当前位置: 仪器信息网 > 行业主题 > >

矢车菊素桑布双糖苷对照

仪器信息网矢车菊素桑布双糖苷对照专题为您提供2024年最新矢车菊素桑布双糖苷对照价格报价、厂家品牌的相关信息, 包括矢车菊素桑布双糖苷对照参数、型号等,不管是国产,还是进口品牌的矢车菊素桑布双糖苷对照您都可以在这里找到。 除此之外,仪器信息网还免费为您整合矢车菊素桑布双糖苷对照相关的耗材配件、试剂标物,还有矢车菊素桑布双糖苷对照相关的最新资讯、资料,以及矢车菊素桑布双糖苷对照相关的解决方案。

矢车菊素桑布双糖苷对照相关的资讯

  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 默克生命科学植物提取标准物质突破2千种
    https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news生姜“七步之内必有芳草” 传说中神农尝百草以辨药性,一天神农误食毒蘑菇昏迷,醒来时发现自己躺倒的地方有一丛尖叶子青草,散发着香气。神农拔了这株草,连同它的根茎放在嘴里嚼。过后竟然中毒的症状全没了。神农姓姜,于是给这株救命草取名为“生姜”,意思是使自己起死回生。而今,生姜成为中国人餐桌上重要的调料。 青蒿“呦呦鹿鸣,食野之蒿。我有嘉宾,德音孔昭。”东晋葛洪所著的《肘后备急方》即有“青蒿方”用于治疗疟疾的记录。现代中国女药学家屠呦呦因开创性地从中草药中分离出青蒿素用于疟疾治疗而获得2015年诺贝尔生理学奖和医学奖。屠老师数十年的研究,成功研发出青蒿素和双氢青蒿素,挽救了全球数百万人的生命。草本植物-青蒿跨越千年而又熠熠生辉。 不断发展的现代科技,使人们能够不断了解、开发和利用植物的奥秘。植物提取物作为膳食补充剂、中草药品以及日化补充剂的良好来源,也在全球范围内越来越受欢迎。 神农尝百草的年代已经不复存在,可靠的标准物质在植物化学品成分的准确鉴定和定量测定中越发重要,成为了安全和质量的保障基石。 目前,默克生命科学可提供超过2,000种植物提取标准品及认证参考物质, 200多种不同植物属别,均已通过详尽测试,以确定其特性和色谱纯度,用于植物提取物的定性/定量分析检测和质量控制。此外,今年新增约200种植物提取标准品,包括Cerilliant植物提取物单标和混标CRM、分析标准品。同时我们和PhytoLab、HWI Analytik杰出的植物提取标准品生产商全球合作,极大地丰富了植物提取标准品产品线。选择植物提取标准品,选择默克Supelco。 HPTLC测定甜菊糖苷类提取物如下是经过样品前处理,根据USP 203方法使用Merck HPTLC(高效薄层板) 分别在UV 366nm 和白光下分别对瑞鲍迪苷D、A、C、甜菊糖苷、瑞鲍迪苷B、杜尔可苷A、甜菊双糖苷和甜叶菊提取物标准品(HWI),以及甜叶菊叶1、甜叶菊叶2测定。更多分析细节及应用方案,欢迎随时联系我们。 产品描述包装货号生姜中6种姜辣素和姜烯酮混标1mLG-027绿茶8种儿茶素混标1mLG-016卡瓦胡椒9种混标1mLK-0076种大麻酚混标1mLC-218青蒿素10mg69532双氢青蒿素50mgD7439叶绿素A1mg96145对-香豆素50mg55823矢车菊素葡萄糖苷氯化物10mgPHL89616瑞鲍迪苷 A20mgPHL80067全缘千里光碱5mgPHL83968滨蓟黄苷10mgPHL85726柽柳黄素10mgPHL85778苦艾素10mgPHL84170积雪草苷 B10mgPHL84263蜂斗菜酸10mgPHL84767富马原岛衣酸5mgPHL82266 点击此处,了解更多植物提取标准品。https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news
  • 沃特世超高性能色谱柱应对氨基糖苷类抗生素药物分析监测难点
    氨基糖苷类抗生素分析难点:氨基糖苷类抗生素是一类含有氨基糖苷键的抗生素,抗菌谱广,对需氧革兰阴性杆菌具有强大的抗菌活性,临床应用广泛。该类抗生素由氨基糖与碱性1,3-二氨基肌醇以苷键结合而成,1,3-二氨基肌醇为碱性多元环己醇结构,因此氨基糖苷类抗生素均具有碱性强,极性大的特性。目前大多数氨基糖苷类化合物的液相色谱检测时均使用了高比例的三氟乙酸作为流动相,当采用这些溶剂作为流动相时色谱工作者经常发现色谱柱柱效下降非常厉害,色谱峰重现性差,柱寿命短等方面问题。 2010年版《中国药典》方法摘录:硫酸依替米星:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min硫酸庆大霉素C组分: 0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min硫酸卡那霉素:0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min硫酸西索米星:0.3mol/L三氟乙酸-甲醇-乙腈 96:3:1;流速0.5mL/min硫酸奈替米星有关物质:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 沃特世公司解决方案:沃特世(Waters)公司第二代杂化颗粒XBridgeTM系列色谱柱产品,通过在硅胶颗粒合成过程中引入有机的亚乙基桥结构,使其具有行业领先的化学稳定性,pH范围1~12,同时提高了色谱柱产品的耐受性及机械强度,使用该系列色谱柱产品的可以帮您解决氨基糖苷类抗生素的色谱分析问题 利用沃特世XBridge C18 色谱柱分析硫酸庆大霉素C组分所得色谱图及检测结果:
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。  大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。  成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持!产品信息:货号品名CAS No. B691000N-Butyldeoxynojirimycin Hydrochloride210110-90-0C10H22ClNO410/100mga-葡糖苷酶1和 HIV cytopathicity抑制剂E915000N-Ethyldeoxynojirimycin Hydrochloride210241-65-9C8H18ClNO410/100mgHIV cytopathicity抑制剂C181150N-5-Carboxypentyl-deoxymannojirimycin104154-10-1C12H23NO65/50mg制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶A1875452,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture) C56H63NO1310/100mg4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体B690500N-(n-Butyl)deoxygalactonojirimycin141206-42-0C10H21NO45/50mga-D-半乳糖苷酶抑制剂B690750N-Butyldeoxymannojirimycin, Hydrochloride355012-88-3C10H22ClNO45/50mga-D-甘露糖苷酶抑制剂D236000Deoxyfuconojirimycin, Hydrochloride210174-73-5C6H14ClNO310/100mgalpha-L-岩藻糖苷酶抑制剂M166000D-Manno-&gamma -lactam62362-63-4C6H11NO55/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和M165150D-Mannojirimycin Bisulfite C6H13NO7S1/10mgalpha-甘露糖苷酶抑制剂D4550006,7-Dihydroxyswainsonine144367-16-8C8H15NO51/10mga-甘露糖苷酶抑制剂C665000Conduritol B25348-64-5C6H10O425/250mgb-葡糖苷酶抑制剂C666000Conduritol B Epoxide6090-95-5C6H10O525/250mgb-葡糖苷酶抑制剂A1552502-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate132152-77-3C16H22N2O1025/250mgglucosamidase抑制剂D240000Deoxymannojirimycin Hydrochloride73465-43-7C6H14ClNO410/100mgmammalian Golgi alpha- mannosidase 1 抑制剂M297000N-Methyldeoxynojirimycin69567-10-8C7H15NO410/100mgN-连接糖蛋白高斯过程干扰剂A1584002-Acetamido-1,2-dideoxynojirimycin105265-96-1C8H16N2O41/10mgN-乙酰葡糖胺糖苷酶抑制剂A157250O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate132489-69-1C15H19N3O75/10/100mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂A157252(Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate1331383-16-4C15H14D5N3O71/10mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂M3345154-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester C26H31NO1225mgT2DM糖苷酶抑制剂G4500004-O-&alpha -D-Glucopyranosylmoranoline80312-32-9C12H23NO91/10mg&alpha -葡萄糖苷酶抑制剂D2317501-Deoxy-L-altronojirimycin Hydrochloride355138-93-1C6H14ClNO45/50mg&alpha -糖苷酶抑制剂H942000N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt C8H18ClNO50.5/5mg&alpha -糖苷酶抑制剂H942015N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride C8H18ClNO51/10mg&alpha -糖苷酶抑制剂H942030N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride C8H18ClNO55/50mg&alpha -糖苷酶抑制剂T7952003&rsquo ,4&rsquo ,7-Trihydroxyisoflavone485-63-2C15H10O5200mg/2g&beta -半乳糖苷酶抑制剂A158380O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate351421-19-7C21H24N4O1210/100mg氨基葡萄糖苷酶抑制剂M166505Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal C13H19NO4S2.5/25mg保护的Mannostatin AB682500Bromoconduritol (Mixture of Isomers)42014-74-4C6H9O3Br200mg哺乳类 alpha-葡萄糖苷酶 2 抑制剂K450000Kifunensine109944-15-2C8H12N2O61/10mg芳基甘露糖苷酶抑制剂D2397501-Deoxy-L-idonojirimycin Hydrochloride210223-32-8C6H14ClNO410/100mg酵母葡糖a-苷酶类抑制剂S885000Swainsonine72741-87-8C8H15NO31/10mg可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂T295810[1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone149952-74-9C8H11NO410/100mg苦马豆素和衍生物合成中间体N635000Nojirimycin-1-Sulfonic Acid114417-84-4C6H13NO7S10/100mg葡糖苷酶类抑制剂V094000(+)-Valienamine Hydrochloride38231-86-6C7H14ClNO41/10mg葡糖苷酶抑制剂D4400002,5-Dideoxy-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg葡糖苷酶抑制剂D494550N-Dodecyldeoxynojirimycin79206-22-7C18H37NO410/100mg葡糖苷酶整理剂D4799552,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside111495-86-4C12H13FN2O95/50mg葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖A6532702,5-Anhydro D-Mannose Oxime, Technical grade127676-61-3C6H11NO510/100mg潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺D2365001-Deoxygalactonojirimycin Hydrochloride75172-81-5C6H14ClNO410/100mg强效的和有选择性的d半乳糖苷酶抑制剂D236502Deoxygalactonojirimycin-15N Hydrochloride C6H14Cl15NO45/25mg强效的和有选择性的d半乳糖苷酶抑制剂B445000(2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine105015-44-9C6H13NO410/100mg强有力的和特定的糖苷酶抑制剂M166500Mannostatin A, Hydrochloride134235-13-5C6H14ClNO3S1/10mg强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂A858000N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose86979-66-0C13H16N4O71/10mg人类红细胞单糖运输标签抑制剂C185000Castanospermine79831-76-8C8H15NO410/100mg溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂D4399801,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride114976-76-0C6H14ClNO45/50mg糖蛋白甘露糖苷酶抑制剂A608080N-(12-Aminododecyl)deoxynojirimycin885484-41-3C12H26N2O45/50mg糖苷酶亚氨基糖醇制备用试剂I8663501,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose53167-11-6C8H12O5100mg/1g糖苷酶抑制剂制备试剂A6483002,5-Anhydro-2,5-imino-D-glucitol132295-44-4C6H13NO410/100mg糖水解酶类抑制剂A6483502,5-Anhydro-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg糖水解酶类抑制剂M2570003-Mercaptopicolinic Acid Hydrochloride320386-54-7C6H6ClNO2S500mg/5g糖质新生抑制剂B286255N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin138381-83-6C21H23NO65/50mg脱氧野尻霉素衍生物B286260N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate153373-52-5C25H27NO82.5/25mg脱氧野尻霉素衍生物D245000Deoxynojirimycin19130-96-2C6H13NO410/100mg脱氧野尻霉素抑制哺乳类葡糖苷酶1A172200N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt209977-53-7C11H16NNaO810/100mg细菌、动物和病毒抑制剂C181200N-5-Carboxypentyl-1-deoxynojirimycin79206-51-2C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC181205N-5-Carboxypentyl-1-deoxygalactonojirimycin1240479-07-5C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC645000Conduritol A 牛奶菜醇A526-87-4C6H10O41/10mg C667000Conduritol D牛奶菜醇D4782-75-6C6H10O410mg I8688751,2-Isopropylidene Swainsonine85624-09-5C11H19NO31/10mg 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832
  • 【瑞士步琦】通过 SFC(超临界流体色谱)分离纯化甜叶菊提取物中甜菊苷的方法
    分离纯化甜叶菊提取物中甜菊苷甜菊糖苷(结构式见图1 (b))属于甜菊醇糖苷,甜菊糖苷是甜菊属植物的甜味来源。甜菊糖的增甜能力比蔗糖的甜度高许多倍,因此是一种糖的替代品。自 2011 年以来,甜菊糖苷已被欧盟批准为食品添加剂 E960。甜叶菊本身还没有被批准作为一种食品。本文介绍了一种使用 BUCHI Sepiatec SFC 设备从甜叶菊提取物当中分离得到甜菊糖苷的方法。分离过程所使用食品级CO2、乙醇和水作为添加剂。 1实验条件设备Sepiatec SFC-50色谱柱prep HPLC column Nucleodur Si 5um 250 x 4.0m流动相种类A=CO2(100%)B=乙醇/水(95/5)流动相条件0-2min:95%A/5%B2-25min:5-35%B25-31min:35%B样品200mg/mL 乙醇甜叶菊提取物以 95%A/5%B,4mL/min流速条件对色谱柱平衡 5min。通过自动进样器进样并开始运行分离程序,UV检测波长设定为 210nm,背压调节阀设定为 150bar,柱温箱温度为 40℃,得到如下分离图谱:▲ 图1:(a)甜叶菊提取物的纯化以及(b)对 24 号组分进行 HPLC 纯化分析 2结果与讨论图1(a)展示了甜叶菊提取物的色谱图,通过乙醇对甜叶菊进行提取得到了很多化合物,甜菊糖苷作为极性分子与色谱柱的极性固定相(Slica)发生了强烈的相互作用。因此,当流动相的整体梯度极性增加是,甜菊糖苷得以被洗脱。图1(a)表明其纯度非常高。除此之外,甜菊糖苷也是提取物中甜度最高的化合物,并且可从甜菊糖总甙中的甜菊双糖苷中分离得到。食品性质的物质提纯一般更偏向于使用乙醇。反相色谱所使用的典型溶剂甲醇或乙腈往往与食品特性不太符合的。由于流动相整体极性的增加,所以水作为添加剂可以有效改善待测分析物的峰型。 3结论使用制备型 SFC 可以有效地将甜菊糖苷从甜叶菊提取物中分离得到。通过 SFC 以及符合食品要求的溶剂可以对食品提取物进行纯化。
  • 许国旺课题组提出基于液相色谱-高分辨串联质谱的糖苷类化合物规模化注释新方法
    近日,中科院大连化学物理研究所许国旺课题组在糖苷类化合物规模化注释方面取得新进展。通过构建in silico苷元库和糖基/酰基-糖基碎裂模式库,以及发展利于苷元离子检出的LC-HR MS/MS分析条件,建立了苷元离子的高通量识别方法以及高效去除假阳性候选结果的方法,并开发了相应的糖苷类化合物规模化注释程序plantMS2(https://github.com/zhengfj1994/plantMS2)。 糖苷类化合物是一类重要的次生代谢产物,在植物生长发育过程中起着关键作用,全景注释植物中已知和未知糖苷类化合物具有重要的研究意义。由于市售标准品和数据库收录的二级质谱规模有限,现有的基于液相色谱-高分辨质谱(HRMS)的糖苷类成分注释方法难以有效地对糖苷类化合物进行注释、定性。研究团队发展了一种基于液相色谱-HRMS/MS的糖苷类化合物规模化定性新方法。构建了具有植物种属特异性的in silico苷元库以及糖基/酰基-糖基的in silico碎裂模式库。优化出利于苷元离子检出率的LC-HR MS/MS分析条件,并建立了苷元离子的高通量识别方法。最后,通过候选糖苷-苷元质谱相似性发展了高效去除假阳性候选结果的方法。方法评估表明,该注释流程适用于多种类型的HRMS仪器不同碎裂模式(HCD和CID等)下建立的方法,定性准确性和特异性均优于现有注释方法。将该方法应用于玉米叶片,种子和花丝中糖苷类成分的注释,共注释出274个糖苷类成分。相关研究成果以“Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics”为题,发表在Analytical Chemistry上。该工作的第一作者是我组博士研究生张秀琼,通讯作者为路鑫和许国旺。上述工作得到了国家重点研发计划、国家自然科学基金等项目的资助。文章链接:https://pubs.acs.org/doi/10.1021/acs.analchem.2c02362(文/图 张秀琼)
  • 谈“糖”色变的时代,测糖珀金埃尔默有“谱”
    01NEWS新闻背景 元气森林的“0糖”风波当现在的媒体都把含糖食品和饮料,与肥胖、龋齿、心脏病(高血压、高血脂)、糖尿病等一系列健康问题联系在一起时,谈“糖”色变也就成为必然的结局。近日,不少年轻人喜欢的饮料品牌元气森林,因旗下乳茶产品涉嫌虚假宣传一事发布致歉声明。元气森林声称没有说清楚“0蔗糖”和“0糖”的区别,引发了误解。据澎湃新闻网等媒体报道,日前该元气森林已经对产品进行了修正升级:包装从原来的“0蔗糖、低脂肪”改为“低糖、低脂肪”。02NEWS关于“糖”的几个信息食品中“0蔗糖”和“0糖”的区别在哪?市面上标的无糖饮料和食品等于“0糖”吗?无糖饮料为什么喝起来还是甜的,珀金埃尔默在此收集了一些信息。#01“0蔗糖”≠“0糖”糖类是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为“碳水化合物”。蔗糖属于二糖,只是庞大糖类家族中的一份子,除了蔗糖,还有白砂糖、玉米糖浆、麦芽糖、葡萄糖、乳糖、果糖等。元气森林乳茶中有奶,而奶中含有丰富乳糖,所以所谓的“0糖”并不是无糖,只是不含蔗糖而已。#02无糖食品≠“0糖”根据我国《预包装食品营养标签通则》的规定,食品中的糖含量少于0.5g/100g(固体)或100mL(液体),即可标注为“无糖食品”。无糖食品≠“0糖”,而是包括了不含糖或糖的总量不超过5‰的食品。#03“无糖”产品≠不甜无糖食品为了更好的口感,往往采用代糖来代替蔗糖,其甜度是白糖的几十倍甚至数百倍。代糖主要以下几类:代糖糖醇天然甜味剂人工甜味剂山梨醇甘草安赛蜜甘露醇甜菊苷纽甜乳糖醇罗汉果苷糖精麦芽糖醇索马甜三氯蔗糖木糖醇叶甜素爱德万甜赤藓糖醇非洲奇异蛋白阿斯巴甜… … … … … … 内容参考:《营养功能成分应用指南》普遍使用的代糖人工甜味剂,不参与人体代谢,提取成本很低,甜度高,如:安赛蜜与阿斯巴甜、三氯蔗糖等,每种人工合成甜味剂也都有最大耐受量和使用范围,违规使用会对人体健康造成危害。近年来天然提取的“代糖”出现,以”甜菊糖苷”、“赤藓糖醇“等为代表,相对人工甜味剂,这类产品保留了不参与代谢、低热量、口感好等优点,同时有具备更高的安全性和稳定性。03NEWS摄入“糖”要有度,减糖大趋势糖类的益处不胜枚举,首先可供给人体热量消耗,维持日常各项生理活动,其次糖还是构成人体诸多组织的重要成分,目前面临的问题是近年来中国人对糖的消耗量居高不下,使其成了影响健康的重要因素。目前我国人均每日添加糖(主要为蔗糖即“白糖”、“红糖”等)摄入量约30g(世界卫生组织推荐人均每日添加糖摄入不超过25g),其中儿童、青少年摄入量问题值得高度关注,因此国家提倡减糖。《健康中国行动(2019~2030年)》明确提倡城市高糖摄入人群减少食用含蔗糖饮料和甜食,选择天然甜味物质和甜味剂替代蔗糖生产的饮料和食品。2021年最新发布的的婴幼儿配方食品标准中也要求婴儿和较大婴儿配方食品不应使用果糖、蔗糖。 04NEWS添加“糖”要有数食品”糖”相关的检测标准一览为了减少添加糖的摄入,需要对食品中的蔗糖果糖等进行测定,保证添加的含量符合标准要求。食品选择天然甜味物质和甜味剂来替代糖,这时候需要对代糖物质进行检测,保证食品的安全。目前国家检测标准中与食品”糖”相关的检测标准主要如下:GB 5009.7-2016食品安全国家标准 食品中还原糖的测定GB 5009.8-2016食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定GB 5009.255-2016食品安全国家标准 食品中果聚糖的测定GB 5009.279-2016食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定GB 5413.5-2010食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖的测定GB 22255-2014食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定SN/T 3854-2014出口食品中天然甜味剂甜菊糖苷、甜菊双糖苷、甘草酸、甘草次酸的测定 高效液相色谱法05NEWS测 “糖” 珀金埃尔默有“谱”紫外可见光谱仪珀金埃尔默能够提供从食品中传统糖类到甜味剂和天然提取代糖的一系列检测方案。珀金埃尔默的紫外可见光谱,可以对饮料中的糖含量进行检测,方法依据糖和3,5二硝基水杨酸(DNSA)反应生成有色物质来进行。近红外光谱珀金埃尔默的近红外光谱采用结合积分球附件以漫反射方式,可以对液体咖啡中的糖进行快速检测。液相色谱珀金埃尔默的液相色谱配上蒸发光散射检测器(ELSD)可以对食品中的阿拉伯糖、木糖、果糖、甘露糖、葡萄糖、蔗糖、麦芽糖和赤藓糖醇等进行检测。珀金埃尔默的液相色谱配备包括紫外检测器或者PDA可以对食品中的人工甜味剂如糖精、阿巴斯甜进行检测。液相色谱-串联质谱珀金埃尔默的液相色谱-串联质谱可以对食品中人工合成甜味剂进行检测,确保其使用安全。其中典型如白酒甜蜜素。详细应用请扫码获取
  • 全国兽药残留专家委员会发布《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等20项兽药残留标准征求意见稿
    各相关单位:依据《食品安全国家标准审评委员会章程》有关要求,我办组织起草了《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等16项兽药残留国家标准、《食品安全国家标准 水产品中27种性激素残留量的测定 液相色谱-串联质谱法》(GB 31656.14-2022)等4项标准修改单,现公开向社会征求意见,请提出具体修改意见和理由,并通过电子邮件形式反馈。征询截止日期2024年5月15日。联系人:张玉洁电 话:010-62103930邮 箱:syclyny@163.com附 件:1.食品安全国家标准兽药残留标准征求意见表2.《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》3.《水产品中苯甲酰脲类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》4.《鱼可食性组织中水杨酸残留量的测定 液相色谱-串联质谱法(征求意见稿)》5.《河鲀、鳗鱼和烤鳗中18种β-受体激动剂残留量的测定 液相色谱-串联质谱法(征求意见稿)》6.《蜂产品中克百威残留量的测定 液相色谱-串联质谱法(征求意见稿)》7.《动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》8.《动物性食品中氨基糖苷类药物残留量的测定液相色谱-串联质谱法(征求意见稿)》9.《动物性食品中吩噻嗪类药物残留量测定 液相色谱-串联质谱法(征求意见稿)》10.《动物性食品中异丙嗪残留量的测定 液相色谱-串联质谱法(征求意见稿)》11.《动物性食品中碘醚柳胺残留量的测定 液相色谱-串联质谱法(征求意见稿)》12.《动物性食品中甲氧苄啶、二甲氧苄啶和二甲氧甲基苄啶残留量的测定 液相色谱-串联质谱法(征求意见稿)》13.《动物性食品中氮哌酮及其代谢物残留量的测定液相色谱-串联质谱法(征求意见稿)》14.《动物性食品中地克珠利和托曲珠利砜残留量的测定 高效液相色谱法(征求意见稿)》15.《动物性食品及尿液中同化激素类药物多残留的测定 液相色谱-串联质谱法(征求意见稿)》16.《奶及奶粉中吩噻嗪类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》17.《动物尿液中23种β-受体激动剂残留量的测定液相色谱-串联质谱法(征求意见稿)》18.《食品安全国家标准 水产品中27种性激素残留量的测定液相色谱 串联质谱法》(GB31656.14-2022)修改单19.《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》(GB31658.8-2021)修改单20.《食品安全国家标准 动物性食品中氨基甲酸酯类杀虫剂残留量的测定 液相色谱-串联质谱法》(GB31658.10-2021)修改单21.《食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法》(GB31658.22-2022)修改单
  • 广东省农业标准化协会发布《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》等2项团体标准征求意见稿
    各有关单位及专家:由广东省农业科学院农业质量标准与监测技术研究所等单位提出的《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》《兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法》等2项团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年8月23前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》征求意见稿《兽药产品中 8 种药物含量的同时测定 高效液相色谱-二极管阵列法》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年7月24日附件1:兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法-征求意见稿.pdf兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 沧桑糖业史,聊聊安东帕与蔗糖工业的故事
    上期《唐人街探案2》,提到了制糖厂和对糖溶液进行分析。制糖厂是食品加工厂,不仅是电影中的破案地点,其实与我们安东帕分析仪器也有着很深厚的渊源。 世界上热带和亚热带地区的许多国家都种植甘蔗。甘蔗作为重要的糖料作物,为蔗糖生产提供原料。 沧桑糖业史,华夏第一国。宋玉《招魂》篇中有“胹鳖炮羔,有蔗浆兮”之句,这里的“柘”即是蔗,“柘浆”是从甘蔗中取得的汁。 说到制糖设备,1933年,军阀陈济棠从国外购进设备,陆续兴建甘蔗糖厂。两广地区有很多的制糖厂。 广西”甜城“是我国第一制糖大省。见证了中国糖业兴衰的历史。 5月,安东帕公司将参与广西计量院组织的蔗糖产业计量测试技术培训交流会。 安东帕的旋光仪、折光仪等设备收到众多小精炼糖厂、制糖行业的工程技术人员青睐,安东帕的旋光仪、密度计、折光仪等产品也在糖业质量监督检验中心、糖厂中轻松运行。高性能旋光仪/折光糖度仪 MCP 5X00 自动糖度仪的旋光度精度为0.001 °, 相应的国际标准糖度的精度为0.003 °Z。基于NIR 旋光测量方法可应用于测量未加工粗糖, 白糖和需要澄清的特殊糖制品。 高性能系列折光糖度仪能够在原料加工,中间体到成品的检测过程中实现完美的常规分析和质量控制。它们健全的设计和简明易懂的操作使Abbemat 3X00 成为实验室得力助手。对于折光率的准确度,Abbemat 3X00为±0.0001nD。专业智能的在线折光仪 L-Rix 510智能传感器专为蔗糖行业应用而设计,可测量糖浆、牛奶和糖溶液的浓度。它能在全量程内为您提供高精度的测量结果。-全量程测量:0 % 至 100 % (w/w)-精度高达 ±0.0001 nD(±0.05 °白利度)-传感器里面已经内置四种糖度公式,均为全量程(即0至饱和),在不同的应用中调用不同的公式即可: Glucose 葡萄糖 Sucrose 蔗糖/果糖/砂糖 Fructose 左旋糖(存于果汁、蜂蜜中) Invert Sugar 转化糖同样适合蔗糖行业的密度计系列 最新款安东帕手持式密度DMA™ 35性价比高,适合现场测量符合蔗糖行业糖度测量的需求和预算,可以进行糖行业过程监控。 还有更多DMA 501、DMA1001等更多型号密度计可进行转化糖测量,欢迎来询。
  • 糖类物质分析利器—离子色谱值得拥有!
    糖类物质分析利器—离子色谱值得拥有!关注我们,更多干货和惊喜好礼高立红 韩春霞 郑洪国糖类是自然界中广泛分布的一类重要的有机化合物,在生命活动过程中起着重要作用。由于其具有改善肠道菌群,以及抗肿瘤、抗氧化、抗衰老、降血糖降血脂等作用,广泛应用于食品和医药领域。因此,糖类物质的分析检测在食品和药物质量控制方面具有重要作用。 糖类分析难点:1. 极性强并且同分异构体较多,常规色谱柱对其保留和分离效果欠佳;2. 无紫外吸收或较弱,一般检测器无法直接检测, 需要衍生后进行测定,操作复杂并且某些热不稳定的糖回收率差。基于糖类物质的化学特征,以及常规分析检测难点,采用离子色谱法(IC)进行检测具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪 快来围观离子色谱在糖分析中的优异表现吧! 单双糖分析分离度和灵敏度齐飞——赛默飞ICS-6000高压离子色谱仪,配置特有的单双糖分析色谱柱,脉冲安培检测器,使离子色谱轻松应对半乳糖、葡萄糖、木糖、果糖、蔗糖、乳糖、麦芽糖等常见单双糖的测定。仅需5~25 μL小体积进样即可检测ng/L~mg/L级别单双糖,无需衍生化,灵敏度高,选择性好。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖(点击查看大图) 脱水糖和糖醇分析 对PM2.5大气颗粒物中糖类物质进行监测可以有效帮助识别大气颗粒污染物的成因和来源。采用ICS-6000离子色谱仪脉冲安培法测定大气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖,无需衍生可直接测定,操作简单重复性好;并且与颗粒物中阿拉伯糖醇和海藻糖等干扰物质具有有效分离;当样品提取液为10 mL,左旋葡聚糖、甘露聚糖和半乳聚糖的检出限可达到0.02 μg,灵敏度高。IC-PAD测定大气颗粒物中脱水糖和糖醇(点击查看大图) 低聚糖和多糖分析 1. 国家标准方法依从2016年出台的三项食品安全国家标准:《GB5009.245-2016食品中聚葡萄糖的测定》、《GB5009.255-2016食品中果聚糖的测定》、《GB5009.258-2016食品中棉子糖的测定》均采用赛默飞离子色谱条件进行测定。赛默飞ICS-6000高压离子色谱仪,配置四元梯度泵和脉冲安培检测器,四电位波形测定,灵敏度高,重复性好,助您轻松应对标准法规。 2. 乳粉中的低聚半乳糖低聚半乳糖(GOS)是一种具有天然属性的功能性低聚糖,婴幼儿奶粉中都添加了低聚半乳糖的营养成分,因此是奶粉中的必检项目。赛默飞自主研发建立使用低聚半乳糖原料为对照品直接测定低聚半乳糖的方法。利用不受奶粉本底干扰的色谱峰来定性定量,不受样品中高含量乳糖的干扰,可准确测定婴幼儿奶粉中的低聚半乳糖。此方法无需酶解,降低成本,但对色谱柱分离能力和检测器灵敏度要求较高,赛默飞ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA20色谱柱,可完全满足高灵敏度和分离度的要求。IC-PAD测定不同厂家的低聚半乳糖谱图(点击查看大图) 3. 淀粉多糖的分析对于聚糖分析,即使聚合度大于100的淀粉,离子色谱法也仍有很好的分离度和灵敏度,可分离出多达132个峰!其他检测方法望尘莫及!IC-PAD测定玉米淀粉谱图(点击查看大图) 糖型结构分析 由于赛默飞离子色谱无需衍生、灵敏度高以及专用糖色谱柱you秀的保留分离能力,其在注射液糖类分析、多糖疫苗/多糖蛋白结合疫苗和糖基化蛋白药物分析等方面亦有you秀表现。 糖基化对蛋白药物的疗效,稳定性,免疫原性具有重要的影响。糖基化蛋白经酶切后,N-糖链无需衍生即可直接离子色谱进样分析,避免了衍生过程中唾液酸的降解,减少样品前处理步骤和时间。2020版中国药典新增单抗N糖谱分析,采用ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA200色谱柱进行测定。此外,赛默飞独有的IC-Q Exactive高分辨质谱联用技术,可鉴定出更多的糖型,适用于复杂唾液酸修饰的糖型,可极大的完善和推动糖蛋白类药物N-糖链的质控分析。单克隆抗体N-糖链 (a) LC-MS/MS完整分析流程, (b) IC-MS分析流程(点击查看大图)滑动查看更多IC-PAD和IC-QE检测N-糖型结果(点击查看大图) zui后为大家总结了离子色谱法测定糖类物质的标准方法和推荐色谱柱,诚意满满!!!离子色谱法测定糖类物质标准方法和推荐色谱柱(点击查看大图)高品质明星耗材,助力检测事半功倍!5月6日起,离子色谱耗材官网全线7折,购抑制器+任意耗材低至6.8折!更有热点应用方案免费下载,尽请期待!? 下单即赠: 摩飞果汁机/蕉下太阳伞/幻响蓝牙耳机? 促销代码:IC0501如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 宁波市客户通过仪器信息网平台订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂!
    宁波市客户通过仪器信息网平台订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂,上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 宁波市客户通过仪器信息网订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂! 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 上海远慕生物科技有限公司专业供应销售各种进口/国产elisa试剂盒系列产品,公司具有良好的市场信誉,专业的销售和技术服务团队,凭着经营ELISA检测试剂盒系列多年经验,熟悉并了解ELISA检测试剂盒系列市场行情,迎得了国内外厂商的一致好评,欢迎来电来涵洽谈交流!上海远慕生物科技有限公司,致力于为生命科学研究领域提供优质产品,为广大科研工作者提供最优质服务。既能满足研发类客户对产品种类、包装、纯度的特殊要求,也能满足生产型企业 。欢迎来电咨询与订购!
  • 7种不合格食品北京停售 糖超标 鸡肉含农药
    无糖食品中的糖含量超标,鸡肉中检出残留农药呋喃它酮。1月20日,北京市工商局责令7种不合格食品全市停售。  据了解,按照国家相关规定,每100克“无糖食品”中所含的糖(包括单糖和双糖,即糖的总量)不得高于0.5克。工商人员检测发现,有的生产厂家在生产过程中虽然没再添加糖,但因不能控制配料糖分,导致“无糖食品”依然糖分超标。  另外,华联超市广安门店销售的、标称甘肃“天玛生态”的鸡肉产品检出残留农药呋喃它酮。据介绍,呋喃它酮主要用于猪、牛、家禽和水产品的抗菌消毒 但可引起人体不良反应,主要是胃肠反应和过敏反应。上世纪90年代还被发现具有致癌作用。  市工商局本周共抽取食品样本620个,不合格样本7个,抽检合格率为98.87%。凡已购买不合格食品的消费者,可凭购物小票和食品外包装向销售单位要求退货。  全市下架食品名单  产品名称 商标 规格型号 生产日期 标注生产单位名称 不合格项目 当事人姓名或名称  高钙无糖长山药粉 威壮 350克/袋 2009.1.20 平遥县小城食品厂 单糖和双糖 北京欧尚超市有限公司  木糖醇 麦麸酥饼 老布特 126克/袋 2009.1.6 北京市绿得食品有限责任公司 单糖和双糖华润超级市场有限公司北京双裕万家生活超市  中老年藕粉 无糖 南方 330g/袋 2009.2.5 江西黑五类食品有限责任公司 单糖和双糖沃尔玛(北京)商业零售有限公司延庆妫水北街分店  奔跑鸡 天玛生态 780g/袋 2008.11.1 甘肃天玛生态食品有限公司 呋喃它酮北京华联综合超市股份有限公司广安门分公司  沙漠土鸡小胸 天玛生态 1000g/袋 2009.1.1 甘肃天玛生态食品有限公司 呋喃它酮北京华联综合超市股份有限公司广安门分公司  寿生黄酒 鸳鸯林 350mL/袋 2009.8.12 金华市鸳鸯林酒业有限公司 菌落总数、β-苯乙醇北京物美大卖场商业管理有限公司大兴店  低糖豆粉 大荒龙 300克/袋 2008.11.9 黑龙江大荒龙乳品有限公司 柠檬黄 北京市华强经贸有限公司第一超市“无糖”食品不等同于“无蔗糖”  记者了解到,很多市民错误地认为“无糖”和“无蔗糖”等同,将“无蔗糖食品”或是“木糖醇食品”当成“无糖食品”买回家给糖尿病患者食用。业内人士告诉记者,“无糖食品”不是不再加糖,而是要控制所有配料里原本就带的糖分,严格讲就是“低糖食品”。如果糖尿病患者吃到糖分超标的食品,将对身体健康造成影响。  专家提醒,在选购无糖食品时,首先要看准食品外包装上是否有明确的“无糖”字样,然后再仔细看配料表,因为无糖食品多数都采用了代糖品,一般说来山梨糖醇、麦芽糖醇、乳糖醇和木糖醇是比较安全的。
  • 达标蜂蜜未必纯正 新国标未涉及大米糖浆检测
    将不同的蜂蜜样本进行取样萃取。  实验室检测人员在电脑上分析大米糖浆检测数据。  通过酶标仪检测氯霉素残留。  ■ 送检说明  ●组织送检单位:  “绿篮子”食品安全科普组织,由英国大使馆文化教育处指导创建,指定中国土畜进出口商会检验支持。通过媒体公开安全食品标准、解读标准,引导公众作出正确的选择。鼓励企业为食品安全履行更多承诺。  ●送检样本:  慈生堂结晶蜂蜜400g:抽检产品在北京沃尔玛超市随机购买。  同仁堂荆条蜂蜜:从同仁堂北四环华堂商场专柜购买。  百花牌枣花蜂蜜454g:在北京大润发超市购买。  百花调制儿童蜂蜜膏450g:从华堂超市购买。  冠生园纯天然蜂蜜580g:从北京大润发超市民族园店购买。  中粮悦活枸杞蜂蜜454g:在北京北四环华堂超市购买。  福明洋槐蜂蜜500g:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)  感蜂堂洋槐蜂蜜:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)  ●检测方法:在蜂蜜制造业业内人士的指导下,对比了欧盟、日本等国家蜂蜜标准后,共检测8项内容,按排除法一一检测。  ●检测内容:(按检测步骤先后顺序):SM-R大米糖浆检测、β-呋喃果糖苷酶检测、碳六项检测、TLC检测四项真实性检测 氯霉素、甲硝唑、硝基呋喃、四环素族四项安全性检测。  ●检测机构  秦皇岛出入境检验检疫局:拥有针对蜂蜜类产品最严格的实验室检测方法,是欧盟、日韩等多个发达国家认可的蜂蜜出口检验单位。  ●检测结果  三送检样品掺有大米糖浆  在此次送检的八个样品中,其中有三个样本在SM-R检测中结果呈阳性,证明其中掺入大米糖浆,并非纯正蜂蜜,其中包括北京和上海的某知名品牌的蜂蜜。  其他5个蜂蜜产品在本轮抽检批次中顺利通过了真实性与安全性检测。  【真实性检测】  SM-R大米糖浆检测  将已经萃取提纯的蜂蜜液态样品,送入液相色谱串联质谱仪中。实验人员解释说,如果将色谱柱当作跑道的话,各种不同的物质,通过液相极性分离出不同的糖,由于分子量、分子结构极性不同,在相同助力的推动下,却会先后到达终点。通过色谱图观察,不同物质达到峰值的时间预算,可确定是否是大米糖浆,而通过达到的峰的面积可以确定含有的大米糖浆的含量。  SM-R是大米糖浆里特有的物质,也是判断蜂蜜是否纯正最重要、最基本的检测项目之一,为我国蜂蜜出口欧盟的必检项目之一。如果产品被检测出SM-R呈阳性,则涉嫌在蜂蜜中掺入大米糖浆。大米糖浆虽然也是糖,但却廉价,其保健功效是完全不一样的。  β-呋喃果糖苷酶检测  β-呋喃果糖苷酶检测是在液相色谱仪上进行的,同样的送样、极性分离后的与标准色谱卡的对照,来判断是否含有β-呋喃果糖苷酶。  β-呋喃果糖苷酶,可将蔗糖直接转化成葡萄糖和果糖。作为蜂蜜掺假手段之一,其作用机理是将普通蔗糖的葡萄糖基与果糖基的s-(1,4)糖苷键断裂,生成果糖与葡萄糖。如果在加入二糖蔗糖的同时又加入了β-呋喃果糖苷酶,就可将蔗糖直接转化成葡萄糖和果糖,而天然蜂蜜中90%的成分为葡萄糖和果糖这两种单糖,但这种化学方式生产的“蜂蜜”其营养价值与天然蜂蜜完全不同。  “在这种情况下掺杂糖浆和白砂糖的蜂蜜有可能借助于HPLC也检验不出来。”实验室人员解释说,现在针对β-呋喃果糖苷酶建立了相应的检测方法,针对甜菜糖来源的果葡糖浆掺假进行检测,能够控制一部分的造假行为。  碳六项检测  通过“碳同位素质谱分析仪”检测,这项检测专业的说法叫液相串联同位素质谱检测,来判断蜂蜜中各种糖同位素值的测定方法。液相分离不同的糖,不同糖的同位素比值不一样,来判断糖的种类。  “大米、玉米、马铃薯等植物的糖是碳四植物糖,碳四植物糖通过光合作用产生,不是蜜蜂酿造的,蜂蜜中碳四植物糖含量越高,说明造假越严重。”据业内人士透露,碳同位素检测,主要是通过碳13蛋白和蜂蜜的碳同位素阈值来判断蜂蜜是否掺假,但阈值在-23~--23.5之间的为灰色地带,即不能判断它是否掺假。  TLC检测  又称高果糖浆检测,高果糖浆是一种多糖,淀粉类植物如马铃薯、甜菜糖等都属于高果糖浆,味道和颜色与蜂蜜相似,但是价格比蜂蜜便宜很多。TLC检测使用的是薄层色谱检测法,检测方法看似很老土———通过将样品滴在硅胶板上的“履迹”和颜色深浅,来判断其中是否含有高果糖浆。  【安全性检测】  氯霉素等四项抗生素残留检测  真实性检测均过关的蜂蜜产品,统一通过酶标仪检测氯霉素、硝基呋喃、硝基咪唑类、四环素族,这四项均为蜂蜜中的抗生素残留成分。比如便宜效果好的氯霉素是用来防治蜂病的,但如果蜂蜜中的氯霉素残留,被人体摄取后,会增加致癌的可能性 而甲硝唑可造成恶心、呕吐、腹痛、头晕、站立不稳、精神错乱等症状 硝基呋喃是合成药物,有抑菌作用,但同时也能致癌 四环素残留可能会导致儿童牙齿损害,成人造成肝脏损害。  ■ 检测方声音  对比色谱-质谱发现SM-R  蜂蜜的主要成分是葡萄糖和果糖,掺入糖和糖浆是最简单的方法。针对蜂蜜的掺杂造假的检测方法也一直在发展。常见的掺假方法是通过大米糖浆和甜菜糖浆加入蜂蜜掺假,与甜菜糖浆相比,大米糖浆价格便宜,所以目前最为严重的就是通过大米糖浆掺杂在蜂蜜中造假,又由于检测方法跟不上,市场上有人公然兜售能满足所有蜂蜜检测要求的大米糖浆。  我们今年开始使用通过对比大米糖浆和蜂蜜的色谱-质谱的差别,发现了一种糖浆中特有的物质(SM-R),通过检测该物质能有效地鉴别蜂蜜中是否掺杂了大米糖浆。方法对于掺杂了5%大米糖浆的蜂蜜都能有效的鉴别,方法快速,准确率高。  ■ 行业发言 假蜂蜜形成规模会破坏生态系统  ●周磊,绿篮子食品安全科普团队蜂蜜选题负责人  现行蜂蜜的国家标准为中国蜂产品协会主导,而蜂产品协会的主要成员基本由上海冠生园、北京百花、江西汪氏等国内几大蜂蜜厂家的负责人组成,蜂蜜国家标准虽然规定了“不得添加或混入任何蜂蜜以外的物质”,但没有对检测项目和具体指标做限定,导致检测项目无法鉴别蜂蜜的真假。  尽管新标准仍只使用碳4检测项目来鉴别蜂蜜,但是中国蜂产品协会还是致函卫生部,对新标准提出异议,主要内容是“对不涉及食品安全的感官指标、理化指标等写入食品安全标准提出了行业意见”,并提出暂停执行新标准的建议,力求“放宽”,而非“打假”。  蔗糖蜂蜜、高果糖浆蜂蜜是近年来除了普遍存在的大米糖浆掺假蜂蜜后的另几种高科技蜂蜜造假手段,它们可以欺骗传统的检测仪器,而掺假技术还在发展,很多检测项目结果已不能断定真假蜂蜜,被逐步弱化为“参考指标”。  假蜂蜜虽然吃了无害,但形成规模后,少数蜂农也被动掺假、蜜源无法被控制。人类高依赖性生态圈的花朵授粉已少有野生蜂采蜜,人工蜂业萎缩会导致生态系统连锁受损。
  • 湖南大学刘海蓉课题组《J. Mater. Chem. B》:一种高保真柚皮苷衍生生物墨水加速了软骨缺
    3D生物打印技术加速了健康科学研究的发展,如组织工程与再生医学、药物筛选和开发等。生物墨水是3D生物打印技术的基本组成部分,目前广泛应用的生物墨水主要是由明胶、透明质酸、海藻酸盐、丝素蛋白和PEG等常用生物医用高分子衍生物构成,其种类和功能有限,需进一步开发和拓展特异性组织再生的医用功能化生物墨水。由植物和微生物产生的天然化学物质具有广泛的生物活性和高度的立体化学结构,是一种极具应用潜力的医疗资源。研究发现天然黄酮糖苷类化合物含有至少一个共轭大π键和多个共轭双键,可以在一定波长范围内吸收光,因此推测黄酮糖苷类化合物基生物墨水在光辅助打印过程中或许可以吸收散射光,提高打印产品的形状保真度。另一方面,黄酮糖苷类化合物具有抗氧化、抗炎和抗凋亡特性,被用于治疗骨质疏松、风湿病和神经退行性疾病等临床前研究。然而,由于其生物利用度低,限制了其在生物医学等领域的广泛应用。因此,研究黄酮糖苷类化合物衍生物基生物墨水来提高3D生物打印保真度及黄酮糖苷类化合物在组织工程等医学应用中的生物利用度是有显著科学意义的。与口服黄酮糖苷类药物相比,3D生物打印黄酮糖苷类化合物基生物墨水可将黄酮糖苷类分子的生物活性直接传递至邻近细胞被有效利用。鉴于其有望改善打印保真度、促进组织再生修复,将黄酮糖苷类化合物基生物墨水称为医用生物墨水。为了验证这一假设并建立生物活性医用生物墨水的研发方案,湖南大学刘海蓉教授课题组提出了一种基于柚皮苷衍生物的新型医用生物墨水,该生物墨水可显著提高3D打印保真度,极大地提高了软骨缺损修复效率(图1)。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学黄宇婷为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 一种可提高3D打印保真度的柚皮苷衍生的生物墨水加速了软骨缺损修复。柚皮苷(NAR)衍生的生物墨水材料(NARMA-GELMA bioink)由甲基丙烯酰化柚皮苷(NARMA)和甲基丙烯酰化明胶(GELMA)组成,在405 nm光照条件下可快速固化成型。图2结果证明了植物源活性因子黄酮糖苷类化合物柚皮苷和天然高分子明胶的甲基丙烯酰化改性成功,表明NARMA和GELMA具有光聚合交联能力。接着,采用摩方精密nanoArch S140打印机研究载细胞生物墨水的生物打印性能,结果如图3所示,相比于经典的GELMA生物墨水,光固化打印NARMA-GELMA生物墨水结果表明该生物墨水的生物打印结构完整性好、形状保真度高,这一优异的光固化结果得益于NARMA在405 nm处有光吸收特性(图2B)。并且该打印过程条件温和,细胞存活状态良好。最后采用兔关节软骨缺损模型验证了NARMA-GELMA生物墨水的软骨缺损修复性能,结果如图4所示,联合自体软骨细胞的NARMA-GELMA生物墨水修复兔关节软骨缺损一个月后,NARMA-GELMA水凝胶组处理的组织表面光滑、与宿主组织的界面整合程度高、骨软骨界面清晰,在组织学层面上形成了大量的软骨样陷窝结构,分泌了丰富的蛋白聚糖和二型胶原成分。特别是,NARMA-GELMA水凝胶组中软骨细胞呈清晰的梯度排列,与天然软骨相似。表明NARMA-GELMA生物墨水有利于软骨样组织的形成,可提高软骨修复效率、能有效促进体内关节软骨缺损再生修复。该研究拓展了生物墨水材料,为特异性组织再生的医用功能化生物墨水的研究提供了一种新策略。图2 改性柚皮苷和改性明胶的表征。柚皮苷改性前后的FTIR图(A)、UV-Vis图(B)和1H NMR谱(C);明胶改性前后的FTIR图(D)、UV-Vis图(E)和1H NMR谱(F)。图3 采用摩方精密nanoArch S140打印机制备由柚皮苷衍生生物墨水和改性明胶生物墨水转化的水凝胶结构。(A)3D生物打印的CAD模型和切片图案;(B)3D生物打印结构的宏观照片;(C) 3D生物打印结构的活细胞荧光染色图片。图4 生物墨水原位修复关节软骨缺损一个月后的大体观和组织学染色结果。(A)大体观;(B)苏木素-伊红染色(H&E);(C)番红/固绿染色(SO/FG);(D)马松染色(Masson);(E)二型胶原的免疫组化染色(IHC);(F)ICRS大体观评分;(G)O`Driscoll 组织学评分。
  • 中纤局完成2012年桑蚕干茧公证检验实验室现场考核验收
    2012年度,中纤局组织全国蚕茧检验技术专家组对陕西省纤检局和江苏省宿迁市纤检所、四川省纤检局(成都实验室)和江苏省徐州市纤检所桑蚕干茧公证检验实验室进行了现场考核验收。其中:陕西省纤检局为实验室重建完成验收、江苏省宿迁市纤检所为新建实验室验收、四川省纤检局(成都实验室)和江苏省徐州市纤检所为实验室迁址验收。   技术专家组通过听取纤检机构负责人实验室建设及运行等情况汇报、现场检查实验室仪器设备安装、运转情况,审核有关项目批准文件、实验记录、设备运行记录、有关规章制度等材料、现场考核桑蚕干茧检验人员的技术水平等方式对上述实验室进行了认真考核。各实验室根据专家组的验收意见,在规定期限内进行了认真整改并整改达标。依据《桑蚕干茧公证检验实验室验收细则(试行)》和《桑蚕干茧公证检验人员管理办法(试行)》的规定,中纤局对上述四家机构颁发桑蚕干茧公证检验实验室合格证书,批准其具备承担桑蚕干茧公证检验的资格。截止2012年12月5日,全国在江苏、浙江、安徽、江西、山东、广西、重庆、四川、云南、陕西省(自治区、直辖市)建成并投运桑蚕干茧公证检验实验室18家,年检验能力达10万吨。
  • 中纤局发布2009~2010年度桑蚕干茧公证检验实验室发展规划
    维护公平交易实现优质优价  6月30日,中国纤维检验局印发了《中国纤维检验局2009~2010年度桑蚕干茧公证检验实验室发展规划》(以下简称《规划》)。预计到2010年末,全国10个桑蚕茧主产省、自治区将建成18个具有国际领先水平的桑蚕干茧公证检验实验室,年检验桑蚕干茧11.6万吨。  据介绍,《规划》依据国务院《纺织工业调整和振兴规划》确定的茧丝绸产业发展政策,配合“东桑西移”工程而制定,目的是促进我国茧丝质量等级的提升及生产和流通环节质量管理水平的提高,推进蚕茧产业平稳健康发展,切实发挥桑蚕干茧公证检验的作用。  《规划》确定,通过充分发挥现有实验室检验能力、改造提升现有实验室检验规模、新建实验室等3种方式,稳步提升公证检验对桑蚕干茧质量的作用。按照《规划》,到2010年末建成的18个具有国际领先水平的桑蚕干茧公证检验实验室,对目前中西部“东桑西移”74个蚕茧基地县的检验覆盖率将达到80%以上,桑蚕干茧实施公证检验的规模将占到全国桑蚕干茧流通交易总量的55%以上。  《规划》是深化落实国家质检总局“质量和安全年”活动安排部署的重要步骤。中纤局要求,相关省、自治区各级纤检机构要将桑蚕干茧实验室建设和桑蚕干茧公证检验与“东桑西移”等国家宏观政策相结合、与蚕桑产区“三农”工作相结合,围绕服务蚕茧产业和主产区地方经济发展,不断加大对茧丝质量的控制力度 要把落实《规划》作为扩大公证检验影响的重要平台,扎实推进种植养殖标准化示范工作。《
  • “免煎汤剂”统一标准,赛默飞“柱”力中药配方颗粒质量控制
    中药配方颗粒是近几年发展较快的中药制剂,由单味中药饮片经提取浓缩而成,供中医临床配方用,具有见效快,吸收好,疗效显著,携带方便等特点。中药配方颗粒的发明是中医药的一次重大革新,是适应现代快节奏生活的一种必然产物。中药配方颗粒目前已有700余种,占中药饮片品种50%。目前市场上针对配方颗粒的应用主要担心两点:①中药配方颗粒质量不确定。②市场对配方颗粒的疗效是否与共煎一致有疑虑。 2016年2月26日,国务院印发了《中医药发展战略规划纲要(2016-2030年)》,明确将中药配方颗粒纳入国家中医药发展战略规划内容之中。2016年8月5日,国家药典委员会发布了《中药配方颗粒质量控制与标准制定技术要求(征求意见稿)》,全面启动中药配方颗粒国家标准研究,共有包括国家6家试点企业在内的多家企业参与了国家标准的研究。2019年11月8日,国家药典委公示了巴戟天配方颗粒、白芍配方颗粒等一批160个中药配方颗粒品种试点统一标准。全国规范统一的质量标准将提高配方颗粒的市场接受度,有利于配方颗粒行业的长远发展。 对于公示的中药配方颗粒品种,赛默飞液相色谱柱展示了优异的性能。 1 甘草配方颗粒特征图谱及特征峰分析结果 在下方甘草配方颗粒色谱图中,测试结果呈现12 个特征峰,以甘草苷、甘草酸参照物峰相对应的峰为S1、S2峰,各项指标符合统一标准公示稿中的要求。Vanquish Flex+ Acclaim RSLC 120 C18 (2.2mm×100mm,2.1μm)分析结果峰2:芹糖甘草苷 峰3(S1):甘草苷 峰5:异甘草苷 峰6:甘草素 峰10(S2):甘草酸 公示稿提供的参考对照特征图谱(推荐Acclaim RSLC 120 C18) 2 肉桂配方颗粒特征图谱及特征峰分析结果 在下方肉桂配方颗粒色谱图中,测试结果呈现5个特征峰,以桂皮醛参照物峰相对应的峰为S 峰,各项指标均符合统一标准公示稿中的要求。 Vanquish Flex+ Syncronis C18(2.1mm × 100mm,1.7 μm)分析结果峰1:香豆素;峰2:肉桂醇;峰3:肉桂酸;峰4:桂皮醛(S) 公示稿提供的参考对照特征图谱 3 生地黄配方颗粒特征图谱及特征峰分析结果 在下方生地黄配方颗粒色谱图中,测试结果呈现11个特征峰,以毛蕊花糖苷参照物峰相对应的峰为S 峰,各项指标均符合统一标准公示稿中的要求。 Vanquish Flex+ Hypersil Gold aQ(2.1mm× 100mm ,1.9μm)分析结果峰2:洋地黄叶苷C 峰3:焦地黄苯乙醇苷A1 峰5(S):毛蕊花糖苷 峰6:焦地黄苯乙醇苷B1 峰7:异毛蕊花糖苷 公示稿提供的参考对照特征图谱 赛默飞色谱仪器结合色谱柱,完全可以满足中药配方颗粒分析需求,为中药配方颗粒质量控制保驾护航。希望通过上述案例分享,能够为大家在中药配方颗粒分析时带来帮助,我们下期再会! 配方颗粒公示标准中所采用的赛默飞色谱柱
  • iMeta | 齐碳纳米孔测序助力揭示桑黄多酚抗结肠炎肠道分子机制
    近日,浙江省农业科学院李有贵、天津中医药大学吴崇明和中国农科院深圳基因组所刘永鑫等团队在iMeta在线联合发表了题为《The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus》的研究成果。基于齐碳纳米孔测序平台及二代测序平台开展研究,通过16s rRNA基因测序评估SH处理对小鼠肠道微生物群落结构的影响;通过对肠道微生物群落的宏基因组测序,确定与5-羟色胺-3-乙酸(5HIAA)生物合成相关的功能基因序列;通过对微生物,尤其是Alistipes onderdonkii等关键菌株的全基因组测序及组装,进一步理解微生物如何影响宿主健康。最终,本研究证明了桑黄多酚(SH)通过调节肠道菌群有效减轻葡聚糖硫酸钠(DSS)诱导小鼠的结肠炎病理症状,揭示了基于SH和肠道菌群之间的相互作用开发结肠炎治疗策略的潜在途径。背景炎症性肠病(IBD)主要包括溃疡性结肠炎(UC)和克罗恩病(CD),是一个全球性的健康问题,影响全球约0.5%人口。IBD的典型症状包括急性腹泻、间歇性腹痛、直肠出血和体重减轻。除了显著降低生活质量外,IBD还增加了结肠癌的患病风险,从而给个人和社会带来了沉重负担。目前,IBD缺乏明确的治疗药物,虽然常用临床药物具有较高的缓解率,但往往会出现继发性失败。因此,迫切需要寻找更有效、更安全的新的治疗干预措施。越来越多的证据证明了肠道菌群失调与IBD 的发生发展内在联系。Machiels等人发现,UC患者肠道微生态失调表现为产丁酸盐物种,如Roseburia hominis和Faecalibacterium prausnitzii的显著减少。丁酸钠治疗可减轻结肠炎的炎症状态和肠黏膜病变。吲哚衍生物是重要的微生物代谢物,已被证实是改善实验性溃疡性结肠炎的有益药物。例如,吲哚-3-乙酸(IAA)、吲哚-3-甲醇(I3C)和吲哚-3-丙酮酸(IPA)可以作为芳基烃受体(AhR)的天然配体,通过提高血清和组织抗炎白细胞介素水平来减轻IBD。因此,肠道菌群及其代谢产物,特别是吲哚衍生物,可能是开发新的抗IBD治疗干预措施的有效途径。成果概述中药(TCM)在中国已成功治疗疾病数千年。越来越多的证据强调了天然药物资源的药理益处。食药用食物已成为一种很有前途的疾病治疗方法。桑黄是一种可食用的药用真菌,可作为药物和膳食补充剂。研究证明,桑黄具有多种药理作用,包括抗炎、抗肿瘤和抗氧化。此外,它还具有调节肠道菌群的能力。然而,桑黄对于IBD的治疗潜力尚未被探索。本研究旨在确定桑黄多酚(SH)的抗结肠炎作用,并探讨其有益作用是否与肠道菌群密切相关,以及潜在的肠道分子机制。本研究首先评估了SH抗结肠炎活性,并通过一种涉及体内功能验证和粪菌移植的综合方法证实了肠道菌群在其抗结肠炎作用中的重要贡献。此外,本研究还确定了关键的肠道细菌种类及其活性代谢产物5-羟基吲哚-3-乙酸(5HIAA),他们是SH改善结肠炎作用的关键介质,主要通过激活AhR信号通路发挥抗结肠炎作用。本研究不仅有助于更深入地了解SH的治疗潜力,而且也为今后探索SH和肠道菌群治疗结肠炎的治疗途径奠定了科学基础。成果亮点1.SH减轻DSS诱导的C57BL/6小鼠结肠炎桑黄在中国已经实现了大规模的人工栽培(图S1A)。SH是桑黄多酚提取物(93.86% ± 2.78%)(图S1B;表S1)。本研究首先评价了SH在葡聚糖硫酸钠(DSS)诱导小鼠中的抗结肠炎作用(图1A)。与正常小鼠相比,结肠炎小鼠表现出体重减轻(图S2A)、疾病活动指数增加(DAI)(图1B)、结肠长度缩短(图1C;图S2B)、隐窝和结肠组织结构受损(图1D;图S2C),以及明显的炎症反应(TNF-α、IL-1β、IL-6、MCP-1和IL-17α增加,IL-4、IL-10和IL-22降低)(图S3)。低剂量和高剂量SH均可改善结肠炎病理症状,主要表现在增加体重,改善结肠长度和结构损伤(图1B-D;S2)。此外,SH给药以剂量依赖性方式逆转了炎症细胞因子水平的变化(图S3),表明SH具有强大的抗炎作用。氧化应激和肠黏膜屏障对于维持肠道通透性以抵御毒素、致病菌和其他有害物质至关重要。团队在转录和翻译水平上评估了SH对上皮细胞紧密连接蛋白表达的影响,并检测了氧化应激相关基因的表达。与DSS组相比,SH处理组紧密连接蛋白基因Occludin、Claudin-3和Claudin-4的转录水平明显升高(图S4A),结肠组织中NF-kB、Nox4和Stat3的表达水平明显下调(图S4B)。同时,SH也增强了紧密连接蛋白的蛋白表达水平(图S4C-D),证实了SH对粘膜屏障的正向调控作用。此外,经过SH处理后,杯状细胞的数量也显著增加(图S4E)。以上结果表明,SH可显著改善DSS诱导的小鼠结肠炎症状。图1.SH缓解DSS小鼠实验性结肠炎症状,并改变其肠道菌群(A)动物实验示意图;(B)疾病活动指数(DAI)评分;(C)结肠组织图片;(D)苏木精&伊红染色(H&E)结肠病理图(比例尺= 50µ m);(E)基于Chao1指数和Shannon指数评价肠道菌群Alpha多样性。(F)基于加权UniFrac距离的肠道菌群主坐标分析(PCoA);(G)属水平上肠道微生物群的分类特征。(H)DSS相关细菌的核心微生物群。内环代表了在NC-DSS-SHL-SHH队列中可重复检测到的OTUs。不同微生物群落的相对丰度显示为蓝色(NC)、绿色(DSS)、红色(SHL)和青色(SHH)热图。alpha多样性分析采用Wilcoxon非参数检验,PCoA分析采用置换多元方差分析(PERMANOVA)。数据显示为平均值±标准误(n = 8)。*p 0.05,**p 0.01,***p 0.001。NC,阴性对照;DSS,葡聚糖硫酸钠;SHL,低剂量桑黄多酚组(250 mg/kg/d);SHH,高剂量桑黄多酚(400 mg/kg/d);DAI,疾病活动指数。2.肠道菌群在SH抗结肠炎作用中起关键作用为了评估肠道菌群对SH抗结肠炎作用的贡献,团队进行了16S rRNA基因测序分析,以评估SH治疗对肠道菌群的影响。DSS诱导结肠炎小鼠肠道菌群α-多样性明显低于正常小鼠(p 0.05)。低剂量和高剂量SH处理均显著增加了α-多样性(p 0.05,p 0.01)(图1E)。主坐标分析(PCoA)和层次聚类分析显示,SH处理使肠道菌群向正常对照(NC)偏移(图1F-H)。这些结果表明,SH可以显著调节DSS诱导结肠炎小鼠肠道微生物群落。为了进一步评估SH调节肠道菌群是否足以产生抗炎作用,团队使用含3% DSS处理小鼠,建立急性结肠炎小鼠模型,并将SH处理小鼠(供体)的粪便菌群移植到DSS诱导的结肠炎小鼠(受体)中(图2A)。由于结肠炎模型小鼠的粪便微生物群对结肠炎没有治疗作用(图S5),团队在随后的分析中没有进一步考虑这一点。与DSS小鼠相比,受体小鼠(DSS + SHfe)在体重、DAI评分、结肠长度和组织学方面均向正常趋势恢复(图2B-E;S6A-B)。粪菌移植还提高了血清IL-10和IL-22水平,降低了血清TNF-α、IL-1β、IL-6和IL-17α水平(图2F-H),表明其具有显著的抗炎作用。重要的是,SH调节的肠道菌群移植明显恢复了结肠炎小鼠的肠道屏障功能,这反映在Occludin, Claudin-2, Claudin-3 和Claudin-4 mRNAs和蛋白水平的上调(图2I;S6C)。因此,来自SH处理小鼠的肠道菌群表现出有效的结肠炎改善作用。图2.粪菌移植(FMT)揭示SH调节肠道菌群的抗结肠炎作用(A)动物实验示意图;(B)小鼠体重(g);(C)疾病活动指数(DAI)评分;(D)结肠长度(cm);(E)苏木精&伊红染色(H&E)结肠病理切片(上)(比例尺= 200µ m)和Claudin-4紧密连接蛋白免疫荧光图(下)(比例尺= 50µ m);(F)血清抗炎细胞因子IL-10 水平;(G)血清抗炎细胞因子IL-22 水平;(H)血清促炎细胞因子(TNF-α、IL-1β、IL-6和IL-17α)水平;(I)结肠组织中Occludin,Claudin-3和Claudin-4的蛋白表达。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。3.SH富集Alistipes onderdonkii改善结肠炎接下来,团队在属水平上仔细研究了肠道菌群的分类组成,以确定SH抗结肠炎作用的核心细菌。结果显示,与DSS组相比,对照组、SHL组和SHH组中,共有12个菌属表达上调,25个菌属表达下调(图S7A)。与对照组相比,模型组有34个菌属增加,13个属菌降低。低剂量SH处理使得10个菌属上调,4个菌属下调。高剂量SH处理后,20个菌属上调,4个菌属下调(图S7B)。差异表达分析显示,只有Alistipes在DSS组显著减少,而在SH治疗后显著增加(图S7C)。进一步Spearman相关分析表明,3个菌属与DAI评分显著负相关、与结肠长度显著正相关,其中Alistipes相关性最为显著(图S7D)。这些结果表明,SH可以显著调节肠道微生物群落,特异性富集Alistipes。进一步,团队通过物种特异性定量PCR(qPCR)对粪便Alistipes进行定量,发现Alistipes onderdonkii是SH富集的主要菌种(图S7D-E)。团队获得了3株A. onderdonkii,并评价了它们对DSS诱导的结肠炎影响。结果显示,三个菌株中,两个A. onderdonkii 菌株(#1:FDB8和#2:FDFM)可有效预防体重减轻,降低DAI评分,恢复结肠组织损伤,改善炎症状态(图3A-E)。此外, A. onderdonkii提高了紧密连接蛋白的表达,以增强肠道屏障功能(图3F-H)。因此,A. onderdonkii可能是介导SH抗结肠炎作用的关键有效物种。有趣的是, A. onderdonkii(#3)几乎没有改善结肠炎,甚至造成了有害的影响(图S8),表现出了菌株特异性的功能。图3.A. onderdonkii减轻DSS诱导的C57BL/6小鼠结肠炎(A)小鼠体重百分比(%)和体重变化(g);(B)DAI评分和DAI评分的AUC;(C)苏木精&伊红染色(H&E)的结肠病理切片(比例尺= 200µ m)。(D)血清抗炎细胞因子IL-10和IL-22的水平;(E)血清促炎细胞因子IL-1β和MCP-1的水平;(F)结肠组织Occludin,Claudin-2,Claudin-3,Claudin-4和ZO-1的mRNA表达水平;(G)结肠组织Occludin、Claudin-3和Claudin-4的蛋白表达;(H)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。4.5-羟基吲哚-3-乙酸(5HIAA)是一种关键活性代谢产物考虑到SH对肠道菌群的调节作用,团队对粪便样本进行了代谢组学分析,旨在识别功能微生物代谢产物。如图S9A所示,与NC小鼠相比,DSS诱导结肠炎小鼠中代谢物水平发生显著改变(图S9A),而SH处理组的代谢物谱与NC组接近,表明SH显著恢复了微生物代谢物的分布(图S9A)。随后,团队确定5HIAA在SH处理后显著升高(图S9B-C)。通过对3株A. onderdonkii功能基因序列的全面分析,发现2株A. onderdonkii(#1:FDB8和#2:FDFM)的基因组中含有一个与诱导吲哚化合物生物合成相关的tpl基因。相比之下,第三株菌株(#3:FDPA)的基因组缺乏这个特定的基因(图S9D)。为了证明A. onderdonkii确实具有产生5HIAA的能力,团队采用高效液相色谱(HPLC)对A. onderdonkii培养上清液中5HIAA含量进行检测,发现5HIAA浓度高达33.5 μg/mL。值得注意的是,5HIAA的产生与A. onderdonkii改善结肠炎的作用相关,主要表现为两个有效的A. onderdonkii菌株产生的5HIAA(33.5和16.83 μg/ml)多于无效菌株(0.83μg/ml)(图S9E)。代谢物与结肠炎指数的相关分析显示,有22种代谢物与结肠炎症状密切相关,其中5HIAA与结肠长度呈正相关,与DAI评分呈负相关(图S9F)。因此,SH可以促进5HIAA产生,这可能是与SH抗结肠炎作用相关的关键微生物代谢产物,尤其是A. onderdonkii。据报道,肠道微生物产生的IAA可以缓解结肠炎。因此,团队研究了与IAA密切相关的衍生物5HIAA对DSS诱导结肠炎的影响(图4A)。IAA治疗显著改善了结肠炎的症状(图4B-F),这与之前的报道结果一致,而5HIAA在缓解结肠炎方面的表现明显优于IAA(图4B-F)。此外,这两种吲哚衍生物都能有效地提高抗炎因子的水平,降低促炎因子的水平,以减轻炎症反应(图S10A-B)。在DSS诱导小鼠中,吲哚衍生物也降低了氧化应激相关基因(NF-kB、Nox4和Stat3)的相对表达(图S10C)。此外,IAA和5HIAA均上调了紧密连接蛋白Occludin和Claudins的表达,后者具有显著性(图S10D-E)。图4.5HIAA治疗可减轻DSS诱导的C57BL/6小鼠结肠炎(A)动物实验示意图;(B)体重百分比(%);(C)小鼠DAI评分;(D)小鼠结肠长度(cm);(E)苏木精&伊红染色(H&E)的结肠病理图(比例尺= 200µ m)和小鼠组织学评分;(F)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。IAA,吲哚-3-乙酸;5HIAA,5-羟基吲哚-3-乙酸。5.结肠AhR激活对SH抗结肠炎具有重要作用既往研究表明,微生物来源的吲哚衍生物可以通过结合并激活AhR来保护结肠炎,提示SH可能通过富集Alistipes及其代谢物5HIAA来激活AhR,从而改善结肠炎。为了证实这一假说,团队首先检测了AhR下游基因(Cypa1、Cypa2和Cypb1)在结肠中的表达水平。结果显示,5HIAA和SH两种处理均显著上调了Cypa1、Cypa2和Cypb1(图5A-B)基因水平,表明AhR在结肠组织中被激活。随后,团队用AhR抑制剂处理DSS小鼠,以验证AhR信号通路对SH抗结肠炎疗效的贡献。AhR拮抗剂StemRegenin 1基本上消除了5HIAA对结肠炎的改善作用,如体重、DAI、结肠长度、血清IL-22和IL-10水平,以及结肠组织病理学(图5C-H)。AhR拮抗剂消除了SH治疗对体重的有益作用(图5C-H),但对DAI、结肠长度等指标的消除作用明显减弱(图5C-H)。通过对Caco-2细胞的体外实验,进一步验证了AhR信号通路的激活情况。CCK-8检测结果显示,五种浓度的5HIAA对Caco-2细胞都没有细胞毒性作用(图S11A)。虽然5-HIAA处理后Caco-2细胞中AhR的表达没有明显变化,但Cypa1、Cypa2和Cypb1的表达明显增加(图S11B),提示5HIAA部分激活了AhR信号通路。以上结果表明,SH至少大部分通过激活AhR信号通路来缓解结肠炎。图5.AhR抑制剂可削弱SH和5HIAA的抗结肠炎作用(A)5HIAA处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(B)SH处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(C-D)小鼠体重(C)及体重变化(D);(E)DAI分数;(F)小鼠结肠长度(cm);(G)血清抗炎细胞因子(IL-22和IL-10)水平;(H)结肠组织和苏木精&伊红染色(H&E)结肠病理图(比例尺= 200µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。AhR,芳香烃受体。讨论IBD构成了一个重大的全球公共卫生挑战。考虑到临床药物的不良反应和高复发率,探索干预和治疗IBD的新策略具有重要意义。令人信服的证据表明,肠道菌群及其代谢物与IBD 的发展之间存在复杂联系。此外,天然药物作为一个巨大的潜在资源库,由于其优异的有效性和安全性,以及对肠道微生物群的积极调节,为治疗IBD提供了有效的候选者。本研究证实了SH(桑黄多酚)的抗肠炎作用和对肠道菌群的调节作用。简单言之,SH富集的A. onderdonkii促进了微生物代谢物5HIAA的产生,它可以作为一种有效的配体激活AhR信号,从而显著改善DSS诱导的小鼠结肠炎。这种对微生物机制的理解丰富了我们对天然药物和肠道菌群之间相互作用的理解,促进对结肠炎新型治疗药物的开发。尽管桑黄抗结肠炎作用已在多项研究中被报道,其潜在机制仍有待进一步阐明。值得注意的是,SH对结肠炎的有益作用尚未完全阐明。在本研究中,团队首次提供了强有力的证据,证实了SH具有强大的抗结肠炎疗效。虽然本研究提供了坚实证据,表明肠道菌群及其代谢物5HIAA在SH的抗结肠炎作用中起着关键作用,但本研究仍存在一些不足之处。在实验中,SH是预防性地给予DSS诱导结肠炎小鼠。SH作为一种复杂提取物,可以隔离DSS,从而防止DSS诱导的结肠炎。因此,今后应评估SH的治疗效果,以消除SH可能通过与DSS直接相互作用来预防结肠炎的可能性。此外,SH还可能通过其他机制,如NF-κB和NLRP3/caspase-1信号通路,从而改善结肠炎。这一推测是基于以下事实:使用AhR拮抗剂处理大大消除了5HIAA对结肠炎的有益作用,但是SH的抗结肠炎疗效仅部分受损,说明5HIAA的富集并不是SH减少结肠炎的唯一途径。此外,5HIAA是由表达色氨酸酶的肠道微生物组发酵色氨酸产生的吲哚代谢物。这意味着多种细菌可能有产生5HIAA的能力。在这项工作中,团队发现了其中一种细菌A. onderdonkii可以产生5HIAA,这强调了肠道微生物可以通过产生吲哚衍生物,包括5HIAA和IAA,以此来缓解结肠炎。其他产生吲哚及其衍生物的细菌需要在未来的研究中进一步探索。而由于团队尚未进行定植评估、毒理学检测和进一步功能验证等一系列研究,所鉴定的肠道菌株A. onderdonkii是否可以进一步发展为产品尚不清楚。因此,需要进一步研究桑黄抗结肠炎作用及其作用机制,从而促进SH的开发和应用。结语本研究成果是李有贵等团队在炎症性肠病(IBD)治疗等方面研究取得的全新进展。研究团队利用齐碳纳米孔测序平台长读长技术优势结合二代测序,完成了桑黄多酚抗结肠炎肠道分子机制的验证和揭示,为开发结肠炎治疗策略提供了可靠的科学理论依据。特别鸣谢李有贵、吴崇明和刘永鑫等研究团队的专业指导。以下为本研究结果作者简介——钟石(第一作者)浙江省农业科学院副研究员研究方向为肠道微生物与肠道损伤、糖脂代谢。以第一或通讯作者在Journal of Functional Foods、Chemico-Biological Interactions等期刊发表学术论文10余篇,主持浙江省自然科学基金、浙江省重点研发项目子课题、浙江省中医药科技计划重点项目子课题等;授权发明专利16件。孙雨晴(第一作者)浙江省农业科学院助理研究员研究方向为肠道微生物与肠道损伤、糖脂代谢。以第一或通讯作者在Carbohydrate Polymers、Animal Nutrition等期刊发表学术论文10余篇,主持中国博士后基金、浙江省博士后基金、浙江省公益农业项目等;授权发明专利3件。刘永鑫(通讯作者)中国农科院深圳基因组所研究员,iMeta期刊执行主编,宏基因组公众号创始人研究方向为微生物组方法开发、功能挖掘和科学传播,在Science、iMeta、Nature Biotechnology、Nature Microbiology等期刊发表论文50余篇,被引17000+次,入选全球Top 2%高被引科学家。主编《微生物组实验手册》专著,为Nature Communications、Microbiome、ISME、NAR等69种期刊审稿202次。吴崇明(通讯作者)天津中医药大学研究员,博士生导师。中国药理学会心血管药理专业委员会委员,中国中医药信息学会中医临床药学分会常务理事担任Chinese Herb Med, Mol Med Rep, Integr Med Nephrol Androl, Disease Res等期刊编委。研究方向中药药理学,聚焦中药调控肠道微生物组与人类慢性疾病作用机制研究。主持国家自然科学基金项目3项,在Gut Microbes,J Adv Res,Mater Today Bio,Phytomedicine等杂志上发表相关科研论文100余篇,被引用2500+次,入选全球Top 2%高被引科学家。李有贵(通讯作者)浙江省农业科学院,研究员研究方向为肠道微生物与肠道损伤、糖脂代谢。以第一或通讯作者在Journal of Advanced Research、Carbohydrate Polymers、mSystems等期刊发表学术论文30余篇,主持国家自然科学基金、浙江省重点研发项目、浙江省自然科学基金等10余项,获省部级奖3项,授权发明专利14件。
  • 前沿 | 安捷伦质谱助力七叶树药效成分研究,揭示七叶皂苷和七叶素生物合成进化机制
    2023 年 10 月,陈士林团队在《自然-通讯》(Nature Communications) 发表“Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis”的文章,作者采用多组学研究策略和质谱技术揭示了天然药物七叶皂苷和七叶素特异性合成的分子机制,并在大肠杆菌中实现了七叶素的绿色生物合成。研究背景现代植物化学和药理学的研究证明,草药中特异性积累的有效成分是其发挥药效的物质基础,七叶树属植物是一种温带北半球的多年生树木,该属植物由于分别含有药用活性成分七叶皂苷和七叶素被广泛应用于临床。七叶皂苷(玉蕊醇型三萜皂苷)制剂已经在临床中以口服、静脉注射和局部涂抹的方式广泛使用,用于治疗慢性静脉功能不全、水肿和痔疮等疾病。七叶素(香豆素类成分),也被称为 6,7- 二羟基香豆素 -6-O- 葡萄糖苷,与地高辛一起被广泛用作常见的眼药水七叶洋地黄双苷滴眼液的原料,以缓解眼疲劳、眼痛和干眼等症状。然而,目前对于这两种有效成分的合成、调控和转运机制的分子遗传学研究还相对薄弱。研究结果此次发表的研究通过空间代谢组揭示七叶皂苷在七叶树属植物娑罗子的子叶中特异性积累,解析了中华七叶树高质量基因组,并通过代谢组学、转录组学以及合成生物学技术等方法,成功解析七叶皂苷生物合成途径中关键的环化、氧化、酰基化和葡萄糖醛酸化等催化步骤。同时,课题组通过全被子植物基因组层面共线性研究发现该类三萜代谢基因簇的招募和进化模式,更好地理解了玉蕊醇型三萜类化合物在无患子目植物中的形成机制。针对七叶素的合成途径,研究团队根据关键基因在基因组中存在的拷贝数目及表达模式,筛选和验证了合成过程中关键基因的功能,在大肠杆菌中重建了七叶素的生物合成途径并完成了七叶素的绿色合成。研究结论本文以具有重要药用价值的七叶树为研究对象,综合运用基因组、转录组、代谢组、空间代谢组以及合成生物学等多种技术手段,揭示了七叶树中高价值代谢物七叶皂苷和七叶素的生物合成及进化过程。其意义在于,一方面为推动这些活性化合物的生物合成研究进展以促进其生产应用提供了良好的基础,另一方面为其他药用树木代谢物相关研究提供了良好的研究范式。专家团队此次发表的论文的共同第一作者为中国中医科学院中药研究所孙伟、尹青岗、万会花、高冉冉,共同通讯作者是中国中医科学院/成都中医药大学陈士林、北京化工大学孙新晓、东北林业大学徐志超。本草基因组学团队负责人陈士林院士 2022 年组织发布了千种本草基因组研究计划,在《创新》(The Innovation)、《自然-植物》(Nature Plants)、《分子植物》(Molecular Plant)、《自然-通讯》(Nature Communications) 等国际著名刊物发表了一系列的草药基因组学研究成果,极大地推动了学术界从分子遗传学层面理解中草药中有效成分的合成、转运、积累和调控,助力天然产物药物的绿色生物合成以及高含量药效成分品种的精准选育。参考文献:[1] Sun W, Yin Q, Wan H, et al. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis[J]. Nature communications, 2023, 14(1): 6470.
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • PCR原理、PCR扩增影响因素及预防解决方案
    PCR简介聚合酶链反应(polymerase chain reaction,PCR)是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析的一种反应。PCR扩增原理核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。▲ 图一:PCR原理反应示意图▲ 图二:PCR反应过程中温度变化图实时荧光定量PCR原理通过荧光染料或荧光标记的特异性探针,对PCR产物进行标记跟踪,实时监控反应过程,结合相应软件可以对结果进行分析,通过标准曲线对未知模板进行定量分析,计算待测样本的初始模板浓度。▶ 初始DNA浓度越高,荧光达到某一值(阈值)时所需要的循环数越少(Cq值)。▶ Log浓度与循环数成线性关系,根据样品扩增到阈值的循环数与已知起始拷贝数的标准品作出的标准曲线对比就可以计算出该样品的起始拷贝数。影响PCR扩增的因素▶ 模板间的交叉污染。▶ PCR试剂的污染。▶ PCR产物的污染。防止污染的预防操作❶ 永远要设置NTC(No Template Control)对照,一个不含有模板DNA但含有PCR体系中所有其他成分的对照。如果不能在污染的第一时间发现,会导致后续一系列的数据无法使用。❷ 准备PCR体系的移液器要专用,千万不能用吸取过PCR产物的移液器去准备PCR体系。❸ 打开离心管前先离心,开管动作要轻,以防管内液体溅出。❹ 最好在加完其他反应成分再加入模板。❺ 实验结束后及时清理台面。出现污染后的解决办法❶ 更换试剂:更换新的试剂和水,用确保无污染的移液器分装备用。❷ 清洁所有可能的污染源:实验台面,离心机,门把手等。❸ 实验过程更加小心,采用前面提到的各种防止污染的方法。CieloTM实时荧光定量PCR系统Harness of the power of qPCR☑ 数据可靠性:连续1000次实验后,结果高度一致。☑ 应用灵活性:提供多种qPCR应用分析。☑ 流程智能化:中英文用户界面,触控操作,可多机联用。☑ 在线便捷性:主机可独立运行qPCR程序,数据可USB、Wi-Fi等网络传输。
  • 国标蜂蜜中掺假淀粉糖浆的测定-离子色谱法
    国标GB/T21533-2008蜂蜜中掺假淀粉糖浆的测定-离子色谱法 国标GB/T21533-208检测蜂蜜中普遍掺假而加入的淀粉糖浆。该检测常见糖类的简单方法是配有氨丙基硅与高分子相或键合金属的阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱,等浓度淋洗分析,但这种方法由于糖从糖醇和有机酸中分离不充分、缺乏 特异检测、灵敏度不足等问题的存在,不能满足某些应用的要求,改进糖的分析方法已受到关注,自从规定食品中总糖的含量必须在标签中注明后,糖类的分析显得尤为重要,DIONEX戴安公司提供了与该国标的一致的一种全新而且成熟的方法,方法为:在高pH条件下,使用配有脉冲安培检测器(HPAE-PAD)和高效阴离子交换柱的离子色谱使上述问题得到了解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生,并且可以定量到P摩尔 (10-12 mol)水平。该技术已广泛应用于常规检测和研究中,且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器、金工作电极、以四电位波形检测。戴安公司有关于蜂蜜检测的操作视频,欢迎索取010-64436740(汪小姐/汤先生) 蜂蜜中淀粉糖浆的测定--离子色谱法1 该国标中规定了蜂蜜中果葡糖浆、麦芽糖浆、异麦芽糖浆、饴糖浆等淀粉糖浆的测定方法。本标准适用于蜂蜜中淀粉糖浆的测定。 本标准检出限:5%淀粉糖浆。2 检测原理:蜂蜜中不含5糖(DP5)以上的寡糖,而各种淀粉糖浆中均含5糖(DP5)以上的寡糖,使用凝胶 体积排阻法去除样品中果糖、葡萄糖,将寡糖富集后直接经阴离子交换色谱-电化学检测器检测,将 5糖(DP5)以上寡糖的存在作为蜂蜜中淀粉糖浆的判定指标。3 试剂和材料 3.1 聚丙烯酰胺凝胶微球,粒径45&mu m~90&mu m,分级分离的相对分子质量范围 100~1800,按使用 说明书进行水化和脱气。 注:可使用Bio-Gel P-2 Gel 型聚丙烯酰胺凝胶或同等性能的凝胶材料。 3.2 凝胶层析柱:将聚丙烯酰胺凝胶(3.1)湿法装入1.5 cm× 15 cm 空柱管中,装入的凝胶高度为10cm,上端保持1cm 以上的水层,避免干涸。 3.3 层析柱架。 3.4 麦芽糖标准储备液:分别称取色谱纯麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦 芽七糖标准物质各10.0mg,用水分别溶解定容至10mL,配制成浓度为1mg/mL 的储备液,于棕色瓶中4℃下储存。 3.5 麦芽糖标准混合使用液:吸取一定量的糖标准储备液(3.4),按表1 用水配制麦芽糖标准混合使用液,在4℃下保存不超过30 天。该溶液用于样品色谱图中寡糖保留时间的定位。 3.6 50%氢氧化钠储备液:符合离子色谱使用纯度。 3.7 无水醋酸钠:符合离子色谱使用纯度。 3.8 0.45&mu m 样品滤膜:水性。 3.9 除非另有说明,所用试剂为分析纯,所用水符合GB/T 6682 规定的一级水。4 仪器 4.1 离子色谱仪:配电化学检测器。 4.2 分析天平: 0.1mg 。 5 试样制备 5.1 称取混匀的蜂蜜2.0g 作为试样,用水溶解后定容至20mL,用0.45&mu m 水性滤膜过滤,滤液备 用。 5.2 将准备好的聚丙烯酰胺凝胶层析柱(3.2)中的水放尽,至下端无水珠滴下时,将样品滤液(5.1) 2.0 mL 沿柱壁慢慢加入层析柱中,恰好流至凝胶上方无液时,加入3.0mL 水冲洗柱壁,又至凝胶上 方无液时,再加入5.0mL 水冲洗凝胶柱。注意每次在层析柱上方加液(或水)的时机,应是前次加 液(或水)的层析柱体上端液体恰好流尽、下端恰好无液体滴出。弃去上述三次共10.0mL 流出液后, 于层析柱下方接一只2mL 具塞塑料离心管,从柱上方加入2mL 水,收集这2mL 流出液至离心管中, 盖紧离心管塞,摇匀后作为待测样品溶液,24 小时之内测定。层析柱中加入50mL 水冲洗,至全部流出后,该柱直接用于处理下一个样品。 5.3 将纯蜂蜜作为阴性对照品,蜂蜜中掺入5%市售果葡糖浆、蜂蜜中掺入5%市售麦芽糖浆的样品 作为阳性对照品,按照5.1 和5.2 进行操作。6 测定 6.1 离子色谱条件 6.1.1 色谱柱:CarboPac&trade PA200 3 mm× 250 mm (带CarboPac&trade PA200 3 mm× 50 mm 保护柱) 或相当性能的分离柱,柱温30℃; 6.1.2 流动相:A:100%水;B:200mmol/L 氢氧化钠,200mmol/L 醋酸钠。梯度洗脱条件见表2。6.1.3 检测器:电化学检测器;Au 工作电极;Ag/AgCl 参比电极。检测池温度30℃。糖检测波形 参见表3。6.1.4 进样量:20&mu L 6.2 样品测定依次将麦芽糖标准混合使用液(3.5)、纯蜂蜜阴性对照品(5.3)、含5%果葡糖浆的蜂蜜(5.3)和含5%麦芽糖浆的蜂蜜等阳性对照品(5.3)的寡糖收集液注入离子色谱仪中,观察离子色谱图, 当谱图与附录中参考谱图基本吻合时,方可进行实测样品的测试。 7 结果判定 分析比较纯蜂蜜阴性对照样品和含5%糖浆的蜂蜜阳性对照样品的寡糖谱图,找到两者之间有明 显差异的&ldquo 指纹区&rdquo ,并以此作为纯蜜中掺入淀粉糖浆的判定指标。任一掺入果葡糖浆的蜂蜜样品, 在麦芽五糖~麦芽六糖之间和麦芽六糖~麦芽七糖之间有两个典型的&ldquo 指纹峰&rdquo P1和P2,根据这两个峰的出现可判断蜂蜜中掺入果葡糖浆。任一掺入麦芽糖浆的蜂蜜样品,在麦芽五糖~麦芽六糖之 间、麦芽六糖~麦芽七糖之间以及麦芽七糖之后,有三个典型的&ldquo 指纹峰簇&rdquo P1、P2和P3,根据这三个峰簇的出现可判断蜂蜜中掺入麦芽糖浆(包括高麦芽糖浆、异麦芽糖浆和饴糖糖浆)。除了描述出的基本特点外,不同工艺条件下生产的糖浆还可见到其他出峰位置有其他峰形特征的微量寡糖峰,但不影响&ldquo 指纹区&rdquo 的基本特征和判定。附录A中的图A1为麦芽糖标准混合使用液的定位谱图;图A2为纯洋槐蜜、枣花蜜、椴树蜜、荆条蜜、油菜蜜的寡糖谱图;图A3为不同蜜种掺入5%的不同果葡糖浆时的寡糖谱图、图A4为不同蜜 种掺入5%的不同麦芽糖浆时的寡糖谱图。附录A (资料性附录) 蜂蜜中淀粉糖浆测定的相关色谱图 DIONEX戴安中国市场部
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍  糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。  二、检验标准的探讨  现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。  (一)样品的前处理  食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。  (二)还原糖测定和结果计算  GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。  直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):  X=  其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。  (三)计算公式的正确表达  1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。  2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:  X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。  (四)还原糖滴定法的注意事项  1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。  2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。  食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制