当前位置: 仪器信息网 > 行业主题 > >

乙酰水杨酸峰鉴别标准品

仪器信息网乙酰水杨酸峰鉴别标准品专题为您提供2024年最新乙酰水杨酸峰鉴别标准品价格报价、厂家品牌的相关信息, 包括乙酰水杨酸峰鉴别标准品参数、型号等,不管是国产,还是进口品牌的乙酰水杨酸峰鉴别标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰水杨酸峰鉴别标准品相关的耗材配件、试剂标物,还有乙酰水杨酸峰鉴别标准品相关的最新资讯、资料,以及乙酰水杨酸峰鉴别标准品相关的解决方案。

乙酰水杨酸峰鉴别标准品相关的资讯

  • 水杨酸己酯安全性:从光安全性到人体研究
    光安全性评估是一个综合过程,涉及光化学特性、非临床研究数据以及对人体安全性的评估。这一评估的目的在于确定是否有必要采取风险最小化措施来预防人类的不良事件。光毒性(光刺激)是指光反应性化学物质引起的急性光诱导组织反应;光过敏是指由光化学反应后形成的光产物(如蛋白质加合物)引起的对化学物质的免疫介导反应。《ICH协调指南 药品的光安全性评价S10》根据人用药品技术要求国际协调理事会(ICH)发布的《ICH协调指南 药品的光安全性评价S10》(ICH HARMONISED TRIPARTITE GUIDELINE, PHOTOSAFETY EVALUATION OF PHARMACEUTICALS, S10),如果一个化合物需要阐明其光毒性,则应具备以下关键特征:① 吸收光为自然光线(波长范围为290-700 nm);② 吸收紫外/可见光后产生反应物质;③ 在光暴露组织(如皮肤、眼睛等)有足够的分布。如果不满足这些条件中的一个或多个,化合物通常不会产生直接的光毒性。《化妆品安全评估技术导则》 皮肤光毒性试验评价化妆品原料和/或风险物质引起皮肤光毒性的可能性;皮肤光变态反应试验可评估重复接触化妆品原料和/或风险物质,并在紫外线照射下引起皮肤光变态反应的可能性。《化妆品新原料注册备案资料管理规定》申请注册或进行备案的化妆品新原料,原则上应当提供以下毒理学试验项目资料,可以根据申报注册或进行备案新原料的用途、理化特性、定量构效关系、毒理学资料、临床研究、人群流行病学调查以及类似化合物的毒性等情况,增加或减免相应的毒理学试验项目,其中包含:④ 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验);⑤ 皮肤光变态反应试验(除情形6外,原料具有紫外吸收特性时需提交该项试验资料)。◆ 光安全性评价流程 ◆图1 光安全性评价流程图表1 光安全性评价检测方法汇总《化妆品安全评估资料提交指南》指出,根据原料的化学结构特点,对原料进行充分分析或测试能够证明其不具有紫外线吸收特性的,可豁免对皮肤光毒性的评估。例如,在290nm-700nm波长范围内的摩尔消光系数(Molar Extinction Coefficient, MEC)小于1000L/mol/cm,则该物质的光反应性较低,不足以引起皮肤光毒性。◆ 以水杨酸己酯为例 ◆2024年7月29日,欧盟消费者安全科学委员会SCCS发布了《关于水杨酸己酯的科学意见附录SCCS/1658/23 - 0-3岁儿童接触》,开放征求意见截止日期至2024年9月23日。图片源自SCCS官网文件中根据紫外/可见(UV/Vis)光谱、体外数据和体内数据评估了光刺激/光致敏性终点。相关实验与结论如下:①紫外光谱分析(RIFM (Sears),2014)紫外/可见光谱(OECD TG 101)显示,水杨酸己酯在290-700 nm之间有显著的吸收峰,吸光度峰值在305 nm处,并在330 nm时返回基线。290 ~ 700 nm波长的摩尔吸收系数高于光刺激效应的关注基准(1000 Lmol-1cm-1)。② 体外3T3细胞(RIFM (Harbell),2002)在3T3中性红摄取(NRU)光刺激试验中测试了水杨酸己酯。通过比较有UVA照射和没有UVA照射的IC50值来计算光刺激因子。结果表明,水杨酸己酯不具有光刺激性。未观察到光刺激反应。③ 小鼠研究(RIFM (Urbach),1975)将未稀释的水杨酸己酯(20 ul)涂于无毛突变小鼠背部区域,暴露在长弧氙灯和荧光黑光灯下。分别在4、24、48、72和96小时评估反应。在照射阳性对照部位观察到光毒性反应。无反应辐照或未辐照的试验材料处理部位均观察到水杨酸己酯无光毒性。④ 小型猪研究(RIFM (Urbach),1975年) 根据上述小鼠试验的相同程序,用未稀释的水杨酸己酯(20 ul)对两只小型猪进行试验,也未观察到光毒性。⑤豚鼠(RIFM (Learn),2003) 在两组远交白化无毛豚鼠中评价水杨酸己酯的光刺激作用。将0.3 ml水杨酸己酯按0%、5%、10%、50%和100%的比例溶于二乙基苯甲酸乙酯(DEP):乙基苯甲酸乙酯(EtOH)=3:1的溶液中进行试验。受试物给药和紫外线照射后立即、1/4小时,1/2/3天进行临床观察。水杨酸己酯不会引起光刺激引起的皮肤变化。⑥豚鼠(RIFM (Learn) 2003) 两组远交系白化无毛豚鼠暴露于水杨酸己酯(50%和100%)中未观察到光过敏。将0.3 ml用DEP:EtOHl=3:1配制的水杨酸己酯施用于颈部,动物颈部暴露于紫外线辐射约2.25小时。在给药和/或UVR暴露4小时后对这些位点进行评分。根据研究结果,水杨酸己酯不被认为是光过敏原。⑦人体研究(RIFM(Potrebka),2004)对56名受试者(41名女性和15名男性)进行光刺激潜能研究,水杨酸己酯(0.3%、3%和30%溶于DEP:ethanol=3:1的溶液中)施用于每个受试者的背部,然后用UVA和UVB照射,未辐照部位作为对照,评估受试物的刺激潜力。在UVA和UVB照射1、24、48和72小时后评估反应。未观察到任何反应。 根据现有的体外、体内和人体数据,最终可得出结论↓ 水杨酸己酯不具有光毒性或光致敏性。
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 卫生部就71项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函卫办监督函〔2011〕561号各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。  传 真:010-67711813  电子信箱:gb2760@gmail.com。  二○一一年六月十四日  附件:  《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)序号标准名称1食品添加剂 庚酸烯丙酯2食品添加剂 苯甲醛3食品添加剂 月桂酸乙酯4食品添加剂 肉豆蔻酸乙酯5食品添加剂 乙酸香茅酯6食品添加剂 丁酸香叶酯7食品添加剂 乙酸丁酯8食品添加剂 乙酸己酯9食品添加剂 乙酸辛酯10食品添加剂 乙酸癸酯11食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯)12食品添加剂 乙酸异丁酯13食品添加剂 丁酸戊酯14食品添加剂 丁酸己酯15食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯)16食品添加剂 己酸顺式-3-己烯酯(又名己酸叶醇酯)17食品添加剂 2-甲基丁酸乙酯18食品添加剂 2-甲基丁酸19食品添加剂 乙酸薄荷酯20食品添加剂 乳酸l-薄荷酯21食品添加剂 二甲基硫醚22食品添加剂 3-甲硫基丙醇23食品添加剂 3-甲硫基丙醛24食品添加剂 3-甲硫基丙酸甲酯25食品添加剂 3-甲硫基丙酸乙酯26食品添加剂 乙酰乙酸乙酯27食品添加剂 乙酸肉桂酯28食品添加剂 肉桂醛29食品添加剂 肉桂酸30食品添加剂 肉桂酸甲酯31食品添加剂 肉桂酸乙酯32食品添加剂 肉桂酸苯乙酯33食品添加剂 5-甲基糠醛34食品添加剂 苯甲酸甲酯35食品添加剂 茴香醇36食品添加剂 大茴香醛37食品添加剂 水杨酸甲酯(又名柳酸甲酯)38食品添加剂 水杨酸乙酯(又名柳酸乙酯)39食品添加剂 水杨酸异戊酯(又名柳酸异戊酯)40食品添加剂 丁酰乳酸丁酯41食品添加剂 乙酸苯乙酯42食品添加剂 苯乙酸苯乙酯43食品添加剂 苯乙酸乙酯44食品添加剂 苯氧乙酸烯丙酯45食品添加剂 二氢香豆素46食品添加剂 2-甲基-2-戊烯酸(又名草莓酸)47食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮48食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮49食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮(又名菊苣酮)50食品添加剂 2,3-戊二酮51食品添加剂 靛蓝52食品添加剂 靛蓝铝色淀53食品添加剂 植物炭黑54食品添加剂 酸性红55食品添加剂 β-胡萝卜素(发酵法)56食品添加剂 栀子蓝57食品添加剂 玫瑰茄红58食品添加剂 葡萄皮红59食品添加剂 辣椒油树脂60食品添加剂 紫草红61食品添加剂 番茄红(天然)62食品添加剂 核黄素磷酸钠63食品添加剂 辛癸酸甘油酯64食品添加剂 辛烯基琥珀酸淀粉钠65食品添加剂 可得然胶66食品添加剂 普鲁兰多糖67食品添加剂 磷脂68食品添加剂 乳酸钾69食品添加剂 瓜尔胶70食品添加剂 L-精氨酸71食品添加剂 麦芽糖醇和麦芽糖醇液
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。  此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。  市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法鸡新城疫活疫苗-2023.10.2359禽用灭活疫苗中非法添加禽腺病毒Ⅰ群全病毒抗原检测方法禽用灭活疫苗-2023.10.2360禽用灭活疫苗中非法添加禽流感病毒抗原检测方法禽用灭活疫苗禽流感病毒抗原2017.6.12农业部公告第2538号61清瘟败毒片中非法添加三磷酸核苷竞争性抑制剂(GS-441524)检查方法清瘟败毒片三磷酸核苷竞争性抑制剂(GS-441524)2024.6.19农业农村部公告第801号参考自农业农村部官方网站:http://www.xmsyj.moa.gov.cn/zcjd/202403/t20240321_6452006.htmhttp://www.xmsyj.moa.gov.cn/gzdt/202406/t20240619_6457458.htm
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准  1、范围  本标准规定了室内空气质量参数及检验方法。  本标准适用于住宅和办公建筑物。  2、规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB 6921-86 大气飘尘浓度测定方法 重量法  GB 9801-88 空气质量 一氧化碳的测定 非分散红外法  GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法  GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法  GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法  GB/T 14669-93 空气质量 氨的测定 离子选择电极法  GB/T 14582-93 环境空气中氡的标准测量方法  GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法  GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法  GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法  GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法  GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法  GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法  GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法  GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法  GB/T 16146-1995 住房内氡浓度控制标准  GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法  GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准  GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法  GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法  GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法  GB/T 18204.25-2000 公共场所空气中氨检验方法  GB/T 18204.26-2000 公共场所空气中甲醛测定方法  GB/T 18204.27-2000 公共场所空气中臭氧检验方法  5 室内空气质量检验  5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。  5.2 室内空气中苯浓度的测定方法见附录 C 。  5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。  5.4 室内空气中细菌总数检验方法见附录 E 。  5.5 室内热环境参数的检验方法见附录 F 。  附录 A  (规范性附录)  室内空气采样技术导则  1、范围  本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。  2、选点要求  2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5 个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。  2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。  2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。  3、采样时间和频率  采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。  4、采样方法和采样仪器  根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。  5、采样的质量保证措施  5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。  5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。  采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。  5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。  5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。  5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。  6、记录和报告  采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。  附录 B  (规范性附录)  室内空气中各种参数的检验方法 *  污染物 检验方法 来源  (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995  ( 2 ) GB/T 15262-94  (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90  ( 2 ) GB/T 15435-1995  (3) 一氧化碳 CO ( 1 )非分散红外法  ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88  , SPAN style="FONT-SIZE: 9pt COLOR: #666666 FONT-FAMILY: 宋体 mso-ascii-font-family: 'Times New Roman' mso-hansi-font-family: 'Times New Roman'"( 2 ) GB/T 18204.23-2000  (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法  ( 2 )气相色谱法  ( 3 )容量滴定法 GB/T 18204.24-2000  (5) 氨 NH3 ( 1 )靛酚蓝分光光度法  纳氏试剂分光光度法  ( 2 )离子选择电极法  ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000  ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93  (6) 臭氧 0 3 ( 1 )紫外光度法  ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995  ( 2 ) GB/T 18204.27-2000  (7) 甲醛 HCHO • AHMT 分光光度法  • 酚试剂分光光度法  气相色谱法  ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95  ( 2 ) GB/T 18204.26-2000  ( 3 ) GB/T 15516-95  (8) 苯 C 6 H 6 气相色谱法 • 附录 C  ( 2 ) GB 11737-89  ( 9 ) 甲苯 C 7 H 8 、  二甲苯 C 8 H 10 气相色谱法 GB 14677-93  (10) 苯并 [a] 芘  B(a)P 高压液相色谱法 GB/T 15439-1995  (11) 可吸入颗粒  PM10 撞击式 —— 称重法 GB/T 17095-1997  (12) 总挥发性有机物  TVOC 气相色谱法 附录 D  (13) 细菌总数 撞击法 附录 E  (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F  (15) 新风量 示踪气体法 GB/T18204.18-2000  (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法  ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995  ( 2 ) GB/T 14582-93  * 注:检验方法中( 1 )法为仲裁法。  附录 C  (规范性附录)  空气中苯浓度的测定  (毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。  1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。  1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。  2、适用范围  2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。  2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。  3、试剂和材料  3.1 苯:色谱纯。  3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。  3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。  4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.3 注射器: 1ml 。体积刻度误差应校正。  4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。  4.5 具塞刻度试管: 2ml 。  4.6 气相色谱仪:附氢火焰离子化检测器。  4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。  5、采样和样品保存  在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。  6、分析步骤  6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。  6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。  6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。  6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。  8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。  附录 D  (规范性附录)  室内空气中总挥发性有机物( TVOC )的检验方法  (热解吸 / 毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”  1.2 原理  选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。  1.3 干扰和排除  采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。  2、适用范围  2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。  2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。  3、试剂和材料  分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。  3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。  3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。  3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。  4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。  4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。  色谱柱:非极性(极性指数小于 10 )石英毛细管柱。  4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。  4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。  5、采样和样品保存  将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。  采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。  6、分析步骤  6.1 样品的解吸和浓缩  将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。  表 1 解吸条件  解吸温度 250 ℃ ~325 ℃  解吸时间 5~15min  解吸气流量 30~50ml/min  冷阱的制冷温度 +20 ℃ ~-180 ℃  冷阱的加热温度 250 ℃ ~350 ℃  冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg  载气 氦气或高纯氮气  分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择  6.2 色谱分析条件  可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。  6.3 标准曲线的绘制  气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。  液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。  用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。  6.4 样品分析  每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  7.2 TVOC 的计算  ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。  ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。  ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。  ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。  ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。  ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。  ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。  7.3 空气样品中待测组分的浓度按( 2 )式计算  式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。  8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。  附录 E  (规范性附录)  室内空气中细菌总数检验方法  1、适用范围  本方法适用于室内空气细菌总数测定。  2、定义  撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。  3、仪器和设备  3.1 高压蒸汽灭菌器。  3.2 干热灭菌器。  3.3 恒温培养箱。  3.4 冰箱。  3.5 平皿 ( 直径 9cm) 。  3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。  3.7 撞击式空气微生物采样器。  采样器的基本要求 :  (1) 对空气中细菌捕获率达 95 %。  (2) 操作简单 , 携带方便 , 性能稳定 , 便于消毒。  4 营养琼脂培养基  4.1. 成分 :  蛋白胨 20g  牛肉浸膏 3g  氯化钠 5g  琼脂 15~20g  蒸馏水 1000ml  4.2 制法 将上述各成分混合 , 加热溶解 , 校正 pH 至 7.4 ,过滤分装, 121 ℃, 20min 高压灭菌。撞击法参照采样器使用说明制备营养琼脂平板。  5 操作步骤  5.1 选择有代表性的房间和位置设置采样点。将采样器消毒 , 按仪器使用说明进行采样。  5.2 样品采完后,将带菌营养琼脂平板置 36 ± 1 ℃恒温箱中 , 培养 48h ,计数菌落数 , 并根据采样器的流量和采样时间 , 换算成每 m 3 空气中的菌落数。以 cfu/m 3 报告结果。  附录 F    (规范性附录)  热环境参数的检验方法  热环境参数测试的要求、方法和仪器 *  测试项目 测试范围 准确度 测试方法和仪器  温度 -10~50 ℃ ± 0.3 ℃ 玻璃温度计(包括干湿球温度计)  数字式温度计(热电偶、热电阻、半导体式包括数字式湿度计或风速计所附的温度计)  相对湿度 12%~99% ± 3% 干湿球温度计  氯化锂露点式湿度计  电容式数字湿度计  空气流速 0.01~20m/s ± 5% 热球式电风速计  热线式电风速计  * 各种测试仪器的使用方法见仪器的使用说明书。  HPLC法测定布洛芬糖浆剂的含量  布洛芬糖浆剂除具有布洛芬片剂的药效外,还具有吸收快、利于儿童服用等特点[1]。但由于布洛芬不溶于水,其糖浆剂中均含有碱性物质以增加其溶解度[2,3],所以不能再用药典规定的中和法测定布洛芬含量。本文采用HPLC法测定了布洛芬糖浆剂的含量,获得了较满意的结果。  1 仪器与试药  日本岛津LC-6A高效液相色谱仪、SPD-6AV紫外检测器、SCL-6B系统控制器、C-R4A数据处理机、LC-6A输液泵。  布洛芬对照品:山东新华制药厂生产,采用本文色谱条件检查为单一色谱峰,含量为99.80% 布洛芬糖浆剂[3]:自制,标示量为2 %(g.mL-1) 二苯胺(内标)及无水甲醇均为分析纯。  2 色谱条件  色谱柱:YWG?C18 4.6 mm×250 mm 流动相:取磷酸二氢钠380 mg与磷酸氢二钠50 mg,加水溶解至1000 mL,用磷酸调pH至3.0,取出250 mL加甲醇750 mL,混匀。流速:1 mL.min-1 检测波长220 nm 进样量20 μL 检测灵敏度:0.01 AUFS。  3 标准曲线制备  精密称取二苯胺适量,加无水甲醇配制成0.7 mg.mL-1的溶液,作为内标溶液。另取布洛芬对照品适量,精密称定,加无水甲醇配制成0.27 mg.mL-1的溶液,作为对照品溶液。精密量取对照品溶液0.5、1.0、1.5、2.0、2.5、5.0mL,分别置于50 mL量瓶中,加入内标溶液1.0 mL,用无水甲醇稀释至刻度,摇匀,进样20 μL。以对照品与内标的峰面积之比为纵坐标,相应对照品浓度(mg.mL-1)为横坐标,得回归方程: Y=75.5X+0.0136 r=0.9997结果表明,布洛芬溶液浓度在3~30 μg.mL-1范围内与峰面积呈良好的线性关系。二苯胺及布洛芬的色谱图图1 二苯胺及布洛芬的色谱图  1.二苯胺 2.布洛芬  4 回收实验  取布洛芬对照品约100 mg,精密称定,定量转移至100 mL量瓶中,按处方加入单糖浆、L-精氨酸、苯甲酸钠、香精,用无水甲醇稀释至刻度,摇匀。精密取上述溶液及内标溶液各1 mL,按“样品测定”项下操作。测得平均回收率为99.89 %,RSD为0.93%,n=6。  5 样品测定  取布洛芬糖浆剂约2.5 mL,精密称定,定量转移至50 mL量瓶中,用无水甲醇稀释至刻度,摇匀。精密吸取上述溶液及内标溶液各1 mL置于50 mL量瓶中,用无水甲醇稀释至刻度,摇匀,进样20 μL。测得样品的含量为标示量的97.23 %,n=5,RSD为0.89 %。  6 讨论  经稳定性试验观察,样品溶液在室温下(约18 ℃)放置,每隔2 h测定1次,测至6 h,样品标示百分含量结果的RSD为0.99%,n=3。说明样品溶液较稳定。  以安定为内标物,效果也较好。但由于笔者想将该法用于布洛芬糖浆剂生物利用度测定,为防止人体内安定类药物的干扰,所以选择二苯胺为内标。  双甘瞵的HPLC分析条件  摘要:  试剂和溶液:  四丁基硫氢酸胺,  色谱纯甲醇  色谱纯磷酸  AR磷酸二氢钾  AR水:二次蒸馏水  双甘瞵标样  流动相:  0.05moLKH2PO4,200mL+50mL甲醇+0.5  色谱柱:Sinochrom ODS-BP 150mmX4.6mm 5um  流量:1mL/min  波长:195nm  柱温:35度。  HPLC同时测定大黄素和大黄酚的含量  大黄的有效成分为大黄素、大黄酚、大黄酸、芦荟大黄素、大黄素甲醚及其甙类等蒽醌类成分。有关大黄及其制剂有效成分含量测定方法报道很多,如比色法、薄层-紫外分光光度法、HPLC法等。这里简单介绍一下HPLC法同时测定大黄素和大黄酚含量时的色谱条件、样品处理方法等。  ⑴《中国药典》2005版大黄含量测定项:以十八烷基硅烷键合硅胶为填充剂 甲醇-0.1%磷酸溶液(85:15)为流动相。检测波长为254nm。对照品为芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚。大黄样品前处理:甲醇回流提取—8%盐酸超声—三氯甲烷回流萃取。  ⑵赵莉,晁若冰测定了大黄通便胶囊中大黄素和大黄酚的含量。色谱条件同⑴。仪器:LC-IOAT vp高效液相色谱仪,SPD-M10A vp光二极管阵列检测器,Class-vp色谱工作站(日本岛津)。用Luna 5 u Cl8(2)柱(150 mm×4.6 mm,ID),ODS预柱Phenomenex ODS guard cartridge system,4.0mm×3.0mm,ID)。样品先用甲醇回流提取,提取物在2.5 mol/L硫酸溶液中加热水解,再用氯仿提取后进行测定。  ⑶张华,雪秦岚,赵宏科,赵海云采用HPLC测定血脂灵片中大黄素、大黄酚的含量。色谱条件同⑴,检测波长428nm。仪器:高效液相色谱仪(包括P200Ⅱ型高压恒流泵,UV-200Ⅱ型紫外检测器,Echrom98色谱数据处理工作站),Shim-Pack型C18分析柱(200mm×4.6mm,5μm)  ⑷常军民,高宏,张煊,赵军,堵年生采用HPLC测定枝穗大黄中大黄素和大黄酚的含量。色谱条件同⑴。仪器:美国Waters 2690高效液相色谱仪,Waters 2487双波长检测器,Waters millennium s 色谱工作站(Waters corporation)。  ⑸魏有良,杨志一,霍彬科采用HPLC法测定化症回生片中大黄素和大黄酚的含量。色谱条件同⑴。样品处理:甲醇回流,再上中性氧化铝柱(100-200目,直径1.5cm,3.5g),先用甲醇洗脱,5%氢氧化钠洗脱,收集盐酸调Ph1-2,乙醚萃取。  ⑹王劲,李洁,马彦,田佩瑶,彭国克采用HPLC法测定中药消毒产品中大黄酚和大黄素的含量。色谱条件:天津特纳Kromasil C18(200mm×4.6mm i.d.,7μ)色谱柱,流动相:φ=0.02mol/L KH2PO4水溶液(H3PO4调pH=3.5)/甲醇=15/85,柱温:室温,流速:1.0mL/min,紫外检测波长:260nm。仪器:美国Waters公司2695高效液相色谱仪(996二极管阵列检测器,MiUennium32色谱管理系统)。  HPLC法同时测定大黄素和大黄酚的含量时,文献报道所采用的色谱条件多为药典所载的条件。流动相为甲醇-磷酸系统,另外还有乙腈-磷酸系统、甲醇-水系统、甲醇-高氯酸系统、甲醇-冰醋酸系统等 检测波长多为254nm,也有采用430、440、438、287nm。也有以甲醇-水-异丙醇(80:10:10)磷酸调pH值为3.0,检测波长:439nm。样品处理方面一般用适当溶剂回流提取,除去溶剂后氧化水解,再以有机溶剂萃取。酸溶液多为盐酸和硫酸。  HPLC法在生物碱分析中的应用  生物碱是植物中一类重要化学成分,许多生物碱或含生物碱的提取物已广泛用于医药领域,因此对不同来源的、存在于较复杂体系或基质中的生物碱进行快速、灵敏、可靠的定性和定量分析一直是受人瞩目的研究课题。  1、生物碱HPLC的分析模式  根据HPLC分析生物碱时所使用固定相性质、流动相组成及极性不同,其分析模式大致可分为:正相吸附色谱法、正相硅胶反相洗脱系统色谱法、反相色谱法及离子交换色谱法。  正相吸附色谱法:通常以硅胶基质为吸附固定相,流动相为不同极性的有机溶剂或不同比例混合溶剂,分离过程主要依靠生物碱与吸附剂吸附作用的差异实现,为了改善分离,提高溶洗脱能力,常于流动相中加浓氨液、二乙胺、三乙胺等。该法应用于生物碱分析的文献较少。  正相硅胶一反相洗脱系统色谱法(NS-RE):通常采用未经化学改性的普通硅胶为固定相,以极性有机溶剂(甲醇、乙腈)和高pH缓冲溶液为流动相,分析包括生物碱在内的碱性药物。该法柱效高,峰形对称,是简便有效的方法。在实际应用中,流动相的组成是主要的影响因素,流动相中除含有调节pH 的缓冲盐外,有时还要三乙胺、溴化四丁基铵等竞争离子或烷基磺酸钠等对离子。因此,影响保留与分离的主要因素是流动相pH、竞争离子种类及浓度 。  反相高效液相色谱法(RP-HPLC):近年来RP-HPLC应用于生物碱分析方面的文献很多,已成为常规的方法。但普通存在色谱峰的展宽拖尾,导致分离效能低,这主要缘于生物碱结构中碱性氮原子与固定相未键台酸性硅醇基的相互作用。即使是所测生物碱在较低浓度下,仍常产生峰漂移及峰对称性差等现象。针对此缺陷,研究工作者从适用于碱性物质分析的反相填料的设计选择,流动相中缓冲盐的使用,流动相添加剂(离子对试剂、有机胺改性剂)等几方面进行了较为广泛细致的研究,并取得了一定的进展。  离子交换色谱法:该法以阳离子交换树脂为固定相,利用质子化的生物碱阳离子与离子交换剂交换能力的差异而达到分离生物碱的目的,有关生物碱高效液相离子交换色谱法的应用报道较少。  2、生物碱HPLC分析检测方法  目前,生物碱HPLC分析检测方式多以紫外法为主,在定性分析方面,紫外法检测选择性低,定性专属性差。随着二极管阵列检测器使用的普及,显著提高了液相分析检测的选择性。此外,根据生物碱的理化性质,其它检测方式如荧光法、电化学法、蒸发光散射法亦得到了应用。近年来,液相色谱-质谱联用技术已应用于生物碱分析,增强了对生物碱的定性检测能力,提高了检测灵敏度。新的接口技术及离子化方法的发展.使得HPLC-MS在生物碱的分析中得到较广泛的应用,近年的文献报道日渐增多。  3、生物碱HPLC分析的样品处理方法  因生物碱常具有一定的碱性,一般常用碱化液液萃取或酸水提取等方法从中草药、中成药及生物样品等较复杂体系中提取纯化,以达到富集和去除杂质的目的。近年来,固相萃取(SPE)技术及超临界流体萃取等现代提取纯化技术亦应用于样品的提取纯化。  HPLC法快速测定食品中糖精钠、苯甲酸、山梨酸和咖啡因  苯甲酸、咖啡因等食品添加剂食用过量会对人体造成伤害,国家卫生标准对这几项指标有明确的限量,因此开展了此项调查。试验表明,液相色谱测定各类食品中糖精钠、苯甲酸、山梨酸和咖啡因时,即使是可乐等清凉饮料,样品经过脱气、稀释、过滤的简单处理即上机分析,也极易堵塞色谱柱,造成柱压升高、柱效下降,对色谱柱造成难以修复的损坏 而样品经透析处理耗时太长。本文论述了在常温下用氢氧化钠-硫酸锌作为蛋白质沉淀剂,沉淀处理包括清凉饮料、酸奶、花生乳等比较粘稠的饮料以及固体食品等各类样品中的蛋白质、淀粉等杂质,可以大大降低对色谱柱的损害,在一定的色谱条件下,在常温下即可快速、同时分离四种被测组分,操作极为简单、快速。  1 试验部分  1.1 原理  糖精钠、咖啡因是易溶于水的盐类,样品中的苯甲酸、山梨酸经氢氧化钠溶液(O.50mol/L)浸泡后,转化为易溶于水的苯甲酸钠、山梨酸钠,经沉淀蛋白质、过滤等处理后,四种被测组分滞留于水相中与杂质分离。  1.2 仪器与试剂  岛津LC-10AT高效液相色谱仪  色谱柱:Hypersil-ODS2-C18,4.6 mm X 1 50 mm柱  检测波长215nm,进样量2OμL,流动相为甲醇+O.02mol/L 乙酸铵(35+65),流量0.50mL/min。  苯甲酸标准溶液:1.000g/L,称取苯甲酸0.1000g,加20g/L碳酸氢钠溶液5mL,加热溶解,定容至100mL。  山梨酸标准溶液:1.000g/L,同苯甲酸配制。糖精钠标准溶液:1.000g/L,称取糖精钠0.1702g,加水溶解,定容至200mL。  咖啡因标准溶液:1.000g/L一,称取咖啡因0.1000g,加水定容至100mL。  混合标准液:糖精钠、苯甲酸、山梨酸、咖啡因浓度依次为4.5,5.0,5.0,5.0 mg/L。  氢氧化钠溶液:0.50mo1/L  硫酸锌溶液:0.42 mol/L_  乙酸铵溶液:0.02 mol/L,称取乙酸铵1.54g用水定容至1L。  甲醇(色谱纯)  1.3 试验方法  1.3.1 液体样品  称取样品0.100~5.00g于50mL比色管中(汽水振摇或微温除去二氧化碳,配制酒类水浴加热,除去乙醇),加入纯水约5mL,加入0.50mol/L氢氧化钠溶液1.00mL,搅匀,放置15min,混匀,加人纯水约30 L,加人0.42mol/L 硫酸锌溶液1.50 mL,混匀,加人0.50mol/L氢氧化钠溶液1.50mL,摇匀,纯水定容至50.0 mL,混匀,静置几分钟,上清液过滤(双层滤纸),弃去初滤液5 mL,滤液经0.45μm滤膜过滤,进样量2Oμl,进行色谱分析,以保留时间定性,以峰高定量。  1.3.2 固体样品  称取研碎的样品0.100~2.00g于5OmL比色管中,加人纯水约30mL,加人0.50mol/L氢氧化钠溶液1.00 mL,搅匀,放置15min以上(直到被测组分完全溶出为止),加人0.42mol/L硫酸锌溶液1.50mL,混匀,其它操作同上。  2 结果与讨论  2.1 蛋白质沉淀剂种类的选择  2.1.1 亚铁氰化钾与乙酸锌的沉淀分离效果分别称取苯甲酸、山梨酸0.100Og用10mL甲醇溶解纯水定容至100 mL,配制成标准溶液,纯水稀释至所需浓度,选取饮料杏仁乳一份,做苯甲酸、山梨酸的加标回收试验。称取饮料样品2.00g于50mL比色管中,加人苯甲酸、山梨酸各250μg,加入纯水约25mL,混匀,加人106g/L亚铁氰化钾溶液2.5 mL,混匀,加入220g/L乙酸锌溶液2.5mL,混匀,纯水定容至50mL,静置几分钟,上清液过滤,弃去初滤液5mL,滤液经0.45μm滤膜过滤,进人色谱仪进行分析,进样量2OμL,以保留时间定性,以峰高定量。  试样经亚铁氰化钾与乙酸锌沉淀后,溶液的pH在5~6范围内,对样品中的糖精钠、苯甲酸钠、山梨酸钾(钠)、咖啡因的测定无影响,但对样品中的苯甲酸、山梨酸的测定有影响,加标回收率较低(在78.2~87.8之间)。因苯甲酸、山梨酸在水中的溶解度较低,加人蛋白质沉淀剂以后,与杂质一起被沉淀,影响测定的准确性。由于难以确定饮料中的苯甲酸、山梨酸是否为钾盐、钠盐,建议不采用该蛋白质沉淀剂。  2.1.2 氢氧化钠与硫酸锌的沉淀分离效果  试样经该蛋白质沉淀剂沉淀后,对样品中的糖精钠、苯甲酸(钠)、山梨酸(钾)、咖啡因的测定(加标回收)均无影响,建议采用该蛋白质沉淀剂。  按试验方法进行氢氧化钠与硫酸锌不同比例的试验。  当0.50mol/L氢氧化钠溶液与0.42mol/L硫酸锌溶液用量为5:4时,沉淀效果最好,但保留时间发生滞后现象,不宜采用 两者用量为5:3时,定量与定性均准确,且滤液澄清,过滤速度也较快,这恰好与理论上氢氧化钠与硫酸锌形成完全沉淀时所需的比例(nOH:nZn2+=2:1)相吻和,但两者用量太少时,沉淀不完全 为使杂质完全沉淀,选择氢氧化钠用量为2.50mL、硫酸锌1.50mL为处理0.100~5.0 g饮料、0.100~2.O0g固体样品的最佳用量。  2.2 标准曲线及回归方程  按试验方法进行测定,4种添加剂的线性范围、检出限(按3倍信噪比计算)的测定。  2.3 样品测定结果  选择含不同被测组分的饮料样品,分别平行测定7次。  选择可乐饮料l份,分别做高、中、低浓度的加标回收试验。  2.4 食品中糖精钠、苯甲酸、山梨酸和咖啡因含量的调查  调查了市售饮料其中包括可乐、汽水、果汁、酸奶、牛奶、活性乳、花生乳、果冻、冰棍等共57份,其中5份含咖啡因0.002 3~O.270g/kg,17份含糖精钠0.053~0.966g/kg,7份含苯甲酸0.0038~O.230 g/kg,16份含山梨酸0.090~0.770g/kg 酱菜、熟肉制品、熟面制品40份,4份含糖精钠0.916~1.04g/kg,8份含苯甲酸0.005O~5.68g/kg,3份含山梨酸0.10~0.680g/kg 酱、酱油、醋、料酒共24份,其中15份含苯甲酸0.030~1.73 g/kg,1份含山梨酸0.220g/kg。  HPLC法鉴别五味子与南五味子  五味子为木兰科植物五味子Schisandra Chinensis(Turcz)Bail1.的干燥成熟果实,习称“北五味子”,具有收敛固涩、益气生津、补肾宁心的功效⋯ 。南五味子为木兰科植物华东五味子  Schisandra sphenanthe Rehd.et Wills.的干燥成熟果实,功效与五味子相似。中药成方制剂中都明确指定用何种五味子,且《中国药典)2000年版分别单独制定了质量标准。市场上这两种五味子价格相差较大,因此鉴别很重要。《中国药典)2000年版收载的标准中有薄层色谱鉴别,都采用了五味子甲素作为对照品,再分别用各自的对照药材作对照。作者多次实验结果表明薄层色谱鉴别对两种五味子鉴别专属性不强。本文则采用HPLC法进行鉴别,重复性好、灵敏度高且直接分析的是其特征峰,鉴别结果不受环境等因素干扰,为五味子的鉴别提供了可靠的手段。  1 仪器和试药  1.1 仪器:高效液相色谱仪(泵:SP1000,检测器UV2000,N2000工作站,美国光谱物理公司)。  1.2 试药:五味子对照药材(批号:0922—9803中国药品生物制品检定所) 五味子(毫州恒丰药材公司) 南五味子(毫州恒丰药材公司)。色谱纯甲醇 超纯水。  2 方法与结果  2.1 对照药材溶液的制备:取五味子对照药材粉末约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理(功率250 W ,频率20 kHz)30分钟,取出,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.2 色谱条件:色谱柱:AllitimaC18(4.6 mm×250 mm)。流动相:甲醇.水(13:7)。检测波长:250 nm。流速:0.8mL/min。柱温:25℃ 。  2.3 供试品溶液的制备  2.3.1 五味子药材提取液的制备:取五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.3.2 南五味子药材提取液的制备:取南五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.4 图谱的绘制:分别精密吸取对照药材溶液与供试品溶液各20 L,注入液相色谱仪,测定,见表1。  从表1中可以看出,五味子对照药材共9个峰,样品五味子共8个峰,南五味子共6个峰,样品五味子与对照药材相比少1个峰,其它峰保留时间都一致,南五味子少了3个峰,且只有1个峰相一致,由此,可以鉴定出五味子。经过多次实验结果,对照药材1、2、6、7、8号峰是五味子的主要特征峰,且峰面积较大。  3 小结与讨论  高效液相色谱法以保留时间为主要鉴别参数,若因仪器厂家、色谱柱等条件不同,则保留时间可能产生较大差异,导致图谱鉴定操作性不强,而采用对照药材作为对照。排除了上述因素的影响。峰号具体成分因无法买到对照品而不能确定。药厂采购五味子时,掺杂南五味子时有发生,应仔细对照药典标准进行鉴别,当初步鉴定为五味子,或者若怀疑有部分为南五味子时,则可以挑选出这两种五味子。再与对照药材分别进行HPLC图谱鉴别,方法简便可行。  HPLC法检查甲硝唑葡萄糖注射液中5-HMF  摘要 采用高效液相色谱法测定甲硝唑葡萄糖注射液中5-羟甲基糠醛,以C18为固定相,以甲醇-0.2%磷酸溶液(25∶75)为流动相,检测波长为284 nm,平均回收率为99.2%(RSD=0.61%)。  《中国医院制剂规范》〔1〕收载的甲硝唑葡萄糖注射液项下5-羟甲基糠醛(5-HMF)检查要求该品1∶25稀释后在284 nm波长处吸收度不得大于0.25。但实验证明,按上法进行甲硝唑葡萄糖注射液中5-HMF检查,其吸收度远大于0.25(1.50以上)。因为甲硝唑在284 nm处有吸收。中国药典1995年版〔2〕对甲硝唑葡萄糖注射液尚未规定5-HMP的限量检查〔2〕。为保证用药安全,本文建立了高效液相色谱法测定甲硝唑葡萄糖注射液中5-HMF的含量,可消除甲硝唑的干扰。现报道如下。  1 仪器与试药  1.1 仪器 Waters 501泵,484检测器,7725进样器(美国)。  1.2 试药 甲硝唑(浙江可立思安制药公司) 5-羟甲基糠醛(美国Sigma公司,H9877) 甲硝唑葡萄糖注射液(浙江省新昌制药厂,971105,971213,980124,980213,980321) 甲醇(色谱纯)。  2 方法与结果  2.1 色谱条件 色谱柱:Nova-pack C18(200 mm×4.6 mm, 4 μm) 流动相:甲醇-0.2%磷酸溶液(25∶75) 检测波长:284 nm 流速:1.0 ml/min。  2.2 试液的配制 精密称取5-HMF适量,加水溶解成0.5 mg/ml的溶液为5-HMF标准储备液。  2.3 标准曲线制备 精密量取5-HMF标准储备液适量,用水分别稀释成5,10,15,20,25 μg/ml的溶液 取10 μl注入色谱仪中,在上述色谱条件下测得峰面积(见图1) 以峰面积Y对浓度X绘制标准曲线,得回归方程y=1254x+47,r=0.9986,表明在浓度5~25 μg/ml范围内线性良好。另取10 μl试样重复进行,峰面积RSD=0.48%(n=6)。  2.4 回收率测定 精密量取已测得5-HMF含量的甲硝唑葡萄糖注射液50 ml,置100 ml量瓶中,精密加入5-HMF标准储备液1 ml,加水至刻度 按样品测定项下方法,计算平均回收率为99.2%,RSD=0.61%(n=5)。  2.5 样品5-HMF含量检测 精密量取甲硝唑葡萄糖注射液10 μl注入色谱仪,按上述色谱条件,测得5-HMF的色谱峰面积 另精密量取5-HMF标准溶液10 μl注入色谱仪中,同法测得峰面积,按峰面积外标法计算,结果5批样品中5-HMF含量分别为6.1,8.3,8.6,10.9,14.7 μg/ml。  3 讨论  实践证明,若生产过程不规范(如灭菌温度过高,时间过长)很容易导致5-HMF含量偏高。因此,控制甲硝唑葡萄糖注射液中5-HMF的限量对确保用药安全具有重要意义。  HPLC法测定紫草油中左旋紫草素的含量  摘要:目的 建立紫草油中左旋紫草素的含量测定方法。方法:采用HPLC法测定紫草油中左旋紫草素的含量,色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 甲醇-0.025mol/L磷酸(85:15)为流动相 检测波长:516nm 柱温:25℃ 进样量:20μL。结果:左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内线性关系良好(r=0.9998) 平均回收率为101.3%,RSD=1.90%(n=5)。结论:该方法简便、准确,能排除其他成分的干扰,可用于紫草油的质量控制和评价。  紫草油是我院的医院制剂,由紫草、银花藤、白芷等中药组成,具有凉血消炎的作用,临床用于烫伤的治疗,紫草为方中君药,其有效成分为紫草素,而紫草素含量的高低,直接影响其临床疗效。本实验采用HPLC法测定紫草油左旋紫草素的含量,方法简便、准确、重现性好,为控制该制剂的内在质量提供了可靠的方法。  l仪器与试药  1.1仪器高效液相色谱仪LC-1OA,SPD-10AVP紫外检测器(日本岛津) CK chrom data acquieition lO 15system (美国TSP)。  1.2试药  左旋紫草素对照品(中国药品生物制品检定所,批号0769—9903) 紫草油(本院制剂室提供) 超纯水 甲醇为色谱纯,其余试剂为分析纯。  2方法与结果  2.1色谱条件色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 流动相:甲醇-0.025mol/L磷酸(85:15) 流速:1.0 mL/min 检测波长:516nm 柱温:25℃ 进样量:20μL(定量环)。  2.2对照品溶液的制备 精密称取左旋紫草素对照品2.8 mg,置25mL量瓶中,加入甲醇溶解并稀释至刻度,制成每mL含112.0μg的溶液,作为对照品储备液。精密吸取对照品储备液(1 12.0μg/mL)1.0,1.5,2.0,2.5,3.0 mL置于10mL量瓶中,加甲醇稀释至刻度。  2.3供试品溶液制备精密吸取样品10mL,置分液漏斗中,加入1% 氢氧化钠溶液20mL振摇提取3次,每次20mL,合并碱液,加10%盐酸溶液,调pH值至酸性(pH 2.5~3.5),用氯仿萃取4次(30,30,30,20mL),合并氯仿液,水浴蒸干,残渣加甲醇溶解并定量转移至25mL量瓶中,加甲醇溶液至刻度,摇匀,用0.45μm微孔滤膜滤过,作为供试品溶液。  2.4线性关系考察取浓度为11.2,16.8,22.4,28.0,33.6μg/mL的对照品溶液,分别进样20μL,测得峰面积,以浓度(C)对峰面积积分值(A)进行线性回归,回归方程为A=2.521×10000C一4265,r=0.9998。表明左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内,与峰面积积分值呈良好线性关系。  2.5精密度试验取同一份供试品溶液,每次20μL,重复进样6次,结果平均峰面积为757099,RSD=0.78%(n=6)。  2.6稳定性试验取供试品溶液依上述色谱条件,每隔1h测含量1次(n=5),次日测定2次,积分值无明显变化,平均峰面积为742531,RSD为1.01%(n=7)。  2.7重复性试验取同批样品(批号020816)5份,依2.3项下方法制备,照上述色谱条件测定,结果平均含量为58.0μg/mL,RSD为0.90% (n=5)。  该方法符合重复性要求。  2.8加样回收率试验精密吸取已知含量的样品溶液,精密加入一定含量的左旋紫草素对照品溶液,依法提取、进样、测定。  2.9样品测定取4批样品各10mL,依法制成供试品溶液,均以20μL进样,分别测定吸收峰面积,外标法计算左旋紫草素含量。  3讨论  紫草油为油制剂,方中主药紫草的有效分为紫草素及其衍生物,属于萘醌色素类化合物。有文献报道用紫外分光光度法及薄层扫描测定紫草素的含量 ,本方法采用HPLC测定紫草油中左旋紫草素的含量,简便、灵敏、准确,重复性好,可用于本品的质量控制。样品测定结果表明,各批号紫草油中左旋紫草素含量差异较大,通过对成品颜色的观察发现,左旋紫草素含量高的成品颜色深红,而所测含量较低的成品颜色较浅,这可能与紫草原药材的质量有关,故应严格控制原药材的来源与质量,并且应加强本制剂中间产品紫草素的质量控制。  薄层色谱法的相关知识简介  薄层色谱法,系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。  1.仪器与材料  (1) 玻板 除另有规定外,用5cm×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。  (2) 固定相或载体 最常用的有硅胶G、硅胶GF[254] 、硅胶H、 硅胶HF[254],其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、 微晶纤维素F[254]等。 其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种 前者系将固定相直接涂布于玻璃板上, 后者系在固定相中加入一定量的粘合剂,一般常用10~15%煅石膏(CaSO4.2H2O在140℃烘4小时),混匀后加水适量使用,或用羧甲基纤维素钠水溶液(0.5~0.7%)适量调成糊状,均匀涂布于玻璃板上。也有含一定固定相或缓冲液的薄层。  (3) 涂布器 应能使固定相或载体在玻璃板上涂成一层符合厚度要求的均匀薄层。  (4) 点样器 同纸色谱法项下。  (5) 展开室 应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,除另有规定外,底部应平整光滑,应便于观察。  2.操作方法  (1) 薄层板制备 除另有规定外,将1份固定相和3份水在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干,后在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光和反射光检视)。  (2) 点样 除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线距底边2.0cm,样点直径及点间距离同纸色谱法,点间距离可视斑点扩散情况以不影响检出为宜。点样时必须注意勿损伤薄层表面。  (3) 展开 展开室如需预先用展开剂饱和,可在室中加入足够量的展开剂,并在壁上贴二条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖,使系统平衡或按正文规定操作。 将点好样品的薄层板放入展开室的展开剂中,浸入展开剂的深度为距薄层板底边0.5~1.0cm(切勿将样点浸入展开剂中),密封室盖,待展开至规定距离(一般为10~15cm),取出薄层板,晾干,按各品种项下的规定检测。  (4) 如需用薄层扫描仪对色谱斑点作扫描检出,或直接在薄层上对色谱斑点作扫描定量,则可用薄层扫描法。 薄层扫描的方法,除另有规定外,可根据各种薄层扫描仪的结构特点及使用说明,结合具体情况,选择吸收法或荧光法,用双波长或单波长扫描。由于影响薄层扫描结果的因素很多,故应在保证供试品的斑点在一定浓度范围内呈线性的情况下,将供试品与对照品在同一块薄层上展开后扫描,进行比较并计算定量,以减少误差。各种供试品,只有得到分离度和重现性好的薄层色谱,才能获得满意的结果。
  • 康宁AFR与安捷伦在线 LC 的完美结合助力工艺高效开发!
    前言本应用展示了Corning Advanced-Flow Reactor流动化学反应器与Agilent Infinity Lab 在线液相色谱结合使用的能力。概要本文将主要介绍应用康宁低流量连续流微反应器对乙酰基水杨酸(阿司匹林)的水解反应进行研究。通过对反应工艺的参数改变,结合在线安捷伦LC数据分析,可以实时优化反应条件,获得最佳反应结果。图1.乙酰基水杨酸水解反应方程式研究过程一. 实验仪器Corning AFR:低流量反应器(LF)Agilent 1290 Infinity II HPLC 在线检测系统二. 实验方法Corning AFR 是一种可灵活调整的模块化微反应设备,具有独特的康宁心形结构专利设计,可将反应物高效混合及换热以优化反应。图2.反应流程装置图对于所有实验:换热器设置为 86 °C;乙酰水杨酸的浓度为 0.016 M;硫酸的浓度在 0.16、0.375、0.75 和 1.5 M 的浓度范围内变化。停留时间及相应的反应器进料流速变化见表 1。表 1. 乙酰水杨酸和硫酸停留时间和进料流速三. 分析方法作者使用Agilent ZORBAX Eclipse Plus C18,4.6 × 50 mm, 1.8 μm色谱柱,流动相为A:水 + 0.1% 甲酸 B: 乙腈 + 0.1% ,柱温50℃,分析流速2ml/min,暂停时间1.5min,进样体积1 μL 。产物从反应器流出后直接注入到液相色谱仪。取样速度:100 μL/min;等待时间:3.6 秒。每个实验条件时间点,需要系统达到稳态条件。在线 HPLC监测进程中,一旦相关目标分析物在峰面积百分比一致达到稳定,就会记录并分析相关数据。四、结果分析与讨论1. 为确保该反应条件设置能够生成高质量数据,将 0.2 mg/mL 乙酰水杨酸和水杨酸的混合物从Corning LF反应容器泵送到 Agilent Infinity Lab Online LC ,每 3 分钟抽取一次样品并立即进行分析。乙酰水杨酸和水杨酸的峰面积精度分别为 1.1% 和 1.3%,保留时间精度分别为 0.07% 和 0.06%(图 3)图3.乙酰水杨酸和水杨酸HPLC图2. 从Agilent Infinity Lab Online LC的结果从直观上可以快速分析:(A)开始与乙酰水杨酸的反应 (B)大约一半的乙酰水杨酸已经水解为乙酰水杨酸(C)几乎完全反应。图4. 间歇式酸催化水解乙酰水杨酸的研究进展【编者语】流动化学与在线检测最大的优势在于:反应进程一目了然,可以快速改变反应条件; 一次实验可以得到多组反应工艺参数;参数优化后,通过在线检测控制产品质量;康宁反应器可以与多种在线检测设备相结合(红外、拉曼、液相、核磁等)3. 为了优化反应,更仔细地考察停留时间和酸浓度。改变物料在Corning LF反应器中的停留时间,相应地修改了输送硫酸和乙酰水杨酸溶液的注射泵流速(表2)。乙酰水杨酸的温度和浓度分别保持恒定在 86 °C 和 0.016 M。从连续流反应器流出的产物连接到在线 LC 系统,每 3 分钟抽取一次样品。当分析物和产物的面积百分比恒定时达到稳定状态。表2 . 停留时间和LC在线监反应组分的组成及杂质含量4. 综上本实验应用展示了康宁AFR卓越的传质和传热效率,使得反应条件改变响应更及时,无放大效应,易升级放大;采样和结果分析通过安捷伦在线 LC 监控软件进行记录,以本质安全、高效经济的方式实现实验条件监控的完全自动化。总结康宁微反应器不仅可以与LC连用,还可以与Spinsolve 系列NMR 分析仪器连用;对两相或多相液体反应结合Zaiput系列分离器可实现在线分离;连续流反应器与在线检测设备相结合,可以实现药品的快速工艺优化;智能化全连续药品生产已成为可能。参考文献:Agilent Technologies application note, publication number 5994-3528EN, 2021.★康宁一体化合成平台★康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。欢迎您联系我们,共同探讨最新合成技术!康宁“微反应+微分离+在线检测”一体化合成平台
  • 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品 对乙酰氨基酚标准品,一般在2-8℃之间冷藏保存(原则上最好保存在15℃以下的阴凉处),但相对于产品运输时,并不是所有产品的运输温度与储存温度一致,冷冻保存的温度在0℃以下。有些产品在运输时有暂时升温的可能性,个别产品特殊要求,我们将冷藏运输。 规格:可定制多种纯度、多种级别、多种包装的产品,详情联系我单位客服; 用途:含量测定 保存:常温,避光 级别:色谱纯、分析纯、化学纯。 贮存:密封阴凉保存。 供货期:最新批次现货供应,周期短,检验结果准确。 应用领域:使用前仔细阅读本说明书,仅供科研使用,不得用于医学诊断。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 污水处理标准修订 一线厂长怎么看?
    p  去年年底,环境保护部发布《城镇污水处理厂污染物排放标准》(征求意见稿),将对已实施10余年的《城镇污水处理厂污染物排放标准》(GB18918-2002)进行首次修订。/pp  大半年时间过去了,对标准的讨论甚至争论一直没有停止。在不久前由中国宜兴环保科技工业园与江南大学环境与土木工程学院共同组织的城镇污水处理厂实务培训首期技术班水务竞技沙龙上,来自67个公司的100多名厂长结合各厂的经验,对这一征求意见稿的指标项次、监测方法、可达性等进行了探讨。/pp  strong排放限值提高需考虑什么?/strong/pp  深度处理技术的成熟度,电耗、药耗、碳源的增加与污染物降低间的平衡/pp  据了解,征求意见稿的限值提高很多。对此,一线厂长认为执行新标准,需要考虑深度处理技术的成熟度,同时需要考虑电耗、药耗、碳源的增加与污染物降低间的平衡。/pp  “现在执行的标准实际上已经比大部分发达国家的标准严格。在全国很多地方还没有实行一级A标准的情况下,又前置性地推出这种排放限值,可能不少刚刚改造完一年的污水处理厂又要进一步改造。”浙江省义乌市水处理有限责任公司杨春荣认为,对于新标准的执行,需要考虑深度处理技术的成熟度以及配套的设备与实施是否跟得上,未来改造过程中碰到的问题也需要提前考虑。/pp  浙江省杭州市排水有限公司七格污水处理厂厂长严国奇也认为,以现在成熟的水处理技术也能达到相关的限值,但是随之而来的问题就是大量的电耗、药耗及碳源的增加。/pp  “污水处理厂在从一级B提标到一级A过程中,我们已经切身感受到了能耗和药耗的大量增加,新增加的能耗和药耗也产生碳排放,而碳排放的增加与最终污染物的减少之前的平衡在制定新标准时需要考虑。”他说。/pp  一线厂长对一些指标限值提出了建议,比如,建议删除或从宽规定粪大肠菌群。清华大学教授施汉昌表示,征求意见稿中对主要指标更多地考虑了环境风险的影响。比如,粪大肠菌群这个指标是代表人的粪便污染对水影响的程度。/pp  据了解,征求意见稿中要求出水粪大肠菌群限值为1000个/L,这比自然水体(20000个/L)及自来水厂的要求均要低。“而粪大肠菌群进入自然水体会快速繁殖,对其控制值得商榷。”多个厂长如此反映,考核指标中虽明确指出以24小时混合样作为监测水样,但目前考核采样仍以瞬时样为主,取完样之后可能要过一天才能检测。/pp  对此 ,浙江省义乌市水处理有限责任公司周建新介绍说:“污水处理厂在投加次氯酸钠和氯之后粪大肠菌群瞬时已经达标了,但是经过一天的分裂繁殖可能又超标了,监测的水样取样方式和保存方式都值得研究。”同时,他建议根据污水处理厂出水的去处制定消毒控制指标。/pp  strong提标考验企业检测能力/strong/pp  新标准检测难度大,选择性控制指标项次多,企业成本增加大/pp  由于征求意见稿对排放限值要求提高,也带来了检测方面的问题和难度。比如,在SS(固体悬浮物浓度)指标方面,一线厂长认为,征求意见稿中“由10 mg/L降为5 mg/L”,检测难度大。/pp  在COD(化学需氧量)排放方面,水体富营养化的影响指标主要为氮、磷等,需要对TN(总氮)、TP(总磷)、BOD5(生化需氧量)等进行控制,因此征求意见稿中“由50mg/L降为30mg/L”需要考虑。/pp  中持水务股份有限公司运行主管鲍资茂认为,对于污水处理来说,一是污水处理厂出来的COD由于可生物降解的COD已经去除,因此排放到河道中的COD对溶解氧影响不大 二是脱氮时需要增加碳源,加碳源会导致COD升高,TN和COD同时控制也是个矛盾。/pp  中国人民大学教授王洪臣也认为,针对特别排放限值来看,COD降到30mg/L,粪大肠菌群限值为1000个/L,SS降到5mg/L的难度与必要性,以及TP小于0.3mg/L需要考虑进水中有机磷的含量等问题,是业内非常关注的,值得探讨。/pp  江苏省(宜兴)环保产业技术研究院总工陈珺则表示,新标准应该考虑的是新增污染物,而不是对COD等排放限值的过分追求。/pp  同时,征求意见稿中选择性控制指标项次多,且污水处理厂实际没有去除能力。其中提出的城镇污水处理厂应每年至少一次对表2中列出的所有项目进行采样监测,检测出的项目均纳入选择控制项目。而表2中选择性控制指标82项,项目多、检测费用昂贵。/pp  此外,检测方法与考核或督查中实际做法可能存在冲突。对于污水处理厂指标检测方法,征求意见稿以及之前的要求均为“取样频率为至少每2h 一次,取24h 混合样,以日均值计”。多个污水处理厂厂长反映,在实际考核或督查中,基本均是瞬时取样,并以此为标准。/pp  江南大学教授李激认为,征求意见稿中某些指标检测方法规定的较为复杂,实际检测中可能用不到,比如总砷的检测。/pp  (作者单位:江苏(宜兴)环保产业研究院)/pp/p
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:  GB 28301-2012食品添加剂 核黄素5'—磷酸钠  GB 28302-2012食品添加剂 辛,癸酸甘油酯  GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠  GB 28304-2012食品添加剂 可得然胶  GB 28305-2012食品添加剂 乳酸钾  GB 28306-2012食品添加剂 L-精氨酸  GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液  GB 28308-2012食品添加剂 植物炭黑  GB 28309-2012食品添加剂 酸性红(偶氮玉红)  GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)  GB 28311-2012食品添加剂 栀子蓝  GB 28312-2012食品添加剂 玫瑰茄红  GB 28313-2012食品添加剂 葡萄皮红  GB 28314-2012食品添加剂 辣椒油树脂  GB 28315-2012食品添加剂 紫草红  GB 28316-2012食品添加剂 番茄红  GB 28317-2012食品添加剂 靛蓝  GB 28318-2012食品添加剂 靛蓝铝色淀  GB 28319-2012食品添加剂 庚酸烯丙酯  GB 28320-2012 食品添加剂 苯甲醛  GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)  GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)  GB 28323-2012 食品添加剂 乙酸香茅酯  GB 28324-2012 食品添加剂 丁酸香叶酯  GB 28325-2012 食品添加剂 乙酸丁酯  GB 28326-2012 食品添加剂 乙酸己酯  GB 28327-2012 食品添加剂 乙酸辛酯  GB 28328-2012 食品添加剂 乙酸癸酯  GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)  GB 28330-2012 食品添加剂 乙酸异丁酯  GB 28331-2012 食品添加剂 丁酸戊酯  GB 28332-2012 食品添加剂 丁酸己酯  GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)  GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)  GB 28335-2012 食品添加剂 2-甲基丁酸乙酯  GB 28336-2012 食品添加剂 2-甲基丁酸  GB 28337-2012 食品添加剂 乙酸薄荷酯  GB 28338-2012 食品添加剂 乳酸 l-薄荷酯  GB 28339-2012 食品添加剂 二甲基硫醚  GB 28340-2012 食品添加剂 3-甲硫基丙醇  GB 28341-2012 食品添加剂 3-甲硫基丙醛  GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯  GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯  GB 28344-2012 食品添加剂 乙酰乙酸乙酯  GB 28345-2012 食品添加剂 乙酸肉桂酯  GB 28346-2012 食品添加剂 肉桂醛  GB 28347-2012 食品添加剂 肉桂酸  GB 28348-2012 食品添加剂 肉桂酸甲酯  GB 28349-2012 食品添加剂 肉桂酸乙酯  GB 28350-2012 食品添加剂 肉桂酸苯乙酯  GB 28351-2012 食品添加剂 5-甲基糠醛  GB 28352-2012 食品添加剂 苯甲酸甲酯  GB 28353-2012 食品添加剂 茴香醇  GB 28354-2012 食品添加剂 大茴香醛  GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)  GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)  GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)  GB 28358-2012 食品添加剂 丁酰乳酸丁酯  GB 28359-2012 食品添加剂 乙酸苯乙酯  GB 28360-2012 食品添加剂 苯乙酸苯乙酯  GB 28361-2012 食品添加剂 苯乙酸乙酯  GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯  GB 28363-2012 食品添加剂 二氢香豆素  GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)  GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮  GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮  GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮  GB 28368-2012 食品添加剂 2,3-戊二酮  GB 14930.2-2012 消毒剂(代替GB14930.2-1994)  GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)  GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)  附件:71项食品标准文本.rar
  • 2011年食品安全国家标准项目计划公布
    根据《食品安全法》和《食品安全国家标准管理办法》有关规定,为完善我国食品安全国家标准,做好食品安全国家标准项目管理工作,卫生部于2010年底向社会公开征集2011年度食品安全国家标准立项计划项目,共接到1200余项立项建议。  2011年4月,食品安全国家标准审评委员会(以下简称审评委员会)第五次主任会议审议提出了2011年度食品安全国家标准立项优先原则,确定优先制(修)订食品安全基础标准的配套标准、重要缺失标准、存在矛盾的标准、已有风险监测结果和相关评估基础的标准等。审评委员会秘书处据此对各方提出的立项建议进行了整理和筛查,拟定了《2011年度食品安全国家标准项目计划(征求意见稿)》。现公开征求意见,请于2011年5月30日前按以下方式反馈意见:传真010-67711813或电子信箱food204@163.com。  附件:2011年度食品安全国家标准项目计划(征求意见稿)序号项目名称制修订建议承担单位1食品添加剂标签通则制订中国疾病预防控制中心营养与食品安全所、中国标准化研究院2食品添加剂 氧化钙制订中海油天津市化工研究院3食品添加剂 1,2-二氯乙烷制订上海市出入境检验检疫局4胶基通用标准制订中国食品工业协会、中国焙烤食品糖制品工业协会5食品添加剂 磷酸氢二铵制订中海油天津化工研究院6食品添加剂 乙酸钠制订中国石化北京化工研究院7食品添加剂 琥珀酸二钠制订中国食品添加剂和配料协会、中国食品发酵工业研究院8食品添加剂 竹叶抗氧化物制订浙江大学9食品添加剂 二甲基二碳酸盐(维果灵)制订浙江省杭州市质量技术监督检测院、中国石化北京化工研究院10食品添加剂 海藻酸钾制订黄海水产研究所、中国海藻工业协会、山东海藻产业协会11食品添加剂 沙蒿胶制订上海出入境检验检疫局12食品添加剂 脱乙酰甲壳素(又名壳聚糖)制订中国食品发酵工业研究院13食品添加剂 单、双甘油脂肪酸酯制订中国食品添加剂和配料协会、中国食品发酵工业研究院14食品添加剂 甘草酸铵制订新疆出入境检验检疫局技术中心15食品添加剂 对羟基苯甲酸甲酯钠制订中国石化北京化工研究院、中国食品添加剂和配料协会、中国食品发酵工业研究院16食品添加剂 对羟基苯甲酸乙酯钠制订中国石化北京化工研究院、中国食品添加剂和配料协会、中国食品发酵工业研究院17食品添加剂 柠檬酸亚锡二钠制订中国食品添加剂和配料协会、中国食品发酵工业研究院18食品添加剂 酪蛋白磷酸肽制订中国食品发酵工业研究院、中国食品添加剂和配料协会19食品添加剂 维生素A棕榈酸酯制订中国食品添加剂和配料协会20食品添加剂 低聚半乳糖制订中国食品发酵工业研究院、中国食品添加剂和配料协会21食品添加剂 维生素E(dl-α-生育酚)制订中国食品添加剂和配料协会22食品添加剂 焦糖色修订中国食品发酵工业研究院23食品添加剂 碳酸氢铵修订中海油天津化工研究院24食品添加剂 乳化硅油制订四川省疾病预防控制中心25食品添加剂 甜菊糖苷修订中国食品发酵工业研究院、江西省疾病预防控制中心26食品添加剂 明胶修订中国日化协会明胶分会27食品添加剂 柠檬酸钾修订中国发酵工业协会、中国石化北京化工研究院28食品添加剂 香芹酚制订江苏省卫生监督所29食品添加剂 二氢茉莉酮酸甲酯制订江苏省卫生监督所30食品添加剂 水杨酸苄酯制订江苏省卫生监督所31食用香精制订上海香料研究所32食品添加剂 γ-辛内酯等30项香料质量规格标准制订上海香料研究所33葡萄酒及咖啡中赭曲霉毒素A限量制订中国食品发酵工业研究院、天津科技大学34酒中氨基甲酸乙酯限量制订中国疾病预防控制中心营养与食品安全所35特殊医学用途配方食品制订中国疾病预防控制中心营养与食品安全所36食用淀粉制订中国农业大学食品科学与营养工程学院37酪蛋白制订国家乳业工程技术研究中心、甘肃农业大学、甘肃省产品质量监督检验中心38特殊医学用途配方食品良好生产规范制订中国乳制品工业协会法规委员会39食品添加剂生产通用卫生规范制订上海市食品生产监督所40食品容器、包装材料生产通用卫生规范制订中国疾病预防控制中心营养与食品安全所41葡萄酒生产卫生规范修订辽宁省卫生监督所、中国食品发酵工业研究院42辐照食品生产卫生规范修订中国农业科学研究院辐照所43食品容器、包装材料迁移试验通用要求制订上海市食品药品监督所44食品容器、包装材料及其制品的浸泡试验方法通则整合修订上海市疾病预防控制中心45食品中多环芳烃的测定制订福建省出入境检验检疫局技术中心46食品中抗坏血酸的测定修订上海市出入境检验检疫局47食品中硫胺素(维生素B1)的测定修订福建省疾病预防控制中心48粮谷类食品中伏马菌素的测定制订浙江省疾病预防控制中心49食品中铅、镉、总砷、总汞、铜、锌、铝、铬、镍的测定——电感耦合等离子体质谱法(ICP-MS)制订广东省疾病预防控制中心50食品中钾、钠、钙、镁、铁、锌、铜、锰、铝的测定——电感耦合等离子体发射光谱法(ICP-OES)制订广东省深圳市疾病预防控制中心51食品中反式脂肪酸的测定制订中国检验检疫科学研究院52高温烹调食品中杂环胺类物质的测定制订中国检验检疫科学研究院、辽宁省大连市产品质量监督检验所53食品包装材料聚氯乙烯、聚碳酸酯、环氧树脂及其成型品中双酚A迁移量的测定 液相色谱-质谱/质谱法制订中国食品药品检定研究院54食品中氨基甲酸乙酯含量的测定制订浙江省疾病预防控制中心55食品中多聚磷酸盐含量的测定制订北京市出入境检验检疫局、黑龙江省出入境检验检疫局、福建省厦门市产品质量监督检验院56动植物油脂中聚二甲基硅氧烷含量的测定制订北京市理化分析测试中心57动物源性食品中全氟辛烷磺酰基化合物(PFOS)和全氟辛酸(PFOA)的测定制订中国检验检疫科学研究院、辽宁省大连市产品质量监督检验所58食品卫生检验方法 理化部分 总则修订中国疾病预防控制中心营养与食品安全所59食品微生物学检验 单核细胞增生李斯特氏菌的定量检验制订中国疾病预防控制中心营养与食品安全所、华南理工大学60食品微生物学检验 微生物源酶制剂中抗菌活性检测制订中国疾病预防控制中心营养与食品安全所61食品微生物学检验 肠杆菌科计数制订辽宁省出入境检验检疫局62食用香精制订中国香精香料化妆品协会、中国食品添加剂与配料协会
  • 紫外可见光谱分析仪——为化学与生物化学实验带来快速、准确且可靠的数据分析
    SE-3607紫外可见光谱分析仪是博源光电基于自主研发的光谱分析技术为PASCO公司全新打造的重磅产品。它是一款UV-VIS宽波长范围且易于使用的紫外可见光谱仪,可为化学和生物化学在实验教学中提供快速,准确和性能可靠的常规分析。借助USB通讯和跨平台的光谱分析软件,UV-VIS紫外可见光谱仪改善了实验室成员之间的协作方式,使其在平板电脑,iPad和Chromebook上分析从电脑上采集的数据成为了可能。石英光纤等附件可用于扩展光谱仪的功能,从而可用于测量发射光谱,各类光源或激光器。特征• 测量范围:180nm - 1050nm• 直观跨平台的软件操作• 软件内置常规分析工具• 自动切换亮暗,一键式校准• 清晰的标记指示比色皿的正确放置应用• 溶液浓度的测定• 鉴定未知物质• 测量反应速率或衰减速率• 比色法(例如BCA,Bradford,Lowry)• 合成化合物的纯度测试• 平衡常数的确定• 摩尔吸收系数的测定• 品质测试(例如,发酵培养基,食品掺假,品质保证水平)光谱仪经过严格设计,可在快节奏的实验教学中提供最佳性能• 结构紧凑,体积适中• 高灵敏度CMOS检测器可加快分析速度• 内部排水结构设计,减少液体滴落和溢出造成损坏的风险• 隔离式光路结构,可确保随时间变化的精度(±1 nm)• USB连接及跨平台,支持实验室设备和学生自带设备• 兼容常规长度为1厘米的方形和圆形比色皿在可见光,UVA,UVB和UVC区域的提供宽波长范围检测,为常规应用提供了出色的独立解决方案• 吸光度动态变化• 纯化蛋白质分析• 平衡常数的测定• 核酸纯度测试• DNA和RNA的检测• 分析提取或合成的化合物• 核酸浓度的测定• 用于蛋白质定量的比色测定法(例如Bradford,BCA,Lowry)• 分光光度法测定化学和生化化合物光谱仪集成了易于使用的光谱仪软件该免费软件与大多数学生设备兼容,使实验组可以轻松快速地共享和查看其数据。 跨平台光谱分析软件还可以作为免费的功能齐全的应用程序使用,它具有以下功能,从而提高了分析效率:• 易于使用的菜单导航• 自动切换亮暗,一键式校准• 自动显示和存储样品数据• 进行扫描平均和数据平滑• 直观的数据重命名以优化数据跟踪• 光谱图将可见光的波长与颜色相关联• 内置的Beer-Lambert定律与线性拟合用于测定浓度• 可打印光谱和数据图• 将数据导出为.csv文件或.png屏幕截图,以便在Excel,SPARKvue或Capstone软件中进行进一步分析软件包含四种预置的分析模式吸光度分析模式使用“吸光度分析模式”对溶解在乙醇中的合成乙酰水杨酸样品进行分析。样品的吸收光谱表明样品在237nm 和313 nm处有较强的吸收光谱。使用“吸光度分析模式”可获得合成的乙酰水杨酸样品的吸收光谱。 浓度分析模式:浓度与吸光度(Beer-Lambert定律)使用“浓度分析模式”中的Beer-Lambert定律确定纯化蛋白的浓度。在“吸光度分析模式”屏幕中选择目标波长后,分析了五种已知浓度的蛋白质标准品(BSA)。应用线性拟合以创建标准曲线,并且测定未知蛋白质的浓度确定为0.215 mmol / L。使用Beer-Lambert定律在“浓度与吸光度”显示中确定纯化蛋白的浓度。时间分析模式:时间与吸光度(动态分析)使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。对于具有不同浓度的NaOH的样品,随时间测量与酚酞相关的波长的吸光度。 下面提供了包含0.3M NaOH的酚酞样品的结果。使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。光分析模式:波长与光强附加的石英光纤套件用于分析紫外可见光谱中各种光谱源的强度。氦元素光谱在下面使用“光分析模式”显示。可以将采集到的光谱(例如上面的氦光谱)与“光分析模式”屏幕中的预加载参考光谱进行比较。了解更多的产品详情和资讯信息,请登陆博光商城www.brolight.cn
  • 10月份有391项标准将实施 分析仪器领衔
    10月份有391项标准将实施 分析仪器领衔我们通过国家标准信息平台查询到,在2022年10月份将有391项与仪器及检测行业的国家标准、行业标准和地方标准将实施。(图1:10月份各行业领域新实施标准占比)农林牧渔食品和机械类标准分别占了15%,冶金地质矿产和化工橡胶塑料类标准分别占了12%和10%。10月份还有24条仪器仪表类标准也将实施。在这些标准中我们粗略得统计了下,有近30条标准涉及到质谱类仪器(主要是液相色谱-质谱联用仪 ),有12条涉及光谱类 仪器,还有6条涉及到色谱类 仪器。主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表标准(24个)GB/Z 41289-2022 无损检测仪器 鉴定程序 GB/Z 41286-2022 无损检测仪器 X射线管道爬行器 GB/Z 41285.6-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第6部分:γ射线机用可移动设备的检验、维护和功能检测 GB/Z 41285.5-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第5部分:γ射线机的预防护措施 GB/Z 41285.4-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第4部分:γ射线机用可移动设备的制造和检测 GB/Z 41285.3-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第3部分:γ射线机在操作和运输过程中的射线防护措施 GB/Z 41285.1-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第1部分:γ射线机的固定和移动操作 JB/T20206-2022 生物制药反应过程温控装置 JB/T20205-2022 脱气仪 JB/T20204-2022 熔点测定仪 JB/T20203-2022 药物溶液颜色测定仪 JB/T20202-2022 澄清度测定仪 JB/T20108-2022 药用脉冲式布袋除尘器 JB/T20107-2022 药用卧式流化床干燥机 JB/T20106-2022 药用V型混合机 JB/T20105-2022 脆碎度检查仪 JB/T20104-2022 片剂硬度仪 JB/T20103-2022 蒸发浓缩器 JB/T20102-2022 酒精回收塔 JB/T20100-2022 药用胶塞清洗机 JB/T20099-2022 药物过滤洗涤干燥机 JB/T20098-2022 抗生素玻璃瓶液体灌装联动线 JB/T20063-2022 软膏剂灌装封口机 GB/T 33643-2022 无损检测 声发射泄漏检测方法 农林牧渔食品标准(58个)SN/T 5452-2022 食品检测用浓缩仪采购与验收指南 SN/T 5451-2022 商品化试剂盒检测方法 乳酸菌总数 方法一 SN/T 5450-2022 动物源食品中9种双稠吡咯啶类生物碱的测定 液相色谱-质谱/质谱法 SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法 SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法 SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法 SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法 SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法 SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法 SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法 SN/T 5441-2022 出口水产品中三卡因、苯佐卡因、喹哪啶残留量的测定 液相色谱-质谱/质谱法 SN/T 5440-2022 出口食品中双炔酰菌胺、噻唑菌胺、吲唑磺菌胺等多种酰胺类杀菌剂残留量的测定 液相色谱-质谱/质谱法 SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌 SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌 SN/T 5439.5-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌O157 SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌 SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第3部分:副溶血性弧菌 SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌 SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌 SN/T 5438-2022 出口乳粉中核苷酸含量的测定 液相色谱-质谱/质谱法SN/T 5437-2022 出口动物源食品中苯海拉明残留量的测定 液相色谱-质谱/质谱法SN/T 5436-2022 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法SN/T 5435-2022 婴幼儿软背带(袋)通用技术要求 SN/T 5433-2022 进口货物海水水湿的定性鉴别SN/T 5420-2022 蜜蜂热厉螨病检疫技术规范SN/T 5419-2022 进出境陆生动物隔离检疫场防疫消毒技术规范SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法SN/T 5363-2022 鲤浮肿病检疫技术规范SN/T 4675.32-2022 进出口葡萄酒中羧甲基纤维素钠的测定 分光光度法SN/T 2922-2022 出口保健食品中EPA、DHA和AA的测定 气相色谱法SN/T 1632.4-2022 出口乳粉中克罗诺杆菌属(阪崎肠杆菌)检测方法 第4部分:PCR-CRISPR法SN/T 0500-2022 出口水果中多果定残留量的测定 液相色谱-质谱/质谱法GB 41700-2022 电子烟 DB37/T 4546—2022 农业废弃物制备生物炭技术规程GB/Z 41226-2022 农业技术推广社会化服务通用要求 GB/T 41701-2022 电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法 GB/T 41386-2022 杏仁油 GB/T 41381-2022 规模化家禽饲养场流感防控环境管理技术规范 GB/T 41380-2022 规模化家禽饲养场流感防控设施设备配置要求 GB/T 41378-2022 塑料 液态食品包装用吹塑聚丙烯容器 GB/T 41377-2022 菊粉质量要求 GB/T 41366-2022 畜禽肉品质检测 水分、蛋白质、脂肪含量的测定 近红外法 GB/T 41282-2022 植被覆盖度遥感产品真实性检验 GB/T 41278-2022 谷物和豆类储存 仓储害虫的诱捕检测指导GB/T 41234-2022 水生动物RNA病毒核酸检测参考物质质量控制规范 假病毒 GB/T 41233-2022 冻鱼糜制品 GB/T 41133-2022 番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法 GB/T 3871.5-2022 农业拖拉机 试验规程 第5部分:转向圆和通过圆直径 GB/T 3871.18-2022 农业拖拉机 试验规程 第18部分:拖拉机与机具接口处液压功率 GB/T 30600-2022 高标准农田建设 通则 GB/T 22479-2022 花椒籽油 GB/T 19427-2022 蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法 DB42/T 1916-2022 水产品中拟除虫菊酯类农药的测定 气相色谱三重四级杆质谱法 DB37/T 4547—2022 农作物秸秆生态循环利用技术规范DB32/T 4368-2022 饲料中玉米赤霉烯酮的测定 时间分辨荧光免疫层析定量法 DB32/T 4367-2022 饲料中脱氧雪腐镰刀菌烯醇的测定 时间分辨荧光免疫层析定量法DB15/T 2816—2022 玉米皮固态发酵菌体蛋白饲料技术规程 DB15/T 2815—2022 玉米皮菌酶协同发酵蛋白饲料技术规程 环境环保标准(24个)HJ 8.1-2022 生态环境档案管理规范 科学研究 HJ 7-2022 生态环境档案分类表 HJ 348—2022 报废机动车拆解企业污染控制技术规范 HJ 1259—2022 危险废物管理计划和管理台账制定技术导则 HJ 1241-2022 锰渣污染控制技术规范 HJ 1197-2021 工业用化学产品中消耗臭氧层物质监测技术规范 HJ 1196-2021 工业清洗剂 HCFC-141b、CFC-113、TCA和CTC的测定 气相色谱-质谱法 HJ 1195-2021 气态制冷剂 10种卤代烃的测定 气相色谱-质谱法 HJ 1194-2021 液态制冷剂 CFC-11和HCFC-123的测定 顶空/气相色谱-质谱法 GB/Z 41359-2022 土壤质量 呼吸曲线法测定土壤微生物区系的丰度和活性 GB/Z 41358-2022 土壤健康综合表征的生物测试方法 GB/T 6907-2022 锅炉用水和冷却水分析方法 水样的采集方法 GB/T 6903-2022 锅炉用水和冷却水分析方法 通则 GB/T 41339.2-2022 海洋生态修复技术指南 第2部分:珊瑚礁生态修复 GB/T 41339.1-2022 海洋生态修复技术指南 第1部分:总则 GB/T 41330-2022 锅炉用水和冷却水分析方法 痕量铜、铁、钠、钙、镁含量的测定 电感耦合等离子体质谱(ICP-MS)法 GB/T 29341-2022 水处理剂用铝酸钙 GB/T 12157-2022 工业循环冷却水和锅炉用水中溶解氧的测定 GB/T 10656-2022 锅炉用水和冷却水分析方法 锌离子的测定 DB42/T 1906-2022 生物质锅炉大气污染物排放标准 DB42/T 1904-2022 固定污染源废气 低浓度颗粒物的测定 便携式β射线法 DB42/T 1905-2022 湖北省生态环境损害鉴定通用规范 DB32/T 4344-2022 海洋沉积物 油类的测定 超声提取-紫外分光光度法 DB32/T 4343-2022 固定污染源废气 颗粒物的测定 便携式振荡天平法 医药卫生标准(29个)YY/T 1773-2021 一次性使用腹膜透析外接管 YY/T 1763-2021 医用电气设备 医用轻离子束设备 性能特性 YY/T 1742-2021 腺苷脱氨酶测定试剂盒 YY/T 1740.1-2021 医用质谱仪 第1部分:液相色谱-质谱联用仪 YY/T 1712-2021 采用机器人技术的辅助手术设备和辅助手术系统 YY/T 1676-2020 超声内窥镜 SN/T 5474-2022 非人源样本中新型冠状病毒(SARS-CoV-2)的检测技术规范 SN/T 5473.3-2022 出口医疗器械检验技术要求 第3部分:红外测温仪SN/T 5473.2-2022 出口医疗器械检验技术要求 第2部分:病员监护仪SN/T 5473.1-2022 出口医疗器械检验技术要求 第1部分:呼吸机SN/T 5368.1-2022 商品化试剂盒检测方法 克罗诺杆菌属(阪崎肠杆菌) 方法一SN/T 5367.1-2022 商品化试剂盒检测方法 单核细胞增生李斯特氏菌 方法一SN/T 5366.1-2022 商品化试剂盒检测方法 肠杆菌科计数 方法一SN/T 4545.4-2022 商品化试剂盒检测方法 沙门氏菌 方法四SN/T 4545.3-2022 商品化试剂盒检测方法 沙门氏菌 方法三SN/T 4544.2-2022 商品化试剂盒检测方法 菌落总数 方法二GB/T 41365-2022 中药材种子(种苗) 白术 GB/T 41364-2022 中药材种子(种苗) 平贝母 GB/T 41363-2022 中药材种子(种苗) 丹参 GB/T 41362-2022 中药材种子(种苗) 明党参 GB/T 41361-2022 中药材种子(种苗) 金莲花 GB/T 41360-2022 中药材种子(种苗) 菘蓝 GB/T 41277-2022 中药材(植物药)新品种评价技术规范 GA/T 1997-2022 法庭科学 人类唾液/口腔细胞样本采集存储卡质量基本要求GA/T 1995-2022 法庭科学 金属检验 波长色散X射线荧光光谱法GA/T 1994-2022 法庭科学 合成纤维检验 差示扫描量热法GA/T 1991-2022 法庭科学 疑似毒品中卡西酮等5种卡西酮类毒品检验 气相色谱和气相色谱-质谱法GA/T 1990-2022 法庭科学 疑似易制毒化学品检验 红外光谱法GA/T 1989-2022 法庭科学 疑似毒品中异丙嗪检验 气相色谱和气相色谱-质谱法化工橡胶塑料标准(37个)GB/T 5577-2022 合成橡胶牌号规范 GB/T 7044-2022 色素炭黑 GB/T 41345-2022 塑料瓶盖压塑成型模具通用技术要求 GB/T 41333-2022 石灰煅烧成套装备技术要求 GB/T 41331-2022 染料产品中砷、汞、锑、硒的测定 原子荧光光谱法 GB/T 41326-2022 六氟丁二烯 GB/T 41312.1-2022 化工用设备渗透性检测方法 第1部分:石墨及其衬里设备 SN/T 5417-2022 进口再生黄铜原料检验规程SN/T 5416-2022 进口再生铜原料检验规程SN/T 5414-2022 再生塑料中33种禁限用物质的测定 裂解气相色谱-质谱筛选法SN/T 5408-2022 再生塑料与改性塑料的鉴别方法SN/T 5418-2022 进口再生铸造铝合金原料检验规程GB/T 41276-2022 有机磷类杀虫剂中治螟磷及其类似物限量及检测方法 GB/T 41254-2022 爆炸保护系统的功能安全评估方法 GB/T 3286.11-2022 石灰石及白云石化学分析方法 第11部分:氧化钙、氧化镁、二氧化硅、氧化铝及氧化铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法) GB/T 3249-2022 金属及其化合物粉末费氏粒度的测定方法 GB/T 26982-2022 原油蜡含量的测定 GB/T 26069-2022 硅单晶退火片 GB/T 2480-2022 普通磨料 碳化硅 GB/T 24622-2022 绝缘子表面憎水性测量导则 GB/T 24581-2022 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法 GB/T 24167-2022 染料产品中氯化甲苯的测定 GB/T 24146-2022 用于油燃烧器的橡胶软管和软管组合件 规范 GB/T 24141.2-2022 内燃机燃油管路用橡胶软管和纯胶管 规范 第2部分:汽油燃料 GB/T 22627-2022 水处理剂 聚氯化铝 GB/T 21944.1-2022 碳化硅特种制品 反应烧结碳化硅窑具 第1部分:方梁 GB/T 20230-2022 磷化铟单晶 GB/T 20229-2022 磷化镓单晶 GB/T 18944.2-2022 柔性多孔聚合物材料 海绵和发泡橡胶制品 规范 第2部分:模制品与挤出制品 GB/T 12967.6-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第6部分:色差和外观质量 GB/T 12967.5-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第5部分:抗破裂性的测定 GB/T 12967.4-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第4部分:耐光热性能的测定 GB/T 12967.3-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第3部分:盐雾试验 GB/T 12966-2022 铝及铝合金电导率涡流测试方法 GB 30871-2022 危险化学品企业特殊作业安全规范 GB/T 10544-2022 橡胶软管及软管组合件 油基或水基流体适用的钢丝缠绕增强外覆橡胶液压型 规范 DB32/T 4340-2022 沥青红外光谱法相似度识别与SBS含量试验检测规程 冶金地质矿产标准(45个)GB/Z 41313-2022 金刚石圆锯片基体 GB/Z 41296-2022 用于煤矿安全生产与监控及应急救援的信息系统总体技术要求 GB/T 8754-2022 铝及铝合金阳极氧化膜及有机聚合物膜 绝缘性的测定 GB/T 8152.16-2022 铅精矿化学分析方法 第16部分:氧化钙含量的测定 火焰原子吸收光谱法 GB/T 6893-2022 铝及铝合金拉(轧)制管材 GB/T 6609.30-2022 氧化铝化学分析方法和物理性能测定方法 第30部分:微量元素含量的测定 波长色散X射线荧光光谱法 GB/T 6609.2-2022 氧化铝化学分析方法和物理性能测定方法 第2部分:300 ℃和1000 ℃质量损失的测定 GB/T 5231-2022 加工铜及铜合金牌号和化学成分 GB/T 5156-2022 镁及镁合金热挤压型材 GB/T 5155-2022 镁及镁合金热挤压棒材 GB/T 5154-2022 镁及镁合金板、带材 GB/T 4333.8-2022 硅铁 钙含量的测定 火焰原子吸收光谱法 GB/T 4296-2022 变形镁合金显微组织检验方法 GB/T 41404-2022 铂合金中铂含量的测定 火花原子发射光谱法(差减法) GB/T 41403-2022 超硬磨料制品 金刚石或立方氮化硼磨具 形状和尺寸 GB/T 41338-2022 增材制造用钨及钨合金粉 GB/T 41337-2022 粉末床熔融增材制造镍基合金 GB/T 41335-2022 增材制造用镍粉 GB/T 41329-2022 金属粉末流动性的测定 标准漏斗法(古斯塔弗森流速计) GB/T 41322-2022 硬质合金 钴粉中硅量的测定 分光光度法 GB/T 30586-2022 铜包铝扁棒 SN/T 5413-2022 镍矿、镍精矿及主要含镍物料鉴别方法SN/T 5412-2022 钴精矿中钴、铜和锰含量的测定 波长色散X射线荧光光谱法SN/T 5411-2022 钴精矿及主要含钴物料鉴别方法SN/T 5410.1-2022 铅矿及主要含铅的矿渣鉴别方法 第1部分:通则SN/T 5409-2022 锌冶炼用氧化锌富集物鉴别方法GB/T 41324-2022 耐火耐候结构钢 GB/T 30501-2022 致密砂岩气地质评价方法 GB/T 26655-2022 蠕墨铸铁件 GB/T 26642-2022 无损检测 基于存储磷光成像板的工业计算机射线照相检测 金属材料X射线和伽玛射线检测总则 GB/T 25942-2022 核级银-铟-镉合金棒 GB/T 25747-2022 镁合金压铸件 GB/T 25716-2022 镁合金冷室压铸机 GB/T 24487-2022 氧化铝 GB/T 23520-2022 阴极保护用铂复合阳极板 GB/T 23517-2022 钌炭 GB/T 22639-2022 铝合金产品的剥落腐蚀试验方法 GB/T 19145-2022 沉积岩中总有机碳测定 GB/T 19076-2022 烧结金属材料规范 GB/T 18449.4-2022 金属材料 努氏硬度试验 第4部分: 硬度值表 GB/T 1819.1-2022 锡精矿化学分析方法 第1部分:水分含量的测定 热干燥法 GB/T 17473.7-2022 微电子技术用贵金属浆料测试方法 第7部分:可焊性、耐焊性测定 GB/T 17445-2022 铸造磨球 GB/T 1475-2022 镓 GB/T 11106-2022 金属粉末 用圆柱形压坯的压缩测定压坯强度的方法 石油天然气标准(6个)GB/T 8334-2022 液化石油气钢瓶定期检验与评定 GB/T 5842-2022 液化石油气钢瓶 GB/T 41343-2022 石油天然气工业 钛合金钻杆 GB/T 41328-2022 生物天然气 GB/T 41319-2022 液化天然气(LNG)加液装置 GB/T 22724-2022 液化天然气设备与安装 陆上装置设计 电子电器标准(28个)GB/T 8446.2-2022 电力半导体器件用散热器 第2部分:热阻和流阻测量方法 GB/T 8446.3-2022 电力半导体器件用散热器 第3部分:绝缘件和紧固件 GB/T 8446.1-2022 电力半导体器件用散热器 第1部分:散热体 GB/T 4725-2022 印制电路用覆铜箔环氧玻纤布层压板 GB/T 4584-2022 压力机用光电保护装置技术条件 GB/T 41325-2022 集成电路用低密度晶体原生凹坑硅单晶抛光片 GB/T 33143-2022 锂离子电池用铝及铝合金箔 GB/T 30580-2022 电站锅炉主要承压部件寿命评估技术导则 SN/T 5370-2022 进出口危险货物检验规程 锂电池移动电源SN/T 5369-2022 进出口危险货物 密封湿式蓄电池危险特性试验方法SN/T 5434-2022 进口直流稳压电源检验鉴定方法 性能GB/T 28817-2022 聚合物电解质燃料电池单电池测试方法 GB/T 27748.2-2022 固定式燃料电池发电系统 第2部分:性能试验方法 GB/T 26117-2022 微型电泵 试验方法 GB/T 20042.3-2022 质子交换膜燃料电池 第3部分:质子交换膜测试方法 GB/T 19749.3-2022 耦合电容器及电容分压器 第3部分:用于谐波滤波器的交流或直流耦合电容器 GB/T 19749.2-2022 耦合电容器及电容分压器 第2部分:接于线与地之间用于电力线路载波(PLC)的直流或交流单相耦合电容器 GB/T 18494.2-2022 变流变压器 第2部分:高压直流输电用换流变压器 GB/T 18380.36-2022 电缆和光缆在火焰条件下的燃烧试验 第36部分:垂直安装的成束电线电缆火焰垂直蔓延试验 D类 GB/T 18380.35-2022 电缆和光缆在火焰条件下的燃烧试验 第35部分:垂直安装的成束电线电缆火焰垂直蔓延试验 C类 GB/T 18380.31-2022 电缆和光缆在火焰条件下的燃烧试验 第31部分:垂直安装的成束电线电缆火焰垂直蔓延试验 试验装置 GB/T 18380.13-2022 电缆和光缆在火焰条件下的燃烧试验 第13部分:单根绝缘电线电缆火焰垂直蔓延试验 测定燃烧的滴落(物)/微粒的试验方法 GB/T 18380.12-2022 电缆和光缆在火焰条件下的燃烧试验 第12部分:单根绝缘电线电缆火焰垂直蔓延试验 1 kW 预混合型火焰试验方法 GB/T 18380.11-2022 电缆和光缆在火焰条件下的燃烧试验 第11部分:单根绝缘电线电缆火焰垂直蔓延试验 试验装置 GB/T 17737.8-2022 同轴通信电缆 第8部分:聚四氟乙烯绝缘半柔电缆分规范 GB/T 17737.801-2022 同轴通信电缆 第8-1部分:聚四氟乙烯绝缘半柔电缆空白详细规范 GB/T 1094.14-2022 电力变压器 第14部分:采用高温绝缘材料的液浸式电力变压器 GB/T 1094.11-2022 电力变压器 第11部分:干式变压器 轻工纺织标准(28个)SN/T 5431.5-2022 进口固体废物鉴别方法 纺织原料及制品 第5部分:纤维SN/T 5431.4-2022 进口固体废物鉴别方法 纺织原料及制品 第4部分:皮革毛皮SN/T 5431.3-2022 进口固体废物鉴别方法 纺织原料及制品 第3部分:织物SN/T 5431.2-2022 进口固体废物鉴别方法 纺织原料及制品 第2部分:纱线SN/T 5431.1-2022 进口固体废物鉴别方法 纺织原料及制品 第1部分:通则SN/T 5430-2022 进出口棉花残损鉴定技术规范SN/T 5429-2022 进出口纺织品 喹啉类化合物的测定SN/T 5428-2022 进出口纺织品 荧光增白剂检验规范SN/T 5427-2022 进出口纺织品 硝基苯类化合物的测定 气相色谱-质谱法SN/T 5426-2022 进出口纺织品 纤维定量分析 聚乙烯/聚酯复合纤维SN/T 5425-2022 进出口纺织品 水杨酸酯类防紫外线整理剂的测定SN/T 5424-2022 进出口纺织品 偶氮二甲酰胺的测定 高效液相色谱法SN/T 5423.2-2022 进出口纺织品 多种农药残留的测定 液相色谱-串联质谱法SN/T 5423.1-2022 进出口纺织品 多种农药残留的测定 气相色谱-串联质谱法SN/T 5422-2022 进出口纺织品 纤维定性分析 再生蛋白复合纤维(大豆蛋白复合纤维、牛奶蛋白复合纤维)SN/T 5421-2022 进出口纺织品 非含氯苯酚类化合物的测定 气相色谱-质谱法SN/T 5415.5-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第5部分:中东欧SN/T 5415.4-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第4部分:东南亚SN/T 5415.3-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第3部分:西亚SN/T 5415.2-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第2部分:中亚SN/T 5415.1-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第1部分:通则SN/T 5289-2022 进出口功能性纺织品标签检验规范SN/T 5288-2022 进出口功能性纺织品 可萃取稀土元素总量的测定SN/T 4424-2022 进出口纺织品 双酚类化合物的测定 高效液相色谱法SN/T 3706-2022 进出口纺织品 有机锡化合物的测定方法 气相色谱-质谱法SN/T 2842-2022 进出口纺织品 全氟和多氟化合物的测定 液相色谱-串联质谱法SN/T 2558.13-2022 进出口纺织品 功能性检测方法 第13部分:调温性能SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法能源标准(13个)SN/T 2045-2022 进出口燃料油产品技术规范GB/T 7164-2022 用于核反应堆的辐射探测器特性及测试方法 GB/T 41350-2022 再制造 节能减排评价指标及计算方法 GB/T 41308-2022 太阳能热发电站储热系统性能评价导则 GB/T 41307-2022 塔式太阳能热发电站吸热器检测方法 GB/T 41303-2022 塔式太阳能热发电站吸热器技术要求 GB/T 41248-2022 燃气计量系统 GB/T 41241-2022 核电厂工业控制系统网络安全管理要求 GB/T 41157.5-2022 核电厂用紧固件 第5部分:验收检查 GB/T 41157.4-2022 核电厂用紧固件 第4部分:不锈钢螺母 GB/T 41157.3-2022 核电厂用紧固件 第3部分:不锈钢螺栓、螺钉和螺柱 GB/T 41157.2-2022 核电厂用紧固件 第2部分:碳钢和合金钢螺母 GB/T 41157.1-2022 核电厂用紧固件 第1部分:合金钢螺栓、螺钉和螺柱 机械标准(60个)GB/Z 41305.1-2022 环境条件 电子设备振动和冲击 第1部分:动力学数据的验证过程GB/Z 41159-2022 橡胶瓶塞专用机床 GB/Z 14482-2022 机械计数器 GB/T 9251-2022 气瓶水压试验方法 GB/T 7966-2022 声学 超声功率测量 辐射力天平法及其要求 GB/T 4854.3-2022 声学 校准测听设备的基准零级 第3部分: 骨振器纯音基准等效阈振动力级 GB/T 4340.4-2022 金属材料 维氏硬度试验 第4部分: 硬度值表 GB/T 41923.7-2022 机械产品三维工艺设计 第7部分:发放要求GB/T 41923.6-2022 机械产品三维工艺设计 第6部分:数据要求GB/T 41923.5-2022 机械产品三维工艺设计 第5部分:详细设计GB/T 41923.4-2022 机械产品三维工艺设计 第4部分:工艺符号与标注GB/T 41923.3-2022 机械产品三维工艺设计 第3部分:模型构建GB/T 41923.2-2022 机械产品三维工艺设计 第2部分:通用要求 GB/T 41923.1-2022 机械产品三维工艺设计 第1部分:术语和定义GB/T 41357-2022 超硬磨料制品 凸轮轴和曲轴磨削用陶瓷结合剂立方氮化硼砂轮 GB/T 41356-2022 超硬磨料制品 金刚石圆锯片切割性能测试方法 GB/T 41355-2022 机械安全 自主移动式机械与人体之间的动态安全距离 确定方法 GB/T 41354-2022 液压传动 无缝或焊接型的平端精密钢管 尺寸与公称压力 GB/T 41353-2022 再制造 机械产品寿命周期费用分析导则 GB/T 41352-2022 再制造 机械产品质量评价通则 GB/T 41351-2022 机械安全 安全相关无线控制装置 通用技术条件 GB/T 41349-2022 机械安全 急停装置技术条件 GB/T 41348-2022 机械安全 双手操纵装置技术条件 GB/T 41346.2-2022 机械安全 机械装备转运安全防护 第2部分:拉紧装置安全要求 GB/T 41346.1-2022 机械安全 机械装备转运安全防护 第1部分:结构设计准则 GB/T 41344.4-2022 机械安全 风险预警 第4部分:措施 GB/T 41344.3-2022 机械安全 风险预警 第3部分:分级 GB/T 41344.2-2022 机械安全 风险预警 第2部分:监测 GB/T 41344.1-2022 机械安全 风险预警 第1部分:通则 GB/T 41327-2022 轿车轮胎冰地抓着性能试验方法 GB/T 41275.3-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第3部分:含无铅焊料和无铅管脚的系统性能试验方法GB/T 41275.2-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第2部分:减少锡有害影响 GB/T 41275.21-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第21部分:向无铅电子过渡指南 GB/T 41270.9-2022 航空电子过程管理 大气辐射影响 第9部分:航空电子设备单粒子效应故障率计算程序与方法 GB/T 41270.7-2022 航空电子过程管理 大气辐射影响 第7部分:航空电子产品设计中单粒子效应分析过程管理 GB/T 41162-2022 特殊物理性能合金钢铸件 GB/T 41161-2022 往复式内燃机 燃烧噪声测量方法 GB/T 41160-2022 铸造工具钢 GB/T 31148-2022 木质平托盘 通用技术要求 GB/T 30579-2022 承压设备损伤模式识别 GB/T 30196-2022 自体支撑型缺气保用轮胎 GB/T 26116-2022 内燃机共轴泵 试验方法 GB/T 21434-2022 相变锅炉 GB/T 17951-2022 硬磁材料一般技术条件 GB/T 17926-2022 车用压缩天然气瓶阀 GB/T 16508.7-2022 锅壳锅炉 第7部分:安装 GB/T 16508.5-2022 锅壳锅炉 第5部分:安全附件和仪表 GB/T 16508.4-2022 锅壳锅炉 第4部分:制造、检验与验收 GB/T 16508.2-2022 锅壳锅炉 第2部分:材料 GB/T 16508.1-2022 锅壳锅炉 第1部分:总则 GB/T 16507.8-2022 水管锅炉 第8部分:安装与运行 GB/T 16507.7-2022 水管锅炉 第7部分:安全附件和仪表 GB/T 16507.6-2022 水管锅炉 第6部分:检验、试验和验收 GB/T 16507.4-2022 水管锅炉 第4部分:受压元件强度计算 GB/T 16507.3-2022 水管锅炉 第3部分:结构设计 GB/T 16507.2-2022 水管锅炉 第2部分:材料 GB/T 16507.1-2022 水管锅炉 第1部分:总则 GB/T 15385-2022 气瓶水压爆破试验方法 GB/T 1455-2022 夹层结构或芯子剪切性能试验方法 GB/T 13564-2022 滚筒反力式汽车制动检验台 其他标准(39个)GB/T 5988-2022 耐火材料 加热永久线变化试验方法 GB/T 41347-2022 柔性包装材料耐揉搓性能的测试方法 GB/T 41336-2022 建筑幕墙防火性能分级及试验方法 GB/T 41323-2022 腐蚀控制工程全生命周期 术语 GB/T 41321-2022 自体支撑型缺气保用轮胎刚度试验方法 GB/T 41318-2022 通风消声器 GB/T 41316-2022 分散体系稳定性表征指导原则 GB/T 41311.1-2022 声学 描述船舶水下噪声的量及其测量方法 第1部分:用于比对目的的深水精密测量要求 GB/T 41309-2022 纳米技术 纳米材料的内毒素体外测试 鲎试剂法 GB/T 41283.1-2022 声学 声景观 第1部分:定义和概念性框架 GB/T 41281-2022 光合有效辐射遥感产品真实性检验 GB/T 41280-2022 卫星遥感影像植被覆盖度产品规范 GB/T 41279-2022 反照率遥感产品真实性检验 GB/T 41273-2022 生产过程质量控制 系统模型与架构 机械加工 GB/T 41272-2022 生产过程质量控制 质量数据通用接口 GB/T 41271-2022 生产过程质量控制 通信一致性测试方法 GB/T 41251-2022 生产过程质量控制 生产装备全生命周期管理 GB/T 41265-2022 可穿戴设备的光辐射安全要求 GB/T 41246-2022 项目、项目群和项目组合管理 项目群管理指南 GB/T 41245-2022 项目、项目群和项目组合管理 治理指南 GB/T 32280-2022 硅片翘曲度和弯曲度的测试 自动非接触扫描法 GB/T 3222.2-2022 声学 环境噪声的描述、测量与评价 第2部分:声压级测定 GB/T 3222.1-2022 声学 环境噪声的描述、测量与评价 第1部分:基本参量与评价方法 GB/T 22459.6-2022 耐火泥浆 第6部分:预搅拌泥浆含水量试验方法 GB/T 22459.5-2022 耐火泥浆 第5部分:粒度分布(筛分析)试验方法 GB/T 22459.4-2022 耐火泥浆 第4部分:常温抗折粘接强度试验方法 GB/T 22459.2-2022 耐火泥浆 第2部分:稠度试验方法(跳桌法) GB/T 22459.1-2022 耐火泥浆 第1部分:稠度试验方法(锥入度法) GB/T 19889.2-2022 声学 建筑和建筑构件隔声测量 第2部分:测量不确定度评定和应用 GB/T 21355-2022 无损检测 基于存储磷光成像板的工业计算机射线照相检测 系统分类 GB/T 18348-2022 商品条码 条码符号印制质量的检验 GB/T 17989.9-2022 生产过程质量控制统计方法 控制图 第9部分:平稳过程控制图 GB/T 17989.8-2022 生产过程质量控制统计方法 控制图 第8部分:短周期小批量的控制方法 GB/T 17989.7-2022 生产过程质量控制统计方法 控制图 第7部分:多元控制图 GB/T 17989.6-2022 生产过程质量控制统计方法 控制图 第6部分:指数加权移动平均控制图 GB/T 17989.5-2022 生产过程质量控制统计方法 控制图 第5部分:特殊控制图 GB/T 17248.1-2022 声学 机器和设备发射的噪声 测定工作位置和其他指定位置发射声压级的基础标准使用导则 GB/T 17001.6-2022 防伪油墨 第6部分:红外激发荧光防伪油墨 GB/T 13861-2022 生产过程危险和有害因素分类与代码 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 环保部征求8项国家环保检测标准意见
    为执行《中华人民共和国环境保护法》,保障人体健康,提高环境管理水平,规范环境监测工作,环境保护部决定修订《水质 吡啶的测定 顶空气相色谱法》等8项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年3月15日前反馈我部。  联系人:环境保护部科技标准司 谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传真:(010)66556213  附件:1.征求意见单位名单     2.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)     3.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)编制说明     4.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)     5.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)编制说明     6.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)     7.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)编制说明     8.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)     9.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)编制说明     10.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)     11.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)编制说明     12.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)     13.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)编制说明     14.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)     15.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)编制说明     16.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)     17.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)编制说明
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 2023年色谱标准盘点:司法鉴定和石化两大领域标准占近七成
    色谱是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。该技术广泛应用于石化、食品、环境、生物医药等领域。按两相状态分类,色谱可分为气相色谱、液相色谱和超临界流体色谱。本文整理的2023年色谱标准仅包括气相色谱和液相色谱(离子色谱除外)的国家标准和行业标准,且不涉及与质谱等其他技术联用的标准。2023年离子色谱标准盘点已单独成文并发布,详见2023 年 离子色谱标准解读上:从国标看 IC 新的市场机会和2023 年 离子色谱标准解读下:从行业标准看在线离子色谱市场机会。编辑对2023年发布的色谱标准进行盘点,数据主要统计自各网站公开信息,如有遗漏、错误欢迎在留言区补充。据不完全统计,2023年发布的气相色谱和液相色谱相关标准总计74项,其中气相色谱标准40项,液相色谱标准34项,具体内容见下图。行业应用分析74项标准中除1项气相色谱柱校准规范外,主要涉及六大行业,如下图所示,主要包括司法鉴定、石化、食品、农林、生活用品和环境行业,其中司法鉴定和石化两大重点领域标准数量占近七层。(1)司法鉴定行业2023年所发布的色谱标准中,司法鉴定行业发布的标准最多,主要有30项,详细内容见下表。《国家标准化发展纲要》实施以来,公安部不断强化公共安全行业标准的研制、供给和实施。这些标准主要由全国刑标委归口,涉及毒物毒品、微量物证、痕迹等专业领域,是刑标委支撑实战、服务诉讼,不断优化标准体系、持续加强标准供给的集中体现。这些标准的发布,为刑法、刑事诉讼法、禁毒法、治安管理处罚法的实施提供了全方位的技术支持,成为侦查、诉讼、审判过程的科学依据和操作守则。30项标准中涉及气相色谱有14项,液相色谱有16项。司法鉴定行业主要使用的仪器是色谱仪和质谱仪,定量分析只使用色谱仪,而定性分析要色谱仪和质谱仪混用。序号标准类别标准名称发布日期1行业标准GA/T 819-2023法庭科学 纤维上染料检验 薄层色谱和液相色谱法2023/3/12行业标准GA/T 2030-2023法庭科学 疑似毒品中杜冷丁检验气相色谱和气相色谱-质谱法2023/3/13行业标准GA/T 2038-2023法庭科学 疑似毒品中曲马多检验 气相色谱和气相色谱-质谱法2023/3/14行业标准GA/T 2043-2023法庭科学 疑似止咳水中可待因检验 气相色谱和气相色谱-质谱法2023/3/15行业标准GA/T 2035-2023法庭科学 疑似毒品中咖啡因检验液相色谱和液相色谱-质谱法2023/3/16行业标准GA/T 2026-2023法庭科学 疑似毒品中苯环利定检验气相色谱和气相色谱-质谱法2023/3/17行业标准GA/T 2031-2023法庭科学 疑似毒品中杜冷丁检验液相色谱和液相色谱-质谱法2023/3/18行业标准GA/T 2036-2023法庭科学 疑似毒品中尼美西泮检验气相色谱和气相色谱-质谱法2023/3/19行业标准GA/T 2040-2023法庭科学 疑似毒品中异丙嗪检验 液相色谱和液相色谱-质谱法2023/3/110行业标准GA/T 2044-2023法庭科学 疑似止咳水中可待因检验 液相色谱和液相色谱-质谱法2023/3/111行业标准GA/T 2039-2023法庭科学 疑似毒品中曲马多检验 液相色谱和液相色谱-质谱法2023/3/112行业标准GA/T 2028-2023法庭科学 疑似毒品中丁丙诺啡检验气相色谱和气相色谱-质谱法2023/3/113行业标准GA/T 2027-2023法庭科学 疑似毒品中苯环利定检验液相色谱和液相色谱-质谱法2023/3/114行业标准GA/T 2037-2023法庭科学 疑似毒品中尼美西泮检验 液相色谱和液相色谱-质谱法2023/3/115行业标准GA/T 2032-2023法庭科学 疑似毒品中二氢埃托啡检验气相色谱和气相色谱-质谱法2023/3/116行业标准GA/T 2029-2023法庭科学 疑似毒品中丁丙诺啡检验液相色谱和液相色谱-质谱法2023/3/117行业标准GA/T 2051-2023法庭科学 疑似易制毒化学品中溴素检验 气相色谱和气相色谱-质谱法2023/3/118行业标准GA/T 2033-2023法庭科学 疑似毒品中二氢埃托啡检验液相色谱和液相色谱-质谱法2023/3/119行业标准GA/T 2022-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA检验 气相色谱和气相色谱-质谱法2023/3/120行业标准GA/T 2024-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验 气相色谱和气相色谱-质谱法2023/3/121行业标准GA/T 2023-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA 检验液相色谱和液相色谱-质谱法2023/3/122行业标准GA/T 2025-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验液相色谱和液相色谱-质谱法2023/3/123行业标准GA/T 2021-2023法庭科学 疑似毒品中2'-氯地西泮和4'-氯地西泮检验 气相色谱和气相色谱-质谱法2023/3/124行业标准GA/T 2045-2023法庭科学 疑似易制毒化学品中1-苯基-2-丙酮等8种物质检验 气相色谱-质谱和液相色谱法2023/3/125行业标准GA/T 2041-2023法庭科学 疑似恰特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验气相色谱和气相色谱-质谱法2023/3/126行业标准GA/T 2042-2023法庭科学 疑似怡特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验 液相色谱和液相色谱-质谱法2023/3/127行业标准GA/T 2020-2023法庭科学 疑似毒品中 2-氟苯丙胺等168种新精神活性物质检验 气相色谱-质谱、红外光谱和液相色谱法2023/3/128行业标准GA/T 2047-2023法庭科学 疑似易制毒化学品中苯乙腈、3-氧-2-苯基丁酰胺、3-氧-2-苯基丁酸甲酯检验 气相色谱和气相色谱-质谱法2023/3/129行业标准GA/T 2046-2023法庭科学 疑似易制毒化学品中N-苯乙基-4-哌啶酮和4-苯胺基-N-苯乙基哌啶检验 红外光谱、气相色谱-质谱和液相色谱法2023/3/130行业标准GA/T 2075.3-2023法庭科学 常见易燃液体及其残留物检验 第3部分:热脱附-气相色谱/质谱法2023/3/1(2)石化行业2023年发布的色谱标准中,石化行业占20项,其中气相色谱18项,液相色谱2项,详细内容见下表。在石化行业的分析检测中,GC是非常重要的。气相色谱技术在石化分析方面的应用主要涉及气体分析、汽油组成分析、烃类物质分析、含氧化合物分析等。其应用范围也较为广泛,由于其分离和定量能力以及高性价比,从石油勘探、石油加工、化学工业研究到生产控制和产品质量把关都有不可替代的地位。尤其值得一提的是NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法的发布。对于成分复杂的样品体系,样品基质是多样化的,一维色谱峰容量有限,会出现严重的组分共流出现象。最新理论和实验证明,全二维气相色谱在相同的分析时间和检测限的条件下,全二维的峰容量可以达到传统一维色谱的10倍;而一维色谱要获得同样的峰容量,理论上需要用到比目前长100倍的分离柱、高10倍的柱头压、和1000倍的分析时间。序号标准类别标准名称发布日期1国家标准GB/T 27894.3-2023天然气 用气相色谱法测定组成和计算相关不确定度 第3部分:精密度和偏差2023/3/172国家标准GB/T 42307-2023肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法2023/3/173国家标准GB/T 42357-2023|非水溶性染料纯度的测定 液相色谱法2023/3/174国家标准GB/T 9722-2023化学试剂 气相色谱法通则2023/8/65国家标准GB/T 23961-2023低碳脂肪胺含量的测定 气相色谱法2023/9/76国家标准GB/T 8038-2023焦化甲苯 烃类杂质含量的测定 气相色谱法2023/9/77国家标准GB/T 17530.2-2023工业丙烯酸及酯的试验方法第2部分:工业用丙烯酸酯有机杂质及纯度的测定气相色谱法2023/11/278国家标准GB/T 23986.2-2023色漆和清漆挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定第2部分:气相色谱法2023/11/279国家标准GB/T 3392-2023工业用丙烯中烃类杂质的测定气相色谱法2023/11/2710国家标准GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、 二氧化碳和乙炔的测定气相色谱法2023/11/2711国家标准GB/T 43362-2023气体分析微型热导气相色谱法2023/11/2712行业标准NB/SH/T 6069-2023石油馏分氮和烃沸程分布的测定 气相色谱法2023/2/613行业标准NB/SH/T 6070-2023石油馏分硫和烃沸程分布的测定 气相色谱法2023/2/614行业标准SH/T 1674-2023工业用环己烷纯度及烃类杂质的测定 气相色谱法2023/4/2115行业标准SH/T 1628.2-2023工业用乙酸乙烯酯 第2部分:纯度及有机杂质的测定 气相色谱法2023/4/2116行业标准HG/T 4095-2023化工用在线气相色谱仪2023/12/2017行业标准YB/T 6137-2023煤焦油 联苯、苊、芴含量的测定 气相色谱法2023/12/2018行业标准NB/SH/T 0713-2023汽油中苯和甲苯含量的测定气相色谱法2023/12/2819行业标准NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法2023/12/2820行业标准SN/T 5681-2023工业单羧脂肪酸含量的测定 气相色谱法2023/12/29(3)食品行业食品行业的7项标准中,气相色谱标准4项,液相色谱标准3项;发布单位包括海关、农业部等。序号标准类别标准名称发布日期1行业标准GH/T 1393-2022蜂蜜中阿洛酮糖含量的测定 高效液相色谱法2023/2/92行业标准GH/T 1405-2022果蔬贮藏过程中乙烯释放速率的测定 气相色谱法2023/2/93行业标准NY/T 4311-2023动物骨中多糖含量的测定液相色谱法2023/2/174行业标准JJF 2022-2023白酒分析气相色谱仪校准规范2023/3/155行业标准SN/T 5561-2023出口食品中乙嘧硫磷残留量的测定 气相色谱法2023/11/16行业标准SN/T 5658.1-2023蒸馏酒质量鉴别方法 第1部分:18种挥发性成分含量的测定 气相色谱法2023/11/17行业标准SN/T 5658.2-2023蒸馏酒质量鉴别方法 第2部分:橡木浸出物的测定 超高效液相色谱法2023/11/1(4)农林业农林业发布的7项标准中均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1行业标准NY/T 4310-2023饲料中吡啶甲酸铬的测定高效 液相色谱法2023/2/172行业标准NY/T 4305-2023植物油中2,6-二甲氧基-4-乙烯 基苯酚的测定高效液相色谱法2023/2/173行业标准NY/T 4354-2023禽蛋中卵磷脂的测定高效液相色谱法2023/4/114行业标准NY/T 4357-2023植物源性食品中叶绿素的测定高效液相色谱法2023/4/115行业标准NY/T 4355-2023农产品及其制品中嘌呤的测定高效液相色谱法2023/4/116行业标准NY/T 4352-2023浆果类水果中花青苷的测定高效液相色谱法2023/4/117行业标准NY/T 4356-2023植物源性食品中甜菜碱的测定高效液相色谱法2023/4/11(5)生活用品行业生活用品行业发布的标准均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1国家标准GB/T 42423-2023化妆品中二氯苯甲醇和氯苯甘醚的测定 高效液相色谱法2023/3/172国家标准GB/T 42425-2023化妆品中功效组分辛酰水杨酸、苯乙基间苯二酚、阿魏酸的测定 高效液相色谱法2023/3/173国家标准GB/T 42462-2023化妆品色谱分析结果确认准则2023/3/174行业标准QB/T 5831-2023口腔清洁护理用品 牙膏中三氯蔗糖的测定 高效液相色谱法2023/4/215行业标准QB/T 5832-2023口腔清洁护理用品 牙膏中厚朴酚、和厚朴酚含量的测定 高效液相色谱法2023/4/216行业标准QB/T 5833-2023口腔清洁护理用品 牙膏中p-氯-m-甲酚、六氯酚、双氯酚、溴氯芬、苄氯酚、氯二甲酚6种氯酚类防腐剂含量的测定 高效液相色谱法2023/4/21(6)环境行业环境行业发布的标准共3项,其中液相色谱1项,气相色谱2项(包括在线/便携气相1项);随着对环保要求越来越严格,在线/便携等设备将在环境检测等领域发挥巨大的作用。序号标准类别标准名称发布日期1行业标准HJ 1316-2023固定污染源废气丙烯酸和甲基丙烯酸的测定高效液相色谱法2023/11/272行业标准HJ 1317-2023环境空气和废气6种丙烯酸酯类化合物的测定气相色谱法2023/11/273行业标准HJ 1332-2023固定污染源废气 总烃、甲烷和非甲烷总烃的测定便携式气相色谱-氢火焰离子化检测器法2023/12/5
  • 岛津亮相CBIFS2023 第十五届中国国际食品安全技术论坛
    2023年3月17-18日,“CBIFS2023第十五届中国国际食品安全技术论坛”在重庆悦来国际会议中心隆重召开。本届会议由中国认证认可协会、太平洋国际展览(北京)有限公司主办。论坛名家荟萃、大咖云集,展示了食品安全分析、微生物和快速检测最新产品与解决方案。并多角度、全方位研究探讨了新技术发展与应用。本届会议就食品微生物检测、农兽药残留检测、食品安全快速检测、数智化检测与创新发展、食品真实性鉴别与溯源、食品安全供应链及质量管理、食品安全分析技术、食品检测样品前处理、食品实验室管理、乳制品质量安全、粮油质量安全、全产业链食品安全保障方案等热点展开了讨论,同时现场设立了100多个展位,来自政府部门、检测机构、食品企业、高校及科研院所等1500多名专业人士参加了本次会议。岛津发表【农兽药残留检测专题论坛】 岛津分析计测事业部市场部张圆圆女士做了题目为《兽残检测最新法规解读及岛津应对》的报告。岛津分析计测事业部市场部张圆圆女士由农业农村部、国家卫生健康委员会、国家市场监督管理总局联合发布的21项兽药残留检测标准,已于2023年2月1日正式实施;近两年,国家先后发布了36项及21项GB316﹡﹡系列兽残标准,标准涉及LC-MS/MS、GC-MS、LC、GC等多种仪器、基质包括动物性食品、水产品、蜂蜜、牛奶等。张圆圆女士在报告中围绕上述新标准,从检测技术难点、注意事项、岛津应对等多方面展开讲解。【食品安全分析技术专题论坛】 岛津中国创新中心冀峰女士做了题目为《岛津食品营养及有害物质检测最新进展》的报告。岛津中国创新中心冀峰女士中国白酒是世界著名的六大蒸馏酒之一,含有丰富的微量成分。经过几十年的研究,气相色谱质谱已经对白酒中挥发性成分进行了充分的剖析。白酒中含有哪些非挥发性成分?名优白酒如何鉴别真伪?香型调配能否引入现代分析手段进行科学的指导?冀峰老师在报告中提到,岛津推出《白酒口味物质鉴定分析系统》是以液相色谱质谱为检测手段,对白酒中非挥发物质进行鉴定和半定量,丰富了白酒品质评价的方法和手段。《白酒口味物质鉴定分析系统》以7-羟基香豆素和水杨酸为内标半定量预制工作曲线,分析成本低。食用油是家庭必备烹饪原料,食用油在加工过程中可能产生苯并[a]芘而对人体健康构成威胁。岛津公司与国家粮食和物资储备局科学研究院共同开发食用油中苯并[a]芘的检测新方法,并申请CSTM标准。超临界色谱技术具有绿色,环保,高分离度的特点,对食用油中苯并[a]芘的检测带来哪些便利?冀峰老师在报告中提到,在油脂样品分析中,超临界流体色谱(SFC)分离技术因其高效环保,与油脂样品兼容性好等特点,相比传统的液相色谱技术,具有显著优势。通过CSTM标准的制定,使得追求效率的第三方检测机构,生产厂家等在采用高效的SFC分离技术时,能够有标准可依,使得先进环保的技术能够在食品检测市场得到广泛推广。岛津展台经过十多年的努力与发展,CBIFS食品安全技术论坛在众多权威专家学者的齐心协力下,为食品安全业界同仁搭建了一个分享经验、广泛交流食品安全技术发展的高端平台。通过此平台,岛津不仅获得了食品安全行业的前沿技术资讯、行业发展趋势,也宣传了岛津最新技术及全面的食品安全解决方案。本文内容非商业广告,仅供专业人士参考。
  • 可恨!氨基酸注射液居然造假!显微拉曼光谱能否鉴别药品真伪?
    中国法院网讯 食品、药品安全事关人民群众的生命健康和社会的安定稳定。2008年4月至2010年6月,被告人孙同宾在南阳市一租房内,使用购买的葡萄糖注射液,私自加工、制造标示为石家庄四药有限公司复方氨基酸注射液的假药,并销售给南阳市数家医药公司,销售金额共计208824元。法院审理后认为,被告人孙同宾将购买的葡萄糖注射液加工后,假冒复方氨基酸注射液对外销售,销售金额208824元,该行为足以严重危害人体健康,已构成生产、销售假药罪。氨基酸行业发展现状指出,氨基酸主要用于健康保健食品、功能强化食品、动物饲料、食品添加剂、化妆品等行业。如谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义;甘氨酸,可作为鸡饲料营养性添加剂,氮肥工业可用作无毒脱碳剂;丙氨酸,可预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。我国是氨基酸类原料药的供应国,同时也是氨基酸产品的重要需求国。各个终端随着部分新兴市场的活跃而活跃,可见氨基酸的真假检测就尤为重要。奥谱天成ATR8300-785显微拉曼光谱仪本着可实现微区拉曼光谱的精确定位测量,快速、准确、无损地分析成分和鉴别物质的优势,广泛用于农业及食品鉴定、纳米粒子新材料、生物科学、药品检测、环境检测等领域。本次使用ATR8300-785显微拉曼测试了来自客户的几种氨基酸的样品,如下图,我们可以看出氨基酸的拉曼光谱完美,特殊峰明显,可有效区别出不同的氨基酸种类。结果表明了奥谱天成ATR8300-785显微拉曼在生物医学领域上实实在在的运用。奥谱天成ATR8300显微拉曼光谱是将拉曼光谱仪与显微镜两者的优点结合,使得“所见即所测”成为可能。将入射激光通过显微镜聚焦到样品上,从而可以在不受周围物质干扰情况下,精确获得所照样品微区的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。ATR8300无光路切换运动部件,所有光学部件均固态装配,工作非常稳定,实现了仪器的完 美地解决了相机成像时光路的损失,实现了相机成像与拉曼信号收集的分离,从而得到最 佳的信号强度。同时,ATR8300使用专门为显微拉曼系统优化的高性能拉曼,无论是灵敏度,信噪比,稳定性等,都是行业领 先水平 ,为拉曼研究提供了强有力的保障。
  • 广东省化妆品学会发布《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位:由广东省化妆品学会牵头,多家企业共同起草的《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准,已编写完成征求意见稿。为充分听取各方意见,现公开征求社会意见。请各单位将修改意见于2024年2月23日前发送学会邮箱。注:如本标准涉及相关专利问题,请指出并提供支持性文件及有关数据。联系人:杨佩珊通讯地址:广州市番禺区小谷围街道外环西路100号实验1号楼402,广东省化妆品学会联系电话:13503059375邮箱地址:msc@cgdca.org附件:1.广东省化妆品学会团体标准征求意见收集表-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》2.广东省化妆品学会团体标准征求意见稿-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》征求意见收集表-化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法.docx征求意见稿《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》.pdf
  • 一文了解化学电离质谱如何测量大气环境中OH自由基
    1.大气· OH活性自由基的来源与作用大气· OH、· HO2活性自由基是大气光化学反应的引发剂和催化剂,对于城市灰霾的形成和对流层中O3的平衡起关键作用,其浓度等级可作为衡量大气自身氧化水平的重要指标。其中· OH自由基是大气化学中最活跃的氧化剂,能与大气中绝大多数组分发生化学反应。例如大气中的甲烷(CH4),可以快速与· OH自由基反应生成可溶解氧化物CH2O、CH3COOH发生沉降,因此,虽然每年有5.15× 1014g的CH4排入地球大气层,但· OH自由基可将其中的4.45× 1014g氧化,占CH4总量的80%以上,这使得CH4对全球温室效应的影响比排放量估算整整低了一个量级。从某种程度来看,· OH自由基决定了这些组分在地球大气层中的寿命和浓度。不仅如此,酸雨、对流层臭氧平衡、城市光化学烟雾以及二次气溶胶形成等过程都有· OH的参与。除此之外,· OH、O3还可以与大气中的烯烃反应生成醛,后者再与· OH自由基反应从而产生光化学烟雾中有毒且具有强烈刺激性的化合物过氧乙酰硝酸酯(PANs)。在低空对流层中,· OH的主要来源有两个:一是O3在320nm光波条件下光解产生的O(1D)与空气中水分子的反应,二是· HO2与氮氧化物以及臭氧的反应。但是,· OH自由基的平均寿命通常为几秒甚至更短,它在对流层的最大浓度仅有106~107个/cm3,且变化十分剧烈。· OH、· HO2自由基在大气光化学反应和光化学烟雾形成过程中的作用如图1.1所示。图1.1· OH、· HO2在大气光化学反应和光化学烟雾形成过程中的作用2.常见大气活性自由基· OH的检测手段直到20世纪90年代,测量对流层大气中· OH浓度的技术才逐渐成熟。英国Leed大学的Heard和Pilling教授在Chem.Rev.上撰写综述文章,全面评述了对流层中· OH的各项测量技术,包括:化学电离质谱技术(CIMS)、气体扩张激光诱导荧光技术(FAGE)、激光差分吸收光谱技术(DOAS)、14CO示踪技术、水杨酸吸收技术以及自旋捕获技术。表1.1给出了这几种测量方法的主要技术指标。表1.1· OH浓度测定的各种技术及指标测量技术LOD(个/cm3)准确度单次测量时间机载研究团队CIMS2´ 10520%30sY3+3FAGE2´ 10520%30sY6DOAS5~10´ 1057%300sN414CO示踪法2´ 10516%300sY1自旋-捕获法5´ 105 30%20minN1水杨酸吸收法10´ 10530~50%90minN2FAGE是一种在低压条件下测量大气活性自由基的激光诱导荧光技术(LIF),自其被提出以来,已经广泛应用于自由基的检测,成为测量大气自由基的有效方法之一。正常工作时,FAGE利用特定波长的激光束,使低能级的· OH自由基发生跃迁,通过检测其从高能级回落过程中产生的荧光,从而实现对于· OH自由基浓度的测量。DOAS是利用空气中气体分子的窄带吸收特性及强度来鉴别气体成分、推演气体浓度的一种技术,其测量原理基于Beer-Lambert定律:E… … … … … … … … … … … … (1.1)进而得到… … … … … … … … … … … … (1.2)14CO示踪技术最早由华盛顿州立大学于1979年报道,它是一种基于光稳态技术对· OH自由基进行研究的方法,利用· OH自由基对14CO的强氧化性,从而实现了对于· OH自由基的高灵敏度检测。对于自旋捕获技术和水杨酸吸收技术,则由于其在检测中所需的时间均大于20min,从而不适合应用于· OH自由基的连续在线检测。CIMS是一种利用· OH的化学特性对其进行检测的技术,其原位测量· OH的浓度是GeorgiaInstituteofTechnology的Eisele和Tannar在1989年发明的。CIMS对· OH进行测量的关键在于通过过量的SO2将其滴定,从而把· OH全部转化为H2SO4,再用NO3-离子通过化学电离方法把H2SO4电离为HSO4-离子,最终利用测量得到的NO3-与HSO4-离子的强度,完成对· OH的检测。其基本原理如下:… … … … … … … … … … (1.3)… … … … … … … … … … … (1.4)… … … … … … … … … ...(1.5)… … … … … … … … … (1.6)进而可以得到· OH的计算公式:… … … … … … … … … … (1.7)3.自主研发化学电离质谱测量· OH中科院大连化物所李海洋研究员带领的“快速分离与检测”课题组(102组)基于质谱检测核心技术,致力于发展用于在线、现场、原位快速分析的质谱新仪器和新方法,聚焦于化工生产、环境监测和临床医学精确诊断对高端在线质谱的迫切需求,注重技术创新,以“做有用的仪器”为至高追求,先后攻克了新型软电离源、高分辨质量分析器等在线质谱多项关键技术,并于2017年与金铠仪器(大连)有限公司共同建立质谱发展事业部,携手推动高端质谱技术的发展。近年来,团队先后获得在线质谱仪从设计、生产到应用全链条认证,成功搭建了台式质谱仪、便携式质谱仪、毒品现场鉴别离子阱质谱仪等多个系列产品线,并实现了定型产品“高灵敏光电离飞行时间质谱仪”出口美国、团队成功入选辽宁省兴辽英才计划“高水平创新创业团队”等多项创举。针对大气活性自由基· OH的检测难题,质谱发展事业部科研工作者基于垂直加速和双场加速聚焦技术,完全自主研发了一台大气压负离子直线式TOFMS用于大气活性自由基· OH在线监测,其结构示意图如图1.2所示。图1.2自行研制的大气压负离子直线式TOFMS的结构示意图基于CIMS技术的基本原理,针对大气活性自由基浓度低、寿命短等自身特点,利用63Ni放射源作为电离源,采用自由基转化反应管、试剂离子产生管与化学电离反应区相互平行同轴设计的结构,对自由基进行测量。如图1.3所示为同轴式自由基进样系统及电离源的反应原理图与结构设计图。图1.3同轴式· OH自由基进样系统及电离源的反应原理图基于上述CIMS检测方法,科研人员于2018年4月30日对大连市沙河口区中山路457号生物楼楼顶平台环境空气中· OH自由基进行了连续在线监测,时间范围为6:00~18:00。测试过程中每张质谱图采集5s,经过计算,得到环境空气中OH自由基浓度在一天内随时间的变化趋势如图1.4所示,所得监测结果与相关文献报道规律保持一致,且分析速度更具优势,展现了所发展CIMS的巨大应用潜力。图1.4环境空气中· OH自由基浓度在一天内随时间的变化4.结语由中科院大连化物所“快速分离与检测”课题组与金铠仪器(大连)有限公司共建的质谱发展事业部,采用CIMS技术设计研制了一套基于63Ni放射源的大气压化学电离源及进样系统,利用自行研制的大气压负离子TOFMS实现了对于大气中的超痕量· OH自由基的原位、实时、在线、连续测量,展现了其在大气环境领域的巨大应用前景。供稿来源:金铠仪器(大连)有限公司
  • 30000余项标准复审 多项仪器分析标准拟废止
    日前,工信部在其官网上发布了《公开征集对工业和通信业推荐性标准(含计划)集中复审结论的意见》。  按照《工业和信息化部办公厅关于开展工业和通信业推荐性标准集中复审工作的通知》(工信厅科函〔2016〕321号)的程序和要求,工信部组织开展了工业和通信业推荐性标准和在研推荐性标准制修订计划的集中复审工作,确定了37849项标准(含计划)的复审结论,其中继续有效26328项、修订7379项、废止3770项、转化322项、协调50项。从标准种类上看,行业标准(含计划)35600项、国家标准(含计划)2249项。  经粗略统计,复审的37849项标准中包含气相色谱法、液相色谱法、ICP-MS、分光光度法、火焰原子吸收光谱法、电感耦合等离子体发射光谱法、X射线衍射仪法等近千条仪器分析标准。  仪器信息网编辑特别摘录拟废止的多项仪器分析标准,详情如下(复审结论见附件):工业和通信业拟废止的仪器分析标准序号 标准编号 标准名称 标准化技术组织 复审结论 主要理由 直接废止 视情况废止 1HG/T 2621-1994气相色谱法测定酚醛树脂中残留苯酚含量全国塑料标准化技术委员会热固性塑料分会√  已有对应国标,GB/T 30773-2014《气相色谱法测定 酚醛树脂中游离苯酚含量》已于2014年12月实施2HG/T 2686-1995惰性气体中微量氢、氧、甲烷、一氧化碳的测定 氧化锆检测器气相色谱法全国气体标准化技术委员会√  GB/T 28124-2011《惰性气体中微量氢、氧、甲烷、一氧化碳的测定 气相色谱法》发布并替代了本标准,本标准应即刻被废止3HG/T 2954-2008原子吸收光谱分析方法标准编写格式全国化学标准化技术委员会√  被GB/T 15337-2008《原子吸收光谱分析法通则》涵盖。4HG/T 2955-2008分子吸收光谱分析法标准编写格式全国化学标准化技术委员会 √ 有GB/T 6040-2002《红外光谱分析方法通则》(需修订)5HG/T 3526-2011工业循环冷却水中硝酸盐的测定 磺基水杨酸分光光度法全国化学标准化技术委员会水处理剂分会 √ 拟计划在修订GB/T 6912.1-2006《锅炉用水和冷却水分析方法 硝酸盐和亚硝酸盐的测定 第1部分:硝酸盐紫外光度法》之时,将该标准内容补充到GB/T 6912.1中,待GB/T 6912.1发布后废止该标准。6HG/T 3539-2012工业循环冷却水中铁含量的测定 邻菲啰啉分光光度法全国化学标准化技术委员会水处理剂分会 √ 拟计划在修订GB/T 14427-2008《锅炉用水和冷却水分析方法 铁的测定》之时将该标准内容补充到GB/T 14427中,待GB/T 14427发布后废止该标准。7QB/T 1863-1993染发剂中对苯二胺的测定 气相色谱法全国香料香精化妆品标准化技术委员会√  现行国标GB/T 24800.12-2009已经涵盖该行标8QB/T 1912-1993眼镜架金属镀层厚度测试方法 X荧光光谱法全国光学和光子学技术委员会眼镜光学分技术委员会√  行业中已经不采用本标准9QB/T 2261-1996灯用卤磷酸钙荧光粉发射光谱及色坐标的 测试方法全国照明电器标准化技术委员会√  属推荐性标准制定范畴,属淘汰荧光粉技术10QB/T 2410-1998防晒化妆品UVB区防晒效果的评价方法 紫外吸光度法全国香料香精化妆品标准化技术委员会√  方法已淘汰  附件1:推荐性行业标准集中复审结论汇总表(分行业领域).zip  附件2:推荐性行业制修订计划标准集中复审结论汇追踪表(分行业领域).zip  附件3:荐性国家标准复审结论汇总表.docx  附件4:推荐性国家标准计划复审结论汇总表.docx
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH8的条件下与氯胺T反应,转化成氯化氰(CNCD);氯化氰与异烟酸巴比妥酸试剂反应,形成紫蓝色化合物,于波长600 nm处进行比色测定。仪器设备:流动注射分析仪:氰化物反应单元及在线加热膜分离器、600nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • 17种化妆品禁/限用物质检测方法公布
    各省、自治区、直辖市食品药品监督管理局(药品监督管理局):  为规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品质量安全,化妆品中氢化可的松等禁用物质或限用物质的检测方法已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。  附件:  1.化妆品中氢化可的松等7种禁限用物质的检测方法  2.化妆品中水杨酸的检测方法  3.化妆品中酮麝香的检测方法  4.化妆品中巯基乙酸的检测方法  5.化妆品中8种邻苯二甲酸酯的检测方法  6.化妆品中4-氨基偶氮苯和联苯胺的检测方法  7.化妆品中苯并[а]芘的检测方法  8.化妆品中4-氨基联苯及其盐的检测方法  9.化妆品中间苯二酚的检测方法  10.化妆品中32种禁限用染料成分的检测方法  11.化妆品中苯扎氯铵的检测方法  12.化妆品中羟基喹啉的检测方法  13.化妆品中过氧化氢的检测方法  14.化妆品中苄索氯铵、劳拉氯铵和西他氯铵的检测方法  15.化妆品中颜料橙5等5种禁用着色剂检测方法  16.化妆品中呋喃香豆素类(三甲沙林、8-甲氧基补骨脂素、5-甲氧基补骨脂素)和欧前胡内酯的检测方法  17.化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检测方法  国家食品药品监督管理局  二○一二年一月十六日
  • 生态环境部更新两项危险废物鉴别标准
    p  生态环境部近日更新两项危险废物鉴别标准,《危险废物鉴别标准 通则》(GB 5085.7-2019)和《危险废物鉴别技术规范》(HJ 298-2019)。/pp  img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/9cd76cbd-80dd-441d-bc08-a2e49af6bf06.pdf" title="危险废物鉴别标准 通则(GB 5085.7—2019).pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "危险废物鉴别标准 通则(GB 5085.7—2019).pdf/span/a/pp  本标准规定了危险废物的鉴别程序和鉴别规则。/pp  本标准适用于生产、生活和其他活动中产生的固体废物的危险特性鉴别。/pp  本标准适用于液态废物的鉴别。/pp  本标准不适用于放射性废物鉴别。/pp  本标准自2020年1月1日起实施,同时《危险废物鉴别标准 通则》(GB 5085.7-2007)废止。此次修订主要内容为:/pp  进一步明确了鉴别程序。/pp  进一步细化了危险废物混合和利用处置后判定规则。/pp  img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/4b613da3-442f-4705-9266-ee07c158c470.pdf" title="危险废物鉴别技术规范(HJ 298-2019 ).pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "危险废物鉴别技术规范(HJ 298-2019 ).pdf/span/abr//pp  本标准规定了固体废物的危险特性鉴别中样品的采集和检测,以及检测结果判断等过程的技术要求。/pp  本标准适用于生产、生活和其他活动中产生的固体废物的危险特性鉴别,包括环境事件涉及的固体废物的危险特性鉴别。/pp  本标准适用于液态废物的鉴别。/pp  本标准不适用于放射性废物鉴别。/pp  本标准自2020奶奶1月1日起实施,同时替代《危险废物鉴别技术规范》(HJ 298-2007),此次修订主要内容为:/pp  进一步细化了危险废物鉴别的采样对象、份样数、采样方法、样品检测、检测结果判断等技术要求 /pp  增加了环境事件涉及的固体废物危险特性鉴别的采样、检测、判断等技术要求。/pp  相关新闻:/pp  a href="https://www.instrument.com.cn/news/20191108/516476.shtml" target="_blank"《一般工业固体废物贮存场、处置场污染控制标准》征求意见 严格自监测频率/a/pp  a href="https://www.instrument.com.cn/news/20191014/494732.shtml" target="_blank"《危险废物填埋污染控制标准》更新 增加多项检测指标/a/p
  • 洗面奶、护肤液新国标实施 行业标准化加速
    近日,日化行业再迎&ldquo 国标&rdquo ,经质检总局和国家标准委批准,GB/T29665-2013《护肤乳液》和GB/T29680-2013《洗面奶、洗面膏》两个国家标准于今年8月1日起正式实施,至此,中国化妆品行业摆脱了基础化妆品无国家标准的尴尬境地。  业内人士同时指出,国标的实施必将提高整个行业的门槛,也将带动整个行业的洗牌。  基础化妆品&ldquo 国标&rdquo 迎新  据了解,护肤乳液和洗面奶是消费者使用最广泛的两款基础化妆品,近年来这两项产品的销量稳步提升,因其质量的优劣直接影响消费者的人体安全和健康,对这两种基础化妆品的安全要求也备受关注。  然而此前这两个产品却一直没有强制性国家标准,只有两个&ldquo 超期服役&rdquo 的行业标准。原有《润肤乳液》行业标准已经制定14年,原《洗面奶(膏)》行业标准亦有7年之久,其技术指标与目前市场上产品的现状严重不符,无法在规范市场和引领行业发展上发挥出有效的作用。这两个标准由中国轻工联合会组织国内化妆品领军企业制定,大量吸收了这些企业近年来的技术创新成果,意味着我国化妆品行业进入先进标准引领发展的新时代。  据参与国标制定的相关企业方面介绍,GB/T29665-2013《护肤乳液》和GB/T29680-2013《洗面奶、洗面膏》两项新的国家标准,对目前市场上的&ldquo 新成员&rdquo 作出了明确规定,也表明新标准必须符合《化妆品卫生规范》(2007版)等新出台的法规。  据了解,在《化妆品卫生规范》基础上,GB/T29665-2013《护肤乳液》首先对乳液的&ldquo 分类&rdquo 作出明确规定,目前市场上的乳液产品除了原有水包油型产品,还增加了油包水型产品,新标准技术内容适用于此两类产品 与此同时,对产品pH值的分类也作出了明确规定 此外,《护肤乳液》还对化妆品原料作出明确规定。&ldquo 护肤乳液的品种日渐丰富,一些化妆品企业在乳液中添加果酸、水杨酸等原料,产品pH值被设计为偏酸性。&rdquo 业内人士分析指出,原有的技术指标已经不能满足目前的产品现状,新标准对护肤乳液的pH值分类作出明确规定,不仅保证产品质量,更防止产品对使用者身体健康造成伤害。  同样,GB/T29680-2013《洗面奶、洗面膏》在分类、pH值、原料等方面也作出了相应规定。  行业将迎来不小冲击  基础化妆品国标出台,对于消费者来说,似乎影响不大,记者走访北京市部分商超时,随机采访了消费者和导购员。  有导购人员表示,商超里入驻的都是正规企业的产品,其原料成分及生产技术不会有问题。而不少消费者也表示,自己选购的都是比较知名的品牌,对产品质量比较有信心。  一位消费者王小姐告诉记者,她购买的不少护肤品都是符合欧盟或是美国制定标准的产品,&ldquo 即使之前国内的标准不可靠,对我也基本不造成影响。&rdquo   而与消费者不同,新&ldquo 国标&rdquo 的出台显然给日化行业带来了不小震动。&ldquo 对两款基础化妆品产品国标的出台,必将提高整个行业的门槛,对大量低端化妆品企业将形成冲击,相反中高端的企业会获益。&rdquo 中研普华分析师指出,不过,由于高标准需要有更新的检测手段,对于企业而言也有一个适应的过程,因此业内呼吁能有一个过渡期。  业内人士同时指出,新的安全技术标准实施后,一次化妆品企业的或倒闭,当然也可能出现一些兼并重组的情况。因此,企业应积极应对,狠抓科技创新,在产品质量上下足功夫,打造自己的核心竞争力,这样才有市场竞争的资本。  有专家指出,过去国内化妆品企业对标准的认识不够,除了参与意识不强,与自身技术能力的欠缺也有关联。近年来,一批本土的民族化妆品牌技术研究能力的全面增强,对标准和行业法规的参与意识也越来越高,他们渴望参与行业法规和标准的制定,以企业自身强大的技术实力和企业品牌引领行业向前发展,为民族品牌与国外大牌的竞争增加砝码,为行业改造升级作出贡献。
  • 315 | 守护食品安全,槽头肉鉴别标准品现货供应!
    今年315晚会曝光某些企业用未经严格处理的槽头肉制作梅菜扣肉预制菜。槽头肉,里面含有较多淋巴结和甲状腺,在日常生活中也被称为淋巴肉。国家《动物防疫法》、《生猪屠宰检疫规范》等法律明令禁止含有‘三腺’的肉类流向市场,而‘三腺’指的是甲状腺、肾上腺和病变淋巴腺,由于它们含有大量的内分泌激素和病原微生物,倘若误食了“三腺”,会对人体造成一定的伤害。 国标GB/T 17236-2019 生猪屠宰操作规程也明确生猪必须去除可视病变淋巴结,摘除甲状腺,才能用于食品生产。本次“315晚会”《梅菜扣肉里的“糟心肉”》案例,引发了公众和市场对肉类产品等领域食品安全问题的高度关注,国务院食安办、公安部、农业农村部、市场监管总局今年将在全国范围内部署开展“严厉打击肉类产品违法犯罪专项整治行动”。图片来源:千图网阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,全力配合总局专项整治活动,由于槽头肉通过加工后,外观、口感与正常的肉品没有太大差别,阿尔塔结合淋巴结产生免疫应答导致炎症反应致使炎症相关代谢物变化的情况常备炎症和免疫相关代谢物标准品,用于槽头肉中炎症和免疫相关代谢物的定量分析,结合化学计量学构建槽头肉判别模型,为槽头肉鉴别提供了一种可靠的方法,为打击槽头肉违法使用提供有力的技术支撑,也为食品安全检测提供保障。相关产品:了解相关检测文献,更多相关产品或定制服务,请联系我们。关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 10月1日起化妆品包装须标明所有成分
    化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。  今年10月1日国家标准委将出台新规,要求化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。这意味着,类似“保湿因子”、“天然萃取物”这样的名称将不能出现。进口化妆品也必须在其加贴的中文标签上标明。  广东省化妆品标准检测中心主任郑伟东告诉记者,目前省内的化妆品企业都已经准备“换装”,具体到化妆品成分表的更换可延迟至明年6月17日执行。  然而,也有消费者担心,专业成分名称很难看得懂,更不知道具体的功效是什么。记者看到,一些化妆品成分,如氨甲基丙醇、三乙醇胺等,对普通消费者而言还真难弄懂有些什么作用。  部分专业术语解释:  水杨酸:能去除老化角质堆积,改善皮肤纹理 能渗透毛囊,有效地干燥面疱的化脓部位,对皮肤有抗痘美白的效果。有许多抗痘产品都含有水杨酸。相较于果酸,水杨酸对皮肤的刺激性较低。但用于敏感皮肤时仍可能会造成过敏 。  高岭土:有抑制皮脂及吸汗的性能,在化妆品中与滑石粉配合使用,有缓解消除滑石粉光泽的作用,主要用作粉条、眼影、爽身粉、香粉、粉饼、胭脂等各种粉类的化妆品的重要原料。
  • 宝德仪器积极响应,助力环保部流动注射分析新标准的实施
    宝德仪器积极响应,助力环保部流动注射分析新标准的实施随着国务院对环境保护和治理的力度与决心日益加大,继环保部出台“水十条”等重大举措的颁布,新的环境标准也加速推出或完善。2017年3月30日,环保部又发布了七项针对水质保护的环境标准,其中的四项标准是应用流动注射仪器分析的检测方法;并且标准自2017年5月1日起全面实施。该环境标准都是为了提高环保监能力和保证检测数据及时而首次发布的。其中规定了四种检测项目的测定方法,分别为《水质 挥发酚的测定流动注射-4-氨基安替比林分光光度法》(HJ 825-2017)、《水质 硫化物的测定流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《水质 氰化物的测定 流动注射-分光光度法》(HJ 823-2017)和《水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》(HJ 826-2017),加上2014年实施的三种《水质 总磷的测定 流动注射-钼酸铵分光光度法》 ( HJ 671-2013 ) 、《水质 总氮的测定 流动注射-盐酸萘乙二胺分光光度法》( HJ 668-2013 ) 、《水质 氨氮的测定流动注射-水杨酸分光光度法》 ( HJ 666-2013 )目前共7种流动注射方法已被规范。 宝德仪器公司具有深厚的流动注射(FIA)的技术积淀,是世界上首先实现独立一体机通道式检测,每个通道配置44位的自动进样装置,产品BDFIA-8000或BDF-9000极适用于大批量样品的全自动、多种检测项目同时、快速、准确分析,完全符合新标准的要求。也可选配208样位大型自动进样器满足不同用户需求。之前已有许多用户配置了我们的产品,他们已受益于用多种模块分别同时工作,节约了人力和检测时间。流动注射分析标准的发布,是流动注射仪器推广的良好契机,我们已做充分的准备,以优质的仪器,规范的售后安装及培训,热烈欢迎用户致电咨询或实地考察。我们一直致力于发展和普及该技术,使之为我国环保事业做贡献。
  • 20项兽药残留标准公开征求意见(附下载链接)!
    各相关单位: 依据《食品安全国家标准审评委员会章程》有关要求,我办组织起草了《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等16项兽药残留国家标准、《食品安全国家标准 水产品中27种性激素残留量的测定 液相色谱-串联质谱法》(GB 31656.14-2022)等4项标准修改单,现公开向社会征求意见,请提出具体修改意见和理由,并通过电子邮件形式反馈。征询截止日期2024年5月15日。联系人:张玉洁电 话:010-62103930邮 箱:syclyny@163.com食品安全国家标准兽药残留标准征求意见表.doc《动物性食品及尿液中同化激素类药物残留量的测定 液相色谱-串联质谱法 (征求意见稿)》.pdf《动物尿液中23种β-受体激动剂残留量的测定液相色谱-串联质谱法 (征求意见稿)》.pdf《动物性食品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法 (征求意见稿)》.pdf《动物性食品中地克珠利和托曲珠利砜残留量的测定 高效液相色谱法 (征求意见稿)》.pdf《动物性食品中氮哌酮及其代谢物残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《动物性食品中碘醚柳胺残留量的测定 液相色谱-串联质谱法 (征求意见稿)》.pdf《动物性食品中吩噻嗪类药物残留量测定 液相色谱-串联质谱法 (征求意见稿)》.pdf《动物性食品中甲氧苄啶、二甲氧苄啶和二甲氧甲基苄啶残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《动物性食品中异丙嗪残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《蜂产品中克百威残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《河鲀、鳗鱼和烤鳗中18种β-受体激动剂残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法》(GB 31658.22-2022)修改单.pdf《奶及奶粉中吩噻嗪类药物残留量的测定 液相色谱-串联质谱法 (征求意见稿)》.pdf《食品安全国家标准 动物性食品中氨基甲酸酯类杀虫剂残留量的测定 液相色谱—串联质谱法》(GB 31658.10-2021)修改单.pdf《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定气相色谱-质谱法》(GB 31658.8-2021)修改单.pdf《食品安全国家标准 水产品中27种性激素残留量的测定液相色谱 串联质谱法》(GB 31656.14-2022)修改单.pdf《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《鱼可食性组织中水杨酸残留量的测定 液相色谱-串联质谱法(征求意见稿)》.pdf《水产品中苯甲酰脲类药物残留量的测定 液相色谱-串联质谱法( 征求意见稿)》.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制