当前位置: 仪器信息网 > 行业主题 > >

果糖丙氨酸非对映体混合

仪器信息网果糖丙氨酸非对映体混合专题为您提供2024年最新果糖丙氨酸非对映体混合价格报价、厂家品牌的相关信息, 包括果糖丙氨酸非对映体混合参数、型号等,不管是国产,还是进口品牌的果糖丙氨酸非对映体混合您都可以在这里找到。 除此之外,仪器信息网还免费为您整合果糖丙氨酸非对映体混合相关的耗材配件、试剂标物,还有果糖丙氨酸非对映体混合相关的最新资讯、资料,以及果糖丙氨酸非对映体混合相关的解决方案。

果糖丙氨酸非对映体混合相关的论坛

  • CNS_12.006_L-丙氨酸

    [align=left][/align][align=left][/align][align=center][/align][align=center][font='黑体'][size=29px]食品添加剂 L[/size][/font][font='黑体'][size=29px]-[/size][/font][font='黑体'][size=29px]丙氨酸[/size][/font][/align][align=center][font='宋体'][size=18px]吴勇[/size][/font][/align][align=center][font='宋体'][size=18px]二〇二一年七月二十二日[/size][/font][/align]1. 概述L-丙氨酸通常指L-α-氨基丙酸,在营养学上属于非必需氨基酸,同时在人体血液氨基酸中含量最高,在食品、医药、化工等领域得到广泛应用。L-丙氨酸作为食品添加剂时属于增味剂或营养强化剂。2. 理化性质性状为白色结晶或结晶性粉末,属斜方晶系。可溶于水和乙醇,不溶于乙醚和丙酮,无臭无毒。密度为1.432gcm[font='等线'][size=13px]-3[/size][/font],熔点为314.5℃,相对分子质量为89.09。3. 制备方法L-丙氨酸的制备方法经历了蛋白水解提取法、发酵法和酶法的发展过程。其中蛋白水解提取法的成本较高,已不适合工业化生产。目前工业化生产的主要方法是酶法转化,即利用携带具有生物活性的L-天冬氨酸-β脱羧酶的微生物,通过生物催化的方式将L-天冬氨酸转化为L-丙氨酸。酶法转化通常可分为两类:固定化细胞法和游离细胞法。生产L-丙氨酸的菌种包括德阿昆哈假单孢菌、黄色短杆菌、产气荚膜梭菌、脱硫脱硫孤菌、小球诺卡氏菌等。[font='等线'][size=13px][1][/size][/font]3.1 固定化细胞法固定化细胞法生产L-丙氨酸的基本工艺流程为:菌体培养加入L-天冬氨酸进行酶转化抽滤L-丙氨酸粗品母液稀释脱色过滤真空浓缩干燥。[font='等线'][size=13px][2][/size][/font]可使用卡拉胶进行固定化,通过固定化德阿昆哈假单孢菌和固定化大肠杆菌装柱串联,可达到从富马酸铵经过转化为L-天冬氨酸的过程转化为L-丙氨酸,从而实现连续化生产。其中,大肠杆菌可实现富马酸到L-天冬氨酸的转化过程,德阿昆哈假单孢菌可实现L-天冬氨酸到L-丙氨酸的转化过程。此方法的关键在于防止固定化过程可能带来的酶失活和pH变化带来的酶失活,以及防止丙氨酸消旋酶对L-丙氨酸的外消旋化。3.2 游离细胞法游离细胞法生产L-丙氨酸的基本工艺流程为:菌体培养离心固定化加入L-天冬氨酸进行酶转化脱色、浓缩、结晶干燥。[font='等线'][size=13px][2][/size][/font]此方法的关键在于抑制丙氨酸消旋酶的活性,同时提高酶的活性和稳定性。4. 应用[font='等线'][size=13px][1][/size][/font]4.1 L-丙氨酸在食品工业的使用L-丙氨酸作为一种广泛存在于食品中的氨基酸,可用作食品的添加剂。4.1.1 防腐剂L-丙氨酸与二元羧酸(如乙酸钠、富马酸)、氧化性酸的混合物可用作保存面条的防腐剂,并且能在防腐的同时保持面条的鲜度。L-丙氨酸与辣椒油、山梨酸钾的混合物能够有效抑制酵母菌、大肠杆菌、黑曲霉等细菌的滋生,可适用于水产品、面条、腌制品、海产品、豆制品、畜产品以及饲料、化妆品、药品的保鲜。4.1.2 风味调味料[font='等线'][size=13px][3][/size][/font]L-丙氨酸具有改善风味的效果,属于重要的氨基酸类调味剂,能够与其它氨基酸配合使用加强食品与饮料的风味。L-丙氨酸与其它氨基酸和(如葡萄糖、阿拉伯糖、甘露糖、果糖、蔗糖、麦芽糖等)以任意比例混合后可显著改善食品、饲料的风味。目前,L-丙氨酸作为食品增味剂的应用已经有了比较大的发展,但仍需要进一步的开发。4.1.2.1 酱油酱油中L-谷氨酸钠等增味剂的添加量较大以及酱油的咸度太高等问题都限制了酱油的使用市场,如何减少味精等添加剂的用量以及降低酱油的咸味已经逐渐成为人们关注的焦点。在酱油中添加L-丙氨酸后,尤其是对于苦涩味特别严重的三级酱油,随着丙氨酸浓度的增大,酸味、苦味、涩味变得柔和,酱油整体风味得到改善。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和,尤其是对盐度高、不含L-谷氨酸钠、I+G和酵母抽提物等添加剂的酱油原油的调味效果最为明显。4.1.2.2 鱼露在国外的鱼露的生产中,一般通过添加HVP(植物蛋白水解液,hydrolyzed vegetable protein)补充氨基酸,提高鱼露的鲜味,HVP中含有一种名为3-氯-1, 2-丙二醇(3-MCPD)的物质,这种物质对生殖器官、肾脏和神经均有毒性,同时还存在潜在的致癌和致突变作用,长期食用含有3-MCPD的食品会造成严重身体损伤。针对3-MCPD的安全性和出口限量标准等问题,一些酱油、鱼露生产商对其生产工艺进行了改善,将传统工艺中的HVP替换为丙氨酸、谷氨酸、甘氨酸等的混合溶液,所得鱼露的味道更加醇厚,而且改善后的生产工艺成本与改善前相差不大。4.1.2.3 食用盐国外推出的低钠盐,主要成分为60%~70%氯化钠和20%~30%氯化钾,10%左右的L-丙氨酸、酵母提取物以及I+G,可以实现减盐不减咸,帮助人体钠钾平衡,增加鲜味,尤其是可以减少味精的使用量,对预防及降低高血压均起到了积极的作用。4.1.2.4 鸡精为了提升鸡精的风味,除了增加鸡肉粉的添加量以外,一些生产厂家优选在其鸡精配方中添加丙氨酸,利用丙氨酸的鲜味以及诱发食物风味的作用来 提升鸡精调味料的口感,既起到了协调增鲜的作用,又降低了人体钠的摄入量。鸡精中添加L-丙氨酸后,其鸡肉风味更加醇厚,鲜味增强。4.1.2.5 复配甜味剂许多甜味剂单体都有各自的优点和缺陷,无论哪种甜味剂单体,用量过大时都会产生不良风味和后味,均不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法对多种甜味剂进行复配和改造,才能满足使用要求。在复配甜味剂中加入1%~10%的L-丙氨酸,能提高甜度、柔和甜 味,减少糖精钠等人工合成甜味剂的用量,是制作糖尿病人食品的潜在甜味剂,同时也能满足现代人“低糖”的饮食习惯。4.2 L-丙氨酸在医药上的应用L-丙氨酸作为一种蛋白质的合成原料,能够影响人体的生理活动。40年代起出现第一代氨基酸输液,由水解蛋白制成,含有较多杂质,在临床中出现不良反应;1965年日本出现第二代氨基酸输液,其中含有11种氨基酸,除人体必需氨基酸8种外还存在精氨酸、组氨酸和甘氨酸;1976年开始,多国出现第三代氨基酸输液,在第二代氨基酸输液的基础上加入了L-丙氨酸、脯氨酸和丝氨酸等多种非必需氨基酸。随着临床医学的发展,第四代氨基酸输液不再是营养型输液,而是治疗型输液,通过调整人体的氨基酸代谢水平对部分疾病进行治疗。L-丙氨酸在治疗如肝病引起的蛋白质合成紊乱、糖尿病、急慢性肾功能衰竭以及对维持危急病人的营养、抢救患者的生命方面起到了积极作用。L-丙氨酸可以有效减轻酒精对肝脏的损害。L-丙氨酸可以有效地减轻酒精对肝脏的损害。通过对腹腔注射170mmol/kg体重19%的乙醇的小鼠进行试验表明,投服L-丙氨酸的小鼠的生存率为67%,比不投的高出34%;而L-丙氨酸与鸟氨酸相结合, 则生存率提高到100%。所以可将L-丙氨酸与L-鸟氨酸的混合物按0.01%~10%添加量加到食品中,也可以将L-丙氨酸与谷氨酰胺以 1:0.05~0. 5(摩尔比)混合物制成片剂、胶囊、乳剂、口服液等,能够起到保护肝脏、降低酒精中毒的作用。L-丙氨酸还是血液保存剂的主要成分。目前输血用血液保存方法中除了全血保存外,还有红血球制剂保存。但血液制剂在保存过程中会发生老化,因而保存期有限。为了提高保存期 ,防止老化,采用了添加腺嘌呤、肌苷、蔗糖、乳糖等方法。但这类方法都有缺点,这些添加成分在输血前必须予以除去。例如,在添加蔗糖时,直接将含有蔗糖的血液注射到人体中时,血液中的糖浓度会急剧上升,必须在输液前预先用等渗透压生理盐水洗涤、渗透等方法降低糖浓度后才能输血。而氨基酸既可以降低渗透压又显示与蔗糖相同的抗溶血性,在输血时可 以不必除去,能直接使用,还具有优良的营养效果。5. 限量标准现行标准[font='等线'][size=13px][4][/size][/font]中对L-丙氨酸的功能划分为增味剂,仅用于调味品(食品分类号12.0)生产,对于最大使用量无明确界定,按生产需要适量使用。6. 理化指标及测定方法[font='等线'][size=13px][5][/size][/font]6.1 理化指标现行标准[font='等线'][size=13px][5][/size][/font]中L-丙氨酸的理化指标列于下表。[table][tr][td]项目[/td][td][/td][td]指标[/td][/tr][tr][td]L-丙氨酸(以干基计),w/%[/td][td][/td][td]98.5~101.5[/td][/tr][tr][td]干燥减量,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]pH(50g/L 水溶液)[/td][td][/td][td]5.7~6.7[/td][/tr][tr][td]砷(As)/(mg/kg)[/td][td]≤[/td][td]1[/td][/tr][tr][td]重金属(以Pb计)/(mg/kg)[/td][td]≤[/td][td]10[/td][/tr][tr][td]灼烧残渣,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]比旋光度 α[font='等线'][size=13px]m[/size][/font](20℃,D)/[(o)dm2 kg[font='等线'][size=13px]-1[/size][/font]][/td][td][/td][td]+13.5~+15.5[/td][/tr][/table]6.2 测定方法6.2.1 鉴别实验6.2.1.1 茚满三酮试验称取约1g样品,精确至0.1g,溶于1000mL水中,取此溶液5mL,加1mL 20g/L茚满三酮溶液,加热至沸,约3min后显紫色。6.2.1.2 氧化试验称取约0.2g实验室样品,溶于10mL (1+30) 硫酸溶液,加入0.1g高锰酸钾,煮沸,有强烈的刺激臭味乙醛产生。6.2.2 L-丙氨酸含量测定称取约0.2g干燥样品,精确至0.0001g,置于250mL干燥的锥形瓶中,加3mL无水甲酸溶解,加50mL冰乙酸,加2滴2g/L结晶紫指示液,用0.1 mol/L高氯酸标准滴定溶液滴定至溶液由蓝色变成蓝绿色为终点。按照相同的步骤,除不加入样品外其它条件不变,进行空白实验。L-丙氨酸的质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]1[/size][/font]表示L-丙氨酸的质量分数,以百分比形式表示;V[font='等线'][size=13px]1[/size][/font]表示样品消耗高氯酸标准滴定溶液的体积(mL);V[font='等线'][size=13px]2[/size][/font]表示空白消耗高氯酸标准滴定溶液的体积(mL);c表示高氯酸标准滴定溶液浓度(molL[font='等线'][size=13px]-1[/size][/font]);m表示样品质量(g);M表示L-丙氨酸的摩尔质量(gmol[font='等线'][size=13px]-1[/size][/font]),M=89.09。6.2.3 干燥减量的测定将电热恒温干燥箱调节至(105±2)℃,之后将称量瓶置于电热恒温干燥箱中干燥,取出后在干燥器中冷却,称量,精确至0.0001g,重复操作至恒重。之后用已恒重的称量瓶称取1g~2g样品,精确至0.0001g。将装有样品的称量瓶和盖子放入电热恒温干燥箱同时干燥2h~4h,之后将称量瓶和盖子迅速移至干燥器中冷却。冷却后盖上盖子进行称量,精确至0.0001g,重复操作至恒重,重复干燥时间为1h。水分质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]2[/size][/font]表示水分的质量分数,以百分比形式表示;m[font='等线'][size=13px]0[/size][/font]表示称量瓶的质量(g);m[font='等线'][size=13px]1[/size][/font]表示称量瓶和干燥前样品质量(g);m[font='等线'][size=13px]2[/size][/font]表示称量瓶和干燥后样品质量(g)。[font='等线'][size=13px][6][/size][/font]6.2.4 pH的测定称取约5g样品,精确至0.01g,加入约20mL无二氧化碳的水溶解并稀释至100mL。将校准后的酸度计的电极用水冲洗一次,之后用样品溶液冲洗一次。调节样品溶液的温度至(25±1)℃,并将酸度计的温度补偿旋钮调至25℃,读取pH值。样品应分为2份进行平行测定,测得的pH值读数稳定1min以上,测得的pH值允许误差绝对值小于等于0.02。[font='等线'][size=13px][7][/size][/font]6.2.5 砷的测定称取0.25g二乙氨基二硫代甲酸银,研碎后用适量三氯甲烷溶解,加入1.0mL三乙醇胺,再用三氯甲烷稀释至100mL,作为吸收液。称取约1g样品,精确至0.01g。吸取一定量的样品溶液和1mL含砷0.001mg的砷标准使用溶液,置于砷发生瓶中,补加硫酸至总量为5mL,加水至50mL。在各瓶中加入3mL 150g/L碘化钾溶液,混匀,放置5min。分别加入1mL 400g/L氯化亚锡溶液,混匀,放置15min。加入5g无砷金属锌,立即塞上装有乙酸铅棉花的导气管,并使管的尖端插入盛有5.0mL吸收液的吸收管中,室温反应1h。取下吸收管,用三氯甲烷将吸收液体积定容至5.0mL。经目视比色或用1cm比色杯,于515nm波长下测定吸收液的吸光度。样品液的色度或吸光度不得超过砷标准吸收液的色度或吸光度。[font='等线'][size=13px][9][/size][/font]6.2.6 重金属的测定准备以下溶液:1. 硫代乙酰胺溶液:称取硫代乙酰胺约4g,精确至0.1g,溶于100mL水中,置于冰箱保存。临用前取此液1.0mL加入预先由15mL 40g/L氢氧化钠溶液、5mL水和20mL甘油组成的混合液5mL,置于水浴上加热20s,冷却后立即使用。2. 乙酸铵缓冲溶液(pH=3.5):称取25.0g乙酸铵,溶于25mL水中,加入45mL 6mol/L盐酸,用稀盐酸或稀氨水调节至pH=3.5,之后用水稀释至100mL。3. 1μg/mL铅标准溶液。临用前配制。称取约10 g样品,精确至0.01g,溶于约60mL无二氧化碳水,之后转移至100mL容量瓶并使用无二氧化碳水定容,摇匀。吸取样品溶液12mL,置于25mL具塞比色管中,即为A 管。吸取10mL铅标准溶液和2mL样品溶液置于25mL具塞比色管中,摇匀,即为B管(标准)。吸取10mL无二氧化碳水和2mL样品溶液置25mL具塞比色管中,摇匀,即为C管(空白)。在 A、B、C 管中,各加入2mL乙酸铵缓冲溶液,摇匀,分别滴加1.2mL硫代乙酰铵溶液,迅速搅拌混合。相对于C管,B管显现了淡棕色。2min后,A管的颜色不应深于B管。6.2.7 灼烧残渣的测定称取约2g~3g样品,精确至0.0001g,置于在800℃±25℃灼烧至恒重的瓷坩埚中,加入适量的(1+8)硫酸溶液将样品完全浸湿,用温火加热,至样品完全炭化,冷却。加入约0.5mL硫酸将残渣完全浸湿,使用相同的方法加热直至硫酸蒸气全部逸散。在(800±25)℃下灼烧45min,之后放入干燥器中冷却至室温,称量残渣的质量。灼烧残渣的质量分数可通过以下公式计算:式中:w3表示灼烧残渣的质量分数,以百分比形式表示;m表示样品质量(g);m1表示残渣质量(g)。6.2.8 比旋光度称取10g样品,精确至0.0001g,加入(1+1)盐酸溶液溶解,转移至100mL容量瓶并使用(1+1)盐酸溶液定容,摇匀。按照仪器的使用说明调整旋光仪,用(1+1)盐酸溶液校正零点。将样品溶液充满洁净、干燥的旋光管,排出气泡,将盖旋紧后放入旋光仪内。调节样品溶液的温度至(20±0.5)℃,按照仪器的使用说明操作并读取旋光角,精确至0.01°。比旋光度可通过以下公式计算:式中:α[font='等线'][size=13px]m[/size][/font](20℃, D)表示20℃钠灯照射下的比旋光度[(°)dm[font='等线'][size=13px]2[/size][/font]kg[font='等线'][size=13px]-1[/size][/font]];α表示旋光角(°);l表示旋光管长度(dm);ρ[font='等线'][size=13px]α[/size][/font]表示溶液中L-丙氨酸的质量浓度(g/mL)。[font='等线'][size=13px][8][/size][/font]参考文献[1] L-丙氨酸的生产及应用. 王雪根, 朱建良, 欧阳平凯. 南京化工大学学报(自然科学版). 1998, 20, 01.[2] 游离细胞法与固定化细胞法生产L-丙氨酸的比较. 徐虹, 王雪根, 范伟平, 欧阳平凯. 工业微生物. 1988, 28, 38-39.[3][font='宋体'][size=24px][color=#333333] [/color][/size][/font]L-丙氨酸在食品工业中的应用潜力. 郭媛, 王丽娟等. 中国调味品[font='宋体'][size=12px][color=#666666]. [/color][/size][/font]2017, 42, 07.[4] GB 2760 - 2014[5] GB 25543 - 2010[6] GB/T 6284 - 2006[7] GB/T 9274 – 2007[8] GB/T 613[9] GB 5009.76 - 2014

  • 求教丙氨酸的液相检测

    [color=#444444]我的水质中包含氨氮,乙酸,丙酸以及丙氨酸。[/color][color=#444444]我查看文献,先考虑的是直接检测的方法。但是我无论改变流动相比例还是改变pH值都是不到2分钟就出峰了,那我看标品的线性还行就勉强用了,但是在后来发现根本不行,无论水中丙氨酸有多少,因为乙酸,丙酸的存在,峰面积都不怎么变,后来我又查看文献发现乙酸丙酸的液相检测方法很类似。[/color][color=#444444]那我考虑衍生化呗,但是好像氨氮的存在会对各种衍生产生影响。求教各位大神,我该用什么方法检测该水中的丙氨酸啊[/color]

  • 质谱分析氨基酸对映体

    [color=#444444]液相色谱质谱联用时,比如在液相色谱端进一针DL-苯丙氨酸,那么在液相的色谱图上理论上会出现DL-苯丙氨酸对映体的两个峰,那么当样品流到质谱检测器时,质谱的总离子图上是出现一个峰还是两个峰?液相负责分离,质谱负责定性,质谱可以确定化合物的分子量和分子式,但是可以确定化合物的左右旋对映体么?[/color]

  • 丙氨酸的检测

    各位,你们好。我想求教一下我这种情况,该怎么检测丙氨酸我的水质中包含氨氮,乙酸,丙酸以及丙氨酸。我查看文献,先考虑的是直接检测的方法。但是我无论改变流动相比例还是改变pH值都是不到2分钟就出峰了,那我看标品的线性还行就勉强用了,但是在后来发现根本不行,无论水中丙氨酸有多少,因为乙酸,丙酸的存在,峰面积都不怎么变,后来我又查看文献发现乙酸丙酸的液相检测方法很类似。那我考虑衍生化呗,但是好像氨氮的存在会对各种衍生产生影响。我也是第一次接触色谱,求教各位大神,我该怎么做啊

  • 请教有关苯丙氨酸

    要做一个苯丙氨酸样品GC含量测定,对方提供方法DB-WAX柱190度恒温,FID:250度,没提供用什么试剂溶解,我查了一下苯丙氨酸物理性质溶于热水,不溶于乙醇甲醇乙醚,溶于甲酸,在烯酸或氢氧化钠试剂中易溶,但是DB-WAX不适合进水样啊,请问高手该怎么处理样品呢?可以用甲酸溶解进DB-WAX柱吗?

  • l-2氯苯丙氨酸

    硅烷化衍生化植物材料,衍生化之前加入了内标l-2氯苯丙氨酸,想知道内标衍生化后的产物是什么?

  • 求助:色谱分析问题(丙氨酸和氨基甲酸乙酯的分离)

    [color=#444444]在利用液相色谱分析检测氨基甲酸乙酯的时候,总是有丙氨酸的干扰,而且两者的出峰时间较为接近,丙氨酸很容易将后面出来的氨基甲酸乙酯的峰重叠掉,试了很多方法都没办法改变,请求各位支招,万分感谢![/color]

  • 求助苯丙氨酸和缬氨酸二级质谱图

    本人正在做氨基酸的同位素示踪分析,想求助苯丙氨酸和缬氨酸标准质谱图,分析其是怎么断裂的。本人用的是三重四级杆液质做的二级扫描,得到好多准分子离子但是想和谱库对比一下。谢谢谢谢

  • 丙氨酸红外图谱分析

    丙氨酸红外图谱分析

    麻烦各位帮忙分析分析,丙氨酸红外图谱,特征峰http://ng1.17img.cn/bbsfiles/images/2013/10/201310121041_470541_2792812_3.jpg

  • β-氰基丙氨酸在液质联用中的分析

    [color=#444444]检测一种代谢物β-氰基丙氨酸,使用Agilent XDB C-18 2.1X50mm 液相色谱柱分离,流速0.2ml/min,出峰在0.8min左右。老板说让保留时间尽量长,否则就失去了色谱柱分离的意义。请问β-氰基丙氨酸此化合物的极性如何?如何在不换柱子的前提下延长保留时间?[/color]

  • 复原乳糠氨酸和乳果糖

    有谁做过高温杀菌乳糠氨酸,一般检测出来的值是多少,糠氨酸检测回收率范围是多少,乳果糖试剂盒谁懂

  • 【资料】一种反映血糖水平的物质——果糖胺

    果糖胺是血浆中的蛋白质在葡萄糖非酶糖化过程中形成的一种物质,由于血浆蛋白的半衰期为17天,故果糖胺反映的是1-3周内的血糖水平。   果糖胺是血浆中的蛋白质与葡萄糖非酶糖化过程中形成的高分子酮胺结构类似果糖胺的物质,它的浓度与血糖水平成正相关,并相对保持稳定。它的测定却不受血糖的影响。由于血浆蛋白的半衰期为17~20天,故果糖胺可以反映糖尿病患者检测前1~3周内的平均血糖水平。从一定程度上弥补了糖化血红蛋白不能反映较短时期内血糖浓度变化的不足。果糖胺的测定快速而价廉(化学法),是评价糖尿病控制情况的一个良好指标,尤其是对血糖波动较大的脆性糖尿病及妊娠糖尿病,了解其平均血糖水平有实际意义。但果糖胺不受每次进食的影响,所以不能用来直接指导每日胰岛素及口服降糖药的用量。血清果糖胺正常值为1.64~2.64mmol/L,血浆中果糖胺较血清低0.3mmol/L。

  • 【求助】求苯丙氨酸液相条件

    我现在需要测定苯丙氨酸,一直没找到合适的液相条件,出来的图谱总是拖尾,响应值也不高,而且在高浓度的时候峰形很凸,哪位高手做过这种物质吗?麻烦您不吝赐教哦,谢谢

  • 丙氨酸无紫外吸收基团,如何进行检测?

    最近用D-丙氨酸作为原料做合成,但是丙氨酸几乎无紫外吸收基团,看了几个衍生化方式,都极为复杂,有没有简单的方式检测的?我们有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],但是其沸点也无明显说明,只能了解大概在212±30℃,且其水溶性极强,不溶于有机相,目前在用的只有一根极性柱,100%聚乙二醇填料的,基本无法使用。能否有更合适的方式检测监控?

  • 【求助】苯丙氨酸的最大吸收波长是多少呀

    我都郁闷了 要测定苯丙氨酸,看文献上说用紫外检测器测190nm出有最大吸收,可是紫外的范围就是190-790nm,老板说这个波长不行,要重新找一个,找来找去都找不到合适的,哎,有谁测定过吗?用的流动相是什么呢?请高手指点,谢谢!

  • 复原乳中康氨酸和乳果糖

    今天了解到复原乳中的糠氨酸和乳果糖,以前没有关注过,今天上网查了些资料了解一下,跟大家分享。“糠氨酸”是英文单词furosine的中文暂译名,也有人将其译为“呋喃素”的,目前国内各类辞典尚未收录该单词。它是一种有机化合物的通俗名称,按照“国际纯粹和应用化学化合物系统命名法”,其学名是“ε-N-2-呋喃甲基-L-赖氨酸”。国际奶业早在上世纪80年代就对它有了足够的认识并于1992年被欧盟各国政府所接受,作为判断液态奶成品质量优劣的一个重要指标;其检测方法于1996年被国际奶业联合会(IDF)正式确认,为国际标准化组织(ISO)认可的时间是2004年,颁布标准号:18329。 据文献报道,生奶里的糠氨酸含量微乎其微,每公斤里约含0.15毫克,且不受奶牛处在正常饲养范围内的条件变化影响,但是在不同的奶制品成品里的含量变化却很大。巴氏杀菌奶、直接法超高温瞬间灭菌奶和间接法超高温瞬间灭菌奶(UHT)、以及保持法二次灭菌奶,依次分别约为:0.2、2.2和26、以及270(mg/L);全脂奶粉兑水复原奶的糠氨酸含量一般在每公斤20-250毫克之间。含量幅度变化如此之大,其最主要的原因是生奶在不同的加工工艺过程中所经受热处理的强度不同,即高温和在此温度下保温时间的组合差异,不当的过热处理,其实比使用复原奶的后果更严重;而更进一步的研究表明,摄入过量的糠氨酸对人体健康有害。 奶制品中的糠氨酸,是乳蛋白质在高温条件下与乳糖发生“梅拉德反应”所产生的系列产物之一。当人们加热生奶,企图杀灭其中的致病菌、继而希望彻底杀灭所有细菌时,所利用的原理是:热量促使细菌细胞内的蛋白质变性而丧失活性。与此同时,生奶中的乳蛋白质也无可避免地发生了不同程度的改变,随着热杀菌的越来越彻底,营养物质的变化也越来越大,表观表现是牛奶的“色香味”变了,内在实质是梅拉德反应逐步升级,产物越来越复杂,糠氨酸只是其中之一,属于这类产物的还有乳果糖、羟甲基糠醛等。 在加热牛奶的过程中,早在梅拉德反应发生之初,对生命体具有重要营养功能的另一类物质,乳清蛋白质自身就已经变性而丢失其应有的生理活性了。如其中的“总-β-乳球蛋白”的变性率(%):巴氏杀菌奶为0.48,直接法超高温瞬间灭菌奶为21.7,间接法超高温瞬间灭菌奶为95.6,保持法二次灭菌奶为99.9。再如乳清蛋白中具有“助睡眠”功能的“α-乳球蛋白”的变性率(%):巴氏杀菌奶为0.32,直接法超高温瞬间灭菌奶为3.96,间接法超高温瞬间灭菌奶为61.8,保持法二次灭菌奶为99.9。 比较上述两类物质的含量变化,就不难理解:为什么国际社会历来青睐“仅仅杀灭致病菌”的传统巴氏杀菌奶,以及今天灭菌奶生产和奶粉制造技术日趋向“直接法加热”“靠拢”的原因了。有意思的是,上世纪80年代起,自从人们感到有必要判断液态奶受热强度的测试以来,选所择的对象,都来自于这两类物质。国际奶业联合会和国际标准化组织至今已经颁布了近十个这方面的检验方法国际标准,在不同的热处理强度段使用时具有不同的敏感度和精确度,ISO-18329/2004是其中的一个。 最近各地技术监督部门在“驻厂监管复原奶”期间,也首次运用国际标准检验方法对国内产品进行糠氨酸含量测试,其结果在显示“复原奶”标签方面存在一些问题的同时,也暴露了“过热”处理牛奶的另外一些问题。笔者认为,现在该是我们加强和规范技术基础工作的时候了!否则,以借助“一杯牛奶强壮一个民族”来推动我国农业产业结构调整的良好愿望,将会受到负面影响

  • 使用AccQ法测量氨基酸其中丙氨酸Ala的峰面积与浓度不成比例

    使用AccQ法测量氨基酸其中丙氨酸Ala的峰面积与浓度不成比例

    仪器:安捷伦1260ⅱ方法:AccQTag法流动相:A:Waters AccQTag A浓液1: 10(V/V)稀释;B:60%乙腈;C:屈臣氏纯净水;D:纯乙腈问题:标样里丙氨酸(Ala)峰面积与浓度不成比例,峰和数据如图。国庆节之前一直都很正常,放个假回来再测就变成这样了,样品的峰也改变了,这样情况下算出来的丙氨酸含量甚至出现了负值。请问有老师碰见过这种情况吗?或者有什么解决的思路吗?感谢![img=,690,250]https://ng1.17img.cn/bbsfiles/images/2021/11/202111011944358938_1636_5346829_3.png!w690x250.jpg[/img][img=,690,98]https://ng1.17img.cn/bbsfiles/images/2021/11/202111011944428389_3521_5346829_3.png!w690x98.jpg[/img][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/11/202111011944477378_1801_5346829_3.png!w690x423.jpg[/img]除了Ala以外,与它相邻的前面两个氨基酸Arg和Thr的峰形也有变化,分离度不如以前了。下图是之前正常时的峰形。[img=,690,262]https://ng1.17img.cn/bbsfiles/images/2021/11/202111011946324377_3818_5346829_3.png!w690x262.jpg[/img](第一张图的峰的保留时间相较正常时有漂移是因为仪器漏液的原因,现已解决,但Ala的问题仍存在。)

  • 色谱测定混合单糖的问题

    过几天考试了,拿到一道往年的题,实在是没有头绪,请各位赐教了!题目是:”举出三种定量测定混合单糖式样的色谱方法,简要说明各种方法的使用固定相和检测器以及要解决的方案“小弟做石化研发的,色谱方面真的不懂,请各位指教了!!谢谢!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制