当前位置: 仪器信息网 > 行业主题 > >

猴脉络膜视网膜内皮细胞

仪器信息网猴脉络膜视网膜内皮细胞专题为您提供2024年最新猴脉络膜视网膜内皮细胞价格报价、厂家品牌的相关信息, 包括猴脉络膜视网膜内皮细胞参数、型号等,不管是国产,还是进口品牌的猴脉络膜视网膜内皮细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合猴脉络膜视网膜内皮细胞相关的耗材配件、试剂标物,还有猴脉络膜视网膜内皮细胞相关的最新资讯、资料,以及猴脉络膜视网膜内皮细胞相关的解决方案。

猴脉络膜视网膜内皮细胞相关的论坛

  • 查血液循环内皮细胞可知是否有心脏病

    科技日报讯 据物理学家组织网近日报道,美国斯克里普斯研究所开发出一种“液体活组织检查”技术,通过检查血液中有没有一种叫做循环内皮细胞(CECs)的特殊标记,能确认病人是否处于心脏病发作的高风险中。相关论文发表在最新一期的英国物理学会(IOP)刊物《生物医学》上。 血管内皮细胞排列在动脉壁上,当它们在血液中循环时,就和心脏病发作的进程密切相关。研究人员认为,这些循环内皮细胞所到之处会出现病变斑块、组织断裂和溃疡,造成动脉发炎。这些损害会形成血管阻塞,妨碍血液在动脉中流通,最终导致心脏病发作。 预测检查技术的原理是用健康的对照组来识别循环内皮细胞(CECs),并找出那些最近曾因心脏病发作而接受过治疗的病人。为此,研究人员开发出一种叫做“高清循环内皮细胞”(HD-CEC)化验的程序,探测并描绘出79名病人血液样本中的CEC特征。这些病人已经历过一次心脏病发作。他们用了两个控制对照组作为对比,包括25个健康人士和7个身患血管病并经过治疗的病人。该检测能从外形上以及循环内皮细胞与特殊抗体的反应中识别出它们,经过心脏病发作的人循环内皮细胞水平明显升高。 “在经历一次心脏病发作后,病人体内能可靠地探测到循环内皮细胞,而健康对照组中却没有。研究论文的目标是建立证据,我们已成功做到了这一点。”负责该研究的斯克里普斯研究所副教授彼得·库恩说,“相比于健康对照组,我们的结果非常明显。下一步就是要评估这项检测在心脏病发作早期识别中的有用性了。” 研究人员认为,这种技术现已能对那些显出征兆但尚未心脏病发作的人进行检测。此前尚无针对心脏病的预测检查,至少预测准确性无法令人满意。 他们还把检测结果与一种已经商业化的CellSearch检查进行了对比,CellSearch已获美国食品和药物管理局批准,用于检查癌症病人肿瘤细胞的数量。HD-CEC测试对循环内皮细胞显示出了更高的特异性,因为它用的是直接分析法,避免了浓缩阶段的偏差。“我们的检测能有效分析数百万个细胞,效率更高,但要保证你分析的是病人所有的可疑细胞。”(常丽君)来源:中国科技网-科技日报 2014年01月21日

  • 角膜内皮细胞治疗研究进展

    【序号】:3【作者】: 胡芷馨肖宇婷刘欣【题名】:角膜内皮细胞治疗研究进展【期刊】:眼科新进展. 【年、卷、期、起止页码】:2021,41(11)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHfKupNab7D8CVPRRcd1eHdvFPKjfOdk2q2fNPhLc86Uy&uniplatform=NZKPT

  • 小动物视网膜成像显微镜特点及应用

    [b][url=http://www.f-lab.cn/vivo-imaging/micron-iv.html]小动物视网膜成像显微镜Micron IV[/url]特点: [/b]可用于明场、血管结构和荧光(GFP,YFP,mCherry,CFP标记)成像。定制的最先进低噪音三芯片CCD:高灵敏度捕捉微弱的荧光。 近红外成像(可达700-900nm,最高到900nm)视网膜成像精度:小鼠4 μm,大鼠8 μm位滤光片轮,双回补灯及滤光片配置,更加灵活,包含荧光及近红外滤光片,提供亮场和荧光成像模式
 实验台:可三维翻转及旋转,便于调整大小鼠眼睛角度清晰成像。[img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/Micron-retinal-imaging.jpg[/img]小动物视网膜成像显微镜Micron IV可提供分辨率达4 μm的高清晰视网膜影像,且与荧光显微镜类似,可观察明视野和荧光(Ex. CFP, GFP, mCh erry等) 影像。方便的软件设计可直接从明场成像转换至荧光成像。[url=http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg][img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg[/img][/url][b]小动物视网膜成像显微镜Micron IV应用范围:[/b]荧光血管造影糖尿病视网膜病变视网膜母细胞瘤视网膜黄斑衰退症早产儿视网膜病变脉络膜新生血管小动物视网膜成像显微镜:[url]http://www.f-lab.cn/vivo-imaging/micron-iv.html[/url]

  • 小动物视网膜激光光凝仪简介

    [url=http://www.f-lab.cn/vivo-imaging/cnv.html][b]小动物视网膜激光光凝仪[/b][/url]是专业为小鼠和大鼠视网膜研究而设计的精密[b]视网膜光凝仪[/b]和[b]激光光凝系统[/b],它采用图像引导激光系统产生精确易于传送的[b]激光光凝固[/b]效果,以产生[b]脉络膜新生血管CN[/b]V。其用小动物视网膜激光光凝仪户友好的设计使技术人员能够精确可靠地控制产生脉络膜新生血管CNV所需的激光焦点的位置,大小和强度。产生脉络膜新生血管CNV优点准确控制和记录试验样品位置光斑尺寸的精确控制易于使用紧凑、精确的激光传输[img=小动物视网膜激光光凝仪]http://www.f-lab.cn/Upload/CNV-choroidal-neovascularization.jpg[/img]小动物视网膜激光光凝仪:[url]http://www.f-lab.cn/vivo-imaging/cnv.html[/url]

  • 视网膜脱落

    谁知道为什么会引起视网膜脱落?视网膜脱落手术后注意事项?

  • 显微镜下的人体---视网膜血管

    http://www.people.com.cn/mediafile/pic/20110923/76/6160573819760328908.jpg这是经染色处理的视网膜血管,从呈黑色的视盘中伸出。视盘即视神经盘,是眼睛上的一块盲区,这是因为在视网膜的这一区域没有感光细胞,视神经和视网膜血管都要从这里穿过。

  • 光电所“小型化视网膜自适应光学连续成像仪”研制完成

    近日,由中科院科研装备研制项目资助的“小型化视网膜自适应光学连续成像仪”研制工作在光电技术研究所顺利完成。该成像仪通过校正人眼像差可以获得高分辨率眼底视网膜图像,在临床疾病早期诊断等方面具有重要应用价值。 变形镜作为自适应光学系统的核心器件,其性能决定了成像仪的整机性能。光电所前期研制的视网膜自适应光学成像仪采用分立式压电驱动变形镜,受目前构造工艺的限制,其变形量小、口径大、成本高,难以适应临床大规模人群使用和产业化推广,寻求一种新型的变形镜以突破其临床应用限制已成为成像仪产业化推广过程中亟待解决的问题之一。与此同时,由于双压电片变形镜具有构造简单、结构灵活多样且易于小型化等优点,在眼科自适应光学领域具有较好的应用前景。因此,光电所于2010年开展了基于双压电片变形镜的新一代小型化视网膜自适应光学成像仪研制。 项目组在前期研究工作的基础上,针对人眼像差特性,设计并研制成功35单元双压电片变形镜,其行程达到20微米,而口径仅有原来分立式压电驱动变形镜口径的一半。在变形镜研制的基础上,先后解决基于双压电片变形镜的AO系统优化设计、闭环控制算法等关键技术,研制成功首套基于双压电片变形镜的小型化视网膜自适应光学成像仪,其体积仅为原来37单元成像仪的一半,但像差校正性能却得到大幅提升,大大降低了对人眼低阶像差预补偿的要求。 通过小规模人眼实验表明,新一代成像仪分辨率高、像差校正范围大、操作简单,这为其临床大规模人群使用和产业化推广走出重要一步。

  • 巨细胞病毒感染

    巨细胞病毒感染常见于A皿病人,男性同性恋中CMV感染率高达95%以上。巨细胞病毒感染可能对聊的细胞毒性及Kw复制具有协同作用,被认为是一种协同因子。在临床上可引起中枢神经系统感染以及脉络膜视网膜炎所致失明、慢性肠炎和肺炎。  .念珠菌日食管盗不少艾滋病或艾滋病相关综合征病例出现口腔真菌感染,其中有少数病例出现弥漫性食官央。临床表现为在咽部、食管、直肠及肛门周围皮肤教膜感染.严重者有吞咽团难,肛周糜烂,病原体为念珠茵,常呈反复发作。一般以活检为主要诊断依据,如口腔白色念珠茵感染肉服难以辨别,有必要用钡剂吞咽并经气管镜采集标本进行培养和活检。  .非结核分枝杆菌感染在艾滋病患者中常以局部或播散性感染出现。很容易从患者骨髓、淋巴结、肝活检组织及血液分离出分技杆菌。由于艾滋病不形成典型肉芽肿,甚至没有于酪样坏死性肉芽肿,对活检组织仍要做Nid-NMI删染色检查。  .隐球菌病许多艾滋病患者具有中枢神经系统症状,除了xP本身所致感染外,常与隐球菌感染有关。临床上主要表现为脑膜炎症状。  弓形虫病典型艾滋病患者身上,鼠弓形虫可侵犯思者肺部、脑、骨酷肌及皮肤,侵犯大脑可引起脑脓肿,有占位性神经病变体征。  .单纯疤疹病毒感染许多艾滋病患者常常有单纯疤疹病毒感染史,表现为可在口、食管、肛门等部位引起慢性进行性广泛的溃疡性病变。艾滋病患者伴有这种感染,常常可引起广泛的戳膜溃疡.持续一个月以上,同时出现肺部、胃肠道或其他播散性感染。

  • Biomed. Opt. Express:首次利用量子点控制脑细胞

    神经细胞能够被量子点控制,图片来自CNRI/Science Photo Library。在量子物理学和神经科学的史无前例的结合中,称作量子点(quantum dot)的微小颗粒首次被用来控制脑细胞。对大脑的这种控制可能有朝一日提供一种治疗诸如阿尔茨海默病、抑郁症和癫痫症之类的疾病的非侵入式方法。在近期,量子点可能通过重新激活视网膜细胞而被用来治疗眼睛失明。美国华盛顿大学西雅图分校Lih Lin说,“很多脑部疾病是由于不平衡的神经活性而导致的。操纵特异性神经元可能允许它们恢复到正常的活性水平。”人工刺激大脑的一些方法已经存在,不过每种方法都有它的缺点。尽管在帕金森疾病中人们采用深度大脑刺激方法来触发脑细胞活性并阻止导致虚弱性震颤的异常信号传导,但是该方法所需的电极是高度侵入性的。颅磁刺激(transcranial magnetic stimulation)方法能够刺激来自头部外面的脑细胞,但是它不是高度靶向的,因而同时影响大脑大部分区域。光遗传学研究人员能够利用光控制基因修饰的脑细胞,但是由于这些修饰,这种技术迄今为止在人类中被视为是不安全的。如今,Lin领导的研究小组利用量子点---光敏感性的直径只有几个纳米的半导体颗粒---设计出另一种方法。首先,他们在用量子点覆盖的薄膜上培养前列腺癌细胞。这些癌细胞的细胞膜紧挨着量子点放置。研究小组然后将光照射在纳米颗粒上。来自光线的能量激活量子点内的电子,从而导致周围的区域带负电荷。这就导致癌细胞中一些电压控离子通道打开从而允许离子进入或逃离癌细胞。在神经细胞中,打开离子通道是产生动作电位的关键性一步,而这种动作电位是大脑中细胞进行沟通的信号。如果电压变化足够大的话,动作电位就产生。当Lin领导的研究小组在神经细胞中重复他们的实验时,他们发现刺激量子点导致它的离子通道打开,这样神经细胞就被激活。对人而言,量子点将需要被传送到大脑组织。Lin声称这应当不是一种问题。她说,“一种重要的优势在于量子点表面能够被不同分子修饰。”这些分子能够附着到量子点上以便靶向特异性脑细胞,也能够以静脉注射方式进行传送。一种关键性障碍是将光源传送到大脑。为此,Lin认为这种技术将在重新激活视网膜受损细胞中首次使用,因为视网膜自然地吸收光线。共同作者Fred Reike是视网膜疾病的专家。他说,量子点在这种领域有着较大的潜力,因为它们能够直接影响在视力的信号传导途径中发挥着关键性作用的离子通道。英国利兹大学Kevin Critchley对此也同意,“量子点在生物医学应用中有着光明的未来”,但是可能也存在一些限制,如潜在性毒性问题。Lin说,“基于我们的研究结果,我们对这种技术在帮助我们解答生物学问题以及最终诊断和治疗人类疾病上的潜力保持乐观。”

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 夏日健康常吃马齿苋

    马齿苋的功效与作用性寒、味酸,归肝经、大肠经。有清热利湿、解毒消肿、消炎、止渴、利尿作用。1.利水、消肿、降低血压马齿苋含有大量的钾盐,有良好的利水消肿作用;钾离子还可直接作用于血管壁上,使血管壁扩张,阻止动脉管壁增厚,从而起到降低血压的作用。2.消除尘毒马齿苋能消除尘毒,防止吞噬细胞变性和坏死,还可以防止淋巴管发炎和阻止纤维性变化,杜绝矽结节形成,对白癜风也有一定的疗效。3.防治溃疡马齿觉还含有较多的胡萝卜素,能促进溃疡病的愈合。4.杀菌消炎马齿苋对痢疾杆菌、伤寒杆菌和大肠杆菌有较强的抑制作用,可用于各种炎症的辅助治疗,素有“天然抗生素”之称。5.防治心脏病马齿苋中含有一种丰富的Y-3脂肪酸,它能抑制人体内血清胆固醇和甘油三酯酸的生成,帮助血管内皮细胞合成的前列腺素增多,抑制血小板形成血栓素A2,使血液粘度下降,促使血管扩张,可以预防血小板聚集、冠状动脉痉挛和血栓形成,从而起到防治心脏病的作用。马齿苋的营养价值马齿苋还含有丰富的SL3脂肪酸及维生素A样物质:SL3脂肪酸是形成细胞膜,尤其是脑细胞膜与眼细胞膜所必需的物质;维生素A样物质能维持上皮组织如皮肤、角膜及结合膜的正常机能,参与视紫质的合成,增强视网膜感光性能,也参与体内许多氧化过程。马齿苋的家常做法马齿苋粥马齿苋150克,粳米100克,精盐、味精各少许,清水适量。将马齿苋择洗干净,入开水锅中焯一下,捞出,漂去粘液,切成碎段 粳米淘洗干净。锅置火上,放入清水、粳米,煮至半熟时,加入马齿苋,再续煮至粥成,用精盐、味精调味后即可食用。凉拌马齿苋鲜嫩马齿克500克,蒜瓣适量。将马齿觅去根、老茎,洗净后下沸水锅体透捞出 用清水多次洗净粘液,切段放人盘中 将蒜瓣捣成蒜泥,浇在马齿觅上,倒入酱油,淋上麻油,食时拌匀即成。此菜碧绿清香,成鲜可口,具有清热止痢,乌发美容的功效。可作为湿热痢疾、白癜风患者和因缺铜元素而造成白发患者的辅助食疗菜肴。痢疾、肠炎小偏方鲜马齿苋200克洗净,先将绿豆50-100克煮烂至烂熟时,再加入马齿苋同煮熟食用。有清热,解毒,止痢作用。鲜马齿苋500克,或干品150克,洗净切碎,加加车前草七条、生甘草10克、红糖100克,入砂锅加水煎沸约半小时,取汁约500克,乘热温服,服完睡觉盖被出汗,每次煎一剂,一日三次。

  • 【转帖】动物肝脏作“支架” 人类干细胞当填充

    动物肝脏作“支架” 人类干细胞当填充    据英国《每日电讯报》11月1日(北京时间)报道,在波士顿举行的美国肝脏疾病研究大会上,美国维克森林大学浸会医学中心的研究人员表示,他们使用人体干细胞首次在实验室培育出微缩版人体肝脏,新的实验结果有助于在将来制造出全功能的人造肝脏,造福广大肝病患者。  人们对于移植肝脏的需求远远超过了可以获取的数量。最近几年,研究人员一直在想方设法使用细胞技术支撑人体内随着年龄增长不断衰弱的器官正常运转,甚至希望某一天可以用人造器官取而代之。  维克森林大学医学院主管兼教授谢伊·索科尔团队使用人体干细胞制造出该微型肝脏,在一个“支架”上形成新的肝脏组织,而这个“支架”由一个动物肝脏制造而成。  研究人员首先将动物肝脏中的细胞除去,仅仅留下支持细胞生长的胶原蛋白框架以及一个细小的血管网络。接着将新的干细胞,也就是不成熟的人类肝脏细胞和内皮细胞(主要用于形成血管的内壁)逐渐填入“支架”中。随后,再将整个框架移入一个生物反应器中,并使用营养物质和氧气的混合物来培养这些细胞。一周后的观察发现,细胞的生长状况非常好,甚至表现出了很多真正人体肝脏的功能。  索科尔表示,新研究成果令人兴奋,但目前还处于初级阶段,仍有很多技术障碍需要克服。比如,研究人员不仅需要知道如何同时培育出数十亿肝脏细胞,以获得足够大的肝脏供病人使用,同时也必须弄清楚这些器官是否安全。

  • 【转帖】Nature Medicine:诱导细胞重编程新方法

    近日哈佛医学院和哈佛牙科学院的研究人员在培养皿中模拟一种罕见的遗传性疾病时,发现了一种新方法可以扭转成熟细胞的生物钟,使细胞返回成体干细胞状态。由此生成的新“干细胞“可在培养基及动物模型中分化为各种细胞类型。新发现发表在《自然-医学》(Nature Medicine)的网络版上。“新发现对于推动个体化用药尤其是组织工程学的发展具有重要的意义,”哈佛医学院细胞生物学系教授及哈佛牙科学院院长Bjorn Olsen说。进行性骨化性纤维发育不良(FOP)是一种罕见的遗传性疾病,目前全球的患者不到1000人。临床表现为急性炎症引起软组织转变为软骨和骨骼。在漫长的几十年病程中,患者身体的各个部分逐渐发生僵化,目前临床对此病征尚无有效的治疗策略。哈佛医学院及波士顿贝斯以色列女执事医疗中心的医学系讲师Damian Medici对来自这些患者的病变软骨细胞和骨细胞进行检测时,发现不同于正常的骨骼组织,病变细胞中包含有上皮细胞(一种排列在血管内壁的细胞)特异的生物标记物,这使得Damian Medici开始怀疑在FOP患者软组织中生成的软骨和骨是否有可能起源于内皮细胞。Medici和他的同事们将引起FOP的突变基因导入到正常上皮细胞中,意外地发现上皮细胞转化成了与间充质干细胞或成体干细胞非常相近的细胞类型,这些细胞可以分化为骨骼、软骨、肌肉、脂肪,甚至是神经细胞。研究人员在接下来的试验中证实当不使用突变基因时,用特异的蛋白TGF-β2或BMP4(功能与突变基因效应非常相似)孵育上皮细胞均可有效地诱导细胞重编程。进而Medici证实这些重编程细胞在培养皿和动物模型中均可诱导分化为一些相关的组织类型。“我们发现这些新细胞与骨髓间充质干细胞并不完全相同,两者之间存在一些非常重要的差异,”Medici说:“然而新细胞却拥有与骨髓间充质干细胞相同的潜能性和可塑性。”Olsen 说:“通过这个系统我们简单地重复和模拟了在自然界发生的过程。从这个意义上来说,它相比于当前其他的细胞重编程技术更少一些人为的影响。”“新发现必将推动组织工程学和个体化医疗领域的发展。可以想见或许在某天患者就可以通过获取自身的上皮细胞,将其培养为所需的组织类型进行移植,这样同时还避免了宿主免疫排斥等问题,”Medici和Olsen echo说。

  • 【分享】细胞中“宅男宅女”miRNA充当系统内信息传递“信号”大使

    一直被科学家当做“宅男宅女”的miRNA,最近却在研究中发现它们被赋予了比传统激素、细胞因子等信号蛋白更加高效、强劲的信息传递功能,即miRNA能够被一种细胞分泌出来后,经血液循环被运输到另外一种受体细胞内,通过降低其相应靶基因的翻译,从而调节受体细胞的功能。在7月9日出版的著名学术期刊《分子细胞》上,南京大学发表的一篇研究论文,将帮助人类更好地理解生物系统内信息传递的本质规律,揭示疾病发生发展的新机制,并发展出新的治疗策略与方法。 miRNA是一类动植物细胞内自然产生的非编码小RNA。以前,科学家一直认为miRNA是一类喜欢“宅”的分子,从“出生”起,一辈子就在一个细胞中活动。可是,南京大学生命科学院教授张辰宇、曾科和同事们,却在研究一种编号为miRNA150的微小RNA时,发现免疫系统中的单核/巨噬细胞在受到某种刺激后,会增加制造出miRNA150,并释放到循环的血液里,顺血流钻入内皮细胞中,刺激内皮细胞迁移。 以激素/细胞因子—受体及抗原—抗体等为代表的已知传统的细胞间信号传递方式,通常发生在特定种类的细胞,并且一般只有一个或数个分子直接作用。因而,这种通信方式是“单通道”的。而所有类型的细胞都具有分泌与接受miRNA的能力,并且在特定的生理与病理生理条件下,细胞可一次性分泌多种miRNA,在靶细胞中更能调节多个基因的翻译,所以,miRNA的信号传递方式是“双通道”或“多通道”的。 张辰宇说,糖尿病、红斑狼疮等在目前看来发生机理尚不明确的病症,在将来却有可能通过切断细胞间信号传递通道等方式进行防治。

  • 【转帖】用干细胞在实验室造出小型人类肝脏

    科学家们设法利用干细胞在实验室制造出小型人类肝脏。这一成功增加了制造出可用于移植的新肝脏的希望,尽管专家们说这还需要很多年时间。来自美国韦克福雷斯特大学巴普蒂斯特医疗中心的研究小组在波士顿的一个会议上展示了他们的研究成果。英国专家们说,这是“激动人心的进展”,但目前还不确定是否有可能培养出功能健全的肝脏。对可供移植肝脏的需求远超过所能供应的数量。近年来,研究工作的重点一直放在寻找用细胞技术维持或终有一天替代人体衰退器官的方法上。这些器官的基本构件是干细胞,一种在特定条件下分裂,形成各种人体组织的重要细胞。然而,用干细胞构建一个三维器官是一件困难的工作。韦克福雷斯特大学的研究人员以及世界上其他研究小组所使用的方法是,以现有肝脏结构为平台,生成新的肝脏组织。按照这种方法,研究人员利用一种洗涤剂剥离肝脏细胞,只留下支撑肝脏细胞的胶原框架和毛细血管网络。然后,新的干细胞——发育不完全的肝脏细胞以及用于生成新血管内壁的内皮细胞——被逐渐填入。将这些放入用各种营养物和氧气培养细胞的生物反应器中,一周后,科学家们观察到肝脏结构中出现普遍的细胞发育现象,并且这个小型器官甚至出现一些正常工作的迹象。领导这项研究的谢伊·瑟凯尔教授说:“我们为这项研究展现的可能性感到激动,但必须强调的是,我们还处于初级阶段,还必须克服许多技术障碍才能让病人受益于这项研究。”他说:“我们不仅需要弄清如何一次性培养大量肝细胞,以便为病人制造足够大的肝脏,我们还必须确定使用这些器官是否安全。”英国研究人员认为这项研究成果是可喜的。英国帝国理工学院教授马克·瑟斯说,这些研究成果“鼓舞人心”。他说:“报告显示,这些研究人员攻克了制造人造肝脏的主要障碍之一,即在‘自然生成的’肝脏结构中培养出正常工作的人类肝脏细胞。”他说:“很明显,这些细胞发育良好,但下一步是要证明它们能够像人类正常肝脏组织那样工作。”

  • 喜炎平,脉络宁注射液问题。

    喜炎平脉络宁注射液引起严重过敏2012年06月27日08:47新华网国家食品药品监督管理局26日发布通报,提示生产企业和医患人员关注喜炎平注射液和脉络宁注射液引起严重过敏反应的问题。据了解,喜炎平注射液的成分是穿心莲内酯磺化物,主要用于解热消炎。2011年,国家药品不良反应监测中心病例报告数据库有关喜炎平注射液的病例报告数共计1476例,其中涉及14岁以下儿童报告达1048例。主要不良反应表现为过敏样反应、过敏性休克、紫绀、呼吸困难等。脉络宁注射液是2009版国家基本药目录品种,其功能与主治为清热养阴、活血化瘀。用于血栓闭塞性脉管炎、动脉硬化性闭塞症、脑血栓形成及后遗症、静脉血栓形成等。2011年,国家药品不良反应监测中心病例报告数据库共收到有关脉络宁注射液药品不良反应病例报告1500例,其中严重病例报告189例。严重不良反应主要为呼吸系统损害、全身性损害和心血管系统损害等。国家食品药品监管局建议,由于这两种注射液易发生过敏反应,建议医护人员在用药前详细询问患者的过敏史,特殊人群和过敏体质者应慎重使用。使用时应严格按照说明书规定的用法用量给药,不得超剂量使用;谨慎联合用药。如确需联合使用其他药品时,应谨慎考虑与此两种药品的间隔时间以及药物相互作用等问题。对于药品生产企业,国家食品药品监管局建议,加强临床合理用药的宣传,确保产品的安全性信息及时传达给患者和医生;完善生产工艺、提高产品质量标准,开展相应安全性研究。(新华网)

  • 光片照明(SPIM)显微镜———淋巴管形成机制

    [b]小鼠胚胎初始淋巴管形成的多步机制[/b]Rene′ Ha¨ gerling1,7, Cathrin Pollmann1,7,Martin Andreas1, Christian Schmidt1,Harri Nurmi2, Ralf H Adams3, Kari Alitalo2,Volker Andresen4, Stefan Schulte-Merker5,6and Friedemann Kiefer1,* [i][b]The EMBO Journal[/b][/i] (2013), 1-16在哺乳动物发育过程中,主静脉血管中的一个内部细胞亚群开始表达淋巴管特异基因,进而发育出初级的淋巴结构,被共同命名为淋巴囊。淋巴内皮细胞的出芽,扩展,膨胀被认为是淋巴内皮细胞从主静脉中产生的基础,但是淋巴管形成的确切机制仍然不为人所了解。使用选择性光片照明显微镜Ultramicroscope来观察进行整体免疫染色的小鼠胚胎,我们观察到细胞分辨率的完整的发育中的血管系统。本文中,我们报道了可以被检测到的最早的淋巴内皮细胞松散的连接在主静脉和浅表的脉管丛。下一步的淋巴内皮细胞聚集导致了两个清晰的,未被预先确认的淋巴结构,背部外周纵向淋巴管和腹侧初级胸导管,它们在后期阶段形成了一个与主静脉的直接连接。我们发现血管内皮生长因子C和基质组分CCBE1对于淋巴内皮细胞出芽和迁移是必不可少的。总之,我们提供了一个明显更加细节化的视角和早期淋巴管发育的新颖模型。[img=,591,756]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal1.jpg[/img]图1. 初始淋巴祖细胞从主静脉中产生。(A-D)受精后9.5/9.75(A,C)和10.5(B,D)天小鼠胚胎血管系统的整体染色。PECAM-1优先染动脉、静脉血管中的内源粘蛋白。Prox1识别的淋巴内皮细胞。(A)中框出了胸颈静脉区,淋巴内皮细胞。DA,背主动脉;ISA,节间动脉;PAAs,咽弓动脉。标尺100um。E 图示箭头穿越一对主静脉之一。静脉内皮细胞,蓝色;发育中的心脏,暗绿;浅表静脉丛的位置被标示出来。CCV,一般主静脉;SV,静脉窦;H,心脏;ISV,节间血管。(F)成对CCV和导流入心脏的SV的三维重构。移开一半对称主静脉后的ISVs和生肌刀(M)。蓝色箭头指示静脉血的流动。(G)胸颈静脉区的横切面。DA,ISA和动脉丛标记红色;CV,ISV和sVP标记蓝色。NT,神经管;DRG,背根神经节;iLECs,初始淋巴内皮细胞。(H-K)整体免疫染色胚胎的图片左侧标注的蛋白分布的光学切片的3维重建。E,受精后几天的发育阶段(H,I,K横切面;J矢状切面)。白色箭头,新出现的iLECs;点线,CV的背根。标尺100um。(L-O)在E10.0和E10.25期间出现的最早iLECs的图解。Prox1+细胞,绿色,黄色为细胞核。以绿色表面表明在CCV移开分支中的Prox1表达区。[img=,591,330]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal2.jpg[/img]图2. 淋巴内皮细胞从CV的出芽伴随着细胞和核的形状改变,以及一个蛋白标记开关的表达。(A,B)整体免疫染色胚胎的CCV中左侧标注蛋白的矢状视图。受精后的发育阶段(E);iLECs初始淋巴内皮细胞;头盖处,左;尾部,右。标尺100um。CV的上出口,从鳞状到纺锤状的LEC形状改变(箭头指示CV根中的Prox1+ ECs)。白色箭头,iLECs间极薄的连接;红色箭头,照亮的静脉血管中频繁的发现红细胞(但iLECs中从没有)。(B)也可以看到相应的图解1O。(C)在E10.5阶段,出现的iLECs中的VEGFR-3及其联合受体Nrp2水平被上调,而CV和iLECs中的Lyve-1水平保持不变。***P0.001,NS,不显著。(D,E)随着iLECs的出现核的形状从圆形转变为椭圆形。通过核表面重构描述了CCV内部和外部的Prox1+细胞核以及对球率和椭球率做散点图(E)。标尺100um。(F-H)矢状(F)和横切面(G,H)视图中整体免疫染色小鼠胚胎的CCV内部和外部的Prox1+细胞核表面重构。(F,G)通过热成像赋以伪色标记的Prox1表达强度图,例如,最高强度的表达标记为红色,低强度表达标记为蓝色。(H)通过图像的叠加进行细胞的解剖学定位软件包:Imaris Vantage,标尺100um。[img=,591,785]http://qd-china.com//bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal3.jpg[/img]图3. iLECs在节间血管主要分支的水平上浓缩来形成照亮的外周纵向淋巴管(PLLV)。(A-D)每张图所展示蛋白的整体免疫染色胚胎光学切片的矢状图重构。E,受精后的发育天数;头盖的,左;尾端的,右。(A)在iLECs出现的早期阶段,iLECs以扇形模式分布,从CCV向头部和尾部扩展。虚线,iLECs检测的边界。(A-D)iLECs在节间血管第一侧枝的水平上立即浓缩形成PLLV。长的阴影线指示了CCV和SV的位置;短的阴影线,iLECs浓缩和PLLV形成的区域。(E-H)图解iLECs的位置,在E10.5和E10.7阶段出现在CV的背部。CCV之外的Prox1+iLECs以淡绿色标记,CV内的Prox1+细胞和心肌以深绿色标记。在CCV移开的分支中的Prox1表达域(P1ED)以淡绿色表面显示。浅表静脉丛作为iLECs的一个可能的备选来源,其位置标注为蓝色(G,H)。sVP内的Prox1+内皮细胞被标注为红色。sVP,浅表静脉丛;标尺100um。 [img=,591,846]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal4.jpg[/img]图4. CV和PLLV之间的LECs聚集并形成不断增长的更大的被照亮结构并最终形成原始的胸导管。来自整体免疫染色的小鼠胚胎光学切片的图中标注蛋白的(A-C)矢状图和(D)截面图。(A)箭头指示了位于CV和PLLV之间的LECs快速和不断进行的聚集,这导致了更大照明结构pTD的形成(B-D)。(C,D)浅表淋巴管sLECs开始从PLLV背侧和pTD旁边伸展。PLLV和pTD在pTD头盖端连接到一起。(F-H)图示了导致pTD成形的细胞聚集和浓缩事件。(I)在E11.5阶段,sLECs中的VEGFR-3和它的联合受体Nrp2水平上调,而Lyve-1水平与CV和iLECs相比强烈下调。***P0.001。发育阶段(E);头盖,左,尾端,右。ACV,前主静脉;CCV,一般主静脉;PCV,后主静脉;ISV,节间静脉;PLLV,外周纵向淋巴管;pTD,原始胸导管;sLECs,浅表淋巴结。标尺100um。[img=,591,734]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal5.jpg[/img]图5. 通过最高水平表达的Prox1表征的pTD和CV间新形成的成对的接触点。(A-C)整体免疫染色胚胎的矢状图。新形成中的pTD快速巩固进一个巨大的照明结构,头颅部以U形连接到PLLV(左侧A,B)。CV和pTD间的两个连接表达最高水平的Prox1(箭头)。(B-E)一个总是位于pTD和CV连接间的作为锁骨下动脉的短暂存在的侧枝被星号标记出来。(C)红色箭头:pTD内堆积的红细胞。箭头标注pTD连接端对面的Prox1+细胞。(D,E)通过pTD和CV连接区域的单个平面(光学切片)。(F-H)图示pTD和CV间接触点的发育,接触点处高表达的Prox1+细胞标记为暗绿色和红色的细胞核。标尺100um。[img=,591,963]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal6.jpg[/img]图6. 不同的淋巴内皮细胞群表达不同的标记蛋白组。(A-G)所示发育阶段的免疫染色胚胎的横向冷冻切片。可见的抗原被以每幅图上所标记的相应颜色标记。典型例证标记表达的面板在(I)中汇总。(A)在E10.0阶段的LECs细胞中没有粘蛋白的表达,在E11.0阶段首先被检测到并在E12.0的LECs中变得丰富。注意CV中的Prox1+细胞在所有阶段都是阴性。在E11.5阶段,Nrp2在CV和pTD内中等强度的表达,而CV外的iLECs强烈的表现为阳性。(C)内皮粘蛋白在iLECs中只有短暂的留存。(D)在CV和pTD的Prox1+ ECs中Lyve-1强烈表达,而在展示的sLECs中仅有残留的表达(箭头)。(E)在所有血管结构中,整合蛋白α6有中等程度的表达。(F)在E11.5阶段,神经生长因子Netrin-4在BECs中强烈表达,在CV中很弱的表达,在pTD内中等程度的表达,但在iLECs中(箭头)没有被检测到。(G,H)Unc5B在iLECs(G,箭头)和sLECs(H,箭头)中强烈表达,而在pTD中表达微弱。 (H)来自整体免疫染色的小鼠胚胎的Prox1 (绿) 和Unc5B (蓝)光学切片的矢状重构. (I)在妊娠中期,不同LEC群中标注蛋白的表达。数据来自免疫染色的冷冻切片或整体免疫染色。表示的结构和细胞群: CV, 主静脉 iLECs, 初始LECs (第一轮从CV中出现的纺锤状LE,松散连接的细胞) sLECS, 浅表LECs (从PLLV (背侧)中伸出的LECs) pTD, 初始胸导管. CV*, 对CV背侧Prox1+细胞的表达限制。标尺100um。 [img=,591,781]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal7.jpg[/img]图7. CCBE1缺陷导致的Prox1+细胞从CV分离的失败,并导致初始淋巴结构的快速损失。 (A, B, F, G) 对标注蛋白进行整体免疫染色的野生型(A) 和Ccbe1_/_ (B, F, G)胚胎的3D重构。(A, B)E10.5阶段的矢状图. (B) 在CCBE1-缺陷胚胎中,在CV和初始PLLV中检测到丰富的Prox1+细胞,紧邻浅表静脉丛。与野生型胚胎(A)相比,CCV和PLLV间没有纺锤状的iLECs。 (B, F) Prox1+细胞描绘出CCV和SV的边界, 当非典型的,大的,照明的分支从CV(箭头)中出现。(G) 含大量VEGFR-3+的异形分支从CV(箭头)和ISVs(箭头)中伸展。(C-E)图示野生型(C)和CCBE1-缺陷型(D, E)胚胎中的Prox1+ cells。含大量VEGFR-3+的静脉内皮标注为深蓝色。sVP, 浅表静脉丛。标尺100um。[img=,295,591]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal8.jpg[/img]Figure 8VEGF-C(血管内皮因子C)缺陷的小鼠胚胎中的Prox1+内皮细胞因为不能离开它们起源处的血管从而标记了LECs的静脉来源。E10.75阶段野生型(A, B)和Vegfc_/_型(C-F)胚胎的矢状图3D重构,对标注蛋白做了整体免疫染色。在VEGF-C缺陷胚胎中,Prox1+内皮细胞不能离开静脉血管导致没有出现发育中的淋巴结构。(E, F) 除了CV(箭)中的Prox1+ 细胞, 在腹侧sVP(箭头)处更大的静脉血管中捕获了第二群Prox1t淋巴初始组织 。(G, H) 图示了野生型 (G) 和VEGF-C缺陷型(H)胚胎中的Prox1+细胞。NE, 神经元的Prox1+表达条纹。sVP, 浅表静脉丛。标尺100 um。[img]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal9.jpg[/img]Figure 9. 在iLECs外出和淋巴管形成过程中,CCBE1和VEGF-C协同的相互作用。对E10.5阶段所标注蛋白整体免疫染色的野生型(A-C), Vegfct/_ (D-F), Ccbe1t/_ (G-I) 和 Vegfct/_/Ccbe1t/_ (J-L) 胚胎矢状图的3维重构。CCV和ISVs的根部用虚线标注,Prox1+细胞用箭头标注。与野生型同窝小崽相比,Vegfct/_胚胎(A-C)表现出iLECs从CCV中迁出的下降(D, E)。与之相反,Ccbe1t/_胚胎中,受损的ISVs形成被检测到。而且,不典型的,照亮的分支出现在Prox1+和高水平VEGFR-3表达的主静脉根部(G-I). (J-L) 在复合的杂合胚胎中,这种表型非常夸张地表明了VEGF-C 和CCBE1在淋巴管形成过程中的协同作用。标尺100um。

  • 中药救命良药的二次创新开发

    一直以来,麝香保心丸被当作冠心病的急救药物使用而成为家喻户晓的“救命药”,然而,麝香保心丸的临床价值远不止在于急救使用,它在二级预防中也发挥很重要的作用。随着对疾病的不断认识,流行病学家意识到,单纯在疾病发作时控制症状,对于冠心病的远期预后意义远不如及早采取预防措施,遂提出冠心病的二级预防概念,即对已患有冠心病者,控制其发展和防止并发症,减少患者由于疾病进展而引起的死亡、致残等严重后果,使其更好地康复,从而提高患者的生存率、降低复发事件的危险和减少介入治疗的需要,并改善患者的生活质量。而冠心病的核心病理变化是冠状动脉粥样硬化斑块的形成,引发血管病变进而导致所供养的心肌发生急性或慢性的缺血,所以不管采取何种措施进行冠心病的二级预防,针对的都是防止动脉粥样硬化进一步发展的血管保护措施,以及改善心肌缺血的心肌保护措施。在各项冠心病治疗指南中,不管采用健康的生活方式,或使用各种药物治疗,都是从这两方面入手进行。注重血管保护保护血管内皮 麝香保心丸可以从结构、功能上起到保护血管内皮的作用。在动物试验中发现,麝香保心丸用药后能通过增加血浆SOD水平、提高内源性一氧化氮合酶基因的表达,增强血管一氧化氮合酶活力,保护血管内皮细胞。电镜下观察可见内皮细胞结构完整,脱落减少。在人体研究中,使用肱动脉超声检测反应性充血肱动脉内径变化,麝香保心丸组血管内皮功能治疗后有显著改善。减少脂质浸润 在动物试验和人体都发现麝香保心丸有一定的降脂作用,能降总胆固醇、甘油三酯和低密度脂蛋白。高脂模型家兔服用麝香保心丸8周后,由于高血脂造成的血管内皮损伤得到控制。抑制炎症反应 几个独立的研究评价过麝香保心丸对炎症介质基质金属蛋白酶、C-反应蛋白等的抑制作用,以及对炎症反应引起的胶原增生的抑制。长期治疗保护心缺血心肌2000年,国外学者提出了治疗性血管新生的概念,即通过某些干预,在缺血心肌上调促进血管生长的细胞因子或受体,促进新的小血管生长,建立能够有效供血的侧支循环,达到恢复缺血心肌血供、改善患者症状和预后的目的,也可以形象地称之为“药物促进的心脏自身搭桥”。在麝香保心丸临床使用中,经常发现一些病人服用一段时间后,即使停药一段时间,心肌血供持续得到改善,由此引发了针对麝香保心丸促进治疗性血管新生的研究。通过鸡胚绒毛尿囊膜模型、大鼠心肌缺血模型、牛肾上腺微血管内皮细胞等动物试验,证实了麝香保心丸的促进治疗性血管新生作用,同时在人体通过核素心肌显像等方法,发现冠心病患者长期使用麝香保心丸治疗后,心肌缺血状况得到持续的改善。这些都使得心肌得到有效的保护。从上世纪90年代末至今十多年时间里,有关学者采用了分子生物学、细胞培养、动物模型、核素心肌显像学等众多先进的现代研究方法,对麝香保心丸药效和治病机理进行了研究,发现麝香保心丸实质上是从动脉粥样硬化进展的多个环节延缓疾病的发展,进行血管保护和心肌保护。医学界开始重新认识麝香保心丸,并开始关注其临床使用的经验。大量临床病例分析显示:长期使用麝香保心丸的病人,发生猝死、心肌梗死、死亡、需要手术或介入治疗的比例明显减少。这在冠心病的二级预防中,有着十分重要的意义。二级预防需长期坚持由于冠心病的病理变化是一个长期渐进的过程,所以针对冠心病的二级预防措施,不管是生活方式的调整还是药物治疗,都需要长期坚持。二级预防措施的长期坚持,取决于实施的难易程度、患者的主观认知度以及费用多少等因素。例如,采取健康的生活方式,大多可以不花钱甚至节省很多医药费,但并非所有的病人都能真正坚持,而患者对疾病的认识和重视程度、治疗药物是否良好依从,也直接影响了冠心病的远期预后。另外,药物价格昂贵也是很多病人不能坚持治疗的重要原因。麝香保心丸疗效确切、质优价低,日治疗费用仅需元左右,故病人能够长期坚持使用,深受广大医患好评,在冠心病的二级预防中优势明显。

  • 首次将人皮肤细胞转变为大脑皮层细胞

    http://www.biomart.cn//upload/userfiles/image/2012/02/1328771705.jpg英国剑桥大学科学家首次从人皮肤样品中构建出大脑皮层细胞(cerebral cortex cell)---这些细胞组成大脑灰质。2012年2月5日,这项研究结果在线发表在《自然-神经科学》期刊上。大脑皮层疾病包括从诸如癫痫和自闭症之类的发育疾病到诸如阿尔茨海默(Alzheimer)疾病之类的神经退化疾病。这些研究发现将使得科学家们能够研究人大脑皮层如何发育和它如何“连接接通”以及这种接通如何出错(一种导致学习障碍的常见原因)。它也将允许科学家在实验室中重建诸如阿尔茨海默疾病之类的大脑疾病。这将给予他们之前不可能获得的启示,允许它们实时观察疾病发展同时也可测试阻止疾病发展的新药物。剑桥大学生物化学部门Rick Livesey 博士是这篇研究论文的主要研究员。他说,“这种方法让我们有能力研究人大脑发育和疾病,而这在5年前是难以想象的。”对他们的研究而言,科学家从病人中获取皮肤活组织,然后将来自皮肤样品中的细胞重编程为干细胞。这些干细胞如同人胚胎干细胞一样就能够被用来产生大脑皮层细胞。Livesey博士补充道,“我们正使用这种体系来重建阿尔茨海默疾病。阿尔茨海默疾病是世界上一种最为常见形式的痴呆症。当前在英国痴呆症影响着800000个人。这种疾病主要影响一种神经细胞类型,而这种神经细胞我们已能够在实验室中制造出来,因此我们在实验室中有一种非常好的工具创建出该疾病的一种完整的人类模型。”英国阿尔茨海默疾病研究中心是英国一家主要的痴呆症研究慈善组织。该中心研究主任Simon Ridley说,“我们为资助了这项研究而感到非常高兴。这项研究向前迈出了积极性的一步。在实验室中将干细胞变成完全功能性的神经细胞网络很有希望能够解密诸如阿尔茨海默疾病之类的复杂大脑疾病。痴呆症是我们时代面临的最大医学挑战,我们迫切需要更多地了解和如何阻止该疾病。我们希望这些发现能有让我们更接近这种目标。”

  • 攻略:如何把细胞养得漂亮?

    大家还记得我吗?好久好久没有来发帖了,肯定都快被遗忘了。一直在忙着养细胞,这次过来给大家分享一些自己的心得体会。↓↓↓养了很久的细胞,有一些经验和体会总结一下,和大家分享一下。关于如何把细胞养的形态很好更漂亮。1.不同的细胞,喜欢的环境是不一样的。这个不仅仅是说培养基的不同,还有就是细胞生长的空间密度问题。有一些细胞是数量多一点比较好生长,生长状态也比较好。这种一般是属于生长速度慢的细胞。譬如内皮细胞。而有一些是细胞是数量少一点细胞状态会生长的比较好,譬如巨噬细胞和某些肿瘤细胞。尤其是巨噬细胞,生长速度非常得快,贴壁速度很快,所以传代时就应该留很少量的细胞,这样细胞状态会比较好。并且巨噬细胞比较喜欢扎堆生长,而堆与堆之间是有空间的。如果长成相连在一起的一满片的时候,细胞形态基本上就会差了,老化的会比较多,对后期实验结果是不好的。所以在养细胞的时候应该摸索该细胞喜欢的生长空间密度问题。2.对于有些人总是会遇到养的细胞形态怎么都不好的问题。这个其实是有一个方法可以改善的。对于贴壁细胞,如果细胞形态不好,(或者细胞形态不清晰,表面似有异物等)可以在传代的时候进行如下操作:首先,倒掉旧的培养基,加入3ml新的培养基(有无血清的都可)洗涤一次,用滴管吸走,然后再加入3ml的培养基,进行预吹打,控制吹打力度,轻轻地大概沿着瓶底过一遍,然后吸走。这时侯再开始正式的消化、吹打。(巨噬细胞我们只吹打,不消化的)其次,把吹打下来的细胞悬液加入到新的培养瓶内,培养瓶事先加入培养基,放入培养箱内培养,按时间点观察细胞贴壁情况。10分钟观察一次,20分钟,30分钟观察一次。选择一个时间点,已经有部分细胞贴壁的情况下,重新置于洁净台,底面朝上迅速倒出其中的培养基,加入3ml新培养基再轻轻洗一次。然后加入完全培养基培养。后续观察细胞生长情况以及形态。我称之为“二传”。呵呵。如果一次效果还不理想,可重复多次。直到找到细胞完美形态。其中要注意,结合细胞喜欢的生长情况。喜欢多一点数量长得好的细胞你就等贴壁细胞比较多点的时候再传。反之亦然。这个是我师兄发明的,谢谢他了。这个方法真的很好用!3.关于培养瓶内加入培养基的量的问题。这个是要靠自己去摸索你所养的细胞的。并不是小的玻璃方瓶12ml,大方瓶14ml的。有些细胞反而是培养基少一点相反细胞形态会长得比较好。(可能也是竞争很大,有优胜劣汰吧。呵呵。)对于生长速度快的细胞,易生长的细胞加少一点培养基细胞形态会更好。但是要注意换液掌握。4.关于选择培养瓶的问题。个人发现生长速度快的细胞在玻璃瓶内生长的状态会比一次性塑料瓶相对好一些。而对于同一种细胞,在其生长旺盛快速的时期在玻璃瓶内的生长状态也比塑料瓶内好。这可能是因为塑料瓶比玻璃瓶更容易贴壁。生长速度快的细胞在塑料瓶这种相对“更安逸”的环境里反而长得状态不如玻璃瓶好。所以对于生长速度慢的细胞如果想要更漂亮的细胞状态,塑料瓶比玻璃瓶会好,对于生长速度慢的细胞,玻璃瓶则会更好。同样,对于同一种细胞,在其生长速度慢的时候,塑料瓶会好一点,比如刚刚复苏的时候,或者原代培养的时候。而在其生长旺盛的时候,玻璃瓶则相对会好一点。今天就先分享到这里吧,等下次有时间来逛帖的时候再来分享。大家一定要注意:要想把细胞养的漂亮,一定要保持实验室干净整洁。至于怎么保持,方法很重要,更重要的是要有责任心。方法的话,可能每个人都会有自己的一套方法,不过能走捷径的还是可以走的。像我们实验室,现在很多都是利用软件来管理的。还记得之前给你们推荐的那款软件吗?我们实验室现在还在用,倒是真的蛮好用的,至少大家做实验的时候不会再乱堆乱放了(因为有领用记录)可能新朋友不知道,或者没有看过我上篇帖子的人不了解,如果相信我的推荐,可以看下我上一篇帖,谢谢,希望能帮到大家!差点忘了,那款软件更新成了iLab,不叫Mr.F了。其他不多说,省得被当成打广告的!

  • 攻略:如何把细胞养得漂亮?

    大家还记得我吗?好久好久没有来发帖了,肯定都快被遗忘了。一直在忙着养细胞,这次过来给大家分享一些自己的心得体会。↓↓↓养了很久的细胞,有一些经验和体会总结一下,和大家分享一下。关于如何把细胞养的形态很好更漂亮。1.不同的细胞,喜欢的环境是不一样的。这个不仅仅是说培养基的不同,还有就是细胞生长的空间密度问题。有一些细胞是数量多一点比较好生长,生长状态也比较好。这种一般是属于生长速度慢的细胞。譬如内皮细胞。而有一些是细胞是数量少一点细胞状态会生长的比较好,譬如巨噬细胞和某些肿瘤细胞。尤其是巨噬细胞,生长速度非常得快,贴壁速度很快,所以传代时就应该留很少量的细胞,这样细胞状态会比较好。并且巨噬细胞比较喜欢扎堆生长,而堆与堆之间是有空间的。如果长成相连在一起的一满片的时候,细胞形态基本上就会差了,老化的会比较多,对后期实验结果是不好的。所以在养细胞的时候应该摸索该细胞喜欢的生长空间密度问题。2.对于有些人总是会遇到养的细胞形态怎么都不好的问题。这个其实是有一个方法可以改善的。对于贴壁细胞,如果细胞形态不好,(或者细胞形态不清晰,表面似有异物等)可以在传代的时候进行如下操作:首先,倒掉旧的培养基,加入3ml新的培养基(有无血清的都可)洗涤一次,用滴管吸走,然后再加入3ml的培养基,进行预吹打,控制吹打力度,轻轻地大概沿着瓶底过一遍,然后吸走。这时侯再开始正式的消化、吹打。(巨噬细胞我们只吹打,不消化的)其次,把吹打下来的细胞悬液加入到新的培养瓶内,培养瓶事先加入培养基,放入培养箱内培养,按时间点观察细胞贴壁情况。10分钟观察一次,20分钟,30分钟观察一次。选择一个时间点,已经有部分细胞贴壁的情况下,重新置于洁净台,底面朝上迅速倒出其中的培养基,加入3ml新培养基再轻轻洗一次。然后加入完全培养基培养。后续观察细胞生长情况以及形态。我称之为“二传”。呵呵。如果一次效果还不理想,可重复多次。直到找到细胞完美形态。其中要注意,结合细胞喜欢的生长情况。喜欢多一点数量长得好的细胞你就等贴壁细胞比较多点的时候再传。反之亦然。这个是我师兄发明的,谢谢他了。这个方法真的很好用!3.关于培养瓶内加入培养基的量的问题。这个是要靠自己去摸索你所养的细胞的。并不是小的玻璃方瓶12ml,大方瓶14ml的。有些细胞反而是培养基少一点相反细胞形态会长得比较好。(可能也是竞争很大,有优胜劣汰吧。呵呵。)对于生长速度快的细胞,易生长的细胞加少一点培养基细胞形态会更好。但是要注意换液掌握。4.关于选择培养瓶的问题。个人发现生长速度快的细胞在玻璃瓶内生长的状态会比一次性塑料瓶相对好一些。而对于同一种细胞,在其生长旺盛快速的时期在玻璃瓶内的生长状态也比塑料瓶内好。这可能是因为塑料瓶比玻璃瓶更容易贴壁。生长速度快的细胞在塑料瓶这种相对“更安逸”的环境里反而长得状态不如玻璃瓶好。所以对于生长速度慢的细胞如果想要更漂亮的细胞状态,塑料瓶比玻璃瓶会好,对于生长速度慢的细胞,玻璃瓶则会更好。同样,对于同一种细胞,在其生长速度慢的时候,塑料瓶会好一点,比如刚刚复苏的时候,或者原代培养的时候。而在其生长旺盛的时候,玻璃瓶则相对会好一点。今天就先分享到这里吧,等下次有时间来逛帖的时候再来分享。大家一定要注意:要想把细胞养的漂亮,一定要保持实验室干净整洁。至于怎么保持,方法很重要,更重要的是要有责任心。方法的话,可能每个人都会有自己的一套方法,不过能走捷径的还是可以走的。像我们实验室,现在很多都是利用软件来管理的。还记得之前给你们推荐的那款软件吗?我们实验室现在还在用,倒是真的蛮好用的,至少大家做实验的时候不会再乱堆乱放了(因为有领用记录)可能新朋友不知道,或者没有看过我上篇帖子的人不了解,如果相信我的推荐,可以看下我上一篇帖,谢谢,希望能帮到大家!差点忘了,那款软件更新成了iLab,不叫Mr.F了。其他不多说,省得被当成打广告的!

  • 牛磺酸的贡献

    1、保护视网膜牛磺酸占视网膜中游离氨基酸总量的50%,动物实验证明,缺乏牛磺酸的猫其视网膜电图显示杆细胞与锥细胞广泛变性。促进中枢神经系统发育胎儿发育中脑组织的浓度显著高于出生后,提示牛磺酸对中枢神经系统发育,如细胞的增殖、移行与分化有作用。

  • 【资讯】反义药物开发蓬勃开展 市场前景乐观

    反义药物是一种具有高度选择性(专一性)的特殊核苷酸类物质,若按其化学属性应归属于寡核苷酸类物质。由于它只同人体内对应的mRNA结合,不会影响人体其他组织,故是一种非常安全的药物。 迄今为止,医学界所了解的疑难杂症绝大多数与体内某些基因的病变有关,包括肿瘤、风湿性关节炎、重症肌无力、多发性硬化症、牛皮癣、糖尿病、视网膜黄斑退化症、克罗恩氏症(慢性结肠炎)、非典型性肺炎(SARS)、血管炎以及艾滋病引起的并发症(如巨细胞病毒视网膜炎)等,而反义药物能在第一时间内制止能产生致病蛋白质的基因,如果可开发出针对上述病变基因的反义药物,就能从源头上遏制致病蛋白质从而治疗疾病。

  • 2012年4月《Nature》杂志精选

    “视杯”是怎样形成的?器官生成依靠很多细胞相互作用的协调来产生形成发育中的、组织所需的、集体性的细胞行为。Yoshiki Sasai及其同事建立了一个“三维细胞培养系统”,浮动的小鼠胚胎干细胞团能够成功地将它们自己组织到一个与“视杯”(一种袋状结构,在胚胎生成过程中发育成视网膜的内层和外层)相似的分层结构中。在进一步的3D培养中,这个“视杯”形成如在出生后的眼睛中所看到的那样完全分层的视网膜组织。这种方法对于视网膜修复的干细胞疗法也许有重要意义。本期封面所示“视杯”是从在试管中形成的一个“视杯”的多光子图像生成的。纤维蛋白原结构的病理研究Group A Streptococcus(GAS)是一种广泛存在的细菌病原体,既会造成温和的感染,也会造成有高死亡率的严重入侵性疾病,如“链球菌中毒休克综合症”。M1蛋白(最具入侵性的GAS的一种主要毒性因子)能造成血管泄漏和组织损伤;这些病理依赖于其与宿主纤维蛋白原的相互作用和嗜中性粒细胞随后的激发。现在,X射线晶体学研究显示了这一过程的结构基础。M1蛋白将四个纤维蛋白原分子组织到一个特定的十字架一样的结构中,该结构支持一个M1-纤维蛋白原网络,类似一种纤维蛋白血栓。这一网络是嗜中性粒细胞的激发所必需的。M1中需要一个构形变化才能结合纤维蛋白原,这说明M1中的纤维蛋白原结合点对免疫监视是隐藏的。这项工作表明,M1-纤维蛋白原复合物在“链球菌中毒休克综合征”的治疗中是一个潜在治疗目标。肠内菌丛与心脏病的联系Stanley Hazen及其同事发现,肠内菌丛能通过代谢食物中的一种磷脂来影响心血管疾病。他们用定向“代谢组学”方法来识别血浆中的代谢物,其水平能预测接受心脏评估的研究对象日后发生非致命性心脏病、中风或死亡的风险。食物中卵磷脂三种代谢物(胆碱、甜菜碱和trimethylamine N-oxide,即TMAO)在血浆中的水平与心血管病发病风险的增加有关。肠内菌丛已知在由胆碱形成TMAO中起一定作用。另外,用易患动脉粥样硬化的小鼠所做实验表明,食物中的胆碱能增强巨噬泡沫细胞形成和病灶形成,但如果肠内菌丛没有抗生素时却不会这样。这项工作为动脉粥样硬化心脏病提出了新的诊断和治疗方法。金刚石一样的石墨烯晶体管石墨烯(只有单个原子厚度的层状碳)有在高频微电子器件中应用的希望。现在,来自位于纽约的“IBM托马斯·华生研究中心”的一个小组发现,一种像金刚石一样的碳(它在半导体行业已经众所周知)特别适合用做石墨烯半导体器件的基质。石墨烯是通过“化学蒸汽沉积”(CVD)方法在一个铜薄膜基质上生长的,然后被转移到一个金刚石一样的碳晶圆上。这种方法被用来生成一种高性能石墨烯晶体管,它在40纳米的“门长度”(迄今所报告的最短长度)上具有155千兆赫的截止频率。这个体系不仅实现了CVD-石墨烯晶体管迄今最高的运行速度,而且也是迄今在任何石墨烯材料上所演示过的最小的、行为良好的晶体管。肿瘤的单细胞分析肿瘤已知在遗传上是异质性的,但要在单细胞层面上来解剖这种异质性却有困难。现在,将全基因组放大方法与对通过荧光激发的细胞分拣(cell sorting)分离出的单核的测序结合在一起的一项研究工作,揭示了来自两个患者的乳腺癌的种群结构。在二者当中,肿瘤生长都是通过断续的克隆表达实现的,几乎没有持久的中间体,这与关于肿瘤进展的很多渐进模型形成对比。这种类型的单细胞测序在其成本降低之后,对于癌症预后及阶段确定很可能具有临床意义。

  • 求助CNKI文献三篇

    【作者】徐艳; 尚惠锋; 陆红玲; 钱民章; 【文章标题】蛋白激酶C信号通路参与单核细胞趋化蛋白1诱导的人脐静脉内皮细胞凋亡 【期刊名,年份,卷(期),起止页码】中国动脉硬化杂志 【全文链接】http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=12&recid=&filename=KDYZ200907064&dbname=CJFD2009&DbCode=CJFD&urlid=&yx= 【作者】徐艳; 刘喜平; 尚惠锋; 钱民章; 【文章标题】CCR2受体介导单核细胞趋化蛋白1诱导的人脐静脉内皮细胞凋亡 【期刊名,年份,卷(期),起止页码】中国动脉硬化杂志 【全文链接】http://www.cnki.com.cn/Article/CJFDTOTAL-KDYZ200907063.htm 【作者】李琴山; 刘洋; 冯赞杰; [url=http:

  • 求助一篇硕士论文,谢谢大家!

    【序号】:1【作者】:王学工;【题名】:祛风通络颗粒治疗冠心病心绞痛及保护血管内皮细胞功能的研究【期刊】:中国优秀博硕士学位论文全文数据库 (硕士)【年、卷、期、起止页码】: 2005.06

  • 科学家研发激光检测腕表:可预测死亡时间

    新浪科技讯 据国外媒体13日报道,英国兰卡斯特大学的科学家研发出一种非侵入式激光检测手段,可预测一个人的死亡时间。这种检测设备将采用腕表形设计,利用激光束分析毛细血管衬里细胞,旨在鼓励用户选择和保持健康的生活方式。http://i1.sinaimg.cn/IT/2013/0814/U2550P2DT20130814102920.jpg英国兰卡斯特大学的科学家研发出一种非侵入式激光检测手段,可预测一个人的死亡时间  发明人表示血管衬里细胞是一种内皮细胞,同时也是一个人健康状况的关键指示器。通过对这些细胞进行监测,便可以确定哪些人的衰老速度超过正常水平。检测之后,用户便可了解自己还有多长寿命。例如,这种检测设备会告诉用户,如果不改变当前的生活方式,他们将在20年内死亡。此外,这种内皮检测还能判断用户是否存在癌症或者痴呆症风险。内皮是毛细血管内的内皮细胞层。  兰卡斯特大学的物理学家希望这项技术能够帮助人们增进健康。对于这项技术的效用,一些人也提出质疑。一些用户可能因此改变他们的生活方式,进而让自己的身体处于最佳状况,其他一些用户则可能相信宿命,不会做出改变。此外,保险公司与退休基金也可能利用这些信息调整保险金和退休金。  目前,兰卡斯特大学的物理学家已经研制出一个笨重的实验用原型。他们正利用这个原型进行小型化设计,最终让激光检测设备可以像手表一样戴在手腕上。他们表示如果能够获得充足的资金,他们能够在一年内将迷你版推向市场。http://i1.sinaimg.cn/IT/2013/0814/U2550P2DT20130814102951.jpg英国科学家研制的激光检测手段能够对血管内皮细胞的血量进行测量,进而判断一个人健康状况  这种激光检测装置的造价为几百英镑,用户可以在家中使用,监测他们的健康,此外也可以应用于全科医生诊所和医院。医生可以借助这种装置比较患者的生物学年龄和实际年龄,以了解他们的衰老速度。在对220名身体健康的参与者进行的测试中,一些参与者的衰老速度明显超过或者低于预计。  项目负责人安奈塔-斯特凡维斯卡教授表示:“在不久的将来,一款售价200英镑到300英镑(约合300美元到460美元)的检测设备便可走进千家万户。我希望我们研发的技术能够鼓励人们更加关注自身的健康。”激光检测装置由斯特凡维斯卡与同事彼得-麦克克林托克教授共同研制,目前已经申请专利。  斯特凡维斯卡指出:“我们希望这种装置能够应用于所有全科医生诊所。它们能够成为全科医生的一件价值不可估量的医疗设备。借助于这款装置,医生可以了解患者的心血管系统,判断他们是否存在中风或者心脏病风险,同时了解内皮是否出问题。内皮会分泌各种能够影响组织的化学物质。它也是一个重要器官,但并没有得到人们的重视。”  麦克克林托克教授承认并非所有人都会因为这种检测装置提供的信息改变自己的生活方式。他说:“你可能认为自己的衰老速度太快,应该采取措施加以遏制。你可能因此改变自己的生活方式,少吃油炸火星棒和经常跑步。当然,你也可能对这些信息置之不理。”(孝文)

  • 量子力学的核心问题——测量问题是否已经解决?

    [b]量子力学的核心问题——测量问题是否已经解决?[/b] 在我们的印象中,神秘的量子力学似乎很难与肉眼观测联系起来,更不用说是普通的大学物理实验了。然而,一群科学家正尝试通过双缝干涉实验,让观测者用肉眼验证量子叠加态。更令人激动的是,他们的实验还可能为量子力学的一个核心问题——测量问题找出答案。 Paul Kwiat要求志愿者们坐在一间黑暗的小屋里。在他们的眼睛逐渐适应黑暗环境时,每一位志愿者就像验光时一样,将头支撑在一个支架上,用一只眼睛盯着一个很暗的红十字看。在十字的两边各有一根光纤,可以将单个光子从十字左边或右边射入志愿者的眼中。 Kwiat是伊利诺伊大学香槟分校的实验量子物理学家,在验证了人眼探测单个光子的能力后,他和同事有着更高的目标:根据他们上个月在预印本网站arXiv上提交的论文,他们想要用人眼去验证量子力学的基本假设。[b] [/b]他们并不是简单地将一个光子通过左边或者右边的光纤送入志愿者眼中,而是输送一个同时处于左边和右边的量子叠加态的光子。人们会看到什么不一样的现象吗?根据标准量子力学,答案应该是“不能”。但迄今为止,还没有人做过这类测试。如果Kwiat团队的最终结果和理论预言不同,就会动摇我们对量子世界的现有理解,人们也将尝试通过一些其他理论来解释量子力学。[color=rgba(57, 99, 158, 0.972549)]这些理论对自然的看法与现有的完全不同,它们预言现实的存在与观测行为和观测者无关。[/color]如果成立,我们对量子力学的现有解释将被彻底推翻。Rebecca Holmes是Kwiat以前的学生,现在在洛斯阿拉莫斯国家实验室工作,他设计了这套实验装置。他说:“这可能成为超出标准量子力学的现象存在的证据。”[b] [/b]为了探究人眼是否能直接观测到单个光子,近一个世纪的物理学家做了大量努力。1941年,哥伦比亚大学的研究人员在Science上发文称,即使一束光中只有五个光子落在视网膜上,人眼也能看到。30多年后,当时在加州大学伯克利分校的生物物理学家Barbara Sakitt通过实验似乎验证了人眼可以看见单个光子。不过,这些实验远远不能给出确定的结果。Holmes说:“这些实验的问题在于它们都试图使用‘经典’光源”,但我们无法确定经典光源发出的到底是不是单个光子。也就是说,我们甚至不能保证那些早期实验都只用了单个光子。 直到2012年,人们有了确凿的证据,发现青蛙眼中的光感受器,或称视杆细胞,可以探测到单个光子。新加坡科技研究局的Leonid Krivitsky和同事从成年青蛙的眼中提取了视杆细胞,随后通过实验证实这些细胞对单个光子有反应。Kwiat说,现在“毫无疑问单个光感受器是可以对单个光子有反应的。”不过,这并不意味着视杆细胞在活体青蛙或者人体中有着相同的效果。因此,Kwiat和他在伊利诺伊的同事Anthony Leggett等人开始计划用单光子光源测试人类的视觉。很快,Kwiat团队开始了实验。现在,Holmes也加入了团队,负责实验操控。但是“我们当时失败了。”Holmes说。 2016年,当时在维也纳大学的生物物理学家Alipasha Vaziri领导的研究团队报告称,他们用单光子光源证实了“人眼可以探测到单光子事件,而且探测到的概率很高,这显然不是巧合。”[b]双缝实验解决测量问题?[/b] Kwiat团队对这个结果有些怀疑,他们想要用更多志愿者、做更多实验以提高数据的确信度。他们担心的核心问题是眼睛探测光子时的低效。入射光子必须首先经过眼球最外面一层透明的角膜,这会反射掉一部分光。接下来光子进入晶状体,晶状体和角膜共同将光汇聚在眼球后部的视网膜上。而在视网膜和晶状体之间,凝胶状的玻璃体也会吸收或散射光子。最终,抵达角膜的光子中,只有不到10%能出现在视网膜上的视杆细胞中,进而产生神经信号,神经信号传送到大脑就形成了视觉。所以,得到可以在统计学上排除偶然性的显著性差异,是一项令人生畏的挑战。Kwiat说:“我们希望在未来六个月得到确定的答案。” 这并没有使他们停止设计新的实验。在标准设计中,一面半涂银面镜会让光子进入左边或右边的光纤,然后落在左眼或右眼的视网膜上,志愿者就会敲击键盘来表示他们看到的方向。但是,研究者也可以很容易地利用量子光学技术制造出叠加态的光子,使其同时进入两条光纤,然后同时出现在左右双眼的视网膜上。接下来光子到底发生了什么,取决于你相信光子发生了什么。 物理学家用一种叫做波函数的数学抽象概念来描述光子的量子态。在叠加态的光子打在视网膜上之前,波函数会弥散出去,这时光子在左边和右边被发现的概率相同。光子和视觉系统的作用是一种观测,而人们认为观测会使波函数“坍缩”,于是光子最终会处于其中任意一边,就像抛出去的硬币最终朝上的会是正反面中的任意一面。当人眼接收到叠加态的光子时,出现在左右两侧的光子数目会有差异吗?Kwiat说:“如果你相信量子力学,那就没什么区别。”但是如果他们的实验发现了无法驳斥的显著性差异,那就说明量子力学一定存在什么问题。他补充说:“这将会是一个大发现,一个惊天动地的结果。” 这样的结果预示着人们可能会解决量子力学的一个核心问题:[color=rgba(57, 99, 158, 0.972549)]测量问题[/color]。假如波函数真的因为测量而坍缩,量子力学理论并没有表明这种坍缩是如何发生的。测量的仪器应该有多大?以眼睛为例,一个视杆细胞够大吗?还是需要整个视网膜?又是否需要角膜?是否需要有一个有意识的观测者呢?[b]坍缩与观测[/b] 一些候选理论通过使坍缩完全独立于观测者和测量仪器,来解决这个潜在问题。例如“[color=rgba(57, 99, 158, 0.972549)]GRW”坍缩模型[/color](以理论物理学家Giancarlo Ghirardi,Alberto Rimini和Tullio Weber命名)。GRW模型及其变型都[color=rgba(57, 99, 158, 0.972549)]假设波函数是自发坍缩的[/color]。处于叠加态的物体质量越大,坍缩就越快。这个理论的结果之一是,单个粒子可以无限长时间地处于叠加态,但是宏观物体就不行。所以,在GRW理论中,著名的薛定谔的猫是无法处于活与死的叠加态的。像GRW这样的理论被称为“无关观测者”的现实模型。 如果像GRW这样的理论对自然的描述是正确的,我们这一个世纪以来想要证明的想法就完全错了。我们一直都认为观测和测量是构成现实世界的中心要素。关键是,当处于叠加态的光子落在视网膜上时,[color=rgba(57, 99, 158, 0.972549)]GRW理论预言的两边的光子计数将和标准量子力学存在一些细微的差别。[/color]这是因为在光子的传输过程中会和不同大小的系统发生作用,比如两个视杆细胞中的两个感光蛋白是一个系统,两个视杆细胞及相应神经的组合又是一个系统,光子在和这两个系统作用时会表现出不同的自发坍缩速率。尽管Kwiat和Holmes都强调在他们的实验中不太可能会看到什么不同,但他们也承认,如果发现了任何与经典理论的差别,就可能预示着GRW这类理论是正确的。 Michael Hall是澳大利亚国立大学的理论量子物理学家,他并没有参与这项研究。Michael同意GRW预言的光子计数和经典理论会出现很小的差别,但是他说这样的差别太小,已经提出的实验是无法探测到的。然而,他认为光子计数上任何的异常现象都值得关注。他说:“这很值得认真思考。我觉得这种偏差出现的概率极小,但是还是有可能。这非常有意思。” Kwiat也想了解量子态和经典态的主观感知差异。他问道:“人在直接观测量子事件时会感受到差异吗?答案‘很可能不会’,但是我们确实不知道。你永远得不到答案,除非你为人的视觉系统建立一个量子力学级别的完备模型,或者,通过实验进行观测。我们无法建立这样的模型,所以就只能去做实验了。” Robert Prevedel在2016年是Vaziri研究团队中的一员,现在在德国的欧洲分子生物学实验室工作。他更感兴趣的是在一系列事件中找出波函数坍缩的具体位置。坍缩是发生在最初光子打到视杆细胞上时?还是在神经信号产生和传递的中间过程中出现?或者是最后信号使人产生视觉时?他提议将视网膜提取出来,再向其发射处于叠加态的光子,记录不同阶段的视觉处理过程(比如记录视杆细胞,或是组成视网膜的其他感光细胞的信息)来看看叠加态到底持续多久。 Prevedel认为视杆细胞对光的吸收会使得叠加态消失。但是他说:“如果我们看到量子(叠加态)存在于光子接触视杆细胞后的任何一个阶段,不论是在视网膜内不同细胞层中,还是在之后的神经回路中,都将是真正的突破。这将是一个非常惊人的发现。” 还有一个大家常常故意视而不见的问题:人类的意识。意识能造成量子态坍缩,让光子最终只在一边出现吗?但Prevedel却对意识与测量、坍缩之间是否真的存在关联持怀疑态度。 Prevedel说:“意识是人脑中细胞和神经元的共同作用的结果,这些细胞和神经元很多,没有几十亿也有几百万。如果意识在量子叠加态的探测中起到了作用,那么这个过程就会牵扯到尺寸和大脑相当的宏观物体,例如组成生物细胞的大量原子和电子的集合。但根据我们已有的知识,这种宏观物体是无法保持量子叠加态的。”

  • 酒石酸锑钾!

    酒石酸锑钾 分子式  分子式:KSbC4H4O7.1/2H2O   【又名】   吐酒石,Tartar Emetic,Potassium antimony(Ⅲ) oxide tartrate hemihydrate   【EINECS】:234-293-3   【作用与用途】   能麻痹血吸虫体肌肉及吸盘,使其失去吸附能力,随血液流入肝脏而被肝内白细胞、网状内皮细胞吞噬;并能使虫体生殖系变性。用于血吸虫病。   【用法与剂量】   疗程总量为25mg/Kg (男性不超过1.5g,女性不超过1.3g),分20次,每日静脉注射一次,连用20次为一疗程。   【危险性类别】:第6.1 类 有毒品   【 不良反应 】   不良反应多,本品有腐蚀性,对皮肤和粘膜有刺激性,重者可发生心脏和肝脏的毒性反应,甚至引起死亡,宜注意。   1,可有恶心、呕吐、腹痛、腹泻、头痛、头昏等。   2,漏于血管之外,可引起组织坏死。   3,肝、肾疾病、活动性结核、急性传染病、发热性疾病、血吸虫病伴有黄疸等忌用。   4,孕妇及哺乳期妇女禁用。   5,急性血吸虫病应在退热后应用。   6,反应较重时应减量或停药。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制