景资料。镁作为食品营养强化剂已列入《食品安全国家标准食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉、饮料类(14.01及14.06涉及品种除外)、固体饮料类等食品类别。本次申请的乳酸镁是镁的一种化合物来源,其使用范围和用量与GB 14880中已批准镁的规定一致。国际食品法典委员会、美国食品药品管理局、欧盟委员会等允许其用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂用于调制乳粉(食品类别01.03.02)、饮料类(14.01及14.06涉及品种除外)(食品类别14.0)和固体饮料类(食品类别14.06),强化食品中镁的含量。其质量规格按照公告的相关要求执行。(三)2’-岩藻糖基乳糖    1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。(四)乳糖-N-新四糖1.背景资料。乳糖-N-新四糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许乳糖-N-新四糖用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。(五)乳酸钙1.背景资料。乳酸钙作为酸度调节剂、抗氧化剂、乳化剂、稳定剂和凝固剂、增稠剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于加工水果、糖果、固体饮料、膨化食品等食品类别,本次申请扩大使用范围用于腌渍的蔬菜(食品类别04.02.02.03),蔬菜罐头(食品类别04.02.02.04)。国际食品法典委员会、美国食品药品管理局、欧盟委员会等允许其作为增稠剂、酸度调节剂用于加工蔬菜、蔬菜罐头。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。    2.工艺必要性。该物质作为稳定剂和凝固剂、酸度调节剂用于腌渍的蔬菜(食品类别04.02.02.03),蔬菜罐头(食品类别04.02.02.04),改善产品稳定性。其质量规格执行《食品安全国家标准食品添加剂乳酸钙》(GB 1886.21)。(六)三赞胶1.背景资料。国家卫生健康委2020年第4号公告批准食品添加剂新品种三赞胶作为增稠剂、稳定剂和凝固剂用于肉灌肠类、果蔬汁(浆)类饮料和植物蛋白饮料的食品类别。本次申请扩大使用范围用于调制乳(食品类别01.01.03),复合蛋白饮料(食品类别14.03.03)和风味饮料(食品类别14.08)。    2.工艺必要性。该物质作为增稠剂、稳定剂和凝固剂用于调制乳(食品类别01.01.03),复合蛋白饮料(食品类别14.03.03)和风味饮料(食品类别14.08),改善产品稳定性。其质量规格执行国家卫生健康委2020年第4号公告。三、食品相关产品新品种解读材料(一)C.I.颜料黑7;炭黑1.背景资料。该物质常温下为黑色粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于橡胶、涂料及涂层、纸和纸板、油墨以及聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等多种塑料材料及制品。此次申请将其使用范围扩大到聚醚醚酮(PEEK)塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。    2.工艺必要性。该物质是一种常用的黑色颜料,具有较好的色强度。(二)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质为水溶性物质,在水溶液状态下为透明至琥珀色。国家卫生健康委2023年第1号公告中已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品,最大使用量为1%,此次申请将其最大使用量扩大为1.5%。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。    2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张强度、增加纤维和填料等的留着性能以及纸浆的滤水性能。(三)2-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯1.背景资料。该物质在常温下为无色粘稠液体。GB 9685-2016已批准该物质作为添加剂用于塑料材料及制品,此次申请将其使用范围扩大到食品接触材料及制品用油墨。欧洲印刷油墨协会、瑞士联邦食品药品监督管理局和德国联邦食品和农业部均允许该物质用于食品接触材料及制品用油墨。    2.工艺必要性。该物质作为添加剂用于食品接触材料及制品用油墨,能增强油墨的热塑性能和耐水性能。(四)1,4-苯二甲酸与癸二酸和1,2-乙二醇的聚合物1.背景资料。该物质在常温下为乳白色固体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。    2.工艺必要性。该物质用于聚对苯二甲酸乙二酯(PET)膜材表面涂层,具有较好的耐热性和耐化学性。(五)甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙烯酸甲酯的聚合物和对苯二酚与4,4-亚甲基双(2,6-二甲基酚)和氯甲基环氧乙烷的聚合物与N,N-二甲基乙醇胺的反应产物1.背景资料。该物质不溶于水,分散在水中呈现为乳白色液体状态,也几乎不溶解于大多数有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。    2.工艺必要性。该物质为涂料的主要成膜物质,具有较强的附着力和耐腐蚀性。
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 《生活饮用水检验方法》(GB/T 5750-2006)拟立项修订,已经发布公示
    目的意义饮用水安全是公众健康的最基本保障,关系到国计民生,是需要关注的重要公共卫生问题之一。GB/T 5750《生活饮用水标准检验方法》是我国GB 5749《生活饮用水卫生标准》配套检验方法的系列标准,是开展生活饮用水卫生安全保障工作的重要技术基础。GB/T 5750—2006《生活饮用水标准检验方法》是由卫生部和中国国家标准化管理委员会联合发布的,于2007年7月1日开始实施,距今已有十余年时间,近年来,国内外水质检验技术得到快速发展,卫生、建设、水务等相关部门的各级检测机构水质检验仪器设备配置亦得到一定提升,为满足《生活饮用水卫生标准》中水质指标的检验需求,高效、准确开展饮用水水质检验工作,急需对《生活饮用水标准检验方法》进行滚动修订,对检验方法进行补充和完善,为贯彻实施《生活饮用水卫生标准》、开展生活饮用水卫生安全性评价提供检验方法。范围和主要技术内容第1部分:总则范围:本文件规定了生活饮用水水质检验的基本原则和要求。本文件适用于生活饮用水水质检验,也适用于水源水和经过处理、储存和输送的饮用水的水质检验。主要技术内容:检验方法的选择,检测结果的报告,试剂及浓度表示,实验用水,玻璃器皿与洗涤,检测仪器、设备的运行要求,实验室安全。第2部分:水样的采集和保存范围:本文件规定了生活饮用水及水源水的样品采集、保存、管理、运输和质量控制的基本原则、措施和要求。本文件适用于生活饮用水及水源水的样品采集与保存。主要技术内容:水样采集、水样保存、样品管理和运输、水样采集的质量控制。第3部分:水质分析质量控制范围:本文件规定了生活饮用水和水源水水质检验检测实验室质量控制要求与方法。本文件适用于生活饮用水和水源水水质的测定过程。主要技术内容:质量控制要求、分析误差、方法验证、质量控制方法、数据处理、测定结果的报告、数据的正确性判断第4部分:感官性状和物理指标范围:本文件规定了生活饮用水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。本文件规定了水源水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类(4-氨基安替比林三氯甲烷萃取分光光度法、4-氨基安替比林直接分光光度法)、阴离子合成洗涤剂的测定方法。本文件适用于生活饮用水和(或)水源水中感官性状和物理指标的测定。 主要技术内容:色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。第5部分:无机非金属指标范围:本文件规定了生活饮用水中硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。本文件规定了水源水中硫酸盐、氯化物、氟化物、氰化物(异烟酸-吡唑啉酮分光光度法、异烟酸-巴比妥酸分光光度法)、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物的测定方法。本文件适用于生活饮用水和(或)水源水中无机非金属指标的测定。主要技术内容:硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。第6部分:金属和类金属指标范围:本文件规定了生活饮用水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。本文件规定了水源水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞(吹扫捕集气相色谱-冷原子荧光法)、硼、石棉的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。第7部分:有机物综合指标范围:本文件规定了生活饮用水中高锰酸盐指数、石油和总有机碳的测定方法。本文件规定了饮用水源水中高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。第8部分:有机物指标范围:本文件规定了生活饮用水中四氯化碳、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、丙烯酰胺、己内酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、乙腈、丙烯腈、丙烯醛、环氧氯丙烷、苯、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、二苯胺、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、双酚A、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸、戊二醛、环烷酸、苯甲醚、萘酚、全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯、药品及个人护理品的测定方法和水源水中四氯化碳(毛细管柱气相色谱法)、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、己内酰胺、微囊藻毒素(高效液相色谱法)、乙腈、丙烯腈、丙烯醛、苯(液液萃取毛细管柱气相色谱法、吹扫捕集气相色谱质谱法)、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸(离子色谱法)、戊二醛、环烷酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯的测定方法。本文件适用于生活饮用水中和(或)水源水中有机物指标的测定。 主要技术内容:四氯化碳、1,2-二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、苯并(a)芘、丙烯酰胺、己内酰胺、邻苯二甲酸二(2-乙基己基)酯、微囊藻毒素、乙腈、丙烯腈、丙烯醛、环氧氯丙烷、苯、甲苯、二甲苯、乙苯、异丙苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯、四氯苯、硝基苯、三硝基甲苯、二硝基苯、硝基氯苯、二硝基氯苯、氯丁二烯、苯乙烯、三乙胺、苯胺、二硫化碳、水合肼、松节油、吡啶、苦味酸、丁基黄原酸、六氯丁二烯、二苯胺、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氯丙烯、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯、丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、溴苯、仲丁基苯、萘、叔丁基苯、双酚A、土臭素、2-甲基异莰醇、五氯丙烷、丙烯酸、戊二醛、环烷酸、苯甲醚、萘酚、全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、多环芳烃、多氯联苯、药品及个人护理品的测定方法。第9部分:农药指标范围:本文件规定了生活饮用水中滴滴涕、六六六、林丹、对硫磷、甲基对硫磷、内吸磷、马拉硫磷、乐果、百菌清、甲萘威、溴氰菊酯、灭草松、2,4-滴、敌敌畏、呋喃丹、毒死蜱、莠去津、草甘膦、七氯、六氯苯、五氯酚、氟苯脲、氟虫脲、除虫脲、氟啶脲、氟铃脲、杀铃脲、氟丙氧脲、敌草隆、氯虫苯甲酰胺、利谷隆、甲氧隆、氯硝柳胺、甲氰菊酯、氯氟氰菊酯、氰戊菊酯、氯菊酯、乙草胺的测定方法和水源水中滴滴涕(毛细管柱气相色谱法)、六六六、林丹(毛细管柱气相色谱法)、对硫磷(毛细管柱气相色谱法)、甲基对硫磷(毛细管柱气相色谱法)、内吸磷、马拉硫磷(毛细管柱气相色谱法)、乐果(毛细管柱气相色谱法)、甲萘威(高压液相色谱法-紫外检测器、分光光度法、高压液相色谱法-荧光检测器)、灭草松(液液萃取气相色谱法)、2,4-滴(液液萃取气相色谱法)、敌敌畏(毛细管柱气相色谱法)、呋喃丹(高效液相色谱法)、毒死蜱(液液萃取气相色谱法)、莠去津(高效液相色谱法)、草甘膦(高效液相色谱法)、七氯(液液萃取气相色谱法)、五氯酚(衍生化气相色谱法、顶空固相微萃取气相色谱法)的测定方法。本文件适用于生活饮用水和(或)水源水中农药指标的测定。主要技术内容:滴滴涕、六六六、林丹、对硫磷、甲基对硫磷、内吸磷、马拉硫磷、乐果、百菌清、甲萘威、溴氰菊酯、灭草松、2,4-滴、敌敌畏、呋喃丹、毒死蜱、莠去津、草甘膦、七氯、六氯苯、五氯酚、氟苯脲、氟虫脲、除虫脲、氟啶脲、氟铃脲、杀铃脲、氟丙氧脲、敌草隆、氯虫苯甲酰胺、利谷隆、甲氧隆、氯硝柳胺、甲氰菊酯、氯氟氰菊酯、氰戊菊酯、氯菊酯、乙草胺的测定方法。第10部分:消毒副产物指标范围:本文件规定了生活饮用水中三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸、氯化氰、2,4,6-三氯酚、亚氯酸盐、溴酸盐、亚硝基二甲胺的测定方法。本文件规定了水源水中三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛(顶空气相色谱法)、一氯乙酸(液液萃取衍生气相色谱法)、二氯乙酸(液液萃取衍生气相色谱法)、三氯乙酸(液液萃取衍生气相色谱法)、2,4,6-三氯酚(衍生化气相色谱法、固相萃取气相色谱质谱法)、亚氯酸盐(离子色谱法)、溴酸盐(离子色谱法-氢氧根系统淋洗液、离子色谱法-碳酸盐系统淋洗液)、亚硝基二甲胺(固相萃取气相色谱质谱法)的测定方法。本文件适用于生活饮用水和(或)水源水中消毒副产物指标的测定。主要技术内容:三氯甲烷、三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷、甲醛、乙醛、三氯乙醛、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸、氯化氰、2,4,6-三氯酚、亚氯酸盐、溴酸盐、亚硝基二甲胺的测定方法。第11部分:消毒剂指标范围:本文件规定了生活饮用水中游离氯、总氯、氯胺、二氧化氯、臭氧、氯酸盐的测定方法和水源水中游离氯[N,N-二乙基对苯二胺(DPD)分光光度法、3,3' ,5,5' -四甲基联苯胺比色法]、总氯[N,N-二乙基对苯二胺(DPD)分光光度法]、氯胺以及含氯消毒剂中有效氯的测定方法。本文件适用于生活饮用水和(或)水源水中消毒剂指标的测定。 主要技术内容:游离氯、总氯、氯胺、含氯消毒剂中有效氯、二氧化氯、臭氧、氯酸盐的测定方法。第12部分:微生物指标范围:本文件规定了生活饮用水和水源水中菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌、贾第鞭毛虫、隐孢子虫、肠球菌和产气荚膜梭状芽孢杆菌的测定方法。本文件适用于生活饮用水和水源水中微生物指标的测定。主要技术内容:菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌、贾第鞭毛虫、隐孢子虫、肠球菌和产气荚膜梭状芽孢杆菌的测定方法。第13部分:放射性指标范围:本文件规定了生活饮用水和(或)水源水中总α放射性的活度浓度、总β放射性的活度浓度、铀的质量浓度、镭-226的活度浓度测定方法。本文件适用于测定生活饮用水和(或)水源水中α放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总α放射性活度浓度、β放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总β放射性活度浓度、铀的质量浓度和镭-226的活度浓度。测定含盐水和矿化水的总α放射性、总β放射性、铀和镭-226参照使用。主要技术内容:总α放射性的活度浓度、总β放射性的活度浓度、铀的质量浓度、镭-226的活度浓度测定方法。
  • Science重磅:纳米孔直接测序蛋白质,精度高达100%,还可识别氨基酸修饰
    蛋白质是构成生物体的主要成分,同时也是生命活动的主要承担者。具有生物学功能的蛋白质往往具有特定的空间结构,而蛋白质结构在多个层级上被定义,其中一级结构,即氨基酸的种类和排列,最为重要,它可以决定蛋白质的高级结构。但一直以来,想要直接读取蛋白质的一级结构是十分困难的,在大多数情况下,科学家们会根据基因序列和氨基酸密码子表来“破译”蛋白质的氨基酸序列。然而,由于转录后修饰和翻译后修饰的存在,破译结果并非完全正确,甚至与真实的氨基酸序列有很大差异。2021年11月4日,荷兰代尔夫特理工大学的研究人员在 Science 期刊上发表了题为:Multiple rereads of single proteins at single–amino acid resolution using nanopores(利用纳米孔在单氨基酸分辨率下对单蛋白质进行多次重读)的研究论文。该研究利用纳米孔测序技术成功扫描并读取单个蛋白质的氨基酸序列:线性化的DNA-肽复合物缓慢通过一个微小的纳米孔,根据电流的变化和强度,研究人员就能读取相关的蛋白质信息内容,直接对蛋白质的氨基酸序列进行测序。蛋白质是生命活动的主要承担者。事实上,所有生物的蛋白质都是由大约20种不同的氨基酸组成的长肽链,就像项链上有不同种类的珠子一样。遗憾的是,目前的蛋白质测序方法价格昂贵,而且不能检测许多稀有蛋白质。近年来发展起来的纳米孔测序技术,已经能够直接扫描和排序单个DNA分子。如今,这篇发表在Science 上的研究表明,我们完全可以以类似于DNA纳米孔测序的方式直接读取蛋白质的氨基酸序列。本研究的通讯作者 Cees Dekker 教授表示:在过去的30年里,基于纳米孔的DNA测序已经从一个想法发展成为一个实际的工作设备,并成功开发了商业化的便携式纳米孔测序仪,服务于价值数十亿美元的基因组测序市场。在我们的论文中,我们将纳米孔的概念扩展到单个蛋白质的读取。这可能会对基础蛋白质研究和医学诊断产生重大影响。牛津纳米孔开发的纳米孔基因测序仪直接读取氨基酸序列对于如何利用纳米孔读取肽链中的单个氨基酸的特征,这篇论文的第一作者 Henry Brinkerhoff 博士打了一个形象的比喻:“想象一下,一个肽链中的氨基酸链就像一条项链,上面有不同大小的珠子。然后,你打开水龙头,慢慢地把项链送入下水道,也就是纳米孔。如果在某个时间点是一颗大珠子,它会堵塞下水道,那里面的水也就成了涓涓细流。相反,如果是一颗小珠子,那么下水道剩余的空隙就会比较大,水流也更大。”用纳米孔肽阅读器直接读取氨基酸序列因此,通过这项技术,研究人员可以非常精确地测量纳米孔的电流大小,并以此推测相应的氨基酸种类。更关键的是,这个过程并不会影响肽链的完整性,因此我们能够一次又一次地读取单个肽链,然后对所有数据进行拟合,从而以基本上100%的准确率获得肽链的序列组成。解旋酶(红色)拖动连接了多肽(紫色)的 DNA 分子(黄色),使其缓慢通过纳米孔(绿色),从而通过读取电信号(橙色高亮)表征多肽的氨基酸序列。条形码般的识别精度为了进一步验证这项技术的准确性,研究人员改变了肽链的某个氨基酸,然后能够检测到显著差异的电信号,表明该技术是极其灵敏的。事实上,这项新技术在识别单个蛋白质和绘制它们之间的细微变化方面非常强大,打个形象的比方——就像超市的收银员通过扫描条形码来识别每个产品一样。这也可能为未来的蛋白质从头测序提供新的途径。纳米孔肽阅读器可以区分单氨基酸替代的单肽Henry Brinkerhoff 博士表示:这项方法可能为未来蛋白质测序奠定基础,但就目前来说,蛋白的从头测序仍然是一个巨大的挑战。我们仍然需要大量描述来自不同序列的电信号,以便创建一个对应电信号和蛋白质序列的“密码表”。但即便如此,该研究已经能够成功分辨蛋白质序列中的单个氨基酸的改变,这无疑是一项重大进步,也将产生许多直接应用。看见生物学的“暗物质”暗物质,是理论上提出的可能存在于宇宙中的一种不可见的物质,它可能是宇宙物质的主要组成部分,但又不属于构成可见天体的任何一种已知的物质。在细胞中,存在许多不可知的“暗物质”——翻译后修饰导致的数百万种蛋白质变异。这些蛋白质变异无法通过基因序列进行预测,但纳米孔蛋白测序技术的出现扭转了这一情况,利用目前的纳米孔肽阅读器,研究人员可以直接观测这些“生物学中的暗物质”。反复读取单个蛋白以提高准确率为了方便理解,通讯作者 Cees Dekker 教授打了一个比喻:项链上的珠子并不只是大小不同,还可能颜色不同,比如一些红色的珠子上代表附着一个磷酸基,另一些蓝色的珠子上代表附着一个糖基。这些变化对蛋白质功能至关重要,同时也是癌症等疾病的标志。我们的新方法将能够检测到这些变化,从而为癌症等疾病的检测和治疗提供新的理论依据。结语总而言之,这种能够直接读取蛋白质序列的蛋白质组学工具对于细胞生物学的研究和应用具有重要意义。该研究展示了一种基于纳米孔的单分子肽阅读器,它利用DNA解旋酶Hel308将DNA-肽结合物通过生物纳米孔MspA,根据电流变化读取线性化蛋白质的氨基酸序列。更重要的是,这种方法可以区分单个氨基酸的变化,具有高保真度和高通量潜力。这种单分子肽阅读器标志着蛋白质鉴定的新突破,并为单细胞内的单分子蛋白质测序和分类开辟了道路。论文链接:https://www.science.org/doi/10.1126/science.abl4381
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制