当前位置: 仪器信息网 > 行业主题 > >

顺式羟基索非那新非对映

仪器信息网顺式羟基索非那新非对映专题为您提供2024年最新顺式羟基索非那新非对映价格报价、厂家品牌的相关信息, 包括顺式羟基索非那新非对映参数、型号等,不管是国产,还是进口品牌的顺式羟基索非那新非对映您都可以在这里找到。 除此之外,仪器信息网还免费为您整合顺式羟基索非那新非对映相关的耗材配件、试剂标物,还有顺式羟基索非那新非对映相关的最新资讯、资料,以及顺式羟基索非那新非对映相关的解决方案。

顺式羟基索非那新非对映相关的资讯

  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 新羿数字PCR:非小细胞肺癌原发EGFR T790M突变检测研究
    摘要北京大学人民医院胸外科杨帆团队和清华大学医学院生物医学工程系郭永团队合作,在《OncoTargets and Therapy》发表题为"Highly Sensitive Droplet Digital PCR Method for Detection of de novo EGFR T790M Mutation in Patients with Non-Small Cell Lung Cancer"的研究论文,该研究使用新羿TD-1数字PCR平台,验证了非小细胞肺癌病人中原发EGFR T790M突变与共存的致敏EGFR突变在等位基因上的顺反式关系(顺式排列指两个位点在同一条DNA分子上,反式排列则是指两个位点不在同一条DNA分子上,这两种不同排列方式导致患者对药物的敏感性不一样),并探索了福尔马林固定石蜡包埋(FFPE)组织样本对检测原发EGFR T790M突变的影响。方法与结果该研究入组了300例中国非小细胞肺癌患者,所有病人都未使用过EGFR-TKIs。对于前250例患者(A组),通过外科手术获取肿瘤组织后快速冷冻后保存于-80℃;对于后50例患者(B组),获取病人的肿瘤组织和癌旁正常组织,并分别制作成冰冻肿瘤组织、FFPE肿瘤组织、冰冻正常组织和FFPE正常组织。对A组的250例冰冻肿瘤组织进行EGFR基因突变检测,并对同时检出T790M突变和致敏EGFR突变的样本进行等位基因顺反式检测。对B组的4种类型样本进行EGFR基因突变检测,分析4种类型样本中T790M突变比例。(详细流程见图1)300例冰冻组织EGFR检测结果如下表:图1 研究设计流程对3例为L858R+T790M双阳性样本。进一步构建了L858R+T790M双重检测体系,用总RNA分析L858R和T790M的顺反式关系,结果表明,这3例样本均为顺式关系,即L858R和T790M突变存在于同一条DNA分子上(图2)。图2(A)显示了野生型EGFR的NSCLC细胞系的FAM非特异性信号。(B、C、D)3例NSCLC患者,同时伴有原发T790M和L858R突变,用ddPCR方法检测两种突变的等位基因关系,B、C、D所示为EGFR的原发T790M(FAM标记)和L858R(VIC标记)的双阳性信号, FAM和VIC阴性信号以黑色表示。野生型EGFR L858R和野生型T790M突变的信号以蓝色表示。EGFR L858R突变阳性的信号以绿色表示。原发T790M伴随顺式L858R突变的双阳性信号以橙表示。对B组的50例病人的4种类型样本进行19Del、L858R和T790M检测,发现T790M在癌旁正常组织FFPE样本的丰度为0.1%-0.5%,而同样的冰冻组织的突变丰度均低于0.1%。这提示在用FFPE样本检测T790M突变时,需仔细确认判读的cut off。图3 FFPE肿瘤组织样本和FFPE癌旁正常组织样本中的原发T790M突变丰度研究结论1、中国NSCLC原发T790M突变发生率很低,在本研究中只有1.3%。2、本研究发现的3例L858R+T790M双阳性样本为顺式突变,数字PCR可以有效检出。3、福尔马林固定造成的人工突变会影响FFPE样本的T790M突变检测。所以使用ddPCR检测FFPE样本前,应仔细验证ddPCR检测体系的分析cut off值。作者介绍北京大学人民医院胸外科王迅主治医生为该论文的第一作者,北京大学人民医院胸外科杨帆教授与清华大学医学院郭永教授为论文的合作通讯作者。原文链接:https://www.researchsquare.com/article/rs-29659/v1
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 飞纳台式扫描电镜多次应邀在公安刑侦系统内演示
    近日飞纳台式扫描电镜多次应邀在公安刑侦系统内做枪击残留物及火药成分分析演示,取得了良好的效果。下图为一种枪击残留物颗粒,利用飞纳台式扫描电镜既可以观察形貌图像,又可以检测成分:下图为另一个的枪击残留物颗粒的形貌及 EDS 分析效果:通过比对这两个枪击残留物颗粒形态及成分数据可以发现这两个枪击残留物颗粒成分大致相同,应该是来自于同一种子弹的底火生成。飞纳台式扫描电镜进行枪击残留物(GSR)分析的特点:1、台式扫描电镜中唯一可以做枪击残留物分析的科学仪器2、一次可以放置 36 个样品,测样效率高,数据量大准确性更高3、枪击残留物(GSR)检测软件为通用软件,兼容性强,技术成熟4、配合飞纳台式扫描电镜大样品室卓越版 Phenom XL 可以实现全自动分析5、稳定的 CeB6 灯丝,不会在实验过程中发生烧断6、极强的通用性,飞纳台式电镜 XL 本身可以作为扫描电镜使用7、该产品完全符合国际通用标准:ASTM E1588 - 168高准确性:与 FEI 大电镜(配 GSR)识别率重叠 90% 以上飞纳台式扫描电镜的枪击残留物分析将有助于刑侦行业提高检测效率,促进司法公正,构建和谐社会。知识小贴士枪击残留物分析在甄别一个犯罪中是否使用了枪械的过程中发挥着重要的作用。枪击残留物分析技术是基于扫描电子显微镜的使用,它用来扫描样品来发现可疑的枪击残留物颗粒。如果一个可疑的枪击残留颗粒被发现,就可以利用能谱仪来确定颗粒的成分。最常见的搜索标准是铅,锑,和钡的存在。然而,无铅底火(如含有钛、锌)的检测也常被要求。在子弹的发射过程中会产生枪击残留物,这些枪击残留物是如何产生的?这些就要从子弹的构造来看,一般子弹由弹头、药筒、装药、底火四部分组成。如下图所示:手枪击针击发底火后,底火摩擦产生火星开始快速燃烧进而点燃装药,装药开始燃烧,弹壳内压增大,当压力上升到 250~500kg / 平方厘米时,弹头脱离弹壳,挤入线膛,开始起动。弹头在高温、高压气体作用下,迅速向前运动。弹头发射出去的同时,底火燃烧的颗粒会向各个方向扩散开去,落在持枪人的手上,衣服甚至头发上,也可以落在枪击现场附近的人身上。一般子弹的底火中含有原发性爆炸化合物三硝基间苯二酚铅,氧化剂硝酸钡及还原剂锑硫化物,因此枪击残留物颗粒的化学成分是非常有特征性的,一般含有铅,钡和锑等元素,而且不同的子弹所使用的底火都是不同的,甚至相同厂家生产的不同批次的底火也是有区别的,可以通过鉴别枪击残留物的成分来追溯到犯罪嫌疑人所使用的子弹来源进而有助于案件的侦破。
  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。  研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 英格索兰Thomas针头清洗泵与新冠肺炎病毒检测中国方案助力德国抗疫
    通过检测血清中新冠肺炎抗体来快速筛查新冠病毒感染者的中国方案近日被德国电视一台、法国TFI电视台争相报道。此中国方案来自国际知名医疗设备泵类部件供应商Thomas与中国体外诊断分析龙头企业的精诚合作,且在火神山、雷神山、协和、大冶等数十家武汉医院的中国新冠肺炎抗疫战中得到了实践验证。德国联邦疾控机构4月12日公布的数据显示,德国目前累计治愈60200人,现存确诊病例57606人。这是德国境内暴发新冠肺炎疫情以来,治愈人数超过现存确诊病例,而以Thomas为代表的国际医疗设备零部件供应商及中国本土医疗设备制造商的跨国合作,也在助力德国抗疫中起到了积极作用。配备Thomas针头清洗液体隔膜泵的中国智造免疫分析仪服务于德国实验室英格索兰精密与科学技术医疗事业部位于德国巴伐利亚梅明根的THOMAS工厂一直致力于为全球医疗设备厂商配套生产各种规格的气体/液体隔膜泵和液体蠕动泵。针对目前在全球快速蔓延的新冠肺炎疫情,Thomas向全球体外诊断分析仪器厂商推出了从精准取样、配量试剂、针头清洗到废液排除的全路径体外诊断全液路应用方案。此款中国高通量化学发光免疫分析仪可以满足每小时高达1200次的检测需求,仅需15分钟就可快速检测新冠抗体。Thomas为这套分析仪专门配套了德国制造的1210系列液体隔膜泵来清洗针头,其小巧的体积完全适配该款化学发光免疫分析仪的产品设计。而Thomas针头清洗液体隔膜泵稳定的流量,能确保提取血清和配量试剂的针头在每次检测完毕后得到彻底的清洗,快速进入下一轮的抗体检测流程。Thomas 1210液体隔膜泵2020年入春以来,Thomas位于德国梅明根、USA门罗和中国无锡的三家工厂开足马力,全力支援中国的呼吸机、制氧机和IVD分析设备制造商发往武汉的订单。而当疫情的重点自3月开始由中国转向海外,中国的医疗设备厂商和Thomas再次携手把中国抗疫产品带到海外一线疫区。近日,Thomas全球三家工厂的订单量呈快速增长态势,不仅是体外分析设备客户,呼吸机和制氧机的制造商的订单量也超平日三倍以上。为了应对这场全球新冠肺炎抗疫战,Thomas将一如既往地饯行英格索兰“信赖我们,让您的生活更美好”的企业价值观,调用全球技术、资源和产能,积极助力中国呼吸机、制氧机和体外诊断免疫分析制造商走向世界,为海内外新冠肺炎病患第一时间提供全球的诊疗方案。关于托玛斯(Thomas)Thomas是一家为在医疗,实验室,环境和工业领域的OEM厂商提供压缩机,真空泵和液体泵产品的制造商。Thomas的流体技术涵盖压力,真空和液体各领域, 可以提供WOB-L活塞泵、铰接活塞泵、隔膜泵、微型隔膜泵,旋片泵、线性泵和蠕动泵等产品,同时Thomas提供了业界广泛的无油产品系列。具备如此丰富的产品线,Thomas可设计理想的,定制化的压力及真空的解决方案以满足客户的个性需求。Thomas自2020年3月起,成为英格索兰精密与科学技术医疗事业部旗下企业。 关于英格索兰英格索兰(纽交所代码:IR),以企业家精神和主人翁意识为动力,致力于创造美好生活。我们通过旗下备受赞誉的40余个品牌,在工业、能源、医疗和特种多功能车领域提供关键和创新的产品与服务,涵盖空气压缩机、泵、鼓风机,以及流体管理、装载、动力工具和物料吊装系统以及知名的Club Car品牌多功能车。在极其复杂和严苛的工况下,亦能确保优越的性能。我们在世界各地的16,000多名员工将持之以恒地为客户提供可靠的专业知识,帮助客户提高生产力并提升效率,与客户建立终身连接。
  • 文献解读丨超临界流体色谱串联质谱法在普通白菜乙酰甲胺磷和甲胺磷对映体分离分析中的应用
    本文由农业农村部环境保护科研监测所课题组所作,通讯作者为耿岳博士,文章发表于Journal of Separation Science(J Sep Sci. 2022,1– 12, https://doi.org/10.1002/jssc.202200006)。 Part 01 研究背景 乙酰甲胺磷是一种广谱有机磷杀虫剂,在作物中可通过酰胺水解转化为毒性更大的代谢物甲胺磷。乙酰甲胺磷和甲胺磷均由一对对映体组成,虽然不同对映体的理化性质相同,但在活性、毒性和降解行为方面存在显著差异。因此,开发高效的乙酰甲胺磷及其代谢物甲胺磷对映体的分离和测定方法,并开展对映体选择性研究对乙酰甲胺磷及其代谢物的评估具有重要意义。目前手性分离主要采用手性色谱柱结合HPLC、GC、GC-MS/MS和LC-MS/MS进行,但对于部分手性农药存在分析时间长、分离度差等问题。 SFC-MS/MS因具有分析时间短、分离度高、有机溶剂消耗低等优点,已广泛应用于手性农药对映体的分析。本研究建立了一种绿色、灵敏、高效的SFC- MS/MS检测普通白菜中乙酰甲胺磷和甲胺磷对映体残留的方法。为了验证所建立的方法,在中国北方温室条件下,通过盆栽试验研究了乙酰甲胺磷及其代谢产物甲胺磷在普通白菜中的残留情况。此研究系利用SFC - MS/MS对蔬菜样品中乙酰甲胺磷和甲胺磷对映体的选择性进行报道,为手性杀虫剂乙酰甲胺磷的科学评价提供了基础资料。 Part 02 研究结果 1、对映体拆分方法的优化采用Nexera UC SFC-MS/MS系统,经过手性固定相、流动相、有机改性剂种类及比例、背压和柱温的优化等,确定最终的仪器条件。 1)色谱条件色谱柱:Chiralcel OD-H column (250 × 4.6 mm, 5 μm) ;流动相:A (CO2)/B乙醇= 95/ 5,v /v;流速:3 mL /min;柱温:40℃;背压:10 MPa;补偿溶剂 (0.1% 甲酸甲醇溶液) 流速:0.1 mL/min; 2)质谱条件离子源参数:雾化气流速:3 L/min (N2, 99.5%);加热气流速:10 L /min(干燥空气);接口温度:300℃;DL温度:250℃;加热块温度:400℃;干燥气体流速:10 L/min (N2, 99.5%)。 质谱参数:按上述条件,不同对映体出峰时间为:R-乙酰甲胺磷(4.20 min)、S-乙酰甲胺磷(4.91 min)、R-甲胺磷(5.97 min)、S-甲胺磷(6.68 min) 。不同条件下的对映体拆分结果见(图1)。图1 SFC-MS/MS上乙酰甲胺磷和甲胺磷对映体的色谱图、分离度和保留时间 2、方法学考察 对建立的对映体分析方法进行系统的方法学考察,包括线性、回收率、精密度、定量限等。不同对映体在溶剂和基质标准中均有良好的线性(具体见表1)。通过比较溶剂标和基质标进行基质效应评价,乙酰甲胺磷和甲胺磷对映体在普通白菜基质中表现出较强的基质抑制效应,为了消除基质效应,本研究采用基质匹配标准溶液进行定量。乙酰甲胺磷和甲胺磷对映体的定量限均为0.005 mg/kg。在3个添加水平(0.01、0.1和1 mg/kg)下对普通白菜空白样品中乙酰甲胺磷和甲胺磷进行回收率试验,评价方法的准确性和精密度。化合物在普通白菜中的日内平均回收率(RSDs)为70.4−98.5% (1.4−10.9%),日间平均回收率(RSDs)为75.4−87.5% (6.1−13.4%)。结果表明,所建立的方法精密度和重现性良好,可满足普通白菜中乙酰甲胺磷和甲胺磷对映体的测定要求。 表1 不同对映体的线性、相关系数和基质效应图2 R-乙酰甲胺磷、S-乙酰甲胺磷和Rac-乙酰甲胺磷(外消旋乙酰甲胺磷)及其代谢产物R-甲胺磷、S-甲胺磷和Rac-甲胺磷的残留量 图3 R-乙酰甲胺磷(A)、S-乙酰甲胺磷(B)、Rac-乙酰甲胺磷(C)及其代谢产物R-甲胺磷(D)、S-甲胺磷(E)、Rac-甲胺磷(F)(外消旋甲胺磷)在普通白菜中的消解曲线 3、方法应用 为验证SFC-MS/MS分析方法的有效性,对普通白菜样品中乙酰甲胺磷和甲胺磷的对映体进行了分析。结果表明,乙酰甲胺磷和甲胺磷对映体在普通白菜中的降解均符合一级动力学方程,R2在0.944 ~ 0.992之间(图3),半衰期分别为:4.39 (R-乙酰甲胺磷)、2.91 (S-乙酰甲胺磷)、3.9(Rac-乙酰甲胺磷)天、10.91(R-甲胺磷)、6.24(S-甲胺磷)和9.10(Rac-甲胺磷)天。R-乙酰甲胺磷的半衰期是S-乙酰甲胺磷的1.51倍,表明其降解具有对映体选择性;在普通白菜中甲胺磷半衰期比乙酰甲胺磷长,表明甲胺磷比其母体具有更强的持久性。 Part 03 结论 基于岛津Nexara UC系统,建立了一种快速、简便、灵敏的测定普通白菜中乙酰甲胺磷及其高毒代谢物甲胺磷对映体的分析方法,本方法可在8分钟内实现手性对映体的基线分离,每针样品仅消耗1.2 mL有机溶剂(乙醇)。同时进一步应用该方法评价了乙酰甲胺磷及其代谢产物对映体在普通白菜中的手性选择性消解规律研究。本方法具有良好的精密度和重现性,满足普通白菜样品中乙酰甲胺磷和甲胺磷对映体残留测定的要求。 关联仪器Nexera UC 所提供的解决方案• 临界流体的低粘度以实现快速分离• 提高峰容量与分离度• 利用高渗透性,对异构体或手性化合物实现快速分离• 差异化的分离模式提高灵敏度• 无分流样品导入技术提升灵敏度• 减少有机溶剂消耗,在降低成本的同时降低对环境的影响 文献题目《Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry》 使用仪器岛津Nexera UC 作者Linjie Jiang1,2,3 Yue Geng1,2,3 LuWang1,2,3 Yi Peng1,2,3 Wei Jing4 Yaping Xu1,2,3 Xiaowei Liu1,2,31 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, P. R. China2 Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and RuralAffairs, Tianjin, P. R. China3 National Reference Laboratory for Agricultural Testing, Tianjin, P. R. China4 Shimadzu (China) Co., LTD. Beijing Branch, Beijing, P. R. China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。 本文内容非商业广告,仅供专业人士参考。
  • 一种检测葡萄糖对映体的表面增强拉曼散射光谱策略
    近期,上海师范大学杨海峰教授、刘新玲博士课题组报道了一种用于检测葡萄糖对映体的SERS策略,相关成果以“Chiral Detection of Glucose: An Amino Acid-Assisted Surface Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals”为题发表在国际化学权威杂志Analytical Chemistry上(DOI: 10.1021/acs.analchem. 2c02340)。 研究背景: 在手性环境中(如人体内),由于分子间手性相互作用的差异性,手性分子和其对映体可表现出不同的性质和功能。因而,手性分子检测是一个非常重要的研究课题。圆二色(CD)光谱是一种常用的手性光谱检测技术,其检测原理是基于手性分子对于左旋和右旋圆偏振光具有不同的吸收系数,使得对映体产生符号相反的CD信号,从而可以直观地区分手性构型(图1)。然而,对于不含生色团的手性分子而言,其CD信号很弱、或者超出仪器检测波长范围。因此,发展灵敏的光谱分析技术用于手性分子构型鉴定和含量测定具有重要意义。表面增强拉曼光谱(SERS)分析方法灵敏度高,SERS信号可以反映出分子间相互作用机制,但是如何将SERS技术优势应用于手性检测仍有待于深入研究。 研究内容: 人体对氨基酸和葡萄糖具有特殊的对映体选择性,分别以L-氨基酸和D-葡萄糖为主,上述手性选择性起因仍是一个未解的科学难题。受此启发,如图2所示,该课题组制备了L-苯丙氨酸(L-Phe)修饰的“核-卫星”金纳米结构作为SERS基底。该基底与D-葡萄糖(D-Glu)混合后,L-Phe的SERS信号强度会增加(“signal on”);反之,L-葡萄糖(L-Glu)会降低L-Phe的SERS信号强度(“signal off”)。若以上述基底的SERS信号为参考,通过差值计算法,则可以获得和CD光谱类似的SERS信号强度差值曲线,即D-Glu和L-Glu表现出符合相反的SERS差值信号,从而直观地区分D-Glu和L-Glu手性构型。根据上述signal on和signal off效应,该方法可以测定葡萄糖对映体过量值(ee)及浓度,并可拓展到唾液中葡萄糖浓度检测(10-8~10-4 mol/L)。 图一示例: 圆二色光谱法区分对映体示意图(来源:Anal. Chem.) 图二示例:用于葡萄糖对映体检测的SERS分析策略示意图(来源:Anal. Chem.) 本研究通过氨基酸和葡萄糖对映体之间的差异化手性相互作用,导致氨基酸的SERS信号变化具有对映体选择性,实现葡萄糖对映体的区分及其含量测定,从而提供了一种基于SERS的手性分析策略。
  • 使用ACQUITY UPSFC系统分析微量的对映体杂质
    目标 使用沃特世ACQUITY UPSFC™ 系统证明杏仁酸苄酯的快速手性分离和0.02%杂质水平下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种又包含单对映体活性成分。单对映体型手性药物被认为是改善了的化学实体,可提供更高的药效、更好的药理学数据和更为有用的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其他有机杂质。国际协调会议(ICH)已对关于鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPSFC系统的高灵敏度实现了对药用物质中对映体杂质的鉴定和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用ACQUITY UPSFC系统进行分离,其色谱图如图2所示。主要试验参数在表1中列出。 总分析时间不到1.5分钟。平均基峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。保留时间和峰面积的重复性测定基于五次重复进样,结果汇总于表2。在0.20 mg/mL的浓度下,保留时间的重复性RSD小于0.23%,峰面积响应RSD优于0.5%。 图3显示了2 mg/mL R-杏仁酸苄酯的UPSFC色谱图。经紫外光谱确认(结果未显示),1.30分钟处的次要峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检出限),根据峰面积判断相当于主要峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPSFC系统,其中包括改进的泵系统和优化设计的检测器。本例中对映体过量(e.e.)百分比为99.96%。总结 使用ACQUITY UPSFC系统在不到1.5分钟成功完成R-和S-杏仁酸苄酯的UPSFC手性分离。当每种对映体浓度均为0.20 mg/mL时,所得到的重复性极佳(保留时间的可重复性RSD小于0.23%,峰面积RSD小于0.5%)。新型泵系统和优化设计的检测器所带来的更高检测灵敏度使测定0.02%对映体杂质和对映体过量成为可能。ACQUITY UPSFC系统适用于低浓度对映体杂质的分析、对映体过量测定和QA/QC分析。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 使用超高效合相色谱系统分析微量的对映体杂质
    目的使用沃特世ACQUITY UPC2&trade 系统证明杏仁酸苄酯(benzyl mandelate)的快速手性分离和0.02%杂质含量下的对映体过量测定。背景根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种药品又包含单一对映体活性成分。单一对映体型手性药物被认为是改善了的化学实体,它能提供更高的药效、更好的药理学数据和更为有利的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其它有机杂质。人用药品注册技术国际协调会(ICH)已对鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。ACQUITY UPC2系统的高检测灵敏度实现了对药用物质中对映体杂质的鉴别和定量。 解决方案图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用UltraPerformance Convergence Chromatography&trade ( UPC2&trade )进行分离,其色谱图如图2所示。主要实验参数列于表1。总分析时间不到1.5分钟。平均峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。如表2所示,是5次连续进样的保留时间和峰面积的重现性数据。在0.20 mg/mL的浓度下,保留时间的重现性RSD值优于0.23% ,峰面积重现性RSD值优于0.5%。图3显示了浓度为2 mg/mL的R-杏仁酸苄酯的UPC2色谱图。经紫外光谱确认(结果未显示),1.30min处的小峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检测限),根据峰面积计算相当于主峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPC2系统,其中包括经改进的泵系统和经优化的检测器设计。本例中对映体过量(e.e.)值为99.96%。总结使用ACQUITY UPC2系统在不到1.5分钟时间内,成功完成R-和S-杏仁酸苄酯的UPC2手性分离。在每种对映体浓度均为0.20 mg/mL条件下,可获得优异的重现性(保留时间的重现性RSD优于0.23%,峰面积RSD优于0.5%)。新型泵系统和检测器优化设计带来更高的检测灵敏度,使测定0.02%对映体杂质和对映体过量成为可能。AQUITY UPC2系统适用于微量对映体杂质的分析、对映体过量测定和QA/QC分析。 联系方式: 叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com 周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 清华团队探微揭秘!飞秒激光改写材料“基因”
    光与物质的相互作用是探究低维量子材料微观物理机制的重要探测手段,并且其中超短、超强脉冲激光还可作为电子结构及物态的有效调控手段,实现平衡态所不具有的新物态、新效应。周树云研究组和合作者首次在半导体材料黑磷中实现了脉冲激光诱导的弗洛凯瞬时能带调控,并发现其与黑磷的赝自旋具有独特的耦合作用及光学选择定则,研究工作以“Pseudospin-selective Floquet band engineering in black phosphorus”为题,于2023年2月2日发表在Nature杂志。半导体材料弗洛凯能带调控示意图给黑磷中的电子“拍电影”低维量子材料包括碳纳米管、石墨烯、过渡金属硫族化合物等,以其新奇的物理特性和全新的器件应用而广受关注。例如,相比于石墨的三维立体结构而言,石墨烯以其单原子级厚度可以被视作“二维”这样的低维材料,其中的电子结构也会因为维度的降低而发生剧烈的变化。“我们研究的电子能带结构可以通俗地理解成这些材料的DNA,它决定了材料的各种属性,清华大学“水木学者”鲍昌华解释道,“而我们所做的就是利用飞秒激光来调控这些材料的DNA,从而获得我们想要得到的一些性质。”当前学界的研究主要聚焦在材料的平衡态特性,而对其非平衡态物理及超快动力学的研究尚处于发展阶段。周树云团队利用脉冲激光,将时间精度控制到万亿分之一秒,迈出了实现瞬时调控材料特性的坚实一步。在超快时间尺度(皮秒甚至飞秒)上实现电子结构和物理特性的测量和调控,不仅能够拓展非平衡态物理知识的前沿,还将为未来新型、高速器件的开发和应用奠定重要的科学基础。在非平衡态超快动力学和瞬时物态调控研究中,一个备受关注的重要研究方向是通过周期振荡的势场诱导量子物态的变化,进而实现对其电子结构的调控,该方案被称为弗洛凯工程(Floquet engineering)。从材料的晶格结构出发,电子受到空间中周期性变化晶格的影响,形成在动量空间具有周期性的能带结构,导致整个材料呈现出金属、绝缘体、半导体乃至超导体的多种性质的可能。与之相类比,外加的周期振荡势场将导致电子在能量空间出现能带结构的周期性复制,进而形成弗洛凯态。进一步地,通过电子与周期势场的相互作用对低维量子材料的能带结构、对称性及拓扑性质的瞬时调控,可实现平衡态所不具有的新物态,例如,将拓扑平庸的材料转变为拓扑材料,实现远离平衡态的拓扑超导态等。“目前,国际上这方面的研究还刚开始。一方面,我们希望弗洛凯能带工程可以在更加广泛的材料体系中被实现,从而为更加自由地调控材料的性质提供一种新的途径,”对于该研究领域的发展前景和可能的应用,清华大学物理系2017级博士生周绍华介绍,“另一方面则是在未来飞秒激光在材料物性调控作用上的应用,如在超快时间尺度上实现材料的非平庸拓扑、超导拓扑物态等。”弗洛凯态的概念自上个世纪初被提出后就引起了物理学家的广泛关注,并被应用于凝聚态物理、冷原子物理和光晶格等领域。近十年来,弗洛凯瞬时能带和物性调控已经发展成为国际上凝聚态物理和材料科学的一个重要科学前沿。然而,尽管理论方面涌现出丰富的预言,与之形成鲜明对比的是凝聚态体系中的实验进展非常少。很多关键的科学问题,例如,能否在常规材料(例如半导体)中实现能带结构的瞬时调控,仍然有待实验的证实。利用超快时间分辨角分辨光电子能谱在黑磷中实现弗洛凯瞬时能带调控周树云研究组多年来致力于低维量子材料的电子能谱和非平衡态超快动力学的研究,尤其是弗洛凯能带及物态调控的实验研究。这一过程并不简单,需要研发具有能够实现弗洛凯调控工程所需的极端实验条件的先进科学仪器。由于弗洛凯调控要求激发光源具有低光子能量、强峰值电场等极端实验条件,研究组针对领域难点投入了大量的精力,攻克了中红外强场脉冲激发光源以及与角分辨光电子能谱仪结合方面的困难,研制出具有前沿技术指标的超快时间分辨角分辨光电子能谱(TrARPES)系统。在材料体系方面,周树云研究组独创一格,巧妙地选取了黑磷这个具有小带隙、高迁移率的经典半导体材料。通过精细调节中红外激发光源的光子能量,研究组发现当光子能量与带隙接近共振时,黑磷的电子结构从平衡态的抛物线形状演化为在带顶打开能隙的“墨西哥帽”形状,并观察到了复制的弗洛凯边带。在研究其中的弗洛凯瞬时能带调控时,研究组使用了类似“给电子拍电影”的方法:在飞秒尺度上去记录它在光的激发下,从光到来之前、刚好到达时以及光离开以后整个动态过程中的关键时刻,从而观察它是怎样演化的。在此基础上,他们通过系统性地探究该瞬时能隙对时间、光强和电子掺杂等变量的响应等,确认了所观测到的瞬时能隙是由弗洛凯能带工程所导致。更有意思的是,研究组发现黑磷中的弗洛凯能带工程对激发光源的偏振具有强烈的选择性:只有当泵浦光偏振沿着黑磷的扶手椅型(armchair)方向时,才会出现瞬时能隙,揭示出弗洛凯能带工程调控具有特定的光学选择定则。结合理论分析,研究组指出这一奇特的偏振选择效应来源于黑磷的赝自旋自由度(黑磷元胞中含有两个子晶格,对应的两能级系统可类比自旋)。这些研究结果不仅为弗洛凯能带调控提供了重要的思路,同时,飞秒激光调控的迅速“开关”特点也为进一步探索拓扑物态、关联物态(磁性、超导等)的瞬时调控奠定了重要的基础。此外,这一独特的偏振选择效应未来也有望应用于光学偏振相关的光电器件应用中。参与项目研究的实验团队成员坚持“一步一个脚印”这个研究课题自周树云2012年入职清华大学就已列入她的研究计划,是她在清华最想解决的科学挑战之一。该实验涉及多种精密实验技术的结合,没有现成的仪器设备可以开展此类实验,也缺乏可供借鉴的研究经验,研究过程充满了挑战。课题组通过多年的技术研发和多方筹集资源,克服重重困难,不断朝着目标努力,并最终在2018年完成了仪器平台的建设,使该系统在能量分辨率、时间分辨率、中红外泵浦光源等多方面指标具有国际领先水平。最近,他们利用这一设备成功攻克了超快时间尺度下,光与半导体材料相互作用导致的弗洛凯工程这一重要科学问题。该实验所需的实验条件十分苛刻,研究成果来之不易。例如,在实现弗洛凯瞬时能带调控的过程中,需要调控两束飞秒激光在时间和空间上完全重合,才有可能观测到该效应。这就需要不仅在时间上要使它们在飞秒尺度上重合,还要使它们在空间上聚焦到空间上同一个几十微米尺度的点。此外,激光光源的能量范围以及极端峰值电场强度也给实验带来了很多技术上的挑战。最困难的是,对于这样的未知领域,什么样的实验条件有利于弗洛凯瞬时能带调控的观测,在这方面并没有可供借鉴的经验,只能是摸着石头过河,通过大量实验逐渐积攒经验。在研究过程中,研究组成员通过长年累月的坚持、严谨求实的态度最终攻克了一个又一个难关,从最初开始该实验时遭遇不断失败到观察到最终实验结果时的豁然开朗,他们用专精的实力诠释了科研的态度和决心。“清华大学为我们提供了优质的科研环境,为青年学者的成长提供了助力。”在清华园学习生活的第 11 个年头,鲍昌华一步步从清华物理学堂班学生、获得研究生特奖成长为今年的 “水木学者”,对科研有他自己深刻的体会。“我们在做科研的过程中,需要不忘初心,始终坚持一步一个脚印。只有把每一步都做到完美,厚积薄发,最后才有希望摘取到最重要的科研成果。”周绍华也有这样的深切体会:“除了优秀的学术环境和科研平台以外,清华自强不息的文化传统也使我们受益匪浅。在科研的道路上,只有坚持自强不息,不断追求卓越,才能取得科研上的重大突破。”论文通讯作者是周树云,论文共同第一作者为周绍华和鲍昌华。合作者包括清华大学物理系段文晖院士、于浦教授,北京航空航天大学汤沛哲教授,中科院物理所孟胜研究员等。该研究工作主要受到科技部国家重点研发计划、自然科学基金委国家杰出青年科学基金项目、重点项目和重大科研仪器研制项目的支持。此外,该研究工作还受到国家自然科学基金委基础科学中心项目和中国科学院项目的支持。
  • 星巴克上海烘焙工坊?--咖啡和零售行业创新的缩影
    星巴克上海烘焙工坊咖啡和零售行业创新的缩影2017年12月6日,星巴克全球最大咖啡乐园正式开业,作为海外首家臻选烘焙工坊,上海烘焙工坊是星巴克在中国咖啡和零售行业创新的缩影。吸引了众多消费者的目光。亚洲唯一咖啡烘焙工坊,星巴克将“咖啡烘焙工厂”的概念应用于门店是在发源地西雅图,此次在魔都开业的咖啡烘焙工坊,作为海外的第一家、亚洲唯一一家烘培工坊,面积几乎是首家西雅图烘焙工坊的两倍。进入星巴克,首先映入眼帘的就是中间的巨型咖啡烘焙桶,听现场的工作人员介绍,这个烘焙桶装饰有1,000多个中国传统印章和篆刻图案,镌刻着星巴克和咖啡的故事。为了让顾客切身的感受到星巴克的匠心文化,首次将咖啡的生产过程搬进门店,让消费者亲眼见证从烘豆到煮制的全过程。 ? 咖啡烘焙工厂上下两层2700平方米,超大的体验空间,满足您全方位的消费需求。除此之外,此次星巴克为了迎合中国人的口味偏好,还将传统的茶文化引入门店,消费者可以在现场品尝茶饮,购买茶叶以及精美的茶具。为了配合咖啡梦幻工厂的开业,星巴克还重磅推出了系列咖啡杯,玲琅满目的杯子吸引了众多消费者的目光。细心的朋友发现了,星巴克的散称柜台全线配置了梅特勒-托利多电子秤。有了梅特勒 -托利多电子秤助力,工作效率大大提高。除了上海星巴克柜台展示出的电子计价秤,梅特勒 -托利多还推出了 bPlus条码秤、 FreshWay PC秤、 FreshBase触屏秤、bMobile收银秤等等多款产品。精美的面包和浓浓的奶香刺激着人们的味蕾,在主打面包的星巴克烘焙工坊怎么能少了买面包呢?面对一整排新鲜出炉的面包,如何还能经得住诱惑!当然现场还有散装的咖啡豆可以购买,要知道这样的机会可是十分难得,除了上海的星巴克烘焙工坊,大陆其他地区的星巴克可是买不到的。bPlus FreshWay FreshBase bMobile
  • Nature | 非小细胞肺癌新的驱动因素与药物靶点:CLIP1-LTK融合蛋白
    肺癌是最具侵略性的肿瘤类型之一,根据致癌因素对病人进行分层的靶向治疗会显著改善非小细胞肺癌(Non-small-cell lung cancer,NSCLC)患者的治疗效果【1】。然而在NSCLC中最常见的肺腺癌中有25-40%的病例中找不到具体的致癌驱动因素【2】。为了对非小细胞肺癌的致癌驱动因素进行进一步地探究,2021年11月24日,日本国家癌症中心东医院Koichi Goto研究组与Susumu S. Kobayashi研究组合作发文题为The CLIP1-LTK fusion is an oncogenic driver in non-small-cell lung cancer,揭开了非小细胞癌肺癌新驱动因素CLIP1-LTK融合蛋白,并发现了可以作为临床治疗的药物参考。致癌驱动因素的发现会揭示非小细胞肺癌的发病机制,比如在76%的肺腺癌样本中受体酪氨酸激酶-RAS-RAF通路会出现体细胞致癌驱动突变【3】。而基于转录组测序的方法可以帮助发现非小细胞肺癌中其他的致癌驱动因素,比如CD74-NRG1蛋白融合【4】。而基于这些研究响应开发出来的激酶抑制剂会对病人的治疗策略进行进一步的优化,从而提高患者的生存率。2013年,作者们构建了多机构联合的肺癌基因组筛查平台LC-SCRUM-Asia,该平台可以识别肺癌的致癌驱动因素,并在临床开发分子靶向治疗。作者们希望利用该平台寻找目前无法治疗的NSCLC患者中的致癌驱动因素。为了对新的致癌驱动融合基因进行鉴定,作者们对目前LC-SCRUM-Asia平台中目前成因未知的病人样本进行了全转录组测序分析(Whole-transcriptome sequencing,WTS),从中鉴定发现了一个符合阅读框的转录本:位于染色体12q24的CLIP1以及位于15q15位置的LTK融合转录本(图1)。LTK和ALK构成受体酪氨酸激酶的ALK/LTK亚家族,而CLIP1是微管末端跟踪蛋白家族的成员之一。图1 CLIP1-LTK融合蛋白结构域示意图随后,作者们想知道该融合蛋白与肺癌之间的关系,所以对LC-SCRUM-Asia平台中所有572个肺癌样本都进行了检测,发现其中有两个病人表现出CLIP1-LTK融合转录本阳性的特征,占NSCLC病人比例的0.4%,并且这两个病人体内没有其他已知的致癌驱动因素。该结果说明CLIP1-LTK融合转录本的出现可能是NSCLC的特征性致癌原因。CLIP1-LTK融合蛋白中具有coiled-coil结构域,该结构域会协助蛋白质的二聚化,因此作者们想知道该融合蛋白是否会形成二聚体从而组成性地激活LTK的激酶活性。通过CLIP1、LTK以及CLIP1-LTK分别在细胞中进行瞬时转染,作者们对LTK的磷酸化水平进行检测,发现与其他组别相比CLIP1-LTK的转染显著增加LTK的磷酸化水平, 也就是说在融合蛋白存在的情况下LTK具有更高的激酶活性。随后,作者们找到了CLIP1-LTK融合蛋白中的激酶活性缺失突变位点,该结果进一步地确认了CLIP1-LTK是组成性激活的。另外,作者们也对CLIP1-LTK融合蛋白的定位进行检测,发现CLIP1-LTK融合蛋白与LTK本身在细胞表面的表达模式不同,由于该融合蛋白缺乏LTK的跨膜结构域,所以CLIP1-LTK融合蛋白主要定位在胞质之中。进一步地,通过对细胞进行表型分析,作者们发现瞬时转染CLIP1-LTK融合蛋白的细胞会表现出圆形的细胞形态,同时细胞之间也会缺乏接触抑制,这些结果说明CLIP1-LTK融合蛋白使得细胞具有转移特征。为了证实CLIP1-LTK融合蛋白在体内的转移活性,作者们将体外培养的细胞移植到裸鼠的体侧(图2),发现只有CLIP1-LTK融合蛋白会导致肿瘤产生因因而是致癌驱动因素,并且该融合蛋白发挥作用依赖于其激酶活性。图2 CLIP1-LTK融合蛋白会导致肿瘤产生以上的结果表明,CLIP1-LTK融合蛋白可能会是NSCLC病人体内的潜在治疗靶标。所以作者们首先对CLIP1-LTK融合蛋白转染的细胞中施用了一些美国食品和药物管理局批准的或正在研究酪氨酸受体激酶抑制剂,发现其中Lorlatinib的处理会显著降低肿瘤细胞的生长。进一步地,作者们对病人进行Lorlatinib 100mg每天的常规剂量进行临床治疗,发现CLIP1-LTK融合蛋白激酶活性受到抑制,同时肿瘤的生长也会受到抑制(图3)。图3 CLIP1-LTK融合蛋白分型的NSCLC病人施用Lorlatinib会抑制肿瘤生长总的来说,该工作发现CLIP1-LTK融合蛋白是非小细胞肺癌新的致癌驱动因子,并表明激酶抑制剂Lorlatinib可以靶向该融合蛋白。未来将需要对CLIP1-LTK融合蛋白进行分子靶向抑制剂的临床开发,以及对该致癌驱动因素进行临床筛查和验证。原文链接:https://doi.org/10.1038/s41586-021-04135-5
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 中国科研团队在碳材料领域获重大突破:合成出极硬非晶碳
    北京时间2021年11月25日凌晨00时,吉林大学刘冰冰教授团队在国际顶级学术期刊Nature上发表了题为“Ultrahard bulk amorphous carbon from collapsed fullerene”的新成果。课题组采用自主发展的大腔体压机超高压关键技术,利用C60碳笼压致塌缩形成的“非晶碳团簇”这一新的构筑基元,探索了其在20-37 GPa压力范围内的温压反应相图,首次成功实现了毫米级近全sp3非晶碳块体材料的合成。寻找新型碳材料一直是材料领域的前沿科学问题。作为自然界中最丰富的元素之一,碳具有多种杂化成键方式,形成的碳材料结构丰富、性质迥异,应用也极为广泛,因此,几乎每一种新碳材料的发现都引发了研究热潮。从材料形态和原子排列的有序度分类,碳材料可分为长程有序的晶态碳以及无序的非晶碳。石墨和金刚石就是典型的碳晶体,分别由碳原子通过全sp2成键和全sp3成键形成。正是由于碳原子杂化方式不同,金刚石与柔软的石墨性质差异极大。全sp3键的金刚石不仅硬度最高,还是集高热导、宽透光频带、宽禁带等多种优异性能于一体的多功能材料,被称为“工业牙齿”。而非晶碳材料,目前主要是以sp2键为主形成的无定型碳,具有与石墨相似的柔软、导电等特性。然而,合成与金刚石结构、性质相对应的,由全sp3键形成的非晶碳块体材料却一直未能实现,是碳材料领域长期未能突破的科学难题。近年来,非晶材料因展现出如各向同性等不同于晶态材料的显著特点,越来越受到人们的关注。探索新型非晶材料,建立结构与物性之间的关联,是非晶材料领域的重要课题。全sp3非晶碳块体材料的合成对非晶材料领域也具有重要意义。高压可以有效调控碳的杂化成键方式,是合成新型碳材料的重要技术手段。人造金刚石的合成就是利用高温高压大腔体技术实现的。为了实现全sp3非晶碳块体材料的合成,刘冰冰课题组基于对富勒烯C60高压研究的长期积累,提出了采用大腔体超高压技术,利用C60碳笼压致塌缩形成“非晶碳团簇”这一新的构筑基元,在更高温压区间反应合成全sp3碳块体非晶材料的研究思路。然而商用大腔体压机的压力极限只有25万大气压,难以满足对新材料高压研究的要求。因此,突破商用大腔体压机的压力极限,发展更高温压范围的大腔体压机技术至关重要。如何解决超高压与大腔体二者技术要求的矛盾,是问题的关键所在, 也是国际公认的技术难点。课题组近年来潜心攻关,首次利用国产的硬质合金压砧突破了商用Walker型大腔体压机的压力极限,发展了大腔体压机毫米级样品腔超高压产生的关键技术,在高温条件下实现了高达37万大气压的超高压力【Chin. Phys. Lett.2020, 37, 080701】,并借此技术首次成功实现了毫米级近全sp3非晶碳块体材料的合成。相关重要结果如下:1)首次实现了近全sp3非晶碳块体材料的合成:首次给出富勒烯C60在高温超高压区间(20-37 GPa)的反应相图,在苛刻的温压条件下,合成出了高质量、毫米级、透明的近全sp3非晶碳,sp3碳含量最高可达97.1%。2)破解了近全sp3非晶碳的结构难题:通过同步辐射技术与高分辨电镜技术结合,发现其是由具有短/中程序的四配位类金刚石sp3碳团簇形成的非晶结构。3)发现了近全sp3非晶碳具有优异的力、热、光学性能,创下多项非晶材料之最:近全sp3非晶碳的光学带隙高达2.7 eV;维氏硬度高达102 GPa(9.8 N载荷下),杨氏模量达到1182 GPa,可与金刚石相媲美;热导率高达26 W/mK,是目前非晶材料中发现的硬度、热导率、模量最高的材料。4)实现了非晶碳sp3含量与性能的精细调控:通过改变压力实现了对非晶碳中sp3含量的调控,发现了非晶碳sp3含量与光学带隙、热导率的正相关规律,获得了系列光学带隙可调(1.8 eV-2.7 eV)的非晶碳材料,比非晶硅、锗具有更大的带隙以及调控范围,为非晶材料的应用开辟了新的空间。图1.a,高质量sp3非晶碳块材的光学照片;b,sp3非晶碳样品的PDF分析;c,sp3非晶碳样品的维氏硬度测量;d,sp3非晶碳样品的热导率和硬度与其他非晶材料的比较。这些突破性成果被Nature审稿人高度评价为“世界上很少有研究小组的大腔体压机技术能够达到这么高的温压条件”,“非晶材料领域的重大进展”,“为超硬材料家族添加了独特的一员”,“提供了新颖的物理特性表征,对凝聚态物理和化学领域都是原创且极其有趣的”。值得一提的是,富勒烯C60发现至今已有30多年历史,刘冰冰教授研究团队自1996年起一直从事富勒烯及相关碳材料的高压研究。经过长期努力,课题组不断为这个“80后”的零维碳材料注入新鲜活力。早在2006年,课题组便取得了系列突破,获得了多种压致聚合富勒烯材料;提出了共晶与高压相结合的新思想,发现了一类由压致C60塌缩形成的“非晶团簇”构筑的长程有序碳结构(OACC结构),是继晶体、非晶和准晶后又一全新的结构类型,与合作者发表在Science上【Science, 2012, 337, 825】。随后进一步在C70等大碳笼、金属富勒烯等其他系列共晶体系中再现了这种新结构,通过调控非晶碳团簇的尺寸以及这种结构的对称性和周期,创制了一类全新碳材料【Adv. Mater., 2014, 26, 7257 Adv. Mater., 2015, 27, 3962 Adv. Mater., 2018, 30, 1706916 J. Am. Chem. Soc., 2020, 142, 7584】。正所谓“十年磨一剑,砺得梅花香”,该研究成果是课题组在富勒烯高压研究领域长期积累的基础上的再次突破。该研究成果第一完成单位为吉林大学超硬材料国家重点实验室,论文共同第一作者为尚宇琛博士、刘兆东教授、董家君博士,姚明光教授与刘冰冰教授为论文共同通讯作者。该成果是与中科院物理所汪卫华院士,瑞典于默奥大学B. Sundqvist教授,美国卡内基研究院费英伟研究员,吉林大学电子显微镜中心张伟教授,以及上海同步辐射光源的林鹤研究员等共同合作完成的。该工作得到了国家重点研发计划项目和国家基金委项目的资助。文章链接:https://www.nature.com/articles/s41586-021-03882-9
  • 飞纳台式扫描电镜亮相中国国际警用装备博览会
    第八届中国国际警用装备博览会于 2016 年 5 月 17 日在北京国家会议中心拉开序幕,飞纳台式扫描电镜邀在国际馆展位号 A-2 展示最新产品与技术 Phenom GSR. Phenom GSR 飞纳台式自动枪击残留物分析扫描电镜是世界上唯一的台式 GSR 自动分析扫描电镜。Phenom GSR 飞纳台式自动枪击残留物分析扫描电镜在枪支犯罪事件中,枪击残留物(GSR)的分析将发挥重要的作用。GSR 分析技术首先基于扫描电子显微镜(SEM)的背散射成像,用来扫描样品和发现可疑的颗粒,使用能谱(EDS)识别在该粒子中的元素。最常见的搜索元素为 Pb,Sb,和 Ba。无铅底火的检测,例如 Ti 和 Zn 也可作为搜索条件进行搜索。射击Phenom GSR 用户界面Phenom GSR 软件集成于飞纳台式扫描电镜大样品室卓越版 PhenomXL 中,拥有 100 毫米 × 100 毫米的扫描区域。Phenom GSR 使用 SEM 的内部扫描控制,与马达台结合,可以实现更精确的电子束定位,以获得更好的结果。一个标准的 GSR 样品杯,形状类似一个可移动的托盘,可容纳 36 个标准样品台。此样品杯具有马达控制高度调节功能,能让 Phenom GSR 软件控制电镜保持最佳的分析工作距离。不锈钢纳米颗粒标准样品杯可容纳 36 个直径为 12mm 的样品台Phenom GSR 配备 CeB6 灯丝,使其稳定运行,一般工作寿命时间大于 1500 小时,从可用性、适用性和运行时间的角度来看都非常理想。小于 1 分钟的加载时间,使 Phenom GSR 成为高度自动化的应用的理想工具。 中国国际警用装备博览会(以下简称警博会)是由中华人民共和国公安部主办的国际性警用装备展,已经成功举办了七届。警博会的成功举办对推动我国警用装备事业的发展和提高警用装备的现代化水平发挥了重要作用,为国内外警用装备行业的交流提供了窗口和平台。已经成为亚太地区公共安全领域知名度和国际参与度最高、影响和规模最大的警用装备展会。 欢迎大家前来第八届中国国际警用装备博览会参观,交流,学习,了解 Phenom GSR。
  • 工信部等六部门印发《加快非粮生物基材料创新发展三年行动方案》
    为贯彻《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《2030年前碳达峰行动方案》,落实《关于“十四五”推动石化化工行业高质量发展的指导意见》,引导基于大宗农作物秸秆及剩余物等非粮生物质的生物基材料(以下统称为非粮生物基材料)产业创新发展,促进工农业协调发展,助力乡村振兴和美丽中国建设,特制定本行动方案。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,贯彻习近平生态文明思想,积极把握全球生物技术革命历史机遇,以非粮生物质开发利用技术突破为基础,深化生物化工与传统化工耦合、工业与农业融合,以技术、模式创新为动力,促进生物基材料优性能、降成本、增品种、扩应用,提升生物基材料产业协同创新、规模生产、市场渗透能力,推动非粮生物基材料产业加快创新发展。(二)基本原则坚持企业主体,政府引导。突出企业主体地位,立足市场在推动成果转化、需求牵引方面优势,更好发挥政府在产业布局和市场培育等方面的引导和规范作用。坚持创新驱动,示范引领。聚焦高效工业菌种和酶蛋白元件培育构建、非粮生物质转化、高效提纯浓缩等关键平台技术,开展典型技术及模式示范应用,构建自主可控、安全高效的产业链供应链。坚持系统推进,融合发展。推动生物基材料与传统化工产业体系耦合发展,与多领域强化融合赋能,提升供给质量、丰富供给种类、培育创建品牌,增强市场综合竞争力。坚持绿色低碳,国际合作。重视生物基材料全产业链的环境友好性,推动发展循环经济,降低碳排放,积极融入全球产业链供应链,鼓励优势产品积极参与国际竞争。(三)发展目标到2025年,非粮生物基材料产业基本形成自主创新能力强、产品体系不断丰富、绿色循环低碳的创新发展生态,非粮生物质原料利用和应用技术基本成熟,部分非粮生物基产品竞争力与化石基产品相当,高质量、可持续的供给和消费体系初步建立。——创新发展。高效工业菌种与酶蛋白元件不断丰富,非粮生物质利用共性技术取得突破,大规模糖化(基于非粮生物质生产五碳糖或六碳糖,下同)技术基本成熟,产学研用协同创新体系更加高效完善。——示范引领。基于非粮生物质的糖化生产线规模达到万吨(折干五碳糖或六碳糖,下同)/年,乳酸生产线规模达到十万吨级,戊二胺、聚羟基脂肪酸酯规模达到万吨级。——应用拓展。丰富基于非粮生物质的乳酸、戊二胺、聚羟基脂肪酸酯等生物基化学品及聚合物品种,稳定提高聚合物加工性能,在塑料制品、纺织纤维等领域规模化应用。——生态培育。形成5家左右具有核心竞争力、特色鲜明、发展优势突出的骨干企业,建成3—5个生物基材料产业集群,产业发展生态不断优化。二、重点任务(一)突破非粮生物质高效利用关键技术重点聚焦非粮生物质糖化、非粮生物质替代粮食发酵生产、高效提纯浓缩等关键平台技术攻关,针对不同非粮生物质原料构建工业菌种培育体系与酶蛋白元件库,鼓励龙头企业牵头组建技术创新平台,支持地方政府结合本地实际建设分布式非粮生物质处置及糖化基地,深化生物技术、物理技术和化学工艺协同创新攻关,提高生物基材料生产效率,降低综合能耗和生产成本,减少污染物排放,夯实非粮生物质替代粮食生产生物基材料的技术经济基础。(二)推进技术放大和应用示范聚焦生物基材料专用装备和仪器仪表(包括在线传感器)、功能微生物选育、酶蛋白元件制备、高效提纯浓缩、产品评价表征、数字化网络化智能化生产等短板环节,鼓励大宗农作物主产区组织龙头企业推进生物化工与农业种植协同耦合,深化生物技术、信息技术与化工放大技术融合,开展非粮生物质工业化生产生物基材料、农业剩余物资源化利用生产高值高效有机肥等节能环保技术及应用示范,推进非粮生物质糖化及发酵、产物分离提纯浓缩等工艺标准化、规模化、绿色化运行,提高稳定性一致性,实现工业化成本可控。(三)强化渗透能力拓展应用领域完善材料体系。坚持需求牵引与技术推动相结合,引导企业基于非粮生物质,优化生物发酵、生物合成、化学合成工艺及应用技术,利用非粮生物质碳替代化石碳生产绿色低碳、无毒低毒、可持续发展的生物基材料,打造基于非粮生物质的生物基材料体系,形成对现有化石基材料的有效补充。拓展应用市场。支持生物基材料企业与塑料制品、纺织纤维、医疗器械等下游重点企业搭建上下游合作平台,鼓励可生物降解产品在餐饮、物流、零售、酒店等领域应用,引导日常消费绿色升级;在生物医用、海工及海洋养殖等领域开发应用生物相容性好且可降解吸收的生物医用材料、生物基防污防腐涂料、可降解浮力材料等高性能产品,挖掘消费升级潜能;联合农业生产合作社、种植大户等科学推广生物降解地膜和滴灌管具等,加快在经济作物主产区和设施农业示范应用,助力绿色乡村建设。(四)培育龙头企业和特色产业基地培育优质企业。引导石化化工企业发挥产业优势开展生物基材料产业链、供应链创新与应用示范,着力打通农作物秸秆收集处理、分布式非粮生物质糖化、剩余物生产高值高效有机肥、生物基材料生产、下游制品加工的全产业链路径,塑造工农业耦合发展样板,培育一批具有竞争力的产业链骨干企业,提升行业发展质量和环保治理水平。培育生物基材料工业菌种选育与酶蛋白元件制备、高效长周期膜分离材料、高选择性吸附材料等细分领域的专精特新“小巨人”、单项冠军企业,形成大中小企业融通发展格局。优化区域布局。服务区域重大战略、区域协调发展战略,充分发挥大宗农作物主产区生物质原料丰富优势,引导生物基材料创新资源和要素集聚,打造分布式非粮生物质糖化生产基地;进一步发挥区域优势,打造生物基材料的技术创新、产品创新、市场创新新高地;支持符合条件的产业集聚区建设生物基材料领域的国家新型工业化产业示范基地,促进产业由集聚向集群转型提升,提高产业规模效益与影响力。(五)强化产业支撑体系建设加强产业服务平台建设。鼓励骨干企业与科研院所等合作,建立完善微生物菌种育种技术、生物基材料技术研发、成果转化与信息交流等平台,建立功能菌种资源库,完善知识产权保护、运用体系。依托国家塑料制品质量检验检测中心、先进高分子材料测试评价中心等提升生物基材料测试评价服务能力,鼓励产业基础较好地区建设区域测试评价检测中心,支持市场化、专业化第三方高端质量认证机构建设,促进上下游企业“一条龙”模式联合开展生物基材料及其制品性能参数数据库建设及共享,提高测试评价水平。完善标准标识体系。建立适合我国产业特点的生物基材料产品质量、能源消耗限额、碳排放核算等标准体系,完善相关污染物排放标准。推动建立生物基材料及制品评价方法、产品标准、技术标准、标识标签体系,开展生物基材料工程技术验证、产品溯源服务或认证。鼓励行业协会、研究机构、企业参与相关生物基材料国际规则、标准制定,加强国际标准评估转化。三、保障措施(一)强化统筹联动。加强部门协同和部省联动,协力推进非粮生物质原料化利用和生物基材料及制品应用。鼓励地方政府统筹当地非粮生物质资源和乡村发展需要,出台并落实扶持非粮生物质利用、示范、应用和产业发展的政策举措,引导支持上下游企业深度耦合,助力乡村振兴。(二)加大政策引导。落实乡村振兴战略和《2030年前碳达峰行动方案》,统筹秸秆高效综合利用和分布式非粮生物质糖化生产点建设,将骨干企业功能微生物菌种纳入国家或地方种子库。推动建立生物基材料制造业创新中心、中试平台。通过政府采购促进生物基材料推广应用。鼓励高校加强生物化工、材料等相关领域交叉学科专业人才培养,多渠道多方式聚集专业人才,加快壮大生物基材料骨干人才队伍。(三)加强财政金融支持。将生物基材料纳入基础研发、产业化等现有政策渠道支持方向。将符合条件的生物基材料列入新材料首批次保险补偿目录。发挥国家产融合作平台作用,引导投资基金、金融机构等社会资本支持生物基材料研发、产业化及应用示范。(四)完善行业管理服务。建立健全统计分类目录和统计制度,指导有关行业组织建立生物基材料行业服务机构,完善行业运行监测机制,促进新技术新装备新产品交流,强化行业自律,营造公平市场氛围,促进行业健康有序发展。强化工业菌种的生物安全和生态环境保护,增加适当保障措施。严格执行塑料污染治理有关文件要求,严厉查处可降解塑料虚标、伪标行为。加强科普宣传,提高社会公众对生物基产品认知,引导绿色消费。附件:《加快非粮生物基材料创新发展三年行动方案》.pdf
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 无感染核酸提取—非接触超声破碎
    超声波一般是指频率大于20kHz的声波,其应用动力主要来源于超声波空化效应。高频发生器能够把50Hz 的低频电压转换成20kHz 的高频电压,然后通过超声波转换器把从发生器中产生的电压转变成20kHz 的机械振动。伴随着强烈的冲击波和速度高于100m/s的微射流,冲击波和微射流的高梯度剪切可水溶液中产生羟基自由基,相应产生的物理学效应主要是机械效应(冲击波,微射流等)、热效应(局部高温高压,整体升温)、光效应(声致发光)和活化效应(水溶液中产生羟基自由基),超声科技四种效应并不是孤立的,而是相互作用、相互促进,加快反应进程变幅杆加强了超声能量,其在液体产生的空化效应。强大的冲击波能使生物细胞壁瞬间破裂,以至于使得生物细胞释放出其中的内容物,如蛋白质、糖类、生物碱、氨基酸、遗传物质DNA,核糖核酸RNA等,以便进行科学研究和利用。正常的超声波破碎,在使用过程中超声波分散头不断地在样品中进行高频振荡,因此会出现不同程度的磨损,且破碎时破碎头会直接接触样品,所以样品的交叉感染情况,也是使用中需要考虑的问题。因此非接触超声波破碎方法应运而生。非接触超声波的处理方法是分散头作用到媒介(水),而不直接接触到样品,解除了交叉感染的风险,因此可用于无菌破碎。增加适配器,一次可进行多样品的破碎,提高实验效率。不直接接触实验样品,延缓了变幅杆探头长期使用出现磨损的情况。WIGGENS非接触式超声破碎套件一次性可以处理6个样品带外循环水流循环接口可进行温度控制
  • 营收4.85亿美元 凯杰2023年Q1财报|非新冠产品营收超预期
    5月3日凯杰(QIAGEN)(纽约证券交易所代码:QGEN;法兰克福证券交易所代码:QIA)公布了 2023 年第一季度的业绩,净销售额为4.85亿美元,同比2022 年第一季度的净销售额下降了23%(按固定汇率计算为 -20%,CER)。然而,在非 COVID-19 产品组合 12% CER 增长的推动下,2023年第一季度5.02亿美元的CER销售结果高于至少 4.9 亿美元 CER 的预期。由于与去年同期相比需求大幅减少,COVID-19 产品组的销售额下降了 76% CER。调整后的摊薄每股收益 (EPS) 为 0.51 美元(0.52 美元 CER),高于至少 0.47 美元 CER 的预期。QIAGEN 重申其 2023 年全年净销售额前景至少为 20.5 亿美元的 CER,调整后的摊薄每股收益至少为 2.10 美元的CER。这是基于对非 COVID 产品组 2023 年全年两位数 CER 增长的持续预期,但 COVID-19 产品组销售额将大幅下降。“我们很高兴地报告,QIAGEN 在 2023 年第一季度取得了稳健的业绩,因为我们的团队再次从我们的非 COVID 产品组实现了基础广泛的两位数 CER 销售增长。这是通过执行我们的战略推动的,尤其是五个增长支柱,尽管宏观环境的不确定性越来越大,”QIAGEN 首席执行官 Thierry Bernard 说。“我们非 COVID基础业务的增长显示了我们产品组合的实力和明确的重点。同比 2022年第一季度,COVID 产品组的销售额大幅下降。我们继续投资在关键产品组合领域,例如 QIAcuity 数字 PCR、综合征系统 QIAstat-Dx 和集成 PCR 测试系统 NeuMoDx。我们重申对 2023 年的全年展望,并决心实现设定的目标,使 QIAGEN 能够实现稳固的中期增长趋势。”QIAGEN 首席财务官 Roland Sackers 表示:“第一季度的业绩凸显了我们业务的韧性。我们正在投资数字化,以提高客户参与度和支持增长,同时提高效率。由于我们健康的财务状况,我们将继续积极审查和评估创造价值的机会,其中包括有针对性的并购机会,同时保持财务纪律。”
  • 为健康护航 | 监测废水中的新冠病毒
    随着新冠疫情下全球经济的进一步开放,大部分国家都通过采取保持社交距离、隔离封锁等措施控制病毒传播,但也随时面临着病毒卷土重来的风险。而通过监测废水中新冠病毒(SARS-CoV-2)的浓度推算病毒在当地人群中的感染情况,可以实现对城市总体感染水平的实时监测和预警,为公共卫生部门决定是否采取禁闭等措施赢得时间。废水监测一直是追踪病毒在人群中流行的有效手段,可以用来监测针对病毒传染干预措施的有效性。例如,科学家们通过废水监测评估了脊髓灰质炎疫苗接种的有效性。据《自然》杂志报道,全球已有十多个研究小组正通过监测废水中新冠病毒颗粒推算当地的新冠肺炎感染情况。患者感染新冠病毒后3天内,其粪便中即可检出病毒。排泄物随着排水系统流入废水处理厂之后,研究人员可通过废水中病毒RNA的含量揭示城市新冠病毒感染人数的规模,从而为及时阻断疫情传播的风险拉响早期警报。废水中SARS-CoV-2的监测有望成为新冠病毒流行的监测方法和预警手段之一,为新冠病毒疫情的实时监控提供了新的分析工具。PerkinElmer 废水监测新冠病毒检测方案PerkinElmer废水监测新冠病毒检测方案包含了新冠病毒检测试剂;自动化病毒RNA提取试剂及仪器;分别用于原始样品转移、QPCR体系构建的JANUS自动化工作站系统。通过完整的新冠检测解决方案,PerkinElmer可以帮助您的实验室建立灵活的工作流程,用于废水中新冠病毒的监测。新冠病毒检测试剂PerkinElmerSARS-CoV-2新冠病毒核酸检测试剂盒具有灵敏度高、特异性强等特点,为基于废水的流行病学监测提供了优化的解决方案。PerkinElmerSARS-CoV-2新冠病毒核酸检测试剂盒优点:灵敏度高:检测下限低,敏感的SARS-CoV-2检测准确性高:全过程控制,包括外部、内部控制特异性强:SARS-CoV-2orf1ab和N基因的检测灵活性高:灵活性:自动化操作,可提供灵活的通量病毒RNA提取Chemagen核酸提取技术特点:安全:专利M-PVA亲水性磁珠,提取全流程在室温条件下进行,无需加热,在保证核酸高得率与高纯度的同时,有效防止加热可能导致的气溶胶污染。高效:专利的电磁分离技术,可实现独有的磁棒自旋转式混匀,充分混匀反应体系,液面平稳,有效避免孔间交叉污染。省力:内置自动化分液器,提取过程中自动添加试剂,大大减少手工操作时间。灵活:样品通量灵活,可实现提取1-96样本/批。Chemagic360是基于电磁原理进行磁珠分离的高通量自动化核酸提取仪,可从各种类型样本中提取核酸,通过金属棒自我旋转混匀而不是上下震荡方式进行反应体系的混匀,可以有效降低样本间交叉污染的风险;该系统内置自动分液器,除样本和部分小体积试剂需要手工加入提取体系之外,其余核酸提取试剂均自动加入,可大大减少手工操作时间。内置控制电脑,触摸屏操作。结合chemagic自动化病毒RNA提取试剂盒,可得到高质量的病毒RNA,一次可实现1-96个样品的灵活通量。JANUS G3 自动化液体处理工作站JANUS G3 原始样品分装工作站:用于自动化离心后原始管样品的转移及部分核酸提取试剂的准备。可对样品进行安全、可追踪的条形码扫描,并将来自原始管中多达192个样品重新格式化到对应样品孔板中,用于病毒核酸提取;同时也用于部分核酸提取试剂的准备。JANUS G3 PCR体系构建工作站:自动化病毒RNA的qPCR体系构建。2块96孔板PCR板的制备只需16min,四块板32min,最大限度地提高通量,具有样品通量灵活、移液精准度高等优点。PerkinElmer提供了用于完整的基于废水监测的新冠病毒检测方案,客户可以根据情况建立灵活的废水监测新冠病毒监控工作流程。同时,PerkinElmer可以提供explorer G3自动化整合系统,可实现样本从原始管上样、核酸提取到QPCR检测全流程的高通量、自动化检测。该系统采用模块化设计、可扩展升级的explorer G3自动化整合系统,每天可处理10000份样品,可最大限度地提高您实验室的新冠病毒检测能力。欲了解详细内容,请扫描下方二维码即刻获取水质检测应用相关资料1监测废水中的敏感SARS-COV-2病毒2饮用水中亚硝胺类化合物的检测3捕集阱顶空-气质联用仪(HS-GCMS) 用于分析水中挥发性有机物(VOCs)4高通量进样系统在电感耦合等离子体质谱(ICP-MS)分析饮用水中的优势(方法200.8)5QSightLC-MS/MS 测定污水中毒品整体解决方案6用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
  • NCB | 卞修武/刘光慧/张维绮/曲静等合作揭示老年新冠肺炎患者肺损伤机制
    新型冠状病毒(SARS-CoV-2)导致的新冠肺炎(COVID-19)已经引发全球大暴发,严重危害人类生命健康。据统计,住院死亡病例中70%以上为年龄超过65岁的老年人。与年轻群体相比,老年群体感染SARS-CoV-2后更易发展为重症和危重症,甚至死亡。肺是SARS-CoV-2感染和损伤的主要靶器官,严重肺损伤导致呼吸衰竭是COVID-19患者主要死因。COVID-19肺和其他脏器损伤机制研究已经不乏报道,但是基于老年患者尸检样本的肺组织病理与肺单细胞信息密切关联的多重损伤分子机制研究尚缺乏,对于老年患者更易出现重症和危重症的细胞和分子基础的认识远远不足。2021年12月8日,陆军军医大学(第三军医大学)第一附属医院(西南医院)卞修武研究组、中国科学院动物研究所刘光慧研究组、中国科学院北京基因组研究所张维绮研究组和中国科学院动物研究所曲静研究组合作,于Nature Cell Biology杂志在线发表题为A single-cell transcriptomic landscape of the lungs of patients with COVID-19 的研究论文。研究结合病理学和高通量单细胞核转录组和蛋白质组等技术,深度解析了老年COVID-19患者肺组织的细胞和分子病理表型组特征,进一步认识了COVID-19肺损伤的关键细胞和分子机制、建立了肺衰老与COVID-19损伤的科学联系,为提高重症和危重症诊治水平提供了科学依据。通过对COVID-19患者肺病变及其异质性的详细分析,研究人员发现肺两种上皮细胞脱落和凋亡的升高、炎症损伤与免疫反应的过度、不同血管内皮细胞的变化、凝血功能紊乱以及细胞表型转化与肺纤维化的加剧等事件是COVID-19肺病理的关键损伤过程和分子特征。进而,结合COVID-19患者肺组织的多维组学分析,研究人员首次发现肺组织的加速衰老是COVID-19的新型病理事件。具体而言,与年龄匹配的对照肺组织相比,老年COVID-19患者肺组织中的衰老标志物(p16、p21、p53)、衰老相关分泌表型因子(IL-6)、DNA氧化损伤标记物(8-OHdG)等均呈现上调表达,且核纤层蛋白(LAP2)和异染色质蛋白(HP1g)表现为加速缺失。这些均提示SARS-CoV-2感染可诱发肺组织细胞的加速衰老。为进一步明确细胞类型特异的基因表达变化,研究人员利用高精度单核转录组测序技术,系统揭示了包括肺部上皮细胞、内皮细胞、基质细胞和免疫细胞4种主要细胞大类,28种不同细胞类型的病理相关基因表达特征。对于肺上皮细胞而言,研究发现SARS-CoV-2感染导致上皮细胞凋亡和功能紊乱,主要表现为肺表面活性物质减少及粘液分泌增多,这可能与气体交换障碍及肺部低氧血症密切相关。此外,研究人员鉴定了一类Ⅱ型肺泡上皮细胞(AT2)向Ⅰ型肺泡上皮细胞 (AT1) 分化过程中的过渡态细胞类型(AD.inter),其具有损伤相关瞬时祖细胞(DATP)的特征。这类细胞亚群在COVID-19肺组织中大量聚集,可能是介导COVID-19肺上皮细胞缺失及损伤加剧的原因之一。进一步,研究人员通过对免疫细胞亚群的分析发现,肺泡及肺间质中促炎性巨噬细胞(M1 alveolar macrophages,M1 interstitial macrophages)增加,这些细胞可能通过释放大量的促炎细胞因子加重弥漫性肺泡损伤。针对于血管内皮细胞的分析结果显示,SARS-CoV-2感染可能导致内皮损伤及凝血程序的启动。此外,研究人员还发现COVID-19肺组织中富集了一群介于肺毛细血管内皮 (Cap.EC.g) 和肺泡气体交换毛细血管内皮(Cap.EC.a)之间的毛细血管中间态细胞(Cap.EC.i),这些细胞高表达血管内皮炎症和损伤相关基因,可能介导了内皮细胞分化特征的紊乱及COVID-19肺的内皮病变。此外,结合人肺成纤维细胞的研究模型,研究人员发现HIF-1A的激活及FOXO3的表达沉默可能是成纤维细胞向肌成纤维细胞(介导肺纤维化的主要细胞类型)转变的关键驱动因素。这些发现为COVID-19肺损伤的发生发展提供了新型生物标志物和潜在干预靶标。附图:示意图显示该研究揭示的上皮细胞衰老、脱落、凋亡升高、过度炎症反应、凝血和纤维化加剧是COVID-19肺的主要病理表型特征,也是全身系统性免疫损伤的“发源地”和“主战场”。该研究报道了COVID-19患者肺组织的多维组学全景图谱,系统解析了COVID-19患者肺组织中多种细胞类型的疾病变化规律,加深了人们对COVID-19患者肺组织多种结构病变和功能减损的认识。更为重要的是,研究首次鉴定了COVID-19患者肺的加速衰老表型。考虑到衰老细胞累积对器官退行的驱动作用,该研究为SARS-CoV-2感染导致的老年人致死率增加及预后的多种后遗症提供了可能的解释。此外,研究团队前期发现维生素C(一种可延缓人干细胞衰老的化合物)可抑制炎症因子诱导的新冠病毒受体蛋白ACE2的表达(Cell Research, 2020),提示衰老干预策略可能是减轻新冠肺炎器官损伤的潜在防治手段。该研究为阐明COVID-19发病机制以及老年群体中新冠肺炎高重症率的原因提供了重要线索,并为发展新冠肺炎及老年群体愈后后遗症的干预策略提供了新思路。相关数据已上传至衰老多组学数据库Aging Atlas(https://bigd.big.ac.cn/aging/index)。该研究由中科院动物研究所、陆军军医大学(第三军医大学)第一附属医院、首都医科大学宣武医院、中科院北京基因组所(国家生物信息中心)、中国医学科学院老年医学研究所等机构合作完成。陆军军医大学第一附属医院卞修武院士、中科院动物所刘光慧研究员、中科院北京基因组研究所(国家生物信息中心)张维绮研究员、中科院动物所曲静研究员为共同通讯作者。中科院动物研究所(现单位为首都医科大学宣武医院)王思研究员、陆军军医大学第一附属医院姚小红副教授、中国科学院动物研究所马帅副研究员、陆军军医大学第一附属医院平轶芳教授、中科院北京基因组研究所(国家生物信息中心)范艳玲助理研究员、中国科学院动物研究所孙淑慧助理研究员等合作者为共同第一作者。原文链接:https://www.nature.com/articles/s41556-021-00796-6.pdf
  • 沃特世推出全新手性和非手性分离色谱柱,扩展了ACQUITY UPC2产品组合
    隆重推出ACQUITY UPC2 Trefoil和Torus技术色谱柱 瑞士巴塞尔——2014年10月8日——沃特世公司(纽约证券交易所代码:WAT)今日隆重推出了适用于手性和非手性分离的新型分析柱,其设计可优化合相色谱分析。为解决手性分离的难题,沃特世ACQUITY UPC2 Trefoil色谱柱采用了2.5 μm颗粒技术,可提升速度和选择性,同时缩短方法开发时间。而适用于非手性分离的沃特世ACQUITY UPC2 Torus色谱柱则采用1.7 μm颗粒技术,可在分离度、速度、选择性和稳定性方面为非手性SFC分离提供更高的性能水平。新型色谱柱已在SFC 2014上正式推出,现在已向全球供货。 沃特世隆重推出适用于手性分离的ACQUITY UPC2 Trefoil色谱柱和适用于非手性分离的ACQUITY Torus UPC2色谱柱。 新型色谱柱可与沃特世ACQUITY UPC2系统联用,该色谱系统采用有效、无毒且经济的压缩二氧化碳作为主要流动相(载液)成分。压缩二氧化碳同时还是昂贵有机溶剂的“绿色”替代品。ACQUITY UPC2系统与新型色谱柱相结合,可为色谱实验室提供强大、稳定、可靠的分析平台,从而提高其开发分析方法的速度、提升选择性并缩短运行时间。同时,转换为更加环保的技术后,将有效降低碳排放量。自2012年推出以来,使用此系统的科学家们已撰写了70余篇科学期刊文章。 “在将合相色谱打造为稳定分离的强大平台方面,沃特世仍将继续引领行业发展趋势,”沃特世消耗品业务部门副总裁Michael Yelle说道,“新型Trefoil和Torus色谱柱是运用二氧化碳进行分离的固定相新典范。这些色谱柱专为沃特世ACQUITY UPC2系统而设计优化,在稳定性和可靠性方面树立了新的性能标杆,满足了科学家们对分析型HPLC的期望。” 适用于手性分离的沃特世ACQUITY UPC2 Trefoil色谱柱ACQUITY UPC2 Trefoil是沃特世第一款此类型的色谱柱,旨在实现快速稳定的手性分离。ACQUITY UPC2 Trefoil 2.5 μm色谱柱基于改良的多糖型固定相,具有广谱手性选择性,有三种新填料可供选择:ACQUITY UPC2Trefoil AMY1、CEL1和CEL2。每种填料在分离手性化合物(例如,能够获得对映体、立体异构体、代谢物、降解产物及杂质更高的分离度和更快的速度)时具有不同的保留特性。ACQUITY UPC2 Trefoil色谱柱可与ACQUITY UPC2系统联用,该系统可利用质谱兼容的有机改性剂进行梯度色谱分析,从而使科学家们能够结合使用单四极杆、串联四极杆和飞行时间质谱仪,在每次分析中获得更多信息。 适用于非手性分离的Waters ACQUITY UPC2 Torus色谱柱许多科学家采用传统反相色谱分离化学性质相似的分子时,常会因该方法无法实现基线分离而陷入困境,沃特世最新推出的四款ACQUITY UPC2 Torus色谱柱能够很好地弥补此方面的不足。这些色谱柱充分利用ACQUITY UPC2系统的功能,为科学家们提供了加速方法开发所需的分离能力。这些固定相以新型专利的键合填料为基础,具有广泛的选择性、稳定性和良好的重现性,可确保日间和批次间的一致性。ACQUITY UPC2 Torus 1.7 μm色谱柱有四种填料可供选择:氨甲基吡啶(PIC)、二乙胺(DEA)、高密度二醇(DIOL)和氨基蒽(1-AA),内径有2.1 mm和3 mm的规格,色谱柱柱长规格从50 mm到150 mm。 关于合相色谱2012年,沃特世ACQUITY UPC2系统还为科学界带来了一款全新的产品——UltraPerformance Convergence Chromatography,亦称为合相色谱仪,应用于分离科学领域,可帮助色谱分析实验室显著提升选择性。如今,科学家们可将调节二氧化碳溶剂与极性或非极性的固定相联用,进行创新实验。他们可在更广泛选择性的色谱柱平台(包括手性柱)上调整溶剂梯度,如使用相同的质谱兼容性溶剂实现结构类似物、异构体、对映体和非对映体混合物的分离和定量分析。合相色谱结合了反相LC的易用性和正相LC的强大功能,具有更高的选择性。 有关详细信息,请访问:Torus和Trefoil产品信息http://www.waters.com/waters/zh_CN/ACQUITY-UPC2-Trefoil-and-Torus-Columns/nav.htm?cid=134696052沃特世合相色谱UPC2色谱柱产品样本http://www.waters.com/waters/library.htm?cid=134696052&lid=134670782沃特世合相色谱应用文章http://www.waters.com/waters/zh_CN/ACQUITY-UPC2-Trefoil-and-Torus-Columns/nav.htm?locale=zh_CN&cid=134696052 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2013年沃特世拥有19亿美元的收入,它将继续带领全世界的客户探索分析科学并取得卓越成就。
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。  2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。  SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 0.5um微塑料颗粒的非接触式定性定量测量新技术
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。图1. 非接触亚微米分辨红外拉曼同步测量系统—mIRage结构示意图光学光热红外技术(O-PTIR)是一种新兴的光谱分析技术,可以提供几百纳米尺度上高空间分辨的振动光谱,且远低于传统红外显微镜的衍射限(~10-20 μm)。在O-PTIR光谱学中,高频率调制下的强红外光束源,如量子联激光器(QCL),用于照射样品。当红外光束波数与样品分子振动频率相匹配时,红外光被吸收,能量被转化为热。当被激发的分子回到基态时,温度会以光源调制的频率发生波动,从而引发相应的体积变化(光声效应)和折射率变化(光热效应)。这些信号可被具有远低于传统红外源空间衍射限的高度聚焦的可见激光束所探测,同时在同一位置上伴随O-PTIR信号产生一个拉曼散射信号,从而实现真正的同时红外吸收和拉曼散射测量,并具有亚微米的空间分辨率。O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。该工作中,作者先对这PHA和PLA的结合面进行了固定波数下的红外成像(图2)。通过对比可以发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用O-PTIR技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图2. 使用O-PTIR技术实现PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图3)。从羰基(C=O)伸缩振动区和指纹区(图3 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图3 C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图3. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合O-PTIR图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图(图4A和4B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过O-PTIR技术对该区域进行了同步红外和拉曼分析(图4C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。图4. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 色谱填料行业高速发展 纳微科技上半年扣非净利预增75.27%
    7月4日,纳微科技发布2022年半年度业绩预告称,今年1月份至6月份,公司预计实现营收为2.9亿元左右,同比增长75.10%左右;预计实现扣非净利润为1.06亿元左右,同比增长75.27%左右。    对于业绩的变动,纳微科技表示:“报告期内,公司积极应对疫情造成的客户订单延期、物流迟滞等不利影响,实现色谱填料和层析介质、液相色谱柱、磁珠等产品线销售收入的快速增长。”    “内生+外延”齐发力    2021年6月份登陆上交所科创板的纳微科技,是一家专门从事高性能纳米微球材料研发、规模化生产、销售及应用服务,为生物医药、平板显示、分析检测及体外诊断等领域客户提供核心微球材料及相关技术解决方案的高新技术企业。    IPG中国区首席经济学家柏文喜在接受采访时表示:“纳微科技是国内纳米微球材料行业龙头,公司所处的色谱填料/层析介质行业属于技术密集型行业,长期被国际大型科技公司垄断。作为后发国产厂商,公司主要依靠核心技术开展生产经营并参与市场竞争,凭借技术及产品的相对优势赢得市场份额。”    “2019年至2021年,纳微科技营业收入复合增长率为85.51%,目前其营业收入和净利润规模还相对较小。在产品方面,公司主营产品的毛利率基本维持在80%以上,聚合物色谱填料毛利率甚至高达91.45%,毛利率水平远高于同行业公司。2022年公司延续增长态势,第一季度实现归母净利润为6092.36万元,同比增加176.23%,增长超预期,其亲和层析介质、离子交换层析介质、硅胶色谱填料、磁珠等相关业务表现优异。”有券商分析师向记者表示:“考虑稳定的客户拓展及临床订单商业化等因素,预计公司盈利能力有望继续保持。”    值得一提的是,主营业务稳步增长的同时,纳微科技长期不断提升研发能力。财务数据显示,2018年至2021年,公司累计研发投入金额为1.55亿元。2021年公司研发费用同比增加98.65%,2022年第一季度研发费用同比增加69.5%。目前,公司已有超17项发明专利形成主营业务收入。    “纳微科技色谱填料和层析介质等产品及相关服务集中在生物医药领域,技术门槛与壁垒相对较高,研发周期较长,因此新产品的研发需要大量人力、物力和资金投入。”上述分析师向记者表示。    记者注意到,除研发高投入外,近年来纳微科技重点布局生物药领域。2021年12月,其计划在浙江独山港区设立全资子公司购买约60亩化工用地建设新生产基地;7月1日,公司1.97亿元定增落地,拟用于常熟纳微淘汰1000吨/年光扩散粒子减量替换生产40吨/年琼脂糖微球及10吨/年葡聚糖微球层析介质技术改造项目;拟并购赛谱仪器部分股份。    “通过近期的定增,纳微科技将拥有自己的层析系统,可以更好地与填料业务产生协同,进一步夯实公司在纯化领域的竞争力。同时,有助于公司把握生物医药领域高速发展所带来的良好机遇,提升未来盈利能力。”上述分析师向记者说道。    色谱填料行业处于高速发展期    根据MarketsandMarketsTM统计,2018年全球色谱填料行业市场规模为19.78亿美元,预计2024年全球市场规模将增长至29.93亿美元。其中,2018年中国色谱填料行业市场规模为1.12亿美元,预计2024年中国市场规模将增长至2.13亿美元。不过,目前中国色谱填料行业市场规模仍然整体偏小。    谈及纳微科技所处色谱填料行业发展前景,德邦证券分析师陈铁林认为:“中国色谱填料行业正处于高速发展期。2017年至2020年,在生物药CDMO产能向中国转移和国内抗体药物产业化产能增加的双重拉动下,中国新增发酵产能超过97.5万升,贡献了全球发酵产能的主要增量。中国的低成本优势下,生物药CDMO产能向中国转移趋势长期存在,国内的生物药CDMO产能还将持续增加。在国内生物药欣欣向荣的产业趋势下,将会有更多药物进入商业化阶段,产能仍将持续增加,对应填料市场规模仍将增加。”    深度科技研究院院长张孝荣向记者表示:“纳微科技是国内少有的从事核心微球材料及相关技术解决方案并能对标国际巨头的公司,公司填料产品客户基本已经涵盖了国内优秀制药企业。在填料领域,国产化的进程已经开启,纳微科技具有巨大市场潜力。长期看,有望成为国内生命科学领域的平台型企业之一。”    “纳微科技所处色谱填料领域属于一个新兴的细分行业,较强的市场专业性导致的技术壁垒对于企业发展而言也是利弊各半,好处是比较容易构筑企业发展的技术护城河和巩固企业的市场竞争优势;而不利之处在于专业性导致了市场空间的相对局限。”柏文喜向记者说道。
  • 新冠病毒快检新方法!武汉大学殷昊/张楹课题组发布科研成果 有望今年推广使用
    近日,Nature Biomedical Engineering(《自然生物医学工程》)在线发表武汉大学医学研究院、中南医院医学研究院、教育部免疫与代谢前沿科学中心殷昊教授与张楹教授课题组在新冠病毒核酸检测领域的最新成果:课题组开发出了一种高灵敏度、高特异性、操作便捷且快速的核酸检测方法。第一作者为武汉大学医学研究院研究生芦舒涵、佟晓晗,殷昊、张楹为通讯作者,武汉大学为第一署名单位。据了解,目前已有部分省内外企业与殷昊团队主动对接,将科技成果进行转化。新的检测手段有望今年内开始推广使用。论文题为“Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a”(《Cas12a非经典PAM介导的新冠病毒快检方法》),第一作者为武汉大学医学研究院研究生芦舒涵、佟晓晗,殷昊、张楹为通讯作者,武汉大学为第一署名单位。新冠病毒(SARS-CoV-2)在全球范围内大肆传播,新冠变异株的流行使疫情防控更具挑战。快速筛查是控制疫情传播最有效的手段。RT-qPCR是目前新冠病毒的检测金标准。该方法特异性强、灵敏度高, 但是由于其依赖实验室专业仪器和专业人员操作,存在耗时长等问题(从采样到出结果大致需要6小时),难以应对病毒惊人的传播速度。因此,亟须研发一种新的快速核酸检测方法。课题组首次靶向非经典PAM建立了兼具快速(15-20分钟)、灵敏(和qPCR相当)、稳定和特异的核酸检测一步法(sPAMC),并在SARS-CoV-2真实样本中达到94.2%准确度并无一例假阳性。sPAMC技术仅需20分钟就能检测到Ct值为35.8的新冠真实样品,并且用便携式紫外灯或蓝光灯照射即可观察到结果。CRISPR/Cas系统不仅用于基因编辑,也被研发为核酸检测工具。Cas12和Cas13特异性切割双链DNA底物(顺式切割)后,会激活其非特异性切割单链DNA或RNA的能力(反式切割)1-5。CRISPR特异性由两部分共同决定,一部分是crRNA和靶DNA之间的碱基配对,另一部分是Cas蛋白复合体和位于靶DNA旁的短序列形成非共价结合,后者被称为PAM (Protospacer Adjacent Motif)。当Cas12搜寻到底物上的PAM序列,在crRNA和靶DNA碱基配对之后,进而特异性切割dsDNA,随后激活其反式切割能力,快速降解单链DNA报告系统,释放出的荧光信号。新冠病毒检测的两步法(SHERLOCK和DETECTR)先通过等温扩增富集待检的核酸片段,再加入CRISPR/Cas切割体系产生信号。虽然两步法兼具高特异性、高灵敏度等优点,却增加了操作复杂度和引入交叉污染等问题6,7。STOPCovid是在两步法基础上优化出的一步检测法,即在一个反应试管中同时进行样品扩增和切割反应,虽然简化了操作步骤并降低交叉污染风险,但灵敏度显著低于两步法,且需要约45分钟至1小时左右的反应时间8,9。课题组致力于研发能满足快速简便、灵敏特异的一步法核酸检测新方法。通过比较新冠病毒序列中四个位点的非经典PAM (VTTV,TVTV, VTTV) 和经典PAM (TTTV) 的反式切割活力和一步法效率,发现和经典PAM相比,非经典PAM显著加快检测速度,将灵敏度提高了10-100倍,大幅度提升信号的稳定性。进一步探索机制发现:在一步法反应中,等温扩增和CRISPR检测存在竞争关系。当Cas12a遇到经典PAM时,由于切割能力过强,等温反应扩增出来的目的片段被快速消耗,难以达到指数扩增,导致底物无法有效富集,荧光信号延迟产生且不稳定;而对于非经典PAM介导的一步法,Cas12a和底物的结合能力弱。在反应初期,等温扩增占据主导地位,快速富集足够的底物,为反应后期Cas12a切割和荧光释放奠定前期基础。非经典和经典PAM介导的一步法快检方法概览图课题组将非经典PAM介导的一步法检测技术命名为sPAMC (for suboptimal PAM of Cas12a-based test with enhanced flexibility, speed, sensitivity, and reproducibility),并将sPAMC应用到SARS-CoV-2真实样品检测。研究者们共检测了204个咽拭子样本,在104个RT-qPCR阳性样本中,sPAMC 能检出98个,剩余的100个阴性样本均未检出,证明了sPAMC 有94.2%的检出率且无假阳性。sPAMC技术仅需20分钟就能检测到Ct值为35.8的新冠真实样品,并且仅用便携式紫外灯或蓝光灯照射即可观察到结果。非经典PAM的快检方法sPAMC 相比于传统一步法有如下优点:1)检测速度提高2-3倍,可以实现在10-15分钟内检测出DNA病毒,15-20分钟内检测出RNA病毒;2)荧光信号结果在样本间的可重复性高,荧光信号波动少于30%;3)检测灵敏度提高,与qPCR一致 4) 极大地拓宽了靶向的检测位点可选择性,可选择的非经典PAM组合为经典PAM的7倍以上。研究者首次提出了通过靶向非经典PAM,降低Cas12a的顺式和反式切割速率的方法来实现核酸检测,为开发建立更快更灵敏的CRISPR核酸检测方法提供了新思路。本研究获得武汉大学医学研究院仪器设备共享中心、武汉大学中南医院和中国医学科学院武汉感染性疾病及肿瘤研究中心的支持。本项工作得到了国家自然基金和科技部重点研发计划的资助。原文链接:https://www.nature.com/articles/s41551-022-00861-x
  • 2017美企500强榜单揭晓:丹纳赫、赛默飞距离缩小
    p  strong仪器信息讯 /strong2017年6月7日,《财富》杂志公布2017年美国500强企业排行榜,沃尔玛以4858.7亿美元的收入再度成功卫冕榜首。在上榜的多家仪器企业中,丹纳赫位列第144位,继续领衔仪器行业第一 赛默飞位居第154位,排名相比去年再次上升。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/96d60206-8cc2-46a1-88a6-fa294930ae8a.jpg" title="2017-06-11_035333.jpg"//pp  丹纳赫集团在此次2017美国企业500强的排名为144位,虽仍然位列仪器行业第一,但相比上一年第133位的排名还是略有下降。在过去的2016年,丹纳赫集团公布的营业收入为199.12亿美元 ,总利润为25.53亿美元,相比上一年下降了32.9%。考虑到2016年是丹纳赫的“拆分年”,收购Pall后的整合工作持续进行,拆分Fortive的系列举措终于“落地”,出现营收和排名波动尚属正常。2017年第一季度中丹纳赫全球业务增长了7%,中国市场也重回“双位数增长”,未来排位回升持续可期。/pp  不同于丹纳赫的波动,赛默飞在500强榜单中的排名再一次上升了。相较于2016年榜单中的164位,赛默飞今年在榜单上的排名上升10位,跻身第154名,这既得益于赛默飞在生命科学领域的“开疆扩土”,又离不开它在资本市场的“深耕细作”。赛默飞在2016年度交出182.74亿美元营收“成绩单”,总利润也同比增长2.3%,达20.21亿美元。赛默飞当前仍在积极运作,2017上半年又跨界收购了荷兰药企Pathen,明年它的排名会再跳到哪?我们拭目以待。/pp  除丹纳赫与赛默飞外,德州仪器、美国BD、LabCrop、康宁公司等多家仪器企业在“2017年美国企业500强”中也榜上有名。除探索诊断公司外,排名相比上一年均有明显上升。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制