当前位置: 仪器信息网 > 行业主题 > >

二硫化碳中种苯系物标样

仪器信息网二硫化碳中种苯系物标样专题为您提供2024年最新二硫化碳中种苯系物标样价格报价、厂家品牌的相关信息, 包括二硫化碳中种苯系物标样参数、型号等,不管是国产,还是进口品牌的二硫化碳中种苯系物标样您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二硫化碳中种苯系物标样相关的耗材配件、试剂标物,还有二硫化碳中种苯系物标样相关的最新资讯、资料,以及二硫化碳中种苯系物标样相关的解决方案。

二硫化碳中种苯系物标样相关的资讯

  • 苯系物分析用二硫化碳促销
    CNW二硫化碳的纯度大于等于99.9%,苯低含量低,能够满足水、空气、土壤以及室内空气质量监测中苯系物的萃取和含量测定。(&rho =1.26g/ml) 产品货号 产品名称 品牌 规格 报价(元) 促销价(元) 4-114001-0500# (低苯级)二硫化碳 CNW 500ml 1120.00 896.00 截止时间:2010年4月30日 售完为止!
  • 斯珀特发布二硫化碳曝气吸收仪新品
    主要性能◆全样品位:4位。◆大屏幕触摸屏:方便直观操作。◆每个样品可独立调节氮气流量。◆加热方式:恒温水浴。◆可选配封闭气路:实验操作中所有的气体都在密闭空间内,吹出来的气体通过排气管道可直接导出室外或作进一步洗气除害处理,避免了有害气体对操作者的伤害,同时避免了样品的交叉污染。排出气体可通过一个管路直接导出室外,无需在通风橱内进行,大大降低了实验对空间的要求。◆显示方式:数显 控温精度±1℃。创新点:二硫化碳曝气吸收仪是一款专门针对橡胶、化纤、化工原料等行业排放废水中二硫化碳的检测中繁琐、复杂的曝气过程而开发的一款前处理设备。适用国标:GB/T 15504-19965水质 二氧化碳的测定 二乙胺乙酸铜分光光度法二硫化碳曝气吸收仪
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以二硫化碳为例
    常温下的二硫化碳(CS2)[1]是一种无色有毒液体,它的沸点很低(46.2℃),具有极强的挥发性。纯的二硫化碳有类似氯仿的芳香甜味,但是通常不纯的工业品因为混有其他硫化物(如羰基硫等)而变为微黄色,并且有令人不愉快的烂萝卜味。工业上二硫化碳作为一种应用广泛的有机溶剂和化工原料,常被用于人造丝、杀虫剂等的制造以及橡胶、农药等的硫化过程。二硫化碳具有细胞毒作用,可破坏细胞的正常代谢,干扰脂蛋白代谢而造成血管病变、神经病变及全身主要脏器的损害[2]。美国、日本规定大气最高容许浓度为10 ppm (30 mg/m3),我国规定的二硫化碳无组织排放厂界浓度不超过10 mg/m3 [3],也是国家相关部门制定的《恶臭污染物排放标准》(GB14554-93)内的重点物种之一。图1 二硫化碳结构式PTR-TOF通常情况下,对二硫化碳的检测分析可以通过差分光学吸收光谱(DOAS)[4],气相色谱/火焰光度检测系统 (GC-FPD)(采样频率为10分钟)[5] 或利用苏玛罐收集样品在利用预浓缩气相色谱(GC-MS)来进行离线检测[6],以及我国标准中提到的二乙胺分光光度法[7]。这些方法一般需要较长的测量时间,实际测量中时间分辨率有所欠缺;其次,这几种方法的测量过程相对比较复杂,需要预浓缩或使用相关的化学试剂,对检测人员的经验和资质技术要求较高。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? 国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览 XX药业厂界走航未知因子判定 ——对氯三氟甲苯为例 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例图2 走航监测中检测到的二硫化碳(CS2+)谱图图3 二硫化碳质谱图位置及信号强度 在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。走航车在园区内某点位的检测中,在m/Q 75.9391的位置检测到较强响应(见图2),经确认,该精确质量所对应的分子离子是CS2+,即二硫化碳(CS2)对应的质谱峰信号。同时,CS2+信号的变化趋势与测量的丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为820 ppbV(时间分辨率1秒)。基于当时西北风向,以及高值点位周边企业环评报告,判断污染很大可能来自于高值点附近某生物制品公司生物酶制剂生产过程(见图4)。图4. 走航片区二硫化碳污染分布图目前对二硫化碳的排放规定较少,在《恶臭污染物排放标准》(GB 14554-1993)中规定二硫化碳一级厂界标准为2 mg/m3,即最高浓度不超过64 ppbV。参考文献1. https://baike.baidu.com/item/二硫化碳.2. GB14554-93,恶臭污染物排放标准.3. R. O. Beauchamp, James S. Bus, James A. Popp, Craig J. Boreiko, Leon Goldberg & Michael J. McKenna (1983) A Critical Review of the Literature on Carbon Disulfide Toxicity, CRC Critical Reviews in Toxicology, 11:3, 169-278, DOI: 10.3109/10408448309128255.4. Yu, Y., Geyer, A., Xie, P., Galle, B., Chen, L., and Platt, U. (2004), Observations of carbon disulfide by differential optical absorption spectroscopy in Shanghai, Geophys. Res. Lett., 31, L11107, doi:10.1029/2004GL019543.5. Cooper, D. J., and Saltzman, E. S. (1993), Measurements of atmospheric dimethylsulfide, hydrogen sulfide,and carbon disulfide during GTE/CITE 3, J. Geophys. Res., 98( D12), 23397– 23409, doi:10.1029/92JD00218.6. 朱海俭,黄学敏,曹利,邱钢,韩超,宋文斌.预浓缩与GC-MS联用分析垃圾填埋场恶臭气体[J].中国环境监测,2012,28(4):91-94.7. GB/T 14680-1993,空气质量 二硫化碳的测定 二乙胺分光光度法
  • 天然气含硫新标5月1日正式实施,SCD硫化学发光检测器轻松应对!
    ☆ 导读 ☆现阶段,能源紧张已成为影响和制约全球发展的关键问题,当前的俄乌局势更加凸显了能源问题对全世界的影响。2021年10月11日国家市场监督管理局和国家标准化管理委员会发布了GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,2022年5月1日正式实施,并替代原来的2014年版本。其中一项重要的变化是0.1~600mg/m3(以硫计)总硫的测定,并规定:通过将不同硫化物的硫含量进行加和,得到总硫含量。天然气中的硫化物杂质对其运输、存储和使用安全及环境均会产生不利影响,不仅会腐蚀设备、污染环境,还会危害人体健康。含硫化合物的种类不同其危害也不尽相同,对于天然气中含硫化合物的测定,岛津硫化学发光检测器(SCD)不仅具有灵敏度高、重复性好、操作简单等优点,还具有硫等摩尔响应、无基质淬灭、自动化程度高等优势,助您轻松应对新标准! ☆ 天然气中含硫化合物的危害 ☆天然气的主要成分是甲烷,来源于常规油气田开发出来的天然气、页岩气、煤层气等。2019年天然气储量数据来源:煤层气行业深度研究报告:“双碳”政策下,如何打造盈利新模式? 我国天然气需求量对外依存度达40%,进口液化天然气(LNG)占中国天然气进口量的60%以上,以澳大利亚占比最高。 数据来源:左图2021年中国液化天然气产量、进出口及需求现状分析,全球最大的LNG进口国_我国_华经_液化,右图2021年我国油气进口来源国分布 - 知乎 天然气中可能的硫化物有硫化氢、氧硫化碳、二氧化硫、甲硫醇、乙硫醇、叔丁硫醇、甲硫醚、乙硫醚、甲基乙基硫醚、四氢噻吩等,这些硫化物对运输、储存和使用安全及环境均会产生不利影响。当其作为燃料不仅会腐蚀输送管道和燃具,而且燃烧后的尾气或者废气还会造成人员中毒,排放到大气中也会引起环境污染;当其作为化工行业的原材料不仅会腐蚀储存容器和反应装置,更会导致贵重的催化剂中毒而失去活性。因此准确检测出天然气中的硫化物含量是非常必要的。 ☆ 新标来袭,岛津方案助您从容应对 ☆天然气作为经济环保的绿色能源和化工原材料倍受关注,在我国的能源安全中越发重要。新标准GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》中介绍GC-FPD、GC-PFPD、GC-MSD、GC-SCD等不同检测器用于0.1~600mg/m3范围内硫化物检测的分析方法。其中,GC-SCD(硫化学发光检测器)方法对硫具有等摩尔响应的特性,在总硫分析方面具有独特的优势,所以得到了大家的广泛认可。 图1. Nexis GC-2030 SCD l 分析条件 标准气体:甲烷中微量硫化氢、氧硫化碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩10种硫化物混合标气。浓度1.0mg/m3天然气中硫化物混合标气进样1.0mL 分析,典型谱图如下:图2. 浓度1.0mg/m3天然气中硫化物标气谱图(1硫化氢、2氧硫化碳、3甲硫醇、4乙硫醇、5甲硫醚、6二硫化碳、7叔丁硫醇、8甲基乙基硫醚、9乙硫醚、10四氢噻吩) l 标准曲线和检出限5瓶混和标气浓度以硫计分别为:1.0mg/m3 、3.0mg/m3、5.0mg/m3、15.0mg/m3、20.0mg/m3。硫化物混合标气重复进样4次,各组分面积重复性均优于1.0%,相关系数R值除甲硫醇和乙硫醇为0.9998外其余8种硫化物都大于0.9999。选择了其中3种硫化物的标准曲线展示见图3。各硫化物的检出限见表1。 图3. 天然气中3种典型硫化物标准曲线表1. 天然气中10种硫化物检出限☆ 结语 ☆“十四五”期间将是我国天然气工业的大发展时期,天然气产量到2025预计达到2500亿方,天然气勘探开发将迎来新的发展。岛津Nexis GC-2030 SCD色谱仪助您轻松应对GB/T 11060.10-2021《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,确保天然气的生产安全、使用安全、运输安全。 本文内容非商业广告,仅供专业人士参考。
  • 中科院大化所高灵敏检测恶臭含硫化合物获新进展
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201605/noimg/80dfc663-4347-4350-99e0-bc5505ecc7f2.jpg" title="1.jpg"//pp  4月30日 中科院大连化物所快速分离与检测李海洋研究团队成功研制了一种光致二溴甲烷阳离子化学电离源,该电离源与质谱技术相结合,显著提高了恶臭含硫化合物的检测灵敏度,该成果已发表在美国化学会Analytical Chemistry上。br//pp  《国家恶臭污染控制标准》规定的八大恶臭气体(硫化氢、甲硫醇、二甲基硫醚、二硫化碳、三甲胺等)绝大部分都为挥发性含硫化合物(VSCs),这些恶臭化合物与人类日常生活环境息息相关,并且具有较高的毒性,ppbv量级就能对人的健康造成伤害。此外,VSCs还是人体呼出气中重要的生物标志物,如硫化氢和二甲基硫为肝硬化和肝昏迷等肝脏疾病相关的标志物。由于VSCs具有较高活性及易吸附等特点,急需一种既快速又灵敏的分析检测技术。/pp  该研究团队利用真空紫外灯(VUV)电离高浓度二溴甲烷试剂气体获得足够多且强度稳定的CH2Br2+试剂离子,CH2Br2+试剂离子进一步与VSCs样品发生高效的电荷转移及离子加和反应,实现VSCs的高灵敏检测。实验结果表明:该离子化源对硫化氢、甲硫醇、二甲基硫等5种常见VSCs的检测限均达到pptv量级,检测时间小于1分钟,此外特异性加和离子[M+CH2Br2]+的存在,增强了物质识别。/pp  该新型检测技术现已成功应用于人体呼出气和下水道气体中痕量VSCs的测量,因其快速高灵敏的检测性能,在医疗诊断和环境化学领域具有广阔的应用前景。/ppbr//p
  • 可口可乐召回含少量苯、硫磺二氧化碳的产品
    可口可乐以色列公司近日在当地市场召回特定批次的可口可乐和雪碧等产品,原因是公司在生产过程中使用的部分二氧化碳存在质量问题。  可口可乐以色列公司上周宣布召回特定批次的可口可乐和健怡可乐,随后于12月1日宣布扩大可口可乐和健怡可乐的召回范围,同时召回特定批次的健怡雪碧和Kinley Soda。公司已公布需要召回的产品目录。  公司在声明中说,召回事件是因为二氧化碳提供商在生产过程中出现失误,实验室检测发现,问题产品中存在少量苯和硫黄。声明强调,这一问题不会危及消费者健康,但公司仍建议消费者不要饮用相关饮品。  声明说,市场上的问题产品数量微乎其微,因为大部分问题产品还未离开工厂,且公司发现问题后马上开始召回已流入市场的产品。声明还说,除已公布的产品外,该公司生产的其他产品并未受到影响,消费者可放心饮用。  据当地媒体报道,此次事件目前已导致可口可乐以色列公司面临两桩集体诉讼,指控罪名包括销售含有有毒物质和异味的饮料以及未向消费者说明潜在风险等。两桩诉讼索赔金额分别约为2700万美元和640万美元。
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 山东发布《DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法》
    p  在无组织污染物排放(控制)标准方面,《大气污染物综合排放标准》(GB 16297-1996)对苯、甲苯、二甲苯、甲醛等制订了排放限值 《恶臭污染物排放标准》(GB 14554-93)对氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫醚、二硫化碳、苯乙烯等制订了排放标准。/pp  无组织逃逸监测一直是环境监测领域的盲区,国内有相关的仪器已经实现自动监测,并且在部分工业园区已经安装,但多以空气质量监测为主,而且监测部署多为点位法,由于气象条件的复杂性,几乎无法完成无组织排放逃逸监测。开放光程紫外吸收光谱法的多气体测量系统,可实现远距离、长光程条件测量,分析一条光谱即可得到监测路径内的多种气态污染物的定量分析结果,且现场作业方式灵活,可满足对环境空气中无组织逃逸监测的需要,因此有必要制定标准以规范自动监测方法,并出台相关仪器方法标准,正确指导环境监测机构选择合适的仪器对无组织逃逸排放监测监管。/pp  气态污染物测量仪器目前采用的分析技术主要有:PID法、非分散红外吸收法(NDIR)、FID法、GC-MS和开放光程吸收光谱法(OP-DOAS及OP-FTIR)等,各方法技术特点对比及应用见下表。/ptable border="1" cellspacing="0" cellpadding="0" style="margin-left:0 border-collapse:collapse border:none"tbodytr style=" height:21px" class="firstRow"td width="93" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center line-height:normal"span style=" font-family:宋体"分析技术/span/p/tdtd width="75" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center line-height:normal"span style=" font-family:宋体"监测对象/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center line-height:normal"span style=" font-family:宋体"技术特点分析对比/span/p/tdtd width="133" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="text-align:center line-height:normal"span style=" font-family:宋体"应用/span/p/td/trtr style=" height:23px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="23"p style="text-align:center line-height:normal"spanFID/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="23"p style="text-align:center line-height:normal"spanVOC/spanspan style=" font-family:宋体"、/spanspanNMTHC/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="23"p style="line-height:normal"span style=" font-family:宋体"对/spanspanHC/spanspan style=" font-family:宋体"响应灵敏,线性范围宽、稳定、结构简单、使用方便;/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="23"p style=" text-align:center text-indent:0 line-height:normal"span style=" font-family:宋体"实验室/span span style=" font-family:宋体"便携/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/p/td/trtr style=" height:23px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="23"p style="line-height:normal"span style=" font-family:宋体"废气中/spanspanOsub2/sub/spanspan style=" font-family:宋体"、/spanspanHsub2/subO/spanspan style=" font-family:宋体"及含有/spanspanN/spanspan style=" font-family:宋体"、/spanspanO/spanspan style=" font-family:宋体"、/spanspanX/spanspan style=" font-family:宋体"的有机物有干扰/span/p/td/trtr style=" height:20px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"spanPID/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"spanTHC/spanspan style=" font-family:宋体"、/spanspanTVOCs/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="line-height:normal"span style=" font-family:宋体"检测器体积小、无需辅助气体,现场便携,可用于室内气体、应急监测、危险泄漏气体检测,无组织排放源/spanspanTVOCs/spanspan style=" font-family:宋体"追踪/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"span style=" font-family:宋体"便携应急/span/p/td/trtr style=" height:20px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="line-height:normal"span style=" font-family:宋体"无法判定气体组分,监测无组织排放源无法厘清排放主体/span/p/td/trtr style=" height:18px"td width="93" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center line-height:normal"span style=" font-family:宋体"催化氧化/spanspan-NDIR/span/p/tdtd width="75" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center line-height:normal"spanTHC/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="line-height:normal"span style=" font-family:宋体"稳定性灵敏度不高,现场应用少/span/p/tdtd width="133" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"p style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/p/td/trtr style=" height:26px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align:center line-height:normal"spanGC-MS/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align:center line-height:normal"spanHAPs/spanspan style=" font-family:宋体"、/spanspanTVOCs/spanspan style=" font-family:宋体"、/spanspanVOCs/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="line-height:normal"span style=" font-family:宋体"灵敏度高,选择性强,多组分同时测定,烷烃、烯烃、芳香烃、氯代烃、醛、酮、醚、酯、等/spanspan200/spanspan style=" font-family:宋体"多种有机物/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align:center line-height:normal"span style=" font-family:宋体"实验室/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"便携、应急/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/p/td/trtr style=" height:21px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="line-height:normal"span style=" font-family:宋体"样品分析时间长,响应速度慢,仪器购置运营成本高/span/p/td/trtr style=" height:37px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="37"p style="text-align:center line-height:normal"spanFTIR/span/pp style="text-align:center line-height:normal"spanOP-FTIR/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="37"p style="text-align:center line-height:normal"spanVOCs/spanspan style=" font-family:宋体"、/spanspanHAPs/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="37"p style="line-height:normal"span style=" font-family:宋体"技术成熟,多种/spanspanVOCs/spanspan style=" font-family:宋体"及/spanspanHAPs/spanspan style=" font-family:宋体"同时监测,现场测定周期短,响应时间快,烷烃、烯烃、芳香烃、氯代烃、醛、酮、醚、酯及/spanspanHCl/spanspan style=" font-family:宋体"、/spanspanHF/spanspan style=" font-family:宋体"、/spanspanCO/spanspan style=" font-family:宋体"、/spanspanNH3/spanspan style=" font-family:宋体"、/spanspanH2S/spanspan style=" font-family:宋体"等/spanspan2000/spanspan style=" font-family:宋体"多种有机物、无机物/span/p/tdtd width="133" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="37"p style="text-align:center line-height:normal"span style=" font-family:宋体"便携、应急/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/p/td/trtr style=" height:20px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="line-height:normal"span style=" font-family:宋体"灵敏度依据各气体吸收强度,部分气体强度较低,仪器成本高/span/p/tdtd width="133" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"span style=" font-family:宋体"厂界在线/span/p/td/trtr style=" height:31px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="31"p style="text-align:center line-height:normal"spanDOAS/span/pp style="text-align:center line-height:normal"spanOP-DOAS/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="31"p style="text-align:center line-height:normal"spanVOCs/spanspan style=" font-family:宋体"、/spanspanHAPs/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="31"p style="line-height:normal"span style=" font-family:宋体"技术成熟,多组分同时测定。现场非接触式直接连续测量,无需预处理,响快,烯烃、芳香烃、氯代烃、醛、酮、醚及/spanspanNH3/spanspan style=" font-family:宋体"、/spanspanH2S/spanspan style=" font-family:宋体"、三甲胺、硫醚、硫醇类/spanspan200/spanspan style=" font-family:宋体"多种气体/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="31"p style="text-align:center line-height:normal"span style=" font-family:宋体"便携/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"厂界无组织在线/span/p/td/trtr style=" height:21px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="21"p style="line-height:normal"span style=" font-family:宋体"监测灵敏度依据各气体吸收强度/span/p/td/trtr style=" height:20px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"span style=" font-family:宋体"离子迁移谱/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"spanVOCs/spanspan style=" font-family:宋体"组分/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="line-height:normal"span style=" font-family:宋体"灵敏度高,无需真空系统,仪器结构简单,成本低/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="text-align:center line-height:normal"span style=" font-family:宋体"便携、应急/span/p/td/trtr style=" height:20px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="20"p style="line-height:normal"span style=" font-family:宋体"特异性差,/spanspanVOCs/spanspan style=" font-family:宋体"种类少,干扰多/span/p/td/trtr style=" height:10px"td width="93" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="10"p style="text-align:center line-height:normal"spanTDLAS/span/p/tdtd width="75" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="10"p style="text-align:center line-height:normal"spanCH4/span/p/tdtd width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="10"p style="line-height:normal"span style=" font-family:宋体"灵敏度高,选择性强,干扰少,现场非接触式直接连续测量,无需预处理,相应快/span/p/tdtd width="133" rowspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="10"p style="text-align:center line-height:normal"span style=" font-family:宋体"便携/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"固定源在线/span/pp style="text-align:center line-height:normal"span style=" font-family:宋体"厂界在线/span/p/td/trtr style=" height:10px"td width="343" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="10"p style="line-height:normal"span style=" font-family:宋体"一种光源只能监测一种气体/span/p/td/tr/tbody/tablep  此次山东省发布的《DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法》规定了测定环境空气中硫化氢、氨气、苯、甲硫醚、二甲苯、甲硫醇、苯乙烯、甲醛、甲苯、二甲二硫、三甲胺、二硫化碳12种气态污染物的开放光程紫外吸收光谱法。本标准适用于环境空气中上述气态污染物的预警、应急监测测定。/pp  标准全文:a href="https://www.instrument.com.cn/download/shtml/948251.shtml" target="_blank"DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法/a/p
  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 三、使用电位滴定仪测定油品中硫醇硫含量(1)仪器:雷磁ZDJ-5B自动电位滴定仪(2)电极:216型银电极和231-01型pH玻璃电极。(3)试剂:超纯水、1-丁硫醇、1-庚硫醇、碘化钾、浓硝酸、异丙醇、乙酸钠、硫化钠、硝酸银等(4)样品:市售汽油;丁硫醇标准溶液(5)测定流程如下: 丁硫醇滴定曲线 汽油滴定曲线 汽油加标滴定曲线 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量 四、仪器及配套电极ZDJ-5B型自动滴定仪l 7寸彩色触摸电容屏,导航式操作;l 支持电位滴定;l 实时显示测试方法、滴定曲线和测量结果;l 可定义计算公式,直接显示计算结果; l 支持滴定剂管理功能;l 支持pH的标定、测量功能;l 支持USB、RS232连接PC,双向通讯;l 可直接连接自动进样器实现批量样品的自动测量。 216银电极l 温度范围:0~50℃l 工作电极材料:银l 外壳尺寸:ABSl 外形尺寸:12×120mml 接插件:U型叉片 相关应用和产品详情,欢迎致电400-827-1953、关注雷磁公众号或浏览雷磁官网http://www.lei-ci.com
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 非法添加工业二氧化碳,这批扎啤苯含量超标15倍!!!
    近期,在市场监管总局部署的2021民生领域案件查办“铁拳”行动中,曝光浙江省市场监管部门查办的一批扎啤非法添加案件。“扎啤”是生啤,有别于普通的鲜啤酒,是在啤酒原浆中充入食品级二氧化碳制作出来的。据调查,目前市场销售的食品添加剂二氧化碳价格5-8元/kg,而工业用二氧化碳价格为2.5-3元/kg,仅约为食品级二氧化碳的一半。浙江省金华市市场监管局综合行政执法队副队长马丁丁介绍,餐饮经营者非法使用工业二氧化碳制作扎啤,每百杯可多获利约20元。一户小餐饮店每月至少可多获利500元,酒吧或较大餐饮店的获利空间则更大。浙江省温州市的一名扎啤经销商林某说,一个装有8升二氧化碳的气罐,可以配置出360升扎啤。起初,他从正规的食品添加剂生产企业购进二氧化碳气罐,后来听说充装工业二氧化碳价格便宜,于是开始用工业二氧化碳混入扎啤原浆。执法人员检查发现,从2020年8月至2021年7月,林某卖出了这种扎啤60000多升。“扎啤非法添加工业二氧化碳在行业内较为普遍,已形成一条违法产业链。”浙江省市场监管局执法稽查处处长陆立权说。截至目前,浙江省开展的扎啤非法添加专项执法检查立案863件,查扣违法气瓶1982个。苯含量超过国家标准15倍非法添加损害消费者身体健康在口感风味上,使用工业二氧化碳制作的扎啤与食品级二氧化碳制作的扎啤差别并不大。但是,对照食品级二氧化碳国家标准,工业二氧化碳纯度低、杂质多,对于苯、总挥发烃等有毒有害物质没有限量要求。执法人员将查获的工业二氧化碳样品送专业机构检验检测,结果显示:苯含量超过国家标准15倍、二氧化硫含量超过国家标准15倍、一氧化碳含量超过国家标准8倍、总挥发烃含量超过国家标准4.5倍。食品安全法明确规定不得在食品中添加除食品添加剂以外的化学物质浙江省食品药品检验研究院食品检验研究所副所长刘柱介绍,苯是一种常用的有机溶剂,通常作为工业上的基础原料。由于对人体有害,在食品级原料、包装等方面被严格限制使用。使用工业二氧化碳制作扎啤,属于非法添加的违法行为,其所含超量的苯、总挥发烃等有毒有害物质残留在啤酒中,会造成食品安全潜在风险。市场监管部门将进一步加大打击力度市场监管总局执法稽查局有关负责人介绍,本案属于在食品中添加食品添加剂以外的化学物质。用非食品原料生产食品,添加食品添加剂以外的化学物质,以及在食品中添加药品,统称为食品非法添加。据统计,从2020年至今,全国市场监管部门专项查办食品非法添加类案件7821件、罚没款1.01亿元、吊销许可证37件、移送公安机关1411件。市场监管部门将进一步加大打击力度,斩断食品非法添加的违法链条。凡是故意非法添加的一律依法从严从重查处;能够吊销许可证的一律吊证;涉嫌犯罪的一律移送公安机关;能够处罚到人的一律处罚到人。务必让食品安全违法者付出沉重代价。
  • 穷源溯“硫”——三级冷阱大气预浓缩仪结合GC-MS深入解决大气恶臭污染分析难题
    背景硫化物是典型的恶臭污染物,在石油化工、制药、合成橡胶等工业生产中均会产生硫化氢、硫醇类、硫醚类等挥发性硫化物。这类物质不但嗅觉阈值极低,而且毒性大,危害人类健康。2018年12月,生态环境部发布了《恶臭污染物排放标准(征求意见稿)》,进一步严格了氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯等8种恶臭污染物的排放和厂界浓度限值。次年发布《固定污染源废气 甲硫醇等8种含硫有机化合物的测定 气袋采样-预浓缩/气相色谱-质谱法(HJ 1078-2019)》,标准规定废气经三级冷阱浓缩,热解吸后GC-MS分析。解决方案图1.谱育科技Pre 4000大气预浓缩仪本方案采用谱育科技Pre 4000大气预浓缩仪对大气中的痕量硫化物进行富集浓缩,Pre 4000采用经典的三级冷阱设计,硫化物经一级冷阱除水后,被二级冷阱填料捕集,将二级冷阱加热,硫化物全部转移至三级空管低温聚焦,三级冷阱快速升温,硫化物被热解吸至GC-MS进行分离检测。图2. Pre 4000的一、二、三级冷阱工作示意图Pre 4000采用创新的斯特林制冷技术,无需消耗液氮或液态二氧化碳等制冷剂,聚焦能力强,而且与样品接触的管路、接头和阀头等部件均采用硅烷化处理,不仅满足HJ 1078-2019硫化物离线分析的要求,还可在线实时监测大气中硫化物浓度变化,同时对硫化氢也有很好的分析效果。01方案特点斯特林制冷,最低温可达-160℃无需消耗制冷剂,降低使用成本全惰性化流路,防止强极性物质吸附,提高分析准确性适用范围广,可离线/在线检测多种VOCs02分析结果图3. 9种硫化物总离子流色谱图1-硫化氢、2-甲硫醇、3-乙硫醇、4-甲硫醚、5-二硫化碳、6-甲乙硫醚、7-噻吩、8-乙硫醚、9-二甲二硫醚;IS-1 氯溴甲烷、IS-2 1,4-二氟苯、IS-3 氯苯-d5、IS-4 4-溴氟苯图3展示了10 ppbv 9种硫化物标气的分析结果,可以看到9种硫化物分离度良好,峰型完美,虽然硫化氢和空气峰存在共流出,但硫化氢的特征碎片34干扰少,可实现准确定性和定量。表 1 9种硫化物的线性相关系数、精密度和方法检出限表1展示了9种硫化物的线性相关系数、精密度和方法检限数据,在2~20 ppbv的浓度范围内各目标物的相关系数R2均在0.993以上,9种硫化物的RSD均在2.0~6.6%之间,方法检出限在40.9~103.4 pptv之间,完全满足HJ 1078-2019的检出限要求。图4. 部分硫化物谱图叠加图5. 部分硫化物线性数据总结本方案采用Pre 4000三级冷阱大气预浓缩仪结合GC-MS一次进样同时分析9种硫化物,方法检出限、线性和精密度良好。满足HJ 1078-2019标准和《恶臭污染物排放标准(征求意见稿)》限值的要求,完美适用于环境空气和无组织废气。Pre 4000使用斯特林制冷技术和全惰性化流路,可轻松应对大气中痕量有机硫化物的检测,为恶臭异味治理提供有效的检测手段,为打赢蓝天保卫战和保卫人民健康具有重要的意义。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 3.17%。7针标气叠加谱图见图4,重复性测试结果见表4。图4 1 ppb甲醛、有机卤化物组分7针叠加色谱图(点击查看大图)表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 专家约稿|硫化橡胶逆向设计中成分测试方法研究
    硫化橡胶逆向设计中成分测试方法研究苍飞飞1,2,3(1.北京橡院橡胶轮胎技术服务有限公司,北京,100143;2.北京橡胶工业研究设计院有限公司,北京,100143;国家橡胶轮胎质量检验检测中心,北京,100143)摘要:轮胎作为汽车行业重要的组成部分,一直在不断的向着新的目标迈进,轮胎胶料成分分析主要包括五个部分:高聚物定性、高聚物含量和炭黑含量、有机物定性、无机物定性定量、硫化体系的定性定量。高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的含量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法;无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法;硫化体系的定性、定量采用化学法。大型仪器的使用,可以测试更准确可靠的实验数据,为轮胎行业的进一步成长,提供有力的依据。关键词:轮胎、成分分析、测试轮胎作为车辆唯一与地面接触的部位,承担着承受载荷、改变方向、缓冲与减震、驱动与制动四个方面的重要作用[1]。轮胎的制备过程中配方和结构都是非常重要的因素。目前在人类社会实现“碳中和”的伟大事业中,百岁老产品与时俱进,在社会可持续性发展的征程上续写着传奇、再立新功,助力人类社会达成“双碳”目标[2]。为了达到这个目标,国产轮胎还要不断努力,缩小与一线品牌轮胎的差异,从北京橡胶工业研究设计院有限公司第一次组织行业轮胎剖析会议到现在已经有40多年的历史了,轮胎行业的配方工程师一直都没有停下脚步,追寻着寻找合理的配方组成,因此开展轮胎成分测试工作是一项非常有意义的工作。在新时代、新环境下,轮胎肩负的责任发生了变化,目前气候变化已经成为世界各国政府关注的焦点,尤其近10年来各种自然灾害给人民生活贺财产造成了巨大损失[3]。为此,巴黎协定以后,各国政府在节能环保方面相继制定了严格的法律,并出台了相关措施,尽量减少碳排放。各个行业纷纷开展相应的政策,并且纷纷表示将于2040年实现“零”排放。因此轮胎的配方研制非常重要。目前欧盟REACH法规、轮胎标签法及美国的SMARTWAY等,轮胎企业针对目前的状况投入大量的人力、物力,开发设计新产品,尤其是新能源汽车轮胎,利用新技术、新材料和新工艺生产制造出高性能的子午线轮胎,进一步提高了汽车的环保、节能和安全性能。 轮胎是一个比较复杂的复合体,它大约有十几个部位组成,如:胎面胶、胎侧胶、基部胶、带束层胶、胎肩垫胶、胎体胶、胎圈胶、子口护胶、三角胶、内衬层胶等。目前针对整条轮胎成分检测有两个权威的检测机构,一个是美国的斯密斯公司,另一个是国家橡胶轮胎质量监督检验检测中心。两者在成分分析检测方面有一些差异,国家橡胶轮胎质量监督检验检测中心检测项目更完整、更全面,从胶型、胶比、橡胶含量、炭黑含量到有机填料、无机填料的定性定量检测;斯密斯公司擅长选择相同规格不同厂商的产品,分别测试,然后对比分析,并且在物理性能方面测试的项目比较完整,两者各有优缺点,剖析配方所呈现出来的结果要通过配方工程师的研究、调整、完善,才能转化为剖析配方。因此剖析配方是基础,是新配方研究得核心和关键。目前轮胎胶料成分分析方法的研究正在逐步的成熟,大量关于轮胎胶料配方组分研究的国家标准[4]-[10]已经发布或正在制定或修订过程中,方法标准的统一,让测试结果更加可靠,为配方的研究提供可靠、准确的实验数据。但方法和方法之间以及标准的应用方面还有一些问题,本研究就是基于相同试验项目采用不同的仪器设备所存在的问题的讨论与研究工作,希望大家能够理解测试工程师的工作,如果人员和设备不存在问题,得出的结果您有异议,可能是方法问题导致的结果,希望大家能够理解,能够正确的分析测试数据,解析出合理的结果,为新配方的研发提供有力的支持。胶料成分分析的方案胶料成分分析方案是根据样品配方设计的特点来确定的,不同的部位由于作用不一样,承受的条件也有差异,因此配方设计过程中是要对每个部位的特点来设计配方,例如[11]胎面胶是轮胎与地面接触的部分,那就需要提高轮胎胎面的胶料的拉伸性能和耐撕裂性能,使用特殊炭黑可以增加轮胎的耐磨性和导电性,并且要注意轮胎的生热,增强轮胎的寿命。轮胎作为橡胶工业的主导产品,其设计及生产制造过程的经济性直接影响企业的内生动力即盈利能力[12],因此在配方设计的过程中,也要考虑成本的计算,其中的配方成本是其中非常重要的一项考虑因素。如果可以实现通过材料替代以节约成本和提高硫化效率的操作实例,其直接影响企业产品效益的最大化[13]。1.高聚物定性高聚物的定性轮胎成分分析非常重要的一个测试环节,胎面胶选择合适的橡胶品种可以改善胎面胶的耐磨性能和降低滚动阻力[14]。高聚物的鉴定目前常采用的方法有:裂解气相色谱法[4]~[5]、裂解气相色谱质谱法[10]、红外光谱法[15]、核磁共振波谱仪。裂解气相色谱法和裂解气相色谱质谱法都是基于裂解器的前处理装置,后面的气相为分离装置,用火焰离子检测器(FID)和质谱检测器(MS)测试高聚物样品的一种方式。裂解器在惰性气体中被快速热解而生成具有高聚物表征的裂解产物(小分子碎片混合物),并随着载气导入分离装置(气相色谱)中的一种前处理方式。此方法的特点是仪器灵敏度高,样品用量少,不受填料的干扰等优点,其缺点是需要建立实验室内部的谱库、本方法属于相对方法[16]。红外光谱法是经典的物质化学结构分析与鉴定方法之一[17],广泛应用于科研领域。红外光谱可以给出物质所包含的官能团、结晶态等化学结构信息;而且,化学结构不同的物质、对应的红外光谱谱图具有指纹特征性[18],在标准中明确说明针对生胶、硫化胶、未硫化胶以及热塑性弹性体进行鉴定的方法,一共有两种分析方法,透射分析法和反射分析法。在轮胎胶料成分分析过程中有两点需要注意,其一是钢丝圈夹胶由于硫黄含量过高,影响特征谱图,对结果的分析有影响;其二顺丁胶和丁苯橡胶混合时,区分有一定的困难。傅里叶变换红外光谱法在高分子鉴定过程中需要注意以上问题,避免存疑数据的存在。核磁共振波谱仪可以有效的表征高聚物的支化度,核磁共振波谱仪目前主要是H谱和C谱两类原子核谱图,H-NMR简便快捷能够通过不同级数C原子上H的积分面积,定量表征高聚物的短链支化度;而对于长链支化,需要利用C-NMR检测支化度C原子、支化点附件C原子的峰来确定支链类型和支化度[19]。2.高聚物及炭黑含量热重分析技术(thermogravimetry,TG)是指 在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程。 基于 TG 法,可对物质进行定性分析、 组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域[20]-[21]。目前用的最多的方法有三个,其中轮胎常用的方法是,GB/T 14837.1-2014《橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶》,这个标准涵盖了轮胎常用的高聚物:天然橡胶、丁苯橡胶、顺丁橡胶。热重分析仪可以准确的表征胶料配方中高聚物的含量、炭黑含量。在二十世纪初期,热重分析仪主要来自于美国、欧洲以及日本厂商,国内的仪器产品稳定性差,但在最近几年,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.。未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破,同时,我国相关仪器 厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地[20]。3.有机物定性、定量轮胎配方中需要加入有机配合剂,在配方的调整过程中,才能呈现出优异的性能,常加入的有机配合剂有:防老剂、防焦剂、促进剂、增粘剂、增塑剂、粘合剂、加工助剂等等,并且在硫化过程中,这些有机配合剂有的会发生化学反应,给配合剂的定性工作带来一定的难度。轮胎配方定性、定量常用的仪器设备是气相色谱质谱仪、裂解-气相色谱质谱仪、红外光谱仪、液相色谱仪、液相色谱质谱联用仪等。在长期的使用过程中,发现色谱方式由于色谱柱的分离作用,可以将混合物进行分离,可以提升检测的效率和检定结果的准确性。4.无机物定性、定量轮胎是一种常见的高分子复合材料,发展高耐磨、高抗湿滑、低滚阻的新一代轮胎是目前轮胎行业的重要挑战,在轮胎的制备过程中,填料的用量仅次于聚合物。填料的加入能提高聚合物复合材料的性能,改善轮胎的抗湿滑性、耐疲劳性以及耐低温耐高温能力等[22]。二氧化硅是轮胎中常用的填料,由于二氧化硅自身的特点,强吸附性、大比表面积,可以实现对有机分子的多层吸附,提高轮胎的抗撕裂性能[23]。二氧化硅的检测目前采用的化学法,将样品灼烧后,加入氢氟酸,剩余的二氧化硅与氢氟酸反应,生成四氟化硅,以气体的形式挥发掉,通过质量的变化来确定样品中加入的二氧化硅的含量。轮胎胶料中还有一些金属氧化物,如:氧化锌等,可以通过原子吸收光谱法和等离子发射光谱法进行测试。原子吸收光谱仪原理为处理后的液体样品吸入火焰中,火焰中形成的原子蒸汽对光源发射的特征电磁辐射产生吸收。将测定的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量[24]。电感耦合等离子体发射光谱仪原理为过滤或消解处理过的样品在等离子体火炬的高温下被原子化、电离、激发[25]。不同元素的原子在激发或电离时可发射出特征光谱,特征光谱的强弱与样品中原子浓度有关,即可测定样品中各元素的含量[26]。电感耦合等离子体发射光谱仪具有检出限低,准确度高、精密度高的优点, 并且可同时测定多种元素,时效快。但是在测定组分复杂的样品时,容易产生基体效应,从而影响检测结果的准确性。而火焰原子吸收光谱仪检出限较高,准确度、精密度相对较低,但在抗基体干扰能力方面的优势大于电感耦合等离子体发射光谱仪[27]。因此,在测试轮胎胶料样品时,要根据情况选择合适的仪器设备。5.硫化体系的定性、定量轮胎胶料的硫化体系主要是指加入的硫磺、促进剂、以及活化剂,其中硫磺含量的检测是依据国家标准GB/T 4497.1-2010《橡胶 全硫含量的测定 第1部分:氧瓶燃烧法》,将橡胶样品在通氧气条件下,燃烧,用双氧水吸收燃烧后气体,然后滴定生成的硫酸根,反推出胶料中硫含量。本方法测试的是胶料中所有的硫,包括促进剂中的硫、炭黑中的硫。因此对数据的解读需要进行修正。小结本文对轮胎胶料的成分分析进行了全面的介绍,高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的定量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法、无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法、硫化体系的定性、定量采用化学法。合理的使用方法,可以为进一步解析数据提供有力的支持,为轮胎配方胶料的研制提供有力的数据支持。作者简介苍飞飞, 北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量检验检测中心)/北京橡胶工业研究设计院有限公司副总工程师、技术负责人、高级工程师,从事橡胶检测工作22年,主要工作之一为开展轮胎橡胶制品类产品得剖析检测工作,使进口产品国产化提供有力的数据。社会兼职:全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会专家委员;全国橡胶与橡胶制品标准化技术委员会通用试验方法分会专家委员;北京市热分析学会委员;公安部检测中心专家库成员;教育装备协会理事会理事等。主持或参加纵向及横向项目30余项;完成学术论文30余篇;参加国家标准制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖;参加国际标准修订比对工作3项;发明专利13项;实用新型专利3项。参考文献:[1]朱华健,牛金坡,李凡珠,何红,王润国,卢咏来,张立群.新型轮胎结构的现状与发展[J].高分子通报,2019(11):1-14.DOI:10.14028/j.cnki.1003-3726.2019.11.001.[2]许叔亮.百年轮胎续写传奇:轮胎的性能设计与社会可持续性发展(上)[J].中国橡胶,2022,38(01):16-19.[3]吴桂忠.高性能子午线轮胎研发、生产和试验研究概况及发展趋势[J].中国橡胶,2022,38(02):17-26.[4] GB/T 29613.1-2013.橡胶裂解气相色谱分析法 第1部分:聚合物(单一及并用)的鉴定[S].北京:中国标准出版社,2013.[5] GB/T 29613.2-2014.橡胶裂解气相色谱分析法 第2部分:苯乙烯/丁二烯/异戊二烯比率的测定[S].北京:中国标准出版社,2014.[6] GB/T 14837.1-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶[S].北京:中国标准出版社,2014.[7] GB/T 14837.2-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第2部分:丙烯腈-丁二烯橡胶和卤化丁基橡胶[S].北京:中国标准出版社,2014.[8] GB/T 33078-2016. 橡胶 防老剂的测定 气相色谱-质谱法[S].北京:中国标准出版社,2016.[9] GB/T 14837.3-2018. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第3部分:抽提的烃橡胶、卤化橡胶、聚硅氧烷橡胶[S].北京:中国标准出版社,2016.[10] GB/T 39699-2020. 橡胶 聚合物的鉴定 裂解气相色谱-质谱法[S].北京:中国标准出版社,2020.[11]王静,褚文强.航空子午线轮胎胶料配方设计[J].橡塑技术与装备,2022,48(06):39-43.DOI:10.13520/j.cnki.rpte.2022.06.008.[12]李萍.塑料企业的风险控制与经济管理——评《企业风险管理》[J].塑料科技,2021,49(12):124-125.[13]万达淳,郑闻运,陈弩.基于橡胶配方和工艺的轮胎产品经济性分析[J].橡胶科技,2022,20(05):247-249.[14] Kwag G,Kim P,Han S,et al. High Performance Elastomer Composites Containing Ultra High Cis Polybutadiene with High Abrasion and Low Rolling Resistances[J]. Journal of Applied Polymer Science,2010,105(2):477-485.[15]GB/T 7764-2017.橡胶鉴定 红外光谱法[S].北京:中国标准出版社,2018.[16]周乃东.橡胶聚合物的鉴定 裂解气相色谱法[J].中国石油和化工标准与质量,2007(01):33-38.[17]白云,胡光辉,李琴梅,陈新启,髙峡,刘伟丽.傅里叶变换红外光谱法在高分子材料研究中的应用[J].分析仪器,2018(05):26-29.[18] 翁诗甫.傅里叶变换红外光谱仪[M].北 京:化学工业出版社,2005:161.[19]罗俊杰,卜少华,黄铃.核磁共振波谱表征弹性体支化结构方法的研究进展[J].合成树脂及塑料,2017,34(05):92-97.[20]谢启源,陈丹丹,丁延伟.热重分析技术及其在高分子表征中的应用[J].高分子学报,2022,53(02):193-210.[21]Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and Technology of China Press(中国科学技术大学出版社), 2020[22]黄伟,杨凯,张乾,刘建伟,郝泽光,栾春晖.橡胶补强填料中煤矸石活化改性的研究进展[J].洁净煤技术,2022,28(01):166-174.DOI:10.13226/j.issn.1006-6772.Q21110501.[23]李鹏举,吴晓辉,卢咏来,张立群.氧化石墨烯/白炭黑纳米杂化填料在绿色轮胎胎面中的应用[J].合成橡胶工业,2019,42(04):294-299.[24]方琦,罗德伟,洪林.火焰原子吸收光谱仪影响因素与应对措施[J].绿色科技,2010(10):170-173. [25]邓晓庆.电感耦合等离子体发射光谱法测定土壤铜锌锰镍铬钒全钾 [J].环境科学导刊,2010,29(6):90-92.[26]邓晓庆.电感耦合等离子体发射光谱法(ICP-AES)与火焰原子吸收法 (AAS)测定水中铁、锰方法比对[J].环境监控与预警,2013,5(1):26-29.[27] 罗丽霞.火焰原子吸收光谱仪和电感耦合等离子体发射光谱仪在水质检测中的比较分析[J].广东化工,2021,48(23):171-173.
  • 《2020年中国温室气体公报》公布 全球二氧化碳浓度继续升高
    9月29日,中国气象局发布《2020年中国温室气体公报(总第10期)》。当日,中国气象局科技与气候变化司副司长严明良在中国气象局10月新闻发布会上介绍,2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。中国气象局科技与气候变化司副司长严明良(图片来源:中国气象局)严明良表示,《2020年中国温室气体公报(总第10期)》与联合国世界气象组织(WMO)发布的《2020年WMO温室气体公报》相呼应,报告了中国2020年主要温室气体监测数据情况。严明良介绍,目前中国气象局有7个国家大气本底站开展温室气体业务观测,分别为青海瓦里关、北京上甸子、浙江临安、黑龙江龙凤山、湖北金沙、云南香格里拉和新疆阿克达拉。瓦里关国家大气本底站是世界气象组织全球32个大气本底站之一。2020年瓦里关国家大气本底站观测的二氧化碳、甲烷和氧化亚氮的浓度分别为414.3±0.2 ppm、1944±0.7 ppb、333.8±0.1 ppb,与北半球中纬度地区平均浓度大体相当,二氧化碳浓度较2019年增幅约2.5ppm,与全球增幅持平。2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。据悉,中国气象局在世界气象组织框架下,协调中国区域的温室气体及相关微量成分高精度观测,所用数据处理方法、标准、流程均与国际接轨,自上世纪九十年代开始温室气体本底浓度观测。从2016年起,我国发射3颗二氧化碳在轨卫星,2018年开始开展机载温室气体在线观测和平流层温室气体原位观测试验。2021年,中国气象局组建了包含44个国家级气象观测台站和16个省级气象观测站在内的国家温室气体观测网。截至目前,已经初步形成天、空、地一体化的温室气体立体观测能力。温室气体主要包括《京都议定书》限排的二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、六氟化硫(SF6)、氢氟碳化物(HFCs)、全氟化碳(PFCs)、三氟化氮(NF3),以及《蒙特利尔议定书》限排的消耗臭氧层物质。世界气象组织/全球大气监测网(WMO/GAW)负责协调大气温室气体及相关微量成分的系统观测和分析。大气温室气体浓度联网监测分析是历次《联合国政府间气候变化专门委员会(IPCC)科学评估报告》《联合国气候变化框架公约(UNFCCC)》、WMO和联合国环境规划署(UNEP)《臭氧损耗科学评估报告》等的数据来源和科学基础。2021年10月25日,WMO发布《2020年全球温室气体公报》。公报采用的大气温室气体浓度数据来自WMO/GAW、全球大气气体先进试验(AGAGE)等。公报称,全球大气主要温室气体浓度继续突破有仪器观测以来的历史记录,二氧化碳、甲烷和氧化亚氮的浓度分别达到413.2±0.2 ppm、1889±2 ppb、333.2±0.1 ppb,2020年大气二氧化碳浓度增幅约2.5 ppm,高于过去十年平均增幅(2.4 ppm)。2020年全球大气甲烷和氧化亚氮浓度也达到了新的高度,增幅分别达11 ppb和1.2 ppb。根据美国国家海洋大气局(NOAA)的温室气体指数分析结果,2020年由大气长寿命温室气体引起的辐射强迫相比1990年上升了约47%,而其中二氧化碳的贡献超过80%。会上,严明良还表示,未来,中国气象局将进一步提升观测能力,形成覆盖我国16个气候关键区并辐射全球主要纬度带的全要素温室气体本底观测骨干网,增强全球大气二氧化碳和甲烷宽覆盖、高精度、高时空分辨率的业务化观测能力,基于我国自主卫星,联合多种星载探测手段,提高全球温室气体监测水平,为顺利实现我国碳达峰目标和碳中和愿景目标提供科学监测支撑。中国气象局气象探测中心副主任张雪芬在会上透露,“十四五”期间,中国气象局计划在全国16个气候关键观测区增补9个大气本底站,现正在开展前期的选址等相关工作。中国气象局气象探测中心副主任张雪芬(图片来源:中国气象局)同时,“十四五”期间,中国气象局还计划在我国主要的地、市级以上城市以及区域代表性好的地区,开展以二氧化碳为主的温室气体浓度的高精度在线观测和通量观测,并且有针对性地推动开展甲烷等非二氧化碳等温室气体浓度的观测,以满足我国碳中和监测评估系统的评估的需求。此外,中国气象局还将进一步加强国家级、省级在温室气体观测计量、标校溯源等方面的能力,进一步发挥中国气象局在我国温室气体监测方面的优势。
  • 新技术探索雾霾源头惰性化学物质研究
    雾霾已经成为影响公众健康的严重环境问题,如何消除形成雾霾的源头物质对解决雾霾污染问题非常重要。雾霾的形成物质有很多种,其中含硫化合物(羰基硫、二硫化碳等)是重要的源头之一。然而,羰基硫和二硫化碳等化合物具有很强的化学惰性,难以在室温条件下进行活化 因此,将该类化合物在室温条件下转化为无污染的其他化合物(如二氧化碳等),是一项极具挑战性的基础研究课题,也具有重要的现实意义。  日前,中国科学院大学材料科学与光电技术学院的黄辉教授与北京工业大学化学化工学院于澍燕教授共同发现利用简单的含钯金属有机化合物,在水的辅助下,能够在室温条件下将羰基硫和二硫化碳完全活化为二氧化碳,并生成相关的金属钯簇合物 通过进一步反应,能够将金属钯簇合物转化为初始的含钯金属有机化合物,从而首次成功实现了雾霾源头惰性化学物质的室温催化活化。研究者并且利用原位质谱和同位素标定等先进手段,确定其反应的中间体,并且结合密度泛函模拟计算,对反应机理进行了的深入的研究。研究结果表明,钯-钯金属双键对活化惰性碳-硫双重键具有重要的作用,能够显著降低活化位垒,从而实现碳-硫双键的室温活化。该研究工作对活化碳-杂原子强键和雾霾惰性源头物质具有重要的意义,长远而言,能够为消除雾霾污染物质奠定相关研究基础。  该研究成果于2016年10月24日在线发表在著名化学期刊《自然.化学》上(Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature, Nature Chemistry, 2016, doi:10.1038/nchem.2637)。该文章的第一作者蒋选峰博士在于澍燕教授和黄辉教授共同指导下完成了该项研究工作,该研究课题还与浙江大学潘远江教授(原位质谱)、人民大学赖文珍副教授(密度泛函计算)、美国西北大学Tobin J. Marks教授(同位素标定)开展了密切合作。该研究工作得到了国家自然科学基金,北京市自然科学基金,中科院百人计划、北京市高层次人才项目等项目以及北京同步辐射装置的大力支持。  文章链接:  http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2637.html
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限0.5 ppb,是一种非常可靠的解决方案。同时结合PLSV嵌入式密封阀技术(对整个系统性能有着重要作用),和我们先进创新的信号处理以及先进的GC平台,大大提高了整体技术,成为现市场中强大而简单的解决方案。未来几个月,将有更多类似的系统投入全球使用。案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 0.5ppb 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质1ppb):纯化5N氦气方案应用详情请联系:fzhu@asdevices.cn
  • 同阳发布同阳科技TY-ODOR-212恶臭在线监测系统新品
    一、产品简介 天津同阳科技发展有限公司根植环境领域多年,在承担国家重大仪器专项的基础上研发出的“恶臭在线监测系统”,采用传感器阵列模式,根据多个现场试验出的恶臭模型,配以远程信号传输系统、气象监测系统、气体采集系统,通过无线网络,启动在线监测仪,最终将分析的结果和所获取的气象参数、环境参数传至区域恶臭在线监控平台。该恶臭在线监测系统可以应用在诸多行业,例如污水处理厂、垃圾填埋场、畜禽养殖场等存在恶臭排放的地方。可以对国标规定的8种恶臭气体和其他多种恶臭气体均具有ppb级别的响应值。 此系统既支持本地数据库存储,也可以实现先进的云平台功能。系统可将多个区域、多个点位的恶臭在线检测设备,统一在区域恶臭在线监控平台上进行实时监测。系统通过显示臭气浓度、超标报警、样品存留等功能,可以成为环保部门的得力助手,实现对恶臭排放的有效监控。中心监控平台将子站端采集的数据进行显示、分析、统计,为决策部门提供有效的数字依据,并远程控制子站端进行留样。二、产品介绍1.基本原理采用高灵敏度金属氧化物,电化学,PID等传感器检测和阵列传感器技术。2.仪器参数仪器名称:同阳恶臭在线监测系统型号:TY-ODOR-212测量参数:臭气浓度,TVOC,硫化氢、氨气、三甲胺、甲硫醇、甲硫醚、二甲二硫、苯乙烯、二硫化碳等异味气体测量方法:金属氧化物、电化学,PID等 测量量程:臭气浓度0-1000 OU;TVOC、硫化氢、氨气、三甲胺、甲硫醇、甲硫醚、二甲二硫、苯乙烯、二硫化碳0-100 ppm;仪器类型:在线 产地:天津价格区间:40-80万3.技术优势满足国家标准及行业标准要求,适用于环保监测部门及污染排放企业;模块化设计,内嵌网络神经元算法和生命周期管理系统,最多可扩展15支传感器;气路采用负压吸入式,样品气不经过泵,无二次污染;内置高精度GPS模块,可实现恶臭溯源监测及走航监测等多种模式;通过监管平台查询数据列表、数据统计列表、臭气检测结果走势图;自动检测恶臭污染数据;可自动保存120天数据,断网情况下,数据不丢失,标配 HJ212协议。4.应用领域 环保监测部门对环境恶臭污染情况的监测与分析。 污染排放企业对恶臭的监测及控制。 工业污染源的追溯与监测,指导除臭工艺改善。 环保监测部门应对突发事件的监测。5.应用案例 天津市泰丰公园恶臭监测项目 深圳佳兆业城市广场恶臭监测项目 江苏印染行业恶臭在线检测项目 湖南望城工业园区恶臭监测项目 天津市诺维信污水洗涤塔恶臭监测项目 天津市顶益国际食品有限公司恶臭监测项目 天津市一汽丰田汽车有限公司恶臭监测项目 北京市海淀区六里屯垃圾填埋场大气环境监测系统项目 厦门东部固废24小时臭气连续监测系统项目创新点:1、较上一代恶臭监测产品,优化了系统架构模型,创新性设计了核心气室装置,采用空间矩阵结构,增设导流、稳流机构,升级人体感官污染监测匹配模型,数据算法及功能方面做了多维度提升。2、产品基于国家重大科学仪器设备开发专项技术基础、传感器阵列检测技术和仿生学理论框架,构建符合人体特点的生物拟态模型,增加动态加热系统、源解析采样系统、自动标定系统、生命周期管理系统等功能,辅助Ai遗传信噪消除,交叉干扰,环境补偿,动态空间向量等算法。3、核心检测装置创新性的采用空间矩阵结构4、增加污染源解析功能接口同阳科技TY-ODOR-212恶臭在线监测系统
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical Atomic Spectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 青岛能源所提出一种低能耗的二氧化碳捕集方法
    全球气候变暖已经成为人类社会可持续发展的严重威胁,人类活动排放的温室气体占其诱导因素的90%,而CO2占温室气体总排放量的77%。随着世界人口的不断增长和对能源需求的不断增加,人类排放的CO2与可持续发展的矛盾愈发尖锐。   碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)技术是CO2直接减排的有效手段,中国生态环境部发布的《中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)》认为,CCUS技术是我国化石能源低碳利用的唯一技术选择,而CO2捕集技术是前提和关键。CO2捕集是指将CO2从工业生产、能源利用或大气中分离出来的过程,目前较为成熟的碳捕集方法主要有热钾碱法和多醇胺法,其工艺过程类似,如图1所示。 图1 传统CO2捕集工艺流程图   活化热钾碱法和多醇胺法具有吸收速度快、净化度高、再生气纯度高等优点,但因存在大量溶剂蒸发(热钾碱法水蒸气与CO2摩尔比为1.8~2.2;多醇胺法约0.5)、捕集能耗高(占CCUS总成本的60%~85%,再生温度比吸收温度高,现有技术的两阶段存在大量溶液的反复升降温,导致再生能耗普遍≥2.4 GJ/(t CO2),捕集总能耗≥3.1 GJ/(t CO2))、吸收剂浓度低(碳酸钾浓度≤30%,否则易结晶堵塞管道)或吸收剂易蒸发降解等缺点,尤其是再生能耗和操作成本偏高,阻碍了其大规模工业推广应用,开发吸收效率高、捕集成本低的工艺和技术,一直是国内外研究的热点和难点。   近日,青岛能源所黄青山研究员带领的多相反应工程研究组在传统热钾碱法的基础上提出了一种基于相变吸收剂(碳酸钾/碳酸氢钾)、粒度可自由调控的反应分离一体化反应结晶器、微气泡技术及蒸汽热泵技术(Mechanical Vapor Recompression, MVR)的低能耗CO2捕集方法,其工艺流程如图2所示。 图2 基于碳酸钾/碳酸氢钾相变捕集低浓度CO2的工艺流程图   本方法具有以下特点:   (1)吸收速率高:采用高浓度的碳酸钾溶液(≥60 wt%)和特色微气泡技术(平均直径200~800 μm),大大延长了气泡在溶液中的停留时间,提高了气液吸收速率;   (2)仅固相再生,再生能耗低:再生过程无需对溶剂进行加热,可减少再生过程中因大量溶剂升降温和蒸发导致的显热和潜热损失;   (3)以水为媒介,采用蒸汽热泵技术实现吸收阶段热量的充分再利用:根据水汽化潜热分别是其气相和液相比热2000多倍和1000多倍性质,通过水的多次相变,采用蒸汽热泵技术实现潜热回收和热量品位的提升,不仅可将CO2吸收阶段的反应放热全部用于其解吸阶段的吸热过程,还避免了传统CO2捕集技术在吸收和解吸过程之间存在的大量且反复的升降温过程而造成的大量能量消耗问题,提高了能量的利用效率;   (4)连续反应结晶及晶体粒径可调控:生成物KHCO3晶体长大到一定尺寸后,利用反应结晶器内流体的定向流动实现颗粒自动分级和分离(小颗粒晶体返回结晶器中继续长大,大颗粒被分离并被浓缩),从而实现了晶体产物的节能分离及粒径的精准调控;   (5)设备投资小:吸收塔中各种过程强化技术相结合实现了反应分离一体化,再加上高浓度CO2吸收剂和微气泡技术,可提高捕集效率,减小设备尺寸。   该技术的理论再生能耗0.8 GJ/(t CO2)、综合捕集能耗≤1.5 GJ/(t CO2),为解决传统CO2捕集技术能耗高、成本高的问题提供了一种新的技术路径,以期助力我国“双碳”目标的实现。   上述工作发表在化工TOP期刊《Chemical Engineering Journal》上并申请了中国发明专利,通讯作者是青岛能源所的张海东助理研究员。该工作得到国家自然科学基金、山东省自然科学基金、所内合作基金、山东省合成生物学技术创新中心主任创新基金、中国科学院绿色过程制造创新研究院自主部署项目等项目的支持。
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 河北某单位批量采购129种消耗品
    河北某单位批量采购129种标液、药品以及耗材,如下,详细清单见附件:类别名称标液水中硼水中水合肼标准溶液水中水合三氯乙醛标准溶液氯标准溶液二硫化碳标准溶液水中六价铬药品钼酸铵正己烷二氯甲烷化学试剂/苯胺1,3-二苯基脲对二甲氨基苯甲醛耗材流动相玻璃瓶玻璃管石英比色皿3cm半微量滴定管容量瓶棕色刻度试管有机针式过滤器设备清单.xlsx联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 水质游离氯和总氯的测定等环标征求意见
    各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《水质 游离氯和总氯的测定 N, N-二乙基1, 4-苯二胺分光光度法》等11项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年9月20日前反馈我部。  联系人:环境保护部科技标准司 谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传  真:(010)66556213  附件:  1.征求意见单位名单  2.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺分光光度法》(征求意见稿)   3.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺分光光度法》(征求意见稿)编制说明  4.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺滴定法》(征求意见稿)  5.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺滴定法》(征求意见稿)编制说明  6.《环境空气 苯系物的测定 固体吸附/热脱附—气相色谱法》(征求意见稿)  7.《环境空气 苯系物的测定 固体吸附/热脱附—气相色谱法》(征求意见稿)编制说明  8.《环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸—气相色谱法》(征求意见稿)  9.《环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸—气相色谱法》(征求意见稿)编制说明  10.《水质 总汞的测定 冷原子吸收分光光度法》(征求意见稿)  11.《水质 总汞的测定 冷原子吸收分光光度法》(征求意见稿)编制说明  12.《水质 词汇 第一部分和第二部分》(征求意见稿)  13.《水质 词汇 第一部分和第二部分》(征求意见稿)编制说明  14.《水质 阿特拉津的测定 高效液相色谱法》(征求意见稿)  15.《水质 阿特拉津的测定 高效液相色谱法》(征求意见稿)编制说明  16.《固定污染源排气 氮氧化物的测定 酸碱滴定法和酚二磺酸分光光度法》(征求意见稿)  17.《固定污染源排气氮氧化物的测定酸碱滴定法和酚二磺酸分光光度法》(征求意见稿)编制说明  18.《水质 钒的测定 石墨炉原子吸收分光光度法》(征求意见稿)  19.《水质 钒的测定 石墨炉原子吸收分光光度法》(征求意见稿)编制说明  20.《水质 肼、水合肼和一甲基肼的测定 对二甲氨基苯甲醛分光光度法》(征求意见稿)  21.《水质 肼、水合肼和一甲基肼的测定 对二甲氨基苯甲醛分光光度法》(征求意见稿)编制说明  22.《环境空气 可吸入颗粒物的测定 重量法》(征求意见稿)  23.《环境空气 可吸入颗粒物的测定 重量法》(征求意见稿)编制说明  附件1:征求意见单位名单  住房城乡建设部办公厅  水利部办公厅  卫生部办公厅  国家质量监督检验检疫总局办公厅  中国气象局办公室  各省、自治区、直辖市环境保护厅(局)  各省、自治区、直辖市环境监测站(中心)  各环境保护重点城市环境监测站(中心)  新疆生产建设兵团环境监测中心站  中国环境科学研究院  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  中国环境监测总站  中日友好环境保护中心  中国环境科学学会  中国环境保护产业协会  环境保护部对外合作中心  环境保护部环境工程评估中心  环境保护部环境规划院  环境保护部环境标准研究所  环境保护部标准样品研究所  中国疾病预防控制中心  农业部环境保护科研监测所  中国科学院生态环境研究中心  中国城市规划设计研究院  中国林业科学研究院林业研究所  国家城市给水排水工程技术中心  长江流域水资源保护局  同济大学(环境学院)  天津化工研究设计院  中国气象科学院农气所  北京中兵北方环境科技发展有限责任公司  中国船舶重工集团公司第七一八研究所  上海交通大学  中国兵器装备集团公司  中国化工防治污染技术协会  中国轻工业清洁生产中心  中国皮革和制鞋工业研究院  华东理工大学  泰州市环境监测中心站  上海市浦东新区环境监测站
  • 最强二氧化碳吸收器问世
    物美价廉,可用于电池及人造树研制一种新的聚合物被证明适于去除大气中的二氧化碳  美国加利福尼亚州的研究人员生产出一种能够从空气中去除大量二氧化碳气体的廉价塑料制品。沿着这条路,这种新材料将能够用于大型电池的研制,甚至在避免灾难性气候变化的尝试中,成为旨在降低大气二氧化碳浓度的“人造树木”的主要成分。  这些长期目标一直吸引着由洛杉矶市南加利福尼亚大学(USC)的化学家George Olah领导的研究团队。作为1994年诺贝尔化学奖得主,Olah一直设想未来社会主要依赖由甲醇(一种简单的液体酒精)制成的燃料。随着容易开采的化石燃料在未来几十年变得愈发稀缺,他提出,人们可以贮存大气中的二氧化碳,并将其与从水中分离的氢相结合,从而形成一种具有广泛用途的甲醇燃料。  Olah和他的同事还在研制一种廉价铁基电池,这种电池能够储存由可再生能源产生的额外电力,并在需求高峰时输入电网。在运行时,铁电池会从空气中攫取氧。但即便只有微量的二氧化碳加入反应也将使电池报废。最近几年,研究人员开发出一些很好的二氧化碳吸收装置,它们由名为沸石的多孔固体与金属有机骨架构成。但是这些吸收装置价格昂贵。因此Olah和他的同事着手寻找一种成本更低的替代方法。  研究人员转而求助聚乙烯亚胺(PEI),这是一种廉价的聚合物,同时也是一种像样的二氧化碳吸收器。但它只能在表面俘获二氧化碳。为了增大PEI的表面积,USC的研究团队将这种聚合物溶解于一种甲醇溶剂中,并将其铺在一堆煅制二氧化硅的上面,后者是一种工业生产的、由玻璃熔解的小滴制成的廉价多孔固体。当溶剂蒸发后,留下的固体PEI便具有很大的表面积。  当研究人员对新材料的二氧化碳吸收能力进行测试时,他们发现,每克该物质在潮湿的空气中——类似于目前大多数的环境条件——平均可吸收1.72毫微摩尔的二氧化碳。这已经远远超过近期由氨基硅制成的另一个竞争对手1.44毫微摩尔每克的吸收值,并且在迄今进行的二氧化碳吸收能力测试中处于最高水平。研究小组在日前出版的《美国化学会志》中报告了这一研究成果。  如果二氧化碳处于饱和状态,这种PEI-二氧化硅合成物也很容易再生。当聚合物被加热至85摄氏度后,二氧化碳便会飘离。而其他常用固体二氧化碳吸收器则必须加热超过800摄氏度才能够赶走二氧化碳。  哥伦比亚大学的二氧化碳空气捕获专家Klaus Lackner表示:“这很有趣。它能够在低温下工作真太好了。”研究团队成员之一、USC的化学家Surya Prakash认为,这使它除了保护电池之外还能够用来抓住空气中的二氧化碳。这种聚合物可用于建造旨在减少大气中二氧化碳浓度的人造树大农场,以及防止气候变化的最严重破坏。但前提是世界各国愿意花费数不清的资金来控制大气中的二氧化碳。  由于这种聚合物会在高温下降解,因此意味着它不可能用于吸收来自工厂烟囱或汽车排气管中的二氧化碳——那里的二氧化碳通常浓度很高且温度也很高。为了克服这一瓶颈,Prakash说,USC的研究团队如今正在研制高表面积且更耐热的PEI。
  • 大连化物所揭示锌物种在二氧化碳催化加氢中的作用
    近日,大连化物所碳资源小分子与氢能利用研究组(DNL1905组)孙剑研究员、俞佳枫副研究员团队与德国卡尔斯鲁厄理工学院Grunwaldt教授合作,利用双喷嘴火焰喷射裂解法(DFSP)对经典的铜—锌—锆三元催化材料结构进行精细调控,通过多种原位表征手段揭示了氧化锌在二氧化碳加氢制甲醇反应体系下的结构敏感性。此外,合作团队还利用锌锆组分间的相互作用,制备了原子级分散的氧化锌,并证明了其是提高铜基催化剂反应性能的关键。Cu/ZnO是经济高效的二氧化碳加氢制甲醇的催化剂之一,ZnO在该体系中的作用机理是长期以来的研究热点。然而,ZnO结构容易在反应过程中发生动态变化,目前研究仅基于不同的反应气氛和催化体系建立ZnO结构的研究模型,但难以获得真实反应条件下Zn物种精细的局部配位结构及其关键催化作用的有效信息。因此,需要利用原位表征技术,在反应过程中实时监测Zn物种结构的动态演变过程,才能得到具有指导意义的构效关系。   孙剑团队在前期单喷嘴火焰喷射法(FSP)制备多种高效催化剂策略的基础上(Chem. Sci.,2017;Chem. Commun.,2021;Nat. Commun.,2021;J. Am. Chem. Soc.,2022),利用升级的双喷嘴技术对于铜—锌—锆三元催化剂各组分间相互作用的程度进行了精细调控,在不改变铜和氧化锆结构性质的前提下得到了三种不同的锌物种;通过原位X射线吸收光谱技术对锌原子的局部配位结构和高压反应条件下锌物种的动态演变机理进行了深入探究;分别借助高压和常压红外漫反射技术考察了不同锌物种对反应中间体的吸附和转化的影响。研究发现,将锌锆前驱体和铜前驱体分开在不同的喷嘴中,可以明显增强锌和锆组分间的相互作用,在反应条件的诱导下,ZnO发生再分散,进而在氧化锆表面形成了原子级分散的锌物种。此类锌物种与铜之间形成了高活性界面,可抑制中间体分解为副产物一氧化碳,降低氢活化的能垒,明显超越常规铜/氧化锌界面和孤立的氧化锌位点的催化性能,有效提高了甲醇选择性和收率。此项工作将为合理设计和精准调控多组分催化体系中的活性物种提供新思路。   相关成果以“Probing the Nature of Zinc in Copper-Zinc-Zirconium Catalysts by Operando Spectroscopies for CO2 Hydrogenation to Methanol”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该文章的第一作者是我所DNL1905组博士研究生杨蒙。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的支持。
  • 乘风“碳中和”|变“废”为宝---二氧化碳还原反应产物分析方案
    乘风“碳中和”|变“废”为宝---二氧化碳还原反应产物分析方案王健二氧化碳Carbon Dioxide如何有效利用二氧化碳,使之转化为可利用的资源,是科技工作者研究的重要目标。其中二氧化碳的电催化、光催化、加氢还原等反应成为目前基础研究的热点,反应产物包括H2、O2、CO、C1-C4烃类、有机醇、酸、醛等,浓度范围随着反应机理不同变化比较大。气相色谱主要分析H2、O2、CO、CH4、C2-C4烃类,有机醇类。为了满足科研工作者的分析需求,赛默飞定制化气相色谱仪针对不同的反应流程,提供了多种解决方案。赛默飞定制化气相色谱仪应用于电催化反应装置赛默飞定制化气相色谱仪应用于光催化反应装置赛默飞定制化气相用于加氢催化反应装置 方案一 :单分流进样口,二阀三柱,单TCD,双FID及甲烷转化器,三检测器方案。 反应特点:CO2电催化还原反应,原料气体为CO2,反应气体正压流动,可以采用阀进样方式与反应装置连接。主要产物包括:H2、CO、CH4、C2-C4烃类。其中H2检出限在5ppm以下,CO检出限1ppm以下,CH4等烃类检出限在1ppm以下。 方案特点:三检测器彼此独立,检测灵敏度高,可以检测到C4以上烃类,适合组分比较复杂的样品。 色谱图: 方案二 :三阀三柱,TCD与FID串联及甲烷转化器,双检测器方案。 反应特点:CO2电催化还原反应,原料气体为CO2,反应气体正压流动,可以采用阀进样方式与反应装置连接。主要产物包括:H2、O2、N2、CO、CH4、C2H6、C2H4、C2H2,其中H2检出限在10ppm以下,O2、N2检出限在0.1%以下,CO检出限1ppm以下,CH4、C2检出限在1ppm以下。 方案特点:流路结构紧凑,同时分析包含C2的所有烃类组分和永久性气体,性价比高。如果样品量较少,可增加一个进样口实现注射器进样。 色谱图: 方案三 :双分流进样口,三阀三柱,单TCD,双FID及甲烷转化器,三检测器方案。 反应特点:CO2光催化还原反应,反应装置保持真空负压,装置自带缓冲阀。反应产物包括:H2、O2、N2、CH4、CO及C2-C4烃类。为了满足用户多种进样方式需求,此方案设计了包括正压自动阀进样功能、手动注射进样功能、和负压手动阀进样功能。 方案特点:三通道同时分析,除常规的H2、O2、N2、CH4、CO外,毛细柱通道可根据需要分析更高烃类和有机醇、酸类。进样方式灵活,可以满足正压进样、负压进样和手动注射进样多种方式。 色谱图: 方案四 :四阀四柱,单TCD,单FID,双检测器方案 反应特点:二氧化碳加氢还原反应,用于评价不同催化剂反应活性。原料气为CO2、H2,主要产物包括H2、O2、N2、CO、CO2、C1-C5烃类、醇类及苯系物,有机产物组成比较复杂。系统保持正压流动状态,可阀进样。 方案特点:双通道,通道1完成常规永久性气体分析,包括H2(可扩展)、O2、N2、CO,CO2。通道2完成烃类和醇类分析。系统流路紧凑,可实现无机气体、醇类、苯系物、烃类同时分析,性价比高。 色谱图: 结语:二氧化碳还原反应是当前的科研热点,分析需求大,不同的反应路线,产物和装置特点不同,同时用户对于仪器设备成本也有不同的要求。赛默飞定制化气相色谱仪可以根据用户不同分析需求,有针对性的做出多种配置方案,灵活多变,可靠耐用,是科研工作者可以信赖的分析伙伴。
  • 广州大学王家海团队联合香港科技大学邵敏华团队在二维硫化物锂离子电池负极材料研究中取得进展
    研究背景金属相硫化钼(1TMoS2)由于其优异的物理和电化学性能,被认为是锂离子电池中最有前途的阳极材料之一。然而,苛刻的合成条件和低1T相纯度阻碍了1T MoS2的发展。图一 . 高效合成的金属Mg-MoS2 具备优越的电化学性能.为解决这些问题,王家海教授团队联合香港科技大学邵敏华教授合作,在此,设计了一种新的策略来构建通过镁插层实现的高1T相纯MoS2,Mg作为电子供体嵌入MoS2层中与S原子形成八面体配位,并确保高1T相纯度。镁的嵌入有助于锂的储存动力学。通过提高锂离子迁移和导电性,Mg插层MoS2作为阳极材料表现出优异的储锂性能。XRD、XPS和密度泛函理论(DFT)证明了插层Mg与MoS2层中相邻的硫原子形成八面体配位。Mg作为电子供体,确保了高1T相纯度,从而提高了MoS2阳极材料的电子传导率和结构稳定性。结果,Mg插层MoS2在3000次循环后在20A g-1下提供415.7mAh g-1的优异储锂容量和循环性能。原位XRD和XPS表明,Mg插层的1T MoS2在第一次循环后转移到非晶纳米颗粒,这有利于优异的锂储存稳定性。这种用于构建高相纯度1T MoS2的新颖而简单的策略解锁了1T MoS2中强大的锂存储能力,并启发了其在各种应用中的进一步应用。王家海教授和邵敏华教授为共同通讯作者,在国际知名期刊Nano Energy上发表题为“Unlocking Robust Lithium Storage Performance in High 1T-phase Purity MoS2 constructed by Mg Intercalation”的研究工作,陈辅周博士后第一作者,广州大学第一单位。工作亮点寻找高性能锂离子电池电极材料对开发高性能锂离子电池至关重要。金属相二硫化钼(1T MoS2)具有优异的物理和电化学性能,被认为是锂离子电池最有前途的电极材料之一。然而,苛刻的合成条件和较低的1T相纯度阻碍了1T MoS2的发展。因此,开发一种安全高效1T MoS2的合成方法成为研究重点。通过诱发相变可以增强MoS2的电化学性能,提高MoS2的电导率。然而,1T相的亚稳性质使其难以制备,因此寻找新的合成方法已成为开发1T MoS2的一个重要因素。许多实验证明使用碱金属和过渡金属插层进入MoS2层间可以引发1T相相变。插层原子作为电子供体稳定1T相并增大MoS2的层间距,有利于锂离子在MoS2层间快速传输。然而传统的合成插层1T相MoS2方法,如熔融碱金属插层和剥离法,需要在苛刻的反应条件下进行。这些实验条件使得合成过程十分危险,不利于1T MoS2的进一步开发和利用。该工作利用镁钼多氧酸盐作为前驱体,通过一步水热反应制备出镁插层1T相MoS2材料。利用镁钼多氧酸盐本身固有的结构,使得镁原子均匀插层进入MoS2材料层间。镁原子作为电子供体增强了1T MoS2的稳定性,从而提高了1T相在整体MoS2中的比例,增强了MoS2的电学性能和储锂性能。结合材料结构表征和第一性原理计算进一步表明,在MoS2层间的镁原子同周围的硫原子形成八面体配位结构,镁原子作为电子供体保证了1T相MoS2的稳定,同时降低了材料整体的离子迁移势垒,加快材料表面的储锂动力学过程。 图二(左),结构表征Mg-MoS2-3. (a) 扫描电镜图 (b) 透射电镜图 (c,d) 高分辨透射电镜图 (e) 元素分布图 (f) XRD图谱 (g) 拉曼光谱 (h) 镁1s XPS 图谱 (i) 镁2p XPS 图谱图二(右),理论计算和模拟结构 (a) 2H MoS2 结构模拟. (b) Mg插层MoS2八面体配位结构 (c) Mg插层MoS2三棱柱配位结构 (d) 2H MoS2 与 (e) Mg插层MoS2 DOS 图谱 (f) 锂离子扩散势垒 (g,h) Mg 插层MoS2差分电荷密度图文章链接:https://www.sciencedirect.com/science/article/pii/S2211285522009715?dgcid=coauthor
  • “氢”力保障,Nexis SCD-2030享你所想
    氢能是一种清洁、高效、可持续的二次能源,同时兼有来源广、燃烧热值高、能量密度大、可储存、可再生的特点,是实现“双碳”目标的重要一环。氢能应用场景广泛,其中质子交换膜燃料电池汽车是氢能的主要应用场景之一,氢气中杂质控制是确保燃料电池正常运行的关键因素,标准《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》中对杂质控制有着严格的要求,其中硫化物是检测难点之一。硫化物特点● 浓度低 总硫含量不可超过0.004 μmol/mol● 危害大 对质子交换膜燃料电池阴极催化剂产生不可逆的毒化作用● 活性高 易与接触的材料表面发生物理吸附或者化学反应,分析误差大硫化学发光化检测器(SCD)是目前公认的高灵敏和高选择性硫元素检测器,且不受大多数样品基质的干扰,岛津硫化学发光检测系统Nexis SCD-2030,以创新的水平燃烧器设计为用户提供更高灵敏度和更高稳定性,以丰富的软自动化功能使实验室的分析效率攀上新台阶。岛津硫化学发光检测系统Nexis SCD-2030实验一 样品直接进样分析使用Nexis GC-2030(搭配SCD-2030检测器)管路系统惰性化,直接进样测定氢气中硫化氢、羰基硫、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩等组分。SCD分析痕量硫化物色谱图-1注:1.硫化氢;2.羰基硫;3.甲硫醇;4.乙硫醇SCD分析痕量硫化物色谱图-25.甲硫醚;6.二硫化碳;7. 叔丁硫醇;8. 甲基乙基硫醚;9. 乙硫醚;10.四氢噻吩表1. 1.0 mg/m3浓度点的检测结果如上表是以1.0 mg/m3浓度点标气来测试重复性和检测限,其重复性结果均优于1.0%,硫化物检测下限为10ppb(V/V)级,体现了Nexis SCD-2030良好的重复性和高灵敏度特点。实验二 样品经富集浓缩后进样分析中国测试技术研究院技术人员通过深入分析探讨,开展了基于半导体制冷的低温富集装置与GC-SCD联用试验,方法以氢气中硫化氢、硫氧碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、甲乙硫醚、噻吩、乙硫醚等9个组分的硫化物气体标准物质进行了方法开发研究,获得了良好的分析效果。在《天然气工业》期刊发表了题为“车用燃料氢气中杂质组分分析方法标准化现状与探讨-以质子交换膜燃料电池汽车为例”的文章, 岛津的Nexis SCD-2030硫化学发光检测器作为分析系统检测部分的核心大显身手。样品富集浓缩进样SCD分析痕量硫化物色谱图注:1.硫化氢;2.硫氧碳;3.甲硫醇;4.乙硫醇;5.甲硫醚;6.二硫化碳;7.甲乙硫醚;8.噻吩;9.乙硫醚研究结果表明低温富集装置-GC-SCD联用分析系统可以很好满足《GB/T 37244-2018 质子交换膜燃料电池汽车用燃料 氢气》对总硫的分析要求,方法检出限最低可达到0.01 nmol/mol,0.1-40 nmol/mol范围内的线性相关系数R2大于0.995,0.1 nmol/mol的重复性小于5%。参考资料:1. 岛津应用No. GC-164. 岛津Nexis GC-2030 SCD测定氢气中微量形态硫.2. 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制