当前位置: 仪器信息网 > 行业主题 > >

茶黄素没食子酸酯对照品

仪器信息网茶黄素没食子酸酯对照品专题为您提供2024年最新茶黄素没食子酸酯对照品价格报价、厂家品牌的相关信息, 包括茶黄素没食子酸酯对照品参数、型号等,不管是国产,还是进口品牌的茶黄素没食子酸酯对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合茶黄素没食子酸酯对照品相关的耗材配件、试剂标物,还有茶黄素没食子酸酯对照品相关的最新资讯、资料,以及茶黄素没食子酸酯对照品相关的解决方案。

茶黄素没食子酸酯对照品相关的资讯

  • 《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》等2项团体标准公开征求意见
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱 质谱法》2项团体标准公开征求意见的通知.pdf《牛樟精油》(征求意见稿).pdf《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿).pdf征求意见表.docx.doc
  • 惠州市标准化协会发布《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准征求意见稿
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日
  • 惠州市标准化协会关于《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准的立项公告
    各有关单位:根据《惠州市标准化协会团体标准管理办法》的相关规定,协会组织专家对《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准进行立项评审,经专家评审,所申报的团体标准符合立项条件,现予批准立项。同时欢迎与本标准有关的高校、科研机构、技术机构及相关企业单位或个人加入本标准的起草制定工作,有意参与本团体标准起草制定工作的请与协会联系。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com惠州市标准化协会2023年3月9日惠州市标准化协会关于《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准的立项公告。pdf
  • 【瑞士步琦】天然抗氧化剂的保护伞——使用步琦微胶囊造粒仪制备叶黄素微球和微胶囊
    1简介叶黄素是植物中常见的天然类胡萝卜素。外表为红橙色,具有天然抗氧化性能,因此也具有氧敏感性;此外,叶黄素基本上也不溶于水。叶黄素和类胡萝卜玉米黄质素存在于人类眼部视网膜中,对视觉非常重要。本研究的目的是保护抗氧化剂免于氧化,并使其在水中分散。因此,利用微胶囊造粒仪 B-390/B-395 Pro 仪器搭配气流振动喷嘴和同心喷嘴分别制备叶黄素微球和微胶囊。制备的微球呈球形、大小均匀,微胶囊由内核和外壳两种不同成分组成。如 下图所示,微球和微胶囊均呈现均匀的球形形貌。含叶黄素的微球模型含叶黄素的微胶囊模型2实验设备和材料实验设备:步琦微胶囊造粒仪 B-390/B-395 Pro实验材料:1.5%(w/w)和1.8%(w/w)海藻酸钠溶液0.1 M CaCl2样品1:7.5g 叶黄素粉末分散于 142.5g 浓度为 1.5% 的海藻酸钠溶液中样品2:5g 叶黄素粉末溶于 100mL 花生油中,磁力搅拌均匀3实验过程实验1:使用气流振动喷嘴制备包埋叶黄素的海藻酸钙基质的微球,仪器参数如下 表1所示。表1:实验 1 的过程参数。仪器微胶囊造粒仪 B-390气流振动喷嘴750 μm(核)/1.5 mm(壳)频率870 Hz进样(外置注射泵)样品1:5.45 mL/min压力1013 mbar喷嘴气体流量1 L/min分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)实验2:使用同心喷嘴制备包埋叶黄素油的核壳结构海藻酸钙微胶囊,仪器参数如下 表2 所示。表2:实验 2 的过程参数。仪器微胶囊造粒仪 B-395 Pro同心喷嘴450 μm(核)/ 700 μm(壳)频率300 Hz进样核:样品2(注射泵进样)壳:1.8 %海藻酸钠溶液(压力瓶进样)核进样速度11.5 mL/min压力300 mbar分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)4实验结果本实验成功使用气流振动喷嘴制得球型叶黄素微粒,如下图(a)所示。图中叶黄素粉末嵌入在海藻酸钙微球内部,微球直径尺寸在 300μm 到 600μm 之间。与叶黄素微球相比,实验2 制备的核壳结构叶黄素微胶囊如下图(b)所示。通过使用同心喷嘴,海藻酸盐基质形成的外壳可以将叶黄素油完全包覆,形成保护层,微胶囊直径在 1200μm 到 1400μm 之间。(a)使用气流振动喷嘴制得的叶黄素微球(b)使用同心喷嘴制得的叶黄素微胶囊5结论本研究提出两种使用微胶囊造粒仪包埋油溶性物质的可行方法,步琦微胶囊造粒仪 B-390 和 B-395 Pro 可用于制备含叶黄素的球型微粒和微胶囊。
  • Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度
    利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 图2 实验设计和模型开发流程图。【结果】表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。 图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)表2 使用各种光谱分析技术的PLSR模型预测性能。 图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。【结论】红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。请点击如下链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e#rd
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 婴幼儿食品和乳品中维生素B2的测定
    维生素B2又叫核黄素,是人体必需的维生素之一。维生素B2在体内以辅酶黄素单核苷酸和黄素腺嘌呤二核苷酸的形式参与包括碳水化合物、核酸和脂肪的代谢;细胞的生长代谢;维生素B6和烟酸的代谢;铁的吸收和储运等多种代谢反应,临床上常用来防治唇裂、口角炎、结膜炎等。维生素B2与其他B族维生素一样,不会在体内蓄积,因此需要以食物来补充,婴幼儿食品和乳品中也会添加维生素B2作为营养强化剂之一。目前维生素B2常用的检测方法有荧光分光光度法、高效液相色谱法、高效液相色谱-串联质谱法等。荧光分光光度法存在影响因素多、干扰大、不易控制等缺点。高效液相色谱-串联质谱法的仪器成本高,不利于普及。日立参考《GB5009.85-2016》的高效液相色谱法,使用Chromaster高效液相色谱仪测定了婴幼儿食品和乳品中的维生素B2,结果优异,显示了日立高效液相色谱仪的高性能。 实验部分仪器配置日立Chromaster高效液相色谱仪5110泵,5210自动进样器,5310柱温箱,5440荧光检测器标准品维生素B2图1.色谱分析条件 图2.标准品色谱结果 ( 浓度:0.1mg/L )结果与讨论图3.标准品重现性结果(0.1 mg/L标准液,n=6) 从实验结果可以看出,维生素B2的保留时间和峰面积RSD分别是0.02%和0.27%,均获得了良好的重现性。图4.标准曲线结果维生素B2在0.01 - 1.5 mg/L的浓度范围内线性R2为0.9999,线性良好。图5.实际样品前处理过程 图6.实际样品分析结果 对市售的米粉和奶粉按图5处理后进行测定,每100g样品中维生素B2分别为366μg和1481μg。对米粉和奶粉进行加标回收率实验,维生素B2的加标回收率分别为91.17%和83.15%。 结论 本实验所用方法可用于检测婴幼儿食品和乳品中的维生素B2,标准曲线线性和重现性良好。可用于生产企业、质检等部门对维生素B2的检测。 日立Chromaster高效液相色谱仪性能优异、操作简便、结实耐用,可让您获得精准、高灵敏度的实验结果。关于日立高效液相色谱仪的详情,请参考:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 高“颜值”产品买不得?玫瑰花茶检测出二氧化硫超标
    p  玫瑰花茶养颜、美容,是不少爱美女士夏季的首选饮品。但网传一些玫瑰花茶用硫黄熏制,事实真的如此吗?/pp  5月23日,记者带着11份网售、微店店主自制的“零添加”玫瑰花茶送检。检测结果显示,除一份样品因颜色过红影响结果判定以外,其他10份样品均检出二氧化硫,其中两份样品含量较高,达到150mg/kg。/pp  专家提醒消费者,二氧化硫有一定的护色作用,还能防腐保鲜,但国家规定,玫瑰花茶等代茶及茶饮料不允许添加。“网售、微店售卖的所谓零添加的产品未必真的零添加,建议消费者到大超市选购大品牌的产品,买玫瑰花茶不要看‘颜值’,玫瑰花干制的过程中会褐变,越鲜艳的产品越不安全。”/pp  strong实验目的/strong/ppstrong  玫瑰花茶硫黄熏?/strong/pp  夏天到了,单位空调开得很足,能养颜、美容的玫瑰花茶成了不少爱美女士的首选。但网传一些玫瑰花茶经硫黄熏制。记者调查发现,不少年轻人为了避免买到硫黄熏的产品,青睐在网上购买“零添加”的自制玫瑰花茶,“店主自家产自家制的,什么也没加。”/pp  法晚记者登录不少网店、微店了解到,店主大多宣称自家有玫瑰园,玫瑰花天然烘干,百分百“零添加”。记者随后从网店、微店购买了11个样品送检。/pp  一位淘宝店主除了寄来自家的商品,还贴心地寄来了一小份“对照含硫样本”。这位商家说,他家的产品保证没用硫黄熏过,但不少人卖的就是“含硫”的产品,让大家仔细分辨,切莫上当。那么,这些自制产品真的零添加吗?真能放心饮用吗?/pp  5月23日,法晚记者带着11份样品送检,并在新浪、北京时间、腾讯、凤凰网对测试过程进行直播,观众达50万人。/pp  strong实验准备/strong/pp  样品来源:网店、微店购买的11份店主自制玫瑰花茶样品。/pp  检测项目:玫瑰花茶中二氧化硫的含量检测。/pp  检测目的和原因:有些商家为了让玫瑰花颜色更好看,或者为了延长保质期,用二氧化硫熏制。/pp  检测单位:北京智云达食品安全检测中心(检测为快速检测方法,属于初筛,只对样品负责,检测结果不具备法律效力)。/pp  检测试剂:二氧化硫快速检测盒。/pp  检测依据:代茶及茶饮料不允许添加二氧化硫。/pp  strong检测过程/strong/pp  称取样品1g,加入50ml蒸馏水,搅拌均匀,浸泡10分钟,过滤后备用 在1.5ml离心管中先滴加2滴检测液A,1滴检测液B,上下摇动、混匀 然后加入1ml样品液,立即盖塞混匀,放置5分钟,对比色卡。/pp  strong检测结果/strong/pp  编号 SO2/pp  1 40/pp  2 50/pp  3 40/pp  4 150/pp  5 30/pp  6 30/pp  7 30/pp  8 70/pp  9 无法检测/pp  10 70/pp  11 150/pp  12 50(对照样品)/pp  单位:(mg/kg)/pp  strong结果分析/strong/ppstrong  送对照样品商家 自家产品也检出二氧化硫/strong/pp  检测结果显示,5号样品二氧化硫为30mg/kg,12号对照样品二氧化硫含量为50mg/kg,两个样品均不符合国家标准的要求。/pp  需要说明的是,5号样品的卖家就是同样提供了“含硫对照样品”的贴心卖家,意外的是,他自家的产品也检出了二氧化硫,只是比他提供的“含硫样本”含量略低一些。/pp  9号样品颜色干扰检测 其他均检出二氧化硫/pp  检测人员杨宇斯表示,9号样品玫瑰花茶与其他样品不同,其他样品均为花骨朵,只有9号样品是花朵干制而成,颜色为深紫色。溶于水后,迅速变成深紫色的水溶液。过滤后颜色仍较深。样品溶液放入二氧化硫检测试剂后,迅速变成红色,无法与色卡比对。所以,9号样品无法判定结果。/pp  除9号样品外,其他样品均检出二氧化硫,“其中4号和11号含量较高,从外观也可以看出,这两款玫瑰花颜色比较鲜艳,不像天然干制后的颜色。”/pp  strong专家观点/strong/ppstrong  加二氧化硫熏制 是为了让玫瑰花更鲜艳/strong/pp  北京智云达食品安全检测消费者体验中心技术经理张玉萍告诉记者,玫瑰花干制的过程中会发生“非酶促褐变”反应,导致颜色逐渐加深。一些商贩为了让玫瑰花茶看上去更好看,可能使用了漂白剂。/pp  常用的漂白方法是硫黄熏蒸或亚硫酸盐浸泡法,在漂白过程中起作用的就是二氧化硫,二氧化硫不仅具有漂白作用,还能保持较好的色泽,具有防腐保鲜的作用,可谓一举多得。按照国家规定,玫瑰花茶不允许添加二氧化硫,可以说,本次网店、微店自制的产品均不符合国家标准要求。/pp  二氧化硫具有一定的刺激性气味,又溶于水,长期摄入二氧化硫超标的食物,可能引发一定的胃肠道反应,如恶心、呕吐等,另外二氧化硫进到人体内会形成亚硫酸,亚硫酸是酸性物质,影响人体对钙的吸收,还会促进身体钙的流失。/pp  张玉萍提醒消费者,买玫瑰花茶,闻一下有没有刺激性气味,饮用后有没有不适反应,“不要轻信网售自制产品零添加,如果销量大了,卖主为了颜色好看,为了延长保存期,也可能用二氧化硫熏制。切记购买时不要看‘颜值’,鲜艳的产品安全隐患大。”/ppbr//p
  • 百灵威为食品中反式脂肪酸的测定提供解决方案
    反式脂肪酸是y种对人体的有害物质,广泛存在于袋装食品或煎炸食品中。早在2002年我g即开始关注反式脂肪酸问题,于2005年初经g家标准委批准立项研究,目前已经形成《GB/T22110-2008食品中反式脂肪酸的测定 气相色谱法》标准。 百灵威作为中g分析l域行业引l者,在获悉反式脂肪酸研究成果第y时间,即迅速整合全球优质资源,为全g检测单位及科研机构准备全套反式脂肪酸标准物质、分析色谱柱及配套产品。 百灵威拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的&ldquo 分析试剂规格&rdquo ,符合ACS 规格、NIST/NVLAP、ISO9001 认证的要求,可满足所有的z高质量控制标准。随订购的标样附带质检报告、材料安全数据卡,并且可以为用户提供专业标样的定制服务。 产品编号 英文名称 中文名称 CAS 包装 目录价 SFA-006N Methyl tridecanoate 十三酸甲酯 1731-88-0 100mg ¥168 SFA-011N Methyl octadecanoate 硬酯酸甲酯 112-61-8 100mg ¥168 UFA-005N Methyl cis-9-octadecenoate 油酸甲酯 112-62-9 100mg ¥168 UFA-011N Methyl linoelaidate 反亚油酸甲酯(C18∶2) 2566-97-4 100mg ¥281 UFA-010N Methyl linoleate 亚油酸甲酯 112-63-0 100mg ¥168 C14635600 Linolenic acid 亚麻油酸 463-40-1 100mg ¥2,491 UFA-014N Methyl linolenate 亚麻酸甲酯 301-00-8 100mg ¥168 UFA-018N Methyl cis-11-eicosenoate 顺-11-二十碳烯酸甲酯 2390-09-2 100mg ¥421 SFA-014N Methyl eicosanoate 二十烷酸甲酯 1120-28-1 100mg ¥168 UFA-006N Methyl trans-9-octadecenoate 反式-9-十八烯酸甲酯 2462-84-2 100mg ¥168
  • 春茶品茗丨坛墨质检专属茶叶检测标准品套餐来啦!
    春茶品茗 茶是世界三大饮品之一,全球产茶国和地区达到60多个,茶叶年产量近600万吨,贸易量超过200万吨,饮茶人口超过20亿。 年前,联合国大会第74届会议通过决议确定每年5月21日为国际茶日,2020年4月7日农村农业部于发布通知将于今年5月18-24日举行首个国际茶日。 恰逢gb 2763-2019《食品安全国家标准 食品中农药最大残留限量》实施,对茶叶中农药残留要求增至65项。为帮助茶叶企业排查产品风险、确保符合gb 2763-2019和国家食品安全监督抽检实施细则(2020年版),符合内销及出口规定,坛墨质检严格按照国家标准要求特别推出茶叶检测相关标准品,助力春茶上市。检测项目农药残留百草枯、百菌清、苯醚甲环唑、吡虫啉、吡蚜酮、吡唑醚菌酯、丙溴磷、草铵膦、草甘膦、虫螨腈、除虫脲、哒螨灵、敌百虫、丁醚脲、啶虫脒、毒死蜱、多菌灵、呋虫胺、氟虫脲、氟氯氰菊酯和高效氟氯氰菊酯、氟氰戊菊酯、甲氨基阿维菌素苯甲酸盐、甲胺磷、甲拌磷、甲基对硫磷、甲基硫环磷、甲萘威、甲氰菊酯、克百威、喹螨醚、联苯菊酯、硫丹、硫环磷、氯氟氰菊酯和高效氯氟氰菊酯、氯菊酯、氯氰菊酯和高效氯氰菊酯、氯噻啉、氯唑磷、醚菊酯、灭多威、灭线磷、内吸磷、氰戊菊酯和s-氰戊菊酯、噻虫胺、噻虫啉、噻虫嗪、噻嗪酮、三氯杀螨醇、杀螟丹、杀螟硫磷、水胺硫磷、特丁硫磷、西玛津、辛硫磷、溴氰菊酯、氧乐果、乙螨唑、乙酰甲胺磷、印楝素、茚虫威、莠去津、唑虫酰胺、滴滴涕、六六六等gb 2763-2019茶叶中65种农残和其它国内外标准中的农残检测要求。元素铅、砷、汞、铬、镉、氟、铁、镁、锰、锌、硒、铜、稀土以及其他微量元素42种。其它污染物蒽醌、高氯酸盐、多环芳烃(16种)、邻苯二甲酸酯(16种)、二氧化硫。微生物霉菌和酵母、菌落总数、大肠菌群。真菌毒素黄曲霉毒素(4种)、伏马毒素(3种)、赭曲霉毒素(1种)、呕吐毒素(3种)。添加剂茶叶中违规使用的着色剂(5种)和甜味剂(6种)。理化成分粉末、碎茶、水分、水浸出物、总灰分、水溶性灰分、酸不溶性灰分、水溶性灰分碱度、粗纤维、咖啡碱、茶多酚、游离氨基酸、儿茶素组成、氨基酸组成、茶色素组成、叶绿素、花青素、黄酮、水溶性碳水化合物、维生素c、蛋白质、茶梗、非茶类夹杂物、茉莉花干、非茶非花类物质。香气成分茶叶中的香气物质(70种)。感官品质外形,汤色,香气,滋味,叶底等5个要素,分等级判定、评语描述、评语加打分3种。茶叶检测相关标准gb 2763-2019 食品安全国家标准 食品中农药最大残留限量gb 23200.13-2016 食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法gb/t 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法gb/t 23193-2017 茶叶中茶氨酸的测定 高效液相色谱法gb/t 30376-2013 茶叶中铁、锰、铜、锌、钙、镁、钾、钠、磷、硫的测定-电感耦合等离子体原子发射光谱法gb/t 23204-2008 茶叶中519种农药及相关化学品残留量的测定 气相色谱-质谱法 gb/t 23376-2009 茶叶中农药多残留测定 气相色谱/质谱法gb/t 23379-2009 水果、蔬菜及茶叶中吡虫啉残留的测定 高效液相色谱法gb/t 30483-2013 茶叶中茶黄素的测定-高效液相色谱法gb/t 5009.57-2003 茶叶卫生标准的分析方法ny 659-2003 茶叶中铬、镉、汞、砷及氟化物限量sn 0497-1995 出口茶叶中多种有机氯农药残留量检验方法sn/t 4582-2016 出口茶叶中10种吡唑、吡咯类农药残留量的测定方法 气相色谱-质谱/质谱法sn/t 4850-2017 出口食品中草铵膦及其代谢物残留量的测定 液相色谱-质谱/质谱法gb/z 21722-2008 出口茶叶质量安全控制规范sn/t 0147-2016 出口茶叶中六六六、滴滴涕残留量的检测方法sn/t 0711-2011 进出口茶叶中二硫代氨基甲酸酯(盐)类农药残留量的检测方法 液相色谱-质谱/质谱法sn/t 0348.1-2010 进出口茶叶中三氯杀螨醇残留量检测方法sn/t 1950-2007 进出口茶叶中多种有机磷农药残留量的检测方法 气相色谱法茶叶检测相关标准品咨询北方地区王宏姝:13671388957南方地区汪丽红:135011019292020年坛墨质检十三周年邀您共品常州天目湖白茶活动时间即日起至5月20日敬请留言活动期间,请在本文下留言 写出对坛墨质检的发展意见和建议参与有礼本文精选留言前100名将送出春茶体验包一份温馨提示2020年坛墨质检十三周年届时将有更多惊喜2点击填写地址,春茶包邮到家
  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 液质联用技术揭示“酸汤子杀人案”中的神秘真凶
    液质联用技术揭示“酸汤子杀人案”中的神秘真凶 关注我们,更多干货和惊喜好礼 事件背景 10月5日,黑龙江省鸡西市鸡东县兴农镇某社区居民王某及其亲属9人在家中聚餐,疑似食物中毒致8人死亡,唯一幸存者也于19日不治身亡。调查得知,其间9人共同食用了自制酸汤子。该酸汤子食材已在冰箱冷冻一年,疑似该食材引发食物中毒。经医院化验检测,食物中黄曲霉素严重超标,初步判定为黄曲霉毒素中毒。 案情分析曝光时间曝光后迅速引起社会的广泛关注并登上新闻热搜。但是小编朋友圈里的很多从事食品安全的资深用户均第一时间转发并发表了自己的一些猜想——事件真相可能不是黄曲霉毒素中毒。我们所熟知的黄曲霉素,作一种天然的、致癌证据非常充分的强致癌物,一般污染玉米、花生、高粱、小麦、大米等,要造成这么高死亡率的急性中毒,可能性非常小。然而在专家们的分析下,新的矛头指向了另外一种高致命性毒素——“椰毒假单胞菌”发酵产生的米酵菌酸毒素。 印证案件发生后,黑龙江省卫生健康委员会12日发布的最新信息,鸡西食物中毒事件经流行病学调查和疾控中心采样检测后,在玉米面以及患者胃液中检出高浓度米酵菌酸,由此印证了这是一场由椰毒假单胞菌污染产生米酵菌酸引起的食物中毒事件。 揭秘真凶其实早在8月1日,广东省市场监督管理局公众号发布文章《广东省市场监督管理局发布消费提醒:慎防米酵菌酸毒素中毒》。进入高温潮湿天气,河粉、肠粉(卷粉)、陈村粉、粿条、等湿米粉容易受椰毒假单胞菌污染而产生米酵菌酸毒素。椰毒假单胞菌在自然界普遍存在,若米面食品未及时冷藏保存或超过保质期,食用引发米酵菌酸毒素中毒的风险增大。 米酵菌酸(Bongkrek acid)米酵菌酸(Bongkrek acid)是一种结构含有三个羧基的长链羧酸。科学家在2019年发现了米酵菌酸能与ADP/ATP转运酶结构中的受质结合处结合,使得粒线体基质内的ATP无法与转运酶结合而无法离开线粒体,进而导致无法给细胞供能。目前该毒素中毒尚无特效解毒药物,致死率为40-100%。以下就是杀手的真面目: Fig.1 米酵菌酸与异构体异米酵菌酸结构式 椰毒假单胞菌培养菌落 但是再隐蔽地“作案”都蒙骗不了质谱分析的“法眼”。赛默飞独家Orbitrap™ 系列超高分辨率液质联用系统具有出色的分辨率、质量精度、灵敏度及稳定性,可以实现一针进样获得样品中所有化合物的高质量精度一级/二级质谱数据,为高通量毒物筛查提供可靠准确的数据;结合一系列专用数据库与数据处理软件,能实现灵活简单的一站式筛查流程。以下分享来自用户的案例:米面类基质样品采用目前较为成熟的QuEChERS快速高效净化法对化合物进行提取净化,可以有效地去除样品中脂质,蛋白质等成分,再氮吹复溶浓缩后即可上机进行LC-HRMS快速筛查分析。赛默飞基于最先进的 Core Enhanced Technology(表面多孔增强核技术)结合固定相键合,以及耐受 100% 水柱填料特性, Thermo Scienti-fic™ Accucore aQ HPLC 色谱柱能够提供高效分析真菌毒素类 、有机酸类化合物的色谱解决方案,显著提升实验室工作效率。 在乙腈-0.1%(v/v)甲酸水溶液的LC-HRMS条件下米酵菌酸分析色谱图(50 μg/L)如下: 使用Full Scan – ddMS2采集模式能同时获取化合物一级、二级信息;亚PPM级质量精度保证定性结果准确性。 方法学考察结果如下表格,方法回收率为90.6-96.8%。方法特异性好,灵敏度高,分析速度快。 Note面对日益复杂的食品安全问题,赛默飞色谱与质谱产品能够提供全面的霉菌毒素解决方案及数据库,涵盖黄曲霉毒素、呕吐毒素、雪腐镰刀菌烯醇、伏马毒素等常见毒物。此外,基于液质联用技术的农兽药残留、司法毒物、非法添加物等检测解决方案也正携手用户,守护人类生命健康。 参考文献:[1]梁明等. QuEChERS EMR-Lipid 结合超高效液相 色谱-四极杆/静电场轨道阱高分辨质谱快速测定河粉中的米酵菌酸. 《2019 年广东省食品学会年会论文集》,2019.58-63. [2] 曾雪芳, 刘嘉飞, 王立亚,等. 超高效液相色谱-串联质谱法测定米粉和河粉中的米酵菌酸[J]. 食品安全质量检测学报, 2019, 10(13): 4074-4079. [3] Nadine Moebius, et al. Identification of the potent toxin bongkrekic acid in a traditional African beverage linked to a fatal outbreak[J]. Forensic Science International,2016. [4] GB 5009.189-2016.食品安全标准 食品中米酵菌酸的测定[S]. “码”上下载 填写表单即刻获取【Orbitrap Exploris 120 质谱仪】 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。■ 水溶性维生素系列标样产品编号产品名称CAS包装目录价VIT-001N维生素B1盐酸盐 / 硫胺素Vitamin B1 hydrochloride67-03-81 g¥195C 17455500硝酸硫胺 / 维生素B1硝酸盐Thiamine mononitrate532-43-40.25 g¥432C 17561000硫代硫胺素Thiothiamine299-35-41 g¥540VIT-002N维生素B2 / 核黄素Vitamin B283-88-51 g¥195C 16813610核黄素磷酸钠Riboflavine-5 phosphate sodium130-40-50.25 g¥432VIT-003N维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B658-56-01 g¥195VIT-004N抗坏血酸 / 维生素CVitamin C50-81-71 g¥195C 10303100抗坏血酸钙盐Ascorbic acid calcium salt5743-28-20.25 g¥432C 10303900抗坏血酸钠盐 / 维生素C钠盐L-Ascorbic acid sodium salt134-03-20.25 g¥396C 10303930维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate137-66-60.25 g¥432VIT-005N烟酸 / 吡啶-3-羧酸 / 尼克酸Vitamin B359-67-61 g¥195VIT-006N烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide98-92-01 g¥195C 15521030烟酸苄酯Nicotinic acid-benzyl ester94-44-00.25 g¥360VIT-007N叶酸Vitamin M59-30-31 g¥195VIT-008ND-泛酸 / 维生素B5D-Pantothenic acid79-83-40.1 g¥370C 15844500D-泛酰醇D-Panthenol81-13-00.5 g¥936CA15845000泛酸钙单水合物Pantothenic acid calcium salt63409-48-30.25 g¥360VIT-009N-R1D-生物素 / 维生素H / 辅酶RVitamin H58-85-50.1 g¥195VIT-010N-R1维生素B12Vitamin B1268-19-90.025 g¥234VIT-WSK-R1-SET水溶性维生素套装,包括:VIT-001N to VIT-010N10 units¥1,264■ 脂溶性维生素系列标样产品编号产品名称CAS号规格目录价VIT-012N维它命EVitamin E10191-41-00.1 g¥273CA17924320维生素E醋酸酯Vitamin E acetate7695-91-20.5 g¥540VIT-013N胆骨化醇 / 维生素D3Vitamin D367-97-00.1 g¥273CA17924100骨化二醇Vitamin D3 25-hydroxy monohydrate63283-36-30.05 g¥1,134VIT-014N维生素A棕榈酸酯Vitamin A palmitate79-81-20.1 g¥1,206VIT-015N维生素E醋酸酯Vitamin E acetate7695-91-20.1 g¥273VIT-016N维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K184-80-00.1 g¥273VIT-017N维生素K2Vitamin K211032-49-80.1 g¥1,556VIT-018N维生素K3 / 甲萘醌 Vitamin K358-27-50.1 g¥273VIT-019NBETA-胡萝卜素b-Carotene7235-40-70.01 g¥389CA10290900beta-阿扑-8' -胡萝卜醛8' -Apoaldehyde1107-26-20.05 g¥936VIT-020N维生素 E 琥珀酸酯Vitamin E succinate4345-03-30.1 g¥273VIT-022N维生素D2Vitamin D250-14-60.1 g¥273VIT-FSK-R2-SET脂溶性维生素套装,包扩:VIT-012N to VIT-022N10 units¥2,457■ 相关分析耗材产品产品编号产品名称规格目录价116481甲醇 99.9% [HPLC/ACS]4 L¥180134752乙腈 99.9% [HPLC/ACS]4 L¥400187553水 [HPLC]4 L¥375904802乙醇 95%500 mL¥22S02001C18 柱,150 mm× 4.6 mm, 5 &mu m1 支¥2,500S02302C18 柱,250 mm× 4.6 mm, 5 &mu m1 支¥2,800S010125-3002AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960S010525-3002AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960ZTLMGL-4.1针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相)100 片/包¥150WKLM-4.2微孔滤膜 Ф50 0.45 &mu m (有机相)100 片/包¥210901275J&K 瓶口分配器(5.0-50.0 mL)1 支¥2,000958945J&K单道手动可调移液器(100-1000 &mu L)1 支¥645928429J&K磁力搅拌器(数显、加热、不锈钢)1 台¥3,1125182-0553螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫)100 个/包¥5275182-0728聚丙烯螺纹瓶盖(无隔垫)100 个/包¥1095183-4759高j绿色隔垫(带预穿孔)50 个/包¥699CER-001-11.5 mL标准毛细储存瓶1 个¥2405183-2086400 &mu L 脱活的玻璃平底内插管500 个/包¥1,4415183-4696单细径锥不分流衬管25 个/包¥6,0305183-4693单细径锥,带玻璃毛不分流衬管5 个/包¥1,4605188-5365衬管O形圈10 个/包¥1435188-5367进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包)1 个¥389
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准  1、范围  本标准规定了室内空气质量参数及检验方法。  本标准适用于住宅和办公建筑物。  2、规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB 6921-86 大气飘尘浓度测定方法 重量法  GB 9801-88 空气质量 一氧化碳的测定 非分散红外法  GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法  GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法  GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法  GB/T 14669-93 空气质量 氨的测定 离子选择电极法  GB/T 14582-93 环境空气中氡的标准测量方法  GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法  GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法  GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法  GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法  GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法  GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法  GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法  GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法  GB/T 16146-1995 住房内氡浓度控制标准  GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法  GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准  GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法  GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法  GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法  GB/T 18204.25-2000 公共场所空气中氨检验方法  GB/T 18204.26-2000 公共场所空气中甲醛测定方法  GB/T 18204.27-2000 公共场所空气中臭氧检验方法  5 室内空气质量检验  5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。  5.2 室内空气中苯浓度的测定方法见附录 C 。  5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。  5.4 室内空气中细菌总数检验方法见附录 E 。  5.5 室内热环境参数的检验方法见附录 F 。  附录 A  (规范性附录)  室内空气采样技术导则  1、范围  本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。  2、选点要求  2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5 个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。  2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。  2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。  3、采样时间和频率  采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。  4、采样方法和采样仪器  根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。  5、采样的质量保证措施  5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。  5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。  采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。  5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。  5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。  5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。  6、记录和报告  采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。  附录 B  (规范性附录)  室内空气中各种参数的检验方法 *  污染物 检验方法 来源  (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995  ( 2 ) GB/T 15262-94  (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90  ( 2 ) GB/T 15435-1995  (3) 一氧化碳 CO ( 1 )非分散红外法  ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88  , SPAN style="FONT-SIZE: 9pt COLOR: #666666 FONT-FAMILY: 宋体 mso-ascii-font-family: 'Times New Roman' mso-hansi-font-family: 'Times New Roman'"( 2 ) GB/T 18204.23-2000  (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法  ( 2 )气相色谱法  ( 3 )容量滴定法 GB/T 18204.24-2000  (5) 氨 NH3 ( 1 )靛酚蓝分光光度法  纳氏试剂分光光度法  ( 2 )离子选择电极法  ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000  ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93  (6) 臭氧 0 3 ( 1 )紫外光度法  ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995  ( 2 ) GB/T 18204.27-2000  (7) 甲醛 HCHO • AHMT 分光光度法  • 酚试剂分光光度法  气相色谱法  ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95  ( 2 ) GB/T 18204.26-2000  ( 3 ) GB/T 15516-95  (8) 苯 C 6 H 6 气相色谱法 • 附录 C  ( 2 ) GB 11737-89  ( 9 ) 甲苯 C 7 H 8 、  二甲苯 C 8 H 10 气相色谱法 GB 14677-93  (10) 苯并 [a] 芘  B(a)P 高压液相色谱法 GB/T 15439-1995  (11) 可吸入颗粒  PM10 撞击式 —— 称重法 GB/T 17095-1997  (12) 总挥发性有机物  TVOC 气相色谱法 附录 D  (13) 细菌总数 撞击法 附录 E  (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F  (15) 新风量 示踪气体法 GB/T18204.18-2000  (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法  ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995  ( 2 ) GB/T 14582-93  * 注:检验方法中( 1 )法为仲裁法。  附录 C  (规范性附录)  空气中苯浓度的测定  (毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。  1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。  1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。  2、适用范围  2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。  2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。  3、试剂和材料  3.1 苯:色谱纯。  3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。  3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。  4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.3 注射器: 1ml 。体积刻度误差应校正。  4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。  4.5 具塞刻度试管: 2ml 。  4.6 气相色谱仪:附氢火焰离子化检测器。  4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。  5、采样和样品保存  在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。  6、分析步骤  6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。  6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。  6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。  6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。  8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。  附录 D  (规范性附录)  室内空气中总挥发性有机物( TVOC )的检验方法  (热解吸 / 毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”  1.2 原理  选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。  1.3 干扰和排除  采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。  2、适用范围  2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。  2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。  3、试剂和材料  分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。  3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。  3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。  3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。  4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。  4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。  色谱柱:非极性(极性指数小于 10 )石英毛细管柱。  4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。  4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。  5、采样和样品保存  将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。  采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。  6、分析步骤  6.1 样品的解吸和浓缩  将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。  表 1 解吸条件  解吸温度 250 ℃ ~325 ℃  解吸时间 5~15min  解吸气流量 30~50ml/min  冷阱的制冷温度 +20 ℃ ~-180 ℃  冷阱的加热温度 250 ℃ ~350 ℃  冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg  载气 氦气或高纯氮气  分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择  6.2 色谱分析条件  可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。  6.3 标准曲线的绘制  气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。  液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。  用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。  6.4 样品分析  每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  7.2 TVOC 的计算  ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。  ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。  ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。  ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。  ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。  ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。  ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。  7.3 空气样品中待测组分的浓度按( 2 )式计算  式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。  8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。  附录 E  (规范性附录)  室内空气中细菌总数检验方法  1、适用范围  本方法适用于室内空气细菌总数测定。  2、定义  撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。  3、仪器和设备  3.1 高压蒸汽灭菌器。  3.2 干热灭菌器。  3.3 恒温培养箱。  3.4 冰箱。  3.5 平皿 ( 直径 9cm) 。  3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。  3.7 撞击式空气微生物采样器。  采样器的基本要求 :  (1) 对空气中细菌捕获率达 95 %。  (2) 操作简单 , 携带方便 , 性能稳定 , 便于消毒。  4 营养琼脂培养基  4.1. 成分 :  蛋白胨 20g  牛肉浸膏 3g  氯化钠 5g  琼脂 15~20g  蒸馏水 1000ml  4.2 制法 将上述各成分混合 , 加热溶解 , 校正 pH 至 7.4 ,过滤分装, 121 ℃, 20min 高压灭菌。撞击法参照采样器使用说明制备营养琼脂平板。  5 操作步骤  5.1 选择有代表性的房间和位置设置采样点。将采样器消毒 , 按仪器使用说明进行采样。  5.2 样品采完后,将带菌营养琼脂平板置 36 ± 1 ℃恒温箱中 , 培养 48h ,计数菌落数 , 并根据采样器的流量和采样时间 , 换算成每 m 3 空气中的菌落数。以 cfu/m 3 报告结果。  附录 F    (规范性附录)  热环境参数的检验方法  热环境参数测试的要求、方法和仪器 *  测试项目 测试范围 准确度 测试方法和仪器  温度 -10~50 ℃ ± 0.3 ℃ 玻璃温度计(包括干湿球温度计)  数字式温度计(热电偶、热电阻、半导体式包括数字式湿度计或风速计所附的温度计)  相对湿度 12%~99% ± 3% 干湿球温度计  氯化锂露点式湿度计  电容式数字湿度计  空气流速 0.01~20m/s ± 5% 热球式电风速计  热线式电风速计  * 各种测试仪器的使用方法见仪器的使用说明书。  HPLC法测定布洛芬糖浆剂的含量  布洛芬糖浆剂除具有布洛芬片剂的药效外,还具有吸收快、利于儿童服用等特点[1]。但由于布洛芬不溶于水,其糖浆剂中均含有碱性物质以增加其溶解度[2,3],所以不能再用药典规定的中和法测定布洛芬含量。本文采用HPLC法测定了布洛芬糖浆剂的含量,获得了较满意的结果。  1 仪器与试药  日本岛津LC-6A高效液相色谱仪、SPD-6AV紫外检测器、SCL-6B系统控制器、C-R4A数据处理机、LC-6A输液泵。  布洛芬对照品:山东新华制药厂生产,采用本文色谱条件检查为单一色谱峰,含量为99.80% 布洛芬糖浆剂[3]:自制,标示量为2 %(g.mL-1) 二苯胺(内标)及无水甲醇均为分析纯。  2 色谱条件  色谱柱:YWG?C18 4.6 mm×250 mm 流动相:取磷酸二氢钠380 mg与磷酸氢二钠50 mg,加水溶解至1000 mL,用磷酸调pH至3.0,取出250 mL加甲醇750 mL,混匀。流速:1 mL.min-1 检测波长220 nm 进样量20 μL 检测灵敏度:0.01 AUFS。  3 标准曲线制备  精密称取二苯胺适量,加无水甲醇配制成0.7 mg.mL-1的溶液,作为内标溶液。另取布洛芬对照品适量,精密称定,加无水甲醇配制成0.27 mg.mL-1的溶液,作为对照品溶液。精密量取对照品溶液0.5、1.0、1.5、2.0、2.5、5.0mL,分别置于50 mL量瓶中,加入内标溶液1.0 mL,用无水甲醇稀释至刻度,摇匀,进样20 μL。以对照品与内标的峰面积之比为纵坐标,相应对照品浓度(mg.mL-1)为横坐标,得回归方程: Y=75.5X+0.0136 r=0.9997结果表明,布洛芬溶液浓度在3~30 μg.mL-1范围内与峰面积呈良好的线性关系。二苯胺及布洛芬的色谱图图1 二苯胺及布洛芬的色谱图  1.二苯胺 2.布洛芬  4 回收实验  取布洛芬对照品约100 mg,精密称定,定量转移至100 mL量瓶中,按处方加入单糖浆、L-精氨酸、苯甲酸钠、香精,用无水甲醇稀释至刻度,摇匀。精密取上述溶液及内标溶液各1 mL,按“样品测定”项下操作。测得平均回收率为99.89 %,RSD为0.93%,n=6。  5 样品测定  取布洛芬糖浆剂约2.5 mL,精密称定,定量转移至50 mL量瓶中,用无水甲醇稀释至刻度,摇匀。精密吸取上述溶液及内标溶液各1 mL置于50 mL量瓶中,用无水甲醇稀释至刻度,摇匀,进样20 μL。测得样品的含量为标示量的97.23 %,n=5,RSD为0.89 %。  6 讨论  经稳定性试验观察,样品溶液在室温下(约18 ℃)放置,每隔2 h测定1次,测至6 h,样品标示百分含量结果的RSD为0.99%,n=3。说明样品溶液较稳定。  以安定为内标物,效果也较好。但由于笔者想将该法用于布洛芬糖浆剂生物利用度测定,为防止人体内安定类药物的干扰,所以选择二苯胺为内标。  双甘瞵的HPLC分析条件  摘要:  试剂和溶液:  四丁基硫氢酸胺,  色谱纯甲醇  色谱纯磷酸  AR磷酸二氢钾  AR水:二次蒸馏水  双甘瞵标样  流动相:  0.05moLKH2PO4,200mL+50mL甲醇+0.5  色谱柱:Sinochrom ODS-BP 150mmX4.6mm 5um  流量:1mL/min  波长:195nm  柱温:35度。  HPLC同时测定大黄素和大黄酚的含量  大黄的有效成分为大黄素、大黄酚、大黄酸、芦荟大黄素、大黄素甲醚及其甙类等蒽醌类成分。有关大黄及其制剂有效成分含量测定方法报道很多,如比色法、薄层-紫外分光光度法、HPLC法等。这里简单介绍一下HPLC法同时测定大黄素和大黄酚含量时的色谱条件、样品处理方法等。  ⑴《中国药典》2005版大黄含量测定项:以十八烷基硅烷键合硅胶为填充剂 甲醇-0.1%磷酸溶液(85:15)为流动相。检测波长为254nm。对照品为芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚。大黄样品前处理:甲醇回流提取—8%盐酸超声—三氯甲烷回流萃取。  ⑵赵莉,晁若冰测定了大黄通便胶囊中大黄素和大黄酚的含量。色谱条件同⑴。仪器:LC-IOAT vp高效液相色谱仪,SPD-M10A vp光二极管阵列检测器,Class-vp色谱工作站(日本岛津)。用Luna 5 u Cl8(2)柱(150 mm×4.6 mm,ID),ODS预柱Phenomenex ODS guard cartridge system,4.0mm×3.0mm,ID)。样品先用甲醇回流提取,提取物在2.5 mol/L硫酸溶液中加热水解,再用氯仿提取后进行测定。  ⑶张华,雪秦岚,赵宏科,赵海云采用HPLC测定血脂灵片中大黄素、大黄酚的含量。色谱条件同⑴,检测波长428nm。仪器:高效液相色谱仪(包括P200Ⅱ型高压恒流泵,UV-200Ⅱ型紫外检测器,Echrom98色谱数据处理工作站),Shim-Pack型C18分析柱(200mm×4.6mm,5μm)  ⑷常军民,高宏,张煊,赵军,堵年生采用HPLC测定枝穗大黄中大黄素和大黄酚的含量。色谱条件同⑴。仪器:美国Waters 2690高效液相色谱仪,Waters 2487双波长检测器,Waters millennium s 色谱工作站(Waters corporation)。  ⑸魏有良,杨志一,霍彬科采用HPLC法测定化症回生片中大黄素和大黄酚的含量。色谱条件同⑴。样品处理:甲醇回流,再上中性氧化铝柱(100-200目,直径1.5cm,3.5g),先用甲醇洗脱,5%氢氧化钠洗脱,收集盐酸调Ph1-2,乙醚萃取。  ⑹王劲,李洁,马彦,田佩瑶,彭国克采用HPLC法测定中药消毒产品中大黄酚和大黄素的含量。色谱条件:天津特纳Kromasil C18(200mm×4.6mm i.d.,7μ)色谱柱,流动相:φ=0.02mol/L KH2PO4水溶液(H3PO4调pH=3.5)/甲醇=15/85,柱温:室温,流速:1.0mL/min,紫外检测波长:260nm。仪器:美国Waters公司2695高效液相色谱仪(996二极管阵列检测器,MiUennium32色谱管理系统)。  HPLC法同时测定大黄素和大黄酚的含量时,文献报道所采用的色谱条件多为药典所载的条件。流动相为甲醇-磷酸系统,另外还有乙腈-磷酸系统、甲醇-水系统、甲醇-高氯酸系统、甲醇-冰醋酸系统等 检测波长多为254nm,也有采用430、440、438、287nm。也有以甲醇-水-异丙醇(80:10:10)磷酸调pH值为3.0,检测波长:439nm。样品处理方面一般用适当溶剂回流提取,除去溶剂后氧化水解,再以有机溶剂萃取。酸溶液多为盐酸和硫酸。  HPLC法在生物碱分析中的应用  生物碱是植物中一类重要化学成分,许多生物碱或含生物碱的提取物已广泛用于医药领域,因此对不同来源的、存在于较复杂体系或基质中的生物碱进行快速、灵敏、可靠的定性和定量分析一直是受人瞩目的研究课题。  1、生物碱HPLC的分析模式  根据HPLC分析生物碱时所使用固定相性质、流动相组成及极性不同,其分析模式大致可分为:正相吸附色谱法、正相硅胶反相洗脱系统色谱法、反相色谱法及离子交换色谱法。  正相吸附色谱法:通常以硅胶基质为吸附固定相,流动相为不同极性的有机溶剂或不同比例混合溶剂,分离过程主要依靠生物碱与吸附剂吸附作用的差异实现,为了改善分离,提高溶洗脱能力,常于流动相中加浓氨液、二乙胺、三乙胺等。该法应用于生物碱分析的文献较少。  正相硅胶一反相洗脱系统色谱法(NS-RE):通常采用未经化学改性的普通硅胶为固定相,以极性有机溶剂(甲醇、乙腈)和高pH缓冲溶液为流动相,分析包括生物碱在内的碱性药物。该法柱效高,峰形对称,是简便有效的方法。在实际应用中,流动相的组成是主要的影响因素,流动相中除含有调节pH 的缓冲盐外,有时还要三乙胺、溴化四丁基铵等竞争离子或烷基磺酸钠等对离子。因此,影响保留与分离的主要因素是流动相pH、竞争离子种类及浓度 。  反相高效液相色谱法(RP-HPLC):近年来RP-HPLC应用于生物碱分析方面的文献很多,已成为常规的方法。但普通存在色谱峰的展宽拖尾,导致分离效能低,这主要缘于生物碱结构中碱性氮原子与固定相未键台酸性硅醇基的相互作用。即使是所测生物碱在较低浓度下,仍常产生峰漂移及峰对称性差等现象。针对此缺陷,研究工作者从适用于碱性物质分析的反相填料的设计选择,流动相中缓冲盐的使用,流动相添加剂(离子对试剂、有机胺改性剂)等几方面进行了较为广泛细致的研究,并取得了一定的进展。  离子交换色谱法:该法以阳离子交换树脂为固定相,利用质子化的生物碱阳离子与离子交换剂交换能力的差异而达到分离生物碱的目的,有关生物碱高效液相离子交换色谱法的应用报道较少。  2、生物碱HPLC分析检测方法  目前,生物碱HPLC分析检测方式多以紫外法为主,在定性分析方面,紫外法检测选择性低,定性专属性差。随着二极管阵列检测器使用的普及,显著提高了液相分析检测的选择性。此外,根据生物碱的理化性质,其它检测方式如荧光法、电化学法、蒸发光散射法亦得到了应用。近年来,液相色谱-质谱联用技术已应用于生物碱分析,增强了对生物碱的定性检测能力,提高了检测灵敏度。新的接口技术及离子化方法的发展.使得HPLC-MS在生物碱的分析中得到较广泛的应用,近年的文献报道日渐增多。  3、生物碱HPLC分析的样品处理方法  因生物碱常具有一定的碱性,一般常用碱化液液萃取或酸水提取等方法从中草药、中成药及生物样品等较复杂体系中提取纯化,以达到富集和去除杂质的目的。近年来,固相萃取(SPE)技术及超临界流体萃取等现代提取纯化技术亦应用于样品的提取纯化。  HPLC法快速测定食品中糖精钠、苯甲酸、山梨酸和咖啡因  苯甲酸、咖啡因等食品添加剂食用过量会对人体造成伤害,国家卫生标准对这几项指标有明确的限量,因此开展了此项调查。试验表明,液相色谱测定各类食品中糖精钠、苯甲酸、山梨酸和咖啡因时,即使是可乐等清凉饮料,样品经过脱气、稀释、过滤的简单处理即上机分析,也极易堵塞色谱柱,造成柱压升高、柱效下降,对色谱柱造成难以修复的损坏 而样品经透析处理耗时太长。本文论述了在常温下用氢氧化钠-硫酸锌作为蛋白质沉淀剂,沉淀处理包括清凉饮料、酸奶、花生乳等比较粘稠的饮料以及固体食品等各类样品中的蛋白质、淀粉等杂质,可以大大降低对色谱柱的损害,在一定的色谱条件下,在常温下即可快速、同时分离四种被测组分,操作极为简单、快速。  1 试验部分  1.1 原理  糖精钠、咖啡因是易溶于水的盐类,样品中的苯甲酸、山梨酸经氢氧化钠溶液(O.50mol/L)浸泡后,转化为易溶于水的苯甲酸钠、山梨酸钠,经沉淀蛋白质、过滤等处理后,四种被测组分滞留于水相中与杂质分离。  1.2 仪器与试剂  岛津LC-10AT高效液相色谱仪  色谱柱:Hypersil-ODS2-C18,4.6 mm X 1 50 mm柱  检测波长215nm,进样量2OμL,流动相为甲醇+O.02mol/L 乙酸铵(35+65),流量0.50mL/min。  苯甲酸标准溶液:1.000g/L,称取苯甲酸0.1000g,加20g/L碳酸氢钠溶液5mL,加热溶解,定容至100mL。  山梨酸标准溶液:1.000g/L,同苯甲酸配制。糖精钠标准溶液:1.000g/L,称取糖精钠0.1702g,加水溶解,定容至200mL。  咖啡因标准溶液:1.000g/L一,称取咖啡因0.1000g,加水定容至100mL。  混合标准液:糖精钠、苯甲酸、山梨酸、咖啡因浓度依次为4.5,5.0,5.0,5.0 mg/L。  氢氧化钠溶液:0.50mo1/L  硫酸锌溶液:0.42 mol/L_  乙酸铵溶液:0.02 mol/L,称取乙酸铵1.54g用水定容至1L。  甲醇(色谱纯)  1.3 试验方法  1.3.1 液体样品  称取样品0.100~5.00g于50mL比色管中(汽水振摇或微温除去二氧化碳,配制酒类水浴加热,除去乙醇),加入纯水约5mL,加入0.50mol/L氢氧化钠溶液1.00mL,搅匀,放置15min,混匀,加人纯水约30 L,加人0.42mol/L 硫酸锌溶液1.50 mL,混匀,加人0.50mol/L氢氧化钠溶液1.50mL,摇匀,纯水定容至50.0 mL,混匀,静置几分钟,上清液过滤(双层滤纸),弃去初滤液5 mL,滤液经0.45μm滤膜过滤,进样量2Oμl,进行色谱分析,以保留时间定性,以峰高定量。  1.3.2 固体样品  称取研碎的样品0.100~2.00g于5OmL比色管中,加人纯水约30mL,加人0.50mol/L氢氧化钠溶液1.00 mL,搅匀,放置15min以上(直到被测组分完全溶出为止),加人0.42mol/L硫酸锌溶液1.50mL,混匀,其它操作同上。  2 结果与讨论  2.1 蛋白质沉淀剂种类的选择  2.1.1 亚铁氰化钾与乙酸锌的沉淀分离效果分别称取苯甲酸、山梨酸0.100Og用10mL甲醇溶解纯水定容至100 mL,配制成标准溶液,纯水稀释至所需浓度,选取饮料杏仁乳一份,做苯甲酸、山梨酸的加标回收试验。称取饮料样品2.00g于50mL比色管中,加人苯甲酸、山梨酸各250μg,加入纯水约25mL,混匀,加人106g/L亚铁氰化钾溶液2.5 mL,混匀,加入220g/L乙酸锌溶液2.5mL,混匀,纯水定容至50mL,静置几分钟,上清液过滤,弃去初滤液5mL,滤液经0.45μm滤膜过滤,进人色谱仪进行分析,进样量2OμL,以保留时间定性,以峰高定量。  试样经亚铁氰化钾与乙酸锌沉淀后,溶液的pH在5~6范围内,对样品中的糖精钠、苯甲酸钠、山梨酸钾(钠)、咖啡因的测定无影响,但对样品中的苯甲酸、山梨酸的测定有影响,加标回收率较低(在78.2~87.8之间)。因苯甲酸、山梨酸在水中的溶解度较低,加人蛋白质沉淀剂以后,与杂质一起被沉淀,影响测定的准确性。由于难以确定饮料中的苯甲酸、山梨酸是否为钾盐、钠盐,建议不采用该蛋白质沉淀剂。  2.1.2 氢氧化钠与硫酸锌的沉淀分离效果  试样经该蛋白质沉淀剂沉淀后,对样品中的糖精钠、苯甲酸(钠)、山梨酸(钾)、咖啡因的测定(加标回收)均无影响,建议采用该蛋白质沉淀剂。  按试验方法进行氢氧化钠与硫酸锌不同比例的试验。  当0.50mol/L氢氧化钠溶液与0.42mol/L硫酸锌溶液用量为5:4时,沉淀效果最好,但保留时间发生滞后现象,不宜采用 两者用量为5:3时,定量与定性均准确,且滤液澄清,过滤速度也较快,这恰好与理论上氢氧化钠与硫酸锌形成完全沉淀时所需的比例(nOH:nZn2+=2:1)相吻和,但两者用量太少时,沉淀不完全 为使杂质完全沉淀,选择氢氧化钠用量为2.50mL、硫酸锌1.50mL为处理0.100~5.0 g饮料、0.100~2.O0g固体样品的最佳用量。  2.2 标准曲线及回归方程  按试验方法进行测定,4种添加剂的线性范围、检出限(按3倍信噪比计算)的测定。  2.3 样品测定结果  选择含不同被测组分的饮料样品,分别平行测定7次。  选择可乐饮料l份,分别做高、中、低浓度的加标回收试验。  2.4 食品中糖精钠、苯甲酸、山梨酸和咖啡因含量的调查  调查了市售饮料其中包括可乐、汽水、果汁、酸奶、牛奶、活性乳、花生乳、果冻、冰棍等共57份,其中5份含咖啡因0.002 3~O.270g/kg,17份含糖精钠0.053~0.966g/kg,7份含苯甲酸0.0038~O.230 g/kg,16份含山梨酸0.090~0.770g/kg 酱菜、熟肉制品、熟面制品40份,4份含糖精钠0.916~1.04g/kg,8份含苯甲酸0.005O~5.68g/kg,3份含山梨酸0.10~0.680g/kg 酱、酱油、醋、料酒共24份,其中15份含苯甲酸0.030~1.73 g/kg,1份含山梨酸0.220g/kg。  HPLC法鉴别五味子与南五味子  五味子为木兰科植物五味子Schisandra Chinensis(Turcz)Bail1.的干燥成熟果实,习称“北五味子”,具有收敛固涩、益气生津、补肾宁心的功效⋯ 。南五味子为木兰科植物华东五味子  Schisandra sphenanthe Rehd.et Wills.的干燥成熟果实,功效与五味子相似。中药成方制剂中都明确指定用何种五味子,且《中国药典)2000年版分别单独制定了质量标准。市场上这两种五味子价格相差较大,因此鉴别很重要。《中国药典)2000年版收载的标准中有薄层色谱鉴别,都采用了五味子甲素作为对照品,再分别用各自的对照药材作对照。作者多次实验结果表明薄层色谱鉴别对两种五味子鉴别专属性不强。本文则采用HPLC法进行鉴别,重复性好、灵敏度高且直接分析的是其特征峰,鉴别结果不受环境等因素干扰,为五味子的鉴别提供了可靠的手段。  1 仪器和试药  1.1 仪器:高效液相色谱仪(泵:SP1000,检测器UV2000,N2000工作站,美国光谱物理公司)。  1.2 试药:五味子对照药材(批号:0922—9803中国药品生物制品检定所) 五味子(毫州恒丰药材公司) 南五味子(毫州恒丰药材公司)。色谱纯甲醇 超纯水。  2 方法与结果  2.1 对照药材溶液的制备:取五味子对照药材粉末约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理(功率250 W ,频率20 kHz)30分钟,取出,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.2 色谱条件:色谱柱:AllitimaC18(4.6 mm×250 mm)。流动相:甲醇.水(13:7)。检测波长:250 nm。流速:0.8mL/min。柱温:25℃ 。  2.3 供试品溶液的制备  2.3.1 五味子药材提取液的制备:取五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.3.2 南五味子药材提取液的制备:取南五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.4 图谱的绘制:分别精密吸取对照药材溶液与供试品溶液各20 L,注入液相色谱仪,测定,见表1。  从表1中可以看出,五味子对照药材共9个峰,样品五味子共8个峰,南五味子共6个峰,样品五味子与对照药材相比少1个峰,其它峰保留时间都一致,南五味子少了3个峰,且只有1个峰相一致,由此,可以鉴定出五味子。经过多次实验结果,对照药材1、2、6、7、8号峰是五味子的主要特征峰,且峰面积较大。  3 小结与讨论  高效液相色谱法以保留时间为主要鉴别参数,若因仪器厂家、色谱柱等条件不同,则保留时间可能产生较大差异,导致图谱鉴定操作性不强,而采用对照药材作为对照。排除了上述因素的影响。峰号具体成分因无法买到对照品而不能确定。药厂采购五味子时,掺杂南五味子时有发生,应仔细对照药典标准进行鉴别,当初步鉴定为五味子,或者若怀疑有部分为南五味子时,则可以挑选出这两种五味子。再与对照药材分别进行HPLC图谱鉴别,方法简便可行。  HPLC法检查甲硝唑葡萄糖注射液中5-HMF  摘要 采用高效液相色谱法测定甲硝唑葡萄糖注射液中5-羟甲基糠醛,以C18为固定相,以甲醇-0.2%磷酸溶液(25∶75)为流动相,检测波长为284 nm,平均回收率为99.2%(RSD=0.61%)。  《中国医院制剂规范》〔1〕收载的甲硝唑葡萄糖注射液项下5-羟甲基糠醛(5-HMF)检查要求该品1∶25稀释后在284 nm波长处吸收度不得大于0.25。但实验证明,按上法进行甲硝唑葡萄糖注射液中5-HMF检查,其吸收度远大于0.25(1.50以上)。因为甲硝唑在284 nm处有吸收。中国药典1995年版〔2〕对甲硝唑葡萄糖注射液尚未规定5-HMP的限量检查〔2〕。为保证用药安全,本文建立了高效液相色谱法测定甲硝唑葡萄糖注射液中5-HMF的含量,可消除甲硝唑的干扰。现报道如下。  1 仪器与试药  1.1 仪器 Waters 501泵,484检测器,7725进样器(美国)。  1.2 试药 甲硝唑(浙江可立思安制药公司) 5-羟甲基糠醛(美国Sigma公司,H9877) 甲硝唑葡萄糖注射液(浙江省新昌制药厂,971105,971213,980124,980213,980321) 甲醇(色谱纯)。  2 方法与结果  2.1 色谱条件 色谱柱:Nova-pack C18(200 mm×4.6 mm, 4 μm) 流动相:甲醇-0.2%磷酸溶液(25∶75) 检测波长:284 nm 流速:1.0 ml/min。  2.2 试液的配制 精密称取5-HMF适量,加水溶解成0.5 mg/ml的溶液为5-HMF标准储备液。  2.3 标准曲线制备 精密量取5-HMF标准储备液适量,用水分别稀释成5,10,15,20,25 μg/ml的溶液 取10 μl注入色谱仪中,在上述色谱条件下测得峰面积(见图1) 以峰面积Y对浓度X绘制标准曲线,得回归方程y=1254x+47,r=0.9986,表明在浓度5~25 μg/ml范围内线性良好。另取10 μl试样重复进行,峰面积RSD=0.48%(n=6)。  2.4 回收率测定 精密量取已测得5-HMF含量的甲硝唑葡萄糖注射液50 ml,置100 ml量瓶中,精密加入5-HMF标准储备液1 ml,加水至刻度 按样品测定项下方法,计算平均回收率为99.2%,RSD=0.61%(n=5)。  2.5 样品5-HMF含量检测 精密量取甲硝唑葡萄糖注射液10 μl注入色谱仪,按上述色谱条件,测得5-HMF的色谱峰面积 另精密量取5-HMF标准溶液10 μl注入色谱仪中,同法测得峰面积,按峰面积外标法计算,结果5批样品中5-HMF含量分别为6.1,8.3,8.6,10.9,14.7 μg/ml。  3 讨论  实践证明,若生产过程不规范(如灭菌温度过高,时间过长)很容易导致5-HMF含量偏高。因此,控制甲硝唑葡萄糖注射液中5-HMF的限量对确保用药安全具有重要意义。  HPLC法测定紫草油中左旋紫草素的含量  摘要:目的 建立紫草油中左旋紫草素的含量测定方法。方法:采用HPLC法测定紫草油中左旋紫草素的含量,色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 甲醇-0.025mol/L磷酸(85:15)为流动相 检测波长:516nm 柱温:25℃ 进样量:20μL。结果:左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内线性关系良好(r=0.9998) 平均回收率为101.3%,RSD=1.90%(n=5)。结论:该方法简便、准确,能排除其他成分的干扰,可用于紫草油的质量控制和评价。  紫草油是我院的医院制剂,由紫草、银花藤、白芷等中药组成,具有凉血消炎的作用,临床用于烫伤的治疗,紫草为方中君药,其有效成分为紫草素,而紫草素含量的高低,直接影响其临床疗效。本实验采用HPLC法测定紫草油左旋紫草素的含量,方法简便、准确、重现性好,为控制该制剂的内在质量提供了可靠的方法。  l仪器与试药  1.1仪器高效液相色谱仪LC-1OA,SPD-10AVP紫外检测器(日本岛津) CK chrom data acquieition lO 15system (美国TSP)。  1.2试药  左旋紫草素对照品(中国药品生物制品检定所,批号0769—9903) 紫草油(本院制剂室提供) 超纯水 甲醇为色谱纯,其余试剂为分析纯。  2方法与结果  2.1色谱条件色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 流动相:甲醇-0.025mol/L磷酸(85:15) 流速:1.0 mL/min 检测波长:516nm 柱温:25℃ 进样量:20μL(定量环)。  2.2对照品溶液的制备 精密称取左旋紫草素对照品2.8 mg,置25mL量瓶中,加入甲醇溶解并稀释至刻度,制成每mL含112.0μg的溶液,作为对照品储备液。精密吸取对照品储备液(1 12.0μg/mL)1.0,1.5,2.0,2.5,3.0 mL置于10mL量瓶中,加甲醇稀释至刻度。  2.3供试品溶液制备精密吸取样品10mL,置分液漏斗中,加入1% 氢氧化钠溶液20mL振摇提取3次,每次20mL,合并碱液,加10%盐酸溶液,调pH值至酸性(pH 2.5~3.5),用氯仿萃取4次(30,30,30,20mL),合并氯仿液,水浴蒸干,残渣加甲醇溶解并定量转移至25mL量瓶中,加甲醇溶液至刻度,摇匀,用0.45μm微孔滤膜滤过,作为供试品溶液。  2.4线性关系考察取浓度为11.2,16.8,22.4,28.0,33.6μg/mL的对照品溶液,分别进样20μL,测得峰面积,以浓度(C)对峰面积积分值(A)进行线性回归,回归方程为A=2.521×10000C一4265,r=0.9998。表明左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内,与峰面积积分值呈良好线性关系。  2.5精密度试验取同一份供试品溶液,每次20μL,重复进样6次,结果平均峰面积为757099,RSD=0.78%(n=6)。  2.6稳定性试验取供试品溶液依上述色谱条件,每隔1h测含量1次(n=5),次日测定2次,积分值无明显变化,平均峰面积为742531,RSD为1.01%(n=7)。  2.7重复性试验取同批样品(批号020816)5份,依2.3项下方法制备,照上述色谱条件测定,结果平均含量为58.0μg/mL,RSD为0.90% (n=5)。  该方法符合重复性要求。  2.8加样回收率试验精密吸取已知含量的样品溶液,精密加入一定含量的左旋紫草素对照品溶液,依法提取、进样、测定。  2.9样品测定取4批样品各10mL,依法制成供试品溶液,均以20μL进样,分别测定吸收峰面积,外标法计算左旋紫草素含量。  3讨论  紫草油为油制剂,方中主药紫草的有效分为紫草素及其衍生物,属于萘醌色素类化合物。有文献报道用紫外分光光度法及薄层扫描测定紫草素的含量 ,本方法采用HPLC测定紫草油中左旋紫草素的含量,简便、灵敏、准确,重复性好,可用于本品的质量控制。样品测定结果表明,各批号紫草油中左旋紫草素含量差异较大,通过对成品颜色的观察发现,左旋紫草素含量高的成品颜色深红,而所测含量较低的成品颜色较浅,这可能与紫草原药材的质量有关,故应严格控制原药材的来源与质量,并且应加强本制剂中间产品紫草素的质量控制。  薄层色谱法的相关知识简介  薄层色谱法,系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。  1.仪器与材料  (1) 玻板 除另有规定外,用5cm×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。  (2) 固定相或载体 最常用的有硅胶G、硅胶GF[254] 、硅胶H、 硅胶HF[254],其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、 微晶纤维素F[254]等。 其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种 前者系将固定相直接涂布于玻璃板上, 后者系在固定相中加入一定量的粘合剂,一般常用10~15%煅石膏(CaSO4.2H2O在140℃烘4小时),混匀后加水适量使用,或用羧甲基纤维素钠水溶液(0.5~0.7%)适量调成糊状,均匀涂布于玻璃板上。也有含一定固定相或缓冲液的薄层。  (3) 涂布器 应能使固定相或载体在玻璃板上涂成一层符合厚度要求的均匀薄层。  (4) 点样器 同纸色谱法项下。  (5) 展开室 应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,除另有规定外,底部应平整光滑,应便于观察。  2.操作方法  (1) 薄层板制备 除另有规定外,将1份固定相和3份水在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干,后在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光和反射光检视)。  (2) 点样 除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线距底边2.0cm,样点直径及点间距离同纸色谱法,点间距离可视斑点扩散情况以不影响检出为宜。点样时必须注意勿损伤薄层表面。  (3) 展开 展开室如需预先用展开剂饱和,可在室中加入足够量的展开剂,并在壁上贴二条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖,使系统平衡或按正文规定操作。 将点好样品的薄层板放入展开室的展开剂中,浸入展开剂的深度为距薄层板底边0.5~1.0cm(切勿将样点浸入展开剂中),密封室盖,待展开至规定距离(一般为10~15cm),取出薄层板,晾干,按各品种项下的规定检测。  (4) 如需用薄层扫描仪对色谱斑点作扫描检出,或直接在薄层上对色谱斑点作扫描定量,则可用薄层扫描法。 薄层扫描的方法,除另有规定外,可根据各种薄层扫描仪的结构特点及使用说明,结合具体情况,选择吸收法或荧光法,用双波长或单波长扫描。由于影响薄层扫描结果的因素很多,故应在保证供试品的斑点在一定浓度范围内呈线性的情况下,将供试品与对照品在同一块薄层上展开后扫描,进行比较并计算定量,以减少误差。各种供试品,只有得到分离度和重现性好的薄层色谱,才能获得满意的结果。
  • 贝因美等三品牌奶粉检出反式脂肪酸
    涉贝因美、圣元优博、伊利三品牌  含量未超出内地和国际安全标准  昨日,有媒体报道指国内三个奶粉品牌产品含有反式脂肪酸成分。广州市工商部门指出,目前这三款奶粉销售正常,并没有要求商超等对其下架。食品专家指出,反式脂肪酸不得人为添加,但可能天然带有,国家标准对反式脂肪酸的含量有限制。  昨日有香港媒体报道称,由该媒体委托进行的检测发现,内地三个颇受欢迎的奶粉品牌,其产品含有反式脂肪成分。其中贝因美冠军宝贝俱乐部、圣元优博,以及伊利金装三只婴儿配方奶粉中,每100克奶粉含有0.4克至0.6克反式脂肪(又称反式脂肪酸)。但三种奶粉包装上均未注明含有反式脂肪。但该三种奶粉的反式脂肪含量尚未超出内地和国际安全标准。  报道还指出,目前内地法律没有规定婴儿配方奶粉包装须注明反式脂肪含量。  公司回应:  确含反式脂肪酸但安全  本报记者昨天则从工商部门获悉,目前这三款奶粉销售正常,并没有要求商超等对其下架。"这主要涉及到一个标准问题,"工商部门相关负责人称,"广州对奶粉等乳制品的市场监管,严格按照国家的统一标准,包括组织日常抽检和市场巡查,但对于国标中未明确的项目,工商部门只能在市场监管中予以关注,但不能强制下架。"  记者昨日致电上述品牌奶粉客服咨询,其中贝因美客服人员指出,公司曾在官网发布了有关反式脂肪酸的说明,奶粉之中确含有反式脂肪酸,但含量是安全的。贝因美官网一份发表在2010年11月的《郑重说明》指出,"贝因美选择以若干种天然植物油复合调配富含人体必需脂肪酸的精炼植物油作为贝因美配方奶粉的主要脂肪原料,脂肪酸组成合理均衡非常接近母乳中的脂肪结构,并严格控制反式脂肪酸,产品完全符合最新国家标准".  而圣元奶粉客服人员则表示,公司正在核实网上消息的真实性,按照消息所指的含量换算,产品中反式脂肪酸占总脂肪酸的比例仅为1.57%,而国家标准规定,反式脂肪酸最高含量应小于总脂肪酸的3%."反式脂肪酸是牛奶中天然存在的,我们并没有人为添加。"该客服人员称,公司还有比国家标准更严格的内控标准,产品检测合格才能上市。至于产品中并无标注反式脂肪酸,她就表示国家标准没有要求。  反式脂肪酸禁人为添加  奶业专家王丁棉指,由于婴儿器官处在发育阶段,过多摄入反式脂肪酸会增加肾功能的压力,导致其他不良症状。所以国家设立一个安全系数加以控制。"国内外标准不一致。我认为如果检测接近临界点的话问题不大,若高出好多则肯定有问题。"他还指出,在奶粉加工生产过程中,脂肪酸会变性而产生反式脂肪酸。  儿科专家、中国医学科学院教授丁宗一昨日则对本报记者表示,他对香港媒体报道的科学性、权威性表示质疑。按照国际食品法典精神,反式脂肪酸对婴幼儿健康有害,不能作为营养物或原料加入到乳粉之中,但生产过程中难免会产生反式脂肪酸,所以规定控制在3%以下,但绝不允许人为添加。  国家卫计委在2010年曾发布《专家解读反式脂肪酸管理及相关知识》一文,称尚未发现食物中的天然反式脂肪酸对健康有不利影响,甚至有研究显示天然的反式脂肪酸对人体健康可能有益。但是,长期过量食用氢化加工产生的反式脂肪酸可引起人体血脂代谢异常,增加心血管疾病发生的风险。
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 【新旧对照】GB 29921-2021《食品安全国家标准 预包装食品中致病菌限量》
    致病菌是常见的致病性微生物,能够引起人或动物疾病。食品中的致病菌主要有沙门氏菌、副溶血性弧菌、大肠杆菌、金黄色葡萄球菌等。据统计,我国每年由食品中致病菌引起的食源性疾病报告病例数约占全部报告的40%至50%。  《食品安全法》规定,食品安全标准应当包括食品、食品相关产品中的致病性微生物、农药残留、兽药残留、重金属、污染物质以及其他危害人体健康物质的限量规定。目前,我国涉及食品致病菌限量的现行食品标准共计500多项,标准中致病菌指标的设置存在重复、交叉、矛盾或缺失等问题。 为控制食品中致病菌污染,预防微生物性食源性疾病发生,同时整合分散在不同食品标准中的致病菌限量规定,国家卫生计生委委托国家食品安全风险评估中心牵头起草《食品中致病菌限量》(GB29921-2013,以下简称GB29921)。标准经食品安全国家标准审评委员会审查通过,于2013年12月26日发布,自2014年7月1日正式实施。  GB29921属于通用标准,适用于预包装食品。其他相关规定与本标准不一致的,应当按照本标准执行。其他食品标准中如有致病菌限量要求,应当引用本标准规定或者与本标准保持一致。该标准实施过程中遇到很多问题,在历年食品安全抽检实施过程中得到反馈的问题较多,因此相关部门于2017年1月正式启动修订,2019年12月公开征求意见,现GB 29921-2021于2021年9月7日发布,2021年11月21日实施。同期公布的《GB 31607-2021食品安全国家标准 散装即食食品中致病菌限量》也如约而至,这两个新标准 的正式实施将为食品人提供强有力的法规支持,话不所说,我们还是先重点看一下GB 29921-2021较GB 29921-2013有哪些变化吧。新版变化1.修改标准名称2021版标准由《食品安全国家标准 食品中致病菌限量》修改为 《食品安全国家标准 预包装食品中致病菌限量》2.修改适用范围3.应用原则4.指标要求(1)食品类别增加增加了乳及乳制品、特殊膳食用食品的致病菌限量要求,食品类别由11类增加到13类。(2)肉制品删除2013版肉制品类别下的熟肉制品和即食生肉制品删除 大肠埃希氏菌 O157:H7 要求增加致泻大肠埃希氏菌要求,并在备注中限定仅用于牛肉制品,即食生肉制品、发酵肉制品。金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(3)水产制品01删除2013版水产制品类别下熟制水产品、即食生制水产品、即食藻类制品02增加单核细胞增生李斯特氏菌要求03删除金黄色葡萄球菌要求(4)即食蛋制品无变化(5)粮食制品01删除粮食制品类别下熟制粮食制品(含焙烤类)、熟制带馅(料)面米制品、方便面米制品02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(6)即食豆制品01删除即食豆制品类别下发酵豆制品、非发酵豆制品02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。同时m和M单位由CFU/g改为CFU/g(ml)(7)巧克力类及可可制品无变化(8)即食果蔬制品01删除 大肠埃希氏菌 O157:H7 要求02增加致泻大肠埃希氏菌要求,并在备注中限定仅用于牛肉制品,即食生肉制品、发酵肉制品。03金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。04增加单核细胞增生李斯特氏菌要求05单核细胞增生李斯特氏菌和致泻大肠埃希氏菌要求仅适用于去皮或预切得水果、去皮或预切的蔬菜及上述类别混合食品。(9)饮料01删除饮料食品类别下(包装饮用水、碳酸饮料除外)02删除金黄色葡萄球菌要求(10)冷冻饮品01删除冷冻饮品类别下冰淇淋类、雪糕(泥)类、食用冰、冰棍类02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(11)即食调味品01删除即食调味品类别下酱油、酱及酱制品、水产调味品、复合调味料(沙拉酱等)02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(12)坚果与籽类食品01食品类别由坚果籽实制品修改为坚果与籽类食品,同时删除坚果及籽类的泥(酱),腌制果仁类(13)备注01增加解释 表中“m=0/25g或25ml或100g”代表“不得检出每25g或每25ml或每100g”。02原“注1”调整为应用原则中2.403原“注2”调整为应用原则中2.3(14)增加附录A 食品类别(名称)说明详细的标准全文如下图:
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • 新品上市,DLM-9-25/氘代丙酮/666-52-4!
    新品上市,DLM-9-25/氘代丙酮/666-52-4!关于产品 DLM-9-25/氘代丙酮/666-52-4 的具体详情:CAS号:666-52-4编号:DLM-9-25包装:25g纯度/规格:D, 99.9%品牌:美国CILDLM-9-25/氘代丙酮/666-52-4 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:T017/脱叶灵(噻苯隆)培养基厂家盐酸伐昔洛韦对照品/标准品对甲氧基桂皮酸乙酯对照品/标准品CAS:102-08-9,N,N`-二苯基硫脲价格人表面膜免疫球蛋白A(mIgA)ELISA试剂盒,96T/48T盐酸川芎嗪对照品/标准品大鼠磷酸化蛋白激酶C(P-PKC)ELISA试剂盒,96T/48Tbs-0358R-Bio,生物素标记的兔抗豚鼠IgG|Rabbit Anti-Guinea pig IgG/Bio抗体价格bs-0294R-AF555,Alexa Fluor 555标记的兔抗羊IgG|Rabbit Anti-Goat IgG/Alexa Fluor 555抗体价格环己胺标准品/对照品大鼠胰岛素样生长因子结合蛋白3(IGFBP-3)ELISA试剂盒,96T/48Tbs-13764R,线粒体核糖体蛋白MRP63抗体|MRP63抗体价格CAS:7585-39-9,β-环糊精价格CAS:10004-44-1,恶霉灵标准品/对照品价格香菇多糖厂家|CAS号37339-90-5CAS:67-48-1,氯化胆碱现货供应甲萘醌标准品/对照品bs-7766R,Rho GTP酶激活蛋白GAP抗体|RACGAP1抗体价格CAS:41083-11-8,三唑锡标准品/对照品价格大鼠骨粘连蛋白(ON)ELISA检测试剂盒说明书bs-1064R,肠道内富含的Kruppel样因子/上皮锌指蛋白4抗体|KLF4抗体价格盐酸加替沙星厂家|CAS号160738-57-8甘遂对照品/标准品临床免疫诊断血清|CAS号无|无bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6
  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 绿茶瓜子色素染出 工业滑石粉添增色泽
    绿茶瓜子跟茶叶完全“不沾边”、工业滑石粉让瓜子外表光鲜亮丽……上视新闻“七分之一”栏目前天播出调查报道《年货的秘密》,曝光炒货行业可能涉嫌违法使用食品添加剂乱象的情况。市质监局昨日第一时间回应表示,已连夜部署专项执法检查,覆盖所有本市炒货生产企业,全部抽样检测结果将及时公布。  检测结果将及时公布  根据上视报道,在深入安徽、江苏等瓜子生产地进行暗访时,有炒货厂老板自曝,绿茶瓜子、红茶瓜子都是用色素染的,并未使用茶粉。而对于自家产的瓜子,老板竟坦承“尽量少吃,确实不好”。而为了使瓜子光滑且色泽明亮,不少炒货厂商还违规添加工业滑石粉,对人体健康带来潜在危害。  对此,市质监局昨日回应,针对上视新闻曝光炒货行业可能涉嫌违法使用食品添加剂的情况,市质监局已连夜部署专项执法检查。检查将覆盖所有炒货生产企业,一旦查实违法行为、样品抽检不合格的情况,将依法严处。相关负责人表示,全部抽样检测结果将及时公布。  炒货历来是监督重点  炒货历来是质监部门质量监督检查的重点。去年,市质监局于3月和11月两次公布本市炒货食品及坚果制品质量专项监督抽查结果。抽查依据相关标准要求,对炒货及坚果产品的酸价、过氧化值、糖精钠、环己基氨基磺酸钠(甜蜜素)、乙酰磺胺酸钾(安赛蜜)、黄曲霉毒素B1、大肠菌群、霉菌、酵母、沙门氏菌、志贺氏菌和金黄色葡萄球菌等项目进行检验。去年3月份公布的质量抽查情况显示,66批次产品中,实物质量不合格4批次,不合格项目涉及酸价和过氧化值。去年11月份公布的结果则显示,40批次产品中,实物质量不合格1批次,不合格项目为酵母、霉菌超标。  [相关新闻]  沪暂停销售125公斤安徽宣城所产炒货  晨报记者江华报道 媒体曝光不少炒货可能存在违法使用食品添加剂现象后,本市工商部门已于昨日组织对部分食品批发市场经销的瓜子等炒货产品开展监督检查。  市工商局表示,此次重点检查经营户落实索证索票和进货查验、尤其是查验瓜子等炒货的质检合格报告等证明文件,指导市场主办方督促相关经营户暂停销售安徽宣城产瓜子等炒货125公斤。同时,委托法定食品检验机构抽检市场上经销的瓜子样品12组,并将根据检测结果作进一步处理。
  • 珀金埃尔默专业检测,“乳”此简单 | 乳制品中维生素B7/B9/B12的检测
    背景维生素(vitamin)是人和动物维持正常的生理功能所需要的一种微量有机物质,参与人体多种代谢,是食品的一类重要成分。人体必需维生素可分为两类:水溶性维生素和脂溶性维生素,其中水溶性维生素中又以B族维生素最为重要。B族维生素主要包括VB1(盐酸硫胺素)、VB2(核黄素)、VB3(烟酰胺、烟酸)、VB5(泛酸)、VB6(吡哆醇、吡哆醛和吡哆胺)、VB7(游离生物素)、VB9(叶酸)、VB12(氰钴维生素)等,它们虽然在体内的含量很少,却是调节人体各种新陈代谢必不可少的物质,是婴儿配方乳粉的重要组成部分。乳制品中维生素B7/B9/B12的检测由于食品安全国家标准有关于B7/B9/B12含量的要求,因此乳制品行业需要对其进行定量检测。目前针对维生素B7/B9/B12的国家标准检测方法是微生物方法。微生物法虽然试验周期长、对环境要求高,但因其是国标方法所以是抽检单位必用的检测依据,同时也适用于没有液相色谱仪或质谱仪等大型实验仪器的用户。乳制品中其他维生素的检测方法包括了液相色谱HPLC(或液质联用LCMSMS)、分光光度计、荧光光度计等仪器方法,这些可以为维生素B7/B9/B12的检测提供一些参考。乳制品维生素B7/B9/B12检测方案珀金埃尔默为您提供维生素B7/B9/B12整体检测解决方案,从检测试剂、前处理柱到仪器设备,“从繁至简,从慢到快,从国标方法到仪器确证”,全线产品满足不同条件的客户需求。针对我国国家标准微生物法实验周期长的特点,推出改进的微生物方法检测试剂盒以及ELISA试剂盒的产品。针对目前检测标准,步骤繁锁且重复性稍差的缺点,推出免疫亲和柱配合液相色谱或液质联用的方案。另外维生素B7/B9/B12,对热和氧极其敏感,在加工、储存中容易损失,且在样品中浓度差异较大,在进行样品前处理时也是需要解决的难点。A 微生物法检测试剂盒原理:某种微生物会对某种维生素具有极强的特异性,是其正常生长所必需的维生素,并且在一定条件下,其生长、繁殖速度与溶液中该维生素的含量成一定的对应关系,含量高则生长快,反之则慢,微生物法便利用了这种对应关系间接地测定出样品中该维生素的含量。该微生物检测试剂盒与国际规范保持一致,但试剂盒法相对缩短了检测周期,由原来的5-7天缩短为3-4天。B ELISA试剂盒原理:间接竞争ELISA方法,在酶标板微孔条上预包被抗原,样本和此抗原竞争抗体,同时抗体与酶标二抗(酶标物)相结合,经TMB底物显色得出样品中维生素的含量。特点:快速(1-2小时)、简便和灵敏度高C 液相色谱或液质联用方法特点:快速(1-2小时),方法重复性好。1 采用免疫亲和色谱法对乳制品提取液中的维生素进行富集并去除部分杂质,精密度及特异性高,处理后样品进入高效液相色谱进行分析。免疫亲和净化柱净化 FlexarTM液相色谱仪 免疫亲和柱产品介绍2 采用固相萃取的方法进行除杂,而后用液质联用仪器进行多种B族维生素分析。固相萃取 QSightTM LC/MS/MS 8种B族维生素色谱图扫码获得维生素检测的应用报告和产品介绍。
  • 山东农科院茶叶所董春旺团队在红茶发酵研究领域发表多篇高水平论文
    山东农科院茶叶所董春旺团队围绕红茶品质开展了一系列研究,其结果发表在LWT-Food Science and Technology、Food Bioscience、Sensors and Actuators: B. Chemical等期刊上。发酵是形成红茶特有品质风味的关键工序。当前国内外红茶生产均依靠人工经验“看茶制茶”,已成为制约红茶智能化加工的关键技术瓶颈。针对此问题,该研究课题基于多种算法,构建了红茶发酵中关键呈色呈味物质的量化感知模型。1.基于高光谱成像的红茶发酵过程中关键理化成分的量化感知与时空分布该研究课题之前已采用近红外光谱、机器视觉预测了红茶发酵在制品的主要内质成分含量。目前工作的新颖性在于:针对机器视觉、近红外光谱技术的局限性,采用高光谱成像技术获取发酵叶的VIS-NIR光谱和图像信息,即可从宏观层面检测叶面色泽变化,又从微观角度捕捉内质成分的衍变。再通过量化感知模型和计量学手段,首次可视化地揭示了发酵中关键呈色、呈味物质的多维时空分布规律,这在制茶学中是一种崭新的研究思路,为红茶智能加工和精准调控技术实现,提供了新的理论支撑和技术方法。发酵是形成红茶特有品质风味的关键工序。当前国内外红茶生产均依靠人工经验“看茶制茶”,已成为制约红茶智能化加工的关键技术瓶颈。针对此问题,该研究课题基于高光谱成像技术,结合不同预处理、变量筛选和智能算法等计量学手段,构建了红茶发酵中关键呈色呈味物质(茶黄素、茶红素、茶褐素、咖啡碱、酚氨比、儿茶素和可溶性糖)的量化感知模型,并探究了其在红茶发酵中的时空分布信息规律。研究结果表明,基于各敏感特征波长建立的茶红素、茶褐素、茶黄素、儿茶素、咖啡碱、酚氨比、可溶性糖构建的非线性模型的RPD值分别为2.21、3.40、3.78、5.71、1.46、2.91和2.89,除咖啡碱外的RPD值均大于2,表明模型具有良好的预测性能。原文链接:https://doi.org/10.1016/j.lwt.2021.1109752.基于电学特性的红茶发酵品质的快速无损感知该研究课题前期验证了机器视觉、高光谱成像技术快速感知红茶发酵内质成分的可行性。目前工作的新颖性在于:针对图像、光谱信息主要表征发酵叶表面信息缺陷,以堆积状发酵在制品为研究对象,采用电学特性数字表征发酵叶堆内部的整体信息,建立了电特性参数(电容、电阻、电抗、复阻抗、阻抗角和损耗因子)与内质成分的关联,实现对儿茶素含量的快速无损感知。发酵是红茶品质风味形成的关键工序,儿茶素是发酵生化反应的主体物质和品控指标。本研究探索了电特性检测红茶发酵质量信息的可行性,建立了红茶发酵中儿茶素成分的量化感知模型,比较了不同的预处理、变量筛选及智能算法对模型性能的影响。结果发现,发酵过程中损耗因子、电抗、阻抗和阻抗角值递增,电容和儿茶素含量呈线性降低。对儿茶素变化最敏感的电参数为0.05~0.1 kHz频段的Cp 、D和X;基于最优变量,建立VCPA-IRIV-RF非线性预测模型,其Rp、RMSEP和RPD值分别为0.988、0.269、5.474,模型性能优于光谱和机器视觉方法,为红茶发酵品质的在线快速检测提供了新途径。原文链接:https://doi.org/10.1016/j.fbio.2020.1008553.基于多维嗅觉信息评估红茶发酵过程中香气品质该研究团队前期探索了嗅觉可视化传感阵列基于在制品香气信息评估红茶发酵程度的可行性(DOI:10.1016/j.snb.2022.131994)。目前工作的新颖性在于:针对传统嗅觉可视化阵列传感器获取样品信息维度不足的问题,基于高光谱成像技术扩展获取信息的维度,并基于数据级、特征级以及决策级的数据融合策略建立红茶在制品香气信息与感官香气得分的关联,实现了红茶发酵香气品质的无损感知。本研究探索了多维嗅觉信息评估红茶发酵香气评分的可行性,基于高光谱成像技术扩展了获取香气信息的维度,采用不同水平的数据融合策略建立了红茶发酵多维香气信息与香气感官品质的感知模型。结果表明,基于多维嗅觉信息和数据融合策略建立的红茶发酵香气品质预测模型优于基于传统方法获取香气信息建立的模型。其中,基于自适应重加权采样的中水平融合策略表现出了最佳的性能,预测模型的Rp,RPD以及变量压缩率分别为0.969,4.091,96.83%。此研究为红茶香气品质的快速智能感知方法提供了新思路。比色传感阵列制备和发酵实验的流程图。原文链接:https://doi.org/10.1016/j.snb.2022.1325184.采用表面增强拉曼光谱对红茶发酵品质信息智能感知该研究团队前期探索了近红外光谱、机器视觉、嗅觉可视化和电特性传感信息结合机器学习方法评估红茶发酵品质及适度的可行性。该工作的新颖性在于:针对光谱分析红茶发酵过程机理不明确的问题,创新性的利用表面增强拉曼光谱对红茶发酵过程进行分析,深入研究了拉曼峰和发酵红茶品质指标的关联,并提出了一种无损检测发酵红茶多项品质指标,快速感知红茶的发酵品质适度的方法。为红茶数字化、智能化加工技术实现,提供了新的理论支撑和技术手段。该团队提出了一种基于表面增强拉曼光谱(SERS)技术和化学计量学的快速方法来确定红茶的最佳发酵阶段,并监测发酵过程中在制品的10种理化品质指标的变化。首先,不同发酵时序在制品聚类为5个发酵阶段。基于SERS数据对发酵阶段进行了识别,准确率为83.33%。此外,通过密度泛函分析和相关分析发现,在317.71、619.59、731.48、956.08和1326.70 cm-1处是监测红茶品质变化的重要拉曼峰。结合SERS和一维卷积神经网络(1D-CNN)对儿茶素(C)和表没食子儿茶素没食子酸酯(EGCG)的预测r2分别达到0.81和0.82。本研究揭示了与红茶发酵品质相关的关键化合物的拉曼指纹特征,为利用SERS数据量化茶叶在发酵过程中的品质变化提供了途径。原文链接:https://doi.org/10.1016/j.snb.2022.1326805.基于多源传感信息融合技术以及堆叠合并算法在决策层定量评估红茶品质本研究提出一种基于多源传感信息融合技术以及堆叠合并算法在决策层定量评估红茶品质的方法,提高了红茶发酵品质成分定量预测的精度,为红茶发酵的智能评估奠定了理论基础。针对人工感官经验评价红茶发酵品质缺陷,本研究提出一种利用多元融合信息以及堆叠合并策略在决策层定量预测红茶发酵过程中总儿茶素、可溶性糖和咖啡碱等主要与味觉相关的主要化学成分的新方法。该方法对总儿茶素、可溶性糖以及咖啡碱的预测集相关系数分别为0.9978,0.9973以及0.9560,模型精度明显优于经典的线性PLSR以及非线性SVR算法。该方法为红茶发酵品质的智能评估提供了新思路。原文链接:https://doi.org/10.1016/j.fochx.2023.100718————————————————————————————————“植物源性食品质量安全检测技术及应用新进展”主题网络研讨会全日程公布:https://www.instrument.com.cn/webinar/meetings/zhiwy230921/点击图片直达会议报名页面
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:  GB 28301-2012食品添加剂 核黄素5'—磷酸钠  GB 28302-2012食品添加剂 辛,癸酸甘油酯  GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠  GB 28304-2012食品添加剂 可得然胶  GB 28305-2012食品添加剂 乳酸钾  GB 28306-2012食品添加剂 L-精氨酸  GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液  GB 28308-2012食品添加剂 植物炭黑  GB 28309-2012食品添加剂 酸性红(偶氮玉红)  GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)  GB 28311-2012食品添加剂 栀子蓝  GB 28312-2012食品添加剂 玫瑰茄红  GB 28313-2012食品添加剂 葡萄皮红  GB 28314-2012食品添加剂 辣椒油树脂  GB 28315-2012食品添加剂 紫草红  GB 28316-2012食品添加剂 番茄红  GB 28317-2012食品添加剂 靛蓝  GB 28318-2012食品添加剂 靛蓝铝色淀  GB 28319-2012食品添加剂 庚酸烯丙酯  GB 28320-2012 食品添加剂 苯甲醛  GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)  GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)  GB 28323-2012 食品添加剂 乙酸香茅酯  GB 28324-2012 食品添加剂 丁酸香叶酯  GB 28325-2012 食品添加剂 乙酸丁酯  GB 28326-2012 食品添加剂 乙酸己酯  GB 28327-2012 食品添加剂 乙酸辛酯  GB 28328-2012 食品添加剂 乙酸癸酯  GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)  GB 28330-2012 食品添加剂 乙酸异丁酯  GB 28331-2012 食品添加剂 丁酸戊酯  GB 28332-2012 食品添加剂 丁酸己酯  GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)  GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)  GB 28335-2012 食品添加剂 2-甲基丁酸乙酯  GB 28336-2012 食品添加剂 2-甲基丁酸  GB 28337-2012 食品添加剂 乙酸薄荷酯  GB 28338-2012 食品添加剂 乳酸 l-薄荷酯  GB 28339-2012 食品添加剂 二甲基硫醚  GB 28340-2012 食品添加剂 3-甲硫基丙醇  GB 28341-2012 食品添加剂 3-甲硫基丙醛  GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯  GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯  GB 28344-2012 食品添加剂 乙酰乙酸乙酯  GB 28345-2012 食品添加剂 乙酸肉桂酯  GB 28346-2012 食品添加剂 肉桂醛  GB 28347-2012 食品添加剂 肉桂酸  GB 28348-2012 食品添加剂 肉桂酸甲酯  GB 28349-2012 食品添加剂 肉桂酸乙酯  GB 28350-2012 食品添加剂 肉桂酸苯乙酯  GB 28351-2012 食品添加剂 5-甲基糠醛  GB 28352-2012 食品添加剂 苯甲酸甲酯  GB 28353-2012 食品添加剂 茴香醇  GB 28354-2012 食品添加剂 大茴香醛  GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)  GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)  GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)  GB 28358-2012 食品添加剂 丁酰乳酸丁酯  GB 28359-2012 食品添加剂 乙酸苯乙酯  GB 28360-2012 食品添加剂 苯乙酸苯乙酯  GB 28361-2012 食品添加剂 苯乙酸乙酯  GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯  GB 28363-2012 食品添加剂 二氢香豆素  GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)  GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮  GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮  GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮  GB 28368-2012 食品添加剂 2,3-戊二酮  GB 14930.2-2012 消毒剂(代替GB14930.2-1994)  GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)  GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)  附件:71项食品标准文本.rar
  • 药用辅料质量观察丨聚山梨酯80(吐温80)中多脂肪酸检测
    药用辅料问题近几年困扰了国内的药物制剂生产企业,辅料质量控制引起了监管机构和生产企业的重视。在药典四部辅料品种里对理化检验的指标有具体要求,岛津和合作伙伴开展了辅料检测相关的研究,这里跟大家分享一个案例:聚山梨酯80中多脂肪酸检测。 聚山梨酯80,又名吐温80,是一种非离子型表面活性剂,系油酸酸山梨坦和环氧乙烷聚合而成的聚氧乙烯20油酸山梨坦。因为聚山梨酯80对亲脂性药物有较好的助溶作用,因此常被用作注射剂及口服液的增溶剂或乳化剂,是一种常用的药物制剂辅料。聚山梨酯80通常为混合物,其分子结构中脂肪酸部分的组成大多不同,以油酸为主要成分,同时还含有其他脂肪酸,如肉豆蔻酸、棕榈酸、棕榈油酸、硬脂酸、亚油酸、亚麻酸等。近年来,在临床应用中出现了一些安全性问题的报道,如过敏、溶血等不良反应。研究表明,副作用的产生可能跟聚山梨酯80的纯度有关,而测定脂肪酸的组成在一定程度上反映了聚山梨酯80的纯度。 2015版中国药典增加了聚山梨酯80要求,2020版中国药典沿用, “聚山梨酯80”品种下有脂肪酸含量要求:肉豆蔻酸(≤5.0%)、棕榈酸(≤16.0%)、棕榈油酸(≤8.0%)、硬脂酸(≤6.0%)、亚油酸(≤18.0%)、亚麻酸(≤4.0%),与EP、BP等要求一致。 ?Nexis GC-2030气相色谱仪 参考《中国药典》中碱催化三氟化硼/甲醇衍生化前处理方法,遵照药典规定的气相色谱条件,应用岛津Nexis GC-2030(FID)气相色谱仪建立了聚山梨酯80中脂肪酸组成的测定方法,并对市场上的三个聚山梨酯80产品进行了测定。 混合对照品溶液色谱图 (0.1 mg/mL)(上图按出峰顺序:1、肉豆蔻酸甲酯,2、棕榈酸甲酯,3、棕榈油酸甲酯,4、硬脂酸甲酯,5、油酸甲酯,6、亚油酸甲酯,7、亚麻酸甲酯) 按照中国药典前处理方法,在选定的分析条件下,测定三个聚山梨酯80样品中的脂肪酸组成,结果如表5所示。油酸含量越高,表明聚山梨酯80的纯度越高。这三个产品中油酸含量从40%-77%不等,而药典要求油酸含量不低于58.0%,产品C不满足药典要求。 三个聚山梨酯80产品的脂肪酸组成测定结果结论 聚山梨酯80中油酸的含量与其纯度直接相关,通过气相色谱法对聚山梨酯80中脂肪酸进行检测,实验结果有效地反应其中的脂肪酸组成和含量,可用于药品辅料的质量控制,进而降低临床用药的风险。
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。  全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”  国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。  “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。  该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。
  • 贝克曼库尔特 | 高通量筛选大肠杆菌重组蛋白生产用酵母营养素
    随着重组DNA技术的迅猛发展,外源基因在不同宿主中的表达使得各种重组蛋白的工业生物生产成为可能。选择合适的宿主是生物工艺设计中的关键步骤之一,具体取决于:1.上游培养效率2.易于基因编辑和分子工具的可用性3.翻译后修饰的能力,如糖基化4.蛋白质(用于下游加工和作为生物制药成分等)的分泌能力目前,多种生物已被应用于重组蛋白的生产,尤其是大肠杆菌,易于基因改造,具有在酵母水解物等多种基质上快速生长并产生高蛋白滴度的优势。已成为迄今为止业界追捧的主力军。典型的生物工艺优化通常需要进行一些初步试验,以发现适用于宿主菌株并提高目的重组蛋白表达的培养基成分(特别是氮基营养素)。对于此类应用需求,能够提高实验效率和参数准确度的高通量筛选平台成为热门工具。贝克曼库尔特BioLector通过在线测量关键培养参数提供可放大的高通量分析。本案例为通过BioLector对多种酵母营养素就生物量生长和重组蛋白的形成进行评估和比较,筛选出了适合大肠杆菌重组蛋白生产和诱导时间的理想培养基。方法培养菌株:大肠杆菌BL21(DE3)pET-28a(+)EcFbFP。培养基:以标准TB培养基(Carl Roth)为参照物,对多个TB 样(Terrific 液)培养基进行比较。不同的TB 样培养基使用不同的酵母提取物。BioLector培养条件:在接种至微孔板之前,先在250 mL摇瓶中进行预培养, 37°C培养6小时。然后使用48孔梅花板(MTP-BOH2)在 BioLector中进行培养。温度 37°C ,振摇速度:1400 rpm。分别在每个培养孔中填充800μL培养液用于非诱导实验,填充790μL用于诱导实验。诱导实验中,在诱导时间点上添加 10μL 50μM 的 IPTG。环境氧气浓度保持在35%,避免培养物缺氧。BioLector在线测量:培养过程中对生物量、EcFbFP(黄素荧光蛋白)、pH以及 DO进行在线测量。结果不同TB样培养基的生物量生长情况:培养实验中,不同酵母营养素的培养基中生物量的生长情况如上图所示:培养基不同,最终的光密度和生长速率也会不同。ProCel 6 中的大肠杆菌OD最高,培养基 ProCel 3 中的大肠杆菌的OD低。ProCel 6为本特定工艺的最高生长速率。上图为培养过程的DO值。培养基 ProCel 3 和 ProCel 4 中的培养物未达到0%的氧饱和度,这表明由于耗氧量有限,该培养基中的菌株代谢活性较低。相反,其他培养物包括TB标准培养基,均在短时间内达到0%的氧饱和度,表明菌株代谢活性高。不同酵母营养素TB样培养基的产物生成:通过将IPTG 添加到培养物中来诱导 T7 聚合酶的表达促进黄素荧光蛋白的生成。BioLector使用梅花板为48个培养物提供了独立的培养空间,因此可测试不同的诱导时间点。使用自动化工作站整合BioLector后的 RoboLector 系统还可以自动进行培养诱导。首先选择一个固定的诱导时间点。分别为培养启动后的3小时、3.75小时和4.5小时。下图所示为每种TB样培养基在诱导时间下所测荧光的平均值。荧光动力学清晰地表明不同培养基有不同的EcFbFP(黄素荧光蛋白)表达水平。表现出最强荧光信号的两个样本为:ProCel 2,诱导点为3.75小时;ProCel 5,诱导点为 3 小时。经过 7.7 小时的培养,ProCel 5 的荧光值达到102.94a.u.,而ProCel 2 的荧光值达到 101.82 a.u.。本方法的不足之处在于未比较不同样本的生物量对蛋白质产量的影响。经过3小时的培养,一些培养物的OD已达到6,而其他培养物仅达到3。当诱导具有不同光密度的培养物时,可能会对在每种酵母营养素上生长的实验大肠杆菌的蛋白质生产性能造成误解。鉴于此,我们采用了一种新方法,将诱导点与生物量信号耦合。使用BioLector的信号驱动RoboLector,依赖于特定生物量的诱导对于每个单独的孔都是可行的。为自动化工作站设置3、6或8的OD目标值,以根据孔内培养物的生长动力学自动添加IPTG以诱导蛋白质生产。如下图所示,ProCel 2表现最佳,最终值为 146.23 a.u.,培养时间是 12.3 小时;ProCel 5表现次之,最终值为138.1 a.u.。与之前进行的一系列实验相比,本实验中的排名与在特定时间点进行诱导的实验不同。这一观察证明了最佳工艺条件的重要性,并使这些条件具有可比性。此处数据表明:与之前的实验相比,本实验中的荧光值更高。正如该领域诸多论文中所强调的那样,诱导时间确实是一个关键参数。同样,在优化大肠杆菌重组蛋白生产的过程中,也必须评估诱导剂的浓度。另外,与对照TB培养基相比,这里测试的一些酵母氮源产生了更高的重组蛋白产量。这些结果凸显了选择培养基成分的重要性,这些成分能够在特定的生物工艺中实现高而稳定的产量。结论通过BioLector系统,贝克曼库尔特可为用户提供适用于各种应用领域的高通量筛选平台。其独特的梅花形微孔板尤其适用于好氧培养,如同实验室生物反应器,BioLector系统通过非侵入式传感器使客户能够获取更多的在线测量参数。正如本应用,通过BioLector系统可轻松实现培养基的筛选,整合自动化工作站的RoboLector,还可实现更多功能。补料、pH调控以及文中所述的诱导功能,所有这些均可在小规模实验中实现,帮助客户同时兼顾成本和效率。RoboLector高通量自动化微型生物培养平台欲了解该应用详情,请扫描下方二维码下载应用指南《利用BioLector进行大肠杆菌重组蛋白生产用酵母营养素的筛选》
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制