当前位置: 仪器信息网 > 行业主题 > >

消旋卡多曲峰鉴别标准品

仪器信息网消旋卡多曲峰鉴别标准品专题为您提供2024年最新消旋卡多曲峰鉴别标准品价格报价、厂家品牌的相关信息, 包括消旋卡多曲峰鉴别标准品参数、型号等,不管是国产,还是进口品牌的消旋卡多曲峰鉴别标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合消旋卡多曲峰鉴别标准品相关的耗材配件、试剂标物,还有消旋卡多曲峰鉴别标准品相关的最新资讯、资料,以及消旋卡多曲峰鉴别标准品相关的解决方案。

消旋卡多曲峰鉴别标准品相关的资讯

  • 蜂蜜中糖类营养物质测定与掺假蜂蜜鉴别
    蜂蜜是一种常见的健康食品,口味香甜,营养丰富。蜂蜜主要成分是糖类,包括单糖、二糖、低聚糖和多糖等,此外还含有人体需要的大部分矿物质和各种维生素、有机酸、氨基酸、生长素等营养物质,所以其药用价值也非常广泛,可作为中成药辅料,也对神经衰弱等慢性疾病有良好的辅助疗效。由于蜂蜜广泛的营养价值,在市场上广受欢迎,但假冒伪劣产品随之而来,且名目繁多,对食品安全构成重大威胁。有关蜂蜜掺假检测方法较多,这里分两类进行简单汇总:现有标准和法规方法、近年来新技术新方法。蜂蜜掺假相关综述文章也比较多[1-3],感兴趣的读者可查阅相关文章。一、现有标准和法规方法国标GB14963-2011食品安全国家标准蜂蜜中定义,蜂蜜是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中明确规定果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。市场上蜂蜜掺假形式主要包括添加葡萄糖、果糖、蔗糖、C3 植物糖浆(甜菜糖浆、大米糖浆)、C4植物糖浆(玉米糖浆、甘蔗糖浆)、高果糖浆和果葡糖浆等等。针对添加C4植物糖浆掺假,依据国标GB/T 18932.1-2002 蜂蜜中碳-4植物糖含量测定方法-稳定碳同位素比率法可鉴定,但其不能鉴别添加C3植物糖浆的蜂蜜。国标GB/T 21533-2008 中,以淀粉糖浆中含有的五糖以上的低聚糖为标志物, 将低聚糖富集后采用阴离子交换色谱-脉冲安培检测器(HPAEC -PAD) 检测,可以实现对蜂蜜中淀粉糖浆掺假的检测。2020版药典也是按照五糖以上的低聚糖为标志物,检测方法为薄层色谱法。国标GB/T 18932.2-2002 蜂蜜中高果糖淀粉糖浆测定方法-薄层色谱法对蜂蜜中寡糖多糖进行定性测定,也可鉴别蜂蜜中是否含有淀粉糖浆。二、近年来新技术新方法现代分析技术的发展为蜂蜜的鉴别提供了越来越多的新方法,屈亮亮等[4]采用基质辅助激光解吸电离质谱(MALDI-MS)分析了蜂蜜及其掺假样品中的糖类以及小分子代谢物。在正离子模式下,通过比较蜂蜜样品和掺假样品的MALDI-MS谱图在多糖聚合度以及糖类分布趋势上的差异,可对掺假样品进行快速鉴别。在负离子模式下通过寡糖异构体组成上的差异,可对掺假样品进行高通量鉴别。刘彩云等[5]采用高效液相色谱-电化学联用技术对中蜂蜂蜜中所含的 12 种酚类化合物进行了鉴别和含量测定,构建了陕西不同地区中蜂蜂蜜的酚类色谱指纹图谱。并对共有峰进行匹配,提取特征峰信息,可对掺假蜂蜜进行鉴别。杨远帆等[6]通过测定蜂蜜和果葡糖浆中脯氨酸含量后发现,蜂蜜中氨基酸的量随果葡糖的掺入量的增加呈线性减小趋势,由此建立了一种基于测定脯氨酸含量鉴别蜂蜜掺假的有效方法。杨心浩等[7]通过研究,建立了采用红外光谱测定蜂王浆品质并基于 NIR 光谱结合水光谱组学建立了检测麦卢卡蜂蜜掺假糖浆的新方法。核磁共振技术结合化学计量学分析方法也成功运用于蜂蜜和其它食品的分析检测中。Bertelli 等[8]比较了一维(1D)和二维(2D)高分辨核磁共振(nuclear magnetic resonance,NMR) 对掺杂糖浆的蜂蜜的检测效果, 发现1D 核磁谱有较高的预测正确率(95.2%)。不同的蜂蜜来源组成不同产生的气味不同, 从而在电子鼻气体传感器中产生的指纹图谱也不同。裴高璞等[9]发现电子鼻对掺假蜂蜜比较敏感,LDA模式识别算法可以将纯蜂蜜样品与掺假蜂蜜样品很好的区分开,识别正确率可达94.7%。江瑶等[10]基于代谢组学技术,采用超高液相色谱串联四级杆轨道离子阱高分辨质谱(UHPLC-Q Exactive Obitrap LC-MS)对样本原始数据进行采集,获取的数据通过多元统计分析实现对比较样品组的区分,找到的可能的标志性代谢物进行二级质谱分析寻找碎片离子,初步完成标志性代谢物的定性工作。对真蜂蜜与已知劣质蜂蜜进行区分。由于蜂蜜成分的复杂性,单一的鉴别方法也可能无法达到鉴定目的,这时可以考虑将多种方法联合使用, 多组分多指标对蜂蜜进行检测。 根据2020版药典蜂蜜含量测定项[11]下方法采用聚合物氨基柱分析4种常见糖,使用电雾式检测器(CAD)替代示差检测器进行测定取得了较好的效果。CAD作为一款通用型检测器,被2020版药典所收载,其具有良好的动态范围、一致的响应和出众的灵敏度,适用于大部分非挥发性和半挥发性有机物的检测,该检测器用于糖的检测,较示差检测器灵敏度更高,而且适用于梯度洗脱条件。图1是CAD测定某蜂蜜样品中4种常见糖的谱图。图1 蜂蜜中4种糖含量测定1:果糖 2:葡萄糖 3:蔗糖 4:麦芽糖近年来常用的蜂蜜掺假手段中,利用果葡糖浆掺假[12,13]形式最为普遍。果葡糖浆是由植物淀粉水解制得,如玉米或红薯淀粉,加工简单,成本低廉。蜂蜜中不含五糖(DP = 5)以上的寡糖,但在果葡糖浆中却广泛存在。2020版药典据此在蜂蜜检查项下采用薄层色谱法对寡糖进行鉴别[11],该方法灵敏度差、误差较大,存在很大的局限性。 赛默飞采用液相色谱法,聚合物氨基柱分离、电雾式检测器(CAD)检测,可以测定不同聚合度的寡糖,并依据五糖(DP = 5)以上寡糖的存在作为蜂蜜中果葡糖浆的判定指标,方法灵敏度高,并且具有很好的普及性。混合对照品与样品测定谱图见图2和图3。图2 寡糖混合对照品1:麦芽糖和异麦芽糖 2:麦芽三糖 3:麦芽四糖 4:麦芽五糖 5:麦芽六糖 6:麦芽七糖图3 果葡糖浆和蜂蜜样品叠加(1-果葡糖浆,2-蜂蜜样品)1:麦芽五糖 2:麦芽六糖图3可以看出该样品中未检出聚合度5以上(DP 5)的寡糖。为了考察方法准确度,我们在空白蜂蜜样品中添加麦芽五糖、麦芽六糖和麦芽七糖进行了加标回收率实验,添加浓度水平分别为为0.10、0.25和0.50mg/g,加标回收率在95.2%-100.7%之间,证明方法准确度较高。另外本方法灵敏度较高,添加1%果葡糖浆即可明显检出。HPLC-CAD方法可以方便地测定蜂蜜中糖类营养物质含量,对掺假蜂蜜中的果葡糖浆具有高灵敏度的检出,方法操作简便,保障了蜂蜜的品质,为百姓餐桌食品安全保驾护航。参考文献:1. 岳锦萍, 徐雨欣, 范佳慧, 邢 璇, 任 虹. 食品安全质量检测学报, 2018, 9(19): 5138-5145.2. 郑优,王欣,毛锐. 食品与发酵科技, 2018,54(6):76-82.3. 杜宗绪.保鲜与加工, 2015, 15(5): 67-71.4. 屈亮亮. 基于MALDI的高通量蜂蜜糖浆掺假检测及植物源鉴别分析[D]. 南昌:南昌大学.5. 刘彩云. 中蜂蜂蜜酚类色谱指纹图谱构建及加工对蜂蜜中酚类物质影响[D]. 西安:西北大学.6. 杨远帆,倪辉,吴黎明.茚三酮法测定蜂蜜及果葡糖 浆中的氨基酸含量[ J].中国食品学报, 2013, 13 (2) : 171 -176.7. 杨心浩,基于红外光谱分析蜂王浆品质及鉴别麦卢卡蜂蜜掺假的方法研究[D].广州:暨南大学.8. BERTELLI D, LOLLI M, PAPOTTI G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance [J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8495-8501.9. 裴高璞, 史波林, 赵镭, 等.典型掺假蜂蜜的电子鼻信息变化特征及判别能力[J].农业工程学报, 2015, 31(1): 325-331.10. 江瑶, 基于代谢组学技术寻找蜂蜜标志性代谢物并探究其应用[D].济南: 山东师范大学. 11. 国家药典委员会 . 中华人民共和国药典 [ M ] . 一部. 北京: 中国医药科技出版社, 2020: 374-375. 12.任雪梅, 胡梅, 周传静, 王文特, 吴裕健. 山东农业科学, 2013, 45(2): 117-119.13.黄文诚, 蜜蜂杂志, 2010, 4: 18-19.赛默飞世尔科技(中国)有限公司刘兴国供稿附:食品安全事关人民群众的身体健康和生命安全,关系中华民族的未来。俭以养德、诚信为本是中华民族的传统美德,保障食品安全更需要尚俭崇信、德法并举。进入全面小康社会,人民群众对食品安全营养健康的需求不断提升,必须坚持“四个最严”,严格源头治理,严格过程监管,严厉打击食品安全违法犯罪。全国食品安全宣传周(China Food Safety Publicity Week),是国务院食品安全委员会办公室于2011年确定在每年六月举办的,通过搭建多种交流平台,以多种形式、多个角度、多条途径,面向贴近社会公众,有针对性地开展风险交流、普及科普知识活动。2021年全国食品安全宣传周活动已于6月8日正式启动,而本次活动的主题为“尚俭崇信 守护阳光下的盘中餐”。作为保障食品安全的不可或缺一环,科学仪器在“保护舌尖安全”的过程中发挥了非常重要的作用!为此仪器信息网在食品安全宣传周期间特推出专题“关注食品安全——仪器人在行动”,一起领略下仪器人守护食品安全的风采!
  • 315 | 守护食品安全,槽头肉鉴别标准品现货供应!
    今年315晚会曝光某些企业用未经严格处理的槽头肉制作梅菜扣肉预制菜。槽头肉,里面含有较多淋巴结和甲状腺,在日常生活中也被称为淋巴肉。国家《动物防疫法》、《生猪屠宰检疫规范》等法律明令禁止含有‘三腺’的肉类流向市场,而‘三腺’指的是甲状腺、肾上腺和病变淋巴腺,由于它们含有大量的内分泌激素和病原微生物,倘若误食了“三腺”,会对人体造成一定的伤害。 国标GB/T 17236-2019 生猪屠宰操作规程也明确生猪必须去除可视病变淋巴结,摘除甲状腺,才能用于食品生产。本次“315晚会”《梅菜扣肉里的“糟心肉”》案例,引发了公众和市场对肉类产品等领域食品安全问题的高度关注,国务院食安办、公安部、农业农村部、市场监管总局今年将在全国范围内部署开展“严厉打击肉类产品违法犯罪专项整治行动”。图片来源:千图网阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,全力配合总局专项整治活动,由于槽头肉通过加工后,外观、口感与正常的肉品没有太大差别,阿尔塔结合淋巴结产生免疫应答导致炎症反应致使炎症相关代谢物变化的情况常备炎症和免疫相关代谢物标准品,用于槽头肉中炎症和免疫相关代谢物的定量分析,结合化学计量学构建槽头肉判别模型,为槽头肉鉴别提供了一种可靠的方法,为打击槽头肉违法使用提供有力的技术支撑,也为食品安全检测提供保障。相关产品:了解相关检测文献,更多相关产品或定制服务,请联系我们。关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 五道检测关口看护原料 鉴别蜂胶真假
    发明专利鉴别蜂胶真假 五道检测关口看护原料  ――杭州蜂之语蜂业有限公司十年潜心钻研蜂产品检测防假技术抵御假冒  “到底现在有多少蜂产品的质量是安全可靠?”  “潜规则存在有10年了,到底有没有人能够鉴别出蜂产品的真伪?”  最近一段时间以来,蜂蜜和蜂胶等蜂产品造假的潜规则被媒体揭露,一时间引起了消费者的高度关注,他们为了自己的消费安全大声疾呼。  其实媒体曝光的这些假冒蜂产品还是有技术手段可以鉴别出来的。在接受记者采访时,不止一位业内专家表示,虽然目前法定的检测标准有些滞后,但是鉴别蜂产品的办法还是有的,只不过是这些办法目前还是属于科学研究的成果,还没有上升到国家标准,还不能成为执法检查的依据。  专家介绍说,浙江大学和一些有良心和责任感的企业在科研和生产实践中积极开展研究,已经形成了几种成熟的鉴别检测方法。杭州蜂之语蜂业有限公司就是这样一家企业,他们自1998年首次发现蜂产品原料存在掺假现象以来,就一直把防假技术研究作为公司的核心工作,并且成功地把这些技术方法应用到实际生产中。   图为质检中心实验室一角。  虽然亚洲养蜂业联合会主席SIRIWAT WONGSIRI教授第一次到这家公司就大声惊叹:“我非常震惊在中国蜂业界能看到如此好的加工企业,我要让全世界的蜂业同仁都来中国看一看。”  虽然这家公司10年来陆续在检测设备和检测技术的软硬件建设上投入了上千万元巨资,建立了国家认可的业内一流的检测实验室,研究出了获得国家专利的真假蜂胶原料鉴别技术,建立了有五道关口的蜂蜜原料检测程序,来保证产品纯正。  虽然最挑剔的日本人也对这家公司产品给予充分肯定,让公司的蜂皇浆产品占据日本市场三分之一的份额。  但是在国内失灵的市场中,它却没有办法从假冒伪劣的包围中脱颖而出,无法有效把自己安全优质的蜂产品送到尽可能多的消费者手中。  这家公司就是杭州蜂之语蜂业股份有限公司。  资料显示,蜂之语有累积10多年的品牌美誉度,有占地约6.7公顷的现代化厂房,数千名员工,还有遍布江浙沪的200多家专卖店和近10万名会员……在很多人看来,拥有这些资本的保健食品生产企业,销售应该至少在5亿元以上,而蜂之语现在的年销售只有1亿元。  公司负责人钱志明不无伤感地说,蜜蜂养殖和蜂产品加工,向来被人称为甜蜜的事业,但是面对横行的假货,他们的内心却是充满了苦涩。面对泛滥的假冒,他们选择了坚守,坚守良心和品质,苦练内功,等待市场规范的那一天。  为什么好产品没有人要。  那是因为假冒太强大,强大到了以假乱真,劣币驱良币的程度。  钱志明说,由于便宜的假货、劣质货太多,慢慢的,蜂之语的新客户少了,老的客户虽然买你的东西,但也怨声载道,以为企业有暴利,一边吃,一边抱怨。  每每听到这样的反馈,钱志明都感觉像是哑巴吃黄连,有苦说不出。  据介绍,从2004年~2007年,“蜂之语”每年的增长速度保持在30%左右,而近两年,这一数字下降到了10%,今年前10个月,销售居然刚刚和上年持平。  尽管日子越过越艰难,但是钱志明和他的“蜂之语”并没有气馁,在国内蜂产品假冒伪劣愈演愈烈的情形之下,依然坚守洁身自好、踏踏实实追求品质。  钱都花在“里子”上  建成国内一流实验室  对于保健品行业来说,“面子”工程最重要。一般企业都会把大把的钞票花在广告宣传上,但是“蜂之语”却反其道而行之,而是把大部分的资金都花在了如何提高产品质量上。而且钱志明和同事们有一个朴实的观点,一流的产品品质需要有一流的检测手段做保证。因而从1995年起,蜂之语就筹资投建检测中心。当业界几乎所有企业还在用人工品尝的方式来测定蜂王浆质量时,“蜂之语”已经开创行业先河,引进全国第一台高效液相色谱仪。  此后企业在检测装备上的投入就没有停止过,为了提高检测水平,先后投入了1000多万元资金购置检测设备。目前,检测中心现有试验面积1500平方米,配有LC/MS/MS液质联用仪、高效液相色谱仪、气相色谱仪、酶联免疫分析仪、紫外可见分光光度计、原子吸收分光光度计等检测设备。  2007年,浙江出入境检验检疫局领导来蜂之语检查指导工作时特别指出,蜂之语检测中心已具备了完善的检测能力,要积极推进国家实验室的认可。为此,蜂之语检测中心开展了包括完善管理制度、规范检测标准、补充各种操作规程、提高检测人员业务素质培训等工作。  2008年,浙江出入境检验检验局将蜂之语公司检测中心列入省级出口企业实验室认可的6家试点实验室之一,并于当年10月顺利通过了专家组的审核。  “完全没有想到在我国蜂产品企业中会有这样的实验室规模和管理水平。”2009年9月,国家认证认可委员会专家在考察了蜂之语的实验室后对蜂之语检测中心大加赞赏,认为蜂之语检测中心在蜂产品行业里是顶尖的。同年10月国家认可委安排专家对蜂之语检测中心进行初评。  2010年4月16日,国家实验室认证认可委员会寄来了认可证书,从此,杭州蜂之语蜂业股份有限公司检测中心,成为我国蜂行业企业中率先获国家实验室认可的企业实验室。  加强与科研院专家的技术合作,积极与质检主管部门的沟通,是“蜂之语”加强企业检测科研实力的另一个有力手段。“蜂之语”与浙江大学签订5年的合作协议,与浙江省中医药研究院,中国养蜂学会等单位形成了长期合作的机制。而与浙江出入境检验检疫局不定期的交流,特别是请浙江出入境检验检疫局的专家每年1~2次为全体职工进行产品质量安全方面的讲座培训,极大地提高了职工产品质量安全意识。同时,“蜂之语”每年定期与日本蜂产品实践家进行技术交流,使“蜂之语”对产品的检测水平和对产品质量要求的把握始终走在前面,保持了“蜂之语”在蜂产品行业中的领先水平。  钻研防假冒技术  率先建立了我国蜂胶指纹图谱库  “蜂之语一直从原料控制着手,与假冒伪劣作斗争,发现行业内有什么问题,马上就解决。”  在蜂之语采访,碰巧看到了一本大红证书,是由杭州市科技局颁发的,原来蜂之语研究的一种鉴别蜂胶真假的科研成果――《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》获得了杭州市科技进步奖三等奖。公司检测中心主任周萍告诉记者,这个鉴别方法是12年前开始研究的,已经在2009年获得了国家发明专利保护。也就是说,蜂之语与假蜂胶的斗争,已经持续了10多年了。  周萍说,蜂之语第一次发现蜂胶有假是在1998年。当时的假蜂胶可以用感官鉴别的方法来作明确判断,但如果制假手段越来越高明,以至于用感官方法不能鉴别真伪的时候,该怎么办?他们首先想到的是应该可以使用仪器检测的手段来解决,于是他们就从利用现有的仪器开始,研究蜂胶真伪鉴别的方法,2006年又去买国际上最先进的仪器,200万元一台,仪器买回来之后,又开始收集全国及世界各国的蜂胶原始样本,全部收集回来,总共是56个样本,然后利用HPLC指纹技术,一个样本一个样本地建立蜂胶的指纹图谱,通过比较液相指纹图谱中的选定共有峰的特征来判断蜂胶真伪,经过多年的摸索,方法不断成熟,最终建立起了我国蜂产品行业的种类最齐全的蜂胶指纹图谱库。  到现在为止,蜂之语是我国蜂产品行业率先拥有这样的蜂胶指纹图谱库的企业,有了这个蜂胶指纹图谱库,什么样的蜂胶产品,只要测出来一对照,是真是假就全都清楚了。  在研究中,蜂之语公司的技术人员先后撰写了《蜂胶在生产加工过程中的几个关键问题》、《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》、《蜂胶在不同载体中的抑菌试验研究》等多篇高水准的论文,发表在国家一级专业期刊《蜜蜂杂志》和《中国蜂业》上。  2009年,蜂之语的蜂胶真伪鉴别技术被国家知识产权局授予了发明专利,专利号是ZL200510060230.8。  从源头防假  五道关口筛查蜂蜜原料  和蜂胶一样,蜂蜜的造假多年来也十分严重,而且造假手段不断升级。  据了解,控制蜂蜜质量的现行蜂蜜国家标准GB18796-2005,是国家强制性标准,其中的真实性指标是用来判断蜂蜜的真伪的,是强制性质量指标,蜂蜜产品必须符合要求。这个蜂蜜的真实性指标就是碳4植物糖,检测标准是秦皇岛出入境检验检疫局发布的国家检测标准GB/T18932.1《蜂蜜中碳-4植物糖含量测定方法 稳定碳同位素比率法》。国家标准出台的当时,确实对蜂蜜的掺假行为起到了很好的抑制作用,蜂蜜市场得到了净化。然而,没有多久,市场上就出现了碳-3植物糖,即以大米、甜菜等为原料的糖浆,而国家标准检测的是碳-4植物糖(即以玉米、甘蔗为原料的糖浆)含量。所以,近来越来越多的碳-3植物糖浆开始用于蜂蜜的掺假,而这种掺假的蜂蜜完全能够通过碳-4植物糖检测,也就是说符合国家标准。因此,现行国家标准已经不适用现在蜂蜜市场的实际情况,大部分掺假蜂蜜按现行国家标准检验都符合要求,而新版蜂蜜国家标准正在修订之中。这也是不法厂家造假猖獗的一个原因。  为了保证自己不受假冒侵害,蜂之语潜心搜集国内外各种检测方法并结合自己的研究,制定了蜂蜜原料的五步检测法,即每一批蜂蜜原料在入库前都要经过五道检测关口。  第一关是蜂蜜感官鉴别。  第二关是国家标准要求的碳-4植物糖检测。  第三关是TLC试验:通过薄层层析的方法检测蜂蜜中的寡糖。  第四关是羟甲基糠醛(HMF)含量检测。  第五关是蛋白质含量分析。  在五次检测中只要有一项达不到要求,原料都被退回。  要保证蜂蜜的真实性,还必须从源头和原料抓起。蜂之语还建立了一套严密的蜂农管理制度,把握好蜂农源头关。蜂之语早于2002年建立了蜂业合作社,对加入合作社的蜂农进行信誉评定、登记,并报出入境检验检疫局备案,公司聘请专家、技术员对合作社蜂农进行养蜂指导和现场养蜂生产监督,确保产品的真实性。  在生产过程中,蜂之语蜂蜜还需要检测二次质量指标,一次是在浓缩后,检测蜂蜜的水分、色度和微生物 另一次是灌装前,检测同样项目,以监控生产过程中是否存在异常,确保生产的顺利进行。  蜂之语蜂蜜在包装完毕前要取样按照国家标准要求进行检测,另有留样备查。只有成品检测结果完全符合国家标准要求,才可以出具产品检验合格证。  整个生产进程中,蜂之语蜂蜜生产车间的洁净度为10万级,完全按照保健食品GMP的要求进行生产环境洁净度的设计要求,其生产过程的生产管理要求也是完全按照GB17405保健食品GMP的要求。同时,执行ISO9001国际质量管理体系标准、ISO22000(HACCP)国际食品安全管理体系标准、ISO14001国际环境管理体系要求,四大管理体系整合,对产品生产全过程进行控制与监督,确保产品质量。  相关链接  蜂之语蜂蜜原料  五道检测关口  第一关是蜂蜜感官鉴别:蜂蜜与高果糖浆有着不同的感官,蜂蜜有花香,味鲜而甜润略酸,滋味饱满,富于光泽,而糖浆就没有。掺入糖浆的蜂蜜,天然的花草香气弱小,味道也比较单一,口感不丰满,没有蜂蜜独有的鲜味,颜色比不掺假的蜂蜜要浅。  第二关是碳-4植物糖检测:这是目前蜂蜜国家标准真伪鉴别的一个指标,市场中仍有碳-4植物糖的假蜜在流通,因此很有必要检测。  第三关是TLC试验:即通过薄层层析的方法检测蜂蜜中的寡糖,因为高果糖浆在制备过程中,淀粉中的高分子糖类被残留在蜂蜜中,检测这些糖能够判定蜂蜜的真伪。出口日本的蜂蜜必需通过TLC试验,我国有一个国家检测标准:GB/T18932.2-2002蜂蜜中高果糖淀粉糖浆测定方法――薄层色谱法。现在已经有部分糖浆生产企业能够生产高纯度的产品,能够通过TLC的试验。  第四关是HMF的控制检测:蜂之语研究发现,新鲜的蜂蜜羟甲基糠醛(HMF)含量为零,随着贮存时间延长、或者蜂蜜加工时受热,其含量会慢慢升高 而高果糖浆是淀粉的水解物,淀粉水解、脱色精制后,最后需要加热浓缩,以达到蜂蜜相似的水分含量,才有利于产品的保存。经过检测,糖浆中的HMF在16mg/kg~163mg/kg之间,因此掺入糖浆的蜂蜜原料HMF必须被检测出来。国家《蜂蜜》标准中HMF的质量标准是小于40mg/kg,而蜂之语原料蜂蜜中HMF的质量标准是小于2mg/kg。  第五关是蛋白质含量分析:蜂蜜因为蜜蜂在采蜜时混入蜂花粉,因此蜂蜜中有一定的蛋白质,其含量一般为0.1~1%之间,如果原料中的蛋白质未被检出,或者小于0.05%,则怀疑掺假。  蜂胶、树胶和掺黄酮类化合物的指纹图谱     典型的蜂胶HPLC指纹图谱(1、2、3、5号峰信号强)     典型的杨树胶HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱)     典型的杨树胶中掺入芦丁、槲皮素的蜂胶制品HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱,芦丁、槲皮素峰信号异常高)
  • 百灵威农药残留标准品助您鉴别毒茶
    我g作为茶叶生产、消费和输出的大g,有着悠久的茶文化,但是茶叶中农药残留c标却时刻威胁茶文化的传承和人们的身体健康。研究表明,饮用农残c标茶叶,可致癌、损害生育能力和胎儿发育,甚至损害人的神经系统和遗传基因。y边是农残c标质量堪忧的茶叶,y边是浑然不觉、盲目饮用消费,茶叶是否正悄悄成为&ldquo 荼叶&rdquo &mdash &mdash 荼毒生灵之叶?百灵威提供与g家检测标准相符合的农残标准品,帮助各质检单位及时发现有害茶叶,以保障大家饮茶安全与身体健康。百灵威大型标准品库产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照品都达到或c过美g化学会z新的分析试剂标准。所有分析标准品都符合ISO34以及ISO 17025认证,并可溯源到NIST、BAM或IRMM等g立计量科学研究院,可满足z高质量控制体系要求。每份标准样品均附带原批次质检报告和材料安全数据卡,并且可以为用户提供专业标准品的定制服务。■ 茶叶中常检农残标准品产品编号产品名称包装目录价P-445N联苯菊酯Bifenthrin10 mg¥590P-595N噻嗪酮Buprofezin10 mg¥450P-577N杀螟丹Cartap10 mg¥730P-447N苯醚甲环唑Difenoconazole10 mg¥309P-377N除虫脲Diflubenzuron10 mg¥169P-091N&alpha -硫丹Endosulfan I10 mg¥309P-092N&beta -硫丹 Endosulfan II10 mg¥309P-015N草甘膦Glyphosate10 mg¥169P-057N三氯杀螨醇Kelthane10 mg¥309P-032S灭多威Methomyl1 mg/mL in MeOH1 mL¥518■ 其他相关分析耗材产品产品编号产品名称包装目录价116481甲醇, 99.9% [HPLC/ACS]4 L¥180 134752乙腈, 99.9% [HPLC/ACS]4 L¥400 187553水 [HPLC]4 L¥375 S02302J&K C18柱(250 mm× 4.6 mm, 5 &mu m)1 支¥2,800 S010125-3002AB-1气相柱, 30 m × 0.25 mm × 0.25 &mu m1 支¥3,960ZTLMGL-4.1针筒式滤膜过滤器 Ф13 0.2 &mu m(有机)100 片/包¥150 WKLM-3微孔滤膜 Ф50 0.45 &mu m(水相)100 片/包¥380 901275J&K瓶口分配器(5.0-50.0 mL)1 支¥2,000 958945J&K单道手动可调移液器(100-1000 &mu L)1 支¥340 928429J&K磁力搅拌器(数显、加热、不锈钢)1 台¥3,112 5182-0553螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫)100 个/包¥527 5182-0728聚丙烯螺纹瓶盖(无隔垫)100 个/包¥109 5183-4759高j绿色隔垫(带预穿孔)50 个/包¥699 CER-001-11.5 mL标准毛细储存瓶1 个¥240 以上价格仅供参考,详情请致电400-666-7788!
  • 功能饮料尚无国家标准 不少产品夸大宣传
    夏日到来,各种饮料又进入热销时节,在花样繁多的饮料市场中,功能性饮料因为具有一些所谓的&ldquo 功能&rdquo 而备受钟爱。记者调查后发现,这些功能饮料并无统一的国家生产标准,其中不少存在着夸大宣传、忽悠消费者等问题。  突飞猛进种类繁多  6月11日,记者走访京城商超发现,商超在饮品区专门开辟了功能饮料的专区,也颇受消费者欢迎。  记者看到,在超市中最常见的功能饮料大致有这么几种:以红牛、力保健、黑卡、乐虎为代表的能量饮料,号称抗疲劳,增加动力 以佳得乐、尖叫、宝矿力水特为代表的运动饮料,号称补充电解质解&ldquo 体渴&rdquo 以脉动、水溶C100、酷乐仕为代表的维生素饮料,号称可补充维生素等各种营养物质 以乌梅、陈皮、真田、葛根等为代表的含植物药物成分的饮料,号称可解油腻、清肺、降火 以味全等为代表的益生菌饮料,号称可增加肠蠕动,预防消化不良 以九朵玫瑰为代表的美容饮料,号称可补充胶原蛋白,美容养颜&hellip &hellip   在朝阳区一家大型超市中,记者注意到,整排饮品货架大约摆放了十余种功能饮料,包括脉动、乐虎、红牛、佳得乐等多个品牌,在饮品货架中大约占据了30%的份额。超市工作人员告诉记者,&ldquo 这些饮料现在卖得很多,尤其是年轻人特别爱喝。&rdquo   记者在超市中随机采访了几位顾客,大多数人认为功能饮料比普通饮料更健康,而且能补充人体消耗的养分。&ldquo 我经常喝点功能性饮料,能补充营养,特别是夏天出汗多,喝点功能性饮料解暑又补充体力。&rdquo 市民张先生说。  根据有关数据显示,功能饮料在近几年的发展可谓突飞猛进。中投顾问食品行业研究员梁铭宣表示,功能饮料正处于一个加速发展期,上市品种不断增加,品类进一步丰富,消费者认可度稳步提升,销售量增长迅速。&ldquo 整个软饮料领域,国内功能饮料表现较为良好,其在软饮料的市场份额在8%左右。&rdquo   安全性受质疑  现代人越来越追求健康,加上都市人生活节奏快、压力大、亚健康状态普遍,功能饮料虽然切合人们追求健康的需求,但也受到不少质疑。  今年3月份,某媒体向第三方权威检测机构送检了7个品牌的9款功能性饮料,对其安全性和品质进行了检测。检测结果显示,国内俩着名品牌饮料的配方中,有可能会生成微量国家二类精神药品安钠咖。同时大部分产品的维生素B含量均超过正常适宜摄入量 而作为非保健食品的某品牌,则检出禁止添加的咖 啡因。  公开资料显示,安钠咖属中枢兴奋药,学名苯甲酸钠咖啡因,属我国严格管制的精神药品。安钠咖作为兴奋型的精神药品,用于治疗中枢神经抑制以及麻醉药引起的呼吸衰竭和循环衰竭等症。  尽管涉事品牌随后声明,产品配方经过国家卫生部批准,是已经销售多年、经过市场认可的成熟产品,请消费者放心饮用。但不少消费者仍产生安全性疑虑。&ldquo 这些抽检的功能性饮料如果真的如报道所说,那我们消费者喝多了,会不会对身体有伤害。&rdquo 市民周女士说。  不戴蓝帽子乱吹功效  功能饮料在高速发展中存在概念满天飞,夸大功效等乱象,甚至一些没有蓝帽子的普通饮料也宣传功效。  &ldquo 要美丽,喝爱透&rdquo ,这是贵州百灵爱透胶原蛋白饮品主打的广告语,其宣称添加了&ldquo 1300毫克阿拉斯加极致胶原&rdquo ,可以美容、保护关节 老北京饮料九龙斋酸梅汤主打选用了乌梅、山楂等纯天然原料,并宣传&ldquo 解油腻,喝九龙斋&rdquo 现在空气污染,pm2.5超标成了热点话题,立刻有厂家推出&ldquo pm2.5时代的饮料&rdquo &mdash &mdash 真田枇杷植物饮料,声称可以洗心、润肺、清霾粒&hellip &hellip   记者在国家食品药品监督管理总局网站查询到,爱透、九龙斋、真田等这些饮品并非保健食品,只是普通饮料。国家批准的保健食品功能有27个,每一款保健食品在申报的过程中,国家都有严格的要求,要经过各项实验、检验后才能认定其功能,比如可以提高免疫力等。  中国食品与营养信息交流中心专家阮光锋表示,这些饮品没有保健食品的标志蓝帽子,就在广告和产品介绍中宣传其各种功效,是一种违规行为,涉嫌虚假宣传。&ldquo 一些普通食品宣传功效也根本就不在国家规定的保健食品功能范围,如解油腻,清霾粒,这些宣传很容易误导消费者。&rdquo   据了解,如果是通过保健食品审核的饮料,在产品包装上都有一个类似草帽图案的标志,上面写有&ldquo 保健食品&rdquo ,而且有批准文号,写有&ldquo 卫食健字× × × 第× × × 号&rdquo ,目前市场销售的功能饮料中,只有红牛、力保健、启力、乐虎等少数几种戴上了&ldquo 蓝帽子&rdquo ,而其他功能饮料,仅有&ldquo 食字号&rdquo 标志,归类为普通食品。  缺少国家生产标准  为何众多宣传功能的普通饮料不去申请保健食品呢?业内人士表示,很多企业不去申请保健品,是因为审批过程复杂,耗时长,一个保健食品从上报到最后完成审批大约需要两年的时间,而食品是个快销品,很多企业不愿意等那么久。  阮光峰说,目前保健食品的功效是检验得比较严格的,要通过专家的各种评估。而非保健食品就没有这个评估环节,通常经过卫生、质检等部门的备案和认证,就可以生产上市,这些部门主要是从食品安全方面检测,至于产品的保健功效,是无人检测也无人保证的。&ldquo 还有一个重要因素就是一些饮料所宣称的功能概念根本就不在保健食品的功效范围,所以一些企业就索性不申请,大打擦边球。&rdquo   梁铭宣则表示,功能饮料夸大宣传等现象的一大重要因素是国内尚无功能型饮料的行业标准,这也一定程度上而言为企业的违规操作提供了可能性。&ldquo 中国软饮料分类标准中并没有功能性饮料,只有特殊用途饮料,包括运动饮料、营养素饮料和其他特殊用途饮料等。&rdquo   资料显示,目前只有运动饮料具有国家制定的技术标准&mdash &mdash 《运动饮料标准技术要求》。除此之外,国内尚无针对功能性饮料制定的国家及行业标准,也没有一个国家或者行业标准能够对功能性饮料作出准确解释。  梁铭宣还表示,国内功能饮料人均消费量仅是全球水平的1/10,所以未来市场空间也较大。但夸大宣传等问题或将使整个功能性饮料陷入恶性竞争,于单个品牌、整个行业的形象和长远发展均是不利的,如今随着市场参与者增多、竞争日趋激烈,企业推出功能饮料需要卖点,因此企业随意添加或者夸大宣传的动机更加明显。建议国家相关部门制定行业标准,并注重事中和事后监管。
  • 假冒蜂胶或致重金属中毒 专家支招如何鉴别
    蜂胶,无论是保健,还是治病, 已被公众所认同。但最近一些不良企业用树胶冒充蜂胶,或在胶囊中灌注酱油的造假行为被曝光之后,立刻引起人们的质疑和谴责。蜂胶为什么具有保健功能?它适 应于哪些人群?怎样才能买到质量好的蜂胶?假蜂胶对人体有何危害?下面,让我们听听专家的解答。  天然配比是保健关键  营养专家认为,蜂胶是一种纯天然的健康物质,对人体的循环系统、神经系统、代谢系统和免疫系统具有综合性作用。蜂胶的保健治疗作用,关键不在于 高含量的黄 酮,而在于它绝妙的天然配比,以及多种物质起到多病同治的目的。因此,我国批准蜂胶的保健功能是调节血脂、调节血糖、调节免疫。  蜂胶为 什么具有这样的作用?专家介绍,蜂胶是蜜蜂从植物芽孢或树干上采集的树脂,混入其上腭腺、蜡腺的分泌物加工而成的一种胶状物质,含有大量的黄酮类、萜烯类 等化合物以及人体必须的多种微量元素和多种维生素。因为蜂胶生产量少,收集困难,特别是具有特殊的保健功能,被人们誉为“紫色黄金”。  蜂胶含有300多种天然成分、30多种黄酮类化合物,可用于多种疾病的防治,如预防流感、消炎抗菌、治疗溃疡、健肠胃等。  医疗专家说,蜂胶的主要作用是清理血管、降血脂等,适应于高血脂、高血糖、免疫力低下人群使用。但它毕竟是一种保健品,保健品不等于药品,有病 还应看大 夫。他们提醒,保健品也不能当饭吃,也有一定的服用数量、疗程以及禁忌,消费者要根据自己的实际情况,在医生指导下合理服用。  多种多样的鉴别方法  专家指出,蜂胶的功效取决于其300多种天然有效成分,并非单一的黄酮,总黄酮含量并不是鉴别蜂胶好坏的标准。目前市场上大部分蜂胶只具备国家批准功能的一项或两项,少数蜂胶才能同时具备3项功能。  专家说,购买蜂胶时,我们应知晓其主要特性和鉴别方法。注意查看是否有正规的国食健字的批准文号,可先到国家食品药品监督管理局官方网站上查找 一下该产 品是否通过国家的GMP认证及进口蜂胶有没有《进口保健食品批准证书》 正宗蜂胶滴到玻璃杯中的水面上,可形成不易消散的油膜,而树胶滴入水中后,会迅速 扩散到杯壁上 蜂胶闻起来有芳香气味,而树胶则有一股恶臭味 正宗蜂胶摸起来黏度较大,树胶黏度明显不够。同时,还可用眼看来鉴定蜂胶的外观和颜色 用口 尝去鉴定蜂胶的味道 用95%的酒精溶解的方法去鉴定蜂胶的纯度。  专家对一些人喜爱用蜂胶软胶囊的做法持反对意见。这是因为软胶囊在经过高温定型时,大量珍贵成分流失,大幅降低了蜂胶特有功效。专家说,蜂胶是否易吸收在于蜂胶分子结构,并非取决于产品剂型,消费者认为软胶囊好吸收的观点是错误的。  假冒蜂胶有较大危害  近年研究报告表明,大约两万只蜜蜂只能生产20千克的蜂胶,而我国每年的蜂胶原料产量为200多吨,而市场上销售的产品竟然达到500吨之多。可见,有超过一半的蜂胶产品都是假冒或者真假参半的。  在利益的驱动下,一些违规厂家生产的假冒产品是数不胜数,造成蜂胶市场极度混乱。很多蜂胶产品包装上都标称“天然蜂胶”字样,实际上主要原料却 是杨树 芽。 这些杨树芽经浸泡、过滤、沉淀、提纯等多道工序,再加入少量蜂胶,即可被加工成类似蜂胶的黑色胶状固体。树胶要变成蜂胶,厂家还偷偷加了一些槲皮素 和芦丁,提高蜂胶中的黄酮含量,以应对检测。其实,这些人工黄酮对人体是有害的。  专家指出,蜂胶的保健功能是其天然配比形成的,人为添 加槲皮素和芦丁等物质来提高蜂胶中的黄酮含量,一是破坏了蜂胶成分的原有配比,二是起不到养生保健作用。假冒蜂胶因多项技术不过关,会给人体造成极大危 害。如将没有经过提纯过滤的毛胶加入到胶囊里面,毛胶里面的病菌和重金属严重超标,会造成人体重金属中毒。又如将灌注酱油胶囊冒充天然蜂胶,自然没有蜂胶 的保健功能。因此,专家提醒大家,买蜂胶千万不要图便宜,万一食用了劣质蜂胶或假胶,既损害了身体,又耽误了病情。
  • 专业蜂蜜测评:百花和同仁堂麦卢卡蜂蜜涉嫌造假
    真蜂蜜?假蜂蜜?蜂蜜的营养价值有多大?  ——8款蜂蜜测评报告  蜂蜜,被誉为大自然最完美的营养食品之一。  从事蜂蜜的生产与加工,被称为“甜蜜的事业”。  然而,这些也可能只是自赋的光环和营销的话语。  100%纯正蜂蜜?蜂蜜还能杀菌?要知道,多年来,蜂蜜行业的造假技术一直在和监管(检测)赛跑。  两年之后的2016年1月,《消费者报道》再向权威第三方检测机构送检了中粮山萃、汪氏、百花牌、冠生园、农大神蜂、宝生园等6款洋槐蜜,以及同仁堂(28.830, 0.00, 0.00%)和康维他2款麦卢卡蜂蜜。  通过检测糖浆、淀粉酶、羟甲基糠醛、甘油等新鲜度和品质指标,葡萄糖、果糖等特征性指标,以及氯霉素、菌落总数等安全性指标,本刊再追踪蜂蜜的掺假行为,并衡量蜂蜜的品质变化。  本次检测结果显示,百花洋槐蜜和同仁堂麦卢卡蜂蜜均有掺杂糖浆,涉嫌造假。汪氏洋槐蜜菌落总数超标,宝生园延安刺槐蜜品质排名则靠后。  如何选购一款既新鲜品质又好的蜂蜜?看完测评报告或许你就有了答案。  检测结果显示,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜在糖浆标志物呈现阳性,涉嫌造假。农大神蜂洋槐蜜葡萄糖和果糖总含量较低,在该项目评级中低于其它5款洋槐蜜。  测评报告一:百花牌洋槐蜜、同仁堂麦卢卡蜂蜜掺杂糖浆,涉嫌造假  天然、甜蜜、滋润的蜂蜜深受人们喜爱的同时,也深陷造假的困扰。  蜂蜜造假,是蜂蜜市场持续不变的话题,其造假手段又多以掺糖为主。  你买的蜂蜜掺糖了吗?  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测蜂蜜中是否掺杂糖浆。  检测结果显示,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜在糖浆标志物检测(SMX)指标中呈现阳性,涉嫌造假。农大神蜂洋槐蜜葡萄糖和果糖总含量较低,在该项目评级中低于其它5款洋槐蜜。  百花和同仁堂麦卢卡蜂蜜涉嫌造假  蜂蜜是否造假是消费者在选购蜂蜜类产品时所关心的头等大事。  根据本刊的蜂蜜调查问卷结果显示,143名消费者中,有近一半的消费者在选购蜂蜜时关心造假问题。(如图1)  “普通的消费者很难从口感就能分辨出蜂蜜是否有掺假,因蜂蜜本身的含糖量较高,很甜,而企业在掺假过程中也会选择甜味很高的糖浆来迷惑消费者的口感。”国家一级营养师焦通接受《消费者报道》记者采访时说。  他指出,企业之所以在蜂蜜中掺杂糖浆是为了以次充好,以假乱真,降低成本,谋得暴利。  在《GH/T 18796-2012》蜂蜜的行业标准中规定:蜂蜜中不得添加当前明确或不明确的添加物。  “蜂蜜中掺入糖浆是欺骗消费者的行为。但其鉴别起来却难度颇大,当前蜂蜜的国家标准《GB 14963-2011 蜂蜜》尚不能解决这个问题。”广东省昆虫研究所蜜蜂与蜂产品研发中心负责人罗岳雄强调。  中国蜂产品协会曾公开表示,在一些地区甚至出现了掺假蜂蜜也能符合国家标准的现象。  江苏出入境检验检疫局动植物与食品检测中心专门负责检测蜂蜜的工程师费晓庆告诉记者,随着糖浆制作工艺的提升,蜂蜜鉴定的难度也越来越大。对于像木薯、小麦等新型糖浆,目前还没有可靠的检测方法。  目前对掺假蜂蜜鉴别的方法主要有SMR (大米糖浆检测)、SMB (甜菜糖浆检测)和SMX (糖浆标志物检测)等。  2013年12月,《消费者报道》曾发布8款蜂蜜测评报告,所采用的鉴别糖浆的方法是碳-4植物糖。而如今,掺糖的技术日新月异,掺杂手段也由掺杂一种升级为多种混合糖浆。  “SMX糖浆标志物检测方法可以鉴别蜂蜜中是否掺入了糖浆,但具体掺杂的是什么糖浆,则不能辨别。如果检测结果呈阳性,代表蜂蜜有掺糖浆。”费晓庆表示。  本刊此次实验室盲检检测结果显示,同仁堂麦卢卡蜂蜜和百花牌洋槐蜜在糖浆标志物检测的测试中呈阳性,检出糖浆,涉嫌造假。(如图2)  对于检测结果,百花牌洋槐蜜的生产商北京百花蜂业科技发展股份公司的相关负责人接受记者采访时表示其每批原料都会使用包括SMX方法在内的多种方法检测合格后才入库,市售产品并没有掺杂糖浆。  麦卢卡蜂蜜是一种新西兰的进口蜂蜜。在本刊测试结果知会之后,北京同仁堂健康药品经营有限公司亦将同一批次的产品送检测机构进行检测,不过,从其提交给本刊的检测结果来看,糖浆标志物检测呈阴性,与本刊结果相反。“不排除检测方法存在一定的不确定性。”同仁堂相关人士回应本刊。  不过,根据本刊了解,这一检测方法是目前行业内比较认可的检测方法,在本刊前期将检测方法知会受测企业时,企业亦表示认可。而且,这一方法也得到了国家食药监总局的认可,并有意列入新的国标。  同仁堂方面亦表示,也已将其他批次的在售蜂蜜送检,保证各产品的质量。“从我们已送检的其他批次产品来看,并未发现掺假情况。”  蜂蜜掺假对糖尿病人不利  蜂蜜掺糖是否会给消费者的身体健康带来一定的隐患?  大连工业大学食品学院教授农绍庄表示,对于普通消费者它不会危害身体健康。但特殊人群如糖尿病患者,会无形中摄入更多的未知糖分,给身体健康带来一定的风险。  为什么企业存在掺糖浆的造假行为,但关于辨假的检测方法却尚未写入国家标准呢?  国家蜂产品质量监督检验中心实验室负责人李子健曾在 “国标《GB 14963 蜂蜜》的修订意见”中指出,蜂蜜中添加其他物质是掺假、造假、贸易欺诈的行为,而非食品安全问题。  此外,多方专家均对记者表示其背后的原因很复杂,如果把检测方法列入国标,可能会造成部分市售蜂蜜的不合格,这恐怕会触及到企业利益。  农大神蜂葡萄糖和果糖总糖含量较低  蜂蜜的主要成分是糖,包括果糖、葡萄糖和蔗糖。其中,果糖和葡萄糖的总含量是划分蜂蜜等级的一个重要理化依据。  一位业内人士指出,蜜蜂在采摘、酿造的过程中会将花蜜中的蔗糖转化为葡萄糖和果糖,未经充分酿造的蜂蜜产品这两种单糖含量会相对较低。  在《T/CBPA 0001-2015中国蜂产品协会团体标准》中规定:合格蜂蜜中葡萄糖和果糖的含量应不低于其质量的60%,优级品不低于65%,特级品不低于70%。  本刊关于葡萄糖和果糖总含量对比检测结果显示,6款洋槐蜜中有5款达到了特级要求,农大神蜂仅为优级品。(如图3)    检测结果显示,冠生园洋槐蜜和康维他麦卢卡蜂蜜的品质较优。宝生园洋槐蜜的淀粉酶值为2.7,羟甲基糠醛含量为54.4mg/kg,属8品牌中品质最差的蜂蜜。  测评报告二:宝生园品质较差 两款麦卢卡蜂蜜符合标称  色泽明亮,入口新鲜?你真的知道如何分辨蜂蜜的品质吗?  消费者单从蜂蜜的口感和外观很难比较蜂蜜的品质好坏。  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测反映其品质的淀粉酶酶值、羟甲基糠醛含量,氯霉素的残留和麦卢卡UMF。  检测结果显示,宝生园洋槐蜜的淀粉酶值和羟甲基糠醛均未达到《GH/T18796-2012供销合作行业标准》标准要求,品质较差。8款蜂蜜均未检出氯霉素,2款麦卢卡蜂蜜其UMF等级与标签相符。  冠生园洋槐蜜的品质较好  “淀粉酶值和羟甲基糠醛是判断蜂蜜品质的重要指标。”大连工业大学食品学院教授农绍庄接受本刊记者采访时强调。  国家高级营养师李岩冰指出,蜂蜜产品中的淀粉酶主要来自于蜜蜂自身分泌的唾液,它是蜂蜜主要的活性物质和生物酶。蜂蜜中的羟甲基糠醛主要由葡萄糖或果糖转化而来。  “刚采收下来的蜂蜜羟甲基糠醛含量甚微甚至没有,它是由于储存温度高或者经过加热产生的,后期含量越高代表加工、储存条件对蜂蜜的品质破坏程度越大。”江苏出入境检验检疫局动植物与食品检测中心专门负责检测蜂蜜的工程师费晓庆指出。  不过,蜂蜜的国家标准《GB 14963-2011》并未对这两项指标做出要求。因此此次测试本刊同时参考了《GH/T18796-2012供销行业标准》和《T/CBPA 0001-2015中国蜂产品协会团体标准》。  在《GH/T18796-2012供销行业标准》中,对于蜂蜜的淀粉酶值和羟甲基糠醛的要求是不低于4和不高于40mg/kg 在《T/CBPA 0001-2015中国蜂产品协会团体标准》中规定优级品蜂蜜淀粉酶值不低于4,羟甲基糠醛不高于40mg/Kg 特级品蜂蜜淀粉酶值不低于8,羟甲基糠醛不高于20mg/Kg。  检测结果显示,冠生园洋槐蜜和康维他麦卢卡蜂蜜的品质较优。宝生园洋槐蜜的淀粉酶值为2.7,羟甲基糠醛含量为54.4mg/kg,属8品牌中品质最差的蜂蜜。(如图4)    对于该检测结果,广东省昆虫研究所蜜蜂与蜂产品研发中心主任罗岳雄表示酶值也与品种、产区、气候等多方面因素有关,部分广东的蜂蜜会达不到标准要求。  农绍庄则指出,淀粉酶值较低主要和两方面因素有关:一是蜂蜜的储藏条件不佳,温度较高,导致酶值下降 二是有可能蜂蜜采收后进行了加热的加工程序,导致了酶值下降。  同时农绍庄也指出,羟甲基糠醛超标并不会对人体造成危害,它只是蜂蜜储存过程中的一个产物。  8款蜂蜜均未检出氯霉素  氯霉素是一种强力抗生素,只允许作为药物用于人。氯霉素残留量曾是中国企业蜂蜜出口所遭遇的壁垒之一。  食品工程博士云无心曾撰文指出,蜜蜂容易感染一种细菌从而产生“幼虫腐烂病”。这种病对蜂产业危害极大,可能会导致整个蜂群死亡。在其他手段都使用无效的情况下,有些蜂场用抗生素来处理蜂房,控制幼虫腐烂病。这就导致蜂蜜中可能会检出氯霉素残留。  本刊此次检测结果显示,8款蜂蜜氯霉素均小于0.1ug/Kg,因此8款产品不存在氯霉素残留的安全性问题。  麦卢卡蜂蜜因其含有独特的抗菌成分独麦素(UMF)而倍受追捧,行业也以UMF的高低对麦卢卡蜂蜜进行分级。  UMF是麦卢卡蜂蜜中含有的独特抗菌活性物质,UMF标注越高,其抗菌作用越明显。  本刊对两款麦卢卡蜂蜜的UMF检测结果显示,其UMF含量均符合其标称值UMF10+。  检测结果显示,汪氏洋槐蜜菌落总数超过国家标准要求,较容易腐败。宝生园和冠生园洋槐蜜发酵程度较高,容易变酸。  测评报告三:汪氏洋槐蜜菌落总数超标 冠生园洋槐蜜易变酸  网上传言,1913年美国考古学家在埃及金字塔古墓中发现了一坛蜂蜜,经鉴定这坛蜂蜜已历时3300多年,但一点也没有变质,至今还能食用。  普通消费者有时对这样的传言难辩真假。蜂蜜是否真的具有永久保质期?  这得看是在什么样的使用和保存条件下。2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测其菌落总数和甘油含量,衡量其保存效果。  检测结果显示,汪氏洋槐蜜菌落总数超过国家标准要求,生产卫生条件较差。宝生园和冠生园洋槐蜜发酵程度较高,容易变酸。  汪氏洋槐蜜卫生条件较差  美国食品药品监督管理局(FDA)给出了一个在没有食品保质期标注的情况下,未开封、未经烹饪食物的建议保质期。其中蜂蜜在常温条件下,属于永久、不过期食品。  中国农业大学食品学院副教授范志红也曾撰文指出,天然成熟蜂蜜中,总的糖含量超过85%,足以抑制各种微生物。  蜂蜜的杀菌作用主要体现在其高渗透压和多种抑菌元素的综合作用。  “蜂蜜的含糖量高达70%以上且水分活度低,渗透压极大。当细菌与蜂蜜相遇时,其本身的渗透压低于蜂蜜,会导致细胞液从细胞膜中渗出,脱水死亡。此外,蜂蜜中含有过氧化物等成分,具有杀菌、抑菌能力。”大连工业大学食品学院教授农绍庄解释说。  食品工程博士云无心指出,正常情况下蜂蜜中的菌落总数含量很低,不会超出国家标准的要求。如果菌落总数超标了,则意味着加工过程中清洁程度不够或者产品不纯。  在《GB 14963-2011》蜂蜜的国家标准中对菌落总数的要求是不高于1000CFU/g。  本刊检测结果显示,汪氏洋槐蜜菌落总数1100CFU/g,未达到国标的要求。(如图5)    “菌落总数超标可能是蜂蜜在采收加工等过程受到了微生物污染或其糖浓度不足,部分微生物只是被抑制,但并没有被杀死,达不到杀菌效果。”大连工业大学食品学院教授农绍庄指出。  但是,从本刊对葡萄糖和果糖的检测结果来看,汪氏洋槐蜜的含糖量并不低,葡萄糖和果糖总含量达到73.18%,处于中上水平。(详见测评报告1)  广东省昆虫研究所蜜蜂与蜂产品研发中心负责人罗岳雄认为有可能是盛装蜂蜜的容器被污染了。  对于检测结果,江西汪氏蜜蜂园有限公司的相关负责人回应,汪氏的内控标准是不高于500CFU/g,其对自己的产品很有信心。  那么,如若食用菌落总数超标的蜂蜜是否会带来安全隐患?  罗岳雄表示,现在还不能下一个定论,无法判断是何种微生物超标,如是有害微生物则需要引起警惕。  国家高级营养师李岩冰表示,根据自己以往的经验,蜂蜜菌落总数超标的情况很少见,不过耐高糖或高盐的嗜渗酵母超标的情况倒是遇见过。  冠生园洋槐蜜发酵程度较高,或已变酸  “蜂蜜中的甘油主要由蜂蜜中存在的一些嗜渗酵母菌,发酵葡萄糖产生。其含量与嗜渗酵母菌数量,以及发酵的程度有关。”李岩冰强调。“如果其含量过高,则该款蜂蜜或许已经变酸。”  在《T/CBPA 0001-2015中国蜂产品协会团体》的标准中规定:特级品的蜂蜜中甘油含量不高于300mg/Kg。  本此测评结果显示,中粮山萃洋槐蜜的甘油含量最低,达到特级品的要求。宝生园和冠生园洋槐蜜的甘油含量较高,或已变酸。(如图6)    对此冠生园相关负责人解释:蜂蜜中的甘油变化,通常与蜂蜜的储存条件、储存时间、蜂蜜产地、品种、养蜂采蜜方式等因素有关,一般来说,若蜂蜜储存时间较长或贮存温度较高,甘油会有所升高。同时,企业对与本刊同批次的洋槐蜜进行检测,甘油含量低于1502mg/Kg。  福建农林大学峰学院院长苏松坤解释道,甘油发酵不一定会造成蜂蜜有致病性,只是对品质有影响。  汪氏洋槐蜜菌落总数超标,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜因糖浆标志物检测呈现阳性,均被本刊列为不推荐产品。  测评报告四:综合测评中粮山萃洋槐蜜较优 蜂蜜的价值需多角度评价  甜蜜,是多数人无法抗拒的味道。  《消费者报道》对143名消费者的调查问卷结果显示,有50%的消费者会每天或者经常食用蜂蜜。  然而,你选的蜂蜜掺假了吗?它的品质如何?该选购哪款蜂蜜?  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测其酶值、羟甲基糠醛、甘油等品质指标,果糖和葡萄糖含量、SMX糖浆标志物检测等造假鉴别指标,以及菌落总数和氯霉素等安全性指标。  综合测评结果显示,冠生园洋槐蜜、中粮山萃洋槐蜜和康维他麦卢卡表现较佳。汪氏洋槐蜜菌落总数超标,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜因糖浆标志物检测呈现阳性,均被本刊列为不推荐产品。(图7)  成熟蜜与未成熟蜜众说纷纭  蜂蜜行业除了掺糖这个亘古不变的话题以外,近年来成熟蜜与未成熟蜜的话题又引起了众多的争议。那它们的营养价值有何区别?  成熟蜜是指蜜蜂采完花蜜后,将其唾腺分泌物装到巢房中,经过酿造、脱水,使含水量降至20%以下,并使双糖充分转化为单糖,直至蜜蜂将其封盖。而未成熟蜜则是未经蜜蜂的充分酿造,在尚未封盖的情况下将蜂蜜取出。  一位业内人士告诉记者,目前国内企业收购的蜂蜜大多属于未成熟蜜,后续会蒸发水分,便于储存。  冠生园技术人员贾先生表示,国内很多企业生产未成熟蜜以及国外生产成熟蜜的区别在于养蜂产业的不一样。国内养蜂都是蜂农小规模生产,人工成本高,国外都是大规模生产,规范化管理,人工成本相对低。其在研发过程中曾进行过对比试验,结果显示成熟蜜与未成熟蜜的各项指标并没有多大的区别。  但福建农林大学蜂学学院院长苏松坤认为,未成熟的蜂蜜,其水分含量相对高,尽管后续经人为浓缩加工,浓缩后的蜜的酶值和香味会受到影响,由于蜜蜂酿造时间不够,风味物质含量偏低,其分泌的活性物质也会偏低,影响产品的品质和营养保健功能。  多角度看待蜂蜜的价值  本刊对145名消费者进行的问卷调查结果显示,有超过三分之一的消费者看重蜂蜜的润肠通便效果。  食品工程博士云无心曾撰文解释蜂蜜通便的原因是因其果糖含量高,部分人体食用后会出现果糖不耐受,具体表现就是拉肚子。同时他也表示,蜂蜜的主要成分百分之八十以上是糖,百分之十几是水,其他营养成分则不足百分之一。因此,单从营养成分上来说,蜂蜜是一种热量高、营养高度单一的食品,其不管真假,都没有什么值得称赞的营养。  而苏松坤则认为,蜂蜜是蜜蜂从蜜粉植物采集花蜜、花粉并经过复杂的酿造过程形成的天然甜味食品,具有独特的风味和营养,有的还有特殊的医疗保健功能,和普通的糖有相当的区别,不能单从营养成分化学分析的角度来理解蜂蜜的营养和保健功能。  特殊人群食用蜂蜜须留意  北京友谊医院营养科营养师顾中一提醒消费者,并非每一个人都适合食用蜂蜜。12个月以内的婴儿不宜服用蜂蜜,因其存在肉毒杆菌中毒的风险。此外,消费者如有果糖不耐受,那么也容易出现腹泻的症状。  他指出,蜂蜜较适用于运动员、健美人群、手术创伤患者。它可以被机体迅速吸收,补充能量。  至于糖尿病人能否食用蜂蜜一直以来存在较大的争议。  大连工业大学食品学院教授农绍庄指出,洋槐蜜的果糖含量高于葡萄糖含量,食用洋槐蜜有助于提供能量又不至于引起血糖过高反映。  洋槐蜜在《GH/T18796-2012供销社合作行业标准 蜂蜜》的感官特性中注明颜色为水白色。一位业内人士指出,洋槐蜜的颜色越接近水白色越纯正、质优。颜色深,代表其可能掺杂其它花蜜或储存条件越不当。  而营养师顾中一并不建议糖尿病人食用蜂蜜,如果需要甜味可以换成其他的甜味剂。  国家一级营养师焦通指出,特殊人群食用蜂蜜时应将其用水大量稀释,且每天不能食用过多,以半小勺为限。【原标题:8款蜂蜜测评:百花和同仁堂麦卢卡蜂蜜涉嫌造假】
  • LGC标准品:多样化产品满足中国市场需求 ——访LGC标准品中国区总经理孔祥锋
    p  作为一家国际性生命科学、计量分析和检测服务公司,英国LGC有限公司(Laboratory of the Government Chemist,英国政府化学家实验室,以下简称“LGC公司”)拥有诸多的原创成果和知识产权,产品和服务类型包括标准物质、能力验证、基因分析仪器和试剂,以及样品测试和解析等。其服务的领域涵盖医药卫生、农业技术、食品安全、环境保护、公共安全、体育运动以及政府和科研单位等。/pp  在第十七届北京BCEIA展会上,LGC公司展示了众多主打产品。仪器信息网编辑就LGC标准品业务特点、优势等问题采访了LGC标准品中国区总经理孔祥锋先生,并请他介绍了LGC公司在中国食品、药品、环境等热点市场的发展规划。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/2e97a53c-0214-4dd0-9ff5-f6ebc0c193dc.jpg" title="LGC采访.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 112, 192) "采访现场(左:LGC标准品中国区总经理孔祥锋)/span/strong/pp strongspan style="color: rgb(112, 48, 160) " 仪器信息网:能否请您为我们介绍一下LGC公司?LGC是何时进入中国的?在中国包含哪些业务?/span/strong/pp strongspan style="color: rgb(112, 48, 160) " 孔祥锋:/span/strongLGC公司成立于1842年,距今已有175年的历史,公司总部位于伦敦,拥有2600多名员工,并在全球22个国家设有分支机构。LGC是一家国际性的生命科学、计量分析和检测服务公司,我们拥有诸多的原创成果和知识产权,提供包括标准物质、能力验证、基因分析仪器和试剂,以及专业的样品测试和解析在内的一系列产品和服务,客户则包括医药卫生、农业技术、食品安全、环境保护、公共安全、体育运动以及政府和科研单位等。/pp  同时,LGC在英国还承担了许多项政府职能,包括:国家计量研究院(化学与生物分析领域),政府化学家实验室(英国国内食品和农业等实验室数据纠纷的最高仲裁),为政府提供食品安全风险预警和监管法规方面的建议,管理一些政府部门的科研经费,代表英国药品和健康产品管理局(MHRA)及英国药典(BP)委员会运营实验室等。我们的业务通过了多项国际质量标准认证,如ISO/IEC 17025、ISO 13485、GMP、GLP和ISO Guide 34等,这些强大的质量保证体系确保了LGC能够为客户提供高品质的产品和服务。/pp  在中国,LGC于2009年成立了代表处,并在2012年正式成立中国分公司。目前中国的团队已达30余人,并已在北京及上海设立了销售及技术服务办公室。LGC于2016年建立了中国仓库,这样就可以更方便、快捷地为中国客户提供优质服务。/pp  LGC中国区分为4大业务部门,包括Standards(标准品)、Proficiency testing(能力验证)、Genomics(基因组学)和HS& I(Health Science and Innovation,健康科学与创新)。经过多年的发展和持续的战略并购,LGC目前已经是全球最大的标准品供应商之一 能力验证部门主要提供提供国际实验室能力验证项目,服务于全球150余个国家的12000多家试验机构 我们的基因组学部门在基因分型上拥有完整的解决方案 健康科学与创业部门的主要业务则是第三方检测和研发外包,包括但不限于药物开发服务、兴奋剂检测、食品与农业分析检测、毒品与酒精检测、消费品检测、化妆品、玩具等。另外这个部门还提供ParaDNA核酸检测平台、分析质量培训和实验室咨询等服务内容。/pp  strongspan style="color: rgb(112, 48, 160) "仪器信息网:LGC标准品在全球和中国的市场包括哪些领域?全球市场以及中国市场是否有不同之处?LGC标准品在全球以及中国市场的表现如何?/span/strong/pp  strongspan style="color: rgb(112, 48, 160) "孔祥锋:/span/strongLGC标准品服务的行业很多,通过积极的合作,LGC一直为帮助从航空航天、汽车、制药到食品、兽医学和环境检测等领域的客户实现其需求而不懈努力。无论客户是从事制药或生物技术行业、食品生产和供应、饮料或其他日用消费品、水中污染物测试、汽车、飞机和重型装备生产以及机械制造,还是精炼和开采诸如原油和金属矿石,LGC Standards都能提供参考标准品或测试方案以满足其分析业务需求。/pp  目前LGC农残检测标准品在中国市场占有率较高,而医药杂质标准品也在杂质标准品这一细分市场表现出色。得益于各国政府及公众对食品安全的持续监管和关注,以及对于仿制药研发的巨大投资,LGC标准品中国区及全球业务一直保持着高速增长态势。/pp  strongspan style="color: rgb(112, 48, 160) "仪器信息网:相对其他同类供应商,LGC的标准品有何独特之处?/span/strong/pp  strongspan style="color: rgb(112, 48, 160) "孔祥锋:/span/strongLGC标准品的独特之处在于其涵盖的应用领域非常广泛,食品、环境、油品、金属、制药都是我们的服务范围 LGC的产品线也非常齐全,我们可以提供多种形式的标准品 同时,LGC标准品根据当地市场的需求,也在不断进行标准研究以推出针对国内特定检测需求的定制化标准品,以求充分满足国内的某些特殊市场要求。/pp  strongspan style="color: rgb(112, 48, 160) "仪器信息网:在当前的中国市场,食品安全与化学仿制药一致性评价等市场可谓“炙手可热”,类似的市场热点给LGC的标准品业务带来了哪些影响?LGC有何应对之策?/span/strong/pp  strongspan style="color: rgb(112, 48, 160) "孔祥锋:/span/strong对于食品安全领域,我们一直紧跟最新的监管政策要求,积极研究相关的国家法规政策、国家标准、行业标准和其他检测方法,同时协调LGC的全球化生产工厂定制满足本地检测需求的标准品。同时我们时刻关注国内的食品安全问题,随时准备提供相应的标准物质以帮助客户尽快应对突发事件。如近日热门的“毒鸡蛋”事件,LGC在第一时间向国内市场提供了氟虫腈及其代谢物标准品的现货,帮助客户快速完成了相关检测任务。/pp  而对于进行的如火如荼的仿制药一致性评价工作,LGC可以提供匹配289个首批一致性评价品种的丰富的杂质标准品,以满足一致性评价工作对于杂质检测的相关要求。同时,为了进一步满足中国区医药客户对于医药标准品的需求,LGC还于2017年4月在中国区推出了API原料药标准品。/pp  strongspan style="color: rgb(112, 48, 160) "仪器信息网:未来,LGC标准品在中国市场都有哪些规划?/span/strong/pp  strongspan style="color: rgb(112, 48, 160) "孔祥锋:/span/strong除了目前可提供的食品、环境、医药、工业等领域内的各种形式的标准品,LGC还在不断推出新的产品,以便将我们的产品扩展到各个检测领域。同时我们还在不断增加新的能力验证方案,除了帮助客户完成检测需求外,LGC也一直致力于帮助客户提升检测能力。此外,为了满足国内客户的特定检测需求,LGC还可提供定制化服务,并且时刻关注中国政府在食品和环境等领域的监管政策,针对中国法规方法,LGC将推出一系列新产品,以应对中国食品和环境领域的检测要求。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/14ca1883-f0d4-4679-b29a-eaad4f04e342.jpg" title="LGC展位.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 112, 192) "LGC在BCEIA2017的展台/span/strong/ppbr//p
  • 18种多环芳烃混标 标准品促销
    货号: CDGG-110064-01-1ml产品描述: 18种多环芳烃混标 标准品(适用于ZEK 01.4-08文件) 规格 1000ug/mL于二氯甲烷,1mL 注:与 16种多环芳烃比 增加了以下2种,适用于ZEK 01.4-08benzo[e]pyrene 苯并[e]芘 192-97-2 1000 +/- 50 mg/Lbenzo(j)fluoranthene 苯并(j)荧蒽 205-82-3 1000 +/- 50 mg/L组分信息:Component CAS Number Concentration Unitsbenzo[k]fluoranthene 苯并(k)荧蒽 207-08-9 1000 mg/L acenaphthene 苊 83-32-9 1000 mg/L acenaphthylene 苊烯 208-96-8 1000 mg/L anthracene 蒽 120-12-7 1000 mg/L fluorene 芴 86-73-7 1000 mg/L naphthalene 萘 91-20-3 1000 mg/L phenanthrene 菲 85-01-8 1000 mg/L benzo[a]anthracene 1,2-苯并蒽 56-55-3 1000 mg/L benzo[a]pyrene 苯并芘 50-32-8 1000 mg/L chrysene 屈 218-01-9 1000 mg/L fluoranthene 荧蒽 206-44-0 1000 mg/L indeno[1,2,3-cd]pyrene 茚并(1,2,3-cd)芘 193-39-5 1000 mg/L pyrene 芘 129-00-0 1000 mg/L benzo[b]fluoranthene 苯并(b)荧蒽 205-99-2 1000 mg/L benzo[ghi]perylene 1,12-苯并芘 191-24-2 1000 mg/L dibenz[a,h]anthracene 二苯蒽 53-70-3 1000 mg/Lbenzo[e]pyrene 苯并[e]芘 192-97-2 1000 +/- 50 mg/Lbenzo(j)fluoranthene 苯并(j)荧蒽 205-82-3 1000 +/- 50 mg/L现货供应应用:适用于ZEK 01.4-08原价:1242.00元优惠价:990.00元促销时间:2013-6-16至2013-8-30上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 广西标准化协会 《非洲猪瘟病毒、猪瘟病毒和猪非典型瘟毒鉴别检测 多重RT-PCR和多重qRT-PCR法》等2项团体标准通过专家审定
    3月31日,广西标准化协会在南宁组织专家对由广西兽医协会提出,广西壮族自治区动物疫病预防控制中心、广西农垦永新畜牧集团西江有限公司、广西中科基因科技有限公司、广西民生中检联检测有限公司等单位共同起草的团体标准《非洲猪瘟病毒、猪瘟病毒和猪非典型瘟病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》《A型塞尼卡病毒与O型、A型、亚洲I型口蹄疫病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》进行了审定,专家一致同意通过审定。审定会现场来自广西壮族自治区兽医研究所、广西标准技术研究院、广西壮族自治区畜牧研究所、广西动物卫生监督所、广西科学院等单位专家在听取标准起草单位对标准编制情况的汇报后,对标准逐条逐款进行认真审定,专家一致认为团体标准《非洲猪瘟病毒、猪瘟病毒和猪非典型瘟病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》《A型塞尼卡病毒与O型、A型、亚洲I型口蹄疫病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》是在深入调研,广泛收集整理国内外相关技术资料,并经试验验证的基础上制定,所采用的技术路线正确,内容完整,具有科学性、实用性和可操作性。《非洲猪瘟病毒、猪瘟病毒和猪非典型瘟病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》的发布实施给出了多重RT-PCR和多重qRT-PCR法鉴别检测非洲猪瘟病毒、猪瘟病毒和猪非典型瘟病毒的方法,对保障养猪业健康可持续发展具有重要意义。团体标准《A型塞尼卡病毒与O型、A型、亚洲I型口蹄疫病毒鉴别检测 多重RT-PCR和多重qRT-PCR法》的发布实施给出了多重RT-PCR和多重qRT-PCR法鉴别检测A型塞尼卡病毒与O型、A型、亚洲I型口蹄疫病毒的方法,对保障养猪业健康可持续发展具有重要意义。审定会现场广西兽医协会陆芹章会长/教授、广西标准化协会黄林华秘书长/高级工程师、广西兽医协会张红云高级兽医师、梁星雪秘书、广西壮族自治区动物疫病预防控制中心施开创研究员、屈素洁高级兽医师、龙凤高级兽医师,广西民生中检联检测有限公司陈泽祥研究员等参加了此次团体标准审定会。
  • 多菌灵(棉萎灵) 标准品促销
    货号:CDCT-C10990000产品描述:多菌灵(棉萎灵) 标准品英文:Carbendazim规格:纯品型,有证书,0.25gCAS# :10605-21-7应用:进出口浓缩果汁中噻菌灵、多菌灵残留检测(SN/T 1753-2006)原价:480.00元优惠价:384.00元促销时间:2012-2-20至2012-04-20上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 超900款产品数据信息接入“墨卡托” 福禄克与京东工业品共建仪器仪表行业标准
    测量仪器是工业生产质量控制体系中不可或缺的工具,其型号、规格可谓五花八门,从几百元的数字万用表,到几千元的电能质量分析仪,再到几万元的高端示波器… … 彼此之间不仅价格跨度极大,适用场景也截然不同。如何根据测量场景需求精准选型测试仪器,一直是困扰工业企业的难题。  近日,全球知名测量仪器品牌福禄克与京东工业品达成战略合作,双方在数智化选型方面深入探索。福禄克京东工业品自营旗舰店上线后,福禄克将旗下热像仪、电能质量、功率分析、示波表、过程校验、接地绝缘、万用表、钳型表等900多款产品的数据信息与京东工业品“墨卡托”标准库已完成无缝对接,通过打造“系统找货”的自动筛选服务,大大提高企业的选型效率。 在工业生产中,各类测量仪器的规格、型号可多达数万种。以电气测量为例,电网工人测量高压电所用的钳形表量程可达1000A,能够在不切断导线的情况下测量高压电线中通过的电流;而反观实验室中常用的示波器,虽然量程只有1A,但精度却可以达到10-6 A。而即便是钳形表和示波器本身,也有极其众多的规格。  在实际使用过程中,具体选择哪种型号、哪种规格的测量仪器,需要综合考虑量程、精度、测量方式等多种因素,选型工作就显得尤为关键。而在传统采购模式中,测量仪器的选型完全依靠人力,采购人员需要对着厚厚的产品手册查询各项参数,再就使用场景进行横向对比筛选,不仅效率低,而且严重依赖采购人员的专业经验。  福禄克与京东工业品打造的数智化选型系统,则能够很好地解决这一问题。“墨卡托”工业品标准商品库是结合京东大数据和人工智能技术,以及各品类头部品牌商的专家经验,通过对海量工业品数据进行数据清洗和知识抽取,构建出的工业品知识图谱。通过将福禄克的产品数据信息与京东工业品“墨卡托”标准库已完成无缝对接,企业只需在京东工业品选定品类后,根据系统所提示的参数维度选择相应需求范围,即可获得精准的型号推荐。在前期试点项目中,“墨卡托”工业品标准商品库成功将工业品供需匹配度提升了86%。 福禄克亚太区总经理、副总裁胡祖忻表示,非常高兴与京东工业品合作,这很好地补充了我们的数字化服务能力。未来,在“墨卡托”标准选型服务基础上,福禄克的技术工程师和销售代表等各层资源也将与京东工业品无缝对接,提供产品选型、技术咨询及售后服务的全方位支持。我们也希望通过此次合作,与京东工业品共建仪器仪表领域的行业标准,有力助益产业链各环节无缝连接。
  • 提质增效、规范发展,2024年7月份有745份标准将实施
    提质增效、规范发展,2024年7月份有745份标准将实施随着7月的到来,一批新的国家标准、行业标准及地方标准开始实施,涵盖了食品安全、环境保护、石油化工、轻工纺织等多个领域。这些新标准的实施将进一步推动相关行业的规范化发展,提升产品质量和安全水平。食品安全方面:《肉松质量通则》、《膨化食品质量通则》等多项食品质量标准开始实施,为相关食品的生产提供了明确的质量要求。《食品小作坊生产加工管理规范》的实施将有助于规范小型食品生产企业的操作,保障食品安全。除此之外还有使用拉曼光谱分析的系列《出口食品中农用化学物质的快速检测方法》将实施。环境保护领域:《生态环境损害鉴定评估技术指南》等标准的实施,将为生态环境保护提供技术支持。《制鞋工业大气污染物排放标准》等污染物排放标准的实施,有助于减少工业污染。化工塑料方面:《化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法》为化学纤维中重金属检测提供新的方法。另外还有大量的化工试剂质量行业标准将实施,为化学试剂质量提供保障。冶金矿产方面:《镓基液态金属化学分析方法 第1部分:铅、镉、汞、砷含量的测定 电感耦合等离子体质谱法》等系列标准为矿物等检测提供检测方法。此外,在医疗卫生、电力半导体、能源等领域也有多项新标准开始实施。这些标准的实施将对相关行业产生深远影响,推动产品质量提升和行业技术进步。具体2024年6月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(48份)GB/T 23968-2022肉松质量通则 GB/T 22699-2022膨化食品质量通则 GB/T 23969-2022肉干质量通则 GB/T 23586-2022酱卤肉制品质量通则 GB/T 23493-2022中式香肠质量通则 GB/T 20711-2022熏煮火腿质量通则 GB/T 23492-2022培根质量通则 GB/T 23970-2022卤蛋质量通则 GB/T 20712-2022火腿肠质量通则 GB/T 11856.2-2023烈性酒质量要求 第2部分:白兰地 GB/T 43559-2023蜂胶生产技术规范 SN/T 5742-2023鱼类及其制品中金枪鱼、鳕鱼和虹鳟鱼成分快速检测方法 PCR—试纸条法 SN/T 5668-2023水禽圆环病毒感染检疫技术规范 SN/T 5644.10-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷 SN/T 5644.9-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷 SN/T 5644.8-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷 SN/T 5644.7-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱 SN/T 5644.6-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑 SN/T 5644.5-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵 SN/T 5644.4-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵 SN/T 5644.3-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星 SN/T 5644.2-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫 SN/T 5644.1-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则 SN/T 5326.4-2023进出口食品化妆品专业分析方法验证指南 第4部分:分子生物学方法 DB6108/T 88-2024休闲农业园区分类与评价规范 DB1529/T 1-2024飞播造林成效调查监测技术规范 DB42/T 1204-2024湖北省柑橘主要病虫害绿色防控技术规程 第1部分:主要害虫绿色防控技术 DB42/T 1104-2024机采棉生产技术规程 DB42/T 2246.3-2024实验用猫 第3部分:饲养与管理 DB42/T 2246.2-2024实验用猫 第2部分:寄生虫学等级及监测 DB42/T 2246.1-2024实验用猫 第1部分:微生物学等级及监测 DB42/T 2245.1-2024饲料中真菌毒素类物质的测定 第1部分:环匹阿尼酸的测定 液相色谱-串联质谱法 DB42/T 2244.1-2024西甜瓜设施栽培技术规程 第1部分:西瓜大棚吊蔓栽培 DB42/T 2243-2024猕猴桃采后贮藏技术规程 DB42/T 2242-2024水产品中羧甲基赖氨酸的测定 液相色谱法 DB42/T 2241-2024鱼腥草生产技术规程 DB42/T 2240-2024中药材 连翘生产技术规程 DB42/T 2239-2024菜用桑生产技术规程 DB42/T 2238-2024萝卜地方品种提纯复壮技术规程 DB43/T 2991-2024水产养殖环境(水体、底泥)中大环内酯类抗生素的测定 液相色谱-串联质谱法 DB43/T 2990-2024水产养殖环境(水体、底泥)中地西泮的测定 液相色谱-串联质谱法 DB 1401/T 20—2024食品小作坊生产加工管理规范 DB5309/T 75-2024藜麦品种 滇宇藜6号 DB5309/T 74-2024藜麦品种 滇宇藜5号 DB31/T 1464-2024池塘温室南美白对虾、罗氏沼虾三茬轮养技术规程 DB36/T 1913-2023食品安全“两个责任”工作绩效评估指南 DB36/T 1912-2023食品安全满意度监测指南 DB11/T 1992.5-2023食品生产企业质量管理规范 第5部分:冷链即食食品 环境环保(14份)GB/T 43871.1-2024生态环境损害鉴定评估技术指南 生态系统 第1部分:农田生态系统 GB/T 43678-2024生态系统评估 生态系统服务评估方法 GB/T 24021-2024环境管理 环境标志和声明 自我环境声明 (II型环境标志) GB/T 43743-2024工业回用水处理设施运行管理导则 GB/T 18916.13-2024工业用水定额 第13部分:乙烯和丙烯 GB/T 43517-2023物理环境的人类工效学 通过环境调查(物理量测量和人的主观评价)对环境进行评估 DB43/T 2957-2024水质 高氯酸盐的测定 离子色谱法 DB34/ 4809—2024制鞋工业大气污染物排放标准 DB31/T 1466-2024土壤和地下水石油烃(C10_C40)中脂肪族和芳香族分类及分级测定 气相色谱法 DB42/T 2222-2024机械防烟排烟设施物联网系统技术规范 DB12/ 1302-2024加油站大气污染物排放标准 DB36/T 1932-2024环境空气 颗粒物的测定 β射线法 DB36/T 1931-2024固定污染源废气 流速在线监测 光闪烁法 DB36/T 1919-2023水质 无机元素的现场快速测定 便携式单波长激发-能量色散X射线荧光光谱法 医药卫生标准(41份)GB/T 43641-2024生物学全同胞关系鉴定技术规范 GB/T 43642-2024法医学个体识别技术规范 GB/T 43640-2024听觉功能障碍法医临床鉴定技术规范 GB/T 43639-2024视觉功能障碍法医临床鉴定技术规范 GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程 GB/T 43459-2023洁净室及受控环境中细胞培养操作技术规范 GB/T 35594-2023医药包装用纸和纸板 GB/T 30130-2023胶版印刷纸 GB/Z 43468.1-2023残障人辅助技术系统和辅助器具 轮椅车系固和乘坐者约束系统 第1部分:一般要求和试验方法 GB/T 19267.7-2023法庭科学 微量物证的理化检验 第7部分:气相色谱-质谱法 GB/T 21679-2023法庭科学 DNA数据库建设规范 GB/T 43576-2023口腔清洁护理用品 牙膏对去除外源性色斑效果的实验室测试方法 GB/T 43544-2023口腔清洁护理用品 牙膏对牙结石抑制率的实验室测试方法 GB/T 43628-2023空气中病原微生物宏基因组测序鉴定方法 SN/T 5619.8-2023进出口医用防护用品安全项目技术规范 第8部分:无纺布 SN/T 5619.7-2023进出口医用防护用品安全项目技术规范 第7部分:防护帽 SN/T 5619.6-2023进出口医用防护用品安全项目技术规范 第6部分:手套 SN/T 5619.5-2023进出口医用防护用品安全项目技术规范 第5部分:一次性隔离衣 SN/T 5619.4-2023进出口医用防护用品安全项目技术规范 第4部分:防护服 SN/T 5619.3-2023进出口医用防护用品安全项目技术规范 第3部分:儿童口罩 SN/T 5619.2-2023进出口医用防护用品安全项目技术规范 第2部分:防护口罩 SN/T 5619.1-2023进出口医用防护用品安全项目技术规范 第1部分:通则 SN/T 5487-2023十足目虹彩病毒1感染检疫技术规范 SN/T 5665-2023鲁氏耶尔森氏菌检测技术规范 YY/T 1899-2023可吸收医疗器械植入后组织病理学样本制备与评价方法 YY/T 1897-2023纳米医疗器械生物学评价 遗传毒性试验 体外哺乳动物细胞微核试验 YY/T 1896-2023光谱辐射治疗设备波长范围界定方法 YY/T 1894-2023医用磁共振设备可靠性指标验证方法 YY/T 1884-2023固定式含铜宫内节育器 YY/T 1873-2023麻醉和呼吸设备 笑气吸入镇静镇痛装置 YY/T 1754.3-2023医疗器械临床前动物研究 第3部分:用于评价补片组织学反应与生物力学性能的动物腹壁切口疝模型 YY/T 1437-2023医疗器械 GB/T 42062应用指南 YY/T 0907-2023医用无针注射器 要求及试验方法 YY/T 0338-2023气管切开插管和接头 YY/T 1878-2023正电子发射断层成像装置数字化技术要求 YY/T 1869-2023探测器阵列剂量测量系统 性能和试验方法 YY/T 0793.1-2022血液透析和相关治疗用液体的制备和质量管理 第1部分:血液透析和相关治疗用水处理设备 YY/T 0299-2022医用超声耦合剂 DB43/T 2995-2024综合医院分级心理护理规范 DB42/T 2208.5-2024智能医院建设与管理标准 第5部分:评价 DB42/T 2208.1-2024智能医院建设与管理标准 第1部分:技术体系框架 石油天然气标准(5份)GB/T 30491.2-2024天然气 热力学性质计算 第2部分:扩展应用范围的单相(气相、液相和稠密相)流体性质 GB/T 21267-2024石油天然气工业 套管及油管螺纹连接试验程序 GB/T 43602-2023物理气相沉积多层硬质涂层的成分、结构及性能评价 GB/T 43599-2023石油天然气钻采设备 机械式固井胶塞的测试与评价 SN/T 5574-2023进口油品固体废物属性鉴别规程 冶金矿产标准(88份)GB/T 23561.8-2024煤和岩石物理力学性质测定方法 第8部分:煤和岩石变形参数测定方法 GB/T 28892-2024表面化学分析 X射线光电子能谱 选择仪器性能参数的表述GB/T 43589-2023金合金饰品 多元素含量测定 激光剥蚀-电感耦合等离子体质谱法 GB/T 43497-2023电沉积层及相关精饰 化学镀镍磷-陶瓷复合镀层GB/T 38216.3-2023钢渣 游离氧化钙含量的测定 EDTA滴定和热重分析法GB/T 43489-2023烧结钕铁硼永磁体 恒定湿热试验 GB 43203-2023选煤厂安全规程 GB/T 43603.1-2023镍铂靶材合金化学分析方法 第1部分:铂含量的测定 电感耦合等离子体原子发射光谱法GB/T 43604.1-2023镓基液态金属化学分析方法 第1部分:铅、镉、汞、砷含量的测定 电感耦合等离子体质谱法 GB/T 43611-2023镓基液态金属热界面材料 GB/T 43607-2023钯锭分析方法 银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法 GB/T 3499-2023原生镁锭 GB/T 43569-2023首饰和贵金属 贵金属及其合金的取样 GB/T 1196-2023重熔用铝锭 GB/T 2881-2023工业硅 GB/T 1558-2023硅中代位碳含量的红外吸收测试方法 GB/T 17359-2023微束分析 原子序数不小于11的元素能谱法定量分析 HB 8699-2023金属材料细节疲劳粗糙度系数测定方法 HB 8698-2023金属材料开孔细节疲劳额定强度基准值测定方法 HB 8697-2023超声检测用铝合金平底孔标准试块制作与评价 SN/T 5570-2023进出口铁合金归类化验 YB/T 6082-2023焦炉上升管荒煤气余热回收技术规范 外盘管式 YB/T 6102-2023高炉炉顶均压煤气及休风煤气回收技术要求 YB/T 6101-2023钢铁行业低压蒸汽干燥水处理污泥污泥技术规范 YB/T 4880.4-2023钢铁企业水系统优化 第4部分:冷轧工序 YB/T 4880.3-2023钢铁企业水系统优化 第3部分:热轧工序 YB/T 6100-2023高炉铁水罐加盖保温技术规范 YB/T 6159-2023锰硅合金球 落下强度测定方法 YB/T 6158-2023金属铬 痕量杂质元素含量的测定 辉光放电质谱法 YB/T 6157.1-2023铌铁分析方法 第1部分:钽、磷、铝和钛含量的测定 电感耦合等离子体原子发射光谱法 YB/T 6156-2023钢中非金属夹杂物的测定 K值评定法 YB/T 4393.2-2023铝铁 铝锰铁及硅铝锰铁分析方法 第2部分:磷含量的测定 磷铋钼蓝分光光度法 YB/T 4174.2-2023硅钙合金分析方法 第2部分:磷含量的测定 电感耦合等离子体原子发射光谱法 YB/T 109.6-2023硅钡合金分析方法 第6部分:碳含量的测定 红外线吸收法 YB/T 6118-2023钢铁行业节能诊断技术导则 YB/T 6117-2023基于项目的二氧化碳减排量评估技术规范 高炉大比例球团冶炼 YB/T 6116-2023冷轧废水再生回用技术规范 YB/T 6115-2023焦炉煤气脱硫废液干法制酸技术规范 YB/T 6114-2023锰矿行业绿色工厂评价导则 YB/T 6097-2023钢铁企业土地资源消耗指标与绩效评估 YB/T 6096-2023铁矿行业绿色园区评价导则 YB/T 6095-2023铁矿行业绿色工厂评价导则 YB/T 6094-2023钢铁企业余热余能自发电率评价导则 YB/T 6093-2023干熄焦超高温超高压余热发电技术规范 YB/T 074-2023冶炼用快速数字测温仪技术条件 YB/T 4191-2023高炉进风装置 YB/T 4192-2023铸铁机 YB/T 063-2023面压式滑动水口 YB/T 073-2023烧结台车技术条件 YB/T 384-2023硅质耐火泥浆 YB/T 4110-2023铝镁耐火浇注料 YB/T 6145-2023热轧绿色清洁表面处理钢板和钢带 YB/T 6144-2023不锈钢复合波纹板 YB/T 051-2023电解金属锰 YB/T 6141-2023冷顶锻用不锈钢盘条 YB/T 6140-2023冶金用消石灰 YB/T 190.14-2023连铸保护渣 二氧化钛含量的测定 二安替吡啉甲烷分光光度法 YB/T 5206-2023轻烧氧化镁 YB/T 5266-2023电熔镁砂 YB/T 6139.2-2023石墨类负极材料检测方法 第2部分:吸油值的测定 YB/T 6139.1-2023石墨类负极材料检测方法 第1部分:石墨化度的测定 YB/T 6138-2023焦化可纺沥青 YB/T 6137-2023煤焦油 联苯、苊、芴含量的测定 气相色谱法 YB/T 6136-2023钢轨涡流检测方法 YB/T 6135-2023钢筋低温拉伸试验方法 YB/T 4371-2023油气井射孔枪用无缝钢管 YB/T 6134-2023离心球墨铸管管模用热轧无缝钢管 YB/T 6133-2023云梯车臂架用异型无缝钢管 YB/T 6132-2023钢铁行业 轧钢产线能源管理系统技术要求 YB/T 6131-2023钢铁行业 设备状态监测与故障预警系统技术要求 YB/T 6130-2023混凝土预制板用钢筋焊接网 YB/T 6129-2023导卫用耐磨耐热导轮 YB/T 5309-2023不锈钢热轧等边角钢 YB/T 6127-2023结构用铌钒低合金高强度热轧型钢 YB/T 6121-2023钢的晶间氧化深度测定方法 YB/T 6120-2023贝氏体非调质钢 YB/T 6148-2023电力变压器用高锰无磁钢板 YB/T 6147-2023减涂装耐火耐候热轧钢板及钢带 YB/T 6146-2023热轧免酸洗汽车大梁用钢板和钢带 YB/T 6126-2023桥梁钢结构用热轧U肋型钢 YB/T 6143-2023铝锰铁合金 YB/T 6142-2023高纯钛铁 YB/T 6128-2023锥套锁紧钢筋连接接头 YB/T 6125-2023稀土钢 镧和铈含量的测定 电感耦合等离子体质谱法 YB/T 6124.2-2023稀土钢 第2部分:高碳铬轴承钢 YB/T 6124.1-2023稀土钢 第1部分:通用技术要求 YB/T 6123-2023高温合金精密无缝管 YB/T 6122-2023耐蚀合金大口径无缝管 化工塑料标准(161份)GB/T 43586-2023聚烯烃冷拉伸套管膜 GB/T 43548-2023表面活性剂和洗涤剂中金属元素含量的测定 GB/T 7036.1-2023充气轮胎内胎 第1部分:汽车轮胎内胎 GB/T 22731-2022日用香精 GB/T 43574-2023化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法 GB/T 10118-2023高纯镓 GB/T 23519-2023三苯基膦氯化铑 GB/T 25789-2023对苯二胺 GB/T 15341-2023滑石 GB/T 32151.14-2023碳排放核算与报告要求 第14部分:其他有色金属冶炼和压延加工企业GB/T 43612-2023碳化硅晶体材料缺陷图谱 GB/T 43610-2023微束分析 分析电子显微术 线状晶体表观生长方向的透射电子显微术测定方法 GB/T 5072-2023耐火材料 常温耐压强度试验方法 GB/T 3836.22-2023爆炸性环境 第22部分:光辐射设备和传输系统的保护措施 GB/T 19502-2023表面化学分析 辉光放电发射光谱方法通则 GB/T 37183-2023腐蚀控制工程全生命周期 风险评估GB/T 16763-2023定形隔热耐火制品分类 GB/T 6803-2023铁素体钢的无塑性转变温度落锤试验方法 GB/T 1677-2023增塑剂环氧值的测定 SN/T 5754-2023进口货物固体废物属性鉴别方法 对苯二甲酸 SN/T 5706-2023化妆品微生物检验方法 大肠埃希氏菌检验 SN/T 5681-2023工业单羧脂肪酸含量的测定 气相色谱法 SN/T 1496-2023进出口化妆品中生育酚及α-生育酚醋酸酯的测定 YS/T 3043-2023含氯金物料中金量的测定 JC/T 2755-2023精细陶瓷高温比热容试验方法 差示扫描量热法(DSC) QB/T 5954-2023有机硅人造革QB/T 5942-2023防护服用人造革合成革QB/T 5955-2023钢衬聚酰胺复合管HG/T 6237-2023有机氮工业废水处理及回用技术规范 HG/T 6236-2023工业废水深度处理及回用技术规范 吸附法 HG/T 6235-2023废二氧化硫氧化制硫酸催化剂中钒含量的测定方法 HG/T 6234-2023锰系废催化剂中锰的测定方法 HG/T 6233-2023废硫酸中钛离子的测定方法HG/T 6201-2023硫酸钾行业绿色工厂评价要求 HG/T 6200-2023磷酸一铵、磷酸二铵行业绿色工厂评价要求 HG/T 6199-2023复合肥料行业绿色工厂评价要求 HG/T 6198-2023酸性染料行业绿色工厂评价要求 HG/T 6197-2023反应染料行业绿色工厂评价要求 HG/T 6196-2023分散染料行业绿色工厂评价要求 HG/T 6195-2023有机硅行业绿色工厂评价要求 HG/T 6194-2023电石行业绿色工厂评价要求 HG/T 6192-2023腐植酸肥料行业绿色工厂评价要求 HG/T 6118-2023废弃锂电池处理企业节水技术导则 HG/T 6058-2023节水型工业园区 化工行业 HG/T 6180-2023二氧化硅行业绿色工厂评价要求 HG/T 6179-2023磷酸行业绿色工厂评价要求 HG/T 6178-2023锆盐行业绿色工厂评价要求 HG/T 6177-2023钾盐行业绿色工厂评价要求 HG/T 6176-2023氢氧化钾行业绿色工厂评价要求 HG/T 6175-2023无机过氧酸盐行业绿色工厂评价要求HG/T 6174-2023聚丙烯酰胺行业绿色工厂评价要求HG/T 6173-2023无机氟化物行业绿色工厂评价要求 HG/T 6172-2023磷酸盐行业绿色工厂评价要求 HG/T 6171-2023废弃电子电器化学品处理处置行业绿色工厂评价要求 HG/T 6170-2023有机膦水处理剂行业绿色工厂评价要求 HG/T 6169-2023硝酸行业绿色工厂评价要求 HG/T 6168-2023车用尿素行业绿色工厂评价要求 HG/T 6167-2023橡胶树木围护砖 HG/T 6140-2023染料行业绿色工厂评价导则 HG/T 6139-2023再生五氯化锑催化剂 HG/T 3726-2023C.I.荧光增白剂351(荧光增白剂351) HG/T 4034-2023C.I.荧光增白剂140(荧光增白剂SWN) HG/T 6232-2023C.I.反应红21 HG/T 6231-2023C.I.反应橙12 HG/T 6230-2023分散黑NX 300% HG/T 6229-2023对氟苯胺 HG/T 3958-20233-氯-2-甲基苯胺HG/T 4715-20233,4-二氯硝基苯HG/T 6228-2023二氧化硫氧化制硫酸催化剂原粒度活性试验方法 HG/T 6227-2023催化裂化催化剂化学成分分析方法 X射线荧光光谱法 HG/T 6226-2023加压甲醇制低碳烯烃催化剂反应性能试验方法 HG/T 6225-2023铬系乙烯聚合催化剂 HG/T 6224-2023铬系乙烯聚合催化剂HG/T 2784-2023工业用亚硫酸铵 HG/T 6223-2023纺织染整助剂产品中氯化苯和氯化甲苯的测定 HG/T 6222-2023纺织染整助剂 防热迁移剂 防热迁移效果的测定 HG/T 3710-2023直读式橡胶密度计 HG/T 2071-2023橡胶回弹性试验机(斯科伯摆式) HG/T 6221-2023胶鞋 医用手术鞋 HG/T 6220-2023胶鞋 医用防护鞋 HG/T 6219-2023胶鞋 帮面材料高温高压色牢度试验方法 HG/T 6218-2023涤纶全拉伸丝(FDY)油剂 HG/T 4250-2023C.I.酸性黄220(酸性深黄NM-RL) HG/T 3722-2023C.I.酸性橙67(酸性橙RXL) HG/T 4424-2023间氨基苯酚 HG/T 6217-20232-氨基-5,6-二氯苯并噻唑 HG/T 6216-2023液状染料 冻融稳定性的测定 HG/T 6215-2023(3-氯-4-氟苯基)硫脲 HG/T 6214-2023邻氨基苯酚 HG/T 6213-2023C.I.酸性红374 HG/T 6212-2023液状分散黑ECT HG/T 6211-2023液状C.I.分散蓝79:1 HG/T 6210-2023液状C.I.分散黄114 HG/T 6209-2023液状C.I.分散红167:1 HG/T 6208-2023染料 贮存稳定性的测定 HG/T 3589-2023铅酸蓄电池用腐植酸 HG/T 4288-2023偏光眼镜用三醋酸纤维素酯(TAC)薄膜 HG/T 6207-2023光学功能薄膜 上置光学增光膜 HG/T 6206-2023光学功能薄膜 无保护膜光学棱镜膜 HG/T 6205-2023光学功能薄膜 抗激光窃听透明薄膜 HG/T 6204-2023光学聚酯薄膜 表面低聚物的测试方法 HG/T 6203-2023光学功能薄膜 低取向角聚酯薄膜 HG/T 6261-2023热固性树脂黏度的测定 旋转流变仪法 HG/T 6260-2023塑料 玻纤增强聚苯硫醚(PPS)专用料 HG/T 6259-2023精对苯二甲酸残渣制聚酯多元醇 HG/T 6258-2023塑料 热塑性聚酰亚胺(PI)树脂 HG/T 6257-2023纺织染整助剂 退浆剂 对聚丙烯酸类浆料退浆效果的测定 HG/T 6256-2023纺织染整助剂 释酸剂 释酸性能的测定 HG/T 6255-2023纺织染整助剂 活性染料匀染剂 抗盐碱凝聚效果的测定 HG/T 6254-2023乙烷 HG/T 6253-2023粉体回收用有机复合膜 HG/T 6252-2023气体净化用双疏膜 HG/T 6251-2023工业用2-氯甲基-3,4-二甲氧基吡啶盐酸盐 HG/T 6250-2023D-对羟基苯甘氨酸甲酯 HG/T 6249-20234,6-二甲氧基-2-(苯氧基羰基)氨基嘧啶 HG/T 6248-2023生物提取胆红素 HG/T 6247-2023生物合成熊去氧胆酸 HG/T 6246-2023工业2-(4-溴甲基苯基)丙酸 HG/T 6245-20233,4-环氧环己基甲酸-3',4'-环氧环己基甲酯HG/T 6244-2023钙铝水滑石土壤修复剂 HG/T 6243-2023土壤修复用过硫酸钠 HG/T 6242-2023工业氢溴酸 HG/T 6241-2023化学强化玻璃用硝酸钾 HG/T 6240-2023电镀用二水合氯化铜 HG/T 6239-2023中药挥发油分离用压力驱动亲水膜 HG/T 6238-2023硫酸镍钴锰 HG/T 6202-2023气-液旋流渗滤分离器 HG/T 6191.4-2023石油和化工用低压变频器技术应用导则 第4部分:使用、维护及检修 HG/T 6191.3-2023石油和化工用低压变频器技术应用导则 第3部分:安装、调试及验收 HG/T 6191.2-2023石油和化工用低压变频器技术应用导则 第2部分:设计选型 HG/T 6191.1-2023石油和化工用低压变频器技术应用导则 第1部分:基本要求 HG/T 6190.4-2023石油和化工用中压变频器技术应用导则 第4部分:使用、维护及检修 HG/T 6190.3-2023石油和化工用中压变频器技术应用导则 第3部分:安装、调试及验收 HG/T 6190.2-2023石油和化工用中压变频器技术应用导则 第2部分:设计选型 HG/T 6190.1-2023石油和化工用中压变频器技术应用导则 第1部分:基本要求 HG/T 6189.4-2023石油和化工用软起动装置技术应用导则 第4部分:使用、维护及检修 HG/T 6189.3-2023石油和化工用软起动装置技术应用导则 第3部分:安装、调试及验收 HG/T 6189.2-2023石油和化工用软起动装置技术应用导则 第2部分:设计选型 HG/T 6189.1-2023石油和化工用软起动装置技术应用导则 第1部分:基本要求 HG/T 6188-2023聚丙烯共聚反应器 HG/T 6187-2023聚丙烯干燥器 HG/T 4509-2023工业高纯氢氟酸HG/T 4095-2023化工用在线气相色谱仪 HG/T 3811-2023工业溴化物试验方法 HG/T 3810-2023工业溴化铵 HG/T 3809-2023工业溴化钠 HG/T 3808-2023工业溴化钾 HG/T 3587-2023电子工业用高纯钛酸钡 HG/T 3253-2023工业次磷酸钠 HG/T 3250-2023工业亚氯酸钠 HG/T 3180-2023尿素高压设备衬里板及内件的焊接工艺评定和焊工技能评定 HG/T 3179-2023尿素高压设备堆焊工艺评定和焊工技能评定 HG/T 3178-2023尿素高压设备耐腐蚀不锈钢管子-管板的焊接工艺评定和焊工技能评定 HG/T 2969-2023工业碳酸锶 HG/T 2959-2023工业水合碱式碳酸镁 HG/T 2952-2023尿素二氧化碳汽提塔技术条件 HG/T 2409-2023聚氨酯预聚体中异氰酸酯基含量的测定 HG/T 2520-2023工业亚磷酸 DB42/T 2237-2024合成材料面层运动场地质量管理和合格评定 DB42/T 2235-2024增材制造患者匹配式部分足假肢应用技术规范 DB31/T 1468-2024工贸企业危险化学品安全管理规范 轻工纺织标准(111份)GB/T 10335.6-2023涂布纸和纸板 第6部分:水性涂布纸 GB/T 43588-2023纸、纸板和纸制品 可回收性评价方法 GB/T 43549-2023鞋类 鞋垫试验方法 静态压缩变形 GB/T 43487-2023泡沫混凝土及制品试验方法 GB/T 10335.5-2023涂布纸和纸板 第5部分:涂布箱纸板GB/T 12910-2023纸和纸板 二氧化钛含量的测定 GB/T 451.2-2023纸和纸板 第2部分:定量的测定 GB/T 22877-2023纸、纸板、纸浆和纤维素纳米材料 灼烧残余物(灰分)的测定(525℃) GB/T 32440.1-2023鞋类 化学试验方法 邻苯二甲酸酯的测定 第1部分:溶剂萃取法 GB/T 33393-2023鞋类 整鞋试验方法 热阻和湿阻的测定GB/T 24461-2023洁净室用灯具技术要求 GB/T 10739-2023纸、纸板和纸浆 试样处理和试验的标准大气条件 GB/T 43573-2023服装散热性能的测定方法 出汗暖体假人法 GB/T 23144-2023纸和纸板 弯曲挺度的测定 两点法、三点法和四点法的通用原理 GB/T 4822-2023锯材检验 GB/T 43543-2023漱口水 FZ/T 07031-2023水刺非织造工艺回用水要求 FZ/T 07030-2023绿色设计产品评价技术规范 布艺类产品 FZ/T 07029-2023绿色设计产品评价技术规范 毛巾 FZ/T 07028-2023绿色设计产品评价技术规范 床上用品 FZ/T 07027-2023绿色设计产品评价技术规范 儿童服装 FZ/T 07024-2023纺织染整企业水系统集成优化实施指南 FZ/T 98024-2023织物胀破性能测试仪 FZ/T 92026-2023化纤纺丝计量泵 FZ/T 97042-2023经编展纤整经机 FZ/T 97027-2023多轴向经编机 FZ/T 97020-2023电脑针织横机 FZ/T 95036-2023低浴比成衣染色机 FZ/T 92059-2023扩幅装置 FZ/T 92078-2023纺纱机械 巡回清洁器 FZ/T 92077-2023棉精梳机 顶梳 FZ/T 93073-2023集聚纺纱装置 FZ/T 93002-2023纺纱和捻线用钢丝圈 FZ/T 90012-2023材料在图样及设计文件中的标记方法 FZ/T 64110-2023吸色非织造布 FZ/T 64109-2023挽索 FZ/T 64108-2023针刺非织造复合材料增强用麻纤维 FZ/T 64107-2023针刺平面毡 FZ/T 64106-2023抑尘覆盖网 FZ/T 64105-2023防雹网 FZ/T 60050-2023非织造布覆膜牢度的测试方法 FZ/T 63021-2023纤维绳索 聚酰胺 3股、4股、8股和12股绳索 FZ/T 63014-2023粘胶纤维织带 FZ/T 63002-2023粘胶长丝绣花线 FZ/T 63012-2023涤纶长丝缝纫线 FZ/T 63009-2023棉包涤包芯缝纫线 FZ/T 63008-2023锦纶长丝缝纫线 FZ/T 60051-2023绳纱断裂强力的测试方法 FZ/T 54147-2023循环再利用抗菌涤纶低弹丝 FZ/T 54146-2023导电涤纶牵伸丝/涤纶低弹丝混纤丝 FZ/T 54145-2023聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯(PBT/PET)复合预取向丝 FZ/T 54144-2023涤纶高取向丝(HOY) FZ/T 50010.3-2023再生纤维素纤维用浆粕 黏度的测定 FZ/T 24015-2023精梳丝毛织品 FZ/T 14057-2023锦纶氨纶防水透湿复合面料 FZ/T 14056-2023涤纶纱线与涤纶工业长丝交织染色防水帆布 FZ/T 14055-2023涤纶染色防水帆布 FZ/T 14054-2023涤纶磨毛仿蜡防印花布 FZ/T 14027-2023棉竹节印染布 FZ/T 14001-2023棉印染帆布 FZ/T 13030-2023再生纤维素纤维纱线与涤纶长丝交织本色布 FZ/T 13060-2023棉莫代尔纤维混纺纱线与涤纶长丝交织双层充绒本色布 FZ/T 13026-2023棉强捻本色绉布 FZ/T 12079-2023筒子染色锦纶6弹力丝 FZ/T 12029-2023棉再生纤维素纤维混纺色纺纱线 FZ/T 12033-2023纯棉竹节色纺纱 FZ/T 12032-2023纯棉竹节本色纱 FZ/T 01174-2023纺织品 织物掉毛程度的测定 摩擦法 FZ/T 01057.11-2023纺织纤维鉴别试验方法 第11部分:裂解气相色谱-质谱法 FZ/T 01057.10-2023纺织纤维鉴别试验方法 第10部分:近红外光谱法 FZ/T 01173-2023纺织品 定量化学分析 聚酯纤维与某些其他纤维的混合物(氢氧化钠/甲醇法) FZ/T 01172-2023纺织制品中附件镍释放量快速筛选法 FZ/T 90113-2023纺织用针 耐磨损性能试验方法 FZ/T 64098-2023擦拭用吸油织物 FZ/T 64097-2023针织起绒革基布 FZ/T 64096-2023光纤发光织物 FZ/T 64095-2023蜂巢折叠窗帘用非织造布 FZ/T 64104-2023生物降解纺粘法非织造布 FZ/T 64103-2023矿用聚酯纤维柔性假顶网 FZ/T 64102-2023耐高温滤筒用硬挺滤料 FZ/T 64015-2023机织过滤布 FZ/T 62047-2023洗澡巾 FZ/T 61011-2023棉针织毯 FZ/T 62046-2023乳胶被 FZ/T 80007.3-2023使用粘合衬服装耐干洗测试方法 FZ/T 80007.2-2023使用粘合衬服装耐水洗测试方法 FZ/T 80007.1-2023使用粘合衬服装剥离强力测试方法 FZ/T 73074-2023阻燃针织服装 FZ/T 73017-2023针织家居服 FZ/T 72030-2023衬衫用针织面料 FZ/T 70018-2023针织服装理化性能的要求 FZ/T 54143-2023循环再利用海岛涤纶牵伸丝 FZ/T 54033-2023锦纶6高取向丝(HOY) FZ/T 52066-2023柚皮甙改性涤纶短纤维 FZ/T 52065-2023车内饰用有色涤纶短纤维 FZ/T 52018-2023有色涤纶短纤维 FZ/T 54030-2023有色粘胶短纤维 FZ/T 52064-2023儿茶素改性粘胶短纤维 FZ/T 52006-2023竹浆粘胶短纤维 FZ/T 51009-2023再生纤维素纤维用浆粕 麻浆粕 FZ/T 51002-2023再生纤维素纤维用浆粕 竹浆粕 FZ/T 50063-2023系泊绳用化纤长丝耐磨性能试验方法 纱-纱摩擦 FZ/T 50033.10-2023氨纶长丝试验方法 第10部分:特性黏度 FZ/T 50062-2023化学纤维 燃烧性能试验方法 烟密度法 FZ/T 50016-2023化学纤维 燃烧性能试验方法 氧指数法 FZ/T 64048-2023水刺非织造粘合衬 FZ/T 64101-2023覆基材弹性非织造粘合衬 FZ/T 64049-2023隐点机织粘合衬 FZ/T 64100-2023覆膜防钻绒机织粘合衬 FZ/T 64099-2023耐酵素洗机织粘合衬 FZ/T 01171-2023纺织品 织物触感检测与评价方法 三点梁法 电力半导体标准(51份)GB/T 15651.7-2024半导体器件 第5-7部分:光电子器件 光电二极管和光电晶体管 GB/T 43801-2024微波频段覆铜箔层压板相对介电常数和损耗正切值测试方法 分离介质谐振器法 GB/T 19247.6-2024印制板组装 第6部分:球栅阵列(BGA)和盘栅阵列(LGA)焊点空洞的评估要求及测试方法 GB/T 4937.35-2024半导体器件 机械和气候试验方法 第35部分:塑封电子元器件的声学显微镜检查GB/T 22084.2-2024含碱性或其他非酸性电解质的蓄电池和蓄电池组 便携式密封蓄电池和蓄电池组 第2部分:金属氢化物镍电池GB/T 43789.31-2024电子纸显示器件 第3-1部分:光学性能测试方法 GB/T 43787-2024曲面有机发光二极管(OLED)光源光学性能测试方法 GB/T 4937.34-2024半导体器件 机械和气候试验方法 第34部分:功率循环 GB/T 15651.5-2024半导体器件 第5-5部分:光电子器件 光电耦合器 GB/T 43590.501-2024激光显示器件 第5-1 部分:激光前投影显示光学性能测试方法 GB/T 43590.502-2024激光显示器件 第5-2部分:散斑对比度光学测量方法GB/T 43590.503-2024激光显示器件 第5-3 部分:激光投影显示(屏)图像质量测试方法GB/T 18910.41-2024液晶显示器件 第4-1部分:彩色矩阵液晶显示模块 基本额定值和特性GB/T 43682-2024纳米技术 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法 GB 17799.8-2023电磁兼容 通用标准 第8部分:商用和轻工业场所专业设备的发射GB 17799.3-2023电磁兼容 通用标准 第3部分:居住环境中设备的发射GB/T 43493.2-2023半导体器件 功率器件用碳化硅同质外延片缺陷的无损检测识别判据 第2部分:缺陷的光学检测方法 GB/T 43528-2023电化学储能电池管理通信技术要求 GB/T 43526-2023用户侧电化学储能系统接入配电网技术规定 GB/T 5465.2-2023电气设备用图形符号 第2部分:图形符号 GB/T 9089.3-2023户外严酷条件下的电气设施 第3部分:设备及附件的一般要求 GB/T 25320.6-2023电力系统管理及其信息交换 数据和通信安全 第6部分:IEC 61850的安全 GB/T 23307-2023家用和类似用途地面插座 GB/T 36558-2023电力系统电化学储能系统通用技术条件 GB/T 36545-2023移动式电化学储能系统技术规范 GB/T 36276-2023电力储能用锂离子电池 GB/T 24834-20231000kV交流架空输电线路金具技术规范 GB/T 7260.1-2023不间断电源系统(UPS) 第1部分:安全要求 GB/T 4960.7-2023核科学技术术语 第7部分:核材料管制与核保障 GB/Z 17624.7-2023电磁兼容 综述 第7部分:非正弦条件下单相系统的功率因数 GB/T 43460.1-2023电磁兼容 风险分析方法 第1部分:电缆屏蔽 GB 17625.1-2022电磁兼容 限值 第1部分:谐波电流发射限值(设备每相输入电流≤16A) GB/T 43540-2023电力储能用锂离子电池退役技术要求 GB/T 43538-2023集成电路金属封装外壳质量技术要求 GB/T 17626.3-2023电磁兼容 试验和测量技术 第3部分:射频电磁场辐射抗扰度试验 GB/T 17626.39-2023电磁兼容 试验和测量技术 第39部分:近距离辐射场抗扰度试验 GB/T 17626.30-2023电磁兼容 试验和测量技术 第30部分:电能质量测量方法 GB/T 9364.8-2023小型熔断器 第8部分:带有特殊过电流保护的熔断电阻器 GB/T 43493.3-2023半导体器件 功率器件用碳化硅同质外延片缺陷的无损检测识别判据 第3部分:缺陷的光致发光检测方法 GB/T 43493.1-2023半导体器件 功率器件用碳化硅同质外延片缺陷的无损检测识别判据 第1部分:缺陷分类 GB/T 43534-2023高压直流输电用电压源换流器交流侧阻抗设计及测试方法 GB/Z 43533-2023依据GB/T 7251.2—2023的成套电力开关和控制设备(PSC成套设备)中内部电弧故障抑制系统的集成 GB/Z 43592.1-2023纳米技术 磁性纳米材料 第1部分:磁性纳米悬浮液的特性和测量规范 GB/T 43598-2023纳米技术 石墨烯粉体氧含量和碳氧比的测定 X射线光电子能谱法 GB/T 15022.10-2023电气绝缘用树脂基活性复合物 第10部分:聚酯亚胺树脂复合物 GB/T 29627.3-2023电气用聚芳酰胺纤维纸板 第3部分:单项材料规范 SJ/T 11926—2024产品碳足迹 产品种类规则 光伏组件 SJ/T 11861—2024超级电容器术语 SJ/T 11802—2024晶体硅光伏电池用正面银浆 SJ/T 11801—2024晶体硅光伏电池用背面银浆 DB43/T 2955-2024等值反磁通瞬变电磁法探测技术规范 能源标准(25份)GB/T 43797-2024核电厂运行许可证延续评估通用要求 GB/T 26991-2023燃料电池电动汽车动力性能试验方法 GB/T 34425-2023燃料电池电动汽车加氢枪 GB/Z 43521-2023海洋温差能转换电站设计和分析的一般指南 GB/T 43522-2023电力储能用锂离子电池监造导则 GB/T 43512-2023全钒液流电池可靠性评价方法 GB/T 43509-2023能源互联网交易平台技术要求 GB/T 43333-2023独立型微电网调试与验收规范 GB/T 42737-2023电化学储能电站调试规程 GB/Z 43465-2023河流能资源评估及特征描述 GB/Z 43464-2023海洋能转换装置电能质量要求 GB/T 34120-2023电化学储能系统储能变流器技术要求 GB/T 43462-2023电化学储能黑启动技术导则 GB/T 36280-2023电力储能用铅炭电池 GB/T 34133-2023储能变流器检测技术规程 GB/T 32151.15-2023碳排放核算与报告要求 第15部分:石油化工企业 GB/T 32151.16-2023碳排放核算与报告要求 第16部分:石油天然气生产企业 GB/T 32151.17-2023碳排放核算与报告要求 第17部分:氟化工企业 GB/T 32151.8-2023碳排放核算与报告要求 第8部分:水泥生产企业GB/T 32151.9-2023碳排放核算与报告要求 第9部分:陶瓷生产企业GB/T 32151.13-2023碳排放核算与报告要求 第13部分:独立焦化企业GB/T 32151.10-2023碳排放核算与报告要求 第10部分:化工生产企业GB/T 32151.7-2023碳排放核算与报告要求 第7部分:平板玻璃生产企业GB/T 43597-2023热电型太赫兹探测器参数测试方法 GB/T 26688-2023电池供电的应急疏散照明自动试验系统 机械车辆标准(159份)GB/T 43800-2024船舶电气与电子装置 电磁兼容性 非金属船舶GB/T 43799-2024高密度互连印制板分规范 GB/T 43617.2-2024滚动轴承 滚动轴承润滑脂噪声测试 第2部分:测试和评估方法BQ+ GB/T 43656-2024焊接加工能耗检测方法GB/T 43764-2024航天功能镀覆层 消杂光镀层 GB/T 43762-2024航空航天 卡箍术语 GB/T 43765-2024航天功能镀覆层 颗粒增强金属基复合材料焊接镀覆层 GB/T 43763-2024航天功能镀覆层 特种非金属材料金属镀层 GB/T 43760-2024低氧高碳型连续碳化硅纤维 GB/T 43676-2024水冷预混低氮燃烧器通用技术要求 GB/T 43617.1-2024滚动轴承 滚动轴承润滑脂噪声测试 第1部分:基本原则、测试组件和测试仪 GB/T 19936.2-2024齿轮 FZG试验程序 第2部分:高极压油的相对胶合承载能力FZG阶梯加载试验A10/16.6R/120 GB 23864-2023防火封堵材料 GB/T 9364.6-2023小型熔断器 第6部分:小型熔断体用熔断器支持件 GB/T 1149.17-2023内燃机 活塞环 第17部分:钢质螺旋撑簧油环 GB/Z 43482-2023液压传动 软管和软管总成 收集流体样本分析清洁度的方法 GB/T 43479-2023金属旋压成形性能与试验方法 成形性能、成形指标及通用试验规程 GB/T 20317-2023熔融挤出沉积成形机床 精度检验GB/T 1149.12-2023内燃机 活塞环 第12部分:楔形钢环 GB/T 1149.11-2023内燃机 活塞环 第11部分:楔形铸铁环 GB/T 43552-2023家用和类似用途舒适风扇及其调速器 性能测试方法 GB/T 43490-2023轮胎用射频识别(RFID)电子标签 GB/T 43527-2023船舶电气设备 电磁兼容性 船舶电缆敷设优化 敷设间距的试验方法 GB/T 43330.4-2023船舶压载水处理系统 第4部分:排放取样装置和规程 GB/T 43498-2023管路冲刷腐蚀试验方法 GB/T 43499-2023机动车检测系统软件测试方法 GB/T 5766-2023摩擦材料洛氏硬度试验方法 GB/T 22309-2023道路车辆 制动衬片 盘式制动块总成和鼓式制动蹄总成剪切强度试验方法 GB/T 10698-2023可膨胀石墨 GB/T 3521-2023石墨化学分析方法GB/T 15342-2023滑石粉 GB/T 8077-2023混凝土外加剂匀质性试验方法 GB/T 11834-2023工农业机械用摩擦片 GB/T 3518-2023鳞片石墨 GB/T 5764-2023汽车用离合器面片 GB 22757.2-2023轻型汽车能源消耗量标识 第2部分:可外接充电式混合动力电动汽车和纯电动汽车 GB 22757.1-2023轻型汽车能源消耗量标识 第1部分:汽油和柴油汽车GB/Z 41305.7-2023环境条件 电子设备振动和冲击 第7部分:利用旋翼飞机运输 GB/T 15324-2023航空轮胎内胎物理性能试验方法 GB/T 9808-2023钻探用无缝钢管 GB/T 29041-2023汽车轮胎道路磨耗试验方法 GB/T 31547-2023电动自行车内胎 GB/T 34877.2-2023工业风机 标准实验室条件下风机声功率级的测定 第2部分:混响室法 GB/T 43616-2023气瓶信息化 基本要求 GB/T 16462.1-2023数控车床和车削中心检验条件 第1部分:卧式机床几何精度检验 GB/T 28054-2023钢质无缝气瓶集束装置 GB/T 16462.2-2023数控车床和车削中心检验条件 第2部分:立式机床几何精度检验 GB/T 6974.5-2023起重机 术语 第5部分:桥式和门式起重机 GB/T 43606-2023原油船货油舱用耐蚀钢腐蚀性能测试方法 GB/T 22310-2023道路车辆 制动衬片 盘式制动衬块受热膨胀量试验方法 GB/T 26741-2023机动三轮车用制动器衬片 GB/T 13652-2023航空轮胎表面质量 GB/T 17732-2023致密定形含碳耐火制品试验方法 GB/T 37190-2023管道腐蚀控制工程全生命周期 通用要求GB/T 26494-2023轨道交通车辆结构用铝合金挤压型材 GB/T 2077-2023硬质合金可转位刀片 圆角半径 GB/T 22311-2023道路车辆 制动衬片 压缩应变试验方法 GB/T 30420.3-2023缝制机械术语 第3部分: 铺布裁剪设备术语 GB/T 31728-2023带充电装置的可移式灯具 GB/T 20818.16-2023工业过程测量和控制 过程设备目录中的数据结构和元素 第16部分:密度测量设备电子数据交换用属性列表(LOPs)GB/Z 41275.4-2023航空电子过程管理 含无铅焊料航空航天及国防电子系统 第4部分:球栅阵列植球GB/Z 41275.23-2023航空电子过程管理 含无铅焊料航空航天及国防电子系统 第23部分:无铅及混装电子产品返工/修复指南 GB/Z 41275.22-2023航空电子过程管理 含无铅焊料航空航天及国防电子系统 第22部分:技术指南GB/T 20818.22-2023工业过程测量和控制 过程设备目录中的数据结构和元素 第22部分:阀体总成电子数据交换用属性列表(LOPs)JT/T 1041-2024海运散装有毒液体物质分类方法和运输条件评价程序 JT/T 1500-2024视觉航标表面色测量方法 HB 8701-2023民用飞机燃油单向阀规范 HB 8696-2023航空零部件射线检测用像质计 HB 8695-2023飞机舷窗透明件破损安全试验方法 HB 8693-2023机载平视显示器光学测量方法 HB 8692-2023民用飞机不可清洗滑油滤芯规范 HB 8690-2023飞机燃油通气系统火焰抑制器规范 HB 8679-2023水上飞机重量重心设计与控制要求 HB 8423.8-2023金属材料牌号鉴别方法 第8部分:看谱法鉴别钴基高温合金牌号 HB 8423.7-2023金属材料牌号鉴别方法 第7部分:看谱法鉴别镍基高温合金牌号 HB 7752-2023航空用室温硫化聚硫密封剂规范 HB 7110-2023金属材料细节疲劳额定强度截止值测定方法 HB 5261-2023金属材料K-R 曲线试验方法 HB 8761-2023民用轻小型多旋翼无人机系统地面控制单元软件要求 HB 8757-2023飞机装配过程产品防护要求 HB 8755-2023飞机全金属关节轴承通用规范 HB 8754-2023飞机外圈不锈钢、内圈铍青铜关节轴承通用规范 HB 8753-2023飞机杆端自润滑关节轴承通用规范 HB 8750-2023民用飞机系统电磁环境效应控制要求 HB 8749-2023民用飞机电气电子系统雷电间接效应防护验证要求 HB 8733-2023中小型固定翼无人机水平测量方法 HB 8721-2023飞机电动式座舱排气活门试验要求 HB 8720-2023飞机含高能转子设备的包容性试验要求 HB 8704-2023民用飞机便携式电子设备的电磁干扰路径损耗测试方法 HB 8689-2023民用飞机燃油箱惰化系统通用要求 HB 8678-2023飞机复合材料层压板结构设计许用值确定方法 HB 8677-2023飞机整体油箱油压载荷计算方法 HB 7086-2023民用飞机气动外缘公差 HB 5795-2023航空电线载流量 JB/T 14857-2023氧化铝焙烧烟气脱硝装置 JB/T 14838-2023瓶装液态护肤化妆品灌装封盖一体机 JB/T 14776-2023铸造用水玻璃旧砂再生技术规范 JB/T 14728-2023滚动轴承 电梯曳引系统反绳轮轴承单元 JB/T 14727-2023滚动轴承 零件黑色氧化处理 技术规范 JB/T 14688-2023绿色设计产品评价技术规范 一般用冷冻式压缩空气干燥器 JB/T 14687-2023往复活塞压缩机膜式气量调节装置 JB/T 14686-2023大型往复活塞压缩机活塞杆偏移测量方法 JB/T 14685-2023无油涡旋空气压缩机 JB/T 14684-2023有机固体废物翻堆/转仓设备 技术规范 JB/T 14683-2023有机固体废物堆肥设备 通用技术规范 JB/T 14673-2023绿色设计产品评价技术规范 活塞 JB/T 14665-2023数控激光拼焊机床 技术规范 JB/T 14664-2023激光选区熔化成形机床 精度检验 JB/T 14647-2023建筑施工机械与设备 控制器技术规范 JB/T 14646-2023低蠕变填充改性聚四氟乙烯垫片 JB/T 14645-2023低温装置用密封垫片 JB/T 14612-2023碳化硅特种制品 硅碳棒电加热加速老化试验方法 JB/T 14606-2023RH精炼炉多功能顶枪 JB/T 14588-2023激光加工镜头 JB/T 14565-2023搅拌釜用干气密封 技术规范 JB/T 14539-2023内燃机共轴泵能效限定值及能效等级 JB/T 14523-2023电解质等离子体抛光机 JB/T 14522-2023建筑施工机械与设备 全断面隧道掘进机 刀盘 JB/T 14503-2023绿色设计产品评价技术规范 污水处理用泵 JB/T 14502-2023工业膜法水处理设备水效评价方法 JB/T 14491.1-2023组合机床微型滚齿机 第1部分:精度检验 JB/T 14490-2023数控等分分度头 JB/T 14484.2-2023数控落地铣镗床 第2部分:技术规范 JB/T 14484.1-2023数控落地铣镗床 第1部分:精度检验 JB/T 14452-2023钢质楔横轧件材料消耗工艺定额编制要求 JB/T 14451-2023钢质锻件锻造生产能源消耗限额及评价方法 JB/T 14450-2023铝合金车轮摆动辗压-旋压复合成形件 通用技术规范 JB/T 14408-2023铸造行业绿色工厂评价要求 JB/T 14407-2023机械行业绿色工厂评价 导则 JB/T 14406-2023绿色设计产品评价技术规范 铅酸蓄电池 JB/T 14394-2023带式输送机能效测试方法 JB/T 14389-2023高温超导电缆技术要求 JB/T 14359-2023压铸铝熔炉 能效等级及评定方法 JB/T 14358-2023压铸用模温机 能耗分等 JB/T 14301-2023自吸泵 能效限定值及能效等级 JB/T 14300-2023园艺电泵 能效限定值及能效等级 JB/T 14299-2023无堵塞泵 能效限定值及能效等级 JB/T 14236-2023铸造用增碳剂 JB/T 14174-2023铅酸蓄电池行业绿色工厂评价要求 JB/T 14154-2023污水处理用鼓风机能效限定值及能效等级 JB/T 14147-2023铸造用砂圆形度检测方法 JB/T 14146-2023消失模铸造用涂料高温性能试验方法 JB/T 12345-2023铅酸蓄电池单位产品能源消耗限额 JB/T 10988-2023碳化硅特种制品 反应烧结碳化硅 脱硫喷嘴 JB/T 10986-2023超硬磨料 人造金刚石杂质含量检测方法 JB/T 10627-2023熔融沉积成形机床 通用技术规范 JB/T 10625-2023激光选区烧结成形机床 通用技术规范 JB/T 10152-2023碳化硅特种制品 氮化硅结合碳化硅 板 JB/T 9220-2023铸造化铁炉炉渣化学成分分析方法 JB/T 8873-2023机械密封用填充聚四氟乙烯和聚四氟乙烯毛坯 技术规范 JB/T 8724-2023机械密封用氮化硅密封环 JB/T 7989-2023超硬磨料 人造金刚石技术规范 JB/T 7901-2023金属材料实验室均匀腐蚀全浸试验方法 JB/T 7425-2023超硬磨料制品 金刚石或立方氮化硼磨具 技术规范 JB/T 7363-2023滚动轴承 零件碳氮共渗 热处理技术规范 JB/T 7361-2023滚动轴承 零件硬度试验方法 JB/T 6985-2023铸造用镁橄榄石砂粉 JB/T 6265-2023铂及铂铑合金搅拌器 JB/T 3235-2023聚晶金刚石磨耗比测定方法 其他标准(42份)GB/T 40753.3-2024供应链安全管理体系 ISO 28000实施指南 第3部分:中小企业采用ISO 28000的附加特定指南(海港除外)GB/T 40753.4-2024供应链安全管理体系 ISO 28000实施指南 第4部分:以符合GB/T 38702为管理目标实施ISO 28000的附加特定指南 GB/T 43632-2024供应链安全管理体系 供应链韧性的开发 要求及使用指南 GB/T 43531-2023多目拼接全景成像设备光学性能测试方法 GB/T 43530-2023龙虾眼型聚焦光学元件性能测试方法 GB/T 21431-2023建筑物雷电防护装置检测技术规范 GB/T 43547-2023良好实验室规范(GLP) 管理、描述和测试项目的使用 GB/T 43537-2023声系统设备 耳机及个人音乐播放器 最大声压级测量方法GB/T 43535-2023高纯锗γ谱仪 GB/T 43189-2023核仪器仪表 闪烁体和闪烁探测器的命名(标识)以及闪烁体的标准尺寸GB/T 4984-2023含锆耐火材料化学分析方法 GB/T 33314-2023腐蚀控制工程全生命周期 通用要求GB/T 29043-2023建筑幕墙保温性能检测方法 RB/T 228-2023食品微生物定量检测的测量不确定度评估指南 RB/T 223-2023国产化检测仪器设备验证评价指南 气相色谱仪 RB/T 224-2023国产化检测仪器设备验证评价指南 原子吸收分光光度计 RB/T 225-2023国产化检测仪器设备验证评价指南 交流电力底盘测功机 RB/T 226-2023国产化检测仪器设备验证评价指南 道路交通柔性目标驱动平台车 RB/T 227-2023国产化检测仪器设备验证评价指南 氢燃料电池堆测试设备 RB/T 177-2023温室气体审定与核查机构要求RB/T 212-2023网站安全测评服务安全评价要求 RB/T 182-2023移动智能终端应用软件个人信息安全评价规范RB/T 221-2023信息技术产品供应链安全评价规范 YD/T 4676.1-2024粒子辐射对电信系统及设备的影响 第1部分:总则 YD/T 991-2024通信测试设备的电磁兼容性要求及测量方法 YD/T 4674-2024工业互联网标识解析 食品 标识编码 YD/T 4673-2024工业互联网标识解析 汽车零部件 标识编码 SN/T 5562.8-2023海关实验室数字化管理规范 第8部分:安全管理 SN/T 5562.7-2023海关实验室数字化管理规范 第7部分:服务方管理 SN/T 5562.6-2023海关实验室数字化管理规范 第6部分:数据分析管理 SN/T 5562.5-2023海关实验室数字化管理规范 第5部分:数据控制和信息管理 SN/T 5562.4-2023海关实验室数字化管理规范 第4部分:架构管理 SN/T 5562.3-2023海关实验室数字化管理规范 第3部分:数据管理 SN/T 5562.2-2023海关实验室数字化管理规范 第2部分:组织管理 SN/T 5562.1-2023海关实验室数字化管理规范 第1部分:总则 JC/T 2777-2023公路工程用泡沫混凝土 JC/T 2773-2023填筑用泡沫混凝土 JC/T 2751-2023改性聚苯乙烯泡沫复合保温板 JC/T 2747-2023干拌轻集料混凝土 JC/T 2750-2023混凝土透水系数测定仪 DB42/T 2232-2024湖北省水利工程护坡护岸参考设计图集 DB36/T 1918.1-2023生产安全风险分级管控体系建设细则 第1部分:煤矿 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 《固体废物鉴别标准 通则(征求意见稿)》避免认定不清 堵上管理漏洞
    2024年1月10日,为贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》等法律法规,加强对固体废物的管理,保护环境,保障人体健康,生态环境部对《固体废物鉴别标准 通则》(GB 34330-2017)进行了修订,现公开征求意见。现行《固体废物鉴别标准 通则》(GB 34330-2017)(以下简称标准)实施以来,我国固体废物管理改革步伐加快,涉及固体废物鉴别的新问题不断出现。为进一步加强固体废物管理,完善固体废物属性鉴别依据,进行第一次修订。本标准规定了不作为固体废物管理的物质、依据产生来源的固体废物鉴别、依据利用处置方式的固体废物鉴别、副产物和利用固体废物生产的产物的固体废物鉴别以及监督管理要求。本标准适用于物质(或材料) 和物品(包括产品、商品)(以下简称物质) 的固体物鉴别本标准适用于液态废物的鉴别。本标准遵循延续性原则、坚持问题导向、坚持减污降碳协同增效等基本原则。通过标准的修订以满足我国固体废物风险管控的要求、推进“无废城市”建设的需要、固体废物进口管理制度改革要求、综合保税区和自由贸易区相关业务需要,从而保障固体废物鉴别质量和公正性。我国固体废物产生强度高,但利用处置能力不足、相应的成本较高,随着国内对涉及固体废物尤其是危险废物的违法行为打击力度日益加强,企业利用现行标准中较为模糊的条款,将固体废物“改头换面”躲避监管的苗头逐渐显露。近年来固体废物非法转移和倾倒呈现高发态势,其中不乏因对固体废物属性认定不清,导致以原料或产品的名义转移固体废物事件发生。为避免因固体废物属性认定不清导致固体废物游离于管理之外,急需通过标准的修订堵上管理漏洞。固体废物鉴别是推进城市固体废物精细化管理,推动固体废物资源化和健全“无废城市”建设相关制度的前提和关键。《“无废城市”建设试点工作方案》将健全标准体系作为主要任务,提出通过“完善综合利用标准体系,分类别制定工业副产品、资源综合利用产品等产品技术标准”,推动大宗工业固体废物资源化利用的具体措施。现行标准中关于固体废物和副产品的判定准则是指导固体废物综合利用标准制定的基础,需根据最新管理要求做出相应调整。随着禁止洋垃圾入境制度的深入推进,我国固体废物进口管理逐步加严,将固体废物报成正常商品以规避我国监管的问题日益凸显。口岸的固体废物鉴别需求不断增加,需要根据鉴别案例中反映出的新问题对标准进行修改。现行标准对二手产品(旧货)和固体废物的判别界线较为模糊,一方面存在固体废物“以废充旧”非法入境的风险,另一方面也会使正常的检测、维修、再制造业务受到一定影响。考虑到保税检测、维修及再制造业务的需要,急需补充完善我国固体废物鉴别相关规则。附件:征求意见单位名单.pdf固体废物鉴别标准 通则 (征求意见稿).pdf《固体废物鉴别标准 通则(征求意见稿)》编制说明.pdf征求意见反馈单.pdf
  • 生态环境部更新两项危险废物鉴别标准
    p  生态环境部近日更新两项危险废物鉴别标准,《危险废物鉴别标准 通则》(GB 5085.7-2019)和《危险废物鉴别技术规范》(HJ 298-2019)。/pp  img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/9cd76cbd-80dd-441d-bc08-a2e49af6bf06.pdf" title="危险废物鉴别标准 通则(GB 5085.7—2019).pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "危险废物鉴别标准 通则(GB 5085.7—2019).pdf/span/a/pp  本标准规定了危险废物的鉴别程序和鉴别规则。/pp  本标准适用于生产、生活和其他活动中产生的固体废物的危险特性鉴别。/pp  本标准适用于液态废物的鉴别。/pp  本标准不适用于放射性废物鉴别。/pp  本标准自2020年1月1日起实施,同时《危险废物鉴别标准 通则》(GB 5085.7-2007)废止。此次修订主要内容为:/pp  进一步明确了鉴别程序。/pp  进一步细化了危险废物混合和利用处置后判定规则。/pp  img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/4b613da3-442f-4705-9266-ee07c158c470.pdf" title="危险废物鉴别技术规范(HJ 298-2019 ).pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "危险废物鉴别技术规范(HJ 298-2019 ).pdf/span/abr//pp  本标准规定了固体废物的危险特性鉴别中样品的采集和检测,以及检测结果判断等过程的技术要求。/pp  本标准适用于生产、生活和其他活动中产生的固体废物的危险特性鉴别,包括环境事件涉及的固体废物的危险特性鉴别。/pp  本标准适用于液态废物的鉴别。/pp  本标准不适用于放射性废物鉴别。/pp  本标准自2020奶奶1月1日起实施,同时替代《危险废物鉴别技术规范》(HJ 298-2007),此次修订主要内容为:/pp  进一步细化了危险废物鉴别的采样对象、份样数、采样方法、样品检测、检测结果判断等技术要求 /pp  增加了环境事件涉及的固体废物危险特性鉴别的采样、检测、判断等技术要求。/pp  相关新闻:/pp  a href="https://www.instrument.com.cn/news/20191108/516476.shtml" target="_blank"《一般工业固体废物贮存场、处置场污染控制标准》征求意见 严格自监测频率/a/pp  a href="https://www.instrument.com.cn/news/20191014/494732.shtml" target="_blank"《危险废物填埋污染控制标准》更新 增加多项检测指标/a/p
  • 海洋溢油事件频发 油指纹鉴别技术是时代之需
    溢油事故:超级杀手  “据不完全统计,1976~2006年,我国沿海平均每4天发生一起溢油事故,其中,溢油量在50吨以上的溢油事故60多起。”国家海洋局北海环境监测中心主任高振会告诉记者,“随着我国对外开放和海洋经济的迅速发展、海洋石油勘探开发规模不断加大、海上石油运输日益繁忙,加之我国未来对石油需求的不断增加、油运市场的不断壮大,我国海域可能是未来溢油事故的多发区和重灾区。海上溢油事故正逐渐成为十分敏感的问题。”  海洋溢油被称为海洋生态环境的超级杀手,是我国近海经常发生的重要环境灾害之一。随着我国经济的不断发展,各类油污染事件呈上升趋势,发生的频率与风险正日益加大,这给我国海洋生态环境、生态资源及人民群众带来了重大损失。  高振会举例说,2002年,一艘装载8万吨原油的马耳他籍“塔斯曼海”轮船在渤海湾发生撞船事故,大量原油泄漏,经过评估,这起事故给我国带来的环境经济损失达1亿多元。除此之外,各种地沟油、加油站漏油、发电厂及机修厂漏油也是油污染的主要来源,而它们直接危害到周围居民的健康。  发展,迫在眉睫  溢油源的确定和损失评估是溢油事故处理的重要依据,因此,发展溢油鉴别与损害评估技术越来越迫切。  “海洋溢油具有突发性、偶然性和瞬时性,加之其在海洋环境中的复杂变化,使得其损害的对象也十分广泛。但目前我国缺乏专门的海洋溢油科研平台,部分基础研究成果零散分布,缺乏有效的海洋溢油快速鉴别与损害评估技术,给查找肇事者、有效保护我国海洋生态环境带来诸多困难。”高振会告诉记者,面对我国沿海经济的迅速发展,我们应该逐步开展以溢油监测与鉴别技术、溢油的生态环境影响评估、溢油现场处置与生态修复技术为重点的研究与应用示范工作,从而指导我国海洋溢油环境保护工作。  针对溢油事故频发及其对海洋环境的巨大损害,目前国际上很多国家和地区都建立了相关的专业研究机构,如美国早在1978年就在海岸警备队成立了油品鉴别中心实验室 欧洲的比利时、丹麦、德国、挪威、葡萄牙和英国等6个国家的研究机构也于1983年在对油类分析研究的基础上,建立了欧洲海上溢油鉴定系统,后经过两次修订于1992年被《波恩协议》所接受,作为《波恩协议》内部溢油鉴别的推荐方法。这些机构在溢油方面开展的研究成果,不仅促进了海洋溢油相关技术的发展,并在海洋行政管理中发挥了重要作用。而我国在这方面却一直落后于这些发达国家。  我国也应时代发展的需要,于2007年在国家海洋局北海分局建立了我国第一个溢油鉴别与损害评估技术重点实验室,促使海洋科学技术研究及成果转化与海洋行政管理的结合。  油指纹鉴别技术是时代之需  溢油鉴别与损害评估技术重点实验室通过溢油监测与鉴别技术、溢油的生态环境影响、溢油应急处置及生态修复等方向与多学科交叉研究,深入了解海洋溢油的特征和规律,准确查明各种溢油来源,对其造成的海洋生态环境损害作出客观评估,为修复受损的海洋生态环境、发展海洋突发事件研究的理论体系、发展相应的高新技术提供技术平台,为我国海洋减灾防灾和维护国家海洋权益提供科学依据。该实验室以溢油监测与鉴别技术、溢油的生态环境影响和溢油现场处置与生态修复技术为主要研究内容和方向。  高振会向记者介绍,这些技术中油指纹鉴别技术至关重要。  该技术最早始于20世纪60年代,美、日等国家在70年代相继推出标准方法,北欧标准也在80年代颁布。近些年来,随着技术的发展和研究的不断深入,各国都在不断完善自己的溢油鉴别体系,并建立起了自己的油指纹库,我国也正在着力建设自己的标准油指纹库。  高振会解释说,所谓的油指纹鉴别就是基于油品指纹的差异性,通过对溢油和可疑溢油源油样的“油指纹”进行比对,从而实现溢油源的排查和确认。  众所周之,原油是由上千种不同浓度的化合物组成,这些化合物通过不同的分析检测手段获得不同的信息,如利用色谱获取的组分信息、利用光谱获得的各种光谱特征,这些信息就是反映油品特征的油指纹。  油指纹的差异性主要受到3个方面因素的影响:首先,原油的形成和聚集过程中的因素,包括原油生源岩本身的有机质特征、热环境以及原油在地层和油井内的运移 其次,原油通过不同的炼制过程获得的成品油,因为炼制过程不同,不同的需求,以及运输、储存等过程的不同,不同成品油的油指纹不同 最后,油品溢出到环境中后的风化和混合,不同的风化过程、不同的环境背景和环境中其他烃类污染源带来的混合,油指纹也会发生不同程度的变化。  记者了解到,为提高溢油鉴定能力,为海洋行政执法管理提供科学依据,国家海洋局北海分局建立了气相色谱、气相色谱—质谱、红外光谱、荧光光谱及物理方法等一套国际先进的油指纹库建设体系和多手段逐级鉴定体,承担并完成了油指纹库建设体系及关键技术研究。  关键之处显身手  “在我国科技工作人员的努力下,在认真梳理、总结多年工作成果并广泛借鉴国内外先进经验的基础上,我国现已完成了国家标准《海面溢油鉴别系统规范》的制定。该标准是在行业标准部分内容的基础上,广泛吸收《欧洲溢油鉴别系统》(NT CHEM 001,1991)和美国ASTM相关标准中先进的油指纹鉴别技术,研究石油指纹的化学分析方法、溢油鉴定程序和判定方法,较之前行业标准已经有了质的飞跃,溢油鉴定流程方面实现了与国际接轨。”高振会高兴地对记者介绍。  高振会进一步补充说,这些技术目前已经得到了很好的应用,积累了较丰富的实践经验。如长岛海域油污染事件鉴定、埕岛海域油污染鉴定、“塔斯曼海”轮溢油鉴定、威海“恒冠36”轮溢油事件鉴定、绥中36-1油田F31井溢油污染鉴定、黄骅滩涂溢油鉴定、黄岛溢油鉴定等几十起溢油事故鉴定中,这些技术都发挥了关键性作用。尤其是2006年“长岛海域油污染事件”中,北海分局北海监测中心基于油指纹鉴定技术,排除了多种溢油嫌疑,成功地确定溢油来源,为事件的处理提供了有力证据。
  • 《出口水果中多果定残留量的测定 液相色谱-质谱/质谱法》等86项行业标准发布
    现发布《进口再生铜原料检验规程》等86项行业标准(目录见附件1)。《蜜蜂美洲幼虫腐臭病检疫技术规范》(SN/T 1168-2011)等8项被代替标准自新标准实施之日起废止。本次发布的标准文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。《TCK疫麦环氧乙烷熏蒸处理方法》(SN/T 2016-2007)等3项行业标准(见附件2)自本公告发布之日起废止。特此公告。附件:1.《进口再生铜原料检验规程》等86项行业标准目录.xls2.废止行业标准目录.xls海关总署2022年3月14日公告正文下载链接:海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.doc海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.pdf相关标准如下:发布行业标准目录序号标准编号 标准名称替代标准号实施日期1SN/T 0184.4-2022 出口食品中单核细胞增生李斯特菌的检测方法 第4部分:肽核酸荧光原位杂交(PNA-FISH)方法2022-10-012SN/T 0500-2022 出口水果中多果定残留量的测定 液相色谱-质谱/质谱法SN 0500-952022-10-013SN/T 1168-2022 蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 1168-20112022-10-014SN/T 1632.4-2022 出口乳粉中克罗诺杆菌属(阪崎肠杆菌)检测方法 第4部分:PCR-CRISPR法2022-10-015SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法SN/T 2073-20082022-10-016SN/T 2922-2022 出口保健食品中EPA、DHA和AA的测定 气相色谱法SN/T 2922-20112022-10-017SN/T 4544.2-2022 商品化试剂盒检测方法 菌落总数 方法二2022-10-018SN/T 4545.3-2022 商品化试剂盒检测方法 沙门氏菌 方法三2022-10-019SN/T 4545.4-2022 商品化试剂盒检测方法 沙门氏菌 方法四2022-10-0110SN/T 4675.32-2022 进出口葡萄酒中羧甲基纤维素钠的测定 分光光度法2022-10-0111SN/T 5363-2022 鲤浮肿病检疫技术规范2022-10-0112SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-0113SN/T 5366.1-2022 商品化试剂盒检测方法 肠杆菌科计数 方法一2022-10-0114SN/T 5367.1-2022 商品化试剂盒检测方法 单核细胞增生李斯特氏菌 方法一2022-10-0115SN/T 5368.1-2022 商品化试剂盒检测方法 克罗诺杆菌属(阪崎肠杆菌) 方法一2022-10-0116SN/T 5408-2022 再生塑料与改性塑料的鉴别方法2022-10-0117SN/T 5414-2022 再生塑料中33种禁限用物质的测定 裂解气相色谱-质谱筛选法2022-10-0118SN/T 5419-2022 进出境陆生动物隔离检疫场防疫消毒技术规范2022-10-0119SN/T 5420-2022 蜜蜂热厉螨病检疫技术规范2022-10-0120SN/T 5436-2022 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法2022-10-0121SN/T 5437-2022 出口动物源食品中苯海拉明残留量的测定 液相色谱-质谱/质谱法2022-10-0122SN/T 5438-2022 出口乳粉中核苷酸含量的测定 液相色谱-质谱/质谱法2022-10-0123SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌2022-10-0124SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌2022-10-0125SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第3部分:副溶血性弧菌2022-10-0126SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌2022-10-0127SN/T 5439.5-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌O1572022-10-0128SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌2022-10-0129SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌2022-10-0130SN/T 5440-2022 出口食品中双炔酰菌胺、噻唑菌胺、吲唑磺菌胺等多种酰胺类杀菌剂残留量的测定 液相色谱-质谱/质谱法2022-10-0131SN/T 5441-2022 出口水产品中三卡因、苯佐卡因、喹哪啶残留量的测定 液相色谱-质谱/质谱法2022-10-0132SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-0133SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-0134SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-0135SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-0136SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-0137SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-0138SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-0139SN/T 5450-2022 动物源食品中9种双稠吡咯啶类生物碱的测定 液相色谱-质谱/质谱法2022-10-0140SN/T 5451-2022 商品化试剂盒检测方法 乳酸菌总数 方法一2022-10-0141SN/T 5452-2022 食品检测用浓缩仪采购与验收指南2022-10-01废止行业标准目录序号标准编号标准名称1SN/T 2016-2007TCK疫麦环氧乙烷熏蒸处理方法2SN/T 2837-2011进境集装箱承载废物原料动植物检疫除害处理规程3SN/T 4642-2016枇杷桔小实蝇、梨小食心虫检疫处理技术标准
  • 2011食品安全技术与标准国际研讨会暨AOAC中国区年会日程公布
    会议日期: 2011年10月20-21日  举办城市: 青岛  会议地址: 青岛海情大酒店  主办单位: AOAC中国分部,中国国家认证认可监督管理委员会  承办单位: 山东出入境检验检疫局食品农产品检测中心 世界展览服务有限公司  2011食品安全技术与标准国际研讨会暨AOAC中国区年会,会议将汇聚来自海内外化学和微生物学等领域著名的专家和学者,围绕着“加强国际交流与合作,提高我国食品安全标准和检测水平”这一宗旨从科学技术、最新产品、检测方法以及解决方案等视角展开研讨,因此,本届会议将是一次与业内精英学习、交流和分享在农业、食品、医药以及环境科学等领域科学发展的良好机会。  会议主要议题   食品安全形势、突发事件及对策(主论坛)   方法验证、质量控制和实验室认可(主论坛)   食品中污染物质和残留的检测技术 (分论坛)   微生物、基因检测技术(分论坛)   天然毒素的检测技术(分论坛)   食品添加剂、食品营养与过敏原检测(分论坛)  大会日程公布如下:2011年10月20日 (星期四)开幕式主持人:鲍蕾09:00K1 开幕致词国务院参事、全国政协委员、中国出入境检验检疫协会会长 葛志荣先生09:10K2 开幕致词中国国家认证认可监督管理委员会副主任 王大宁先生09:20K3 开幕致词山东出入境检验检疫局局长 周建安先生09:30K4 开幕致词AOAC主席 罗素.弗劳尔博士09:40茶歇主题报告主题:食品安全形势、突发事件及对策 主持人:梁成珠 罗素.弗劳尔10:00K5 主题演讲"中国食品安全检测技术研究与进展"国家质检总局科技司司长 武津生先生10:30K6 主题演讲"中国进出口食品安全法律法规体系"国家质检总局进出口食品安全局副局长 林伟博士11:00K7 主题演讲"确保食品安全的实用微生物检测方法"AOAC主席 罗素.弗劳尔博士11:30K8 主题演讲"中国食品进出口与检验检疫行业标准"国家认监委科技与标准管理部主任 史小卫12:00午餐主题报告主题:食品安全形势、突发事件及对策主持人:梁成珠 罗素.弗劳尔13:30K9 主题演讲"AOAC SPIFAN (婴儿配方奶粉及成人营养素国际标准)项目进展"AOAC理事、婴儿配方奶粉及成人营养素国际标准项目主席 戴尔.苏利安博士14:00K10 主题演讲"应对食品安全事件,安捷伦全方位检测方法和解决方案介绍"安捷伦全球食品应用首席专家 Paul Zavitsanos 博士14:30K11 主题演讲"AOAC国际标准协作研究:茶叶中农药多残留检测技术"中国工程院院士、食品科学检测技术专家 庞国芳先生15:00茶歇主题报告主题:方法验证、质量控制和实验室认可主持人:梁钧 Hilde Skå r Norli15:20K12 主题演讲"微生物性食品安全问题与现代控制技术"中国疾病预防控制中心营养与食品安全所研究员 刘秀梅15:50K13 主题演讲"AOAC国际标准的验证" 美国FDA科学家 Mary W. Trucksess16:20K14 主题演讲"新奇样品前处理方法进展"中国科学院院士 张玉奎先生16:50K15 主题演讲"NMKL的方法验证和质量保证"NMKL/NordVal (北欧食品分析委员会)秘书长 Hilde Skå r Norli 17:20K16 主题演讲"真菌毒素的方法验证—是质量控制中的最后还是第一个环节"欧盟生物毒素标准实验室,欧盟标准物质与测量研究院 Joerg Stroka博士17:50K17 主题演讲"检验检疫行业标准的验证技术和程序"深圳检验检疫局 岳振峰博士19:00优秀论文颁奖晚宴2011年10月21日 (星期五)专题一:天然毒素检测技术主持人:鲍蕾、Mary W.Trucksess专题二:食品中污染物质和残留的检测技术主持人:王功明、岳振峰08:30T101 "大米中的霉菌毒素"美国FDA、真菌毒素专家Mary W. Trucksess博士T201 "食品和农产品中多种农药残留分析的进展与挑战"美国FDA资深科学家Jon Wong 博士09:00T102 "AOAC国际标准室内验证和协同研究:植物油中黄曲霉毒素的检测技术"山东检验检疫局生物毒素实验室主任、国家质检总局生物毒素基准实验室技术领衔人 鲍蕾博士T202 "安捷伦食品安全筛查全新解决方案"安捷伦科技(中国)食品项目经理 张伟国 博士09:30T103 "欧盟国家基准实验室霉菌毒素实用方法验证透视"欧盟生物毒素标准实验室, 欧盟标准物质与测量研究院 Joerg Stroka博士T203 "复杂化合物分离分析的解决方案"岛津公司产品经理 靳松10:00T104 "天然毒素检测技术的'质'的飞跃"沃特世科技(上海)有限公司市场发展部经理 蔡麒T204 "借助液相色谱与质谱(LC / MS)实现对食品安全的高通量分析"美国FDA资深科学家王功明 博士10:30 茶歇10:50 T105 "同位素内标在真菌毒素液-质/质联用检测技术中的应用"ROMER国际贸易(北京)有限公司技术与市场部经理 张喆T205 "食品与食品安全"中国检验检疫科学研究院 彭涛博士11:20 T106 "中药中真菌毒素的检测"上海市食品药品检验所 胡青T206 "在高流通量食品检测实验室中高质量标准的农药检测"欧陆分析技术服务(苏州)有限公司技术总监Helmut Rost博士11:50T107 "麻痹性和腹泻性贝毒毒素的高效液相色谱-串联质谱检测方法研究"山东出入境检验检疫局食品农产品检测中心生物毒素试验室副主任 吴振兴 工程师T207 "食品安全快速检测技术研究与应用"北京勤邦生物技术有限公司副总经理 万宇平12:20 午餐专题三:微生物、基因检测技术主持人:王甲正、罗素.弗劳尔专题四:食品添加剂、食品营养与过敏原检测主持人:邹志飞 戴尔.苏利安13:30T301 "转基因农产品生产现状、安全性评价与对策"青岛农业大学食品学院 王宝维教授T401 "色质联用技术在保健食品违禁添加物分析中的应用"广东出入境检验检疫局食品实验室工作副主任 邹志飞14:00 T302 "微生物检测方法的验证"AOAC主席 罗素.弗劳尔博士T402 "离子淌度差分质谱在食品安全分析中的最新应用"AB-SCIEX公司亚太区技术支持中心 李立军14:30 T303 "生物计量、标准和生物分析(基因/转基因)"国家计量测试院, 中国计量测试学会生物计量专业委员会副主任王晶博士T403 "毛细管电泳分析食品添加剂"北京大学 刘虎威 博士 教授15:00 T304 "食品和环境中微生物的检测"3M 公司食品安全部全球技术服务与监管事务经理KEVIN F. MCGOLDRICK T404 "满足产品标签和食品安全要求的新的分析方法和技术"AOAC理事、婴儿配方奶粉及成人营养素国际标准项目主席 戴尔.苏利安博士15:30T305 "一种可能存在的超小微生物"山东检验检疫局食品农产品检测中心副主任 徐彪博士T405 "饮料与香精香料中的塑化剂检测:方法、挑战及展望"可口可乐公司全球研究和发展分析科学总监杨生生 博士16:00 茶歇16:20T306 "PCR-ELISA检测方法的研究与应用"天津出入境检验检疫局,郑文杰博士T406 "食品安全完整工作流程解决方案"赛默飞世尔科技中国有限公司食品安全市场开发经理 郭久和16:50T307 "食品微生物检测方法体系和应用"国际食品微生物标准委员会(ICMSF)中国分委会观察员雷质文 高级工程师T407 "电感耦合等离子体质谱法从测定婴儿配方奶粉中的有毒有害元素"山东出入境检验检疫局食品农产品中心重金属检测实验室主任 江志刚教授17:20T308 "牛奶中无乳链球菌DNA提取方法的比较"江苏出入境检验检疫局 祝长青T408 中国检验检疫科学研究院 陈冬东18:00晚宴
  • 2024年5月份有338项标准将实施——农林牧渔及食品标准独领风骚
    2024年5月份有338项标准将实施 ——农林牧渔及食品标准独领风骚我们通过国家标准信息平台查询到,在2024年5月份将有338项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:5月份新实施标准一览通过上述图表我们发现,5月份主要是以农林牧渔及食品相关的为主,占比达到了69%(234条)。在这些新实施标准中有水产、农产品农副产品及农药、食品饲料及乳制品等质量及检测方法标准,标准中使用了大量的生命科学类仪器检测。另外还有16%(55条)医药和7%(24条)环境监测标准也将实施。在5月份新实施标准中,涉及大量的科学仪器检测,如:液相色谱-串联质谱仪 、气相色谱-质谱联用仪 、气相色谱仪 、液相色谱 、荧光定量PCR 、红外光谱 、分光光度 、荧光免疫层析 、生物芯片试剂盒 、免疫分析 、拉曼光谱 、X 射线荧光光谱 、原子吸收光谱 等仪器设备。具体2024年5月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(1个)TB/T 1869.7-2023铁路信号变压器 第7部分:BE系列扼流变压器农林牧渔食品标准(234个)SC/T 9447-2023 水产养殖环境(水体、底泥)中丁香 酚 的测定 气相色谱 - 串联质谱法 SC/T 9446-2023 海水鱼类增殖放流效果评估技术规范 SC/T 9112-2023 海洋牧场监测技术规范 SC/T 7002.7-2023 渔船用电子设备环境试验条件和方法 第 7 部分:交变盐雾( Kb ) SC/T 7002.11-2023渔船用电子设备环境试验条件和方法 第11部分:倾斜 摇摆SC/T 5005-2023 渔用聚乙烯单丝及超高分子量聚乙烯纤维 SC/T 4033-2023 超高分子量聚乙烯钓线通用技术规范 SC/T 2123-2023 冷冻卤虫 NY/T 574-2023 地方流行性牛白血病诊断技术 NY/T 572-2023 兔 出血症诊断技术 NY/T 4451-2023 纳米农药产品质量标准编写规范 NY/T 4450-2023 动物饲养场选址生物安全风险评估技术 NY/T 4449-2023 蔬菜地防虫网应用技术规程 NY/T 4448-2023 马匹道路运输管理规范 NY/T 4447-2023 肉类气调包装技术规范 NY/T 4446-2023 鲜切农产品 包装标识技术要求 NY/T 4445-2023 畜禽屠宰用印色用品要求 NY/T 4444-2023 畜禽屠宰加工设备 术语 NY/T 4443-2023 种牛术语 NY/T 4442-2023 肥料和土壤调理剂 分类与编码 NY/T 4440-2023 畜禽液体粪污中四环素类、磺胺类和 喹 诺酮类药物残留量的测定 液相色谱 - 串联质谱法 NY/T 4439-2023 奶及奶制品中乳铁蛋白的测定 高效液相色谱法 NY/T 4438-2023 畜禽肉中 9 种生物胺的测定 液相色谱 - 串联质谱法 NY/T 4437-2023 畜肉中龙胆紫的测定 液相色谱 - 串联质谱法 NY/T 4436-2023 动物冠状病毒通用 RT-PCR 检测方法 NY/T 4432-2023 农药产品中有效成分含量测定通用分析方法 气相色谱法 NY/T 4431-2023 薏苡仁中多种酯类物质的测定 高效液相色谱法 NY/T 4430-2023 香石竹斑驳病毒的检测 荧光定量 PCR 法 NY/T 4429-2023 肥料增效剂 苯基磷酰二胺( PPD )含量的测定 NY/T 4428-2023 肥料增效剂 氢醌( HQ )含量的测定 NY/T 4427-2023 饲料近红外光谱测定应用指南 NY/T 4426-2023 饲料中二 硝托胺 的测定 NY/T 4425-2023 饲料中 米诺地尔 的测定 NY/T 4424-2023 饲料原料 过氧化值的测定 NY/T 4423-2023 饲料原料 酸价的测定 NY/T 4422-2023 牛蜘蛛腿综合征检测 PCR 法 NY/T 4421-2023 秸秆还田联合整地机 作业质量 NY/T 4420-2023 农作物生产水足迹评价技术规范 NY/T 4419-2023 农药桶混助剂的润湿性评价方法及推荐用量 NY/T 4418-2023 农药桶混助剂沉积性能评价方法 NY/T 4417-2023 大蒜营养品质评价技术规范 NY/T 4416-2023 芒果品质评价技术规范 NY/T 4415-2023 单氰胺可溶液剂 NY/T 4414-2023 右旋 反式氯丙炔 菊酯原药 NY/T 4413-2023 噁 唑 菌酮原药 NY/T 4412-2023 抑霉 唑 水乳剂 NY/T 4411-2023 抑霉 唑 乳油 NY/T 4410-2023 抑霉 唑 原药 NY/T 4409-2023 苏云金杆菌可湿性粉剂 NY/T 4408-2023 苏云金杆菌悬浮剂 NY/T 4407-2023 苏云金杆菌母药 NY/T 4406-2023 萘 乙酸钠可溶液剂 NY/T 4405-2023 萘 乙酸( 萘 乙酸钠)原药 NY/T 4404-2023 抗倒酯微乳剂 NY/T 4403-2023 抗倒 酯 原药 NY/T 4402-2023 甲 哌 鎓可溶液剂 NY/T 4401-2023 甲 哌 鎓原药 NY/T 4400-2023 氟 啶 虫酰胺水分散粒剂 NY/T 4399-2023 氟 啶 虫酰胺悬浮剂 NY/T 4398-2023 氟 啶 虫酰胺原药 NY/T 4397-2023 氟虫 腈 种子处理悬浮剂 NY/T 4396-2023 氟虫 腈 悬浮剂 NY/T 4395-2023 氟虫 腈 原药 NY/T 4394- 2023 代森锰锌 霜 脲 氰可湿性粉剂 NY/T 4393- 2023 代森联可湿性 粉剂 NY/T 4392- 2023 代森联水 分散粒剂 NY/T 4391- 2023 代森联原药 NY/T 4390-2023 丙炔氟草胺 可湿性粉剂 NY/T 4389-2023 丙炔氟草胺 原药 NY/T 4388-2023 苯 醚甲环唑 水分散粒剂 NY/T 4387-2023 苯 醚甲环唑 微乳剂 NY/T 4386-2023 苯 醚甲环唑 乳油 NY/T 4385-2023 苯 醚甲环唑 原药 NY/T 4384-2023 氨氯吡啶酸可溶液剂 NY/T 4383-2023 氨氯吡啶酸原药 NY/T 4382-2023 加工用红枣 NY/T 4381-2023 羊草干草 NY/T 394-2023 绿色食品 肥料使用准则 NY/T 3213-2023 植保无人驾驶航空器 质量评价技术规范 NY/T 1668-2023 农业野生植物原生境保护点建设技术规范 NY/T 1236-2023 种羊生产性能测定技术规范 LS/T 8013-2023 气膜钢筋混凝土圆顶仓工程施工与验收规范 LS/T 8012-2023 气膜钢筋混凝土圆顶仓设计规范 LS/T 8005-2023 农户小型粮仓建造技术规范 LS/T 6148-2023 粮油检测 粮食中铅的测定 时间分辨荧光免疫层析快速定量法 LS/T 6147-2023 粮油检测 粮食中 T-2 毒素的测定 时间分辨荧光免疫层析快速定量法 LS/T 6146-2023 粮油检验 粮食中霉菌计数 荧光快速检测法 LS/T 3323-2023 食品工业用玉米蛋白 LS/T 3322-2023 冷冻熟面条 LS/T 3321-2023 马铃薯全粉 LS/T 3127-2023 鹰嘴豆 LS/T 3126-2023 油用杏仁 LS/T 1233-2023 粮油储藏 粮食仓储企业危险源辨识与评价方法 SN/T 5658.3-2023 蒸馏酒质量鉴别方法 第 3 部分:多酚总量的测定 分光光度法 SN/T 5658.2-2023 蒸馏酒质量鉴别方法 第 2 部分:橡木浸出物的测定 超高效液相色谱法 SN/T 5658.1-2023 蒸馏酒质量鉴别方法 第 1 部分: 18 种挥发性成分含量的测定 气相色谱法 SN/T 5656-2023 食品中 5 种杂粮成分定性检测方法 实时荧光 PCR 法 SN/T 5655.13-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 13 部分:胡桃 SN/T 5655.12-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 12 部分:开心果 SN/T 5655.11-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 11 部分:夏威夷果 SN/T 5655.10-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 10 部分:巴西坚果 SN/T 5655.9-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 9 部分:榛子 SN/T 5655.8-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 8 部分:腰果 SN/T 5655.7-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 7 部分:扁桃仁 SN/T 5655.6-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 6 部分:乳 SN/T 5655.5-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 5 部分:大豆 SN/T 5655.4-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 4 部分:花生 SN/T 5655.3-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 3 部分:蛋类 SN/T 5655.2-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 2 部分: 甲壳纲类动物 SN/T 5655.1-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 1 部分: 麸 质 SN/T 5649-2023 动物源食品 中克百威 及代谢物 3- 羟基克百威 残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5643.5-2023 出口食品中化学污染物的快速检测方法 第 5 部分: 4 种真菌毒素含量的测定 生物芯片 试剂盒法 SN/T 5643.4-2023 出口食品中化学污染物的快速检测方法 第 4 部分: 西布曲明 的测定 拉曼光谱法 SN/T 5643.3-2023 出口食品中化学污染物的快速检测方法 第 3 部分:苋菜红的测定 拉曼光谱法 SN/T 5643.2-2023 出口食品中化学污染物的快速检测方法 第 2 部分:碱性嫩黄 O 的测定 拉曼光谱法 SN/T 5643.1-2023 出口食品中化学污染物的快速检测方法 第 1 部分:砷、镉、汞、铅含量的测定 X 射线荧光光谱法 SN/T 5642.7-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 7 部分:副干酪乳杆菌 SN/T 5642.6-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 6 部分: 嗜 酸乳杆菌 SN/T 5642.5-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 5 部分:鼠李糖乳 杆菌 SN/T 5642.4-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 4 部分:植物乳杆菌 SN/T 5642.3-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 3 部分:动物双 歧 杆菌 SN/T 5642.2-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 2 部分:两双 歧 杆菌 SN/T 5642.1-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 1 部分:青春双 歧 杆菌 SN/T 5638-2023 冰葡萄酒中 20 种醛酮类物质的测定 气相色谱 - 质谱 / 质谱法 SN/T 5637-2023 6 种常见黑松露成分定性检测方法 实时荧光 PCR 法 SN/T 5636-2023 16 种鱼类成分定性检测方法 实时荧光 PCR 法 SN/T 5604-2023 东北林蛙物种鉴定方法 实时荧光 PCR 法 SN/T 5521-2023 进口麦卢卡蜂蜜中 5 种特征物质的测定 液相色谱 - 质谱 / 质谱法 SN/T 5520-2023 动物源食品中苯乙醇胺 A 的测定 液相色谱 - 质谱 / 质谱法 SN/T 5519-2023 出口植物源性食品 中氰氟草酯 和 氰氟 草酸残留量的测定 SN/T 5518-2023 出口植物源食品中 棉隆及其 代谢物残留量的测定 气相色谱 - 质谱 / 质谱法 SN/T 5517-2023 出口水产品及其制品中甲基汞的测定 全自动甲基 汞分析仪法 SN/T 5515-2023 出口食品中氟 唑 菌酰胺残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5514-2023 出口食品中产毒素真菌快速检测方法 实时荧光 PCR 法 SN/T 5513-2023 出口禽肉中弯曲 菌 计数方法 SN/T 5512-2023 出口动物源食品中那西肽残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 4544.3-2023 商品化试剂盒检测方法 菌落总数 方法三 SN/T 1988-2023 出口动物源食品中头 孢 类抗生素残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 1681-2023蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 5599-2023 进境鲜冻肉类产品名称规范 SN/T 5561-2023 出口食品中乙 嘧 硫磷残留量的测定 气相色谱法 DB32/T 4727-2024 鳜鱼传染性脾肾坏死病诊断及综合防控技术规程 DB32/T 4726-2024 畜禽粪污 沼 液果 蔬 生产施用技术规范 DB32/T 4735-2024 优良食味粳稻生态种植技术规程 DB32/T 4732-2024 设施蔬菜园区农业机械配置规范 DB32/T 4731-2024 农机专业合作社机务管理规范 DB32/T 4730-2024 南美白对虾小型温棚健康养殖技术规范 DB32/T 4724-2024 草莓生产中微生物菌剂(肥)应用技术规程 DB5308/T 77—2024 桉树速生丰产林培育技术规程 DB42/T 235-2024 地理标志产品 京山桥米 DB42/T 582-2024 猕猴桃主要真菌性病害防控技术规程 DB42/T 1428.1-2024 猕猴桃轻简高效生产技术规程 第 1 部分:高枝牵引技术 DB42/T 2230.1-2024 麦茬复种 第 1 部分:夏直播棉 DB42/T 2228.4-2024 农副产品加工流通管理规程 第 4 部分:加工或保藏的水果 DB42/T 2228.3-2024 农副产品加工流通管理规程 第 3 部分:动、植物油脂 DB42/T 2228.2-2024 农副产品加工流通管理规程 第 2 部分:谷物粉制品 DB42/T 2228.1-2024 农副产品加工流通管理规程 第 1 部分:加工或保藏的蔬菜 DB42/T 2227.2-2024 食用菌菌种质量检验规范 第 2 部分:荷叶离褶伞 DB42/T 2217-2024 稻田迟直播油菜生产技术规程 DB42/T 2216-2024 普通白菜机械化生产技术规范 DB42/T 2215-2024 甘蓝型油菜品种真实性及其实质性派生品种 MNP 鉴定法 DB42/T 2214-2024 甘蓝类蔬菜 集约化穴盘育苗 技术规程 DB42/T 2213-2024 设施草莓 / 西瓜模式栽培技术规程 DB6521/T 071-2024 葡萄平茬嫁接技术规程 DB6521/T 070-2024 红巴拉多葡萄栽培技术规程 DB6521/T 069-2024 紫霞玫瑰葡萄栽培技术规程 DB6521/T 068-2024 火州翠玉 葡萄栽培技术规程 DB6521/T 067-2024 顺行龙干葡萄栽培技术规程 DB4413/T 43-2024 滨海旅游海鲜餐饮经营规范 DB4413/T 42-2024 糯 小麦种植技术规范 DB44/ 613-2024 畜禽养殖业污染物排放标准 DB41/T 2620-2024 沿 黄稻虾共 作生态种养技术规程 DB41/T 2617-2024 饲料霉变防控及霉菌毒素脱毒技术规范 DB41/T 2616-2024 杨树锈病综合防治技术规程 DB41/T 2615-2024 山桐子育苗技术规程 DB41/T 2614-2024 银木栽植 养护技术规程 DB41/T 2612-2024 薄壳山核桃容器苗培育技术规程 DB41/T 2611-2024 食用林产品抽样技术要求 DB41/T 2609-2024 设施西瓜、甜瓜水肥一体化设备配置与运行规程 DB41/T 2608-2024 设施蔬菜冬春季防灾减灾技术规范 DB41/T 2607-2024 蓝 莓 组培快 繁 技术规程 DB41/T 2606-2024 丘陵山地朝天 椒 生产技术规程 DB41/T 2605-2024 蜡梅 种质资源描述规范 DB41/T 2604-2024 规模化养殖池塘尾水生态处理技术规范 DB41/T 2597-2024 沼气用玉米、小麦秸秆黄 贮技术 规程 DB41/T 2596-2024 鹅常见病毒病防控技术规程 DB41/T 2595-2024 猪急性腹泻综合征诊断技术 DB41/T 2594-2024 规模化牛场布鲁氏菌病、结核病净化技术规范 DB41/T 2593-2024 黄山松培育技术规程 DB41/T 2592-2024 月季品种观赏性评价技术规程 DB41/T 2591-2024 石榴盆栽技术规程 DB41/T 2588-2024 苍术栽培技术规程 DB41/T 2587-2024 怀地黄种栽繁育技术规程 DB41/T 2586-2024 黄精种子育苗技术规程 DB41/T 2585-2024 大口黑鲈四种病毒性疾病防控技术规范 DB41/T 2583-2024 荷斯坦犊牛饲养管理技术规程 DB41/T 2582-2024 湖北紫荆培育技术规程 DB41/T 2581-2024 迁飞性昆虫的雷达观测技术规范 DB41/T 2577-2024 麦套朝天 椒 机械化直播生产技术规程 DB41/T 2576-2024 冬小麦 - 夏玉米 籽粒双 机收栽培技术规程 DB11/T 2171.3-2023 粮食节约减损规范 第 3 部分:加工环节 DB11/T 2171.2-2023 粮食节约减损规范 第 2 部分:运输环节 DB11/T 2171.1-2023 粮食节约减损规范 第 1 部分:储存环节 DB36/T 779-2023 毛红椿培育技术规程 DB36/T 1888-2023 长豇豆大棚栽培技术规程 DB36/T 1887-2023 油菜 - 中稻生产技术规程 DB36/T 1886-2023 湿地松种子园营建技术规程 DB36/T 1885-2023 辣椒水肥一体化栽培技术规程 DB36/T 1884-2023 苦瓜大棚秋延后栽培技术规程 DB36/T 1883-2023 黄瓜设施越夏栽培技术规程 DB36/T 1882-2023 黑皮冬瓜设施栽培技术规程 DB36/T 1881-2023 黑斑 侧褶蛙米尔 伊丽莎白 菌 分离鉴定技术规范 DB36/T 1880-2023 稻草全量还田下的油菜直播生产技术规程 DB36/T 1879-2023 测土配方施肥系统县域数据库规范 DB36/T 1878-2023 蛋鸭笼养技术规程 DB36/T 1876-2023 食品生产企业食品安全风险分级评定规范 DB36/T 848-2023 早稻集中育秧和移栽气象等级 DB36/T 1872-2023 旱地 “ 甘薯 — 油菜 ” 轮作生产技术规程 DB36/T 1871-2023 “ 早春红芽芋 — 晚粳稻 ” 轮作栽培技术规程 DB36/T 1870-2023 井冈蜜柚平衡施肥技术规程 DB36/T 1869-2023 香菇菌种生产技术规程 DB36/T 1868-2023 西方蜜蜂成熟 蜜 生产技术规程 DB36/T 1867-2023 白莲蜜蜂授粉技术规程 DB36/T 1866-2023 中华蜜蜂育王技术规程 DB36/T 1864-2023 切花石蒜栽培技术规程 DB36/T 1859-2023 特殊食品经营管理规范 DB36/T 1858-2023 特殊食品经营示范主体评价规范 DB36/T 1857-2023 校园食品安全总监(食品安全员)培训管理规范 DB4110/T 63-2023 玉米腐植酸 控释参混肥 施用技术规程 DB4110/T 62-2023 小麦玉米两熟制高产高效栽培技术规程 DB41/T 2598-2024 豫选黄河鲤 2 号 DB64/T 1980—2024 枸杞春季花期霜冻气象指标 DB41/T 1346-2024 稻田紫云英 - 水稻秸秆协同还田利用技术规程 DB64/T 1984—2024 酿酒葡萄晚霜冻灾 害调查 规范 环境环保标准(24个)NY/T 4435-2023 土壤中铜、锌、铅、铬和 砷含量 的测定 能量色散 X 射线荧光光谱法 NY/T 4434-2023 土壤调理剂中汞的测定 催化热解 - 金汞齐富集原子吸收光谱法 NY/T 4433-2023 农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法 SN/T 5523-2023水中铜绿假单胞菌的测定 酶底物法DB32/T 4729-2024 河湖生态疏浚工程施工质量检验与评定规范 DB32/T 4728-2024 河道保护规划编制导则 DB32/T 4740-2024 耕地和林地损害程度鉴定规范 CJ/T221-2023 城镇污泥标准检验方法 DB44/ 2462-2024 水产养殖尾水排放标准 DB64/T 702—2024 畜禽养殖污染防治技术规范 DB64/T 1981—2024 土壤水分自动观测站建设规范 DB64/ 819—2024 煤质活性炭工业大气污染物排放标准 DB64/ 1996—2024 燃煤电厂大气污染物排放标准 DB64/ 1995—2024 水泥工业大气污染物排放标准 DB41/ 2555-2023 医疗机构水污染物排放标准 DB37 4676—2023 海水养殖尾水排放标准 DB36/T 1865-2023 湿地碳汇监测 技术规程 DB41/T 2602-2024 湖泊水生态系统修复工程设计导则 DB41/T 2601-2024 农村水系综合治理设计导则 DB41/T 2613-2024 沿黄生态廊道建设导则 DB41/T 2579-2024 高山环境质量自动监测站防雷技术规范 DB32/T 4725-2024 池塘养殖尾水生态处理技术规范 DB41/T 754-2024 在用固体燃料工业锅炉节能评价规程 DB41/T 900-2024 旋流燃烧方式锅炉冷态试验导则 医药卫生标准(55个)GB 9706.222-2022 医用电气设备 第 2-22 部分:外科、整形、治疗和诊断用激光设备的基本安全和基本性能 专用要求 WS 10014-2023 学校及托幼机构饮水设施卫生规范 WS 10013-2023 公共场所集中空调通风系统卫生规范 WS 10012-2023 地方性 砷 中毒病区判定和划分 WS/T 10011.5-2023 公共卫生检测与评价实验室常用名词术语标准 第 5 部分:分子生物学检测 WS/T 10011.4-2023 公共卫生检测与评价实验室常用名词术语标准 第 4 部分:毒理学安全性评价 WS/T 10011.3-2023 公共卫生检测与评价实验室常用名词术语标准 第 3 部分:微生物检测 WS/T 10011.2-2023 公共卫生检测与评价实验室常用名词术语标准 第 2 部分:理化检测 WS/T 10011.1-2023 公共卫生检测与评价实验室常用名词术语标准 第 1 部分:基础术语 WS/T 10010-2023 卫生监督快速检测通用要求 WS/T 10009-2023 消毒产品检测方法 WS/T 10008-2023 7 岁 -18 岁儿童青少年体力活动水平评 WS/T 10007-2023 中小学生体育锻炼运动负荷卫生要求 WS/T 10006-2023 环境化学污染物参考剂量推导技术指南 WS/T 10005-2023 公共场所集中空调通风系统清洗消毒规范 WS/T 10004-2023 公共场所集中空调通风系统卫生学评价规范 WS/T 10003-2023 环境健康名词术语 WS/T 10002-2023 克山病病区控制和消除 WS/T 10001-2023 疾病预防控制机构实验室仪器设备配置和管理 SN/T 5605-2023 蝾螈壶菌检疫技术规范 SN/T 5602-2023 豇豆花叶病毒属病毒 RT-PCR 筛查方法 YY/T 1883-2023 Rh 血型 C 、 c 、 E 、 e 抗原检测卡(柱凝集法) YY/T 1874-2023 有源植入式医疗器械 电磁兼容 植入式心脏起搏器、植入式心律转复除颤 器和心脏再同步器械的电磁兼容测试细则 YY/T 1866-2023 一次性使用无菌 肛肠套扎器 胶圈或弹力线式 YY/T 1789.5-2023 体外诊断检验系统 性能评价方法 第 5 部分:分析特异性 YY/T 1411-2023 牙科学 牙科治疗机水路生物膜处理的试验方法 YY/T 1268-2023 环氧乙烷灭菌的产品追加和过程等效 YY/T 0893-2023 医用气体混合器 独立气体混合器 YY/T 0862-2023 眼科光学 眼内填充物 YY/T 0128-2023 医用诊断 X 射线辐射防护器具 装置及用具 YY/T 1012-2021 牙科学 手机连接件联轴节尺寸 YY 9706.272-2021 医用电气设备 第 2-72 部分:依赖呼吸机患者使用的家用呼吸机的基本安全和基本性能 专用要求 YY 9706.270-2021 医用电气设备 第 2-70 部分:睡眠呼吸暂停治疗设备的基本安全和基本性能 专用要求 YY 9706.252-2021 医用电气设备 第 2-52 部分 : 医用病床的基本安全和基本性能 专用要求 YY 9706.247-2021 医用电气设备 第 2-47 部分:动态心电图系统的基本安全和基本性能 专用要求 YY 9706.234-2021 医用电气设备 第 2-34 部分 : 有创血压监护设备的基本安全和基本性能 专用要求 YY 9706.221-2021 医用电气设备 第 2-21 部分:婴儿辐射 保暖台 的基本安全和基本性能 专用要求 YY 1045-2021 牙科学 手机和马达 YY/T 0671-2021 医疗器械 睡眠呼吸暂停治疗 面罩和应用附件 DB32/T 4737.1-2024 社区慢性病患者自我管理工作规范 第1部分:总则 DB32/T 4736-2024 医疗卫生信用评价规范 DB42/T 2218-2024 中药材 艾草种植技术规程 DB14/T 2997—2024 特色针法操作规程 中风利咽通窍针 DB14/T 2996—2024 医疗机构 灸 疗场所设置要求 DB14/T 2995—2024 灸疗技术 操作规范 中药泥 灸 DB14/T 2994—2024 灸疗技术 操作规范 通督 灸 DB14/T 2993—2024 灸疗技术 操作规范 麦粒 灸 DB14/T 2992—2024 医疗肿瘤多学科诊疗工作规范 DB64/T 1986—2024 老年友善医疗机构建设评价规范 DB36/T 1875-2023 结核病定点医疗机构医院感染预防与控制规范 DB36/T 1855-2023 困境儿童监护风险干预指南 DB41/T 2603-2024病媒生物预防控制机构服务规范DB41/T 2610-2024 养老机构康复辅助器具配置服务规程 DB41/T 2621-2024 产前诊断(筛查)技术医疗机构服务规范 SN/T 4445.4-2023 进口医疗器械检验技术要求 第 4 部分:输液泵 冶金矿产标准(4个)DB36/T 1860-2023 稀土产品链的可追溯性体系设计与实施指南 DB36/T 863-2023 黄蜡 石质量 等级划分与评定 DB41/T 2599-2024 煤矿地震监测站网技术规范 DB41/T 2578-2024 铝合金深井铸造工艺系统安全规程 化工塑料标准(3个)SN/T 5660-2023进出口危险化学品检验规程 甲酸SN/T 5659-2023进出口危险化学品检验规程 发火液体 基本要求DB32/T 4723-2024 石墨 烯 材料包装储运通用要求 轻工纺织标准(1个)SN/T 5615-2023 进出口纺织品 再生纤维素纤维定性分析 显微镜法 能源标准(3个)DB64/T 1979—2024 风能太阳能开发项目选址气候可行性论证技术指南 DB32/T 4722-2024 固定式海上风力发电机组 安装技术规范 DB32/T 4721-2024 海上风电场 雷电预警系统技术规范 机械车辆标准(2个)DB31/T 310021-2024 纯电动公交车运营管理规范 DB14/T 2998—2024 电动自行车消防安全管理指南 其他标准(11个)SN/T 5622-2023 化学分析实验室标准物质的选择和使用 SN/T 5603-2023 进出境旅客行李物品中有害物质气味 嗅探技术 规程 DB36/T 1877-2023 直投式橡塑复合改性沥青混合料应用技术规范 DB36/T 744-2023 废旧轮胎橡胶沥青路面施工技术规范 DB31/T 310023-2024 绿色产品和服务认证规范 DB41/T 2584-2024 装配式桥梁现浇部分超高性能混凝土施工技术规范 DB41/T 2600-2024 地震应急指挥技术系统建设要求 TB/T 3385.1-2023 铁路无线电监测 第 1 部分:总体要求 TB/T 3295-2023 铁路大型施工机械 箱梁 运梁车 SN/T 5624-2023 检测实验室质量安全风险管理 通则 SN/T 4499-2023 技术性贸易措施工作规程 国外技术性贸易措施影响企业统计调查 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 代表委员建议:食品安全标准及时补漏
    食品安全标准也是两会代表委员关注的重要问题。昨日,央视《每周质量报告》称,目前,某些行业产品没有质量标准,造成监管难的局面 同时,在一些标准中应用的落后检测方法,也使造假者钻了空子。对此,代表委员们建议,新的食品产品、新的工艺,包括制假企业新的造假水平,应及时跟踪,制定和完善相关标准。  化妆品用珍珠粉无标准  去年9月,浙江一些厂家用贝壳粉冒充珍珠粉销售,被曝光后,当地政府组织执法部门对珍珠粉市场进行了清理整顿,并建立了珍珠产业技术创新服务平台,希望以此来鉴别珍珠粉真伪。在实践中研究人员发现:虽然药用珍珠粉可以通过《中国药典》来衡量质量好坏,但化妆品用珍珠粉却没有国家质量标准,而这一层次的珍珠粉的市场需求却是最大的。如果没有国标作为认定依据,即使能将珍珠粉和贝壳粉区分开来,其结果也不具备法律效力,不能作为执法的依据。  蜂胶标准存“漏洞”  一些行业虽然已有质量标准,但由于造假技术的不断更新,原来的标准已经不能作为判定产品合不合格的依据。曾遭曝光的“蜂胶造假”事件就是典型的例子。在被曝光企业提供的原料蜂胶的检测报告上显示:提纯蜂胶的总黄酮含量完全符合国家标准。而事实上,造假者是在树胶里添加了芦丁、槲皮素等黄酮类物质,人为提高了总黄酮含量。  蜂胶国家标准规定,只要总黄酮含量达标蜂胶就判定为合格。而据浙江大学动物科学学院教授胡福良介绍,蜂胶质量控制的指标主要看类黄酮和多酚类,这两大类化合物在树胶和蜂胶中同样都存在,这就让造假者钻了空子。全国人大代表王填为此呼吁,像蜂胶这类新兴的保健品行业,由于原料新、工艺新,其标准的修订尤其要及时。王填还举例说,橄榄调和油标称有很多橄榄,“但里面是加了1滴橄榄油,还是1%的橄榄油,还是5%的橄榄油,没有标准。我认为至少里面的添加物不少于20%,否则商品名称上就不能用这个添加物的名称来误导消费者。”  代表委员建议抓紧补漏  针对这类由于标准缺失带来的行业问题,政协委员高天乐曾提交过《我国现有食品安全标准亟待规范和提升》提案。他指出,生产企业应及时跟踪行业发展和变化,及早跟监管部门交流,制定完善适合人类食用安全的产品标准,从企业的标准上升为行业标准、国家标准,然后国家有关部门通过从严去执行标准来规范行业的发展。  7项新添加剂标准即将公布  据了解,《食品安全法》中涉及食品安全标准有关规定的条文共有33条。相关专家指出:要尽早建立食品安全系统以减少食品危害,仅靠企业自觉的行为和行业竞争不可能实现,只能依靠法律的强制手段和标准来引导实现。卫生部负责人介绍,2010年我国共制定发布新的95项食品添加剂标准,即将公布7项新的食品添加剂标准和58项新指定的食品添加剂标准。出台数量众多的食品标准将使老百姓能吃得更安全、更放心。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准  1、范围  本标准规定了室内空气质量参数及检验方法。  本标准适用于住宅和办公建筑物。  2、规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB 6921-86 大气飘尘浓度测定方法 重量法  GB 9801-88 空气质量 一氧化碳的测定 非分散红外法  GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法  GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法  GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法  GB/T 14669-93 空气质量 氨的测定 离子选择电极法  GB/T 14582-93 环境空气中氡的标准测量方法  GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法  GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法  GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法  GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法  GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法  GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法  GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法  GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法  GB/T 16146-1995 住房内氡浓度控制标准  GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法  GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准  GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法  GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法  GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法  GB/T 18204.25-2000 公共场所空气中氨检验方法  GB/T 18204.26-2000 公共场所空气中甲醛测定方法  GB/T 18204.27-2000 公共场所空气中臭氧检验方法  5 室内空气质量检验  5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。  5.2 室内空气中苯浓度的测定方法见附录 C 。  5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。  5.4 室内空气中细菌总数检验方法见附录 E 。  5.5 室内热环境参数的检验方法见附录 F 。  附录 A  (规范性附录)  室内空气采样技术导则  1、范围  本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。  2、选点要求  2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5 个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。  2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。  2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。  3、采样时间和频率  采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。  4、采样方法和采样仪器  根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。  5、采样的质量保证措施  5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。  5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。  采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。  5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。  5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。  5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。  6、记录和报告  采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。  附录 B  (规范性附录)  室内空气中各种参数的检验方法 *  污染物 检验方法 来源  (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995  ( 2 ) GB/T 15262-94  (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90  ( 2 ) GB/T 15435-1995  (3) 一氧化碳 CO ( 1 )非分散红外法  ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88  , SPAN style="FONT-SIZE: 9pt COLOR: #666666 FONT-FAMILY: 宋体 mso-ascii-font-family: 'Times New Roman' mso-hansi-font-family: 'Times New Roman'"( 2 ) GB/T 18204.23-2000  (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法  ( 2 )气相色谱法  ( 3 )容量滴定法 GB/T 18204.24-2000  (5) 氨 NH3 ( 1 )靛酚蓝分光光度法  纳氏试剂分光光度法  ( 2 )离子选择电极法  ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000  ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93  (6) 臭氧 0 3 ( 1 )紫外光度法  ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995  ( 2 ) GB/T 18204.27-2000  (7) 甲醛 HCHO • AHMT 分光光度法  • 酚试剂分光光度法  气相色谱法  ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95  ( 2 ) GB/T 18204.26-2000  ( 3 ) GB/T 15516-95  (8) 苯 C 6 H 6 气相色谱法 • 附录 C  ( 2 ) GB 11737-89  ( 9 ) 甲苯 C 7 H 8 、  二甲苯 C 8 H 10 气相色谱法 GB 14677-93  (10) 苯并 [a] 芘  B(a)P 高压液相色谱法 GB/T 15439-1995  (11) 可吸入颗粒  PM10 撞击式 —— 称重法 GB/T 17095-1997  (12) 总挥发性有机物  TVOC 气相色谱法 附录 D  (13) 细菌总数 撞击法 附录 E  (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F  (15) 新风量 示踪气体法 GB/T18204.18-2000  (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法  ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995  ( 2 ) GB/T 14582-93  * 注:检验方法中( 1 )法为仲裁法。  附录 C  (规范性附录)  空气中苯浓度的测定  (毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。  1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。  1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。  2、适用范围  2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。  2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。  3、试剂和材料  3.1 苯:色谱纯。  3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。  3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。  4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.3 注射器: 1ml 。体积刻度误差应校正。  4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。  4.5 具塞刻度试管: 2ml 。  4.6 气相色谱仪:附氢火焰离子化检测器。  4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。  5、采样和样品保存  在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。  6、分析步骤  6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。  6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。  6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。  6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。  8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。  附录 D  (规范性附录)  室内空气中总挥发性有机物( TVOC )的检验方法  (热解吸 / 毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”  1.2 原理  选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。  1.3 干扰和排除  采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。  2、适用范围  2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。  2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。  3、试剂和材料  分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。  3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。  3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。  3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。  4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。  4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。  色谱柱:非极性(极性指数小于 10 )石英毛细管柱。  4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。  4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。  5、采样和样品保存  将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。  采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。  6、分析步骤  6.1 样品的解吸和浓缩  将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。  表 1 解吸条件  解吸温度 250 ℃ ~325 ℃  解吸时间 5~15min  解吸气流量 30~50ml/min  冷阱的制冷温度 +20 ℃ ~-180 ℃  冷阱的加热温度 250 ℃ ~350 ℃  冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg  载气 氦气或高纯氮气  分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择  6.2 色谱分析条件  可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。  6.3 标准曲线的绘制  气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。  液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。  用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。  6.4 样品分析  每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  7.2 TVOC 的计算  ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。  ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。  ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。  ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。  ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。  ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。  ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。  7.3 空气样品中待测组分的浓度按( 2 )式计算  式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。  8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。  附录 E  (规范性附录)  室内空气中细菌总数检验方法  1、适用范围  本方法适用于室内空气细菌总数测定。  2、定义  撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。  3、仪器和设备  3.1 高压蒸汽灭菌器。  3.2 干热灭菌器。  3.3 恒温培养箱。  3.4 冰箱。  3.5 平皿 ( 直径 9cm) 。  3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。  3.7 撞击式空气微生物采样器。  采样器的基本要求 :  (1) 对空气中细菌捕获率达 95 %。  (2) 操作简单 , 携带方便 , 性能稳定 , 便于消毒。  4 营养琼脂培养基  4.1. 成分 :  蛋白胨 20g  牛肉浸膏 3g  氯化钠 5g  琼脂 15~20g  蒸馏水 1000ml  4.2 制法 将上述各成分混合 , 加热溶解 , 校正 pH 至 7.4 ,过滤分装, 121 ℃, 20min 高压灭菌。撞击法参照采样器使用说明制备营养琼脂平板。  5 操作步骤  5.1 选择有代表性的房间和位置设置采样点。将采样器消毒 , 按仪器使用说明进行采样。  5.2 样品采完后,将带菌营养琼脂平板置 36 ± 1 ℃恒温箱中 , 培养 48h ,计数菌落数 , 并根据采样器的流量和采样时间 , 换算成每 m 3 空气中的菌落数。以 cfu/m 3 报告结果。  附录 F    (规范性附录)  热环境参数的检验方法  热环境参数测试的要求、方法和仪器 *  测试项目 测试范围 准确度 测试方法和仪器  温度 -10~50 ℃ ± 0.3 ℃ 玻璃温度计(包括干湿球温度计)  数字式温度计(热电偶、热电阻、半导体式包括数字式湿度计或风速计所附的温度计)  相对湿度 12%~99% ± 3% 干湿球温度计  氯化锂露点式湿度计  电容式数字湿度计  空气流速 0.01~20m/s ± 5% 热球式电风速计  热线式电风速计  * 各种测试仪器的使用方法见仪器的使用说明书。  HPLC法测定布洛芬糖浆剂的含量  布洛芬糖浆剂除具有布洛芬片剂的药效外,还具有吸收快、利于儿童服用等特点[1]。但由于布洛芬不溶于水,其糖浆剂中均含有碱性物质以增加其溶解度[2,3],所以不能再用药典规定的中和法测定布洛芬含量。本文采用HPLC法测定了布洛芬糖浆剂的含量,获得了较满意的结果。  1 仪器与试药  日本岛津LC-6A高效液相色谱仪、SPD-6AV紫外检测器、SCL-6B系统控制器、C-R4A数据处理机、LC-6A输液泵。  布洛芬对照品:山东新华制药厂生产,采用本文色谱条件检查为单一色谱峰,含量为99.80% 布洛芬糖浆剂[3]:自制,标示量为2 %(g.mL-1) 二苯胺(内标)及无水甲醇均为分析纯。  2 色谱条件  色谱柱:YWG?C18 4.6 mm×250 mm 流动相:取磷酸二氢钠380 mg与磷酸氢二钠50 mg,加水溶解至1000 mL,用磷酸调pH至3.0,取出250 mL加甲醇750 mL,混匀。流速:1 mL.min-1 检测波长220 nm 进样量20 μL 检测灵敏度:0.01 AUFS。  3 标准曲线制备  精密称取二苯胺适量,加无水甲醇配制成0.7 mg.mL-1的溶液,作为内标溶液。另取布洛芬对照品适量,精密称定,加无水甲醇配制成0.27 mg.mL-1的溶液,作为对照品溶液。精密量取对照品溶液0.5、1.0、1.5、2.0、2.5、5.0mL,分别置于50 mL量瓶中,加入内标溶液1.0 mL,用无水甲醇稀释至刻度,摇匀,进样20 μL。以对照品与内标的峰面积之比为纵坐标,相应对照品浓度(mg.mL-1)为横坐标,得回归方程: Y=75.5X+0.0136 r=0.9997结果表明,布洛芬溶液浓度在3~30 μg.mL-1范围内与峰面积呈良好的线性关系。二苯胺及布洛芬的色谱图图1 二苯胺及布洛芬的色谱图  1.二苯胺 2.布洛芬  4 回收实验  取布洛芬对照品约100 mg,精密称定,定量转移至100 mL量瓶中,按处方加入单糖浆、L-精氨酸、苯甲酸钠、香精,用无水甲醇稀释至刻度,摇匀。精密取上述溶液及内标溶液各1 mL,按“样品测定”项下操作。测得平均回收率为99.89 %,RSD为0.93%,n=6。  5 样品测定  取布洛芬糖浆剂约2.5 mL,精密称定,定量转移至50 mL量瓶中,用无水甲醇稀释至刻度,摇匀。精密吸取上述溶液及内标溶液各1 mL置于50 mL量瓶中,用无水甲醇稀释至刻度,摇匀,进样20 μL。测得样品的含量为标示量的97.23 %,n=5,RSD为0.89 %。  6 讨论  经稳定性试验观察,样品溶液在室温下(约18 ℃)放置,每隔2 h测定1次,测至6 h,样品标示百分含量结果的RSD为0.99%,n=3。说明样品溶液较稳定。  以安定为内标物,效果也较好。但由于笔者想将该法用于布洛芬糖浆剂生物利用度测定,为防止人体内安定类药物的干扰,所以选择二苯胺为内标。  双甘瞵的HPLC分析条件  摘要:  试剂和溶液:  四丁基硫氢酸胺,  色谱纯甲醇  色谱纯磷酸  AR磷酸二氢钾  AR水:二次蒸馏水  双甘瞵标样  流动相:  0.05moLKH2PO4,200mL+50mL甲醇+0.5  色谱柱:Sinochrom ODS-BP 150mmX4.6mm 5um  流量:1mL/min  波长:195nm  柱温:35度。  HPLC同时测定大黄素和大黄酚的含量  大黄的有效成分为大黄素、大黄酚、大黄酸、芦荟大黄素、大黄素甲醚及其甙类等蒽醌类成分。有关大黄及其制剂有效成分含量测定方法报道很多,如比色法、薄层-紫外分光光度法、HPLC法等。这里简单介绍一下HPLC法同时测定大黄素和大黄酚含量时的色谱条件、样品处理方法等。  ⑴《中国药典》2005版大黄含量测定项:以十八烷基硅烷键合硅胶为填充剂 甲醇-0.1%磷酸溶液(85:15)为流动相。检测波长为254nm。对照品为芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚。大黄样品前处理:甲醇回流提取—8%盐酸超声—三氯甲烷回流萃取。  ⑵赵莉,晁若冰测定了大黄通便胶囊中大黄素和大黄酚的含量。色谱条件同⑴。仪器:LC-IOAT vp高效液相色谱仪,SPD-M10A vp光二极管阵列检测器,Class-vp色谱工作站(日本岛津)。用Luna 5 u Cl8(2)柱(150 mm×4.6 mm,ID),ODS预柱Phenomenex ODS guard cartridge system,4.0mm×3.0mm,ID)。样品先用甲醇回流提取,提取物在2.5 mol/L硫酸溶液中加热水解,再用氯仿提取后进行测定。  ⑶张华,雪秦岚,赵宏科,赵海云采用HPLC测定血脂灵片中大黄素、大黄酚的含量。色谱条件同⑴,检测波长428nm。仪器:高效液相色谱仪(包括P200Ⅱ型高压恒流泵,UV-200Ⅱ型紫外检测器,Echrom98色谱数据处理工作站),Shim-Pack型C18分析柱(200mm×4.6mm,5μm)  ⑷常军民,高宏,张煊,赵军,堵年生采用HPLC测定枝穗大黄中大黄素和大黄酚的含量。色谱条件同⑴。仪器:美国Waters 2690高效液相色谱仪,Waters 2487双波长检测器,Waters millennium s 色谱工作站(Waters corporation)。  ⑸魏有良,杨志一,霍彬科采用HPLC法测定化症回生片中大黄素和大黄酚的含量。色谱条件同⑴。样品处理:甲醇回流,再上中性氧化铝柱(100-200目,直径1.5cm,3.5g),先用甲醇洗脱,5%氢氧化钠洗脱,收集盐酸调Ph1-2,乙醚萃取。  ⑹王劲,李洁,马彦,田佩瑶,彭国克采用HPLC法测定中药消毒产品中大黄酚和大黄素的含量。色谱条件:天津特纳Kromasil C18(200mm×4.6mm i.d.,7μ)色谱柱,流动相:φ=0.02mol/L KH2PO4水溶液(H3PO4调pH=3.5)/甲醇=15/85,柱温:室温,流速:1.0mL/min,紫外检测波长:260nm。仪器:美国Waters公司2695高效液相色谱仪(996二极管阵列检测器,MiUennium32色谱管理系统)。  HPLC法同时测定大黄素和大黄酚的含量时,文献报道所采用的色谱条件多为药典所载的条件。流动相为甲醇-磷酸系统,另外还有乙腈-磷酸系统、甲醇-水系统、甲醇-高氯酸系统、甲醇-冰醋酸系统等 检测波长多为254nm,也有采用430、440、438、287nm。也有以甲醇-水-异丙醇(80:10:10)磷酸调pH值为3.0,检测波长:439nm。样品处理方面一般用适当溶剂回流提取,除去溶剂后氧化水解,再以有机溶剂萃取。酸溶液多为盐酸和硫酸。  HPLC法在生物碱分析中的应用  生物碱是植物中一类重要化学成分,许多生物碱或含生物碱的提取物已广泛用于医药领域,因此对不同来源的、存在于较复杂体系或基质中的生物碱进行快速、灵敏、可靠的定性和定量分析一直是受人瞩目的研究课题。  1、生物碱HPLC的分析模式  根据HPLC分析生物碱时所使用固定相性质、流动相组成及极性不同,其分析模式大致可分为:正相吸附色谱法、正相硅胶反相洗脱系统色谱法、反相色谱法及离子交换色谱法。  正相吸附色谱法:通常以硅胶基质为吸附固定相,流动相为不同极性的有机溶剂或不同比例混合溶剂,分离过程主要依靠生物碱与吸附剂吸附作用的差异实现,为了改善分离,提高溶洗脱能力,常于流动相中加浓氨液、二乙胺、三乙胺等。该法应用于生物碱分析的文献较少。  正相硅胶一反相洗脱系统色谱法(NS-RE):通常采用未经化学改性的普通硅胶为固定相,以极性有机溶剂(甲醇、乙腈)和高pH缓冲溶液为流动相,分析包括生物碱在内的碱性药物。该法柱效高,峰形对称,是简便有效的方法。在实际应用中,流动相的组成是主要的影响因素,流动相中除含有调节pH 的缓冲盐外,有时还要三乙胺、溴化四丁基铵等竞争离子或烷基磺酸钠等对离子。因此,影响保留与分离的主要因素是流动相pH、竞争离子种类及浓度 。  反相高效液相色谱法(RP-HPLC):近年来RP-HPLC应用于生物碱分析方面的文献很多,已成为常规的方法。但普通存在色谱峰的展宽拖尾,导致分离效能低,这主要缘于生物碱结构中碱性氮原子与固定相未键台酸性硅醇基的相互作用。即使是所测生物碱在较低浓度下,仍常产生峰漂移及峰对称性差等现象。针对此缺陷,研究工作者从适用于碱性物质分析的反相填料的设计选择,流动相中缓冲盐的使用,流动相添加剂(离子对试剂、有机胺改性剂)等几方面进行了较为广泛细致的研究,并取得了一定的进展。  离子交换色谱法:该法以阳离子交换树脂为固定相,利用质子化的生物碱阳离子与离子交换剂交换能力的差异而达到分离生物碱的目的,有关生物碱高效液相离子交换色谱法的应用报道较少。  2、生物碱HPLC分析检测方法  目前,生物碱HPLC分析检测方式多以紫外法为主,在定性分析方面,紫外法检测选择性低,定性专属性差。随着二极管阵列检测器使用的普及,显著提高了液相分析检测的选择性。此外,根据生物碱的理化性质,其它检测方式如荧光法、电化学法、蒸发光散射法亦得到了应用。近年来,液相色谱-质谱联用技术已应用于生物碱分析,增强了对生物碱的定性检测能力,提高了检测灵敏度。新的接口技术及离子化方法的发展.使得HPLC-MS在生物碱的分析中得到较广泛的应用,近年的文献报道日渐增多。  3、生物碱HPLC分析的样品处理方法  因生物碱常具有一定的碱性,一般常用碱化液液萃取或酸水提取等方法从中草药、中成药及生物样品等较复杂体系中提取纯化,以达到富集和去除杂质的目的。近年来,固相萃取(SPE)技术及超临界流体萃取等现代提取纯化技术亦应用于样品的提取纯化。  HPLC法快速测定食品中糖精钠、苯甲酸、山梨酸和咖啡因  苯甲酸、咖啡因等食品添加剂食用过量会对人体造成伤害,国家卫生标准对这几项指标有明确的限量,因此开展了此项调查。试验表明,液相色谱测定各类食品中糖精钠、苯甲酸、山梨酸和咖啡因时,即使是可乐等清凉饮料,样品经过脱气、稀释、过滤的简单处理即上机分析,也极易堵塞色谱柱,造成柱压升高、柱效下降,对色谱柱造成难以修复的损坏 而样品经透析处理耗时太长。本文论述了在常温下用氢氧化钠-硫酸锌作为蛋白质沉淀剂,沉淀处理包括清凉饮料、酸奶、花生乳等比较粘稠的饮料以及固体食品等各类样品中的蛋白质、淀粉等杂质,可以大大降低对色谱柱的损害,在一定的色谱条件下,在常温下即可快速、同时分离四种被测组分,操作极为简单、快速。  1 试验部分  1.1 原理  糖精钠、咖啡因是易溶于水的盐类,样品中的苯甲酸、山梨酸经氢氧化钠溶液(O.50mol/L)浸泡后,转化为易溶于水的苯甲酸钠、山梨酸钠,经沉淀蛋白质、过滤等处理后,四种被测组分滞留于水相中与杂质分离。  1.2 仪器与试剂  岛津LC-10AT高效液相色谱仪  色谱柱:Hypersil-ODS2-C18,4.6 mm X 1 50 mm柱  检测波长215nm,进样量2OμL,流动相为甲醇+O.02mol/L 乙酸铵(35+65),流量0.50mL/min。  苯甲酸标准溶液:1.000g/L,称取苯甲酸0.1000g,加20g/L碳酸氢钠溶液5mL,加热溶解,定容至100mL。  山梨酸标准溶液:1.000g/L,同苯甲酸配制。糖精钠标准溶液:1.000g/L,称取糖精钠0.1702g,加水溶解,定容至200mL。  咖啡因标准溶液:1.000g/L一,称取咖啡因0.1000g,加水定容至100mL。  混合标准液:糖精钠、苯甲酸、山梨酸、咖啡因浓度依次为4.5,5.0,5.0,5.0 mg/L。  氢氧化钠溶液:0.50mo1/L  硫酸锌溶液:0.42 mol/L_  乙酸铵溶液:0.02 mol/L,称取乙酸铵1.54g用水定容至1L。  甲醇(色谱纯)  1.3 试验方法  1.3.1 液体样品  称取样品0.100~5.00g于50mL比色管中(汽水振摇或微温除去二氧化碳,配制酒类水浴加热,除去乙醇),加入纯水约5mL,加入0.50mol/L氢氧化钠溶液1.00mL,搅匀,放置15min,混匀,加人纯水约30 L,加人0.42mol/L 硫酸锌溶液1.50 mL,混匀,加人0.50mol/L氢氧化钠溶液1.50mL,摇匀,纯水定容至50.0 mL,混匀,静置几分钟,上清液过滤(双层滤纸),弃去初滤液5 mL,滤液经0.45μm滤膜过滤,进样量2Oμl,进行色谱分析,以保留时间定性,以峰高定量。  1.3.2 固体样品  称取研碎的样品0.100~2.00g于5OmL比色管中,加人纯水约30mL,加人0.50mol/L氢氧化钠溶液1.00 mL,搅匀,放置15min以上(直到被测组分完全溶出为止),加人0.42mol/L硫酸锌溶液1.50mL,混匀,其它操作同上。  2 结果与讨论  2.1 蛋白质沉淀剂种类的选择  2.1.1 亚铁氰化钾与乙酸锌的沉淀分离效果分别称取苯甲酸、山梨酸0.100Og用10mL甲醇溶解纯水定容至100 mL,配制成标准溶液,纯水稀释至所需浓度,选取饮料杏仁乳一份,做苯甲酸、山梨酸的加标回收试验。称取饮料样品2.00g于50mL比色管中,加人苯甲酸、山梨酸各250μg,加入纯水约25mL,混匀,加人106g/L亚铁氰化钾溶液2.5 mL,混匀,加入220g/L乙酸锌溶液2.5mL,混匀,纯水定容至50mL,静置几分钟,上清液过滤,弃去初滤液5mL,滤液经0.45μm滤膜过滤,进人色谱仪进行分析,进样量2OμL,以保留时间定性,以峰高定量。  试样经亚铁氰化钾与乙酸锌沉淀后,溶液的pH在5~6范围内,对样品中的糖精钠、苯甲酸钠、山梨酸钾(钠)、咖啡因的测定无影响,但对样品中的苯甲酸、山梨酸的测定有影响,加标回收率较低(在78.2~87.8之间)。因苯甲酸、山梨酸在水中的溶解度较低,加人蛋白质沉淀剂以后,与杂质一起被沉淀,影响测定的准确性。由于难以确定饮料中的苯甲酸、山梨酸是否为钾盐、钠盐,建议不采用该蛋白质沉淀剂。  2.1.2 氢氧化钠与硫酸锌的沉淀分离效果  试样经该蛋白质沉淀剂沉淀后,对样品中的糖精钠、苯甲酸(钠)、山梨酸(钾)、咖啡因的测定(加标回收)均无影响,建议采用该蛋白质沉淀剂。  按试验方法进行氢氧化钠与硫酸锌不同比例的试验。  当0.50mol/L氢氧化钠溶液与0.42mol/L硫酸锌溶液用量为5:4时,沉淀效果最好,但保留时间发生滞后现象,不宜采用 两者用量为5:3时,定量与定性均准确,且滤液澄清,过滤速度也较快,这恰好与理论上氢氧化钠与硫酸锌形成完全沉淀时所需的比例(nOH:nZn2+=2:1)相吻和,但两者用量太少时,沉淀不完全 为使杂质完全沉淀,选择氢氧化钠用量为2.50mL、硫酸锌1.50mL为处理0.100~5.0 g饮料、0.100~2.O0g固体样品的最佳用量。  2.2 标准曲线及回归方程  按试验方法进行测定,4种添加剂的线性范围、检出限(按3倍信噪比计算)的测定。  2.3 样品测定结果  选择含不同被测组分的饮料样品,分别平行测定7次。  选择可乐饮料l份,分别做高、中、低浓度的加标回收试验。  2.4 食品中糖精钠、苯甲酸、山梨酸和咖啡因含量的调查  调查了市售饮料其中包括可乐、汽水、果汁、酸奶、牛奶、活性乳、花生乳、果冻、冰棍等共57份,其中5份含咖啡因0.002 3~O.270g/kg,17份含糖精钠0.053~0.966g/kg,7份含苯甲酸0.0038~O.230 g/kg,16份含山梨酸0.090~0.770g/kg 酱菜、熟肉制品、熟面制品40份,4份含糖精钠0.916~1.04g/kg,8份含苯甲酸0.005O~5.68g/kg,3份含山梨酸0.10~0.680g/kg 酱、酱油、醋、料酒共24份,其中15份含苯甲酸0.030~1.73 g/kg,1份含山梨酸0.220g/kg。  HPLC法鉴别五味子与南五味子  五味子为木兰科植物五味子Schisandra Chinensis(Turcz)Bail1.的干燥成熟果实,习称“北五味子”,具有收敛固涩、益气生津、补肾宁心的功效⋯ 。南五味子为木兰科植物华东五味子  Schisandra sphenanthe Rehd.et Wills.的干燥成熟果实,功效与五味子相似。中药成方制剂中都明确指定用何种五味子,且《中国药典)2000年版分别单独制定了质量标准。市场上这两种五味子价格相差较大,因此鉴别很重要。《中国药典)2000年版收载的标准中有薄层色谱鉴别,都采用了五味子甲素作为对照品,再分别用各自的对照药材作对照。作者多次实验结果表明薄层色谱鉴别对两种五味子鉴别专属性不强。本文则采用HPLC法进行鉴别,重复性好、灵敏度高且直接分析的是其特征峰,鉴别结果不受环境等因素干扰,为五味子的鉴别提供了可靠的手段。  1 仪器和试药  1.1 仪器:高效液相色谱仪(泵:SP1000,检测器UV2000,N2000工作站,美国光谱物理公司)。  1.2 试药:五味子对照药材(批号:0922—9803中国药品生物制品检定所) 五味子(毫州恒丰药材公司) 南五味子(毫州恒丰药材公司)。色谱纯甲醇 超纯水。  2 方法与结果  2.1 对照药材溶液的制备:取五味子对照药材粉末约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理(功率250 W ,频率20 kHz)30分钟,取出,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.2 色谱条件:色谱柱:AllitimaC18(4.6 mm×250 mm)。流动相:甲醇.水(13:7)。检测波长:250 nm。流速:0.8mL/min。柱温:25℃ 。  2.3 供试品溶液的制备  2.3.1 五味子药材提取液的制备:取五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.3.2 南五味子药材提取液的制备:取南五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.4 图谱的绘制:分别精密吸取对照药材溶液与供试品溶液各20 L,注入液相色谱仪,测定,见表1。  从表1中可以看出,五味子对照药材共9个峰,样品五味子共8个峰,南五味子共6个峰,样品五味子与对照药材相比少1个峰,其它峰保留时间都一致,南五味子少了3个峰,且只有1个峰相一致,由此,可以鉴定出五味子。经过多次实验结果,对照药材1、2、6、7、8号峰是五味子的主要特征峰,且峰面积较大。  3 小结与讨论  高效液相色谱法以保留时间为主要鉴别参数,若因仪器厂家、色谱柱等条件不同,则保留时间可能产生较大差异,导致图谱鉴定操作性不强,而采用对照药材作为对照。排除了上述因素的影响。峰号具体成分因无法买到对照品而不能确定。药厂采购五味子时,掺杂南五味子时有发生,应仔细对照药典标准进行鉴别,当初步鉴定为五味子,或者若怀疑有部分为南五味子时,则可以挑选出这两种五味子。再与对照药材分别进行HPLC图谱鉴别,方法简便可行。  HPLC法检查甲硝唑葡萄糖注射液中5-HMF  摘要 采用高效液相色谱法测定甲硝唑葡萄糖注射液中5-羟甲基糠醛,以C18为固定相,以甲醇-0.2%磷酸溶液(25∶75)为流动相,检测波长为284 nm,平均回收率为99.2%(RSD=0.61%)。  《中国医院制剂规范》〔1〕收载的甲硝唑葡萄糖注射液项下5-羟甲基糠醛(5-HMF)检查要求该品1∶25稀释后在284 nm波长处吸收度不得大于0.25。但实验证明,按上法进行甲硝唑葡萄糖注射液中5-HMF检查,其吸收度远大于0.25(1.50以上)。因为甲硝唑在284 nm处有吸收。中国药典1995年版〔2〕对甲硝唑葡萄糖注射液尚未规定5-HMP的限量检查〔2〕。为保证用药安全,本文建立了高效液相色谱法测定甲硝唑葡萄糖注射液中5-HMF的含量,可消除甲硝唑的干扰。现报道如下。  1 仪器与试药  1.1 仪器 Waters 501泵,484检测器,7725进样器(美国)。  1.2 试药 甲硝唑(浙江可立思安制药公司) 5-羟甲基糠醛(美国Sigma公司,H9877) 甲硝唑葡萄糖注射液(浙江省新昌制药厂,971105,971213,980124,980213,980321) 甲醇(色谱纯)。  2 方法与结果  2.1 色谱条件 色谱柱:Nova-pack C18(200 mm×4.6 mm, 4 μm) 流动相:甲醇-0.2%磷酸溶液(25∶75) 检测波长:284 nm 流速:1.0 ml/min。  2.2 试液的配制 精密称取5-HMF适量,加水溶解成0.5 mg/ml的溶液为5-HMF标准储备液。  2.3 标准曲线制备 精密量取5-HMF标准储备液适量,用水分别稀释成5,10,15,20,25 μg/ml的溶液 取10 μl注入色谱仪中,在上述色谱条件下测得峰面积(见图1) 以峰面积Y对浓度X绘制标准曲线,得回归方程y=1254x+47,r=0.9986,表明在浓度5~25 μg/ml范围内线性良好。另取10 μl试样重复进行,峰面积RSD=0.48%(n=6)。  2.4 回收率测定 精密量取已测得5-HMF含量的甲硝唑葡萄糖注射液50 ml,置100 ml量瓶中,精密加入5-HMF标准储备液1 ml,加水至刻度 按样品测定项下方法,计算平均回收率为99.2%,RSD=0.61%(n=5)。  2.5 样品5-HMF含量检测 精密量取甲硝唑葡萄糖注射液10 μl注入色谱仪,按上述色谱条件,测得5-HMF的色谱峰面积 另精密量取5-HMF标准溶液10 μl注入色谱仪中,同法测得峰面积,按峰面积外标法计算,结果5批样品中5-HMF含量分别为6.1,8.3,8.6,10.9,14.7 μg/ml。  3 讨论  实践证明,若生产过程不规范(如灭菌温度过高,时间过长)很容易导致5-HMF含量偏高。因此,控制甲硝唑葡萄糖注射液中5-HMF的限量对确保用药安全具有重要意义。  HPLC法测定紫草油中左旋紫草素的含量  摘要:目的 建立紫草油中左旋紫草素的含量测定方法。方法:采用HPLC法测定紫草油中左旋紫草素的含量,色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 甲醇-0.025mol/L磷酸(85:15)为流动相 检测波长:516nm 柱温:25℃ 进样量:20μL。结果:左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内线性关系良好(r=0.9998) 平均回收率为101.3%,RSD=1.90%(n=5)。结论:该方法简便、准确,能排除其他成分的干扰,可用于紫草油的质量控制和评价。  紫草油是我院的医院制剂,由紫草、银花藤、白芷等中药组成,具有凉血消炎的作用,临床用于烫伤的治疗,紫草为方中君药,其有效成分为紫草素,而紫草素含量的高低,直接影响其临床疗效。本实验采用HPLC法测定紫草油左旋紫草素的含量,方法简便、准确、重现性好,为控制该制剂的内在质量提供了可靠的方法。  l仪器与试药  1.1仪器高效液相色谱仪LC-1OA,SPD-10AVP紫外检测器(日本岛津) CK chrom data acquieition lO 15system (美国TSP)。  1.2试药  左旋紫草素对照品(中国药品生物制品检定所,批号0769—9903) 紫草油(本院制剂室提供) 超纯水 甲醇为色谱纯,其余试剂为分析纯。  2方法与结果  2.1色谱条件色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 流动相:甲醇-0.025mol/L磷酸(85:15) 流速:1.0 mL/min 检测波长:516nm 柱温:25℃ 进样量:20μL(定量环)。  2.2对照品溶液的制备 精密称取左旋紫草素对照品2.8 mg,置25mL量瓶中,加入甲醇溶解并稀释至刻度,制成每mL含112.0μg的溶液,作为对照品储备液。精密吸取对照品储备液(1 12.0μg/mL)1.0,1.5,2.0,2.5,3.0 mL置于10mL量瓶中,加甲醇稀释至刻度。  2.3供试品溶液制备精密吸取样品10mL,置分液漏斗中,加入1% 氢氧化钠溶液20mL振摇提取3次,每次20mL,合并碱液,加10%盐酸溶液,调pH值至酸性(pH 2.5~3.5),用氯仿萃取4次(30,30,30,20mL),合并氯仿液,水浴蒸干,残渣加甲醇溶解并定量转移至25mL量瓶中,加甲醇溶液至刻度,摇匀,用0.45μm微孔滤膜滤过,作为供试品溶液。  2.4线性关系考察取浓度为11.2,16.8,22.4,28.0,33.6μg/mL的对照品溶液,分别进样20μL,测得峰面积,以浓度(C)对峰面积积分值(A)进行线性回归,回归方程为A=2.521×10000C一4265,r=0.9998。表明左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内,与峰面积积分值呈良好线性关系。  2.5精密度试验取同一份供试品溶液,每次20μL,重复进样6次,结果平均峰面积为757099,RSD=0.78%(n=6)。  2.6稳定性试验取供试品溶液依上述色谱条件,每隔1h测含量1次(n=5),次日测定2次,积分值无明显变化,平均峰面积为742531,RSD为1.01%(n=7)。  2.7重复性试验取同批样品(批号020816)5份,依2.3项下方法制备,照上述色谱条件测定,结果平均含量为58.0μg/mL,RSD为0.90% (n=5)。  该方法符合重复性要求。  2.8加样回收率试验精密吸取已知含量的样品溶液,精密加入一定含量的左旋紫草素对照品溶液,依法提取、进样、测定。  2.9样品测定取4批样品各10mL,依法制成供试品溶液,均以20μL进样,分别测定吸收峰面积,外标法计算左旋紫草素含量。  3讨论  紫草油为油制剂,方中主药紫草的有效分为紫草素及其衍生物,属于萘醌色素类化合物。有文献报道用紫外分光光度法及薄层扫描测定紫草素的含量 ,本方法采用HPLC测定紫草油中左旋紫草素的含量,简便、灵敏、准确,重复性好,可用于本品的质量控制。样品测定结果表明,各批号紫草油中左旋紫草素含量差异较大,通过对成品颜色的观察发现,左旋紫草素含量高的成品颜色深红,而所测含量较低的成品颜色较浅,这可能与紫草原药材的质量有关,故应严格控制原药材的来源与质量,并且应加强本制剂中间产品紫草素的质量控制。  薄层色谱法的相关知识简介  薄层色谱法,系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。  1.仪器与材料  (1) 玻板 除另有规定外,用5cm×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。  (2) 固定相或载体 最常用的有硅胶G、硅胶GF[254] 、硅胶H、 硅胶HF[254],其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、 微晶纤维素F[254]等。 其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种 前者系将固定相直接涂布于玻璃板上, 后者系在固定相中加入一定量的粘合剂,一般常用10~15%煅石膏(CaSO4.2H2O在140℃烘4小时),混匀后加水适量使用,或用羧甲基纤维素钠水溶液(0.5~0.7%)适量调成糊状,均匀涂布于玻璃板上。也有含一定固定相或缓冲液的薄层。  (3) 涂布器 应能使固定相或载体在玻璃板上涂成一层符合厚度要求的均匀薄层。  (4) 点样器 同纸色谱法项下。  (5) 展开室 应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,除另有规定外,底部应平整光滑,应便于观察。  2.操作方法  (1) 薄层板制备 除另有规定外,将1份固定相和3份水在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干,后在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光和反射光检视)。  (2) 点样 除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线距底边2.0cm,样点直径及点间距离同纸色谱法,点间距离可视斑点扩散情况以不影响检出为宜。点样时必须注意勿损伤薄层表面。  (3) 展开 展开室如需预先用展开剂饱和,可在室中加入足够量的展开剂,并在壁上贴二条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖,使系统平衡或按正文规定操作。 将点好样品的薄层板放入展开室的展开剂中,浸入展开剂的深度为距薄层板底边0.5~1.0cm(切勿将样点浸入展开剂中),密封室盖,待展开至规定距离(一般为10~15cm),取出薄层板,晾干,按各品种项下的规定检测。  (4) 如需用薄层扫描仪对色谱斑点作扫描检出,或直接在薄层上对色谱斑点作扫描定量,则可用薄层扫描法。 薄层扫描的方法,除另有规定外,可根据各种薄层扫描仪的结构特点及使用说明,结合具体情况,选择吸收法或荧光法,用双波长或单波长扫描。由于影响薄层扫描结果的因素很多,故应在保证供试品的斑点在一定浓度范围内呈线性的情况下,将供试品与对照品在同一块薄层上展开后扫描,进行比较并计算定量,以减少误差。各种供试品,只有得到分离度和重现性好的薄层色谱,才能获得满意的结果。
  • 指纹图谱鉴别 假蜂胶轻松现形
    最近正是蜂产品的收购淡季,但是浙江蜂之语公司已经为即将到来的春节旺季紧张地准备开了。“蜂胶市场干净了很多,这在我们的检测数据上可以看出来。”蜂之语相关负责人说。  前不久,央视报道了一些不法厂家用树胶冒充天然蜂胶上市的新闻,引起了广泛的关注。假冒蜂胶在检测的时候能够蒙混过关、拿到检测合格报告的现象,也引起了监管部门和业界的重视。近日,央视新闻频道以浙江蜂之语蜂产品实验室为例,报道了国内一些先进的实验室辨别蜂胶造假的方法。  日前,从位于桐庐的浙江蜂之语公司总部了解到,用杨树胶冒充的蜂胶,在检测时能蒙混过关,主要是由于天然蜂胶是树胶和蜜蜂分泌物的混合物,也有树胶成分,因此很多人难辨真伪。多年从事真假蜂胶鉴别研究的周萍主任说,杨树胶之所以能检测合格,主要是由于国家标准中只要求检测蜂胶中的总黄酮含量,而总黄酮含量在造假者那里可以通过添加芦丁和槲皮素等黄酮类物质蒙混过关。  作为一家获得国家相关部门认可的企业实验室,浙江蜂之语蜂产品实验室是如何辨别蜂胶造假的呢?“通过指纹图谱鉴别法,假冒的杨树胶立即现形。” 周萍说,浙江蜂之语蜂产品实验室通过将原料蜂胶制成分析液,再通过气相和液相质谱仪分析后,可以发现一些蜂胶和树胶的不同特质。采用HPLC指纹技术将真蜂胶通过各项数值表现成一张图谱,如果与这张图谱不吻合,便是假冒蜂胶,原理类似于人类指纹。这项技术获得了国家专利,还获得了杭州市科技进步三等奖。  蜂之语目前是全国最大的蜂王浆加工、出口基地之一,全国蜂产品行业龙头企业。蜂之语检测中心试验面积达1500平方米,配有LC/MS/MS液质联用仪、高效液相色谱仪、气相色谱仪、酶联免疫分析仪、紫外可见分光光度计、原子吸收分光光度计等检测设备。这个检测中心先后投入了1000多万元资金。“1995年,我们建这个检测中心的时候,业界几乎所有企业都还在用人工品尝的方式来测定蜂王浆质量。” 周萍说。
  • 沃特世携多项用于食品安全、食品真伪鉴别和生物医学研究的质谱新技术亮相ASMS 2018
    让质谱技术的强大功能和无限潜力惠及更多实验室 沃特世公司(纽约证券交易所代码:WAT)亮相6月3日至7日举行的第66届美国质谱年会(ASMS 2018),并在此期间向与会观众展示多项全新质谱技术,这些技术专为满足食品检测机构、高等院校以及生物医学研究机构实验室的多种分析需求而开发。所展示的相关产品不仅包括用于食品安全分析的气相色谱-质谱/质谱(GC-MS/MS)系统,还包括可针对食品成品、原料和半加工制品进行快速分子指纹图谱分析的直接分析型质谱系统。 食品安全分析 - Waters TQ-GC系统 沃特世公司在ASMS年会上提前展示了将于今年正式上市的Xevo TQ-GC新型质谱仪。借助这款为食品安全分析和质控分析量身定制的GC-MS/MS系统,实验室可以使用全球各地监管机构制定的GC-MS/MS方法来定量食品中的农药残留和其它污染物,并确保方法检测限始终满足甚至超过监管要求。全球范围内使用的杀虫剂多达数百种,与此同时,还有不时出现的新型污染物持续被监管机构纳入监管范围;因此,实验室必须能够准确检测和定量各种食品中的农药,而GC-MS/MS和液相色谱-质谱(LC-MS)成为了大多数实验室的首选。 食品真伪和掺假鉴别 - 搭载LiveID的DART QDa系统 搭载LiveID的Waters DART QDa系统是沃特世公司与美国IonSense公司合作研发的一款直接分析型质谱系统,能够对食品成品、原料和半加工制品进行快速的分子指纹图谱分析。该系统可协助科学家们解决样品的真伪、构成和质量鉴别等问题。仪器搭载了LiveID软件平台,只需数秒即可完成样品实时鉴定和真伪验证。 实时直接分析(DART)是一种直接、快速的分析技术,适用于各类样品,样品制备操作极少且无需色谱分离。借助Waters LiveID软件,用户可利用DART QDa分析得到的化学特征数据建立并验证多变量统计模型。LiveID模型可用于鉴定未知样品,近乎实时地生成易于解析的结果,并在数秒内给出“是/否”这样的直观回答。 培养未来的科学领袖 - ACQUITY QDa MS实践教学工具包 ACQUITY QDa实践教学工具包由沃特世公司与英国斯旺西大学的国家质谱卓越中心(National Mass Spectrometry Facility)共同开发,旨在为高等院校化学相关专业的教学提供一套经济有效的方案,让本科生也能接触到质谱仪器,学习质谱基础知识。 目前,不少大学的质谱仪器都安装在核心实验室或专用实验室中,仅供项目研究人员及其团队开展具体项目研究时使用,因此本科生很难接触到质谱仪器,这对他们而言是非常不利的。质谱操作经验和相关基础知识对于帮助大学毕业生顺利进入社会并走上工作岗位至关重要。 MS实践教学工具包为本科生学习质谱知识和操作提供了所需的全部内容,其中包括实验方案、学生和指导人员手册、仪器、软件、化学标准品以及多媒体内容等,让大学课堂上的质谱基础知识教学变得丰富多彩。 斯旺西大学国家质谱卓越中心的实验负责人Rhodri Owen表示:“我们与沃特世合作开发这款实践教学工具包,旨在让学生们有机会亲手操作质谱仪器,从中积累实践经验并学习如何在实际分析中进行谱图解析。设计紧凑、安装简单的ACQUITY QDa非常便于在实验室之间进行转移。在2017年的斯旺西科学节上,我们甚至还将它们带出了实验室,向9000多人展示了如何用ACQUITY QDa进行常用日化产品的筛查。” 助力生物医学研究 在ASMS年会上,沃特世公司还与美国Elucidata公司签订了联合营销协议,双方将整合Waters Symphony Data Pipeline软件与Elucidata Polly工作流程及云应用,以期在代谢通量分析中(主要测定生物系统中代谢物的生成率和消耗率)对沃特世仪器生成的质谱数据进行高效、自动化的处理和解析。 此外,沃特世与瑞士Biognosys公司进一步拓展了联合营销协议,双方将Biognosys Spectronaut Pulsar X软件和PQ500肽参比标准品工具包与沃特世的Xevo G2-XS QTOF四极杆飞行时间质谱仪(搭载新型数据非依赖型采集技术 DIA — SONAR)整合为一套集成化平台,只需不到15分钟就能高重现性地定量多种蛋白质( 500),变异系数(CV)可低至个位数。在临床蛋白质组学研究中,该平台能以系统化、标准化的方式快速对大量样品中的特征蛋白质进行表征和定量,是生物医学研究实验室的理想之选。 沃特世还在ASMS年会上宣布正式推出Targeted Omics谱库和与之配套的MetaboQuan-R方法工具包。Targeted Omics是一个不断扩增的存储库,其中收录了可下载的方法工具包,有助于迅速提升实验室可测定的分析物数量并缩短方法开发时间。另外,每个方法工具包都包含一个Quanpedia文件,提供了Waters ACQUITY UPLC I-Class Plus System和Xevo TQ-S micro三重四极杆质谱仪运行分析所需的全部色谱和质谱设置,并附带一份相关方法的应用纪要,用户只需“加载并运行”即可。 最新版本的Progenesis QI 蛋白质组学软件不仅能创建谱库条目和执行谱库搜索,如今还增加了处理数据依赖型分析(DDA)数据的功能,并在Progenesis QI for proteomics的支持下,对所有DDA搜索引擎进行化合物鉴定。此外,该软件还专为质谱/质谱(MS/MS)分析增加了谱图净化工具,旨在实现更清晰的谱库匹配。Progenesis QI for proteomics是分析宿主细胞蛋白的首选工具,各类实验涉及的大多数目标分析物都能在谱库中找到。不仅如此,沃特世MS(E)数据工作流程也有所改进,新增了设置自动峰检测阈值的功能,能够最大限度提高可鉴定的化合物数量和鉴定结果的质量,同时提升软件性能。 沃特世公布ASMS年度研究奖(ASMS Research Award)获奖者 俄勒冈大学化学与生物化学系助理教授James Prell博士荣获由沃特世赞助的“ASMS年度研究奖”。Prell博士带领实验室团队运用先进的质谱和离子淌度技术对控制纳米水平大分子组装的理化特性进行了研究,其中包括了与生物膜相关的特性。Prell博士将获得由沃特世提供的35,000美元作为奖励。 沃特世科学家将在ASMS 2018年会期间举办12场学术讲座,展出76幅海报。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
  • 生态环境部发布国家生态环境标准《固体废物鉴别标准 通则(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》等法律法规,加强对固体废物的管理,保护环境,保障人体健康,我部对《固体废物鉴别标准 通则》(GB 34330-2017)进行了修订,现公开征求意见。标准征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见通过信函或电子邮件的方式反馈我部。征求意见截止时间为2024年2月29日。  联系人:生态环境部固体废物与化学品司石国英  地址:北京市东城区东长安街12号  电话:(010)65645749  传真:(010)65645745  邮箱:swmd@mee.gov.cn  邮编:100006  附件:1.征求意见单位名单     2.固体废物鉴别标准 通则 (征求意见稿)     3.《固体废物鉴别标准 通则(征求意见稿)》编制说明     4.征求意见反馈单  生态环境部办公厅  2024年1月4日  (此件社会公开)
  • 洋蜂蜜掺糖 洋机构回应检测标准“陈旧”
    在超市里,你可能因看到一罐售价四五百元的进口蜂蜜而吃惊,但是如果它们被怀疑“掺糖”,这就显得有些匪夷所思了。日前,中国香港消委会的一项蜂蜜检测,把“贵价”蜂蜜推向风口浪尖上:55款蜂蜜样本中有14款掺杂了糖分。对此,有新西兰蜂蜜巨头激烈反驳,对本报指香港本次检测方法“过时”造成了 “假阳性”,新西兰有关行业协会也已在结果发布后作出了类似表态。  昨日,记者在中国香港消委会的官方网站上,找到了这份落款为本月15日的《蜂蜜检出掺糖及残余抗生素》的报告。测试显示,掺杂了糖分的14 款样本中,12款声称是天然或纯正蜂蜜,当中7款声称100%天然或100%纯正。  其中,掺杂糖分的问题在价钱较贵(价格每100克由39.6港元至151.2港元不等)的“麦芦卡”(新西兰独有的桃金娘科灌木)蜂蜜样本中情况更为普遍:在15 款“麦芦卡”蜂蜜样本中,有8款被检测出掺杂糖分。  报告还指出,有6款样本验出小量的残余抗生素,包括链霉素类、磺胺类药、四环素类等,有6款蜂蜜样本检出微量除害剂(俗称农药)双甲脒。不过报告称,它们的含量不会对人体健康构成风险。  业内说法:蜂蜜必须天然纯正  记者昨日走访广州超市,发现进口蜂蜜产品尤其“麦芦卡”蜂蜜越来越多地出现在货架上,而且价格昂贵。在珠江新城的一家友谊商超,记者看到了至少3家新西兰公司生产的“麦芦卡”蜂蜜,售价最贵的一小瓶突破600元。  一家知名的内地蜂蜜企业负责人昨日在接受本报采访时表示,蜂蜜主要是由果糖和葡萄糖组成的。除此之外,内地的标准还允许有少量蔗糖,“国外一般强调无添加、无提取”至于残余抗生素,他指出主要是采蜜的果树被喷了农药、蜂药当中残余下来的。  “蜂蜜必须天然纯正,人为加入食品添加剂后只可能是‘蜂蜜制品’而非‘蜂蜜’。”昨日,广东省制糖产品质量监督检验站站长郭剑雄称,根据蜂蜜的新国标《食品安全国家标准 蜂蜜GB14963-2011》的规定,蜂蜜只能是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质。”其中,果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。  企业回应:产品暂时不会下架  “我们的产品没有任何问题。”昨日,有份产销“麦芦卡”蜂蜜的新西兰康维他公司在内地的一位联系人告诉本报,在得知香港消委会的结果后已对其检测过程进行了解,认为这次检测方法陈旧,该方法已不能正确地判断“麦卢卡”这种新西兰独有蜂蜜含糖量的特殊性。  该联系人说,中国内地检验检疫部门早在2011年起就有关检测技术与新西兰国家实验室进行技术交流,“可以确认的是,产品是完全天然的。进入中国内地时也要获得卫生证书后才能销售。”  至于有小量双甲脒残余,上述联系人指因蜜蜂可能长小螨虫而导致其死亡,需要用到双甲脒。它是一种低害杀虫剂,香港消委会专家已指出该物质对人体没有特别害处,并不影响蜂蜜食用。  昨日,一家进口蜂蜜经销商负责人李先生告诉本报记者,新西兰UMF蜂蜜协会(即“麦芦卡”蜂蜜)已出面指香港的检测方法过时,他暂时不会对涉及的产品下架。  四招选蜂蜜  看色泽。纯正的优质蜂蜜透光性强,颜色为白色、淡黄色至琥珀色,且均匀一致 而劣质蜂蜜颜色黑红或暗褐色、无光泽、蜜液混浊而有杂质。  晃气泡。如果蜂蜜发酵变质,会因含水量增多而导致表面产生大量气泡,而纯正的蜂蜜表面则无大量气泡。  闻香气。品质好的蜂蜜香味浓而持久,开瓶后便能嗅到,用手掌搓揉会有粘腻感,而劣质的蜂蜜往往因掺入香精而过于浓郁。  拉细丝。用筷子挑蜂蜜,优质的蜂蜜弹性佳,可拉成丝状,且不易拉断,而劣质的蜂蜜浓度较低,黏性小,难以拉成细丝。  【原标题】贵价洋蜂蜜竟掺糖?新西兰蜂蜜公司称检测方法“陈旧”
  • 辞旧迎新 新年换新貌 集卡赢豪礼 ——手机、精品书籍、京东卡等礼品大派送
    辞旧迎新 新年换新貌 集卡赢豪礼——手机、精品书籍、京东卡等礼品大派送新年换新貌,仪器信息网APP首页全新改版啦。全新的面貌,为您呈现最新的仪器及检测行业内容。本次改版亮点如下:优化首页界面,访问更流畅;新增当前热门仪器、热门领域;新增热门行业动态的今日头条;优化信息流展示,突出仪器展现、优化资讯信息流排序、新增视频信息流等,更多的等您来发掘吧。 仪器信息网APP首页一览新春佳节来临之际,为感谢广大仪器人对仪器信息网的支持,仪器信息网APP特开展“辞旧迎新 新年换新貌 集卡赢豪礼”活动,每天打开仪器信息网APP参与活动可赢取小米手机、精品纸质书籍、京东卡、红包、丰厚积分相关礼品。活动时间:即日起至2022年02月15日活动规则:1、每日可参与1次免费抽卡活动,免费机会用完后可消耗10积分进行抽取卡片,每天积分可抽卡5次,随机获得以下(祝、新、春、好、虎等系列...)卡片或谢谢参与;2、您可邀请身边的同事、朋友来参与集卡活动,一起分享春节的快乐。活动奖品:1、价值1200元的小米手机2、价值248元的《化学实验室手册(第三版)》书籍3、20元京东卡、10元京东卡、5元红包4、虚拟积分:100积分(可去积分商城兑换实物礼品)。奖品数量有限,先集齐者先得!本次活动礼品由仪器信息网品类先锋、选仪器、耗材配件、试剂标物、仪采通、行业应用、仪器信息网搜索等栏目/项目(排名不分先后)赞助。选仪器是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,900余个仪器品类,收录3万+台优质仪器。我们可以从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品,轻松找到靠谱仪器。品类先锋项目主要为科学仪器行业用户精挑细选,优中选优,甄选出单品类仪器中售后服务好、品质有保障、用户口碑好的品质仪器,让您的采购更加降本增效!立志于成为科研院所、政府高校、第三方检测机构等科学仪器用户选购仪器的重要参考依据!仪采通 是仪器/耗材/试剂专业采购平台,能为采购用户单位提效降本,提供一键发布坐等厂商联系、历史成交价查询、选型报告获取、批量采购定制化等服务。新的一年,仪采通祝您采购顺利。耗材配件 栏目为实验室用户提供千余种色谱耗材、生物耗材、防护用品、常规器具、仪器专用配件品牌,已收录20余万种产品信息,方便用户选型对比。同时提供众多产品促销、试用信息,为用户减省采购成本。试剂标物 栏目为实验室用户提供70余万种化学试剂、生化试剂、标准物质的信息查询。支持产品CAS号检索、关键词检索、中文名称检索,致力于成为行业用户提供更有价值信息的资源平台。行业应用 栏目是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。仪器信息网搜索 项目作为科学仪器行业首款搜索引擎,覆盖了用户找仪器、找厂商、找方案、查资料的全场景需求,每月为用户执行数百万次搜索请求。特有的多模态语义算法,将科学仪器行业碎片化的信息分门别类,为行业用户打造了一款高质量内容的行业搜索。兑奖说明:1、实物礼品:手机、书籍每个账号限兑一本(多兑不发货哟),兑换者须正确填写联系人、手机号码、收货地址,填写不正确或未填写,视为自主放弃奖品;实物奖品有效期24小时内,未领奖奖品失效无法领取。2、京东卡、现金红包奖品:加奖品说明里的微信号领取;有效期7天内,过期未加小助手领奖奖品失效无法领取。3、海量仪器信息网积分(可在积分商城兑换实物礼品)奖品:兑换后3个工作日内统一发放。重要声明:1、手机、纸质书籍会在活动结束后7个工作日内统一邮寄发放。2、京东卡、现金红包奖品请务必在7个工作日加奖品说明微信客服领取,过期失效。3、中奖获得的积分可以去积分商城兑换实物礼品。4、通过非法途径获得奖品的,主办方有权不提供奖品。4、本活动最终解释权归仪器信息网APP所有,一旦发现恶意刷取奖品等非人工方式参与活动的行为,我们有权取消或收回获得的任何奖励。参与方式:1、识别下面二维码参与2、仪器信息网APP首页-悬浮按钮“虎年大吉”即可参与3、活动界面,可以查看集卡情况,可以兑换的礼品情况 快来和小伙伴一起集卡,兑换书籍和红包吧~!仪器信息网APP自2017年上线以来,开启这仪器及检测行业移动端的新纪元。“她”是一款科学仪器及检测行业工具型的APP,可轻松快速选仪器找厂商、随时随地看直播学课程、与百万同行交流、掌握第一手行业动态,是科学仪器及检测行业移动端入口级生态产品。在仪器信息网APP上您可以:一:选仪器、找厂商:收录十几万种科学仪器,几千家优质仪器厂商二、在线直播、看视频学课程:可观看近千场的高清网络直播、上万份视频课程三、行业动态、在线提问:热门的行业资讯第一时间送达,与三百多万的用户零距离交流
  • 从食品安全角度讨论酒精饮料的现行检测技术及标准
    &ldquo 酒类品质及安全检测与产地溯源&rdquo 专题研讨会时间:2014年05月28日 10:00-12:00研讨会简介:近年来我国酒精饮料的消费量逐年上升,本次研讨会从食品安全领域的实际出发,进行酒精饮料各项检测技术和标准的介绍。并从食品轮廓分析入手,系统应用案例,为从事食品科学及农业科学研究领域的科研人员提供有益的借鉴和帮助。研讨会报告:报告一 酒精饮料检测体系及其真伪鉴别前沿技术演讲人:梁娜娜 (北京出入境检验检疫技术中心)报告摘要:重点针对葡萄酒,介绍主要产地葡萄酒的真伪鉴别前沿技术,葡萄酒真伪鉴别特征成分的分析与产地溯源的思路。这些技术将为进出口葡萄酒质量安全监管提供一套科学、准确的检测方案。报告二 质谱技术在食品轮廓分析方面的应用进展演讲人:李建中 (安捷伦科技(中国)有限公司)报告摘要:从代谢组学及食品轮廓分析概念入手,系统介绍安捷伦科技质谱技术在此研究方向的解决方案及应用案例分析,为从事食品科学及农业科学研究领域的科研人员提供有益的借鉴和帮助。报告三 &ldquo 酒类产品的风险监测与预警&rdquo 演讲人:张浩 (上海市酒类产品质量检测中心)报告摘要:系统讲解酒类产品市场的政策、存在问题、安全预警机制,酒类产品风险监测及预警系统数据平台的功能、重要环节、配套条件,及酒类产品风险监测的社会效益与国际合作信息。参与方式:仪器信息网注册用户即可报名,现在报名并参会还可赢得100元京东卡和10元手机充值卡,会议当天仅需登陆账户就可进入会场(需要音频交流的用户需要准备麦克)。报名地址:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1042
  • 多位行业大咖齐聚,权威解读食品新标准
    过去的一年里,我国在食品安全领域取得了显著的进步。不仅首部现代设施农业建设规划出台,婴配粉“史上最严”新国标正式实施、同时还发布了85项新的食品安全国家标准。就在今年3月,又公布了47项新的食品安全国家标准,这些举措都旨在强化国家食品安全保障。为了促进食品及农产品行业分析检测技术交流,研讨国内外最新研究应用进展,仪器信息网3i讲堂将于6月19-21日举办第四届“食品及农产品质量安全及检测新技术”主题网络研讨会。本次会议特邀请到国家食品安全风险评估中心研究员肖晶、北京市疾病预防控制中心教授刘丽萍、 厦门海关技术中心研究员徐敦明、中国海关科学技术研究中心研究员曾静等多位标准制修订专家,从各自的专业角度出发,对最新标准进行权威解读,为与会者提供宝贵的参考和指导。点击图片 免费报名 点击链接,报名会议:https://www.instrument.com.cn/webinar/meetings/agrfood2024/扫描二维码报名肖晶 研究员国家食品安全风险评估中心大会报告:食品安全检验方法标准现状及发展趋势个人简介:药学硕士,食品学博士。现担任国家食品安全风险评估中心标准四室主任,第二届食品安全国家标准理化检验方法与规程专委会副主任委员。承担食品安全国家标准审评委员会理化、微生物、毒理检验方法标准专委会相关工作,建立食品安全检验方法标准体系,起草检验方法类标准制定、修订、审查、解读等指南性文件。先后制定多项国家标准、检验方法技术规范,以及国际标准,参与完成国家科技部、国家自然基金等科研课题,出版检验方法标准实施指南系列从书。同时担任中国食品法典专家咨询委员会委员、国家市场局食品抽检监测分析专委会委员,第十二届药典委员、AOAC中国分部专家委员会委员、《中国食品卫生》和《食品安全质量检测学报》等杂志审稿人。刘丽萍 教授北京市疾病预防控制中心大会报告:《GB5009.11-2024 食品安全国家标准食品中总砷及无机砷的测定》标准解读个人简介:兼任首都医科大学公共卫生学院教授、硕士研究生导师。 兼任第一届国家疾病预防控制标准委员会地方病标准专委会委员,中华预防医学会卫生检验专业委员会水质检验学组副组长,中国农业国际合作促进会功能农产品专家委员会富硒专家组委员,国家卫健委人才交流服务中心高级人才评价项目专家,标准物质技术评审专家,国家食品药品监督管理局化妆品评审专家,中国质量检验协会检验检测设备分会应用原子光谱委员会副主任委员,中国博士后科学基金评审专家,北京理化分析测试技术学会质谱专业委员会副理事长,北京预防医学会第七届、第八届理事会理事;质谱学报编委;国家级实验室资质认定评审员,CNAS实验室认可评审员。 主持和参加包括卫健委、市科委、国际合作等多项科研课题及项目工作;研制多项涉及食品安全、饮用水国家标准检验方法及行业标准检验方法;在核心期刊发表论文100余篇,其中第一作者(含通讯作者)60多篇。参与多起涉及食品安全、饮水安全等的突发公共卫生事件的应急处理工作。徐敦明 研究员厦门海关技术中心大会报告:《GB 5009.295食品安全国家标准 化学分析方法验证通则》标准解读个人简介:博士、研究员,厦门海关技术中心;硕士生导师,厦门市第十批拔尖人才,受聘第二届食品安全国家标准审评委员会委员。长期从事食品安全研究与检测、食品安全科普。持参与35项国家及省部级科技项目,主持参与28项国家标准、行业标准的制修订。获各类科技进步奖17项、省标准贡献奖4项。罗媛媛 农艺师农业农村部农药检定所大会报告:农药残留国家标准制修订现状与展望个人简介:农业农村部农药检定所残留审评处、国家农药残留标准审评委员会秘书处农艺师,主要从事农药登记管理、农药残留风险管理和农药合理使用准则制定等工作。主要负责组织农药最大残留限量标准及农药检测方法国家标准的立项、起草、征求意见、送审、报批等工作。先后参与起草2019版、2021版和2022版《食品安全国家标准 食品中农药最大残留限量》(GB 2763),参与起草《农作物中农药残留试验准则》《畜禽中农药残留试验准则》《畜禽中农药代谢残留试验准则》等多项残留试验准则。张玉洁 高级兽医师中国兽医药品监察所大会报告:我国兽药残留标准发展趋势个人简介:中国兽医药品监察所 标准处 张玉洁 高级兽医师,全国兽药典委员会办公室、全国兽药残留专家委员会办公室工作人员,主要从事兽药残留标准研究及管理工作,持续跟踪参与国际食品法典委员会兽药残留标准进展。承担多项兽药残留国家标准制修订任务,GB 31650.1-2022制定项目、GB 31650修订项目主要执行人之一。赵云峰 研究员国家食品安全风险评估中心大会报告:食品中全氟和多氟烷基化合物的国标检测方法修订进展个人简介:赵云峰 国家食品安全风险评估中心研究员,化学实验室主任,第二届食品安全国家标准审评委员会理化检验方法与规程专业委员会主任委员,国家卫生计生突出贡献中青年专家。曾静 研究员中国海关科学技术研究中心大会报告:食品标准体系和食品微生物检验个人简介:毕业于中国农业大学微生物专业,获理学博士学位。在微生物专业领域具有30年工作经验。第一届食品安全国家标准评审委员会委员,第二届食品安全国家标准评审委员会副主任委员;参与制定国家食品安全卫生标准 微生物限量标准GB29921;主持和参与科技部重大专项6项,获得省部级一、二、三等奖共计9项,制定行业标准30余项,发表科研论文40余篇。李丹 研究员广州海关技术中心 研究员大会报告:食品接触材料及制品化学分析方法验证通则个人简介:现任食品接触材料检测国家重点实验室(广东)技术负责人。长期从事进出口商品质量检验工作,及食品接触材料检测与风险评估工作。曾主持食品接触材料领域国家标准5项、出入境检验检疫行业标准10项,参与制定国家标准和行业标准20余项,发表论文10余篇,获省部级科研奖励5项殷丽燕 检测工程师南京海关危险货物与包装检测中心大会报告:《GB 31604.54-2023食品安全国家标准 食品接触材料及制品 双酚F和双酚S迁移量的测定》标准解读个人简介:任国家食品接触材料检测重点实验室(常州)资深食品接触材料检测工程师,主要负责食品接触材料的检测和标准研究工作。在实验室检测行业深耕15年,对食品接触材料中有机污染物研究分析有丰富的实战经验。多次参与新国标方法验证工作,为新标准的出台提供专业的技术支持;其次还多次参与过国家食品安全风险监测相关工作以及参与制定食品安全国家标准项目等。刘 莉 高级技术专家上海华测品标检测技术有限公司大会报告:《GB 4806.7-2023 食品安全国家标准 食品接触用塑料材料及制品》标准解读个人简介:从事第三方检测服务十余年,中级工程师。主要负责研究欧美、中国和日韩等地区食品接触材料法规标准,多次参与省级政府风险监测项目,完成电子烟材料的风险评估研究项目。将会议链接(https://www.instrument.com.cn/webinar/meetings/agrfood2024/)转发至朋友圈邀请好友参会,集赞30个即可获得《食品标准与法规(第三版)》一本,可添加助教微信(微信号:13261573827)领取!限前20名!
  • 食品标准缺失至名酒上黑榜
    酒企建厂没几年就推出5年、10年乃至30年、50年陈酿的情况在业内已很普遍,甚至如何勾兑年份酒在行业内都已有不好的“惯例”。这种乱象背后,是年份酒缺乏统一规范和标准的尴尬现实。  “心有多高,年份就有多久。”在白酒业内,这句话正从一句玩笑变为现实。  记者从全国多家酒水销售商处了解到,目前国内白酒业中年份酒盛行,但门店内的中低端年份酒,多数都存在无底线宣传的情况。  比如在一家酒水经销商处,记者看到一个名为百年老窖的原浆30年窖藏酒。  但通过对其厂家调查发现,该酒由四川泸州老酒酒业有限公司生产,而该厂1997年才成立,且这家酒厂跟我们所熟悉的泸州老窖并无直接关系。  有类似情况者不胜枚举。  对此,中国食品工业协会白酒分会会长马勇对法治周末记者表示,酒企建厂没几年就推出5年、10年乃至30年、50年陈酿的情况在业内已成惯例。  “一些不规范的酒厂从外面购买少量年份稍长的原浆酒做引子,和大量存放一两年的新酒勾兑在一起,然而产品外包装的标签标注的酒的年份,却是时间最长的原浆酒的年份。”马勇说。  大企业也买原浆酒  白酒行业营销专家罗刚告诉法治周末记者,事实上市面上的年份酒基本都是用少量的多年原浆酒进行勾兑而成。  那么这些原浆酒从何而来?  “所谓‘川酒调天下’。原浆酒产地的首选无疑是四川。”泸州巴蜀液酒业集团有限公司总经理蒲遥对法治周末记者表示。  据蒲遥透露,以巴蜀液酒业为例,其生产的原浆酒的10%左右用以自有品牌的生产,90%的原浆酒供应给山东、江苏等多地的白酒生产企业。  而这还仅仅是四川原浆酒外售的“冰山一角”。  记者从泸州市酒类产业管理局酒管科了解到,泸州每年的原浆酒产量过百万千升,其中近半数以原浆酒的方式供应给外省的其他白酒企业。  “其中包括口子窖、北京二锅头等众多品牌都从泸州收购原浆酒。”泸州市酒类产业管理局酒管科的工作人员对记者表示。  对于这种外购原浆酒的行为,白酒专家曾祖训认为,这是四川企业与川外企业资源互补、利益共享的正常商业行为。  但对于这种在业界看来“正常的商业行为”,却鲜有白酒企业愿意承认,甚至四川当地原浆酒生产厂家都尽量保持低调。  “我们做原浆酒并不是什么不光彩的事,之所以低调,主要是酒企担心原浆酒外购现象过于张扬,消费者会对其企业的生产能力、产品的性价比产生质疑。所以不得不低调行事。”四川邛崃一家原浆酒企业负责人陈琦对记者透露。  作为“中国最大白酒原浆酒基地”,邛崃原浆酒早已名声在外,近两年来,更是有诸多外地白酒企业或在川内建厂,或寻求与四川泸州、邛崃等地原浆酒企业合作,这让陈琦的酒厂一度忙碌不堪。  “原浆酒生产企业一般可以提供几种合作方式:第一种是只提供原浆酒,客户购买后再根据自己的需要勾调 第二种是贴牌生产,直接帮客户调好并做成品牌酒,客户购买后只需加上外包装 第三种是提供勾调、包装一条龙服务,只是收费会相对高一点。”陈琦对记者透露。  但火爆的生意并没有“冲昏”陈琦的头脑。当记者问及其具体与哪些大型酒企合作时,他显得有些支支吾吾,只是表示来当地收购原浆酒的大型酒企很多。  利润驱使白酒“年份化”  那么,年份酒究竟是如何从原浆酒“蜕变”而来的呢?  从事多年酿造和研究的白酒专家傅国城告诉记者,目前,使用“固液法”生产年份酒现象猖獗。  “市面上的企业主要是用固态发酵的原浆酒添加食用酒精进行勾兑,再添加食用香精调味,就成了年份酒。原浆酒的使用比例不固定,有的企业是用50%以上的原浆酒勾兑,有的企业是用30%以上的原浆酒勾兑。”傅国城说。  对此,江南大学白酒研究专家范文来教授表示,如果只是基酒添加食用酒精勾兑年份酒,专业人员一喝就能判断出来,但如果添加了香精香料就不好分辨了。  为此,记者搜索相关香精香料厂家信息发现,相关厂家不在少数。  河南省尉氏县一家大型香精香料厂区域经理告诉记者,国内很多酒厂从他们公司购买香精香料,主要包括四大酸四大酯(白酒勾兑主要使用的添加剂,即己酸、乙酸、乳酸、丁酸、己酸乙酯、乙酸乙酯、乳酸乙酯、丁酸乙酯)。  当记者以酒厂采购人员的身份询问有哪些酒厂从该企业采购香精香料时,该经理却表示:“每次采购都会跟酒厂签署保密协议,无法透露具体名称。”  当记者以没有具体案例、对其商家信誉没有信心为由表示拒绝继续谈判时,该经理最终辩解道:“有些大酒厂成立不到50年却能推出50年陈酿,你说是为什么?大酒厂要想有年份酒卖,当然是靠我们这种原料厂家。浏阳河酒业1998年才成立,还不是推出过50年陈酿?但行里人都清楚,浏阳河一共也就几坛50年的老酒,现在还放在他们厂的博物馆里。”  前述香精香料的区域经理所说的现象并非个例。白酒分析师李晓冬告诉记者,目前国内有能力做年份酒的只能是有大量好的原浆酒的大企业,算下来也不超过10家,其他的中小企业根本不具有生产年份酒的能力,但市场上却有超过6成的白酒品牌推出了年份酒,大部分都是勾兑生产的。  为何会有那么多酒企涉足年份酒市场?  陈琦告诉记者,目前四川原浆酒的生产成本约在1.8万元/吨。其中前段酒的价格最贵,可高达10万元/吨,中段酒的价格次之,约8万元/吨,后段酒的价格从3万至5万元不等。  陈琦为记者算了一笔账,由于窖龄等不同,原浆酒的生产成本也有差异,原浆酒生产成本平均在15元/斤,加上税收,成本也不过每斤几十元。将此原浆酒勾成成品酒之后,与市面上动辄百元甚至数百元一瓶的年份酒产品相比,毛利润在50%以上。这恐怕才是白酒行业年份酒爆发的主要原因。  年份酒标准缺失  事实上,年份酒在白酒业内早已是公开的笑话。  “按照包装上标注的时间和每年的产量销量来推算,一些历史悠久的白酒品牌即使有如此陈酿,也应该所剩无几。更不用说在计划经济年代,我国每年用于酿酒的粮食是有指标的,储存量根本支撑不了如今的年份酒盛况。”对于年份酒的火爆,华泽集团董事长吴向东哭笑不得。  记者也发现,绝大多数年份酒的包装上,除了醒目的“××年陈酿”或“××××年××酒”之外,其他基本信息和没有标注年份的白酒没有什么区别。  当记者对多家酒厂导购人员问起“20年陈酿是20年酒窖生产的,还是20年前就已经生产的”时,酒厂导购员往往含糊其词。其中部分自身成立还不到20年的酒企人员更显尴尬,只是表示酒里一定有一部分是陈酿,但具体多少就不得而知了。  更有甚者,有些酒企不仅仅是勾兑年份酒,更在宣传手段上下足了功夫。酒鬼酒副总范震告诉记者,由于年份酒的走红,洞藏酒也一度水涨船高,这让湖南曾掀起了一股挖洞风,不论是防空洞还是炸的洞都被使用起来。酒企纷纷把酒搬进洞里储存,不论是老酒还是新酒,都被酒厂贴上二十年、三十年的洞藏包装以年份酒销售。  那么,究竟年份酒中含有多少原浆酒才能称得上多年陈酿?  中国酒类流通协会秘书长刘员表示,目前各大酒类企业有自身的年份酒标准,且标准并没有取得统一,“原浆酒的含量为多少才合适没法说,因为酒是要凭勾兑师来感觉的”。  吴向东所经营的华致酒行是五粮液年份酒的独家代理商。由于时常遇到消费者对五粮液年份酒产生的质疑,吴向东特意请教过(五粮液)唐桥董事长和五粮液的勾兑师。其得到的答复是:“为了保证酒的品质,五粮液的年份酒和世界其他烈性名酒一样,是勾调而成的。以15年五粮液为例,可能不全是15年酒龄的原浆酒,但所用原浆酒的年份绝不会少于15年。”  国家目前对于年份酒也没有统一的规范和标准。  对此,酒洲网总经理赵寅告诉记者,2012年11月,国家相关部门就曾联手中国酒业协会制定年份酒行业规范,要求用原浆酒勾兑年份酒时,原浆酒所占比例不少于80%,但是该规范只具有指导意义,不具有强制约束力。  对于年份酒市场的乱象,马勇也并没有回避。  “年份酒在白酒市场上已经风行了近10年,然而至今仍未出台相关标准加以规范,企业的水平参差不齐,有些胆子大的酒厂干脆把当年生产的酒打上年份酒的标牌,想标哪年就标哪年,使一些相对优质的‘年份酒’反而受到不利影响。”马勇说。  中国食品工业协会白酒专业委员会专家赖登辉认为,我国在年份酒领域缺乏法律规范,市场的自我调节作用根本解决不了存在的问题,再加上消费者不具备鉴别知识,这些因素的叠加就给年份酒领域留下一条灰色地带。只有在企业加强管理,行业自律的同时,推行强制性规定,才能改善目前“年份酒放卫星”的现状。  【原标题】标准缺失勾兑年份酒成惯例 口子窖二锅头等上榜
  • 中国技术经济学会批准发布《生物活性肽的鉴别和细胞活性测定》团体标准
    各相关单位:根据《中国技术经济学会团体标准管理办法》的有关规定,中国技术经济学会批准《生物活性肽的鉴别和细胞活性测定》团体标准。现予以发布,详细信息见下表:序号标准编号标准名称实施日期1T/CSTE 0379-2023生物活性肽的鉴别和细胞活性测定2023-09-01 中国技术经济学会2023年8月15日2023(53号文)关于批准发布《生物活性肽的鉴别和细胞活性测定》团体标准的公告.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制