当前位置: 仪器信息网 > 行业主题 > >

格列美脲系统适用标准品

仪器信息网格列美脲系统适用标准品专题为您提供2024年最新格列美脲系统适用标准品价格报价、厂家品牌的相关信息, 包括格列美脲系统适用标准品参数、型号等,不管是国产,还是进口品牌的格列美脲系统适用标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合格列美脲系统适用标准品相关的耗材配件、试剂标物,还有格列美脲系统适用标准品相关的最新资讯、资料,以及格列美脲系统适用标准品相关的解决方案。

格列美脲系统适用标准品相关的资讯

  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 加拿大拟准许使用一种新型食品酶
    近日,加拿大发布G/SPS/N/CAN/657号通报,加拿大卫生部食品司针对一项关于一种新型食品添加剂准许使用要求的提案进行了详细的安全评估。最终该评估并未发现任何安全相关问题,故加拿大卫生部拟批准该添加剂按该提案所规定进行使用,并对现行准许使用的食品酶名单进行修改,以许可该新型添加剂脲酶作为一种食品酶使用于葡萄酒和清酒内。目前该通报正在征求意见中。  检验检疫机构在此提醒相关出口酒类企业:目前国内常将脲酶用于分解葡萄酒中残存的脲,而随着该公告的发布,企业在日后出口至加拿大的葡萄酒和清酒中也将可以放心使用。但由于目前该通报尚处于征求意见中,企业应密切关注,特别是注意加方是否会出台有关脲酶的添加限量方面的要求。
  • 国务院:食品添加剂通用安全标准今年出台
    中共中央政治局常委、国务院副总理、国务院食品安全委员会主任李克强出席全国严厉打击非法添加和滥用食品添加剂专项工作电视电话会议并讲话。他强调,要切实解决影响食品安全的突出问题。  李克强说,食品问题无小事,保障安全是大事。这直接关系群众身体健康和生命安全,关系经济社会发展大局。近期发生并查处的一些食品安全突出事件,都与食品生产经营中滥用或非法使用添加物有关,群众对此高度关注。要把整治食品非法添加作为保障食品安全的重要切入点,追踪溯源,加强全过程管理。  李克强强调,食品非法添加危害性大,一旦发生问题,社会影响面广,容易引起连锁反应,必须高度重视。要以《食品安全法》为准绳,重典治乱,加大惩处力度,切实改变违法成本低的问题,让不法分子付出高昂代价,真正起到震慑作用。一旦发现非法添加,要快查快处,第一时间查封问题产品,责令停产停业,并给予严厉经济处罚。对故意添加的,一律吊销证照、罚没设备,企业负责人不得再从事相关食品行业。  发布  食品添加剂通用标准年内出台  地沟油、瘦肉精、染色馒头、牛肉膏……近期食品安全问题频发,引起各方高度关注。昨天,国办下发《关于严厉打击食品非法添加行为切实加强食品添加剂监管的通知》(下称通知),将严打包括非法添加行为在内的危及食品安全的多种违法行为,并要求卫生部制定食品添加剂新品种国家标准。  销售  清剿存储非法添加物黑窝点  通知要求,工商部门要监督食品添加剂销售者建立并严格执行进货查验、销售台账制度,严厉查处无照经营和违法销售假冒伪劣食品添加剂的行为。  此外,通知要求严密监测,坚决打击通过互联网等方式销售食品非法添加物行为。对农村、城乡接合部、县域接合部等重点区域,企业外租的厂房、车间、仓库以及城镇临时建筑、出租民房等重点部位,各地要组织经常性排查,及时发现、彻底清剿违法制造存储非法添加物的“黑窝点”,坚决捣毁地下销售渠道。  使用  严管火锅店等使用添加剂单位  在打击非法添加行为的同时,通知要求加强食品添加剂使用监管。  通知要求卫生部、食品药品监管局要尽快制定餐饮服务环节食品添加剂使用规定,明确允许使用的食品添加剂品种,指导餐饮服务单位规范食品添加剂使用,不得虚假宣传、欺骗消费者。  此外,食品药品监管局要重点加强对提供火锅、自制饮料、自制调味料等服务的餐饮单位使用食品添加剂的监管。  监管  设专项资金奖励举报人  鉴于舆论是监管的必要手段,通知进一步要求强化社会监督。明确提出,地方各级政府要建立健全食品安全有奖举报制度,设立专项奖励资金,完善工作机制,指定专门部门负责,切实落实对举报人的奖励,保护举报人的合法权益,鼓励生产经营单位内部人员举报。  同时,通知提出,要结合本地实际制定食品安全信息员、协防员管理办法,加强食品安全信息员、协防员队伍建设。  针对在舆论监督中发挥重要作用的媒体,通知称,积极支持新闻媒体舆论监督,认真追查媒体披露的问题,及时回应社会关切,公开查处的食品安全案件。同时,要打击虚假新闻,对造成社会恐慌的假新闻制造者,要严肃追究责任。  根据通知要求,县级以上地方政府统一负责、领导本行政区域打击非法添加和滥用食品添加剂工作,将其作为食品安全工作的重点,主要负责人要亲自抓,分管领导要直接负责。此外,监察部门要加大责任追究力度,对失职、渎职行为要依法依纪追究责任。  标准  食品添加剂标准将出台  食品添加剂标准出台将有日程表。通知要求卫生部制定食品添加剂新品种国家标准,2011年年底前要制定并公布复配食品添加剂通用安全标准和食品添加剂标识标准。  对暂无国家标准的食品添加剂,有关企业或行业组织可以依据有关规定提出参照国际组织或相关国家标准指定产品标准的申请,卫生部会同有关部门要加快食品添加剂标准指定。卫生部、质检总局要尽快制定出台相关措施,做好标准指定完成前的生产许可和监管衔接工作。  自律  年内建立食品企业安全信用档案  在食品安全监管的过程中,食品企业起着至关重要的作用。通知要求强化企业诚信自律,并提出,2011年年底前,各监管部门按系统对所有食品生产经营者建立食品安全信用档案。  同时,食品和食品添加剂等行业组织要切实负起行业自律责任,积极组织企业开展自查自纠和内部监督,加强行业监督和培训,及时发现行业中存在的问题,未能及时发现并报告的要通报批评。
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 68个与仪器及检测相关标准将在9月份实施 ——食品、冶金、医药领衔
    9月份将要实施的68个与仪器及检测相关标准——食品、冶金、医药领衔为了方便仪器及检测使用者查看9月份实施的标准,我们继续整理了即将实施的标准。本次整理除了即将实施的国家标准,还有行业标准和地方标准。一共有68个标准与我们仪器及检测相关,其中食品、冶金、医药三个领域领衔。食品将迎来史上“最严”农药残留检测标准GB 2763-2021,食品安全GB 23200四个标准也将实施。具体如下,需要的可以收藏。化妆品标准GB/T 40146-2021 化妆品中塑料微珠的测定 食品标准GB 2763-2021 食品安全国家标准 食品中农药最大残留限量 GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱-质谱联用法 GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法 GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法 GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法 DBS34/ 003-2021 食品安全地方标准 食品小作坊卫生规范DBS42/ 002-2021 富有机硒食品硒含量要求《食品农残国标GB 23200系列汇编》-120个标准合集 冶金标准GB/T 39123-2020 X射线和γ射线探测器用碲锌镉单晶材料规范 GB/T 39125-2020 铈镁合金 GB/T 39523-2020 精密行星摆线减速器扭转振动性能测试方法 GB/T 39135-2020 建筑光伏玻璃组件色差检测方法 GB/T 39137-2020 难熔金属单晶晶向测定方法 GB/T 39138.1-2020 金镍铬铁硅硼合金化学分析方法 第1部分:金含量的测定 硫酸亚铁电位滴定法 GB/T 39138.2-2020 金镍铬铁硅硼合金化学分析方法 第2部分:镍含量的测定 丁二酮肟重量法 GB/T 39138.3-2020 金镍铬铁硅硼合金化学分析方法 第3部分:铬、铁、硅、硼含量的测定 电感耦合等离子体原子发射光谱法 GB/T 39143-2020 金砷合金化学分析方法 砷含量的测定 电感耦合等离子体原子发射光谱法 GB/T 39144-2020 氮化镓材料中镁含量的测定 二次离子质谱法 GB/T 39145-2020 硅片表面金属元素含量的测定 电感耦合等离子体质谱法 GB/T 39146-2020 耐火材料 抗熔融铝合金侵蚀试验方法 GB/T 39148-2020 回收铋原料 GB/T 39149-2020 回收碲原料 GB/T 39150-2020 回收硒原料 GB/T 39152-2020 铜及铜合金弯曲应力松弛试验方法 GB/T 39153-2020 亚稳分解强化铜-镍-锡合金棒材 GB/T 5801-2020 滚动轴承机制套圈滚针轴承 外形尺寸、产品几何技术规范(GPS)和公差值 GB/Z 39124-2020 铅精矿化学分析方法 锑含量的测定 硫酸铈滴定法 DB23/T 2962-2021 天然鳞片石墨石墨化度测定方法DB23/T 2963-2021 天然鳞片石墨中微量钙含量测定钙-偶氮胂Ⅲ分光光度法水产标准DB35/T 1984-2021 水产品乙酰甲喹及其主要代谢物鉴别技术规程 计量校准标准JJG(苏)247-2021 随机冲击速度测量仪 检定规程JJF(苏)242-2021 精密型液体浴试验设备校准规范JJF(苏)243-2021 分布光度计校准规范JJF(苏)245-2021 药品强光稳定性试验箱校准规范JJF(津)60-2021 机动车尾气排放检测用五参数测试仪校准规范JJF(津)59-2021 汽车行驶记录仪检定装置校准规范JJF(津)58-2021 氟化物测定仪校准规范JJF(桂)94-2021 电热恒温水浴锅校准规范医疗行业标准YY/T 0285.6-2020 血管内导管 一次性使用无菌导管 第6部分:皮下植入式给药装置YY/T 0342-2020 外科植入物 接骨板弯曲强度和刚度的测定YY/T 0611-2020 一次性使用静脉营养输液袋YY/T 0616.7-2020 一次性使用医用手套 第7部分:抗原性蛋白质含量免疫学测定方法YY/T 0651.2-2020 外科植入物 全髋关节假体的磨损 第2部分:测量方法YY/T 0664-2020 医疗器械软件 软件生存周期过程YY/T 0707-2020 移动式摄影X射线机专用技术条件YY/T 0809.2-2020 外科植入物 部分和全髋关节假体 第2部分:金属、陶瓷及塑料关节面YY/T 0953-2020 医用羧甲基壳聚糖YY/T 1293.6-2020 接触性创面敷料 第6部分:贻贝黏蛋白敷料YY/T 1477.6-2020 接触性创面敷料性能评价用标准试验模型 第6部分:评价促创面愈合性能的动物2型糖尿病难愈创面模型YY/T 1629.4-2020 电动骨组织手术设备刀具 第4部分:铣刀YY/T 1629.5-2020 电动骨组织手术设备刀具 第5部分:锯片YY/T 1631.2-2020 输血器与血液成分相容性测定 第2部分:血液成分损伤评定YY/T 1693-2020 牙科学 上颌窦膜提升器YY/T 1708.2-2020 医用诊断X射线影像设备连通性符合性基本要求 第2部分:X射线计算机体层摄影设备YY/T 1737-2020 医疗器械生物负载控制水平的分析方法YY/T 1738-2020 医用电气设备能耗测量方法YY/T 1744-2020 组织工程医疗器械产品 生物活性陶瓷 多孔材料中细胞迁移的测量方法YY/T 1746-2020 可吸收性外科缝线 体外水解后断裂强力试验方法YY/T 1751-2020 激光治疗设备 半导体激光鼻腔内照射治疗仪YY/T 1754.1-2020 医疗器械临床前动物研究 第1部分:通用要求YY/T 1754.2-2020 医疗器械临床前动物研究 第2部分:诱导糖尿病大鼠皮肤缺损模型YY/T 1758-2020 心血管植入物 肺动脉带瓣管道YY/T 1759-2020 医疗器械软性初包装设计与评价指南YY/T 1762-2020 单髁膝关节置换假体金属胫骨托部件动态疲劳性能试验方法YY/T 1765-2020 全膝关节假体约束度测试方法其他标准GB/T 40245-2021 废弃防腐木材回收规范 GB/T 40139-2021 材料表面积的测量 高光谱成像三维面积测量法 DB52/T 1597-2021 计量检测元数据及交互规范目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 伪劣手机电池成“手雷” 专家呼吁出台通用标准
    2010年12月上旬,由国家质检总局和工信部联合召开的全国“手机用电池产品质量分析会”公布了2010年第三季度手机用电池质量国家监督抽查结果。在抽查的76批次产品中有8批次不合格,抽样合格率89.47%。其中广东为手机用电池质量重灾区,不合格产品占了7批次。  据了解,目前,我国手机用户有7.4亿多,而且很多用户不止拥有一部手机,有人说:“手机已经成为吃、穿之外最重要的消费品。”然而,因手机质量问题尤其是手机电池质量问题而引起的消费事故却时有发生。  质量投诉每年都不少  最近有媒体报道,2010年6月,甘肃一位名叫肖金鹏的工人在工厂作业时,因装在胸前衣兜的手机突然爆炸而死亡。经查,肖金鹏是由于手机电池在高温下发生爆炸,被炸断肋骨刺破心脏身亡的。  根据不完全统计,2009年手机用电池的合格率是83.8%,更早的1999年首次手机用电池国家监督抽查合格率仅为74.1%。工信部科技司副司长沙南生表示,这只是反映了制造领域正规企业的水平,并不代表流通领域的总体水平,在每年的“315”活动中,手机投诉量都是最大的,平均达13%,其中一部分就包括手机用电池。国内手机检测权威机构、信产部电信研究院泰尔实验室表示,假冒伪劣电池出现危险的概率几乎是真品电池的100至1000倍。如果以手机用户7.4亿的基数来计算的话,每年不合格的手机用电池数量巨大,那也就是说,它们隐藏的事故隐患也是巨大的。  假冒伪劣电池危害大  假冒伪劣电池尤其是假冒名牌电池的问题已成为潜伏在消费者身边的一个不定时炸弹。真品电池和假冒电池的差别也远不止一般消费者认识的电量、寿命等使用上的差异,不容忽视的是其安全性和环保性的差别。  据悉,假冒伪劣电池通常采用劣质材料,比如,大多数伪劣电池的关键性原料——电解质溶液的质量不过关。由此而产生的质量问题,不仅会造成用户在使用时出现待机时间严重不足、开机后黑屏、低温或高温下手机“罢工”等状况,更为严重的是可能引发重大的安全事故。某著名手机企业的一位工程师表示,大部分假冒电池在电路设计上偷工减料,这样就使原本十分复杂的电路简化为只有两三个元器件,就连关键性的设计——泄压阀和IC安全保护电路也被省略掉了。如果没有了这两项保护,电池会在过度充放电情况下造成安全阀破裂,直接引发电池起火甚至爆炸。  此外,假冒伪劣电池还会对机主的人身安全和环境等产生重大危害。  对此,中国泰尔实验室提醒消费者,禁止在以下四种情况下使用电池:一是发现电池充电后使用时间严重不足 二是充不上电 三是使用中电池过热 四是出现外型鼓胀破裂等现象。  呼吁通用标准快出台  网上曾有帖子称“人是拴在手机上的一条狗”,由此可见手机对现代人是多么重要。但在近年来针对手机和手机电池的几次抽查中,质量亮起了红灯,由质量问题而引发的安全事故也时常见诸报端。  业内专家认为,目前我国手机用电池行业存在的问题主要是行业准入门槛较低,生产缺乏标准化,产品检验方面部分厂家忽视产品质量监控环节 杂牌企业与品牌企业并存,流通领域夸大产品性能,假冒名牌电池充斥市场 产品质量良莠不齐,没有制定强制性标准,未列入3C强制性认证等。  为什么手机用电池的质量问题迟迟得不到解决呢?一位手机用电池生产企业的负责人告诉记者,水货和山寨机的泛滥,以及手机规格标准的不统一是导致手机用电池常抽检常不合格的罪魁祸首。从根本上解决手机用电池的质量问题,还需制定出台电池产品强制通用标准。  这位负责人介绍说,手机电池涉及到关键零部件,其统一标准的推出将会给各个企业的新产品研发和创新上造成一定冲击。但是,从另一个角度来看,统一标准的出台还将会加速企业之间的技术交流与融合,推动我国企业在手机产品技术创新和技术研发上的进步。  因此,快速出台电池产品强制通用标准,实施强制认证或生产许可证制度,避免不合格产品流入市场,才是切实提高手机用电池质量的根本所在,也是抽查一批企业,整顿一个行业的目的所在。
  • 西湖大学新发现:尿液中的蛋白可作为新冠轻重型的分类标准
    过去两年来,新冠的爆发让全人类措手不及。截至今天,新冠病毒仍然在地球上大部分地区肆虐。凛冬已至,温度骤降,现在已经进入了感冒等流行病毒的高发季节。随着新的突变株奥密克戎(Omicron)的出现,世界上已经有不少国家对此警戒万分,全球人类也需要共同协作,以控制新一轮新冠的爆发。不管是哪一变株流行,其背后的基础研究都是迫切和必要的。尿液分子表型的研究有重大意义。近日,西湖大学西湖实验室郭天南课题组等在 Cell Reports 发表了题为:Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19 的研究论文。该研究表明新冠肺炎病人的尿液作为一种完全无创的生物样本,从尿液中获取的生物分子可以灵敏地反映机体的病理状态。这项研究从尿液中筛选出 20 个蛋白质标志物并建立模型,成功实现了对新冠患者进行分类预测的目的;该研究同时针对性地提出了新冠患者存在潜在肾损伤的证据。尿液来源于外周循环,无需专业采集手段即可获得(相比较血清、组织等),完全可以满足日常实时健康监测的要求。利用尿液中的生物分子对人体健康状态进行监测,对于未来精准医学、精准抗疫具有重要的实用价值和现实意义。该研究对 COVID-19 患者组以及健康对照组的共计 115 个尿液、血清样本进行了系统研究。运用蛋白组学和代谢组学的分析手段,对各组病人进行了研究对比。从蛋白层面分析,单位体积的尿液蛋白表达量在轻、重型 COVID-19 组中与健康组相比明显升高,这个结果提示尿液可能会更灵敏地反应机体疾病水平的变化。该研究共定量了 1494 个血清蛋白,3854 个尿液蛋白,903 个血清代谢物和 1033 个尿液代谢物。研究发现尿液中的蛋白分子量分布与全人类蛋白组的蛋白分子量分布一致,这说明尿液样本不会漏掉某一类蛋白而导致信息丢失。血清和尿液蛋白质组学和代谢组学数据汇总分析那么尿液蛋白能否体现出新冠肺炎引起的分子变化呢?机器学习结果显示,尿液蛋白对于轻重型新冠肺炎的区分能力与血清蛋白基本一致。该研究在此基础上,建立了基于 20 个尿液蛋白的机器学习模型。在重型 COVID-19 患者的转归过程中,该模型的预测值随着时间的延长逐渐降低;而在轻型的恢复患者中,预测值趋于平缓并无明显变化。这些结果进一步证实了这 20 个尿液蛋白具备对 COVID-19 轻重型进行分类预测的潜力。在蛋白质组学水平上区分轻型和重型 COVID-19 患者该研究接下来探索了 COVID-19 患者血清和尿液之间的相关性。随着疾病进程加重(健康-轻型-重型),有 301 个蛋白的相对丰度在尿液和血清中呈现出相反的表达模式。研究发现两种参与肾小管重吸收的重要调节因子,megalin (LRP2) 和 cubilin (CUBN),在 COVID-19 患者尿液中的含量均呈现下降趋势。COVID-19 患者的肾小管再吸收过程可能出现了紊乱失调,导致尿液中某些蛋白质变化呈现出与血液中不同的表达模式。这种现象可能也存在于其他疾病中,还有待进一步研究。301 个血清和尿液蛋白显示出相反的表达模式不受控制的先天性炎症反应引起的细胞因子风暴,是导致 COVID-19 患者高死亡率的主要原因,因此该研究还着重关注了细胞因子在血清和尿液中的表达情况。该研究在血清中定量到了 124 个细胞因子,在尿液中定量到了 197 个。在尿液中,CXCL14 与 COVID-19 患者的淋巴细胞计数具有显著的相关性,或可能用于指示 COVID-19 病情的严重程度。尿液和血清中的细胞因子特征此外,该研究还在尿液蛋白组中特异性地发现了一些与病毒出芽相关的蛋白,它们在 COVDI-19 患者的尿液中呈现显著的下调趋势,且未在血清中检测到。以上结果表明在这一研究里,尿液蛋白组显示了比血液蛋白组更高的检测灵敏度。尿液中定量到的与病毒出芽相关的蛋白在健康对照和 COVID-19 患者中呈现差异表达模式该研究通过差异通路分析,得到了许多在差异表达通路中频繁出现的蛋白。其中 Rho GTP 酶家族的 CDC42、RAC1/RAC2 和 RHOA 出现的频率最为频繁。这些蛋白的失调可能会导致肾小球硬化和肾脏损伤。此外,肾脏足细胞-肌动蛋白的动态调节需要消耗大量ATP。代谢组学数据显示,腺苷(ATP 代谢的产物)含量在重型 COVID-19 患者的尿液中明显降低,这进一步表明患者体内可能存在足细胞运动障碍和潜在的肾脏损。COVID-19 患者血清和尿液中失调蛋白质分析像其他病毒感染一样,SARS-COV-2 会通过打破体内氧化和抗氧化系统之间的平衡而引发氧化应激反应。从该研究的代谢组学数据中可以发现,多种抗氧化因子如牛磺酸、次牛磺酸和1-甲基烟酰胺 (1-MNA) 在 COVID-19 患者的血清中显著下调。在蛋白层面,该研究也发现 SOD3 和 GPX4 等多种抗氧化酶在重型 COVID-19 的尿液中显著下调。这一切都显示新冠患者体内可能存在 ROS 激活的应激反应。COVID-19 患者血清和尿液中失调的代谢物分析基于以上线索,该研究全面解读新冠肺炎患者尿液及血液的多组学数据中异常改变的分子和信号通路,并推测出患者体内新冠病毒引起的分子通路水平的改变和调节机制:免疫紊乱触发的炎症反应、凝血反应以及细胞纤维化会最终损伤肾组织。临床数据也显示,重型患者的各型肾损伤指标虽然仍在正常范围内,但是相对于健康对照组,已经发生了显著的改变。上述结果都表明 SARS-COV-2 可能造成肾损伤。该研究最终提出,要密切关注新冠患者肾损伤的临床指征,并在新冠康复后保持对肾脏功能的跟踪观察。重型 COVID-19 患者免疫失调和 ROS 激活诱导肾损伤的模型郭天南课题组主要从事高通量蛋白质组学和临床大数据研究,使用独特的循环压力技术(Pressure Cycling Technology) 高通量的处理超小量的临床样本, 借助高通量的 SWATH 卫星扫描质谱技术将其蛋白组数字化,开发机器学习算法分析蛋白质组大数据,探索在各种生理和病理状态下蛋白质表达和变化的数学规律,致力于实现基于蛋白质组的精准医疗。论文链接:https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01783-6
  • 你说的白,是什么白:小麦粉中硫脲的测定
    2019年,国家粮食和物资储备局办公室在第330号通知[1]中公开了国家标准《小麦粉》征求意见稿,其中小麦粉的定义为:小麦粉wheat flour是指由普通小麦(六倍体小麦,Triticum aestivum L.)经过碾磨制粉,去除部分麸皮和胚并达到一定加工精度要求的、未添加任何物质的、能够满足制作面制食品要求的产品。与《关于进一步加强小麦粉质量安全监管的公告》(2017 年第132号)[2]中关于小麦粉(通用)中添加物的要求,即“取得‘小麦粉(通用)’生产许可的企业,不得在小麦粉中添加任何食品辅料”,保持一致。 早前被允许添加之后又被禁止的过氧化苯甲酰(Dibenzoyl peroxide, BPO),在近几年的食品安全抽检中时有被检出,其非法添加的目的主要是给新生产的小麦粉脱色[3]。然而在小麦粉的加工和储藏过程中,经常会出现颜色加深的现象,即褐变。发生褐变的主要原因是,小麦籽粒中的多酚氧化酶(Polyphenol oxidase, PPO)催化酚类物质氧化生成褐色或黑色的醌类物质[4],从而影响了小麦粉的色泽,降低了小麦粉的品质。 根据GB 2760-2014 附录B[5]中,对食品漂白剂的定义:能够破坏、抑制食品的发色因素,使其褪色或使食品免于褐变的物质。针对小麦粉的酶促褐变,一些不法的的商贩会通过添加具有还原性的硫脲(Thiourea)进行漂白,硫脲能够抑制多酚氧化酶的活性,阻止褐变的发生,在一定程度上将醌类还原成酚类,掩盖不好的品质,达到提亮增白的效果。而硫脲的非法添加会刺激呼吸道和肠道,抑制甲状腺和造血器官的机能,引起咳嗽、胸闷、头痛、嗜睡、无力、面色苍白、面部虚肿、基础代谢降低、血压下降、脉搏变慢、白细胞减少等症状[6]。早在2001年,世界卫生组织国际癌症研究机构就将硫脲列在了3类致癌物清单中。 原食品药品监督管理总局于2016年发布第196号公告[7],公布了食品补充检验方法《小麦粉中硫脲的测定 BJS 201602》,填补了国内硫脲检测标准的空白。为了进一步规范企业的生产行为,加强小麦粉质量安全监管,总局于2017年发布第132号公告[2],其中明确规定“严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料”。 在此背景下,赛默飞实验室对高效液相色谱法测定小麦粉中硫脲的实验条件,开展了相关研究工作。 01样品前处理准确称取均质小麦粉1.0 g(精确至0.01 g)于15 mL旋盖螺口圆底离心管中,加入10.00 mL 80:20乙腈水,旋紧盖子,涡旋分散30 s,水浴超声提取20 min(由于超声时间较长,水浴温度会升高,建议加入冰袋控温),10000 rpm 4℃ 冷冻离心10 min,取上清液过0.2 μm亲水PTFE微孔滤膜,滤液上机测试。02色谱条件● 液相色谱仪:UltiMate™ 3000 HPLC 液相色谱系统● 色谱柱:Syncronis™ HILIC, 250×4.6 mm, 5μm (P/N: 97505-254630)● 柱温:20 ℃● 进样量:5 µL● 流动相:A为乙腈,B为水● 洗脱程序:A:B=90:10,等度洗脱● 流速:1 mL/min● 检测波长:246 nm● 采样频率:5 Hz● 采集时间:12 min03实验结果与讨论3.1色谱条件优化 3.1.1 色谱柱选择硫脲标准品溶液在Syncronis HILIC色谱柱上获得了出色的峰型和优异的灵敏度。图1. 硫脲标准品溶液色谱图(1.00 μg/mL) (点击查看大图) 3.1.2 样品溶剂的选择在HILIC模式下,采用80:20乙腈水作为标准品稀释液时,10.0 μg/mL硫脲标准品得到了尖锐且对称的峰型。图2. 硫脲标准品溶液色谱图(10.0 μg/mL)(A:稀释溶剂为纯水,B:稀释溶剂为80:20乙腈水)3.1.3 柱温的选择当色谱柱柱温选择20 ℃ 时,硫脲峰与杂质峰可达到基线分离。同时,采集时间由10 min延长至12 min,可避免11 min左右的杂质峰延迟至下一针进样时出峰。图3. 30℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)图4. 20℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)3.2样品前处理优化本次试验中前处理流程为:称取1.00 g小麦粉,加入10.00 mL 80:20乙腈水(提取溶剂与标准品稀释溶剂保持一致),涡旋混匀,高速冷冻离心,取上清液过膜,上机测试。处理一批次8个样品,耗时约1小时。而标准推荐的前处理流程,在提取、过滤(离心)后,加入了旋蒸浓缩10 mL 80:20乙醇水提取液的操作,耗时较长,且样品通量小。因此优化后的前处理流程,提高了样品通量,减少了溶剂用量,效率得到提升。 3.3线性范围、方法检出限及方法定量限在优化的色谱条件下,硫脲标准工作液线性范围为0.20-5.00 μg/mL,线性方程y=0.9109x-0.0300,线性相关系数r2=0.99992,线性关系良好。硫脲线性方程图及标准曲线点叠加色谱图。在优化前处理条件下,硫脲方法检出限为2.0 mg/kg,定量限为5.0 mg/kg。 图5. 硫脲线性方程图及标准曲线点叠加色谱图(点击查看大图)3.4回收率和精密度小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围在 91.2%~95.0% 之间,相对标准偏差在 0.57%~2.36% 之间(n=6)表1 小麦粉基质 2.0、5.0、20.0 mg/kg三水平加标回收率范围和精密度(点击查看大图)图6小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围和精密度(点击查看大图)图7小麦粉基质中硫脲方法检出限 MDL 浓度 (2.0 mg/kg) 加标 (点击查看大图)图8小麦粉基质中硫脲方法定量限 LOQ 浓度 (5.0 mg/kg)加标(点击查看大图)图9小麦粉基质中硫脲10倍方法检出限浓度 (20.0 mg/kg)加标(点击查看大图)04结论本方法针对食品补充检验方法《小麦粉中硫脲的测定 BJS201602》进行了优化,简化了前处理流程,优化了色谱条件,线性范围、方法检出限及定量限、加标回收率及精密度均能满足方法确认的要求。该方法简单、便捷,适用于小麦粉中非法添加物硫脲的快速测定。 参考文献:[1] 国家粮食和物资储备局办公室. 关于《小麦》《小麦粉》国家标准公开征求意见的通知 国粮办发[2019]330号[EB/OL]. http://www.lswz.gov.cn/html/zmhd/yjzj/2019-11/11/content_247627.shtml[2] 总局关于进一步加强小麦粉质量安全监管的公告(2017年第132号)[J]. 现代面粉工业,2017,31(06):28.[3] 于鸿飞. 国内外小麦粉标准的差异及我国现行小麦粉标准的修订研究[D]. 西北农林科技大学,2011.[4] 黄海霞,张真,吴金芝. 小麦多酚氧化酶特性及褐变控制研究[J]. 安徽农业科学,2008,36(31):13574-13575,13638.[5] GB 2760-2014. 食品安全国家标准 食品添加剂使用标准[S]. 2014[6] 焦安浩. 硫脲的危险性及安全管理措施研究[J]. 化工管理,2021(07):95-96[7] 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告[J]. 中国食品卫生杂志,2017,29(01):25.[8] Thermo Fisher Scientific Technical Guide 21003:HILIC Separations Technical Guide-A Practical Guide to HILIC Mechanisms, Method Development and Troubleshooting[A/OL]. https://assets.thermofisher.cn/TFS-Assets/CMD/brochures/TG-21003-HILIC-Separations-TG21003-EN.pdf . 2014
  • GE CheckPoint TOC分析仪标准品无锡投产
    GE分析仪器三种适用于CheckPoint总有机碳TOC分析仪的标准品已正式于GE水处理无锡工厂投产,这三种标准品将采用TOC与电导率两用样品瓶进行封装,配备标准样品瓶盖。(TOC与电导率两用样品瓶:玻璃瓶内壁经去离子处理,实现电导率检测无离子干扰,同时玻璃瓶最大程度降低TOC污染)◆ ◆ ◆三种标准品编号如下- STD 97010-02,CheckPoint TOC校准套装,装于TOC与电导率两用样品瓶中- STD 31003-04,CheckPoint系统适用性套装,装于TOC与电导率两用样品瓶中- STD 97006-02,CheckPoint线性套装,装于TOC与电导率两用样品瓶中同时,适用于CheckPoint TOC分析仪的电导率标准品也可从GE水处理无锡工厂直接订购。◆ ◆ ◆电导率标准品编号如下- LCSTD 77035-01,浓度为25 μS/cm的电导率标准品 (HCl)在此之前,CheckPoint TOC分析仪的标准品需要从美国订购,用户普遍反应 “运输不便,保质期短”,给仪器的校准验证带来不便。为提升用户使用的方便性,在美国工厂的支持下,GE水处理无锡工厂已开始正式生产CheckPoint TOC分析仪的标准品,生产工艺及质量保证系统与美国生产基地一致。在确保标准品质量的同时,因省去了繁杂的进出口及清关手续,标准品的运输时间较之前至少加快了30%,保证及时供货,大大缩短了客户从订货到收货的周期,从而留给客户的保质期更长,全面保证仪器校准验证的通过率。现在,用户可以从GE水处理无锡工厂订购 Sievers全系列TOC分析仪的配套常用标准品:- 包括M9、M5310 C、500 RL、860、CheckPoint、InnovOx;- 标准品的原物料主要向三大机构采购(NIM, NIST, USP*);- 每份标准品都具备相应的分析证书;- 生产质控严格,符合2015版中国药典、美国药典、欧洲药典和日本药典,满足TOC的校准、验证、确效及药典系统适用性需求。* NIM—中国计量科学研究院,NIST—美国国家标准与技术研究所,USP—美国国家药典委员会◆ ◆ ◆您的仪器需要定期校准校验对于不同型号的TOC分析仪,我们建议根据不同的周期校准校验,以确保仪器稳定及精准的运行。Sievers M9/M5310C/860/500RL系列的TOC分析仪,建议至少每年校准校验一次;CheckPoint及InnovOx系列TOC分析仪,建议每6个月校准校验一次。另外,系统适用性试验的频率,各国药典均没有明确规定。实际操作中,要保证仪器的正常工作状态,建议至少每3-6个月确认一次。根据产品的质量控制风险,可以适当提高确认频率,如每个月或每周。立刻联系我们,进行订购!▼http://www.instrument.com.cn/netshow/SH102481/
  • 热烈祝贺上海安谱公司成为爱尔兰Reagecon标准品的正式代理商
    Reagecon成立于1986年,拥有超过 25 年的经验,在标准品和参照物方面,拥有独特的地位,是全球唯一一家同时在以下所有基本计量技术方面获得ISO17025认证的生产商: &radic 实验室称量校准 &radic 温控机器校准(-196° C~+1200° C) &radic 单道及多道移液器校准 &radic 数字式密度计或基于比重计的技术所使用的密度标准品的测试(0.6407 - 1.0337g 1ml) 这些基本技术单独或组合起来使计量学得以形成和完善,同时直接关系着几乎所有标准品和参照物测量的不确定性。 Reagecon标准品宽度和广度方面,占据着世界领先地位,产品涵盖了一系列独特的工艺、技术和科学学科,包括以下内容: ● 电化学 ● 物理性质 - 折射率、密度、粘度、熔点、渗透压、冰点、浊度 ● 无机物 - 金属元素、阴离子、总无机碳 ● 物理化学 - 颜色、分光光度法(线性、波长、带宽、杂散光) ● 溶出度 - 即用型/浓缩试剂 ● 石油化学/生物燃料 - 总酸值/总碱值欢迎各位新老客户的垂询。 地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 加强食品安全须严格制定标准
    p  在“两会”即将召开之际,新华网梳理了连着百姓心事的几件“两会”大事。其中就有a style="color: rgb(255, 0, 0) text-decoration: underline " title="" href="http://www.instrument.com.cn/application/industry-S03.html" target="_blank"span style="color: rgb(255, 0, 0) "strong食品安全/strong/span/a问题——怎样为“舌尖上的安全”把好关?据了解,已经有一些代表和委员准备了与食品安全有关的提案。近年来,人们对食品安全越来越关注,它将是今年“两会”的热点话题之一。/pp  在工业生产中,既有安全标准,也有质量标准。不言而喻,安全标准是第一位的标准,这一点在食品药品安全的重要性上体现得最为突出。安全标准和质量标准在实践中常常融合为一个标准。近年的一些食品安全事件(如三聚氰胺牛奶事件)反映我国的安全标准还有待提升和完善。比如,牛奶已经成为居民消费必需品,但标准和监管体制并未相应升级。又如,实行包产到户后,农业生产者高度分散的业态难以保证饲养规范和奶源品质,等等。问题的核心在于,奶业市场标准出现了失控,龙头企业竞相进口成本更低的乳清粉制作液态常温奶,再以成本价倾销的方式将竞争对手排挤出市场。规范养殖下的鲜奶成本太高,难以与之竞争,导致违规养殖和加工盛行,利益相关者挖空心思,通过添加三聚氰胺来实现蛋白质含量达标。再加上食品监管体系不健全,最终导致了这一震惊世界的食品安全事件。/pp  日本也曾发生过森永毒奶粉事件。上世纪50年代,日本经济持续高速增长,对牛奶和奶制品的需求增长迅速,但监管体制相对滞后,在这一背景下,1955年爆发了森永毒奶粉事件:由于制作奶粉的添加剂中混入了砷,导致一百多名婴儿中毒死亡,一万多人留下终身疾患。在消费者维权团体的不懈努力下,这一事件直到1973年才得以定案,森永两名员工被判刑,同时对受害者或其遗属提供终身赔偿,迄今为止,平均每年支付超过10亿日元的赔偿金。围绕这一事件过失责任的认定,成为日本法律史上关于侵权责任的著名案例。/pp  两起事件的根源,都在于标准过低且无约束力。森永毒奶粉事件爆发的根源,就在于企业使用劣质奶源,制成的奶粉兑水后不易均匀化开,于是加入添加剂帮助溶解,结果使用了含砷的劣质添加剂,导致重大安全事故。三聚氰胺事件是鲜奶和还原奶的错位竞争所致,和森永事件一样,本质上也是因为质量标准和安全标准过低。/pp  两起事件的处置也值得深思。森永事件后,日本牛奶及奶制品国标向荷兰等奶业发达国家标准看齐,并在立法和修法中对食品卫生、添加剂使用等进行了严格的法律限定,并对消费者寻求质量安全、表达意见的权利及知情权、选择权给予法律保护。经过长期努力,日本食品安全标准已经成为受到广泛信赖、具有国际影响力的标准。在三聚氰胺牛奶事件的处置中,虽然对具体行为和具体责任方进行了处罚,但后续赔偿存在争议,而且,乳品安全国家标准非但没有得到促进,反而在修订过程中受龙头企业等多方利益诉求影响,出现了蛋白质含量、菌落总数等关键标准相对于原国标大幅度退步的怪象。/pp  总结两起案例,可以看到,安全和质量合一的标准,要求有多高,要求有多严,决定了一个产业乃至一个经济体的竞争力。为什么这么多中产阶级消费者信不过中国制造?原因很简单,中国市场上既有严格符合标准的产品,也有不符合标准的非标产品,还有大量形式上有标准认证实质上却没有认证的产品。/pp  全世界的普遍规律是国标低于行业共同制定的行标,行标又低于大企业的企标。在很多领域,中国的情况则恰恰相反,大企业不通过质量提升、研发创新去寻求高于行业平均的利润率,反而通过恶性竞争谋求基于市场垄断的超额利润,和一百年前美国企业不择手段抢占市场份额、简单依靠规模扩张增长的方式如出一辙。/pp  因此,要实现中国创造,关键在于把标准作为提升产业竞争力的核心,肃清市场环境。鉴于我国市场经济体制规范程度还不高,提升标准可以小步快进,但方向必须明确,只能是就高不就低,对非标产品公然上市、企标行标屡屡突破国标下限的现象必须零容忍。/p
  • 卫生部公布27个食品添加剂产品标准
    根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,我部组织中国疾病预防控制中心参照国际标准,指定亚硝酸钾等27个食品添加剂产品标准。  特此公告。  附件1. 亚硝酸钾等27个食品添加剂产品标准目录序号标准名称1.亚硝酸钾2.铵磷脂3.二氧化硫4.喹啉黄5.辣椒橙6.阿力甜7.乙酸钠8.硬脂酸(十八烷酸)9.聚甘油蓖麻醇酯10.5'肌苷酸二钠11.琥珀酸单甘油酯12.对羟基苯甲酸甲酯钠13.5'尿苷酸二钠14.5'腺苷酸15.二甲基二碳酸盐16.乳化硅油17.肌醇18.苯氧乙酸烯丙酯19.二氢-β-紫罗兰酮20.二氢香豆素21.氧化芳樟醇22.L-硒-甲基硒代半胱氨酸23.冰乙酸(低压羰基化法)24.番茄红素(合成)25.富马酸一钠26.硅酸钙27.乙二胺四乙酸二钠二〇一一年七月二十二日  原文请见:卫生部关于亚硝酸钾等27个食品添加剂产品标准的公告
  • 2023年9月份有167项标准将实施 食品标准超50%
    2023年9月份有167项标准将实施我们通过国家标准信息平台查询到,在2023年9月份将有167项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在9月份新实施的标准中,与食品相关的标准有85个,占据了51%,紧随其后的领域为医药卫生、环境保护。医药卫生领域标准23个,主要为行业标准,包括医疗器械产品标准、医疗用品标准及各种规范类标准。环境保护领域标准16个,主要涉及土壤、废水、废气等。在9月份新实施的标准中,包含了多品类科学仪器,如:离子色谱仪、原子吸收光谱 仪、辉光放电质谱 仪、电感耦合等离子体发射光谱法等。具体2023年9月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(85个)LS/T 6145-2023 粮油检验 粮食中铅的测定 胶体金快速定量法 LS/T 6144-2023 粮油检验 粮食中镉的测定 胶体金快速定量法 LS/T 6143-2023 粮油检验 谷物中黄曲霉毒素 B1 的测定 时间分辨荧光免疫层析定量法 LS/T 6142-2023 粮食真菌毒素快 速检测方法性能评价 LS/T 6141-2023 粮油检验 大米水浸裂纹粒的测定 LS/T 3273-2023 米皮 LS/T 3272-2023 面皮 LS/T 3271-2023 蒸谷米 LS/T 1805-2023 粮食数据采集技术规范 政策性粮食收购 LS/T 1232-2023 粮油储藏 简易仓囤储粮通风技术规程 LS/T 1231-2023 稻米加工技术规程 DB4104/T 129-2023 郏县饸饹面烹饪技艺 DB12/T 1225-2023 茄果类蔬菜秸秆好氧堆肥技术规程 DB12/T 1224-2023 叶菜类蔬菜尾菜饲料 化技术规程 DB12/T 1223-2023 菜地烟粉 虱 信息素诱捕防控技术规程 DB12/T 1222-2023 梨园主要病虫害绿色防控技术规程 DB12/T 1221-2023 日光温室草莓生产技术规程 DB43/T 1588.37-2023 小吃湘菜 第 37 部分:栖凤渡鱼粉 DB43/T 2650-2023 低温粮仓通用技术要求 DB43/T 2649-2023 食品接触材料及制品 1- 己烯迁移量的测定 DB43/T 2648-2023 一次性竹质餐具(刀、叉、匙)通用技术要求 DB43/T 2645-2023 油茶农业气象观测规范 DB14/T 2793—2023 南方红豆 杉 播种育苗技术规程 DB14/T 2792—2023 文冠果育苗造林技术规程 DB14/T 2791—2023 金黑杨 扦插育苗技术规程 DB14/T 2790—2023 香椿播种育苗技术规程 DB14/T 2789—2023 白桦播种育苗技术规程 DB14/T 2788—2023 栎类轻 基质无纺布容器育苗技术规程 DB14/T 2787—2023 平欧杂种榛 弓形压条育苗技术规程 DB14/T 2786—2023 油松母树林营建技术规程 DB14/T 2785—2023 主要造林针叶树种容器苗质量分级 DB14/T 2784—2023 主要造林树种采种技术规程 DB14/T 2783—2023 草地围栏建设技术规程 DB14/T 2782—2023 通道绿化抚育技术规程 DB14/T 2781—2023 天然 辽东栎林大径材培育技术规程 DB14/T 2780—2023 秸秆容器苗边坡绿化技术规范 DB14/T 2779—2023 营造林工程监理规范 DB14/T 2778—2023 黄土丘陵区水土保持林营造技术规程 DB14/T 2777—2023 植树造林种草技术规范 DB14/T 2776—2023 森林康养基地 导引指南 DB14/T 2775—2023 林业技术推广实训基地建设规范 DB14/T 2774—2023 堆肥法处理绿化废弃物技术规程 DB14/T 2773—2023 常见落叶行道树修剪规范 DB14/T 2772—2023 晋北风沙 源治理 技术规程 DB14/T 2771—2023 沙化土地修复治理技术规程 DB14/T 2770—2023 常绿针叶树养护技术规程 DB4115/T 086-2023 茶树花加工技术规程 DB50/T 1442-2023 合川黑猪品种鉴别和种猪等级评定 DB50/T 1441-2023 中蜂生产性 能测定技术规范 DB50/T 1440-2023 中蜂 介 王技术规范 DB50/T 1439-2023 中蜂蜂群 转场技术规范 DB50/T 1438-2023 中蜂蜂群 扩繁技术规范 DB50/T 1437-2023 中蜂蜂蜜 溯源管理规范 DB50/T 1436-2023 丘陵地区油菜飞播生产技术规程 DB50/T 1435-2023 郎氏十 框箱继箱生产中蜂成熟蜜 技术规范 DB50/T 1434-2023 桑叶 茶加工 技术规程 DB50/T 1433-2023 桑葚 酱 加工技术规程 DB43/T 2641-2023 稻谷低温储藏技术规范 DB43/T 2640-2023 储备粮油 扦样技术 规范 DB43/T 2636-2023 即食鱼 豆腐加工技术规程 DB 4407/T 101-2023 潭碧冬瓜生产技术规程 DB41/T 974-2023 地理标志产品 内黄大枣 DB41/T 456-2023 丹参生产技术规程 DB41/T 455-2023 连翘生产技术规程 DB41/T 325-2023 南湾鳙鱼 DB41/T 2434-2023 老龄牡丹复壮技术规程 DB41/T 2423-2023 蜡梅 造型苗木生产技术规程 DB41/T 2422-2023 蜡梅 多干大苗培育技术规程 DB41/T 2421-2023 淫羊 藿 ( 箭叶淫羊藿 )加工技术规程 DB41/T 2420-2023 丹参烘干储存技术规程 DB41/T 2419-2023 桑稚蚕颗粒人工饲料共育技术规程 DB41/T 2417-2023 烟田滴灌施肥一体化技术规程 DB41/T 2416-2023 高标准农田智慧灌溉技术规程 DB41/T 2415-2023 高标准农田建设项目验收规程 DB4112/T 315—2023 灵绿麦 1 号生产技术规程 DB4112/T 314—2023 旱作夏芝麻生产技术规程 DB4112/T 313—2023 果园再植障碍防控技术规程 DB31/T 645-2023 上海果品等级 葡萄 DB31/T 1406-2023 农用地现状分类 DB3601/T 7—2023 大塘清明酒生产工艺规范 GB/T 42679-2023 农业废弃物资源化利用 生物质资源综合利用 GB/T 42550-2023 农业废弃物资源化利用 农业生产资料包装废弃物处置和回收利用 GB/T 42546-2023 农业废弃物资源化利用 农产品加工废弃物再生利用 GB 23350-2021 限制商品过度包装要求 食品和化妆品 GB/T 42778-2023 无土草毯 环境环保标准(16个)GB/T 18916.6-2023 取水定额 第 6 部分:啤酒 GB/T 18916.12-2023 取水定额 第 12 部分:氧化铝 GB/T 18916.7-2023 取水定额 第 7 部分:酒精 GB/T 18916.16-2023 取水定额 第 16 部分 : 电解铝 GB/T 42642 -2023 海洋底栖动物种群生态修复监测和效果评估技术指南 GB/T 42643-2023 海底沉积物声学特性原位调查规范 GB/T 33233-2023 节水型企业 电解铝行业 GB/T 42637-2023 大洋多金属硫化物资源调查规范 DB5301/T 91-2023 城镇排水系统溢流污染控制技术指南 DB12/T 1228-2023 农村生活污水设施运行检查技术规范 DB12/T 1226-2023 农药包装废弃物回收处理技术规程 DB14/T 2769—2023 表面流人 工湿地治理煤矿废水工程 技术规范 DB31/T 310016-2023 工业园区挥发性有机物传感器法网格化监测技术规范 DB31/T 310015-2023 环境空气气态污染物( SO2 、 NO2 、 NO 、 O3 、 CO )传感器法自动监测系统技术要求及检测方法 DB31/T 310014-2023 固定污染源废气 氯气的测定 离子色谱法 DB43/T 2 637-2023 土壤中总镉的测定 固体进样电热蒸发原子吸收光谱法 医药卫生标准(23个)YY/T 0493-2022 牙科学 弹性体印模材料 YY/T 0321.3-2022 一次性使用麻醉用过滤器 YY/T 1872-2022 负压引流海绵 YY/T 1864-2022 脊柱内固定系统及手术器械的人因设计要求与测评方法 YY/T 1858-2022 人工智能医疗器械 肺部影像辅助分析软件 算法性能测试方法 YY/T 1854-2022 聚氯乙烯医疗器械中偏苯三酸三辛酯( TOTM )溶出量测试方法 YY/T 1852-2022 人类辅助生殖技术用医疗器械 培养用 液中铵离子 的测定 YY/T 1851-2022 用于增材制造 的医用纯钽粉末 YY/T 1842.6-2022 医疗器械 医用贮液容器输送系统用连接件 第 6 部分:神经应用 YY/T 1833.3-2022 人工智能医疗器械 质量要求和评价 第 3 部分:数据标注通用要求 YY/T 1829-2022 牙科学 牙本质小管封堵效果体外评价方 法 YY/T 0772.4-2022 外科植入物 超高分子量聚乙烯 第 4 部分:氧 化指数 测试方法 YY/T 0334-2022 硅橡胶外科植入物通用要求 YY/T 0325-2022 一次性使用无菌导尿管 YY/T 1790-2021 纤维蛋白 / 纤维蛋白原降解产物测定试剂盒(胶乳免疫比浊法) YY/T 1780-2021 医用个人防护系统 SB/T 11234-2023 商场消毒操作指南 DB52/T 1744-2023 学校和托幼机构传染病报告及疫情处置管理规范 DB52/T 1742-2023 农村集中式供水单位卫生管理规范 DB4112/T 317—2023 畜牧兽医技能竞赛 兽医化验员现场技能操作规范 DB4112/T 316—2023 畜牧兽医技能竞赛 兽医 防治员 现场技能操作规范 DB31/T 713-2023 零售药店服务规范 DB31/T 12-2023 化妆品皮肤病评判技术规范 石油天然气标准(11个)GB/T 42440-2023 页岩气 工厂化压裂用水输送系统技术要求 GB/T 35212.4-2023 天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第 4 部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成 GB/T 39139.2-2023 页岩气 环境保护 第 2 部分:生产作业环境保护推荐作法 GB/T 11060.2-2023 天然气 含硫化合物的测定 第 2 部分:用亚甲蓝法测定硫化氢含量 GB/T 11060.13-2023 天然气 含硫化合物的测定 第 13 部分:用紫外吸收法测定硫化氢含量 GB/T 11060.1-2023 天然气 含硫化合物的测定 第 1 部分:用碘量法测定硫化氢含量 GB/T 11060.12-2023 天然气 含硫化合物的测定 第 12 部分:用激光吸收光谱法测定硫化氢含量 GB/T 35210.1-2023 页岩甲烷等温吸附 / 解吸量的测定 第 1 部分:静态容积法 GB/T 34533-2023 页岩孔隙度、渗透率和饱和度测定 GB/T 6683.3-2023 石油及相关产品 测 量方法与结果精密度 第 3 部分:试验方法已发布精密度数据的监测和验证 GB/T 17476-2023 润滑油和基础油中多种元素的测定 电感耦合等离子体发射光谱法 冶金矿产标准(6个)GB/T 42439-2023 锑 矿石化学物相分析方法 锑华、辉锑矿和 锑酸 盐中 锑 含量的测定 GB/T 25283-2023 矿产资源综合勘查评价规范 MT/T 1198-2023 煤矿井下人员位置监测系统使用与管理规范 GB/T 42518-2023 锗酸铋 (BGO) 晶体 痕量元素化学分析 辉光放电质谱法 DB41/T 2430-2023 煤炭勘查阶段煤层气试井钻杆地层测试技术规程 DB43/T 2635-2023 大口径 凃 塑复合钢管通用技术要求 电力半导体标准(12个)GB/T 15879.604-2023 半导体器件的机械标准化 第 6-4 部分:表面安装半导体器件封装外形图绘制的一般规则 焊球阵列 ( BGA )封装的尺寸测量方法 GB/T 42706.5-2023 电子元器件 半导体器件长期贮存 第 5 部分:芯片和 晶圆 GB/T 42706.2-2023 电子元器件 半导体器件长期贮存 第 2 部分:退化机理 GB/T 42709.5-2023 半导体器件 微电子机械器件 第 5 部分:射频 MEMS 开关 GB/T 42706.1-2023 电子元器件 半导体器件长期贮存 第 1 部分:总则 GB/T 19749.4-2023 耦合电容器及电容分压器 第 4 部分:直流或交流单相电容分压器 GB/T 22582-2023 电力电容器 低压功率因数校正装置 GB/T 42635-2023 空间用锂离子蓄电池通用规范 GB/T 26111-2023 微机电 系统( MEMS )技术 术语 GB/T 42597-2023 微机电 系统( MEMS )技术 陀螺仪 GB/T 42191-2023 MEMS 压阻式压力敏感器 件性能试验方法 GB/T 42633-2023 空间用太阳电池通用规范 机械车辆标准(6个)GB/T 42436-2023M100 车用甲醇燃料添加剂 GB/T 42416-2023M100 车用甲醇燃料 DB50/T 1418-2023 车辆后装电气 / 电子设备的电磁兼容性要求和测量方法 DB50/T 1417-2023 汽车导航单元性能要求及测试方法 DB50/T 1416-2023 电动汽车换电电池箱及接口通用技术条件 DB50/T 1415-2023 电动汽车与电池更换系统信息交互规范 其他标准(8个)GB/T 15000.3-2023 标准样品工作导则 第 3 部分:标准样品 定值和均匀性与稳定性评估 GB/T 42646-2023 星载激光测高仪场地定标探测器布设与测量方法 GB/T 42647-2023 星载激光测高仪在轨场地定标方法 GB/T 7922-2023 照明光源颜色的测量方法 GB/T 42549-2023 海洋调查船 舶 实验室安全管理规范 DB43/T 2643-2023 南方地表高温遥感监测评估方法 GB/T 22461.2-2023 表面化学分析 词汇 第 2 部分: 扫描探针显微术术语 GB/T 42543-2023 表面化学分析 扫描探针显微术 悬臂梁法向弹性常数的测定 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 我国乳品标准被指倒退 菌落数高欧美20倍
    今年6月1号起,由卫生部批准公布的乳品安全国家标准正式实施,其中共包括66项具体标准,涉及生乳、巴氏杀菌乳、灭菌乳等所有乳类和乳制品。这是2008年“三聚氰胺事件”发生后,有关部门对1986年颁布的乳品标准进行的一次重大修订,因此也被称为乳品新国标。然而,正是这个新国标却在行业内外引发了一场激烈争论。  这是2008年“三聚氰胺事件”发生后,有关部门对乳液新标准进行的一次重大修订。然而,新国标从标准正式发布到实施,引发无数争论。争论焦点之一是蛋白质含量,新国标中,蛋白含量每100克含2.8克,这个数字低于国际标准3.0克,也低于1986年旧国标的2.95克 争论焦点之二是每毫升牛奶中的菌落总数,新标准由原来的50万上升到了200万,比美国、欧盟10万的标准高出20倍,被业界惊呼为一夜倒退25年。更有舆论指出,这个乳业新国标让“中国原奶质量降到了全世界最低”。  新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长王竹天  王竹天:这个标准是适合于我们国家现在的这种养殖方式下的一个标准  中国畜产品加工研究会名誉会长农业部(奶类)顾问 骆承庠  骆承庠:中国的乳品工业恐怕要完了。  中国奶业协会乳品工业委员会副主任、卫生部原乳品订标组副组长副组长 曾寿瀛  曾寿瀛:不能像某些领导所讲的,这个标准是相互协调,相互照顾,这样的一个产物。  围绕乳品新国标,我们听到了两种针锋相对的声音。争论第一大焦点就是1986年颁布的生鲜牛乳收购标准和2003年卫生部的鲜乳卫生标准,都要求蛋白质含量为2.95%,新国标却把蛋白质含量降低为2.8%。那么,这项标准究竟是怎么定下来的?能否保证今后原奶的质量呢?我们再来看看专家的分析。  中国农科院北京畜牧兽医研究所副所长 王加启  王加启:不是说这个蛋白质的含量从2.95降到2.8以后,这个牛奶就不能喝了,  中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛  曾寿瀛 国际上没有一个标准,原料奶、生奶是2.8的,没有。  对于蛋白质标准,支持者和反对者各执一词,记者注意到,我国1986年的“国标”2.95与国际标准已有明显差距,2010年的标准在其基础上为何又降到了2.8呢?参与这次国标制定的中国农科院北京畜牧兽医研究所副所长王加启告诉记者,影响奶蛋白含量的因素很多,饲料是其中最关键的一个因素,而目前中国奶业有76%都是散户养殖,在精饲料投入不足,这不可避免地影响了奶蛋白含量。1986年制定标准时,我国以国营农场为主,奶牛数量少,都是集中养殖,2.95的指标就当时的情况来说并不高。而现在的情况已经大不一样了。  中国农科院北京畜牧兽医研究所 中国奶业协会 副理事长 王加启  王加启:分散饲养、多种模式饲养的这么一个奶业发展的局面,那么这就导致了奶牛的品种,饲养的水平,管理的水平和饲养的环境参差不齐。  中国农业大学的李胜利教授是国家奶牛产业技术体系首席科学家。他告诉我们,新国标中,蛋白质含量的标准,是根据检测部门长期监测得出的数据确定的。此前中国农业大学在全国设立了24个试验站,150个辐射点收集信息,相当一部分企业的奶蛋白含量实际上达不到2.95。这是工作人员在黑龙江省一个国内大型乳制品生产企业监测的数据,我们看到,这家企业在东北地区奶蛋白含量达到2.95以上的比例是75.1%,中南地区是63.7%,西北地区仅为23.6%。  中国农业大学 国家奶牛产业技术体系首席科学家 李胜利  李胜利:超过2.95的你看只有多少,它基本上有接近一半都活不了,你算吧。  记者:这也是一个很大的企业吗?  李胜利:很大的企业。  对于新国标把奶蛋白含量标准最终定为2.8, 86岁高龄的中国奶业协会顾问曾寿瀛则有不同的观点。  中国奶业协会顾问曾寿瀛  曾寿瀛:我看到材料上介绍的,内蒙、黑龙江有6%和10%的奶牛达不到2.95,只能达到2.8,那么这些地方的是不是应该分析一下,他为什么达不到。  从1985年开始,曾寿瀛老人作为主要标准制定者和起草人,参与了《消毒牛奶》《酸牛奶》《全脂奶粉》等8项目乳品卫生标准的制定,参与并见证了1986年的乳业国标制定。  中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛  曾寿瀛:以前过去中国那时候有一个叫北方奶牛一宗族,中国南方奶牛一宗族,那个资料都充分地显示,都是收购的牛奶在2.95,或者接近2.95,或者高于2.95,2.8是三级品,是等外品,2.95才是正品,现在是次品变正品。  曾寿瀛认为规范养殖和科学饲喂,达到2.95以上并不困难。他给记者拿出了一组数据。这是位于福建南平的一家大型乳制品生产企业,从2007年到2009年生鲜牛乳主要指标中,记者看到,除了个别月份乳蛋白的含量在2.96以上,其他均在3.0以上,2009年4月份的最高数值达到了3.08。  对于目前的乳业生产状况,两方给出了不同的数据,那个数据更接近真实的情况呢?记者选择了双方提供的两个奶牛养殖基地进行了调研,一个位于江苏省常州市,一个位于黑龙江哈尔滨南岗区。  在黑龙江哈尔滨南岗区的红旗满族乡,在这儿呢,奶牛养殖是当地的支柱产业,同时也是农民的主要收入,据了解当地农户都是分散式的小规模养殖,而且每户养殖八到十头,能占到90%以上的比例。  在村子里,我们碰到了几位在路边放牛的奶牛养殖户。他们告诉记者,家里的玉米秸秆喂完了,暂时把牛栓在路上补充些青草。  黑龙江红旗满族乡农民 付明禹  付明禹:现在苞米秸秆一块钱一捆,你算算,啥都是钱,现在工钱都没有,我们俩的工钱都没有。  记者:我们养牛不赚钱吗?  付明禹:赚啥钱,多少年没赚钱,四五年没赚钱了。  养了20多年牛的农户付明禹告诉记者,饲料的连年上涨,奶牛养殖户的利润越来越小。跟去年比,今年的玉米价格,每公斤上涨了四毛多,豆饼每吨上涨了三四百元,配合饲料每吨也上涨了500元,饲养一头牛每月的饲料成本直接增加200多元,而现在每公斤奶的价格是2.7元,一直没有太大的变化。养牛不挣钱,养殖户都喂不起精饲料。  黑龙江红旗满族乡农民 付明禹  付明禹:要是有盈利了就多给点,没有盈利就少给点,我还没有吃饭钱,得给我对付点吃饭钱。  记者在红旗满族乡走访了多户村民,发现这些分散饲养的奶牛的饲料多是玉米秸秆,豆饼,或是混合饲料,每天每头牛的饲料成本都不超过30元。当地的奶牛合作社站长告诉记者,饲料的情况,直接影响了奶蛋白含量,从他们收奶的情况来看,大部分养殖户送来的奶,蛋白含量在2.8-2.9的占50%,2.9以上高指标的奶占50%。  黑龙江浩源奶业合作社站长 关凤春  记者:你们想收高指标的奶吗?  关凤春:想,为啥不想收过指标奶。  记者:收得上来吗?  关凤春:收不上来,因为奶户这一块,牛本身出的奶就稀,就出那个奶。  随后记者又来到了位于双城县幸福乡的庆源牧业,这里是有着900头奶牛的规模牧场。记者主要,这里每头牛每天的饲喂成本达到了40多元,为提高蛋白还添加了每吨1200元的羊草。但是厂长告诉我们,按照DHI来检测的话,还有20%奶蛋白含量达不到2.8。  黑龙江庆源牧业场长 薛英峰  薛英峰:就是增加饲养这块,调整个体牛的营养指标。  薛英峰告诉记者,一定的资金实力和规模至少能保障80%的奶品奶蛋白含量达到2.9以上。但是他们所在的双城县,像他这样具备同等实力的牧场不过三家,对于有着22万头奶牛存栏量的双城县来讲,90%以上的散户小规模养殖,难以达到2.9的标准。  黑龙江奶业协会秘书长 吴和平  吴和平:原因就是这个时间呢,它的一个饲料结构,也就是营养结构,牛体状况和气侯条件所影响的。  吴和平认为2.8的数据符合奶牛泌乳期规律,而北方地区奶牛养殖量占全国的82%,其中70%以上是农户散养,又是一个不得不面对的客观事实。那么农户养牛到底有没有突破?能否养出奶蛋白在2.95以上的奶牛来呢?中国奶业协会乳品工业委员会副主任曾寿瀛告诉我们这并不难,老人带记者来到了江苏省常州市横山镇的这家奶牛合作社进行了调研。  常州横山镇苏农奶牛专业合作社顾春元  顾春元:喂的是玉米粉,还有黄豆、豆粕什么,混合的。  中国奶业协会乳品工业委员会副主任 曾寿瀛  曾寿瀛:你要给奶牛吃好,奶牛才能给人吃好,如果你给奶牛天天吃的稻草,水葫芦,水花生,在青饲料里面也克扣它,它怎么能让你牛奶里营养成分好呢?  顾春元告诉记者,他们每天给牛配备的精料有十几种,达九公斤,除此之外每天还要给牛配备青饲料50公斤,分三次喂食。  常州横山镇苏农奶牛专业合作社 张正东  记者:你觉得就高好了还是就低好呢?奶蛋白。  张正东:那肯定高好了。  记者:为什么呢?但是你要增加成本,你高了之后。  张正东:成本是,但是有回报。  陈建国说,奶蛋白含量是2.8,2.9还是3.0,三个数字表面看起来差异不大,但是实际上事关成本大小。按照他们的计算,蛋白含量每提高0.1个百分点,喂饲料成本就得相应增加五块钱左右。这个合作社实行的是按质论价,他们以奶蛋白2.9为标准,以每公斤牛奶3元钱为相应的定价基础,每高出0.1个蛋白含量就会增加5分钱。同样,每低于0.1个百分点会有相应的惩罚性罚款。计算下来,每产一公斤奶,蛋白含量2.95要比2.8,能多卖1.23元左右。  常州横山镇苏农奶牛专业合作社 负责人 陈建国  陈建国:你一头牛(一年),那就算300块钱,一头牛一年它就要相差三百。  曾寿瀛的课题组长期对这个合作社进行质量检测,他们发现,在合作社实施按质论价的体系后,从日常监测数据来看,牛奶蛋白达到2.95的比例占95%以上。  中国奶业协会乳品工业委员会副主任 曾寿瀛  曾寿瀛:每天要检测,一个月三十天,他一年下来要多少份数,三年的份数,证实了他的牛奶常年维持到2.95。  在采访中,我们还得到了一组数据,目前发达国家的原奶奶蛋白含量可以达到3.2%,加拿大的奶蛋白含量在3.3%,新西兰能够达到3.8%。显然,只有先进的集中饲养模式才能培育更好的牛,吃上更好的饲料,产出更好的牛奶。但对中国乳品行业来说,完成这个庞大的系统工程不是一朝一夕的事。面对这种困境,国家标准到底应该是就高还是就低呢?  对于中国乳品行业来说,短时间内改变散户养殖占90%的传统模式确实很难,所以很多人认为,新国标如果提高奶蛋白标准,结果只能是纸上谈兵。而反对方的观点是,不能因为发展水平低,就降低标准,以至于整个产业陷入恶行循环,更何况从操作环节看,可以实行优质优价的办法,用市场手段推行高标准。这个两难的问题似乎陷入了无解的尴尬。  中国农业大学 国家奶牛产业技术体系首席科学家 李胜利  李胜利:如果采用原来的国标的话,意味着我们有将近20%多比例的奶,都可能成为不合格的。大部分人进不去,可能有一些奶农会出现倒奶的可能性。  李胜利认为,针对目前全国70%以上乳品来自散户养殖的现状,过高的蛋白标准,只能催发更多的倒奶事件发生。  在李胜利看来,过高的标准对提高奶品质量也是有害无益。  中国农业大学 国家奶牛产业技术体系首席科学家 李胜利  李胜利:三聚氰胺在发生之前就是因为奶源过剩。  李胜利分析,正是因为达不到企业的收购标准,一些人为了把牛奶卖出去,宁愿铤而走险添加三聚氰胺。但是对于低标准一直持反对态度的曾寿瀛并不认同这个观点。  中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛  曾寿瀛:三聚氰氨它是这种见利忘义,对不对,怎么会是被迫呢?怎么会是因为2.95的问题?你2.8就不掺假了?  曾寿瀛告诉记者,现在把标准降低,无法遏制不法分子添加三聚氰胺,而且,他认为低标准也会带来另外一种隐患,乃蛋白含量低会影响牛奶固有的香味和脂气味,难以避免一些企业不用添加剂或者脱水奶粉以次充好。  中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛  曾寿瀛:带来的是你用这个原料奶做出来的所有的成品都要受到影响的问题,  奶蛋白数据的降低,会不会使生产企业为提高口感而使用添加剂呢?低标准对企业加工又会有什么影响呢?带着这样的疑问,我们的记者联系了多家大型乳品企业,最终只有北京三元食品股份有限公司接受了我们的采访。  北京三元食品股份有限公司总经理 钮立平  记者:为了保持以前这个品质,或者口感,会增加其它的添加剂,有没有这样的情况?  钮立平:我们这个企业不存在这个问题,一方面呢就是我刚才说了,一个产品线很丰富,2.8的奶也可以生产出产品,2.95以上也可以生产出自己的产品,  记者:如果要生产我们的极致奶,只有2.8奶蛋白这样的奶,那我们。  钮立平:不能生产,就不能生产。是不能够添加任何东西的,你只能用优质的奶源去生产。  记者:普通的一些中型或小型企业。  钮立平:因为小型企业呢,我觉得它主要是一个,当然它也有成本上的考虑。因为它的脂肪可能低了,为了达到你那个标准去添加一些东西,这个说不好。  看来,奶蛋白含量标准高低对乳品行业究竟会带来什么影响,还有很多未知数。而围绕乳品新国标的争论中还有另一个焦点就是菌落总数。新标准由原来的50万调高到了200万,比美国、欧盟10万的标准高出了20倍,被业界惊呼为一夜倒退25年。那么,这个标准又是如何确定的?  新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天  王竹天:就是如果是真的把它整到50万的话,就会把这一些大量的这些牛奶拒之门外。  中国畜产品加工研究会名誉会长、农业部(奶类)顾问 骆承庠  骆承庠:韩国的(菌落总数)不是7000吗?你们中国的奶200万,这不是开玩笑吗?  参与国标制定工作的中国农科院北京畜牧兽医研究所副所长王加启告诉我们菌落总数定在200万的原因。  中国农科院北京畜牧兽医研究所副所长 王加启  王加启:在新的标准里面,菌落总数定的是200万,在1986年的标准里面分了四级,一级是50万,二级是100万,三级是200万,四级是400万,所以说你比较两个标准的话,你会发现新的标准,既没有严格,也没有放松,它相当于原来标准的三级的那种标准。  王加启认为依照中国目前的养殖现状菌落总数如果设置在50万,会有一半牛奶被拒之门外。而曾寿瀛则认为菌落指标过高会直接影响牛奶的安全性。  中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛  曾寿瀛:你200万的细菌数,我们不可能把所有的细菌杀灭掉,那么牛奶中残存了一定量的数量,这个数量对牛奶在运转的过程中,保质期必然要缩短。  那么菌落值在50万和200万到底对安全性的影响有多大呢?农业部奶及奶制品质量监督检测室王俊博士,向我们展示了菌落总数在50万和200万的照片。照片上白点菌群的分布情况差异很大。  农业部奶及奶制品质量监督检验测试中心检测室主任 王俊博士  王俊:如果是50万的数的话,在这个挤奶的奶站里面,应该大家能觉得,就是说进去一看的话,应该觉得比较干净,地面上没有残余的牛奶。200万的话应该就是比较脏的条件,应该基本上来说夏天苍蝇是满处飞的,然后会有一些残余的牛奶散落在地面上,卫生设备,有些时候可能会闻到一些异味。  王俊认为,菌群数量不同,对乳品的安全性有一定的影响。不过,在国家疾控中心,负责营养与食品安全的王竹天副所长则认为菌落微生物不是致病菌,不会影响乳品安全。  新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天  王俊:大的方面来讲的话,菌落总数,不是一个直接的食品安全指标,它和我们人类的致病没有关系。  菌群数量的不同,到底对乳品会有什么影响呢,采访中,我们找到了有20年乳品安全生产经验的王炎场长。  记者:有的人说微生物含量它不是致病菌,而且还有后续的加工,说影响不到这个品质。  王炎:不可能的,不可能的,那是肯定能够影响的。  记者:根据您的经验。  王炎:肯定是影响的,但是因为他消毒,可能说不能够给人致病,但是它的新鲜感,它的口感肯定是要受影响的,  王炎告诉记者,菌落总数体现出牛奶生产的卫生状况,同时也影响着奶制品的保质期。冷链生产控制,牛奶挤下后进入这些储罐中,温度迅速降到4度以下,然后再装冷藏车,运往加工厂。整个过程一直在低温下运行,这样细菌总数可以控制在10万以下。对企业来说,相应设备的投入和改造则需要大笔资金。而很多企业会把成本转移到终端产品上去。  乳品厂管理人员:今年将近三百万投入,光北京地区。  记者:如果全范围内来讲都投入到的话又是多大?  乳品厂管理人员:那得上千万了。  在我们的印象中,社会在进步,技术在提高,消费需求在提升,相关的行业标准似乎也应该芝麻开花节节高。但是,在乳品新国标的制定中,却出现了相反的动向。这种反常的现象背后,到底折射出中国乳品行业的哪些困境?我们也听到了不少声音。  尽管对此次乳业新国标的一直是支持态度的,但是王加启认为,现行乳业新标准确实偏低,他认为这个标准会在一两年的时间内协调改进,而优质优价体系势在必行。  中国农科院北京畜牧兽医研究所副所长 王加启  王加启:企业实施真正的优质优价的体系,是推动牛奶品质提高的绝对性力量,其它的都是辅助性力量,因为市场它是一个最大的推动力量。  王加启说,在美国乳制品安全体系中最重要的《A级高温灭菌奶法令》被记录于美国《联邦法规法典》,该法规为美国奶制品的检验检测提供了可靠依据。  中国农科院北京畜牧兽医研究所副所长 王加启  王加启:监管的力度和规范,在这一点我们国家比较欠缺。  黑龙江奶协秘书长吴和平同样赞同从事实出发制定新国标,但是针对目前中国奶业的发展,他认为应该用奶粉贮备流转制度和相应的金融服务体系对奶业行业进行保障。  黑龙江奶业协会秘书长 吴和平  吴和平:在我们国内制订一个长期的一个奶粉储备流转的制度,它会对稳定行业高峰低谷这种不断的变化起到一个稳定作用。  作为卫生部原乳品订标组副组长:曾寿瀛,一直坚持用高标准引领行业发展,他告诉我们,乳蛋白含量指标定在2.8,菌落总数定在200万的低标准严重制约了我国乳业的发展。中国乳业发展可以借鉴新西兰,建立第三方检测机构。新西兰拥有全球领先的乳品第三方检测机构-SAITL乳品检测中心。第三方检测实验室的建立可以为奶户和乳制品企业提供公正的交易平台,与按质论价价格体系相结合,保障奶农与企业利益的均衡,促使奶农主动提高生鲜乳质量。  中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛  曾寿瀛:我们国家对生乳的标准,是不是能够分级,不要实行一个项目只有一个指标,例如蛋白质就是2.8,例如菌落总数就是200万,为什么不可以考虑分级呢?这个分级对消费者来讲是有好处,对乳品企业来讲也有好处,对奶农来讲它也有好处  乳品新国标究竟是订高了还是低了,我们不是专业人士,也很难给出一个定论。这场没有结果的争论里,却让我们看到了乳品行业的窘境。客观地讲,中国乳品行业最近十几年确实取得了跨越式发展,但是很多结构性的缺陷一直被表面繁荣所掩盖。一个很简单的道理,喝上好奶,必须养好奶牛。然而,过去大量投资都集中在乳品生产销售环节,并不缺少先进的技术设备,对行业基础的养殖环节,反倒没有相应规划,以至于产业链前后脱节,养殖水平落后于很多国家,原奶质量不稳。扭曲的产业结构不仅给国家标准怎么制定带来了一系列两难,也对乳制品的安全构成了隐患。不过,我想不管怎么样,安全和品质都应该是一个产业发展始终不渝的目标,作为制定标准的主管部门,在顾及现实利益的同时,千万别忘了这点。
  • 中国分析测试协会发布镉大米筛检标准(CAIA标准)
    p  近日,经中国分析测试协会标准化委员会全体委员审议同意,主任委员张玉奎院士批准,第二批中国分析测试协会标准(CAIA标准):《稻米 镉的测定 a href="http://www.instrument.com.cn/zc/75.html" target="_self" title=""strongX射线荧光光谱/strong/a法》和《稻米 镉的测定 固体进样电热蒸发a href="http://www.instrument.com.cn/zc/36.html" target="_self" title=""strong原子荧光光谱/strong/a法》正式发布。/pp  近两年来,国内爆出了大米镉超标事件,镉大米给人民带来了很大的恐慌。镉,蓝白色金属,天然存在于自然界。在锌、铅、铜、锰等金属冶炼过程和电镀、塑料、油漆、镉电池等工业三废中会排出大量的镉。一般食品中均能检出镉,含量甚微,但食物链富积会使某些食品的镉污染维持在较高水平,主要损害肾脏、骨骼和消化系统。临床可见蛋白尿、氨基酸尿、糖尿和高钙尿,骨质疏松和病理性骨折。有一定的致畸、致癌和致突变作用。/pp  《GB2762-2012 食品中污染物限量》2013年6月1正式实施,该标准对各类食品中镉的限量做了规定。其中,对大米等粮食中镉的限量规定如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201507/insimg/6d2febdc-b2be-48c6-b955-23b860699969.jpg" title="1.jpg" style="width: 650px height: 149px " height="149" hspace="0" border="0" vspace="0" width="650"//pp  检验方法:按照《GB/T 5009.15-2003食品中镉的测定》规定的方法检测,其中一些推荐方法的检出限:石墨炉原子化法为0.1ug/kg 火焰原子化法为5.0ug /kg 原子荧光法检出限量为1.2ug/kg。该标准所用方法的检出限低、检测准确,但是,常用的样品前处理方法,有磨碎,压力消解罐消解法、干法灰化、过硫酸铵灰化法、湿式消解法等。操作复杂、耗时,不适合现场检测。/pp  strong《稻米 镉的测定 X射线荧光光谱法》/strong/pp  钢研纳克检测技术有限公司联合湖南省粮油科学研究设计院,将能量色散X射线荧光光谱法应用于食品重金属的快速检测中,开发出NX-100F型食品重金属检测仪,拓展了能量色散XRF技术的应用领域。X射线荧光光谱仪检测方法具有用时短,几分钟内就可实现对粮食中有害物质的快速筛查,而且在半小时内就可完成有害物质含量的精确测定并对环境无任何特殊要求的特点。/pp  在此基础上,两家单位联合起草了中国分析测试协会标准(CAIA标准):《稻米 镉的测定 X射线荧光光谱法》,本标准规定了由X射线荧光光谱法测定稻米及制品(含糙米、精米和米粉)中镉含量的筛检方法 标准包含初筛和复筛:初筛用于对稻米镉含量是否超标的初步判断,检出限0.068mg/kg,定量限0.230mg/kg 复筛用于疑似超标样品的进一步判定,检出限0.046mg/kg,定量限0.150mg/kg 标准也可用于稻米中镉含量的定量测定,定量测定范围0.066 mg/kg ~2.0 mg/kg。/pp  img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" style="line-height: 16px "/a href="http://img1.17img.cn/17img/files/201507/ueattachment/043517d2-d466-41b9-b1df-a68d1d3e6054.doc" target="_self" title="" textvalue="《稻米 镉的测定 X射线荧光光谱法》.doc" style="line-height: 16px "《稻米 镉的测定 X射线荧光光谱法》.doc/aspan style="line-height: 16px "/span/pp  strong《稻米 镉的测定 固体进样电热蒸发原子荧光光谱法》/strong/pp  原子荧光光谱法是《GB/T 5009.15-2003食品中镉的测定》推荐的检测方法,具有检出限低等特点,不过,该方法属于实验室检测方法,虽然从检测灵敏度到样品的适应性均能满足要求,但需要进行耗时长、污染重的前处理过程,很难适合粮食部门目前重金属快速筛查或普查的要求。北京吉天仪器有限公司承担了2011年科技部国家重大科学仪器设备开发专项“用于现场、快速、准确测定的原子光谱分析系统”,并在2013 年初北京吉天仪器有限公司推出了该重大专项的成果之一——DCD-200直接进样测镉仪新产品。该仪器无需进行样品处理,无需化学试剂、操作简便、快捷,有利于环保,可以满足稻米中镉含量快速定量检测的需要。/pp  北京吉天仪器有限公司和中国农业科学院农业质量标准与检测技术研究所联合起草了中国分析测试协会标准(CAIA标准):《稻米 镉的测定 固体进样电热蒸发原子荧光光谱法》。本标准规定了采用固体进样电热蒸发原子荧光光谱法测定稻米(含糙米、精米和米粉)中镉的方法 本方法规定的镉的检出限为0.0005mg/kg,定量限为0.002 mg/kg。/pp  img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" style="line-height: 16px "/a href="http://img1.17img.cn/17img/files/201507/ueattachment/ad5b2fa6-4b52-4786-8163-40ff35954e86.docx" target="_self" title="" textvalue="《稻米 镉的测定 固体进样电热蒸发原子荧光光谱法》.docx"《稻米 镉的测定 固体进样电热蒸发原子荧光光谱法》.docx/a/pp  strong备注:/strong两个标准中提到的仪器与设备信息仅为了方便本标准的使用者,而不是指定NX-100F食品重金属检测仪、DCD-200固体进样装置,任何可以得到与其方法结果相同的仪器均可使用。/pp  strong附录:/strong/pp  2013年6月,国家标准化管理委员会启动团体标准研究项目,中国分析测试协会成为了开展团体标准的试点单位之一。2014年3月21日,“中国分析测试协会标准化委员会”成立,首先启动与筛检技术有关的仪器性能、性能测试方法和应用方法的“CAIA标准”的制定工作。/pp  2015年3月,在中国分析测试协会网站上正式公布了《饮用水 氟化物测定 2-(对磺苯偶氮)-1,8-二羟基-3,6-萘二磺酸锆分光光度法》,《味精 硫化钠测定 亚甲基蓝分光光度法》两项中国分析测试协会标准(CAIA标准)。/ppbr//p
  • 10月1日有208个与我们相关的国家标准将实施
    10月1日有208个与我们相关的国家标准将实施我们每期整理的即将实施标准都受到用户的热烈欢迎。10月份将要实施的国家标准比较多,超过400多个标准将要实施,而与我们息息相关的科学仪器及检测的标准有208个。10月1日将要实施的标准涉及化妆品、食品农业、环境、冶金、机械、石油化工塑料、矿业、纺织、医疗、电力、建材等多个行业领域。其中石油化工、机械、冶金、环境四大领域实施的国家标准较多。10月份即将实施的标准如下,需要的可以收藏。化妆品标准GB/T 39946-2021 唇用化妆品中禁用物质对位红的测定 高效液相色谱法 GB/T 39927-2021 化妆品中禁用物质藜芦碱的测定 高效液相色谱法 食品农业标准GB/T 39947-2021 食品包装选择及设计 GB/T 19420-2021 制盐工业术语 GB/T 20695-2021 高效氯氟氰菊酯原药 GB/T 20696-2021 高效氯氟氰菊酯乳油 环境标准GB/T 24031-2021 环境管理 环境绩效评价 指南 GB/T 28125.2-2020 气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定 GB/T 39298-2020 再生水水质 苯系物的测定 气相色谱法 GB/T 39299-2020 液晶面板制造稀释废液回收再利用方法 GB/T 39300-2020 含铬电镀污泥处理处置方法 GB/T 39301-2020 电镀污泥减量化处置方法 GB/T 39302-2020 再生水水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 39303-2020 废水处理系统微生物样品前处理通用技术规范 GB/T 39304-2020 再生水生物毒性检测的样品前处理通用技术规范 GB/T 39305-2020 再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法 GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法 GB/T 39308-2020 难降解有机废水深度处理技术规范 GB/T 39598-2021 基于极限甲醛释放量的人造板室内承载限量指南 GB/T 39600-2021 人造板及其制品甲醛释放量分级 GB/T 39763-2021 家具中挥发性有机化合物现场快速采集设备技术要求 GB/T 39764-2021 软体家具中挥发性有机化合物 现场快速检测方法 GB/T 39765-2021 文具中苯、甲苯、乙苯及二甲苯的测定方法 气相色谱法 GB/T 39804-2021 墙体材料中可浸出有害物质的测定方法 GB/T 39808-2021 生活饮用水外置式膜过滤系统设计规范 GB/T 39835-2021 大生活用海水水质 GB/T 39897-2021 车内非金属部件挥发性有机物和醛酮类物质检测方法 GB/T 39931-2021 木家具中挥发性有机化合物 现场快速检测方法 GB/T 39934-2021 家具中挥发性有机化合物的筛查检测方法 气相色谱-质谱法 GB/T 39939-2021 家具部件中挥发性有机化合物 现场快速检测方法 GB/T 39966-2021 废弃资源综合利用业环境绩效评价导则 GB/T 5832.4-2020 气体分析 微量水分的测定 第4部分:石英晶体振荡法 冶金标准GB/T 14352.19-2021 钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法 GB/T 14352.20-2021 钨矿石、钼矿石化学分析方法 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 电感耦合等离子体质谱法 GB/T 14352.21-2021 钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法 GB/T 14352.22-2021 钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法 GB/T 14635-2020 稀土金属及其化合物化学分析方法 稀土总量的测定 GB/T 15159-2020 贵金属及其合金复合带材 GB/T 18115.1-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第1部分:镧中铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 18115.2-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第2部分:铈中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 24980-2020 稀土长余辉荧光粉 GB/T 24981.1-2020 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 GB/T 24981.2-2020 稀土长余辉荧光粉试验方法 第2部分:余辉亮度的测定 GB/T 39231-2020 无水氯化铈 GB/T 16479-2020 碳酸轻稀土 GB/T 20892-2020 镨钕金属 GB/T 20975.13-2020 铝及铝合金化学分析方法 第13部分:钒含量的测定 GB/T 20975.15-2020 铝及铝合金化学分析方法 第15部分:硼含量的测定 GB/T 20975.19-2020 铝及铝合金化学分析方法 第19部分:锆含量的测定 GB/T 20975.20-2020 铝及铝合金化学分析方法 第20部分:镓含量的测定 丁基罗丹明B分光光度法 GB/T 20975.32-2020 铝及铝合金化学分析方法 第32部分:铋含量的测定 GB/T 20975.33-2020 铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法 GB/T 20975.34-2020 铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法 GB/T 20975.8-2020 铝及铝合金化学分析方法 第8部分:锌含量的测定 GB/T 23514-2020 核级银-铟-镉合金化学分析方法 GB/T 2526-2020 氧化钆 GB/T 2968-2020 金属钐 GB/T 3488.3-2021 硬质合金 显微组织的金相测定 第3部分:Ti(C,N)和WC立方碳化物基硬质合金显微组织的金相测定 GB/T 39158-2020 平面显示用高纯铜旋转管靶 GB/T 39232-2020 氧化锆日用陶瓷刀 GB/T 39233-2020 镧铜合金 GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法 GB/T 39292-2020 废钯炭分析用取样和制样方法 GB/T 39495-2020 金属及其他无机覆盖层 铝及铝合金无铬化学转化膜 GB/T 39789-2021 焊缝无损检测 金属复合材料焊缝涡流视频集成检测方法 GB/T 39794.1-2021 金属屋面抗风掀性能检测方法 第1部分:静态压力法 GB/T 39810-2021 高纯银锭 GB/T 39816-2021 钛及钛合金铸造母合金电极 GB/T 39856-2021 热轧钛及钛合金无缝管材 GB/T 39859-2021 镓基液态金属 GB/T 39867-2021 正电子发射断层扫描仪用锗酸铋闪烁晶体 GB/T 39157-2020 靶材技术成熟度等级划分及定义 GB/T 39163-2020 靶材与背板结合强度测试方法 GB/T 5162-2021 金属粉末 振实密度的测定 机械标准GB/T 12241-2021 安全阀 一般要求 GB/T 12242-2021 压力释放装置 性能试验方法 GB/T 14231-2021 齿轮装置效率测定方法 GB/T 1454-2021 夹层结构侧压性能试验方法 GB/T 39807-2021 无铅电镀锡及锡合金工艺规范 GB/T 18329.3-2021 滑动轴承 多层金属滑动轴承 第3部分:无损渗透检验 GB/T 18400.10-2021 加工中心检验条件 第10部分:热变形的评定 GB/T 2585-2021 铁路用热轧钢轨 GB/T 2889.5-2021 滑动轴承 术语、定义、分类和符号 第5部分:符号的应用 GB/T 35465.4-2020 聚合物基复合材料疲劳性能测试方法 第4部分:拉-压和压-压疲劳 GB/T 35465.5-2020 聚合物基复合材料疲劳性能测试方法 第5部分:弯曲疲劳 GB/T 35465.6-2020 聚合物基复合材料疲劳性能测试方法 第6部分:胶粘剂拉伸剪切疲劳 GB/T 36805.2-2020 塑料 高应变速率下的拉伸性能测定 第2部分:直接测试法 GB/T 37363.3-2020 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 GB/T 37363.4-2020 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 GB/T 3780.27-2020 炭黑 第27部分:用圆盘式离心光学沉积测量法测定聚集体尺寸分布 GB/T 39286-2020 吸收式换热器 GB/T 39289-2020 胶粘剂粘接强度的测定 金属与塑料 GB/T 39291-2020 鞋钉冲击磨损性能试验方法 GB/T 39296-2020 循环冷却水处理运行效果评价 监测换热器法 GB/T 39485-2020 燃气燃烧器和燃烧器具用安全和控制装置 特殊要求 手动燃气阀 GB/T 39741.1-2021 滑动轴承 公差 第1部分:配合 GB/T 39741.2-2021 滑动轴承 公差 第2部分:轴和止推轴肩的几何公差及表面粗糙度 GB/T 39742-2021 滑动轴承 单层滑动轴承用铝基铸造合金 GB/T 39795-2021 普通用途输送带 导电性和可燃性安全要求 GB/T 39796-2021 动车组玻璃隔声性能试验方法 GB/T 39797-2021 玻璃熔体表面张力试验方法 座滴法 GB/T 39798-2021 动车组玻璃光学性能试验方法 GB/T 39799-2021 钛及钛合金棒材和丝材尺寸、外形、重量及允许偏差 GB/T 12237-2021 石油、石化及相关工业用的钢制球阀 GB/T 7308.1-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第1部分:公差、结构要素和检验方法 GB/T 7308.2-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第2部分:轴瓦壁厚和法兰厚度测量 GB/T 7308.3-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第3部分:周长测量 石油、化工塑料标准GB/T 10006-2021 塑料 薄膜和薄片 摩擦系数的测定 GB/T 12585-2020 硫化橡胶或热塑性橡胶 橡胶片材和橡胶涂覆织物 挥发性液体透过速率的测定(质量法) GB/T 13174-2021 衣料用洗涤剂去污力及循环洗涤性能的测定 GB/T 12688.10-2020 工业用苯乙烯试验方法 第10部分:含氧化合物的测定 气相色谱法 GB/T 14905-2020 橡胶和塑料软管 各层间粘合强度的测定 GB/T 15330-2020 压敏胶粘带水渗透率试验方法 GB/T 15331-2020 压敏胶粘带水蒸气透过率试验方法 GB/T 1646-2020 2-萘酚 GB/T 1728-2020 漆膜、腻子膜干燥时间测定法 GB/T 1731-2020 漆膜、腻子膜柔韧性测定法 GB/T 1732-2020 漆膜耐冲击测定法 GB/T 1741-2020 漆膜耐霉菌性测定法 GB/T 22053-2020 戊烷发泡剂 GB/T 23937-2020 工业硫氢化钠 GB/T 23978-2020 水溶性染料产品中氯化物的测定 GB/T 24164-2020 染料产品中氯化苯的测定 GB/T 24165-2020 染料产品中多氯联苯的测定 GB/T 25791-2020 C.I.反应红194(反应红M-2BE) GB/T 25795-2020 C.I.反应蓝250(反应蓝KN-RGB) GB/T 25801-2020 C.I.分散橙30(分散橙S-4RL ) GB/T 25807-2020 间脲基苯胺盐酸盐 GB/T 31334.6-2020 浸胶帆布试验方法 第6部分:尺寸、克重等基本项目测量 GB/T 3780.28-2020 炭黑 第28部分:多环芳烃含量的测定 GB/T 39246-2020 高密度聚乙烯无缝外护管预制直埋保温管件 GB/T 39248-2020 输送液化石油气和液化天然气用热塑性塑料多层(非硫化)软管及软管组合件 规范 GB/T 39249-2020 橡胶和塑料软管及非增强软管 织物增强型 低温压扁试验 GB/T 39284-2020 硫酸镁生产滤泥的处理处置方法 GB/T 39290-2020 胶粘剂中芳香胺含量的测定 GB/T 39294-2020 胶粘剂变色(黄变)性能的测定 GB/T 39295-2020 水性胶粘剂触粘性的测定 GB/T 39297-2020 二硝酰胺铵水溶液 GB/T 39307-2020 荧光增白剂 色光和增白强度的测定 塑料着色法 GB/T 39309-2020 橡胶软管和软管组合件 液压用钢丝或织物增强单一压力型 规范 GB/T 39311-2020 热塑性软管和软管组合件 液压用钢丝或合成纱线增强单一压力型 规范 GB/T 39313-2020 橡胶软管及软管组合件 输送石油基或水基流体用致密钢丝编织增强液压型 规范 GB/T 39327-2020 船用发动机湿式排气系统用橡胶和塑料软管 规范 GB/T 39482.3-2020 涂漆和未涂漆金属试样的电化学阻抗谱(EIS) 第3部分:从模拟电解池获得数据的处理和分析 GB/T 39484-2020 纤维增强塑料复合材料 用校准端载荷分裂试验(C-ELS)和有效裂纹长度法测定单向增强材料的Ⅱ型断裂韧性 GB/T 39486-2020 化学试剂 电感耦合等离子体质谱分析方法通则 GB/T 39487-2020 发泡结构胶粘剂管剪强度试验方法 GB/T 39490-2020 纤维增强塑料液体冲击抗侵蚀性试验方法 旋转装置法 GB/T 39491-2020 汽车用碳纤维复合材料覆盖部件通用技术要求 GB/T 39693.3-2021 硫化橡胶或热塑性橡胶 硬度的测定 第3部分:用超低橡胶硬度(VLRH)标尺 测定定试验力硬度 GB/T 39769-2021 焦炭中各种形态硫的测定方法 GB/T 39801-2021 海水或苦咸水淡化用膜蒸馏装置通用技术规范 GB/T 39812-2021 塑料 试样的机加工制备 GB/T 39814-2021 超薄玻璃抗冲击强度试验方法 落球冲击法 GB/T 39815-2021 超薄玻璃抗划伤性能试验方法 GB/T 39818-2021 塑料 热固性模塑材料 收缩率的测定 GB/T 39820-2021 溴化铈闪烁体 GB/T 39821-2021 塑料 不能从规定漏斗流出的模塑材料表观密度的测定 GB/T 39822-2021 塑料 黄色指数及其变化值的测定 GB/T 39827.1-2021 塑料 用过的聚对苯二甲酸乙二醇酯(PET)瓶回收物 第1部分:命名系统和分类基础GB/T 39827.2-2021 塑料 用过的聚对苯二甲酸乙二醇酯(PET)瓶回收物 第2部分:试样制备和性能测定GB/T 39828-2021 陶瓷厚涂层的高温弹性模量试验方法 GB/T 39860-2021 胶乳制品表面残余矿物粉末的快速鉴别 X-射线衍射法 GB/T 39861-2021 锰酸锂电化学性能测试 放电平台容量比率及循环寿命测试方法 GB/T 39864-2021 锰酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法 GB/T 39873-2021 消毒剂中季铵盐的测定 液相色谱-串联质谱法 GB/T 39935-2021 塑料制品 薄膜和片材 抗粘连性的测定 GB/T 39937-2021 塑料制品 聚丙烯(PP)挤塑板材 要求和试验方法 GB/T 40553-2021 塑料 适合家庭堆肥塑料技术规范 GB/T 40612-2021 塑料 海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定释放二氧化碳的方法 GB/T 5211.3-2020 颜料和体质颜料通用试验方法 第3部分:105℃挥发物的测定 GB/T 5211.6-2020 颜料和体质颜料通用试验方法 第6部分:水悬浮液pH值的测定 GB/T 8184-2020 硫酸铑 GB/T 8185-2020 二氯化钯 GB/T 9263-2020 防滑涂料防滑性的测定 矿业标准GB/T 39833-2021 煤的燃烧特性测定方法 一维炉法 GB/T 39836-2021 煤的燃烧结渣指数测定方法 纺织标准GB/T 20385.1-2021 纺织品 有机锡化合物的测定 第1部分:衍生化气相色谱-质谱法 医疗标准GB/T 15593-2020 输血(液)器具用聚氯乙烯塑料 GB/T 18638-2021 流行性乙型脑炎诊断技术 GB/T 39111-2020 牙颌模型三维扫描仪技术要求 生物标准GB/T 39766-2021 人类生物样本库管理规范 GB/T 39767-2021 人类生物样本管理规范 GB/T 39768-2021 人类生物样本分类与编码 电力标准GB/T 18802.31-2021 低压电涌保护器 第31部分:用于光伏系统的电涌保护器 性能要求和试验方法 GB/T 20833.1-2021 旋转电机 绕组绝缘 第1部分:离线局部放电测量 GB/T 24982-2020 白光LED用石榴石结构铝酸盐系列荧光粉 GB/T 39159-2020 集成电路用高纯铜合金靶材 GB/T 39160-2020 薄膜太阳能电池用碲锌镉靶材 GB/T 39492-2020 白光LED用荧光粉量子效率测试方法 GB/T 39494-2020 新能源汽车驱动电机用稀土永磁材料表面涂镀层结合力的测定 GB/T 39771.2-2021 半导体发光二极管光辐射安全 第2部分:测试方法 GB/T 39777-2021 节能量测量和验证技术要求 工业锅炉系统 GB/T 39779-2021 分布式冷热电能源系统设计导则 GB/T 5095.2303-2021 电子设备用机电元件 基本试验规程及测量方法 第23-3部分:屏蔽和滤波试验 试验23c:连接器和附件的屏蔽效果 线注入法 GB/T 5095.2307-2021 电子设备用机电元件 基本试验规程及测量方法 第23-7部分:屏蔽和滤波试验 试验23g:连接器的有效转移阻抗 GB/T 5095.2501-2021 电子设备用机电元件 基本试验规程及测量方法 第25-1部分:试验25a:串扰比 GB/T 5095.2503-2021 电子设备用机电元件 基本试验规程及测量方法 第25-3部分:试验25c:上升时间衰减 建材标准GB/T 39865-2021 单轴晶光学晶体折射率测量方法 GB/T 39776-2021 砖瓦工业隧道窑热平衡、热效率测定与计算方法 GB/T 3296-2021 日用瓷器透光度测定方法 GB/T 39156-2020 大规格陶瓷板技术要求及试验方法 GB/T 39862-2021 高热导率陶瓷导热系数的检测 其他标准GB/T 32224-2020 热量表 GB/T 39901-2021 乘用车自动紧急制动系统(AEBS)性能要求及试验方法 GB/T 39902-2021 城市轨道交通中低速磁浮车辆悬浮控制系统技术条件 GB/T 39941-2021 木家具生产过程质量安全状态监测与评价方法 GB/T 39964-2021 造纸行业能源管理体系实施指南 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 中药“有毒”是误读:欧美用食品标准来管中药
    中药重金属超标是个老话题。海外消费者对中药存在误解,西医理念和中医理念不一致。  最近,中药重金属超标问题引起了人们的广泛关注。实际上,这在中药领域是个老话题。盘点这些所谓&ldquo 超标&rdquo 事件,一个最为鲜明的特点是:出口转内销。境外市场发现超标毒中药,经媒体报道后在国内形成轩然大波。香港卫生署发布公告称,一批同仁堂健体五补丸被检测出汞含量超标,另外两款产品牛黄千金散及小儿至宝丸的朱砂成分含量超标。  朱砂所含&ldquo 汞&rdquo 和水银之&ldquo 汞&rdquo 是两回事,此&ldquo 汞&rdquo 非彼&ldquo 汞&rdquo 。国家药典委员会首席专家钱忠直教授认为,汞对人体的毒性,很大程度上取决于它的存在形式,而朱砂的主要成分为硫化汞(HgS),是典型的共价键化合物,化学性质稳定,溶解度极小,甚至不溶于盐酸和硝酸,难以在胃中分解被人体吸收进入体内。因此,对朱砂和含朱砂中成药的毒性评价,不能简单套用&ldquo 汞&rdquo 的毒性数据来进行折算,应区分药物中含有的是什么形态和价态的汞。将汞毒性套在朱砂身上,是不符合化学原理的。在此事件之前,华润三九集团生产的治疗偏头疼中药正天丸在英国被认为可能含有毒性,因为正天丸中含有乌头草,这是一种曾被古希腊人视为&ldquo 毒药之王&rdquo 的药草,可能对心脏或者神经系统有毒性。华润三九集团相关人员表示,正天丸说明书中披露的处方包含的附片为附子的炮制品。附子是毛茛科植物乌头的子根加工品,而乌头为毛茛科植物乌头的母根,附子与乌头入药部位不同。因此,经过炮制后,附子所含乌头类生物碱毒性大大降低。  汉森制药旗下拳头产品四磨汤被曝出含致癌物槟榔。原因是国外2003年有一篇文章,列出槟榔、烟草等118种致癌物质。文章对东南亚、马来西亚、泰国、印度进行了流行病学调查,调查显示长时间咀嚼槟榔的人口腔癌发病率要高一些,结论说长期咀嚼槟榔可能诱发口腔癌。&ldquo 嚼槟榔&rdquo 与&ldquo 槟榔入药&rdquo 有根本区别,此槟榔非彼槟榔。中国工程院院士李连达总结出几点&ldquo 不一样&rdquo :一是所用原料部位不一样。&ldquo 嚼槟榔&rdquo 所用槟榔是&ldquo 幼果&rdquo ,而药用槟榔使用成熟的果仁。二是炮制加工不一样。&ldquo 嚼槟榔&rdquo 用石灰水浸泡,再加上碱性、刺激性很强易引起口腔黏膜损伤。中药槟榔则须经炮制、加工、提取、除杂,有明显的解毒作用。三是入口方式不一样。&ldquo 嚼槟榔&rdquo 有的人一嚼几个小时,而中药槟榔是汤剂口服,不会长时间刺激口腔黏膜。四是用量不一样。&ldquo 嚼槟榔&rdquo 没有限时,属于大量、无限制的使用。而中药用槟榔一天一般是3&mdash 5克。  中国中药协会会长房书亭认为,中药有毒主要是海外消费者对中药存在误解,西医理念和中医理念不一致。如果单纯地把它们作为一个化学分子看待,那药就成了害人的毒药 如果当作一个有机整体看待,它就是治病的良药。中药之害在医不在药。中药临床是否安全的关键,不在于自身是否有毒性,而是在于临床能否合理应用  &ldquo 龙胆泻肝丸事件&rdquo 始于上个世纪90年代至本世纪初。由于外国人不懂中医药、不按中医理论辨证,给病人长期使用含马兜铃酸的中药减肥致使一些人肾脏受损。一些西方国家媒体借机大肆炒作,最终多达70余种中药材遭到株连,酿成了&ldquo 马兜铃酸事件&rdquo 。  中国中医科学院中药研究所研究员梁爱华指出,在国内,中药是遵中医理论、辨证施治,出问题较少。国外用法不同,没有在中医理论指导下使用,出现问题是正常的。不能在国外一出问题,遭到禁用,国内就觉得问题不得了。中西药都有不良反应,关键是要合理使用。  &ldquo 临床中,我从未发现一例患儿因使用朱砂或含有朱砂的中成药出现不良反应。&rdquo 北京东直门中医院儿科教授徐荣谦说,朱砂在临床上主要用于危、急、重病症。中医最著名的、用于急救的&ldquo 成药三宝&rdquo 安宫牛黄丸、局方至宝丸、紫雪丹的配方中都含有朱砂。凤凰卫视主持人刘海若在英国被西医宣布为脑死亡,回国采用中医治疗后,竟然又可以说话、走路了。治疗过程中,起重要作用的就是安宫牛黄丸。  古人说:&ldquo 药之害在医不在药&rdquo 。离开中医的整体观,不懂辨证论治和君臣佐使,乱用或滥用中药,就容易出问题。诚如清代医家徐灵胎所言:&ldquo 虽甘草、人参,误用致害,皆毒药之类也。&rdquo 古来亦有&ldquo 医不三世,不服其药&rdquo 之说,意指中医如果没有深厚的中医药知识,不服其药。  全国政协委员王承德说,中药有毒与无毒,关键是能否对证治疗。只要对证治疗,有毒的也安全。不对证治疗的,无毒的也有毒。他希望正确认识中药的毒性问题。  中国中医科学院柳长华研究员指出,朱砂等含汞中药引发毒性反应的主要原因,是错误地将含汞药物作为保健药物,超量、超时使用。中医服药讲究&ldquo 中病即止&rdquo ,&ldquo 有病病受之,无病体受之&rdquo ,只要在医生指导下,按照安全剂量、用药时间服用,就不会引发毒性反应。  北京市中医局有关负责人表示,含重金属等矿物如朱砂、自然铜、石膏等入药是中医的传统,《神农本草经》就有记载。经过数千年的临床实践,许多老专家临床上应用矿物药治疗病症,常能起到一般药物所没有的积极作用,所以,含重金属矿物药是中医药特色和优势的组成部分。实际上,中药临床是否安全的关键不在于自身是否有毒性,而是在于临床能否合理应用。很多毒性药,只要应用得当,通过复方配伍和辨证论治,就能在临床上起到很好的治疗作用。&ldquo 实际上,毒性不仅仅存在于中药与中成药身上,许多西药也存在对人体脏器的损伤作用。比如使用庆大霉素就存在致聋危险与肾损伤的危险,但是在科学用药、保证剂量的前提下,多数药品的毒副作用对人体不构成威胁。&rdquo 梁爱华说。  钱忠直强调,是药三分毒。所有的药上市批准,找不到一个百分之百安全的药。吃药一点风险都没有,这样的药是找不到的。而医生根据经验指导患者服药,就可以有效地规避药品风险。  欧美国家采用食品标准检测中药。所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。很多国家和地区,包括香港、东南亚国家、日本在内,对于中药重金属的限量标准,采用的是食品标准。特别是在欧美国家,并不承认中药是药。中药是以食品、保健品等名义出口的,欧美国家采用的是食品标准对中药进行检测。钱忠直指出,药品并不像食品一样大量地、经常地食用,是短期内在医生的指导下限量服用。药品重金属的含量,不能简单地用食品的标准来代替,只能是参考。王承德认为,用食品标准来管中药,限制含重金属中药的使用,导致中医大夫不敢使用,许多有特色的中医治疗方法失传,大大降低了中医的治疗效果。李连达不无担心地说,这个有毒应该禁用,那个有毒应该禁用,没完没了,如果这样搞下去,什么中药都不能用了。这不仅仅是一个品种、一味药的问题,而是关系到整个中医药事业的发展。梁爱华说,国际上以某一单一成分是否有毒,来判定中药药材是否有毒,这是欠科学的。  所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。当朱砂做成中成药时,测定其中有毒的游离可溶性汞,目前国际上采用的方法均是消解破坏法,其结果是,在破坏和消除了有机物干扰的同时,不溶性的朱砂(HgS)分解成了有毒的Hg2+、Hg+。测定的物质和人们服用的物质不是同一种形态。所以,会得出中成药汞超标几十倍、几百倍的报告结论。  柳长华认为,中药讲究用药性治病,而西药根据成分治病。中西医之间存在很大差别,用西医标准来评价中医,本身就是对中医的不尊重。化学测汞采用的是原子吸收法,检测出的是朱砂中所有汞成分,而不仅是游离汞。因此,以此指责中药有毒是不合理的。  钱忠直介绍,含朱砂中成药安全性质量控制的一个关键问题,就是要建立能够选择性测定不同形态和价态汞的方法。这个课题国家药典委员会正委托上海药检所在研究,有望在2015年版中国药典中收载。  推动中药质量评价体系研究,已成为我国中药产业发展面临的重要课题。钱忠直指出,药品重金属限量标准是一项全新的工作,应在保证安全的前提下,综合考虑资源的有效性等多方面因素,不断积累数据,最后形成科学的限量标准。
  • 喜讯!美正检测获得7个国家标准物质定级证书
    美正检测7个国家标准物质,通过国家二级标准物质终审鉴定经过近1年时间的准备,在牛年开年之初,美正检测凭借过硬的技术实力,成功获得7项国家标准物质定级证书。在严格的现场评审过程中,评审组专家教授对美正检测标准物质研发工作予以了高度评价,这也标志着美正检测标准物质研发迈上了新台阶。国家标准物质证书的含金量有证标准物质(Certified Reference Material) (CRM),指附有证书的标准物质,有证标准物质是由标准物质由国务院计量行政部门批准、颁布并授权生产,产品经过国家计量行政部门认证的,定值更加可靠。本次获得的有证标准物质主要应用于环境、食品、农业等领域中磺胺二甲嘧啶、磺胺嘧啶、孔雀石绿、隐色孔雀石绿、氧氟沙星、己烯雌酚、三聚氰胺残留检测,以及分析仪器校准,分析方法评价,操作人员水平考核,测量过程质量控制等,让我们一起来看下清单:美正检测有证标准物质清单产品编号产品名称特性值GBW(E)100620甲醇中磺胺二甲嘧啶溶液标准物质100μg/mlGBW(E)100621甲醇中磺胺嘧啶溶液标准物质100μg/mlGBW(E)100622乙腈中孔雀石绿溶液标准物质100μg/mlGBW(E)100623乙腈中隐色孔雀石绿溶液标准物质100μg/mlGBW(E)100624甲醇中氧氟沙星溶液标准物质100μg/mlGBW(E)100625甲醇中己烯雌酚溶液标准物质200μg/mlGBW(E)10062650%甲醇水中三聚氰胺溶液标准物质1000μg/ml虽然这些检测物质在国家食品安全政策中,药物残留有严格的限量要求,但是因为休药期控制不当,环境、水、饲料影响也会导致食品安全事件发生。近期我们通过的有证标准物质,主要覆盖以下应用领域:磺胺类药物磺胺类药物主要通过输液、口服、创伤外用等用药方式或作为饲料添加剂而残留在动物源食品中。在近15年~20年,动物源食品中磺胺类药物残留量超标现象十分严重,多在猪、禽、牛等动物中发生。本次获得的有证标准物质磺胺二甲嘧啶、磺胺嘧啶为客户进行磺胺类兽残定量检测和方案验证提供准确的标物支持。孔雀石绿孔雀石绿,是一种有毒的三苯甲烷类化学物,既是染料,也是杀真菌、杀细菌、杀寄生虫的药物,对鱼体水霉病和鱼卵的水霉病有特效,现市面上还暂无针对水霉病能够短时间解决水霉病的特效药物,这也是为什么这个产品在水产业禁止这么多年还禁而不止,水产业养殖户挺而走险继续违规使用孔雀石绿的根本原因。我国在农业行业国标中将孔雀石绿列为禁用药物。本次获得的有证标准物质孔雀石绿、隐色孔雀石绿为大家安全食用鱼带来了极大的保证。己烯雌酚己烯雌酚是人工合成的雌激素,主要添加在饲料中,以促进动物的生长。国内外研究表明,己烯雌酚可以破坏机体的遗传物质,导致基因突变,引发肿瘤。由于己烯雌酚的滥用,对动物性食品中己烯雌酚的残留检测引起了国内外的高度重视。本次获得己烯雌酚标准物质为饲料安全保驾护航。氧氟沙星氧氟沙星是一种人工合成、广谱抗菌的氟喹诺酮类药物,在畜牧养殖中广泛用于动物疾病的预防和治疗,对革兰阳性菌、革兰阴性菌、支原体和衣原体均有作用,淡水鱼养殖方面氧氟沙星超标尤其严重。本次氧氟沙星标准物质为肉制品的安全检测提供了标物支持。三聚氰胺三聚氰胺大家一定不陌生,2008年中国奶制品污染事件给行业敲了一个警钟,三聚氰胺是化工原料,不是食品原料,也不是食品添加剂,禁止人为添加到食品中。三聚氰胺可能从环境、食品包装材料等途径进入到食品中,其含量很低。为确保人体健康和食品安全,我国制定了三聚氰胺在食品中的限量值。三聚氰胺标准物质在婴配奶粉的检测中起着极大的作用。最后,美正检测多年来,一直致力于食品检测类标准物质和基体质控样的研发生产,通过了CNAS实验室认可及资质认定,此次7个国家标准物质认证只是开始,我们将继续努力,斩获更多的标准物质认证,为中国食品安全保驾护航!
  • 【小坛微课】以土壤中六价铬为例!揭秘标准溶液和标准样品的区别和使用
    本期视频以土壤中的六价铬的检测为例,讲解了标准溶液和标准样品的区别和使用。视频内容包括标准溶液和标准样品的区别、标准曲线绘制、样品检测分析过程、样品测定步骤等。下面就让我们一起来学习吧。 课程老师介绍 课程老师坛墨质检化学产品部技术总监谢英梅 2021年3月加入坛墨质检,担任化学产品部技术总监,主要负责环境、职业卫生、食品等领域基质标物项目的研发工作。负责项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。 讲解老师坛墨质检基质研发工程师董慧莹 2021年4月加入坛墨质检,担任基质研发工程师,主要负责基质产品的研发。基质产品涵盖环境、职业卫生、食品等领域。参与项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。课程列表 标准溶液和标准样品的区别标准曲线绘制样品检测分析过程样品测定步骤
  • 标准品使用常见问题系列--标准品验收及储存篇
    1. 标准品到货后需要查验哪些信息呢?重点查验以下信息:(1)产品信息中英文名称、CAS#、性状、规格、特性量值(2)储存条件储存温度、光敏性、是否需要惰性气体保护(3)保质期关注是否在有效期内,避免超期(4)厂家信息便于出现问题得到技术支持也可以根据CANS-GL035的要求设计验收记录表格,记录相关数据。2. 所订标准品需要冷冻或者冷藏储存,到货后发现冰袋化了,还可以入库吗?标准品证书上给出的储存温度是长期储存的温度,与标准品短期运输温度并不相同。为了保证标准品运输过程的稳定性,生产厂商会模拟运输过程进行短期的稳定性监测,在-20℃ 至60℃ 的温度区间内进行15天的稳定性监测来确保标准品在运输过程中特性量值没有发生变化,因此只要运输时间不超过15天并且到货以后及时按照证书要求进行储存,标准品一般不会产生问题,可以放心入库。3. 购买的是安瓿瓶包装的标准溶液,开封后如何保存?安瓿瓶包装的标准溶液都是一次性使用的,一旦开封不可以再次熔封作为标准品使用。可以将安瓿瓶中的样品一次性取出稀释成储备液,并储存在密封性良好的样品瓶中。4. 标准品开封后保质期与未开封时一致吗?不一致。标准品生产厂商给出的保质期是未开封的保质期,用户需根据开瓶频率和储存温度等实际使用情况对特性量值进行定期核查。5. 库里的标准品过期了怎么办? 过期标准品如果一直按照证书要求储存并且未开封使用,客户可咨询该标准品生产厂商该款标准品能否进行保质期延期,如果可延期厂商会提供新证书以延长保质期,该标准品可以继续使用。如果过期标准品已经开封,则不可继续作为标准品使用。更多标准物质常见问题请详询400-860-5168转3034。
  • 卫生部职责调整,将负责食品安全标准
    12月10日,卫生部举行例行新闻发布会。卫生部发言人毛群安通报,卫生部各司局职责调整已完成,今后承担管理国家食品药品监督管理局的职责。同时,根据专家预测,今年发生动物禽流感的可能性比较大。  职责  负责管理国家食品药监局  毛群安介绍,卫生部今后承担管理国家食品药品监督管理局的职责。卫生部和药监局的具体职能进行了调整和交接。卫生部还初步完成了新设立的医疗服务监管司、药物政策与基本药物制度司的组建和食品安全综合协调与卫生监督局职能的调整工作。其中,食品安全综合协调与卫生监督局增加了组织拟订食品安全标准、组织查处食品安全重大事故等职责。  预测  发生动物禽流感可能性较大  针对香港有鸡养殖场发现禽流感,毛群安在发布会上表示,根据专家预测,今年发生动物禽流感的可能性比较大。如果有动物疫情,也有可能发生个别人感染的病例。毛群安提醒公众,特别是与家禽有接触的工作人员,要尽量减少与家禽,特别是病死家禽的接触机会,一旦发现异常情况,应当及时向卫生和农业部门报告。  澄清  “反对取消面粉添加剂”属捏造  最近有媒体报道称,卫生部反对取消面粉添加剂,因为这样会导致生产添加剂的企业倒闭破产。对此,毛群安表示,这是有些媒体在没有采访卫生部的情况下编造的一个观点。事实上,因为部门职责明确了卫生部要对一些食品添加剂进行风险评估,并最后决定添加剂能不能使用。“我们将提请全国食品添加剂标准化委员会,按照有关规则进行讨论,最后做出决定,并报国家标准委进一步修订面粉的标准。”毛群安表示。  “问题奶粉”事件赔偿方案正论证  问题奶粉婴幼儿的筛查工作已经基本结束,对极个别患儿仍设有定点医疗机构进行检查和治疗。卫生部新闻发言人毛群安在昨天举行的例行新闻发布会上透露,相关部门正在就三鹿牌婴幼儿奶粉事件的赔偿方案进行论证,为下一步采取的赔偿做准备。  据卫生部通报,截至11月27日8时,全国累计报告因食用三鹿牌奶粉和其他个别问题奶粉导致泌尿系统出现异常的患儿29万余人。
  • 品客薯片陷“柠檬黄门” 费列罗巧克力违规添加食用胶
    国家质检总局公布了最新进口不合格食品化妆品。今年8月,全国出入境检验检疫机构共检出质量安全项目不合格的进口食品261批、化妆品13批。品客奶酪味薯片柠檬黄超标,费列罗巧克力违规添加食用胶,吉百利巧克力饼干超保质期,进口食品安全问题依旧严重。其中,主要不合格食品是糕点饼干类、糖类和饮料类等共18类别,来自34个国家或地区,食品添加剂超标、微生物污染和品质不合格等项目为主要不合格原因。8月全国检出不合格进口食品化妆品274批本报讯(记者 李大林)品客奶酪味薯片柠檬黄超标,费列罗巧克力违规添加食用胶,吉百利巧克力饼干超保质期,进口食品安全问题依旧严重。日前,国家质检总局公布了最新进口不合格食品化妆品。今年8月,全国出入境检验检疫机构共检出质量安全项目不合格的进口食品261批、化妆品13批。其中,主要不合格食品是糕点饼干类、糖类和饮料类等共18类别,来自34个国家或地区,食品添加剂超标、微生物污染和品质不合格等项目为主要不合格原因。费列罗巧克力违规添加消费者所熟悉的品牌费列罗——比利时生产的费列罗SCHOKOBONS巧克力,被检出超范围使用食品添加剂阿拉伯胶,全部96公斤货物被认定不合格,从而全部销毁。由于我国食品安全相关标准未规定阿拉伯胶属于巧克力糖果的食品添加剂,所以一旦有该成分则被认定不合格。不过,记者了解到,阿拉伯胶作为食品工业中用量最大的水溶胶,安全无害而且可以在大肠中被降解。费列罗集团在中国的唯一贸易子公司费列罗贸易(上海)公司对此表示,中国市场并未进口和销售费列罗SCHOKOBONS巧克力,同时也不清楚进口该批巧克力的公司海南省免税品有限公司的进货渠道。深圳一家公司从美国进口的“品客奶酪味薯片”被检出柠檬黄、日落黄超标,2公斤多的货物被全部销毁。记者了解到,柠檬黄会给人身体带来严重危害,虽然致癌风险尚有争论,但实验表明儿童食用柠檬黄会导致智商下降,成人食用则可导致偏头痛、视觉模糊、哮喘等症状。此外,两批次美心金腿五仁月饼由于菌落总数超标而被退货,两批次的吉百利饼干由于超过保质期被销毁。“贝贝善”奶粉菌超标法国“法瑞康”婴儿配方奶粉、 德国的“贝贝善”幼儿配方奶粉3段,均被发现菌落总数超标,而德国“乐爱朵”配方奶粉超范围使用添加剂。此外,新西兰“爱恩思”婴儿配方奶粉、波兰“贝倍妙”配方奶粉因标签不合格也被拒之国门外。记者走访了市区乐购、家乐福等超市,均未发现有这些品牌的奶粉销售。随后记者在网上查询,这些品牌奶粉也鲜有销售和购买。检疫部门表示,由于中国与国外的乳制品生产标准并不统一,因此部分洋奶粉在蛋白质或其他元素上不符合标准造成它们过不了关,但与此同时欧盟等也不应因中国市场需求量大而在生产过程中放松检验和检测标准。在其他婴幼儿食品中,瑞氏麦多种水果宝宝麦粉被检出“不溶性膳食纤维”超标,美国冠军复合营养粉(香草味)违规使用化学物质。今年8月全国检疫机构检出的不合格化妆品涉及4类产品13批次。伊丽莎白雅顿白手套精致莹白喱再上“黑榜”。
  • 关于拟立项(自动分析或检测系统 通用技术要求) CIS标准的公示通告
    各相关单位和专家:按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。按照我会标准化工作委员会(SCIS)的标准制定工作流程,经过我会标准化工作委员会的前期项目筛选和审核,拟制定如下标准:《智能制造 自动分析或检测系统 通用技术要求》(项目申报单位:苏州镁伽科技有限公司)上述标准制定项目的目的、意义和必要性等参见附件《CIS标准项目公示表》。现请各有关单位或个人,针对该标准制定项目如果有相关意见或建议,请按照该表格反馈给我会。同时,也欢迎有意愿参加该标准项目制定的企事业单位联系我们。特此公示。公示期自发布之日起4周。联系人:全红,刘莉电 话:010-82961039,010-82800385Email:quanhong@cis.org.cn 或 liuli@cis.org.cn中国仪器仪表学会标准化工作委员会2023年5月8日制定标准的目的、意义或必要性近年来国内外的智能制造技术和应用都有了快速的发展。自动分析和检测技术是智能制造得以实现和高效的重要手段之一。国外关于自动分析或检测技术在智能制造系统中的应用,已被广泛实施,国内自动分析和检测仪器和设备主要依赖于进口,但因为进口设备成本太高、应用产品定制化程度高、配套产品或技术兼容性不好且售后服务和维护不便等原因,无法满足国内行业发展需求。随着国家十四五规划中将智能制造列为重点内容,国内关于自动分析和检测技术产业化研究和应用已迅速展开。特别是2023年2月21日,工业和信息化部等七部门印发了《智能检测装备产业发展行动计划(2023—2025年)》,强调提升智能检测设备的供给能力和技术水平及相应的目标和规划。构建中国智能制造自动分析和检测技术体系,提升智能检测装备的技术水平和供给能力,已成为当前的迫切任务。但是,自动分析或检测技术在智能制造系统中应用时,还缺乏助推技术发展和应用的标准。例如,基于实际应用场景不同,各类检测或物质分析仪器设备(液体工作站、分析检测设备等等)需要被集成到系统中。但是,目前这些设备均来自于不同的厂商,没有规范统一的硬件接口、交互方式、指令集等等,致使这些仪器很难,甚至是无法被集成到系统中。又例如,包括了自动分析检测仪器的自动工作站,以及科技仪器设备及操作系统和基础软件,与整个智能制造系统的集成时,应有相应的规则或接口规范,以便构建智能制造系统。目前,国内没有相关标准。也没有查询到针对本项目适用的国际标准。为保证自动分析和检测技术能够快速、高效、有序发展,保证相关设备能够顺利互联互通,亟需制定相关的技术规范标准。制定该标准目前不存在知识产权方面的问题。CIS标准项目公示表.docx
  • 舌尖上的安全--阿尔塔发布51种农业部例行监测农残标准品
    舌尖上的安全蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法 为确保国民“舌尖上的安全”,农业部建立了农药残留例行监测制度,每年多次检测全国多个城市的蔬菜水果等农产品。在农业部规定的70多种例行监测农残中,有51种农药适用于液质联用 (LC-MS/MS) 分析 ,本方法可用于同时分析蔬菜水果中51种农业部例行监测的农残。 1. 此方法同时分析51种农药,分析时间仅7.5min,大大节省了样品分析时间。2. 样品前处理采用国际通用的QuEChERS (AOAC 2007.1) 方法,样品处理简单、干净。3. 该方法在Triple Quad™ 3500, 4500仪器上,韭菜、豆角和草莓3种基质中经过验证,真正地可用于实际样品的检测。4. 连续分析120个样品15小时,仪器分析结果稳定可靠。5. 现成方法包括所有样品处理,标准曲线配制,数据采集方法, 定量分析和报告模板。 应用于中文Cliquid软件中,简单、易上手,客户省去实验方法开发,直接应用方法分析样品,让初学者很快可以得到专家级的结果。 Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯Figure 2. 连续分析15小时典型农药的峰面积变化图Table 1. 在韭菜基质中,典型农药的回收率和线性相关系数 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M 51种农药混标,10ppm订货信息产品名称订货信息产品名称订货信息产品名称1ST21058多菌灵1ST20348氟啶脲1ST20140甲基对硫磷1ST20297啶虫脒1ST25000阿维菌素1ST20111杀螟硫磷1ST20298吡虫啉1ST20167氧乐果1ST20065倍硫磷1ST20001毒死蜱1ST20345除虫脲1ST20173水胺硫磷1ST20350噻虫嗪1ST20127甲基异柳磷1ST20434对硫磷1ST21145烯酰吗啉1ST20097敌敌畏1ST21202三唑酮1ST21189苯醚甲环唑1ST20093甲胺磷1ST20094二嗪磷1ST21226腐霉利1ST20449灭多威1ST20349灭幼脲1ST20305氟虫腈1ST20144乙酰甲胺磷1ST20189亚胺硫磷1ST20438三唑磷1ST21161嘧霉胺1ST20168马拉硫磷1ST20155丙溴磷1ST20277甲萘威1ST25016哒螨灵1ST22249二甲戊灵1ST20273涕灭威亚砜1ST20172伏杀硫磷1ST20271克百威1ST20375涕灭威1ST21157嘧菌酯1ST20170辛硫磷1ST20098乐果1ST25001甲氨基阿维菌素苯甲酸盐1ST21164异菌脲1ST202593-羟基克百威1ST20222甲氰菊酯1ST20182敌百虫1ST20266涕灭威砜1ST20210联苯菊酯1ST21247咪鲜胺1ST20124甲拌磷1ST20396虫螨腈
  • GB 2760-2024《食品安全国家标准 食品添加剂使用标准》国家标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。其中包括GB 2760-2024《食品安全国家标准 食品添加剂使用标准》。该标准代替 GB2760—2014《食品安全国家标准 食品添加剂使用标准》,将于2025年2月8日正式实施。该标准增加了2016年以来国家卫生健康委员会陆续公布的食品添加剂规定,并对附录A、B、C、D、E、F都有了补充和修订。(一)关于GB 2760与国家卫生健康委有关食品添加剂公告的关系  我国对于食品添加剂新品种实行行政许可,对于许可的食品添加剂品种及使用规定,国家卫生健康委以公告形式予以增补,自公告发布之日起,食品添加剂生产使用者就可以按照公告的规定生产使用批准的食品添加剂。为了方便标准使用者查询,GB 2760-2024纳入了GB 2760-2014 实施以来国家卫生健康委以公告形式批准使用的食品添加剂品种和使用规定,截至国家卫生健康委2023年第5号公告。  (二)关于食品添加剂定义的修订  根据2015年实施的《食品安全法》,在食品添加剂的定义中增加了包含营养强化剂的内容。新品种许可、复配食品营养强化剂等食品营养强化剂的管理可参考食品添加剂相关管理规定执行。  (三)关于附录A的修订  附录A的修订内容主要包括:一是修改了附录A中食品添加剂使用规定的查询方式。将原标准中表A.3的内容体现在表A.1和表A.2中,原表A.2合并入表A.1。二是基于食品添加剂安全性和工艺必要性的最新评估结果,修订了部分食品添加剂品种和/或使用规定。例如删除了落葵红、密蒙黄、酸枣色、2,4-二氯苯氧乙酸、海萝胶、偶氮甲酰胺等经过调查不再具有工艺必要性的食品添加剂品种及其使用规定;删除了罐头类食品中防腐剂、食醋中冰乙酸、果蔬汁浆中纳他霉素、蒸馏酒中β-胡萝卜素和双乙酰酒石酸单双甘油酯等的使用规定。三是修改了部分食品添加剂的使用要求。如增加了阿斯巴甜、安赛蜜与天门冬酰苯丙氨酸甲酯乙酰磺胺酸等在相同食品类别中共同使用时的总量要求;完善了饮料类别中液体饮料与相应的固体饮料食品添加剂使用的对应关系;修订了二氧化硫、卡拉胶、瓜尔胶、脱氢乙酸及其钠盐等的使用规定;将原标准中归类为“其他类”的部分食品类别重新进行了归类,并调整了相应的食品添加剂使用规定等。四是修改了部分食品添加剂的基本信息。例如修改了苯甲酸及其钠盐等食品添加剂的中文名称、中国编码(CNS号),按照国际食品法典标准等的最新规定,修改了爱德万甜等食品添加剂的英文名称和国际编码(INS号)等。  (四)关于附录B的修订  附录B的修订内容主要包括:一是对食品用香料、香精使用原则的修订。为避免食品用香料滥用,在B.1.4进一步明确了具有其他食品添加剂功能或其他食品用途的食品用香料的使用要求,如苯甲酸、肉桂醛、瓜拉纳提取物、双乙酸钠、琥珀酸二钠、磷酸三钙、氨基酸类等;明确食品用香料、食品用香精的标签应符合《食品安全国家标准 食品添加剂标识通则》(GB 29924-2013)的规定,凡添加了食品用香料、香精的预包装食品应按照《食品安全国家标准 预包装食品标签通则》(GB 7718-2011)进行标示;明确食品用香料质量规格应符合《食品安全国家标准 食品用香料通则》(GB 29938-2020)及相关香料产品标准的规定。二是修改完善了部分食品用香料品种。梳理了表B.2和表B.3的食品用香料名单,删除了枯茗油等6个香料品种(其中枯茗油、葫芦巴已为香辛料,玫瑰茄、石榴果汁浓缩物、玉米穗丝已为普通食品,3-乙酰基-2,5-二甲基噻吩行业已不再使用);根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)、食用香料和提取物制造者协会(FEMA)对于香料管理的变化,将大茴香脑、根皮素调整为合成香料;修改和/或增加了柚苷(柚皮甙提取物)等香料的中英文名称、FEMA编号、编码等。  (五)关于附录C的修订  附录C的修订内容主要包括:一是删除了部分食品工业用加工助剂品种。如删除了矿物油,将其使用规定与白油(液体石蜡)的使用规定进行整合;删除了磷酸铵,将其使用规定与磷酸氢二铵和磷酸二氢铵进行整合。二是基于安全性和工艺必要性的最新评估结果,结合行业实际使用情况,修订了部分加工助剂品种和/或使用规定。例如根据JECFA最新评估结果,同时参考美国、欧盟的规定,删除了1,2-二氯乙烷品种和使用规定;基于工艺必要性原则,删除了β-环状糊精用于巴氏杀菌乳、灭菌乳的规定;明确了过氧化氢作为加工助剂使用时的具体功能和使用范围等。三是规范部分加工助剂的中英文名称表述。例如将6号轻汽油(植物油抽提溶剂)修改为“植物油抽提溶剂”,植物活性炭(稻壳活性炭)修改为“植物活性炭(稻壳来源)”,修改了纤维二糖酶等部分酶名称,修改了埃默森篮状菌Talaromyces emersonii等的菌种名称等。  (六)关于附录D的修订  根据修改后食品添加剂的定义,附录D中增加了营养强化剂的编号D.16,并根据《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)最新修订版的规定增加了营养强化剂的定义。根据《食品安全国家标准 食品用香精》(GB 30616-2020)中关于食品用香料的定义,将D.21食品用香料定义修改为“添加到食品产品中以产生香味、修饰香味或提高香味的物质”。  (七)关于附录E的修订  食品工业的快速发展导致GB 2760-2014中部分食品类别与相关食品行业分类不一致,不能实现对实际食品类别的精准定位。为了使食品分类描述更加科学合理,在对各个食品行业进行广泛调研、征求意见的基础上,进一步规范了部分食品类别的描述。例如,为与相关食品产品的食品安全国家标准保持协调一致,修改了部分食品类别:如根据《食品安全国家标准 酱油》(GB 2717-2018)、《食品安全国家标准 食醋》(GB 2719-2018)、《食品安全国家标准 复合调味料》(GB 31644-2018)等规定,将配制酱油(食品分类号 12.04.02)和配制食醋(食品分类号 12.03.02)这两类产品归入液体复合调味料(食品分类号 12.10.03),将“醋(食品分类号12.03)”修改为“食醋(食品分类号12.03)”等,并对相应的食品添加剂使用规定进行修改。再如:根据行业反馈意见,结合行业现状,修改了部分食品类别,如增加肉丸类食品类别,删除半起泡葡萄酒食品分类,修改了蜜饯凉果的食品分类,调整食糖的食品分类等。GB 2760-2024 食品安全国家标准 食品添加剂使用标准.pdf点击图片获取更多标准解读》》》》》》
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料 GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40908-2021 家具产品及其材料中禁限用物质测定方法 阻燃剂 GB/T 40907-2021 家具产品及其材料中禁限用物质测定方法 2,4-二氨基甲苯、4,4’-二氨基二苯甲烷 GB/T 40906-2021 家具产品及其材料中禁限用物质测定方法 邻苯二甲酸酯增塑剂 GB/T 40904-2021 家具产品及其材料中禁限用物质测定方法 偶氮染料 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度 GB/T 40917-2021 纺织品 全氟己烷磺酸及其盐类的测定 GB/T 40912-2021 纺织品 定量化学分析 聚酰胺酯纤维与某些其他纤维的混合物 GB/T 40910-2021 纺织品 防水透湿性能的评定 GB/T 40909-2021 纺织品 甲基环硅氧烷残留量的测定 GB/T 40905.1-2021 纺织品 山羊绒、绵羊毛、其他特种动物纤维及其混合物定量分析 第1部分:光学显微镜法 GB/T 40903-2021 纺织品 DNA分析法鉴别某些特种动物纤维 山羊绒、绵羊毛、牦牛绒及其混合物 GB/T 29493.2-2021 纺织染整助剂中有害物质的测定 第2部分:全氟化合物(PFCs)的测定 GB/T 29493.1-2021 纺织染整助剂中有害物质的测定 第1部分:禁限用阻燃剂的测定 GB/T 40628-2021 籽棉衣分率试验方法 锯齿型试轧法 GB/T 3903.25-2021 鞋类 整鞋试验方法 鞋跟结合强度 GB/T 3903.14-2021 鞋类 外底试验方法 针撕破强度 GB/T 3903.12-2021 鞋类 外底试验方法 撕裂强度 GB/T 40828-2021 绵羊毛分级规程 GB/T 40826-2021 分梳山羊绒手排长度试验方法 图板电子扫描仪法 GB/T 40673-2021 计时仪器 辐射发光涂层检验条件 GB/T 3903.9-2021 鞋类 内底试验方法 跟部持钉力 GB/T 28004.1-2021 纸尿裤 第1部分:婴儿纸尿裤 GB/T 26703-2021 皮鞋跟面耐磨性能试验方法 GB/T 25036-2021 布面童胶鞋 GB/T 20096-2021 轮滑鞋 机械交通航空航天标准(72个)GB/T 8601-2021 铁路用辗钢整体车轮 GB/T 40861-2021 汽车信息安全通用技术要求 GB/T 40855-2021 电动汽车远程服务与管理系统信息安全技术要求及试验方法 GB/T 40822-2021 道路车辆 统一的诊断服务GB/T 40816.11-2021 工业炉及相关工艺设备 能量平衡测试及能效计算方法 第11部分:各种效率评估 GB/T 40810.2-2021 产品几何技术规范(GPS) 生产过程在线测量 第2部分:几何特征(形位)的在线检测与验证 GB/T 40810.1-2021 产品几何技术规范(GPS) 生产过程在线测量 第1部分:几何特征(尺寸、表面结构)的在线检测与验证 GB/T 40742.5-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第5部分:几何特征检测与验证中测量不确定度的评估 GB/T 40742.4-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第4部分:尺寸和几何误差评定、最小区域的判别模式 GB/T 40742.3-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第3部分:功能量规与夹具 应用最大实体要求和最小实体要求时的检测与验证 GB/T 40742.2-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第2部分:形状、方向、位置、跳动和轮廓度特征的检测与验证 GB/T 40742.1-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第1部分:基本概念和测量基础 符号、术语、测量条件和程序 GB/T 40809-2021 铸造铝合金 半固态流变压铸成形工艺规范 GB/T 40808.1-2021 机床环境评估 第1部分:机床节能设计方法 GB/T 40807-2021 微系统用生产设备 末端执行器与处理器的接口 GB/T 40806-2021 机床发射空气传播噪声 金属切削机床的操作条件 GB/T 40805-2021 铸钢件 交货验收通用技术条件 GB/T 40804-2021金属切削机床加工过程的短期能力评估GB/T 40803-2021 机械加工过程 能量效率评价方法 GB/T 40802-2021 通用铸造碳钢和低合金钢铸件 GB/T 40800-2021 铸钢件焊接工艺评定规范 GB/T 40799-2021 机械加工过程 能效基础数据检测方法 GB/T 40741-2021 焊后热处理质量要求 GB/T 40740-2021 堆焊工艺评定试验 GB/T 40738-2021 熔模铸造 硅溶胶快速制壳工艺规范 GB/T 40737-2021 再制造 激光熔覆层性能试验方法 GB/T 40735-2021 数控机床固有能量效率的评价方法 GB/T 40734-2021 焊缝无损检测 相控阵超声检测 验收等级GB/T 40733-2021 焊缝无损检测 超声检测 自动相控阵超声技术的应用GB/T 40732-2021 焊缝无损检测 超声检测 奥氏体钢和镍基合金焊缝检测 GB/T 40731-2021 精密减速器回差测试与评价方法 GB/T 40730-2021 无损检测 电磁超声脉冲回波式测厚方法 GB/T 40729-2021 精密齿轮传动装置疲劳寿命试验方法 GB/T 40728-2021 再制造 机械产品修复层质量检测方法 GB/T 40727-2021 再制造 机械产品装配技术规范 GB/T 40711.3-2021 乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调GB/T 40709-2021 耙吸挖泥船波浪补偿器技术要求 GB/T 40701-2021 动车组驱动齿轮箱润滑油 GB/T 40700-2021 上面级自主导航系统设计要求 GB/T 40698-2021 航天控制系统工程通用要求 GB/T 40578-2021 轻型汽车多工况行驶车外噪声测量方法GB/T 40574-2021 大型工业承压设备检测机器人通用技术条件 GB/T 40565.4-2021 液压传动连接 快换接头 第4部分:72 MPa螺纹连接型 GB/T 40565.3-2021 液压传动连接 快换接头 第3部分:螺纹连接通用型 GB/T 40565.2-2021 液压传动连接 快换接头 第2部分:20 MPa~31.5 MPa平面型 GB/T 40564-2021 电子封装用环氧塑封料测试方法 GB/T 40563-2021 氟化物红色荧光粉 GB/T 40562-2021 电子设备用电位器 第6部分:分规范 表面安装预调电位器 GB/T 39851.3-2021 道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求 GB/T 39560.8-2021 电子电气产品中某些物质的测定 第8部分:气相色谱-质谱法(GC-MS)与配有热裂解/热脱附的气相色谱-质谱法 (Py/TD-GC-MS)测定聚合物中的邻苯二甲酸酯 GB/T 39560.702-2021 电子电气产品中某些物质的测定 第7-2部分:六价铬 比色法测定聚合物和电子件中的六价铬[Cr(VI)] GB/T 39560.5-2021 电子电气产品中某些物质的测定 第5部分: AAS、AFS、ICP-OES和ICP-MS法测定聚合物和电子件中镉、铅、铬以及金属中镉、铅的含量 GB/T 39560.4-2021 电子电气产品中某些物质的测定 第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞 GB/T 27840-2021 重型商用车辆燃料消耗量测量方法 GB/T 26548.8-2021 手持便携式动力工具 振动试验方法 第8部分:往复式锯、抛光机和锉刀以及摆式或回转式锯 GB/T 26548.12-2021 手持便携式动力工具 振动试验方法 第12部分:模具砂轮机 GB/T 26548.11-2021 手持便携式动力工具 振动试验方法 第11部分:石锤 GB/T 26548.10-2021 手持便携式动力工具 振动试验方法 第10部分:冲击式凿岩机、锤和破碎器 GB/T 23931-2021 三轮汽车 试验方法 GB/T 20933-2021 热轧钢板桩 GB/T 19290.7-2021 发展中的电子设备构体机械结构模数序列 第2-5部分:分规范 25 mm设备构体的接口协调尺寸 各种设备用机柜接口尺寸 GB/T 1805-2021 弹簧 术语 GB/T 16895.33-2021 低压电气装置 第5-56部分:电气设备的选择和安装 安全设施 GB/T 16895.10-2021 低压电气装置 第4-44部分:安全防护 电压骚扰和电磁骚扰防护 GB/T 15055-2021 冲压件未注公差尺寸极限偏差 GB/T 12678-2021 汽车可靠性行驶试验方法 GB/T 12535-2021 汽车起动性能试验方法 GB/T 10919-2021 矩形花键量规 GB 40161-2021 过滤机 安全要求 GB 40160-2021 升降工作平台安全规则 GB 40159-2021 埋刮板输送机 安全规范 GB 17957-2021 凿岩机械与气动工具 安全要求 电子电器标准(111个)GB/Z 40825-2021 电器附件 总则协调 GB/Z 40776-2021 低压开关设备和控制设备 火灾风险分析和风险降低措施 GB/Z 40680-2021 直流系统用剩余电流动作保护电器的一般要求 GB/Z 17624.6-2021 电磁兼容 综述 第6部分 测量不确定度评定指南 GB/T 6346.24-2021 电子设备用固定电容器 第24部分:分规范 表面安装导电聚合物固体电解质钽固定电容器GB/T 5169.9-2021 电工电子产品着火危险试验 第9部分:着火危险评定导则 预选试验程序 总则 GB/T 5169.2-2021 电工电子产品着火危险试验 第2部分:着火危险评定导则 总则 GB/T 5169.20-2021 电工电子产品着火危险试验 第20部分:火焰表面蔓延 试验方法概要和相关性 GB/T 4942-2021 旋转电机整体结构的防护等级(IP代码) 分级 GB/T 40867-2021 统一潮流控制器技术规范 GB/T 40863-2021 生态设计产品评价技术规范 电动机产品 GB/T 40862-2021 输变电设施运行可靠性评价指标导则 GB/T 40823-2021 配电变电站用紧凑型成套设备(CEADS) GB/T 40819-2021 架空线缆微风振动疲劳试验方法GB/T 40815.4-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第4部分:电子机柜中供水热交换器的冷却性能试验 GB/T 40815.2-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第2部分:强迫风冷的确定方法 GB/T 40813-2021 信息安全技术 工业控制系统安全防护技术要求和测试评价方法 GB/T 40786.2-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第2部分:数据链路层规范 GB/T 40786.1-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第1部分:物理层规范 GB/T 40784.1-2021 信息技术 用于互操作和数据交换的生物特征识别轮廓 第1部分:生物特征识别系统概述和生物特征识别轮廓GB/T 40783.1-2021 信息技术 系统间远程通信和信息交换 磁域网 第1部分:空中接口GB/T 40777-2021 家用及类似用途断路器、RCCB、RCBO自动重合闸电器(ARD)的一般要求 GB/T 40775-2021 生态设计产品评价技术规范 灯具 GB/T 40774-2021 生态设计产品评价技术规范 办公设备系列产品 GB/T 40773-2021 变电站辅助设施监控系统技术规范 GB/T 40739-2021 燃气轮机 燃气轮机设备的数据采集和趋势监测系统要求 GB/T 40678-2021 PXI总线模块通用规范 GB/T 40676-2021 PXI Express总线模块通用规范 GB/T 40659-2021 智能制造 机器视觉在线检测系统 通用要求 GB/T 40654-2021 智能制造 虚拟工厂信息模型 GB/T 40649-2021 智能制造 制造对象标识解析系统应用指南 GB/T 40648-2021 智能制造 虚拟工厂参考架构 GB/T 40647-2021 智能制造 系统架构 GB/T 40617-2021 电气场所的安全生态构建指南 GB/T 40615-2021 电力系统电压稳定评价导则 GB/T 40613-2021 电力系统大面积停电恢复技术导则 GB/T 40610-2021 电力系统在线潮流数据二进制描述及交换规范 GB/T 40609-2021 电网运行安全校核技术规范 GB/T 40608-2021 电网设备模型参数和运行方式数据技术要求 GB/T 40606-2021 电网在线安全分析与控制辅助决策技术规范 GB/T 40602.2-2021 天线及接收系统的无线电干扰 第2部分:基础测量 高增益天线方向图室内平面近场测量方法GB/T 40602.1-2021 天线及接收系统的无线电干扰 第1部分:基础测量 天线方向图的室内远场测量方法 GB/T 40598-2021 电力系统安全稳定控制策略描述规则 GB/T 40594-2021 电力系统网源协调技术导则 GB/T 40593-2021 同步发电机调速系统参数实测及建模导则 GB/T 40592-2021 电力系统自动高频切除发电机组技术规定 GB/T 40591-2021 电力系统稳定器整定试验导则 GB/T 40589-2021 同步发电机励磁系统建模导则 GB/T 40588-2021 电力系统自动低压减负荷技术规定 GB/T 40587-2021 电力系统安全稳定控制系统技术规范 GB/T 40586-2021 并网电源涉网保护技术要求 GB/T 40585-2021 电网运行风险监测、评估及可视化技术规范 GB/T 40584-2021 继电保护整定计算软件及数据技术规范 GB/T 40581-2021 电力系统安全稳定计算规范 GB/T 40580-2021 高压直流输电系统机电暂态仿真建模技术导则 GB/T 40559-2021 平衡车用锂离子电池和电池组 安全要求 GB/T 40532-2021 电力系统站域失灵(死区)保护技术导则 GB/T 40427-2021 电力系统电压和无功电力技术导则 GB/T 40366-2021 电气设备用图形符号列入IEC出版物的导则 GB/T 38775.7-2021 电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端 GB/T 38775.6-2021 电动汽车无线充电系统 第6部分:互操作性要求及测试 地面端 GB/T 38659.2-2021 电磁兼容 风险评估 第2部分:电子电气系统 GB/T 38428.2-2021 数据中心和电信中心机房安装的信息和通信技术(ICT)设备用直流插头插座 第2部分:5.2 kW插头插座系统GB/T 3836.9-2021 爆炸性环境 第9部分:由浇封型“m”保护的设备 GB/T 3836.8-2021 爆炸性环境 第8部分:由“n”型保护的设备 GB/T 3836.5-2021 爆炸性环境 第5部分:由正压外壳“p”保护的设备 GB/T 3836.4-2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备 GB/T 3836.35-2021 爆炸性环境 第35部分:爆炸性粉尘环境场所分类 GB/T 3836.34-2021 爆炸性环境 第34部分:成套设备 GB/T 3836.3-2021 爆炸性环境 第3部分:由增安型“e”保护的设备 GB/T 3836.31-2021 爆炸性环境 第31部分: 由防粉尘点燃外壳“t”保护的设备 GB/T 3836.29-2021 爆炸性环境 第29部分:爆炸性环境用非电气设备 结构安全型“c”、控制点燃源型“b”、液浸型“k” GB/T 3836.28-2021 爆炸性环境 第28部分:爆炸性环境用非电气设备 基本方法和要求 GB/T 3836.2-2021 爆炸性环境 第2部分:由隔爆外壳“d”保护的设备 GB/T 3836.13-2021 爆炸性环境 第13部分:设备的修理、检修、修复和改造 GB/T 3836.1-2021 爆炸性环境 第1部分:设备 通用要求 GB/T 36450.7-2021 信息技术 存储管理 第7部分:主机元素 GB/T 33598.3-2021 车用动力电池回收利用 再生利用 第3部分:放电规范 GB/T 33133.2-2021 信息安全技术 祖冲之序列密码算法 第2部分:保密性算法 GB/T 29618.5120-2021 现场设备工具(FDT)接口规范 第5120部分:通用对象模型的通信实现 IEC 61784 CPF 2 GB/T 29618.5110-2021 现场设备工具(FDT)接口规范 第5110部分:通用对象模型的通信实现 IEC 61784 CPF 1 GB/T 2900.104-2021 电工术语 微机电装置 GB/T 25285.2-2021 爆炸性环境 爆炸预防和防护 第2部分:矿山爆炸预防和防护的基本原则和方法 GB/T 25285.1-2021 爆炸性环境 爆炸预防和防护 第1部分:基本原则和方法 GB/T 24726-2021 交通信息采集 视频交通流检测器 GB/T 24621.1-2021 低压成套开关设备和控制设备的电气安全应用指南 第1部分:成套开关设备 GB/T 22712-2021 变频电机用G系列冷却风机技术规范 GB/T 22459.3-2021 耐火泥浆 第3部分:粘接时间试验方法 GB/T 20184-2021 拉曼光纤放大器 GB/T 21973-2021 YZR3系列起重及冶金用绕线转子三相异步电动机 技术条件 GB/T 19754-2021 重型混合动力电动汽车能量消耗量试验方法 GB/T 1971-2021 旋转电机 线端标志与旋转方向 GB/T 19334-2021 低压开关设备和控制设备的尺寸 在开关设备和控制设备及其附件中作机械支承的标准安装轨 GB/T 18910.61-2021 液晶显示器件 第6-1部分:液晶显示器件测试方法 光电参数 GB/T 18910.203-2021 液晶显示器件 第20-3部分:目检 有源矩阵彩色液晶显示模块 GB/T 18910.202-2021 液晶显示器件 第20-2部分:目检 单色矩阵液晶显示模块 GB/T 18910.201-2021 液晶显示器件 第20-1部分:目检 单色液晶显示屏 GB/T 18910.102-2021 液晶显示器件 第10-2部分:环境、耐久性和机械试验方法 环境和耐久性 GB/T 18910.101-2021 液晶显示器件 第10-1部分:环境、耐久性和机械试验方法 机械 GB/T 18898.1-2021 掺铒光纤放大器 第1部分:C波段掺铒光纤放大器 GB/T 18663.2-2021 电子设备机械结构 公制系列和英制系列的试验 第2部分:机柜和机架的地震试验 GB/T 18113-2021 铬酸镧高温电热元件 GB/T 17215.231-2021 电测量设备(交流) 通用要求、试验和试验条件 第31部分:产品安全要求和试验 GB/T 15972.49-2021 光纤试验方法规范 第49部分:传输特性的测量方法和试验程序 微分模时延 GB/T 14824-2021 高压交流发电机断路器 GB/T 13542.2-2021 电气绝缘用薄膜 第2部分:试验方法 GB/T 12668.7302-2021 调速电气传动系统 第7-302部分:电气传动系统的通用接口和使用规范 2型规范对应至网络技术 GB/T 12274.4-2021 有质量评定的石英晶体振荡器 第4部分:分规范 能力批准 GB/T 11019-2021 镀镍圆铜线 GB/T 10217-2021 电工控制设备造型设计导则 GB 40165-2021 固定式电子设备用锂离子电池和电池组 安全技术规范 能源标准(17个)GB/T 40866-2021 太阳能光热发电站调度命名规则 GB/T 40860-2021 压水堆核电厂设计扩展工况分析要求 GB/T 40858-2021 太阳能光热发电站集热管通用要求与测试方法 GB/T 40821-2021 太阳能热发电站换热系统检测规范 GB/T 40817.2-2021 核电主泵电机技术条件 第2部分:屏蔽泵异步电机 GB/T 40817.1-2021 核电主泵电机技术条件 第1部分:轴封泵异步电机 GB/T 40703-2021 太阳能中温工业热利用系统设计规范 GB/T 40677-2021 微型导热管 GB/T 40620-2021 核动力厂火灾危害性分析指南 GB/T 40618-2021 回旋加速器术语 GB/T 40616-2021 村镇光伏发电站集群控制系统仿真测试技术要求 GB/T 40614-2021 光热发电站性能评估技术要求 GB/T 40607-2021 调度侧风电或光伏功率预测系统技术要求 GB/T 40604-2021 新能源场站调度运行信息交换技术要求 GB/T 13697-2021 二氧化铀粉末和芯块中碳的测定 高频感应炉燃烧-红外检测法 GB/T 20115.1-2021 工业燃料加热装置基本技术条件 第1部分:通用部分 GB/T 11809-2021 压水堆燃料棒焊缝检验方法 金相检验和X射线照相检验其他标准(11个)GB/T 4857.23-2021 包装 运输包装件基本试验 第23部分:垂直随机振动试验方法 GB/T 40868-2021 纳米尺度科研生产受控环境规划与设计 GB/T 40753-2021 供应链安全管理体系 ISO 28000实施指南 GB/T 40681.6-2021 生产过程能力和性能监测统计方法 第6部分:多元正态过程能力分析 GB/T 40681.5-2021 生产过程能力和性能监测统计方法 第5部分:计数特性的过程能力和性能估计 GB/T 40681.4-2021 生产过程能力和性能监测统计方法 第4部分:过程能力估计和性能测量 GB/T 40621-2021 地闪密度分布图绘制方法 GB/T 19789-2021 包装材料 塑料薄膜和薄片氧气透过性试验 库仑计检测法 GB/T 13675-2021 航空派生型燃气轮机包装与运输 GB/T 15717-2021 真空金属镀层厚度测试方法 电阻法 GB 19268-2021 固体氰化物包装 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 关于“三新食品”目录及适用的食品安全标准的公告及解读
    5月10日,国家卫生健康委食品安全标准与监测评估司发布了一则《关于“三新食品”目录及适用的食品安全标准的公告》,原文内容转载如下:根据《中华人民共和国食品安全法》及其实施条例有关规定,我委组织汇总整理2009年至2021年公告的新食品原料、食品添加剂新品种和食品相关产品新品种(简称“三新食品”)目录及适用的食品安全标准,现予公布。原公告内容与本公告不一致的,以本公告为准。对其中新食品原料目录及适用的食品安全标准设置18个月过渡期。    特此公告。 附件:“三新食品”目录及适用的食品安全标准国家卫生健康委2023年4月19日5月10日,后续国家卫生健康委食品安全标准与监测评估司发布了上述公告的详细解读,原文内容转载如下:根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了新食品原料、食品添加剂新品种和食品相关产品新品种(简称“三新食品”)目录及适用的食品安全标准,范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。该目录涉及的新食品原料食品安全指标包括过氧化值、真菌毒素、污染物和微生物限量;种属基原、食用量、食用和使用方法、生产工艺、发酵菌、副产物和溶剂残留限量等仍按照发布时公告执行;农药和兽药的使用应符合农业农村部的相关规定。监管部门、行业企业等相关机构在“三新食品”的监管、生产和使用中应按照要求执行该公告的相关标准。对新食品原料目录的食品安全标准设置18个月过渡期,在公告前和过渡期内按照原标准和要求生产的新食品原料,可销售和使用至保质期结束。2022年以后公告的“三新食品”的食品安全指标按照发布时公告要求执行。本次“三新食品”适用的食品安全标准梳理主要遵循以下原则:一、新食品原料(一)归类处理原则。现有食品安全国家标准适用的食品类别可以覆盖的产品,对其进行归类处理。菌类按食用菌类、藻类按食用藻类标准执行;植物类中,水果类按有关水果标准执行;直接食用的植物按有关蔬菜标准执行;作为调味品使用的(显脉旋覆花(小黑药)),按照香辛料标准执行。此外,综合考虑产品的原料来源、加工工艺的相近性以及食品安全指标的实际检测数据,对于可以符合相关食品安全标准中对某类食品要求的,参照该类食品执行。食用方式仅限冲泡的产品应归类为代用茶,目前直接列出相关指标,待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。(二)既定参照原则。对具有多重身份的产品,如具有新食品原料和营养强化剂双重身份的产品,其食品安全指标基本参照已有的营养强化剂相关标准执行。(三)个案处理原则。对于现有食品安全国家标准中食品类别无法覆盖的产品,如新工艺合成的或纯度较高的提取物等,基于新食品原料评审会议专家审议通过的企业标准,列出具体指标,并与现有食品安全国家标准制定原则和要求相匹配:原企业标准中,致病菌限定为“不得检出”但未写单位的,统一单位为“/25 g”;大肠菌群指标的限量按照现行食品安全国家标准进行规范;无需制定志贺氏菌、溶血性链球菌、致泻性大肠埃希氏菌以及农药残留等指标的产品,删除该类指标;无需制定微生物指标(如油脂类)和生物毒素指标(如以藻类或微生物为原料制得的油脂类)的产品,删除该类指标;重金属污染物指标统一保留至小数点后一位。二、食品添加剂新品种(一)已制定发布相应的食品安全国家标准的品种,其质量规格要求按照相应的食品安全国家标准执行,共涉及156个品种。(二)尚未制定相应的食品安全国家标准的品种,其质量规格要求仍按照发布公告时规定的要求执行,共涉及59个品种。 三、食品相关产品新品种(一)考虑到食品相关产品新品种并未设置质量规格标准,因此主要根据品种的功能类别及所批准的使用范围确定其适用的食品安全国家标准,即新品种的使用原则及管理方式应符合相应食品安全标准的规定。(二)对于公告批准的食品接触材料及制品用添加剂,其适用标准统一为《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)。(三)对于公告批准的食品接触材料及制品用基础树脂或新材料,其适用标准为使用范围所对应的产品标准,如塑料材料及制品用基础树脂适用标准为《食品安全国家标准 食品接触用塑料树脂》(GB 4806.6-2016),其中对应多个使用范围的基础树脂分别列出相应类别的产品标准。“三新食品”目录及适用的食品安全标准的公告.pdf
  • 31个食品基体国家一级标准物质编号颁发啦!
    点击图片即可购买一级标准物质的要求有哪些?首先,如果是一级标准物质,一般都可以用绝对测量法或者是两种以上不同原理的方法对其他物品进行准确可靠的定值。而如果只需要一种方法的话,其还可以很好的适用于多个实验室来进行物品的定值,而这是很多其他等级的标准物质所不具备的。其次,一级标准物质的准确度通常都是具有国内的最高水平的,它的均匀性也会很好的保持在准确度范围之内,因此对于一些准确性要求比较高的实验等等,其还是有着较为重要的衡量作用的,因此如果有这一方面的需求,其可以说是首选。最后,也是其较为重要的一个要求,一级标准物质其稳定性需要保持在一年以上,或者是达到国际同类标准物质的一个水平。另外,其包装形式一定要符合标准物质技术的规范要求,也只有这样,才可以算得上是一级的水平。国内食品行业问题频出,为了保障食品质量安全,食品标准物质在产品检验和质量控制中不可或缺。由于食品基质复杂,使得许多食品单纯采用纯品标准品已难以满足校准检测体系要求,需结合基体标准物质 进行校准。与纯品标准物质相比,基体标准物质为目标化合物和基体结合,与真实检测样品更一致,可以保障测试结果的准确性和质量控制的有效性。坛墨质检本批31个基体质控样产品,荣获国家一级标物编号及证书热烈祝贺坛墨质检再登高峰~
  • 卫生部:食品添加剂生产使用标准将提高
    日前,卫生部食品安全与卫生监督局局长苏志向媒体宣布,《预包装食品营养标签通则》将于2013年1月1日正式施行。这标志着我国将全面推行食品营养标签管理制度。  食品添加剂“喧宾夺主”引关注  8月13日,卫生部通报了《食品安全国家标准“十二五”规划》的相关情况,指出“十二五”末期,食品安全国家标准体系将基本建立。  值得注意的是,卫生部此番把提高食品添加剂生产使用标准纳入日程。  “2011年,中国食品添加剂全行业主要产品总产量762万吨,同比增长8.1% 销售额767亿元,较去年增长6.4%。”按照中国食品添加剂和配料协会副理事长薛毅提供本报的数据计算,我国人均每天至少食用1.6g食品添加剂。  食品添加剂“喧宾夺主”  “今麦郎”红烧牛肉面所使用添加剂数量竟达原料的四倍。  近日,本报记者走访北京地区多家超市发现,该品牌方便面面饼的重量约110g,主要配料为小麦粉、精炼棕榈油、淀粉。而使用的食品添加剂包含了瓜尔胶(增稠剂)、碳酸钾(酸度调节剂)、谷氨酸钠(增味剂)、核黄素(着色剂)等14种,为原配料数量的四至五倍。  一个重量不到20g的“达利园”法式软面包,含有的添加剂数量已达21种。  添加剂“喧宾夺主”,这在我国的食品市场并不鲜见。对此?熏“今麦郎”方便面品保部工作人员回应本报称,食品添加剂的使用数量是根据产品需要设定的,并且符合国家标准。  据GB2760-2011食品安全国家标准食品添加剂使用标准规定,成人每天摄入体内的食品添加剂不得超过10种,含量需小于0.05毫克。“在达到预期效果的情况下,需尽可能降低添加剂在食品加工中的使用量 ”  “原则上,食品添加剂的使用种类和数量在国标规定的范围内,是不会对人体造成伤害的。”北京市食品安全专家委员会委员、食品添加剂分会常务理事曹雁平告诉本报记者,食品添加剂可以起到延长保质期、保证食品味道的作用,这就导致了食品制造商对添加剂的大量需求。  面对本报记者的采访,复旦大学附属华东医院营养科主任孙建琴指出,化学添加剂大都属于抗营养物质,可使诸多营养元素被中和或分解。尽管某种添加剂在单一食品中属安全剂量范围,但是如果消费者同时食用多种添加剂含量较高的食物,摄入的化学添加剂在体内累积而超过安全剂量,就会慢性中毒。“超市中多年不变质的食品被WHO(世界卫生组织)定义为垃圾食品。”  “食品制造程度越高,使用添加剂的种类也会越多。”她建议消费者尽可能选择天然食品。对于那些加工度高的食品,要控制食用的量和频率,避免在同一个时间段累加食入。  食品添加剂标识待规范  另据本报记者了解,目前我国市场上的食品添加剂标识十分混乱。在“今麦郎”红烧牛肉面的包装说明中,大蒜和姜被列到了“添加剂”一栏。  有消费者呼吁规范食品添加剂标识,并公布每款食品中添加剂的使用剂量。  日前,卫生部食品安全与卫生监督局局长苏志向媒体宣布,《预包装食品营养标签通则》将于2013年1月1日正式施行。这标志着我国将全面推行食品营养标签管理制度。  “国家规定食品在出售时必须公示其营养标签,但添加剂这方面还没有做出强制性的法规要求。但是,国家明确规定了某些种类的添加剂具有特定的使用范围,儿童、孕妇、老人等特殊群体应慎用或禁用。”孙建琴建议,使用这些食品添加剂的生产厂商应在食品包装上对消费者做出提醒和说明。  至于商家是否应标明每款食品中添加剂的使用剂量,她认为这没有必要,“因为即使标示出剂量,大部分消费者也无法对其安全性做出准确判断。”  寻找可替代的食品添加剂  今年4月,卫生部曾对“撤销38种食品添加剂”公开征求意见。拟撤销名单中,有17种添加剂属着色剂。卫生部表示,拟撤销的2,4-二氯苯氧乙酸等38种食品添加剂已不具备技术必要性。全程参与这项工作的国家食品安全风险评估中心研究员王竹天同时强调,这些食品添加剂并不涉及安全问题。  “我国食品添加剂的管理流程是企业申请——行政审批——投入使用,少有退出的。这也导致食品添加剂的名单越来越长,数量越来越大。”上海市食品安全办公室副主任顾振华对媒体表示,“这是我国第一次大规模清理食品添加剂。此次清理传递出一个信息,食品添加剂的管理应该是动态的,可进可出的。”  中国保健协会食物营养与安全专业委员会会长孙树侠对本报表示,政府相关部门需重新审视添加剂的用法。  “建议加大科研力度,寻求更科学的食品添加剂使用方法。”她认为,有些添加剂完全可以少用甚至不用,转而以工艺或物理方法替代。“例如,现在很多熟食的肉都呈现鲜红色,这是因为国家规定可以使用色素。但如果把色素换成红曲(一种以籼米为原料的纯天然着色剂),效果可能会更好。因为红曲不仅是天然的着色剂,同时又是有益于心血管的保健品。”
  • 卫生部征求22个食品添加剂标准意见
    各有关单位:  按照卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部、质检总局2011年第6号联合公告的要求,经组织中国疾病预防控制中心研究并参照有关国际标准,拟指定亚硝酸钾等22个食品添加剂标准,现公开征求意见。请于2011年6月7日前按下列方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。22项指定食品添加剂质量规格标准名单 编号标准名称1. 亚硝酸钾2. 铵磷脂3. 二氧化硫4. 落葵红5. 喹啉黄6. 辣椒橙7. 阿力甜8. 乙酸钠9. 硬脂酸(十八烷酸)10. 聚甘油蓖麻醇酯11. 5'肌苷酸二钠12. 琥珀酸单甘油酯13. 对羟基苯甲酸甲酯钠14. 5'尿苷酸二钠15. 5'腺苷酸16. 二甲基二碳酸盐17. 乳化硅油18. 肌醇19. 苯氧乙酸烯丙酯20. 二氢-β-紫罗兰酮21. 二氢香豆素22. 氧化芳樟醇  附件:22个指定标准.rar   二〇一一年五月九日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制