当前位置: 仪器信息网 > 行业主题 > >

布洛芬羧酸非对映体的混

仪器信息网布洛芬羧酸非对映体的混专题为您提供2024年最新布洛芬羧酸非对映体的混价格报价、厂家品牌的相关信息, 包括布洛芬羧酸非对映体的混参数、型号等,不管是国产,还是进口品牌的布洛芬羧酸非对映体的混您都可以在这里找到。 除此之外,仪器信息网还免费为您整合布洛芬羧酸非对映体的混相关的耗材配件、试剂标物,还有布洛芬羧酸非对映体的混相关的最新资讯、资料,以及布洛芬羧酸非对映体的混相关的解决方案。

布洛芬羧酸非对映体的混相关的资讯

  • 强生召回婴幼儿布洛芬 总局:国内未售
    强生召回20万瓶婴幼儿布洛芬 食药总局:召回产品未在我国销售  美国食品药品管理局(FDA)官网日前公告称,因生产时鉴别有误,强生公司已在美国开始召回20万瓶可能含有微小塑料颗粒的婴幼儿布洛芬药物,该颗粒物被指易引发潜在危险。国家食品药品监督管理总局9月12日通报了强生公司在美国召回布洛芬产品有关情况,确认此次召回的产品未在我国销售。  产品存在潜在风险  据了解,本次召回涉及布洛芬原始浆果风味悬滴剂(Motrin Infants' Drops Original Berry Flavor)的三批产品,该产品主要用于2岁或2岁以下婴幼儿的退烧及镇痛。该药品的制造商——强生在美国的一家子公司麦克尼尔(McNeil)表示,公司从正在生产的一个批次产品中发现有微小的塑料颗粒,这种颗粒来自于第三方布洛芬原料供应商。由于可能存在潜在风险,公司现已启动主动召回程序。  被确认召回的产品可通过批号鉴别,分别为:DCB3T01、DDB4R01及DDB4S01。麦克尼尔告诫消费者,药品中可能含有一定的聚四氟乙烯(PTFE),常用于特氟隆涂料中,建议尽快停用该产品。截止目前,尚未发现任何伤痛病例。  据记者了解,强生旗下的布洛芬药物在中国也有销售。上海强生制药有限公司生产的美林布洛芬混悬滴剂,主治6-36个月的婴幼儿发热及感冒引起的头痛、咽喉痛等症。对此,上海强生制药有限公司表示,强生制药在中国市场销售的非处方药均在中国大陆生产,且生产工厂已通过新版GMP认证。问题产品并未销往中国大陆和香港,消费者可放心服用。  9月12日,国家食品药品监管总局针对此事公告称,近日,强生公司向监管部门报告,强生在美国主动召回特定批次的布洛芬产品,召回的原因是国外供应商提供的布洛芬原料存在质量问题。食品药品监管总局经核实确认,未批准强生公司进口布洛芬产品。强生公司在中国注册的布洛芬产品产地为中国上海市,原料供应商为中国本地公司,此次召回的产品在中国市场没有销售。  强生陷入召回怪圈  这并非布洛芬第一次“出事”。此前的一起美国官司,让经典解热镇痛药布洛芬陷入质疑漩涡。美国一女童在服用强生美林布洛芬后双目失明,强生公司为此被判赔偿6300万美元。  而对于强生而言,“召回”似乎成了其近年来的代名词。自2009年以来,强生因生产质量问题屡次宣布召回,而2010年更被外界戏称为强生“召回年”。在2010年,强生大大小小有15次召回,产品包括感冒药、止疼片、抗过敏药以及隐形眼镜等,公司损失金额高达数亿美元。  有媒体统计发现,作为全球500强企业之一的强生,近些年其产品频频遭遇“质量门”,短短7年时间,强生产品召回就高达51次。值得注意的是,在这51次的召回中,48次的召回跟中国无缘,一度引发业内质疑。今年6月份,强生也因此成为因质量召回被国家药监局首家约谈的外企。  对于强生屡次陷入“召回门”的原因,有观点认为,这属于罕见的系统性问题,原因可能在于强生错误地将生产和质量控制的监管分散化。也有观点认为,强生的问题在于过分追求降低成本。据外媒报道,强生出于节约成本的考虑没有重视麦克尼尔工厂生产中存在的问题,此外强生最近几年在投资新设备方面总是犹豫不决,因为投资新设备和确保生产质量需要大量的资金投入。  专家指出,召回事件频发,对强生的形象带来严重的负面影响。不过,召回是一种正常现象,要肯定召回制度建立的正面作用,这是一个公司敢于负责的行为,也有利益公司的风险控制。同时,强生的召回事件也给国内的药品生产企业敲响了警钟,中国应加快健全商品的召回制度,并完善召回后续赔偿等配套措施。
  • 布洛芬等药品产量激增,制药企业VOCs治理跟得上吗?
    布洛芬、对乙酰氨基酚等药品最近成了“抢手货”。据工信部消息,日前,两类解热镇痛药的产能产量大幅提高,日产能达2.02亿片,产量达1.9亿片,多家药企24小时满负荷生产。这种情况下,制药企业产生的主要污染物——挥发性有机物(VOCs)的排放量也随之增加。这些制药企业的VOCs治理能跟得上吗?当前形势下,企业能否从容应对?冲击有限:取决于企业末端治理技术水平和管理能力多位业内人士认为,制药企业满负荷生产、产量激增对其VOCs处理能力的冲击有限。江苏省苏州市生态环境综合执法局郑兴春告诉记者:“制药企业安装VOCs处理设施时,我们要求设备处理能力达到满负荷运行的设计标准。大多数企业平时的运行效率只有30%—40%,即使现在运行效率提高了,也在可控范围内。而且,由于制药企业的生产能力强,每批次可以生产很多药品,所以很少出现超负荷运行的情况。例如,近期我们检查的几家苏州制药企业,虽然产量增加,但都没有超负荷运行。”但这并不意味着VOCs排放量增加对制药企业没有影响。中国环境科学研究院大气环境研究所副研究员王洪昌说:“影响大小,主要取决于企业VOCs末端治理的控制技术水平。”目前,制药企业选择的VOCs末端处理技术相差较大、治理水平参差不齐。一些企业采用燃烧法,安装投资和运行成本较高的RTO(蓄热式热力焚化炉)或RCO(蓄热催化燃烧装置),处理效率较高,能够较好应对生产负荷变化。但是,大多数制药企业采用的仍然是投资和运行成本较低的冷凝、吸收、吸附等技术,处理效率不高,对满负荷冲击的适应能力相对较差。“治理技术水平偏低的企业,当前可能更加频繁地出现VOCs排放浓度瞬时或小时超标问题。”王洪昌说。郑兴春表示,这就要求制药企业提高运维管理能力,加大环境治理力度,根据VOCs排放量的变化,更加及时地调整易耗品更换频率、优化处理设备参数,有效应对生产负荷增加的冲击。他举例说,未采用燃烧法的企业,需要提高易耗品更换频率。比如,采用活性炭吸附技术的企业,要提高活性炭更换频次;采用喷淋技术的企业,要及时更换碱液、调整碱液pH值等。采用燃烧法的企业,当VOCs收集量增加、燃烧时间变长、气体浓度变高时,设备温度也要调高。“企业对VOCs产生环节和收集管道也要实时检测,检查管道密闭性是否达到要求,防止气体泄漏。”郑兴春说。不容忽视:VOCs治理是制药企业重难点事实上,VOCs治理一直是制药企业的重难点,即使是制药行业头部企业,在这方面也吃过不少罚单。华东理工大学资源与环境工程学院党委书记、教授修光利告诉记者,从客观方面看,这与制药行业本身VOCs治理的复杂性相关。“制药企业生产品种多、所涉原料广,特别是原料药制备过程中使用了较多的有机原料和有机溶剂,导致其产生的VOCs种类繁多,排放成分复杂、性质差异大。不仅如此,制药企业生产流程长,VOCs产生环节多,无组织排放情况较多,序批式的生产操作方式导致排放的波动性较大,增加了企业污染治理难度。”修光利说。一些大企业能生产上千种药品。药品所用原料可分为活性药物成分(原料药)、非活性成分(辅料)和包装原料,其中,生产原料药的企业污染较重,利用原料药生产片剂、胶囊等的单纯制剂类企业污染较轻。在浙江,原料药约占全省医药工业一半比重。通常情况下,只有大型企业才有能力生产原料药,小型企业购买原料药做片剂或精包装。一些地区采用合同加工外包(CMO—Contract Manufacture Organization)式的制药企业,其药品品种复杂,也值得关注。药品所用原料越多,生产过程中发生的化学反应越多,产生的VOCs物种也越多。比如,生产布洛芬类消炎止痛药产生的主要大气污染物至少7种,生产对乙酰氨基酚等解热镇痛药则至少产生氨、氮氧化物、硫酸雾等21种大气污染物。“需要注意的是,制药企业所用的原辅料,有时还涉及医药中间体的生产和使用,比如布洛芬制药过程需要用到中间体异丁苯乙酮。医药中间体所用原料更加复杂,一些制药企业并不生产医药中间体,而是从其他化工企业购买。也就是说,药品产量激增,不仅带动制药企业VOCs排放量增加,还带动提供医药中间体的化工企业VOCs排放量的增加。”修光利说。他还指出,生产药品从第一步到最后一步可能有几十个环节,VOCs排放至少涉及7—8个环节,生产环节涉及的连接部件多,泄漏排放风险大。同时,药厂的药品一般都按批次生产,一批药品经过几小时的化学反应(或发酵)后再进入下一环节。物料的间歇式进出,导致产生的VOCs间歇排放,气体浓度波动变化大;更换药品品种需要清洗生产系统,清洗环节排放浓度高,这些都挑战着企业的治理能力。修光利告诉记者,受现有技术条件限制,制药企业产生的部分VOCs物种还缺乏监测方法,特别是一些低阈值特征污染物,虽然单一物质排放浓度达标,但综合恶臭(异味)仍十分明显,治理难度大;类似二氯甲烷等卤代烃的使用比较普遍,挥发性和毒性都很强,直接使用燃烧法会带来二次污染风险。但目前预处理技术非常不成熟,吸附脱附回收利用技术效果也不稳定。制药企业VOCs物种的复杂性对高效的RTO等处理设备的稳定运行也造成了很大影响。亟待解决:加强全过程管控、高效治理技术研发“对于制药企业的检查,我们面临的最大问题就是检测虽然合格,但异味还在。”郑兴春坦言。他希望,制药企业能在原有效率较低的VOCs处理设备上,加装二级、三级处理装置。处理装置升级是优化制药企业VOCs治理的末端环节。王洪昌指出,更应加强全过程管控,从原辅材料替代、工艺改进、过程控制、治污设施建设、监测监管等方面提出一体式优化控制路线。一是加大源头控制力度,积极推广绿色制药技术、推进清洁生产。鼓励采用酶促法、酶法裂解等无污染或低污染的先进药品回收工艺,对于6—APA产品,用酶法裂解替代化学裂解法,可以减少65%的有机溶媒和化学品;推广密闭化、管道化、连续化生产工艺与设备,采用无毒无害或低毒、低害的原料替代高度和难以去除高毒的原料等。二是加强设备密封操作要求,全面提升装备水平。采用国内先进设备,并进行垂直流设置,利用设备之间的层高差实现无缝化对接;生产装置采用DCS自动化控制,采用先进的温度测量、压力测量、液位测量仪器、仪表;鼓励使用无泄漏设备和连接部件。三是强化以资源化为目的的VOCs分类收集、分质处理。目前,很多制药企业采用同一系统收集处理混合VOCs废气,不利于有机溶剂资源回收,还大幅增加VOCs治理难度和费用。分类分质收集,不仅能有效提高废气浓度和物质纯度、降低风量,也便于采用深度冷凝、高效真空脱附等技术,提高溶剂回收率。修光利表示,2021年,由华东理工大学牵头制定、三省一市发布实施的长三角地区统一的《制药工业大气污染物排放标准》(以下简称《标准》),就明确要求对VOCs分类收集、分质处理。“分类收集、分质处理有助于推动VOCs治理技术低碳化改造。另外,分类收集可以考虑与《标准》中的控制项目结合起来。国家和地方标准针对制药行业都提出了总挥发性有机物(TVOC)以及一些特征污染物的控制指标,基本覆盖了化学药品原料药企业涉及VOCs的典型种类,我们也在《标准》的附录中基于产品进行了细致的分类,企业可根据使用的原辅料、生产工艺过程、生产产品等情况,从中筛选需要控制的VOCs。”修光利说:“未来,还要进一步研发适合不同种类VOCs的监测技术方法。”他透露,今年,适用于长三角地区的制药工业大气污染物防治技术规范正在制定,VOCs治理技术将遵循高效安全、节能低碳方向,综合考虑经济、环境和社会效益,构建全过程控制技术体系。同时,鼓励企业对有机溶剂回收利用。通过标准规范引领技术改造,推动化学合成类制药、发酵类制药等行业转型升级。
  • 欧盟拟放宽山葵中布洛芬残留限量
    今年8月7日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就放宽山葵和欧芹根中布洛芬(Trifloxystrobin)的最大残留限量发表了意见。  据了解,依据欧盟委员会(EC)No.396/2005法规第六章的规定,比利时收到一家公司要求放宽山葵和欧芹根中布洛芬最大残留限量的申请。为协调布洛芬的最大残留限量(MRL),比利时建议对其残留限量进行修订。  依据欧盟委员会(EC)No.396/2005法规第八章的规定,比利时起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。欧洲食品安全局对评估报告进行评审后,作出决定:山葵中布洛芬的最大残留限量由现行的0.02mg/kg放宽至0.08mg/kg,欧芹根中布洛芬的最大残留限量由现行的0.04mg/kg放宽至0.08mg/kg。
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 小羊人“烧开了”有布洛芬,浓缩过程中“烧开了”该如何避免?
    你见过暴沸吗你可能会觉得这是废话,某种暴沸,比如加热一杯水,这几乎人人都见过。你会看到它首先在底部沸腾。烧杯底部受热后,由于局部过热形成气泡,一旦气泡开始形成,将随着上升而不断变大,直到积累的热量被完全散光。 在浓缩过程中的离心腔中的暴沸又是完全不同,同时也更严重,因为暴沸会带来交叉污染,使得昂贵的样品损失。在以下将解释浓缩过程中的暴沸以及Genevac是如何避免暴沸发生的。1、顶部沸热我们需要理解的*个概念是,与上面的例子不同,离心蒸发器中的小瓶中的单一溶剂不会在底部开始沸腾,即使热量主要是在底部提供的。它也会在顶部沸腾,在液体的表面沸腾。这是由于高速旋转产生离心力的作用,使得样品管在运行过程中液体底部压力将大于表面压力。根据沸点随着压力的降低而降低的原理,使得液体表面的沸点将小于底部的沸点。以水为例,当转速产生300g的离心力时,腔体压力为8mbar,表面10mm以下位置的压力为308mbar。所以这时水表面的沸点为4℃,但距10mm以下位置的液体沸点为72℃。 2、高速离心力的必要性Q 是所有的离心力都可以带来表面沸腾吗?A 不是。Genevac经过大量的实验证明——如果离心腔不能带来500g的离心力,就无法阻止蒸发浓缩中的暴沸。这样设计出来的蒸发系统,其制作成本远远大于其他品牌的同类型产品。为了彻底避免暴沸的产生,Genevac认为这样的投入是值得的。3、最具有挑战性的溶剂处理单一溶剂的暴沸,这样的情况很容易避免。最具有挑战性的是在处理混合溶剂时,如何有效避免暴沸的产生。一个经典的例子是二氯甲烷(DCM)和甲醇的混合溶剂。沸点更低的DCM的密度更高,导致在混合溶剂中DCM在下层,甲醇在上层。这种现象称之为:“倒置”。 如果我们有一个混合物(当离心时)分离到1厘米的甲醇放在1厘米的DCM上,在500g的离心力时,甲醇管中1厘米深的压力比表面高出近400mbar(比重为0.79)。假设我们从25℃开始升温,当我们在最初将真空时降低压力时,我们就会下降到550mbar,DCM的沸点是25℃。如果不是因为上面的甲醇,DCM现在就可以沸腾了。但是即使腔室是550mbar,但DCM实际上是950mbar,所以它还没有理由沸腾。因此,当压力继续下降达到160mabr时甲醇的沸点是25℃,所以现在甲醇开始在表面沸腾。然后当它达到150mbar时,DCM层的压力为550mbar,并可能自己开始沸腾。可能此时甲醇层已经变浅了。4、暴沸还是不暴沸?接下来发生的事情决定了你是否需要重新制作你所有的化合物——如果DCM开始慢慢地沸腾,它的小气泡会通过甲醇到达表面。他们会随着它们通过甲醇上升(推动气泡的压力从550mbar到150mbar),但只要它们很小,它们就会以一种受控制的方式移动到表面。然而,如果DCM开始沸腾得足够快,并形成的大量气体。这可能会喷射出所有的溶液,它上面剩下的甲醇层几乎肯定会被猛烈地甩掉。在这种情况下,严重暴沸和根本没有暴沸之间的区别,取决于DCM开始沸腾的轻微程度。这取决于真空应用的小心程度。但请注意,本例中的压力和温度是基于本例中两种溶剂的特定深度。在任何给定的实际情况下,这些数字都会有所不同。这就解释了重力、真空上升速率和沸腾开始的深度之间的关系。g越多,斜坡越慢,沸腾就更接近表面。5、怎样才能防止暴沸?使用Genevac系统,你实际上不需要担心这些。Genevac系列II系统有一个防暴沸功能,称为Dri-Pure&trade ,这意味着压力以受控制的速度下降,转子速度增加到高速(500g)。真空梯度由三个参数定义:启动压力、结束压力和斜坡持续时间。所使用的值是Genevac经过大量的研究后选择的,所以你所需要做的就是选择是否使用Dri-Pure&trade 。Genevac HT系统可根据需要,在不同程序上编写不同的Dri-Pure&trade 参数,使您的使用过程更方便和省时。 未使用Dri-Pure&trade 效果图 使用Dri-Pure&trade 效果图6、哪些溶剂混合物更容易发生暴沸?● 极挥发性的溶剂;● 含有溶解气体的溶液(氢氧化铵);● 两种溶剂挥发性越强的混合物密度也越大;● 两种溶剂的密度非常接近,但溶液可能不充分混合的混合物;● 导致暴沸的溶剂或溶剂混合物中的溶质(例如HPLC馏分);● 干燥化合物可以在溶液上形成一层膜的溶液。7、还能做些什么来阻止交叉污染吗?除了选择Dri-Pure&trade 之外,你还可以做一些其他的事情:● 一般建议任何样品容器(微量滴度板或小瓶)的填充量不得超过总体积的75%;● 当运行极挥发性的溶剂(例如DCM)在开始运行前确保腔室冷却。 英国Genevac公司成立于1990年,隶属SP Scientific旗下,一直专注于研究和生产各种离心蒸发浓缩设备,其产品广泛的应用于生命科学、制药、化学、分析等领域。
  • 使用超高效合相色谱系统分析微量的对映体杂质
    目的使用沃特世ACQUITY UPC2&trade 系统证明杏仁酸苄酯(benzyl mandelate)的快速手性分离和0.02%杂质含量下的对映体过量测定。背景根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种药品又包含单一对映体活性成分。单一对映体型手性药物被认为是改善了的化学实体,它能提供更高的药效、更好的药理学数据和更为有利的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其它有机杂质。人用药品注册技术国际协调会(ICH)已对鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。ACQUITY UPC2系统的高检测灵敏度实现了对药用物质中对映体杂质的鉴别和定量。 解决方案图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用UltraPerformance Convergence Chromatography&trade ( UPC2&trade )进行分离,其色谱图如图2所示。主要实验参数列于表1。总分析时间不到1.5分钟。平均峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。如表2所示,是5次连续进样的保留时间和峰面积的重现性数据。在0.20 mg/mL的浓度下,保留时间的重现性RSD值优于0.23% ,峰面积重现性RSD值优于0.5%。图3显示了浓度为2 mg/mL的R-杏仁酸苄酯的UPC2色谱图。经紫外光谱确认(结果未显示),1.30min处的小峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检测限),根据峰面积计算相当于主峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPC2系统,其中包括经改进的泵系统和经优化的检测器设计。本例中对映体过量(e.e.)值为99.96%。总结使用ACQUITY UPC2系统在不到1.5分钟时间内,成功完成R-和S-杏仁酸苄酯的UPC2手性分离。在每种对映体浓度均为0.20 mg/mL条件下,可获得优异的重现性(保留时间的重现性RSD优于0.23%,峰面积RSD优于0.5%)。新型泵系统和检测器优化设计带来更高的检测灵敏度,使测定0.02%对映体杂质和对映体过量成为可能。AQUITY UPC2系统适用于微量对映体杂质的分析、对映体过量测定和QA/QC分析。 联系方式: 叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com 周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 使用ACQUITY UPSFC系统分析微量的对映体杂质
    目标 使用沃特世ACQUITY UPSFC™ 系统证明杏仁酸苄酯的快速手性分离和0.02%杂质水平下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种又包含单对映体活性成分。单对映体型手性药物被认为是改善了的化学实体,可提供更高的药效、更好的药理学数据和更为有用的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其他有机杂质。国际协调会议(ICH)已对关于鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPSFC系统的高灵敏度实现了对药用物质中对映体杂质的鉴定和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用ACQUITY UPSFC系统进行分离,其色谱图如图2所示。主要试验参数在表1中列出。 总分析时间不到1.5分钟。平均基峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。保留时间和峰面积的重复性测定基于五次重复进样,结果汇总于表2。在0.20 mg/mL的浓度下,保留时间的重复性RSD小于0.23%,峰面积响应RSD优于0.5%。 图3显示了2 mg/mL R-杏仁酸苄酯的UPSFC色谱图。经紫外光谱确认(结果未显示),1.30分钟处的次要峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检出限),根据峰面积判断相当于主要峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPSFC系统,其中包括改进的泵系统和优化设计的检测器。本例中对映体过量(e.e.)百分比为99.96%。总结 使用ACQUITY UPSFC系统在不到1.5分钟成功完成R-和S-杏仁酸苄酯的UPSFC手性分离。当每种对映体浓度均为0.20 mg/mL时,所得到的重复性极佳(保留时间的可重复性RSD小于0.23%,峰面积RSD小于0.5%)。新型泵系统和优化设计的检测器所带来的更高检测灵敏度使测定0.02%对映体杂质和对映体过量成为可能。ACQUITY UPSFC系统适用于低浓度对映体杂质的分析、对映体过量测定和QA/QC分析。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。  研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 一种检测葡萄糖对映体的表面增强拉曼散射光谱策略
    近期,上海师范大学杨海峰教授、刘新玲博士课题组报道了一种用于检测葡萄糖对映体的SERS策略,相关成果以“Chiral Detection of Glucose: An Amino Acid-Assisted Surface Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals”为题发表在国际化学权威杂志Analytical Chemistry上(DOI: 10.1021/acs.analchem. 2c02340)。 研究背景: 在手性环境中(如人体内),由于分子间手性相互作用的差异性,手性分子和其对映体可表现出不同的性质和功能。因而,手性分子检测是一个非常重要的研究课题。圆二色(CD)光谱是一种常用的手性光谱检测技术,其检测原理是基于手性分子对于左旋和右旋圆偏振光具有不同的吸收系数,使得对映体产生符号相反的CD信号,从而可以直观地区分手性构型(图1)。然而,对于不含生色团的手性分子而言,其CD信号很弱、或者超出仪器检测波长范围。因此,发展灵敏的光谱分析技术用于手性分子构型鉴定和含量测定具有重要意义。表面增强拉曼光谱(SERS)分析方法灵敏度高,SERS信号可以反映出分子间相互作用机制,但是如何将SERS技术优势应用于手性检测仍有待于深入研究。 研究内容: 人体对氨基酸和葡萄糖具有特殊的对映体选择性,分别以L-氨基酸和D-葡萄糖为主,上述手性选择性起因仍是一个未解的科学难题。受此启发,如图2所示,该课题组制备了L-苯丙氨酸(L-Phe)修饰的“核-卫星”金纳米结构作为SERS基底。该基底与D-葡萄糖(D-Glu)混合后,L-Phe的SERS信号强度会增加(“signal on”);反之,L-葡萄糖(L-Glu)会降低L-Phe的SERS信号强度(“signal off”)。若以上述基底的SERS信号为参考,通过差值计算法,则可以获得和CD光谱类似的SERS信号强度差值曲线,即D-Glu和L-Glu表现出符合相反的SERS差值信号,从而直观地区分D-Glu和L-Glu手性构型。根据上述signal on和signal off效应,该方法可以测定葡萄糖对映体过量值(ee)及浓度,并可拓展到唾液中葡萄糖浓度检测(10-8~10-4 mol/L)。 图一示例: 圆二色光谱法区分对映体示意图(来源:Anal. Chem.) 图二示例:用于葡萄糖对映体检测的SERS分析策略示意图(来源:Anal. Chem.) 本研究通过氨基酸和葡萄糖对映体之间的差异化手性相互作用,导致氨基酸的SERS信号变化具有对映体选择性,实现葡萄糖对映体的区分及其含量测定,从而提供了一种基于SERS的手性分析策略。
  • 火速围观 | VOC/SVOC等混标新品火热上线啦!
    初秋八月,坛墨质检新品如期而至,欢迎咨询订购!VOC/SVOC定义及分类挥发性有机物:VOCs 是指常温下饱和蒸汽压大于70Pa、 常压下沸点在260℃ 以下的有机化合物,或在20℃ 条件下,蒸汽压大于或者等于10Pa 且具有挥发性的全部有机化合物。主要按其化学结构的不同,可以进一步分为八类: 烷类、芳烃类、烯类、卤烃类、酯类、醛类、酮类 和其他。半挥发性有机物: 半挥发性有机污染物(SVOCs ),是指沸点一般在170-350℃ 之间(由于分类依据模糊,经常与挥发性有机物有交叉)、蒸汽压在13.3*10 -5 Pa的有机物。主要包括:二噁英类 、 多环芳烃 、 有机农药类 、 氯代苯类 、多氯联苯类 、吡啶类、喹啉类、 硝基苯类 、 邻苯二甲酸酯类 、 亚硝基胺类 、 苯胺类 、 苯酚类 、多氯萘类和多溴联苯类等化合物。*图片仅供参考1HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法环境保护部2012年12月发布标准《HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2013年3月1日起实施;本标准适用于海水、地下水、地表水、生活污水和工业废水中57种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中2种内标同位素混标(80638KA);甲醇中56种VOC混标(80032GA);甲醇中57种挥发性有机物VOC混标(80911JA);甲醇中54种挥发性有机物VOC混标(80706KA);2二氯甲烷中64种半挥发性有机物SVOC混标(80251KM)生态环境部2018年7月29号发布标准《HJ 951-2018 固体废物 半挥发性有机物的测定 气相色谱-质谱法》自2018年12月1日起实施;适用于固体废物及其浸出液中氯代烃类、邻苯二甲酸酯类、亚硝胺类、醚类、卤醚类、酮类、苯胺类、吡啶类、喹啉类、硝基芳香烃类、酚类包括硝基酚类、有机氯农药类、多环芳烃类等64种半挥发性有机物的筛查和定量分析。检测方法:固体废物和浸出液中的半挥发性有机物经提取、净化、浓缩、定容后,用气相色谱分离、质谱检测。根据质谱图、保留时间、碎片离子质荷比及其丰度定性,内标法定量。坛墨产品:二氯甲烷中6种内标同位素混标(80119QM);二氯甲烷/苯中64种半挥发性有机物SVOC混标(80251JMO,1000ppm);二氯甲烷中64种半挥发性有机物SVOC混标(80251JM,1000ppm) 二氯甲烷中64种半挥发性有机物SVOC混标 (80251KM,2000ppm);3甲醇中6种挥发性有机物VOC混标(80680JD)环境保护部2011年2月发布标准《HJ 605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2011年6月1日起实施;本规定了土壤和沉积物中65种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中3种内标混标同位素(80119QM);甲醇中3种替代物混标(80047KA);甲醇中59种挥发性有机物VOC混标(80253JA,1000ppm);甲醇中59种挥发性有机物VOC混标(80648KA,2000ppm,研发中);甲醇中6种挥发性有机物VOC混标 (80903KA);4丙酮中7种苯氧羧酸农药混标(80680JD)环境保护部2019年5月发布标准《HJ 1022-2019 土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》自2019年9月1日起实施;本规定了土壤和沉积物中7种苯氧羧酸类农药的测定。检测方法:待测样品乙腈超声提取,提取液经固相萃取柱净化浓缩后,进液相色谱进行分离,高效液相色谱-三重四极杆质谱法定性,外标法定量。坛墨产品:丙酮中7种苯氧羧酸类农药混标(80680JD, 1000ppm);丙酮中7种苯氧羧酸类农药混标(80680GD,100ppm);
  • 文献解读丨超临界流体色谱串联质谱法在普通白菜乙酰甲胺磷和甲胺磷对映体分离分析中的应用
    本文由农业农村部环境保护科研监测所课题组所作,通讯作者为耿岳博士,文章发表于Journal of Separation Science(J Sep Sci. 2022,1– 12, https://doi.org/10.1002/jssc.202200006)。 Part 01 研究背景 乙酰甲胺磷是一种广谱有机磷杀虫剂,在作物中可通过酰胺水解转化为毒性更大的代谢物甲胺磷。乙酰甲胺磷和甲胺磷均由一对对映体组成,虽然不同对映体的理化性质相同,但在活性、毒性和降解行为方面存在显著差异。因此,开发高效的乙酰甲胺磷及其代谢物甲胺磷对映体的分离和测定方法,并开展对映体选择性研究对乙酰甲胺磷及其代谢物的评估具有重要意义。目前手性分离主要采用手性色谱柱结合HPLC、GC、GC-MS/MS和LC-MS/MS进行,但对于部分手性农药存在分析时间长、分离度差等问题。 SFC-MS/MS因具有分析时间短、分离度高、有机溶剂消耗低等优点,已广泛应用于手性农药对映体的分析。本研究建立了一种绿色、灵敏、高效的SFC- MS/MS检测普通白菜中乙酰甲胺磷和甲胺磷对映体残留的方法。为了验证所建立的方法,在中国北方温室条件下,通过盆栽试验研究了乙酰甲胺磷及其代谢产物甲胺磷在普通白菜中的残留情况。此研究系利用SFC - MS/MS对蔬菜样品中乙酰甲胺磷和甲胺磷对映体的选择性进行报道,为手性杀虫剂乙酰甲胺磷的科学评价提供了基础资料。 Part 02 研究结果 1、对映体拆分方法的优化采用Nexera UC SFC-MS/MS系统,经过手性固定相、流动相、有机改性剂种类及比例、背压和柱温的优化等,确定最终的仪器条件。 1)色谱条件色谱柱:Chiralcel OD-H column (250 × 4.6 mm, 5 μm) ;流动相:A (CO2)/B乙醇= 95/ 5,v /v;流速:3 mL /min;柱温:40℃;背压:10 MPa;补偿溶剂 (0.1% 甲酸甲醇溶液) 流速:0.1 mL/min; 2)质谱条件离子源参数:雾化气流速:3 L/min (N2, 99.5%);加热气流速:10 L /min(干燥空气);接口温度:300℃;DL温度:250℃;加热块温度:400℃;干燥气体流速:10 L/min (N2, 99.5%)。 质谱参数:按上述条件,不同对映体出峰时间为:R-乙酰甲胺磷(4.20 min)、S-乙酰甲胺磷(4.91 min)、R-甲胺磷(5.97 min)、S-甲胺磷(6.68 min) 。不同条件下的对映体拆分结果见(图1)。图1 SFC-MS/MS上乙酰甲胺磷和甲胺磷对映体的色谱图、分离度和保留时间 2、方法学考察 对建立的对映体分析方法进行系统的方法学考察,包括线性、回收率、精密度、定量限等。不同对映体在溶剂和基质标准中均有良好的线性(具体见表1)。通过比较溶剂标和基质标进行基质效应评价,乙酰甲胺磷和甲胺磷对映体在普通白菜基质中表现出较强的基质抑制效应,为了消除基质效应,本研究采用基质匹配标准溶液进行定量。乙酰甲胺磷和甲胺磷对映体的定量限均为0.005 mg/kg。在3个添加水平(0.01、0.1和1 mg/kg)下对普通白菜空白样品中乙酰甲胺磷和甲胺磷进行回收率试验,评价方法的准确性和精密度。化合物在普通白菜中的日内平均回收率(RSDs)为70.4−98.5% (1.4−10.9%),日间平均回收率(RSDs)为75.4−87.5% (6.1−13.4%)。结果表明,所建立的方法精密度和重现性良好,可满足普通白菜中乙酰甲胺磷和甲胺磷对映体的测定要求。 表1 不同对映体的线性、相关系数和基质效应图2 R-乙酰甲胺磷、S-乙酰甲胺磷和Rac-乙酰甲胺磷(外消旋乙酰甲胺磷)及其代谢产物R-甲胺磷、S-甲胺磷和Rac-甲胺磷的残留量 图3 R-乙酰甲胺磷(A)、S-乙酰甲胺磷(B)、Rac-乙酰甲胺磷(C)及其代谢产物R-甲胺磷(D)、S-甲胺磷(E)、Rac-甲胺磷(F)(外消旋甲胺磷)在普通白菜中的消解曲线 3、方法应用 为验证SFC-MS/MS分析方法的有效性,对普通白菜样品中乙酰甲胺磷和甲胺磷的对映体进行了分析。结果表明,乙酰甲胺磷和甲胺磷对映体在普通白菜中的降解均符合一级动力学方程,R2在0.944 ~ 0.992之间(图3),半衰期分别为:4.39 (R-乙酰甲胺磷)、2.91 (S-乙酰甲胺磷)、3.9(Rac-乙酰甲胺磷)天、10.91(R-甲胺磷)、6.24(S-甲胺磷)和9.10(Rac-甲胺磷)天。R-乙酰甲胺磷的半衰期是S-乙酰甲胺磷的1.51倍,表明其降解具有对映体选择性;在普通白菜中甲胺磷半衰期比乙酰甲胺磷长,表明甲胺磷比其母体具有更强的持久性。 Part 03 结论 基于岛津Nexara UC系统,建立了一种快速、简便、灵敏的测定普通白菜中乙酰甲胺磷及其高毒代谢物甲胺磷对映体的分析方法,本方法可在8分钟内实现手性对映体的基线分离,每针样品仅消耗1.2 mL有机溶剂(乙醇)。同时进一步应用该方法评价了乙酰甲胺磷及其代谢产物对映体在普通白菜中的手性选择性消解规律研究。本方法具有良好的精密度和重现性,满足普通白菜样品中乙酰甲胺磷和甲胺磷对映体残留测定的要求。 关联仪器Nexera UC 所提供的解决方案• 临界流体的低粘度以实现快速分离• 提高峰容量与分离度• 利用高渗透性,对异构体或手性化合物实现快速分离• 差异化的分离模式提高灵敏度• 无分流样品导入技术提升灵敏度• 减少有机溶剂消耗,在降低成本的同时降低对环境的影响 文献题目《Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry》 使用仪器岛津Nexera UC 作者Linjie Jiang1,2,3 Yue Geng1,2,3 LuWang1,2,3 Yi Peng1,2,3 Wei Jing4 Yaping Xu1,2,3 Xiaowei Liu1,2,31 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, P. R. China2 Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and RuralAffairs, Tianjin, P. R. China3 National Reference Laboratory for Agricultural Testing, Tianjin, P. R. China4 Shimadzu (China) Co., LTD. Beijing Branch, Beijing, P. R. China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。 本文内容非商业广告,仅供专业人士参考。
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑英文名:Omeprazole主成分化学名:5-甲氧基-2-[[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基]-1H-苯并咪唑主成分分子式:C17H19N3O3S主成分cas登记号:73590-58-6主成分分子量:345品种简介:奥美拉唑,主要用于十二指肠溃疡和卓-艾综合征,也可用于胃溃疡和反流性食管炎;静脉注射可用于消化性溃疡急性出血的治疗。与阿莫西林和克林霉素或与甲硝唑与克拉霉素合用,以杀灭幽门螺杆菌。 第九种:通用名:雷尼替丁英文名:Ranitidine主成分化学名:1,1-Ethenediamine, N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N' -methyl-2-nitro-主成分分子式:C13H22N4O3S主成分cas登记号:66357-35-5主成分分子量:314.40品种简介:雷尼替丁与西咪替丁一样是目前应用最广泛的治疗溃疡病的药品。由英国葛兰素(glaxo)公司开发。1976年由英国普赖斯(price)等合成,1979年布拉德肖(bradshaw)阐明其药理,1980年贝斯塔(berstad)报告用于十二指肠溃疡有效,1981年上市,在世界近百个国家应用。我国于1985年由上海第六制药厂生产。 第十种:通用名:辛伐他汀英文名:Simvastatin主成分化学名:舒降脂 辛伐他丁(1S,2S,6S,8S,8aR)-1,2,6,7,8,8a-六氢-3,7-二甲基-8-[2-[(2R,4R)-四氢-4-羟基-6-氧代-2H-吡喃-2-基]乙基]-1-萘酚 2,2-二甲基丁酸酯 辛伐他汀 塞瓦停 斯伐他汀 西伐斯汀 辛伐司他汀主成分分子式:C25H38O5主成分cas登记号:79902-63-9主成分分子量:418.57品种简介:辛伐他汀是他汀类的降血脂药物,用于控制血液中胆固醇的含量以及预防心血管疾病。辛伐他汀是土曲霉发酵产物的合成衍生物。CATO全力支持药物一致性的政策,并提供以上优质的10个品种杂质!Amlodipine氨氯地平Amoxicillin阿莫西林Cefradine头孢拉定Cephalexin头孢氨苄Clarithromycin克拉霉素Ibuprofen布洛芬Metformin二甲双胍Omeprazole奥美拉唑Ranitidine雷尼替丁Simvastatin辛伐他汀
  • 坛墨质检上新多款VOC/SVOC等混标新品
    p style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "仪器信息网讯/span/strongspan style="font-family: 宋体, SimSun " 从 2016 年 5 月“土十条”发布以来,土壤中挥发性有机物 (VOC) 和半挥发性有机物 (SVOC) 检测市场快速成长,成为第三方环境检测实验室的重要业务。2019 年,财政部下拨 50 亿元专项资金用于当年的土壤污染防治工作,未来将继续加大投入力度。近日,坛墨质检发布多款VOC/SVOC等混标新品。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 419px height: 258px " src="https://img1.17img.cn/17img/images/202010/uepic/39764ee8-f33d-4e0d-872d-bd56928835db.jpg" title="1.png" alt="1.png" width="419" height="258"//pp/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "【1】HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法br/ 环境保护部2012年12月发布标准《HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2013年3月1日起实施;本标准适用于海水、地下水、地表水、生活污水和工业废水中57种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "坛墨产品:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中2种内标同位素混标(80638KA);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中56种VOC混标(80032GA);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中57种挥发性有机物VOC混标(80911JA);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中54种挥发性有机物VOC混标(80706KA);/spanspan style="font-family: 宋体, SimSun text-indent: 2em " /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "【2】/spanspan style="font-family: 宋体, SimSun text-indent: 2em "二氯甲烷中64种半挥发性有机物SVOC混标(80251KM)/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun " 生态环境部2018年7月29号发布标准《HJ 951-2018 固体废物 半挥发性有机物的测定 气相色谱-质谱法》自2018年12月1日起实施;适用于固体废物及其浸出液中氯代烃类、邻苯二甲酸酯类、亚硝胺类、醚类、卤醚类、酮类、苯胺类、吡啶类、喹啉类、硝基芳香烃类、酚类包括硝基酚类、有机氯农药类、多环芳烃类等64种半挥发性有机物的筛查和定量分析。检测方法:固体废物和浸出液中的半挥发性有机物经提取、净化、浓缩、定容后,用气相色谱分离、质谱检测。根据质谱图、保留时间、碎片离子质荷比及其丰度定性,内标法定量。br//span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "坛墨产品:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "二氯甲烷中6种内标同位素混标(80119QM);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "二氯甲烷/苯中64种半挥发性有机物SVOC混标(80251JMO,1000ppm);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "二氯甲烷中64种半挥发性有机物SVOC混标(80251JM,1000ppm) /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "二氯甲烷中64种半挥发性有机物SVOC混标 (80251KM,2000ppm);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "【3】/spanspan style="font-family: 宋体, SimSun text-indent: 2em "甲醇中6种挥发性有机物VOC混标(80680JD)环境保护部2011年2月发布标准《HJ 605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2011年6月1日起实施;本规定了土壤和沉积物中65种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。/spanspan style="font-family: 宋体, SimSun text-indent: 2em " /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "坛墨产品:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中3种内标混标同位素(80119QM);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中3种替代物混标(80047KA);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中59种挥发性有机物VOC混标(80253JA,1000ppm);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中59种挥发性有机物VOC混标(80648KA,2000ppm,研发中);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "甲醇中6种挥发性有机物VOC混标 (80903KA);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "【4】/spanspan style="font-family: 宋体, SimSun text-indent: 2em "丙酮中7种苯氧羧酸农药混标(80680JD)/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "环境保护部2019年5月发布标准《HJ 1022-2019 土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》自2019年9月1日起实施;本规定了土壤和沉积物中7种苯氧羧酸类农药的测定。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "检测方法:待测样品乙腈超声提取,提取液经固相萃取柱净化浓缩后,进液相色谱进行分离,高效液相色谱-三重四极杆质谱法定性,外标法定量。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "坛墨产品:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "丙酮中7种苯氧羧酸类农药混标(80680JD, 1000ppm);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "丙酮中7种苯氧羧酸类农药混标(80680GD,100ppm);/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun " /span/p
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 国家药监局再批准13个新冠病毒感染对症治疗药物上市
    1月3日,国家药监局通过快速审评通道,批准对乙酰氨基酚维生素C泡腾片等13个新冠病毒感染对症治疗药物上市。获批品种中9个品种为国家卫生健康委发布的《新冠病毒感染者居家治疗指南》中推荐的常用对症治疗药物,4个品种为医用氧。2022年12月30日,国家药监局通过快速审评通道,批准布洛芬混悬液等12个新冠病毒感染对症治疗药物上市。附件品种清单序号药品名称规格剂型上市许可持有人获批日期1对乙酰氨基酚维生素C泡腾片每片含对乙酰氨基酚330毫克和维生素C 200毫克片剂海南涛生医药科技研究院有限公司2023年1月3日2对乙酰氨基酚泡腾片0.1克片剂沈阳奥吉娜药业有限公司2023年1月3日3盐酸氨溴索口服溶液100ml:0.3g口服溶液剂南京丰恺思药物研发有限公司2023年1月3日4盐酸氨溴索口服溶液100ml:0.3g口服溶液剂江苏万高药业股份有限公司2023年1月3日5酚咖片对乙酰氨基酚500毫克和咖啡因65毫克片剂江苏万高药业股份有限公司2023年1月3日6布洛芬混悬液100ml:2g口服混悬剂新华制药(高密)有限公司2023年1月3日7盐酸氨溴索口服溶液100ml:0.3g口服溶液剂重庆健能医药开发有限公司2023年1月3日8盐酸氨溴索片30mg片剂四川美大康华康药业有限公司2023年1月3日9乙酰半胱氨酸颗粒0.2g颗粒剂海南赛立克药业有限公司2023年1月3日10氧(液态)----液态张家口紫光气体有限责任公司2023年1月3日11氧----气态佛山市高明合顺气体有限公司2023年1月3日12氧(液态)----液态佛山市高明合顺气体有限公司2023年1月3日13氧----气态张家口市同利气体有限责任公司2023年1月3日14地氯雷他定口服溶液10ml:5mg口服溶液剂哈尔滨圣泰生物制药有限公司2022年12月30日15布洛芬混悬滴剂20ml : 0.8g口服混悬剂北京百奥药业有限责任公司2022年12月30日16氨溴特罗口服溶液100ml:盐酸氨溴索150mg与盐酸克仑特罗100ug口服溶液剂成都倍特得诺药业有限公司2022年12月30日17盐酸左西替利嗪口服溶液0.05%(150ml︰75mg)口服溶液剂浙江核力欣健药业有限公司2022年12月30日18布洛芬混悬液100ml:2g口服混悬剂海南万玮制药有限公司2022年12月30日19布洛芬混悬液30ml:0.6g口服混悬剂海南万玮制药有限公司2022年12月30日20地氯雷他定口服溶液100ml︰50mg口服溶液剂浙江众延医药科技有限公司2022年12月30日21盐酸溴己新口服溶液40ml:80mg口服溶液剂江西亿友药业有限公司2022年12月30日22乙酰半胱氨酸泡腾片0.6g片剂海南赛立克药业有限公司2022年12月30日23地氯雷他定口服溶液120ml︰60mg口服溶液剂海口市制药厂有限公司2022年12月30日24盐酸西替利嗪口服溶液100ml∶0.1g 口服溶液剂成都倍特得诺药业有限公司2022年12月30日25盐酸西替利嗪口服溶液200ml∶0.2g口服溶液剂成都倍特得诺药业有限公司2022年12月30日
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准  1、范围  本标准规定了室内空气质量参数及检验方法。  本标准适用于住宅和办公建筑物。  2、规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB 6921-86 大气飘尘浓度测定方法 重量法  GB 9801-88 空气质量 一氧化碳的测定 非分散红外法  GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法  GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法  GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法  GB/T 14669-93 空气质量 氨的测定 离子选择电极法  GB/T 14582-93 环境空气中氡的标准测量方法  GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法  GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法  GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法  GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法  GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法  GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法  GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法  GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法  GB/T 16146-1995 住房内氡浓度控制标准  GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法  GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准  GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法  GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法  GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法  GB/T 18204.25-2000 公共场所空气中氨检验方法  GB/T 18204.26-2000 公共场所空气中甲醛测定方法  GB/T 18204.27-2000 公共场所空气中臭氧检验方法  5 室内空气质量检验  5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。  5.2 室内空气中苯浓度的测定方法见附录 C 。  5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。  5.4 室内空气中细菌总数检验方法见附录 E 。  5.5 室内热环境参数的检验方法见附录 F 。  附录 A  (规范性附录)  室内空气采样技术导则  1、范围  本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。  2、选点要求  2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5 个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。  2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。  2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。  3、采样时间和频率  采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。  4、采样方法和采样仪器  根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。  5、采样的质量保证措施  5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。  5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。  采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。  5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。  5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。  5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。  6、记录和报告  采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。  附录 B  (规范性附录)  室内空气中各种参数的检验方法 *  污染物 检验方法 来源  (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995  ( 2 ) GB/T 15262-94  (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90  ( 2 ) GB/T 15435-1995  (3) 一氧化碳 CO ( 1 )非分散红外法  ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88  , SPAN style="FONT-SIZE: 9pt COLOR: #666666 FONT-FAMILY: 宋体 mso-ascii-font-family: 'Times New Roman' mso-hansi-font-family: 'Times New Roman'"( 2 ) GB/T 18204.23-2000  (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法  ( 2 )气相色谱法  ( 3 )容量滴定法 GB/T 18204.24-2000  (5) 氨 NH3 ( 1 )靛酚蓝分光光度法  纳氏试剂分光光度法  ( 2 )离子选择电极法  ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000  ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93  (6) 臭氧 0 3 ( 1 )紫外光度法  ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995  ( 2 ) GB/T 18204.27-2000  (7) 甲醛 HCHO • AHMT 分光光度法  • 酚试剂分光光度法  气相色谱法  ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95  ( 2 ) GB/T 18204.26-2000  ( 3 ) GB/T 15516-95  (8) 苯 C 6 H 6 气相色谱法 • 附录 C  ( 2 ) GB 11737-89  ( 9 ) 甲苯 C 7 H 8 、  二甲苯 C 8 H 10 气相色谱法 GB 14677-93  (10) 苯并 [a] 芘  B(a)P 高压液相色谱法 GB/T 15439-1995  (11) 可吸入颗粒  PM10 撞击式 —— 称重法 GB/T 17095-1997  (12) 总挥发性有机物  TVOC 气相色谱法 附录 D  (13) 细菌总数 撞击法 附录 E  (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F  (15) 新风量 示踪气体法 GB/T18204.18-2000  (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法  ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995  ( 2 ) GB/T 14582-93  * 注:检验方法中( 1 )法为仲裁法。  附录 C  (规范性附录)  空气中苯浓度的测定  (毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。  1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。  1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。  2、适用范围  2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。  2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。  3、试剂和材料  3.1 苯:色谱纯。  3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。  3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。  4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.3 注射器: 1ml 。体积刻度误差应校正。  4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。  4.5 具塞刻度试管: 2ml 。  4.6 气相色谱仪:附氢火焰离子化检测器。  4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。  5、采样和样品保存  在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。  6、分析步骤  6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。  6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。  6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。  6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。  8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。  附录 D  (规范性附录)  室内空气中总挥发性有机物( TVOC )的检验方法  (热解吸 / 毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”  1.2 原理  选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。  1.3 干扰和排除  采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。  2、适用范围  2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。  2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。  3、试剂和材料  分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。  3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。  3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。  3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。  4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。  4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。  色谱柱:非极性(极性指数小于 10 )石英毛细管柱。  4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。  4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。  5、采样和样品保存  将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。  采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。  6、分析步骤  6.1 样品的解吸和浓缩  将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。  表 1 解吸条件  解吸温度 250 ℃ ~325 ℃  解吸时间 5~15min  解吸气流量 30~50ml/min  冷阱的制冷温度 +20 ℃ ~-180 ℃  冷阱的加热温度 250 ℃ ~350 ℃  冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg  载气 氦气或高纯氮气  分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择  6.2 色谱分析条件  可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。  6.3 标准曲线的绘制  气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。  液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。  用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。  6.4 样品分析  每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  7.2 TVOC 的计算  ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。  ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。  ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。  ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。  ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。  ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。  ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。  7.3 空气样品中待测组分的浓度按( 2 )式计算  式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。  8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。  附录 E  (规范性附录)  室内空气中细菌总数检验方法  1、适用范围  本方法适用于室内空气细菌总数测定。  2、定义  撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。  3、仪器和设备  3.1 高压蒸汽灭菌器。  3.2 干热灭菌器。  3.3 恒温培养箱。  3.4 冰箱。  3.5 平皿 ( 直径 9cm) 。  3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。  3.7 撞击式空气微生物采样器。  采样器的基本要求 :  (1) 对空气中细菌捕获率达 95 %。  (2) 操作简单 , 携带方便 , 性能稳定 , 便于消毒。  4 营养琼脂培养基  4.1. 成分 :  蛋白胨 20g  牛肉浸膏 3g  氯化钠 5g  琼脂 15~20g  蒸馏水 1000ml  4.2 制法 将上述各成分混合 , 加热溶解 , 校正 pH 至 7.4 ,过滤分装, 121 ℃, 20min 高压灭菌。撞击法参照采样器使用说明制备营养琼脂平板。  5 操作步骤  5.1 选择有代表性的房间和位置设置采样点。将采样器消毒 , 按仪器使用说明进行采样。  5.2 样品采完后,将带菌营养琼脂平板置 36 ± 1 ℃恒温箱中 , 培养 48h ,计数菌落数 , 并根据采样器的流量和采样时间 , 换算成每 m 3 空气中的菌落数。以 cfu/m 3 报告结果。  附录 F    (规范性附录)  热环境参数的检验方法  热环境参数测试的要求、方法和仪器 *  测试项目 测试范围 准确度 测试方法和仪器  温度 -10~50 ℃ ± 0.3 ℃ 玻璃温度计(包括干湿球温度计)  数字式温度计(热电偶、热电阻、半导体式包括数字式湿度计或风速计所附的温度计)  相对湿度 12%~99% ± 3% 干湿球温度计  氯化锂露点式湿度计  电容式数字湿度计  空气流速 0.01~20m/s ± 5% 热球式电风速计  热线式电风速计  * 各种测试仪器的使用方法见仪器的使用说明书。  HPLC法测定布洛芬糖浆剂的含量  布洛芬糖浆剂除具有布洛芬片剂的药效外,还具有吸收快、利于儿童服用等特点[1]。但由于布洛芬不溶于水,其糖浆剂中均含有碱性物质以增加其溶解度[2,3],所以不能再用药典规定的中和法测定布洛芬含量。本文采用HPLC法测定了布洛芬糖浆剂的含量,获得了较满意的结果。  1 仪器与试药  日本岛津LC-6A高效液相色谱仪、SPD-6AV紫外检测器、SCL-6B系统控制器、C-R4A数据处理机、LC-6A输液泵。  布洛芬对照品:山东新华制药厂生产,采用本文色谱条件检查为单一色谱峰,含量为99.80% 布洛芬糖浆剂[3]:自制,标示量为2 %(g.mL-1) 二苯胺(内标)及无水甲醇均为分析纯。  2 色谱条件  色谱柱:YWG?C18 4.6 mm×250 mm 流动相:取磷酸二氢钠380 mg与磷酸氢二钠50 mg,加水溶解至1000 mL,用磷酸调pH至3.0,取出250 mL加甲醇750 mL,混匀。流速:1 mL.min-1 检测波长220 nm 进样量20 μL 检测灵敏度:0.01 AUFS。  3 标准曲线制备  精密称取二苯胺适量,加无水甲醇配制成0.7 mg.mL-1的溶液,作为内标溶液。另取布洛芬对照品适量,精密称定,加无水甲醇配制成0.27 mg.mL-1的溶液,作为对照品溶液。精密量取对照品溶液0.5、1.0、1.5、2.0、2.5、5.0mL,分别置于50 mL量瓶中,加入内标溶液1.0 mL,用无水甲醇稀释至刻度,摇匀,进样20 μL。以对照品与内标的峰面积之比为纵坐标,相应对照品浓度(mg.mL-1)为横坐标,得回归方程: Y=75.5X+0.0136 r=0.9997结果表明,布洛芬溶液浓度在3~30 μg.mL-1范围内与峰面积呈良好的线性关系。二苯胺及布洛芬的色谱图图1 二苯胺及布洛芬的色谱图  1.二苯胺 2.布洛芬  4 回收实验  取布洛芬对照品约100 mg,精密称定,定量转移至100 mL量瓶中,按处方加入单糖浆、L-精氨酸、苯甲酸钠、香精,用无水甲醇稀释至刻度,摇匀。精密取上述溶液及内标溶液各1 mL,按“样品测定”项下操作。测得平均回收率为99.89 %,RSD为0.93%,n=6。  5 样品测定  取布洛芬糖浆剂约2.5 mL,精密称定,定量转移至50 mL量瓶中,用无水甲醇稀释至刻度,摇匀。精密吸取上述溶液及内标溶液各1 mL置于50 mL量瓶中,用无水甲醇稀释至刻度,摇匀,进样20 μL。测得样品的含量为标示量的97.23 %,n=5,RSD为0.89 %。  6 讨论  经稳定性试验观察,样品溶液在室温下(约18 ℃)放置,每隔2 h测定1次,测至6 h,样品标示百分含量结果的RSD为0.99%,n=3。说明样品溶液较稳定。  以安定为内标物,效果也较好。但由于笔者想将该法用于布洛芬糖浆剂生物利用度测定,为防止人体内安定类药物的干扰,所以选择二苯胺为内标。  双甘瞵的HPLC分析条件  摘要:  试剂和溶液:  四丁基硫氢酸胺,  色谱纯甲醇  色谱纯磷酸  AR磷酸二氢钾  AR水:二次蒸馏水  双甘瞵标样  流动相:  0.05moLKH2PO4,200mL+50mL甲醇+0.5  色谱柱:Sinochrom ODS-BP 150mmX4.6mm 5um  流量:1mL/min  波长:195nm  柱温:35度。  HPLC同时测定大黄素和大黄酚的含量  大黄的有效成分为大黄素、大黄酚、大黄酸、芦荟大黄素、大黄素甲醚及其甙类等蒽醌类成分。有关大黄及其制剂有效成分含量测定方法报道很多,如比色法、薄层-紫外分光光度法、HPLC法等。这里简单介绍一下HPLC法同时测定大黄素和大黄酚含量时的色谱条件、样品处理方法等。  ⑴《中国药典》2005版大黄含量测定项:以十八烷基硅烷键合硅胶为填充剂 甲醇-0.1%磷酸溶液(85:15)为流动相。检测波长为254nm。对照品为芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚。大黄样品前处理:甲醇回流提取—8%盐酸超声—三氯甲烷回流萃取。  ⑵赵莉,晁若冰测定了大黄通便胶囊中大黄素和大黄酚的含量。色谱条件同⑴。仪器:LC-IOAT vp高效液相色谱仪,SPD-M10A vp光二极管阵列检测器,Class-vp色谱工作站(日本岛津)。用Luna 5 u Cl8(2)柱(150 mm×4.6 mm,ID),ODS预柱Phenomenex ODS guard cartridge system,4.0mm×3.0mm,ID)。样品先用甲醇回流提取,提取物在2.5 mol/L硫酸溶液中加热水解,再用氯仿提取后进行测定。  ⑶张华,雪秦岚,赵宏科,赵海云采用HPLC测定血脂灵片中大黄素、大黄酚的含量。色谱条件同⑴,检测波长428nm。仪器:高效液相色谱仪(包括P200Ⅱ型高压恒流泵,UV-200Ⅱ型紫外检测器,Echrom98色谱数据处理工作站),Shim-Pack型C18分析柱(200mm×4.6mm,5μm)  ⑷常军民,高宏,张煊,赵军,堵年生采用HPLC测定枝穗大黄中大黄素和大黄酚的含量。色谱条件同⑴。仪器:美国Waters 2690高效液相色谱仪,Waters 2487双波长检测器,Waters millennium s 色谱工作站(Waters corporation)。  ⑸魏有良,杨志一,霍彬科采用HPLC法测定化症回生片中大黄素和大黄酚的含量。色谱条件同⑴。样品处理:甲醇回流,再上中性氧化铝柱(100-200目,直径1.5cm,3.5g),先用甲醇洗脱,5%氢氧化钠洗脱,收集盐酸调Ph1-2,乙醚萃取。  ⑹王劲,李洁,马彦,田佩瑶,彭国克采用HPLC法测定中药消毒产品中大黄酚和大黄素的含量。色谱条件:天津特纳Kromasil C18(200mm×4.6mm i.d.,7μ)色谱柱,流动相:φ=0.02mol/L KH2PO4水溶液(H3PO4调pH=3.5)/甲醇=15/85,柱温:室温,流速:1.0mL/min,紫外检测波长:260nm。仪器:美国Waters公司2695高效液相色谱仪(996二极管阵列检测器,MiUennium32色谱管理系统)。  HPLC法同时测定大黄素和大黄酚的含量时,文献报道所采用的色谱条件多为药典所载的条件。流动相为甲醇-磷酸系统,另外还有乙腈-磷酸系统、甲醇-水系统、甲醇-高氯酸系统、甲醇-冰醋酸系统等 检测波长多为254nm,也有采用430、440、438、287nm。也有以甲醇-水-异丙醇(80:10:10)磷酸调pH值为3.0,检测波长:439nm。样品处理方面一般用适当溶剂回流提取,除去溶剂后氧化水解,再以有机溶剂萃取。酸溶液多为盐酸和硫酸。  HPLC法在生物碱分析中的应用  生物碱是植物中一类重要化学成分,许多生物碱或含生物碱的提取物已广泛用于医药领域,因此对不同来源的、存在于较复杂体系或基质中的生物碱进行快速、灵敏、可靠的定性和定量分析一直是受人瞩目的研究课题。  1、生物碱HPLC的分析模式  根据HPLC分析生物碱时所使用固定相性质、流动相组成及极性不同,其分析模式大致可分为:正相吸附色谱法、正相硅胶反相洗脱系统色谱法、反相色谱法及离子交换色谱法。  正相吸附色谱法:通常以硅胶基质为吸附固定相,流动相为不同极性的有机溶剂或不同比例混合溶剂,分离过程主要依靠生物碱与吸附剂吸附作用的差异实现,为了改善分离,提高溶洗脱能力,常于流动相中加浓氨液、二乙胺、三乙胺等。该法应用于生物碱分析的文献较少。  正相硅胶一反相洗脱系统色谱法(NS-RE):通常采用未经化学改性的普通硅胶为固定相,以极性有机溶剂(甲醇、乙腈)和高pH缓冲溶液为流动相,分析包括生物碱在内的碱性药物。该法柱效高,峰形对称,是简便有效的方法。在实际应用中,流动相的组成是主要的影响因素,流动相中除含有调节pH 的缓冲盐外,有时还要三乙胺、溴化四丁基铵等竞争离子或烷基磺酸钠等对离子。因此,影响保留与分离的主要因素是流动相pH、竞争离子种类及浓度 。  反相高效液相色谱法(RP-HPLC):近年来RP-HPLC应用于生物碱分析方面的文献很多,已成为常规的方法。但普通存在色谱峰的展宽拖尾,导致分离效能低,这主要缘于生物碱结构中碱性氮原子与固定相未键台酸性硅醇基的相互作用。即使是所测生物碱在较低浓度下,仍常产生峰漂移及峰对称性差等现象。针对此缺陷,研究工作者从适用于碱性物质分析的反相填料的设计选择,流动相中缓冲盐的使用,流动相添加剂(离子对试剂、有机胺改性剂)等几方面进行了较为广泛细致的研究,并取得了一定的进展。  离子交换色谱法:该法以阳离子交换树脂为固定相,利用质子化的生物碱阳离子与离子交换剂交换能力的差异而达到分离生物碱的目的,有关生物碱高效液相离子交换色谱法的应用报道较少。  2、生物碱HPLC分析检测方法  目前,生物碱HPLC分析检测方式多以紫外法为主,在定性分析方面,紫外法检测选择性低,定性专属性差。随着二极管阵列检测器使用的普及,显著提高了液相分析检测的选择性。此外,根据生物碱的理化性质,其它检测方式如荧光法、电化学法、蒸发光散射法亦得到了应用。近年来,液相色谱-质谱联用技术已应用于生物碱分析,增强了对生物碱的定性检测能力,提高了检测灵敏度。新的接口技术及离子化方法的发展.使得HPLC-MS在生物碱的分析中得到较广泛的应用,近年的文献报道日渐增多。  3、生物碱HPLC分析的样品处理方法  因生物碱常具有一定的碱性,一般常用碱化液液萃取或酸水提取等方法从中草药、中成药及生物样品等较复杂体系中提取纯化,以达到富集和去除杂质的目的。近年来,固相萃取(SPE)技术及超临界流体萃取等现代提取纯化技术亦应用于样品的提取纯化。  HPLC法快速测定食品中糖精钠、苯甲酸、山梨酸和咖啡因  苯甲酸、咖啡因等食品添加剂食用过量会对人体造成伤害,国家卫生标准对这几项指标有明确的限量,因此开展了此项调查。试验表明,液相色谱测定各类食品中糖精钠、苯甲酸、山梨酸和咖啡因时,即使是可乐等清凉饮料,样品经过脱气、稀释、过滤的简单处理即上机分析,也极易堵塞色谱柱,造成柱压升高、柱效下降,对色谱柱造成难以修复的损坏 而样品经透析处理耗时太长。本文论述了在常温下用氢氧化钠-硫酸锌作为蛋白质沉淀剂,沉淀处理包括清凉饮料、酸奶、花生乳等比较粘稠的饮料以及固体食品等各类样品中的蛋白质、淀粉等杂质,可以大大降低对色谱柱的损害,在一定的色谱条件下,在常温下即可快速、同时分离四种被测组分,操作极为简单、快速。  1 试验部分  1.1 原理  糖精钠、咖啡因是易溶于水的盐类,样品中的苯甲酸、山梨酸经氢氧化钠溶液(O.50mol/L)浸泡后,转化为易溶于水的苯甲酸钠、山梨酸钠,经沉淀蛋白质、过滤等处理后,四种被测组分滞留于水相中与杂质分离。  1.2 仪器与试剂  岛津LC-10AT高效液相色谱仪  色谱柱:Hypersil-ODS2-C18,4.6 mm X 1 50 mm柱  检测波长215nm,进样量2OμL,流动相为甲醇+O.02mol/L 乙酸铵(35+65),流量0.50mL/min。  苯甲酸标准溶液:1.000g/L,称取苯甲酸0.1000g,加20g/L碳酸氢钠溶液5mL,加热溶解,定容至100mL。  山梨酸标准溶液:1.000g/L,同苯甲酸配制。糖精钠标准溶液:1.000g/L,称取糖精钠0.1702g,加水溶解,定容至200mL。  咖啡因标准溶液:1.000g/L一,称取咖啡因0.1000g,加水定容至100mL。  混合标准液:糖精钠、苯甲酸、山梨酸、咖啡因浓度依次为4.5,5.0,5.0,5.0 mg/L。  氢氧化钠溶液:0.50mo1/L  硫酸锌溶液:0.42 mol/L_  乙酸铵溶液:0.02 mol/L,称取乙酸铵1.54g用水定容至1L。  甲醇(色谱纯)  1.3 试验方法  1.3.1 液体样品  称取样品0.100~5.00g于50mL比色管中(汽水振摇或微温除去二氧化碳,配制酒类水浴加热,除去乙醇),加入纯水约5mL,加入0.50mol/L氢氧化钠溶液1.00mL,搅匀,放置15min,混匀,加人纯水约30 L,加人0.42mol/L 硫酸锌溶液1.50 mL,混匀,加人0.50mol/L氢氧化钠溶液1.50mL,摇匀,纯水定容至50.0 mL,混匀,静置几分钟,上清液过滤(双层滤纸),弃去初滤液5 mL,滤液经0.45μm滤膜过滤,进样量2Oμl,进行色谱分析,以保留时间定性,以峰高定量。  1.3.2 固体样品  称取研碎的样品0.100~2.00g于5OmL比色管中,加人纯水约30mL,加人0.50mol/L氢氧化钠溶液1.00 mL,搅匀,放置15min以上(直到被测组分完全溶出为止),加人0.42mol/L硫酸锌溶液1.50mL,混匀,其它操作同上。  2 结果与讨论  2.1 蛋白质沉淀剂种类的选择  2.1.1 亚铁氰化钾与乙酸锌的沉淀分离效果分别称取苯甲酸、山梨酸0.100Og用10mL甲醇溶解纯水定容至100 mL,配制成标准溶液,纯水稀释至所需浓度,选取饮料杏仁乳一份,做苯甲酸、山梨酸的加标回收试验。称取饮料样品2.00g于50mL比色管中,加人苯甲酸、山梨酸各250μg,加入纯水约25mL,混匀,加人106g/L亚铁氰化钾溶液2.5 mL,混匀,加入220g/L乙酸锌溶液2.5mL,混匀,纯水定容至50mL,静置几分钟,上清液过滤,弃去初滤液5mL,滤液经0.45μm滤膜过滤,进人色谱仪进行分析,进样量2OμL,以保留时间定性,以峰高定量。  试样经亚铁氰化钾与乙酸锌沉淀后,溶液的pH在5~6范围内,对样品中的糖精钠、苯甲酸钠、山梨酸钾(钠)、咖啡因的测定无影响,但对样品中的苯甲酸、山梨酸的测定有影响,加标回收率较低(在78.2~87.8之间)。因苯甲酸、山梨酸在水中的溶解度较低,加人蛋白质沉淀剂以后,与杂质一起被沉淀,影响测定的准确性。由于难以确定饮料中的苯甲酸、山梨酸是否为钾盐、钠盐,建议不采用该蛋白质沉淀剂。  2.1.2 氢氧化钠与硫酸锌的沉淀分离效果  试样经该蛋白质沉淀剂沉淀后,对样品中的糖精钠、苯甲酸(钠)、山梨酸(钾)、咖啡因的测定(加标回收)均无影响,建议采用该蛋白质沉淀剂。  按试验方法进行氢氧化钠与硫酸锌不同比例的试验。  当0.50mol/L氢氧化钠溶液与0.42mol/L硫酸锌溶液用量为5:4时,沉淀效果最好,但保留时间发生滞后现象,不宜采用 两者用量为5:3时,定量与定性均准确,且滤液澄清,过滤速度也较快,这恰好与理论上氢氧化钠与硫酸锌形成完全沉淀时所需的比例(nOH:nZn2+=2:1)相吻和,但两者用量太少时,沉淀不完全 为使杂质完全沉淀,选择氢氧化钠用量为2.50mL、硫酸锌1.50mL为处理0.100~5.0 g饮料、0.100~2.O0g固体样品的最佳用量。  2.2 标准曲线及回归方程  按试验方法进行测定,4种添加剂的线性范围、检出限(按3倍信噪比计算)的测定。  2.3 样品测定结果  选择含不同被测组分的饮料样品,分别平行测定7次。  选择可乐饮料l份,分别做高、中、低浓度的加标回收试验。  2.4 食品中糖精钠、苯甲酸、山梨酸和咖啡因含量的调查  调查了市售饮料其中包括可乐、汽水、果汁、酸奶、牛奶、活性乳、花生乳、果冻、冰棍等共57份,其中5份含咖啡因0.002 3~O.270g/kg,17份含糖精钠0.053~0.966g/kg,7份含苯甲酸0.0038~O.230 g/kg,16份含山梨酸0.090~0.770g/kg 酱菜、熟肉制品、熟面制品40份,4份含糖精钠0.916~1.04g/kg,8份含苯甲酸0.005O~5.68g/kg,3份含山梨酸0.10~0.680g/kg 酱、酱油、醋、料酒共24份,其中15份含苯甲酸0.030~1.73 g/kg,1份含山梨酸0.220g/kg。  HPLC法鉴别五味子与南五味子  五味子为木兰科植物五味子Schisandra Chinensis(Turcz)Bail1.的干燥成熟果实,习称“北五味子”,具有收敛固涩、益气生津、补肾宁心的功效⋯ 。南五味子为木兰科植物华东五味子  Schisandra sphenanthe Rehd.et Wills.的干燥成熟果实,功效与五味子相似。中药成方制剂中都明确指定用何种五味子,且《中国药典)2000年版分别单独制定了质量标准。市场上这两种五味子价格相差较大,因此鉴别很重要。《中国药典)2000年版收载的标准中有薄层色谱鉴别,都采用了五味子甲素作为对照品,再分别用各自的对照药材作对照。作者多次实验结果表明薄层色谱鉴别对两种五味子鉴别专属性不强。本文则采用HPLC法进行鉴别,重复性好、灵敏度高且直接分析的是其特征峰,鉴别结果不受环境等因素干扰,为五味子的鉴别提供了可靠的手段。  1 仪器和试药  1.1 仪器:高效液相色谱仪(泵:SP1000,检测器UV2000,N2000工作站,美国光谱物理公司)。  1.2 试药:五味子对照药材(批号:0922—9803中国药品生物制品检定所) 五味子(毫州恒丰药材公司) 南五味子(毫州恒丰药材公司)。色谱纯甲醇 超纯水。  2 方法与结果  2.1 对照药材溶液的制备:取五味子对照药材粉末约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理(功率250 W ,频率20 kHz)30分钟,取出,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.2 色谱条件:色谱柱:AllitimaC18(4.6 mm×250 mm)。流动相:甲醇.水(13:7)。检测波长:250 nm。流速:0.8mL/min。柱温:25℃ 。  2.3 供试品溶液的制备  2.3.1 五味子药材提取液的制备:取五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.3.2 南五味子药材提取液的制备:取南五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.4 图谱的绘制:分别精密吸取对照药材溶液与供试品溶液各20 L,注入液相色谱仪,测定,见表1。  从表1中可以看出,五味子对照药材共9个峰,样品五味子共8个峰,南五味子共6个峰,样品五味子与对照药材相比少1个峰,其它峰保留时间都一致,南五味子少了3个峰,且只有1个峰相一致,由此,可以鉴定出五味子。经过多次实验结果,对照药材1、2、6、7、8号峰是五味子的主要特征峰,且峰面积较大。  3 小结与讨论  高效液相色谱法以保留时间为主要鉴别参数,若因仪器厂家、色谱柱等条件不同,则保留时间可能产生较大差异,导致图谱鉴定操作性不强,而采用对照药材作为对照。排除了上述因素的影响。峰号具体成分因无法买到对照品而不能确定。药厂采购五味子时,掺杂南五味子时有发生,应仔细对照药典标准进行鉴别,当初步鉴定为五味子,或者若怀疑有部分为南五味子时,则可以挑选出这两种五味子。再与对照药材分别进行HPLC图谱鉴别,方法简便可行。  HPLC法检查甲硝唑葡萄糖注射液中5-HMF  摘要 采用高效液相色谱法测定甲硝唑葡萄糖注射液中5-羟甲基糠醛,以C18为固定相,以甲醇-0.2%磷酸溶液(25∶75)为流动相,检测波长为284 nm,平均回收率为99.2%(RSD=0.61%)。  《中国医院制剂规范》〔1〕收载的甲硝唑葡萄糖注射液项下5-羟甲基糠醛(5-HMF)检查要求该品1∶25稀释后在284 nm波长处吸收度不得大于0.25。但实验证明,按上法进行甲硝唑葡萄糖注射液中5-HMF检查,其吸收度远大于0.25(1.50以上)。因为甲硝唑在284 nm处有吸收。中国药典1995年版〔2〕对甲硝唑葡萄糖注射液尚未规定5-HMP的限量检查〔2〕。为保证用药安全,本文建立了高效液相色谱法测定甲硝唑葡萄糖注射液中5-HMF的含量,可消除甲硝唑的干扰。现报道如下。  1 仪器与试药  1.1 仪器 Waters 501泵,484检测器,7725进样器(美国)。  1.2 试药 甲硝唑(浙江可立思安制药公司) 5-羟甲基糠醛(美国Sigma公司,H9877) 甲硝唑葡萄糖注射液(浙江省新昌制药厂,971105,971213,980124,980213,980321) 甲醇(色谱纯)。  2 方法与结果  2.1 色谱条件 色谱柱:Nova-pack C18(200 mm×4.6 mm, 4 μm) 流动相:甲醇-0.2%磷酸溶液(25∶75) 检测波长:284 nm 流速:1.0 ml/min。  2.2 试液的配制 精密称取5-HMF适量,加水溶解成0.5 mg/ml的溶液为5-HMF标准储备液。  2.3 标准曲线制备 精密量取5-HMF标准储备液适量,用水分别稀释成5,10,15,20,25 μg/ml的溶液 取10 μl注入色谱仪中,在上述色谱条件下测得峰面积(见图1) 以峰面积Y对浓度X绘制标准曲线,得回归方程y=1254x+47,r=0.9986,表明在浓度5~25 μg/ml范围内线性良好。另取10 μl试样重复进行,峰面积RSD=0.48%(n=6)。  2.4 回收率测定 精密量取已测得5-HMF含量的甲硝唑葡萄糖注射液50 ml,置100 ml量瓶中,精密加入5-HMF标准储备液1 ml,加水至刻度 按样品测定项下方法,计算平均回收率为99.2%,RSD=0.61%(n=5)。  2.5 样品5-HMF含量检测 精密量取甲硝唑葡萄糖注射液10 μl注入色谱仪,按上述色谱条件,测得5-HMF的色谱峰面积 另精密量取5-HMF标准溶液10 μl注入色谱仪中,同法测得峰面积,按峰面积外标法计算,结果5批样品中5-HMF含量分别为6.1,8.3,8.6,10.9,14.7 μg/ml。  3 讨论  实践证明,若生产过程不规范(如灭菌温度过高,时间过长)很容易导致5-HMF含量偏高。因此,控制甲硝唑葡萄糖注射液中5-HMF的限量对确保用药安全具有重要意义。  HPLC法测定紫草油中左旋紫草素的含量  摘要:目的 建立紫草油中左旋紫草素的含量测定方法。方法:采用HPLC法测定紫草油中左旋紫草素的含量,色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 甲醇-0.025mol/L磷酸(85:15)为流动相 检测波长:516nm 柱温:25℃ 进样量:20μL。结果:左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内线性关系良好(r=0.9998) 平均回收率为101.3%,RSD=1.90%(n=5)。结论:该方法简便、准确,能排除其他成分的干扰,可用于紫草油的质量控制和评价。  紫草油是我院的医院制剂,由紫草、银花藤、白芷等中药组成,具有凉血消炎的作用,临床用于烫伤的治疗,紫草为方中君药,其有效成分为紫草素,而紫草素含量的高低,直接影响其临床疗效。本实验采用HPLC法测定紫草油左旋紫草素的含量,方法简便、准确、重现性好,为控制该制剂的内在质量提供了可靠的方法。  l仪器与试药  1.1仪器高效液相色谱仪LC-1OA,SPD-10AVP紫外检测器(日本岛津) CK chrom data acquieition lO 15system (美国TSP)。  1.2试药  左旋紫草素对照品(中国药品生物制品检定所,批号0769—9903) 紫草油(本院制剂室提供) 超纯水 甲醇为色谱纯,其余试剂为分析纯。  2方法与结果  2.1色谱条件色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 流动相:甲醇-0.025mol/L磷酸(85:15) 流速:1.0 mL/min 检测波长:516nm 柱温:25℃ 进样量:20μL(定量环)。  2.2对照品溶液的制备 精密称取左旋紫草素对照品2.8 mg,置25mL量瓶中,加入甲醇溶解并稀释至刻度,制成每mL含112.0μg的溶液,作为对照品储备液。精密吸取对照品储备液(1 12.0μg/mL)1.0,1.5,2.0,2.5,3.0 mL置于10mL量瓶中,加甲醇稀释至刻度。  2.3供试品溶液制备精密吸取样品10mL,置分液漏斗中,加入1% 氢氧化钠溶液20mL振摇提取3次,每次20mL,合并碱液,加10%盐酸溶液,调pH值至酸性(pH 2.5~3.5),用氯仿萃取4次(30,30,30,20mL),合并氯仿液,水浴蒸干,残渣加甲醇溶解并定量转移至25mL量瓶中,加甲醇溶液至刻度,摇匀,用0.45μm微孔滤膜滤过,作为供试品溶液。  2.4线性关系考察取浓度为11.2,16.8,22.4,28.0,33.6μg/mL的对照品溶液,分别进样20μL,测得峰面积,以浓度(C)对峰面积积分值(A)进行线性回归,回归方程为A=2.521×10000C一4265,r=0.9998。表明左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内,与峰面积积分值呈良好线性关系。  2.5精密度试验取同一份供试品溶液,每次20μL,重复进样6次,结果平均峰面积为757099,RSD=0.78%(n=6)。  2.6稳定性试验取供试品溶液依上述色谱条件,每隔1h测含量1次(n=5),次日测定2次,积分值无明显变化,平均峰面积为742531,RSD为1.01%(n=7)。  2.7重复性试验取同批样品(批号020816)5份,依2.3项下方法制备,照上述色谱条件测定,结果平均含量为58.0μg/mL,RSD为0.90% (n=5)。  该方法符合重复性要求。  2.8加样回收率试验精密吸取已知含量的样品溶液,精密加入一定含量的左旋紫草素对照品溶液,依法提取、进样、测定。  2.9样品测定取4批样品各10mL,依法制成供试品溶液,均以20μL进样,分别测定吸收峰面积,外标法计算左旋紫草素含量。  3讨论  紫草油为油制剂,方中主药紫草的有效分为紫草素及其衍生物,属于萘醌色素类化合物。有文献报道用紫外分光光度法及薄层扫描测定紫草素的含量 ,本方法采用HPLC测定紫草油中左旋紫草素的含量,简便、灵敏、准确,重复性好,可用于本品的质量控制。样品测定结果表明,各批号紫草油中左旋紫草素含量差异较大,通过对成品颜色的观察发现,左旋紫草素含量高的成品颜色深红,而所测含量较低的成品颜色较浅,这可能与紫草原药材的质量有关,故应严格控制原药材的来源与质量,并且应加强本制剂中间产品紫草素的质量控制。  薄层色谱法的相关知识简介  薄层色谱法,系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。  1.仪器与材料  (1) 玻板 除另有规定外,用5cm×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。  (2) 固定相或载体 最常用的有硅胶G、硅胶GF[254] 、硅胶H、 硅胶HF[254],其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、 微晶纤维素F[254]等。 其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种 前者系将固定相直接涂布于玻璃板上, 后者系在固定相中加入一定量的粘合剂,一般常用10~15%煅石膏(CaSO4.2H2O在140℃烘4小时),混匀后加水适量使用,或用羧甲基纤维素钠水溶液(0.5~0.7%)适量调成糊状,均匀涂布于玻璃板上。也有含一定固定相或缓冲液的薄层。  (3) 涂布器 应能使固定相或载体在玻璃板上涂成一层符合厚度要求的均匀薄层。  (4) 点样器 同纸色谱法项下。  (5) 展开室 应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,除另有规定外,底部应平整光滑,应便于观察。  2.操作方法  (1) 薄层板制备 除另有规定外,将1份固定相和3份水在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干,后在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光和反射光检视)。  (2) 点样 除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线距底边2.0cm,样点直径及点间距离同纸色谱法,点间距离可视斑点扩散情况以不影响检出为宜。点样时必须注意勿损伤薄层表面。  (3) 展开 展开室如需预先用展开剂饱和,可在室中加入足够量的展开剂,并在壁上贴二条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖,使系统平衡或按正文规定操作。 将点好样品的薄层板放入展开室的展开剂中,浸入展开剂的深度为距薄层板底边0.5~1.0cm(切勿将样点浸入展开剂中),密封室盖,待展开至规定距离(一般为10~15cm),取出薄层板,晾干,按各品种项下的规定检测。  (4) 如需用薄层扫描仪对色谱斑点作扫描检出,或直接在薄层上对色谱斑点作扫描定量,则可用薄层扫描法。 薄层扫描的方法,除另有规定外,可根据各种薄层扫描仪的结构特点及使用说明,结合具体情况,选择吸收法或荧光法,用双波长或单波长扫描。由于影响薄层扫描结果的因素很多,故应在保证供试品的斑点在一定浓度范围内呈线性的情况下,将供试品与对照品在同一块薄层上展开后扫描,进行比较并计算定量,以减少误差。各种供试品,只有得到分离度和重现性好的薄层色谱,才能获得满意的结果。
  • 【超临界流体实战】 —— 如何快速高效提取分离天然产物—β -胡萝卜素
    超临界流体色谱系统Nexera UC岛津提供基于超临界流体色谱系统Nexera UC搭建的Online SFE-SFC-PDA联用系统,采用超临界CO2流体作为萃取溶剂,在避光、无氧的环境下进行超临界流体萃取前处理, 可以大大缩短前处理萃取时间,减少有机溶剂使用量,并防止β-胡萝卜素在分析过程中的降解及异构化。 实现全自动化在线前处理分析传统皂化前处理方法与Nexera UC方法对比 传统皂化前处理:按照GB/T 5009.83-2016《食品中胡萝卜素的测定》规定的试样处理方法进行样品预处理。其中,皂化法作为脂溶性化合物前处理的典型方法,人工操作繁琐,需耗费近1小时。Nexera UC方法:将市售胡萝卜(匀浆)和市售胡萝卜汁样品与1g脱水剂混合,装入SFE萃取罐中,仅需5分钟即可完成样品前处理,人工操作步骤大大减少。且整个前处理过程中是在避光无氧环境下进行萃取,有效避免β-胡萝卜素等不稳定化合物的降解。 SFE多次萃取,大大提升回收效率 分别对同一萃取罐进行4次online SFE-SFC-PDA分析。每次分析得到的峰面积与4次分析得到的峰面积的总和的比值即为该次分析对应的萃取效率。 表1 食品中番茄红素和β-胡萝卜素的萃取效率 (n=3) 表2 加标回收率(n=5) 实现高效分离图1 胡萝卜和胡萝卜汁样品色谱图 表3 β-胡萝卜素含量实验结果表明:采用SFE-SFC联用系统测试的结果接近营养成分表中的数值。验证了采用超临界色谱技术分析β-胡萝卜素的可行性。 结论 岛津Nexera UC系统建立了检测食品中β-胡萝卜素含量的分析方法,该方法实现了样品前处理(SFE)和样品分析(SFC)的在线联用技术,自动化程度高,大大简化了样品的前处理过程,萃取效率高,重复性好,节省有机试剂和操作时间等特点。该方法为生产行业、检验行业及相关部门提供了参考。 本文内容非商业广告,仅供专业人士参考。
  • 基于Cytek光谱流式,罗氏公布21色20混1的复杂混样检测技术最新进展
    随着全光谱流式的成功商业化以及染料技术的更新与发展,多色流式细胞术在近年来取得长足进展。众多复杂(超过20色)免疫表型分析方案已在流式方法学、新冠感染免疫、肿瘤微环境等领域研究工作中得到充分的设计与验证,并在血液病检测、免疫监控、细胞治疗等方面展现出独特优势。为了进一步提升多色流式细胞术的检测通量,罗氏公司研发团队开发了基于Cytek️全光谱流式的荧光编码混样技术,报道了一管样本中同时检测20个21色PBMC样本的研究进展,除效率提升外,该技术能够在批量分析中大幅降低试剂用量,有效避免人为因素引起的实验误差,并可用于混样多路分选。相关研究工作与2022年发表于Cytometry Part A。图1. CD45多色编码混样技术示意图该方法通过对CD45的多色标记实现多个样本的荧光编码,例如“5选2”的编码方案中(图2上),从5种标记不同染料的CD45单抗库中选取2种进行标记样本,最多可产生10种编码组合。数据分析时,仅通过简单的散点图圈门即可快速解码(图2下)。经实验对比,研究人员验证了“5选2”编码混样方案检测与常规单管检测结果具有较强的可比性,并证实了Anti-CD45编码混样方案不会为实验引入明显的批次效应(实验数据请参考文献原文)。图2. 5选2型编码模式(多至10样本混样)及解码圈门策略方案可靠性验证后,研究人员进一步将编码方案扩展为“6选3”模式,并开发了可用于免疫调节剂作用模式研究的21色表型分析方案,以区分T、B、M、NK细胞丰度以及不同发育阶段T细胞亚群的活化状态,该方案使用20混1的高容量混样模式评估PBMC在葡萄球菌肠毒素B(SEB)刺激下的免疫应答。Anti-CD45编码方式与多色方案如图3所示。图3. SEB刺激实验21色方案及编码混样模式解码后的流式检测数据经FlowSOM聚类区分为17个类群,并通过optSNE降维展示。结果显示,SEB刺激下,样本中各免疫细胞亚群丰度发生显著变化:活化T细胞比例大幅上升;CD4+与CD8+效应记忆T细胞(Tem)、CD4+中央记忆T细胞(Tcm)丰度发生不同程度的下降;CD14hi单核细胞几乎消失。此外,在SEB刺激样本中,研究人员通过CD279、CD134、CD137即CD154的表达区分出两种特有的活化CD4+T细胞亚群,而在对照组中并不存在。相关结果符合实验预期,进一步验证了编码混样方案的可靠性。图4. SEB刺激试验结果展示基于Anti-CD45的编码混样技术因向实验体系引入更多染料,无疑提升了多色方案的复杂性。得益于Cytek️全光谱流式强大的多色分析性能,荧光溢漏带来的扩散误差(SE)被有效控制,即便在21色20混1的复杂混样方案中依然得到可靠的数据表现。该编码技术在高容量混样的同时可维持细胞活性,为后续的混样流式分选创造了可能。Cytek️ Aurora CS新一代全光谱流式分选平台,最高支持64荧光通道6路光谱分选。Cytek️ Aurora CS全光谱流式分选平台(点击查看)参考文献:Junker F, Camillo Teixeira P. Barcoding of live PBMCs to assess immune cell phenotypes using full spectrum flow cytometry[J]. Cytometry Part A, 2022.关于CytekCytek Biosciences, Inc.(Nasdaq: CTKB)作为一家全球技术领先的生命科学技术公司,通过其受专利保护的全光谱分析(Full Spectrum Profiling,FSP™ )技术,提供高分辨率、高参数和高灵敏度的新一代细胞分析工具。Cytek的创新技术通过检测荧光信号的完整光谱信息,以实现更高水平更高灵敏度的多参数检测。Cytek的FSP™ 平台包括其核心仪器—Aurora和Northern Lights™ 分析系统、Aurora CS分选系统、试剂、软件和服务,为客户提供全面和完整的解决方案。Cytek总部位于美国加利福尼亚州Fremont,在全球设有分部和分销渠道。注:Cytek, Tonbo Biosciences, cFluor, Full Spectrum Profiling™ , FSP™ 和Northern Lights™ 是Cytek Biosciences, Inc. 的商标或注册商标。Cytek全光谱检测技术相关专利包括但不限于:US10739245B2,US11169076B2,US10788411B2。
  • 土壤/水质中11种邻苯二甲酸酯类混标全新上市!
    11种邻苯二甲酸酯类混标迪马科技根据《ISO 13913-2014 /ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法》定制了11种邻苯二甲酸酯类混标。 产品信息:DIKMA NO:46907DESCRIPTION:Custom Mixed phthalate esters Standard(11 Analytes) ,1000 μg/mL in Ethyl acetate 1mL中文名称:邻苯二甲酸酯混标(11种化合物),1000 μg/mL在乙酸乙酯中,1 mL/安瓿 适用于ISO 13913-2014/ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法,1000 μg/mL在乙酸乙酯中,1 mL/安瓿,Cat. No.: 46907序号化合物英文名CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二丙酯Dipropyl phthalate(DPP)131-16-84邻苯二甲酸二异丁酯Diisobutyl phthalate (DiBP)84-69-55邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-26邻苯二甲酸丁苄酯Butylbenzyl phthalate (BBzP) 85-68-77邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-78邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-79邻苯二甲酸二正辛酯Dioctyl phthalate (DOP)117-84-010邻苯二甲酸二癸酯Didecyl phthalate(DDcP)84-77-5111,2-苯二羧酸双十一烷基酯Diundecyl phthalate(DUP)3648-20-2
  • 医药行业指南:卡尔费休水分仪选型攻略来啦~
    在医药领域,每一份子微小节关乎生命安全与健康,水分含量的精确测定尤为关键。卡尔费休水分仪,作为行业黄金标准,其精准、高效特性在医药品控中不可或缺。本指南旨在为医药界精选卡尔费休水分仪的选购要素,助力您做出明智抉择。 一、卡尔费休原理 卡尔费休水分测定法,已被很多国际标准,如ISO,ASTM,DIN,BS,和JIS等公认为准确性最高的方法,该方法适用于各种物质水分含量的测定。因此,应用其原理的卡尔费休水分测定仪具有广泛的应用范围,适用于固体、液体和气体样品。医药行业偏爱其精确度高、适用范围广,因此,卡尔费休水分测定仪是制药企业测量样品水分含量的必选设备之一。 二、医药行业需求分析 &bull 原料药:原辅料、活性成分需严格水分控制,影响稳定性、有效期。&bull 中间体:生产过程监控,水分控制是关键,确保反应效率和成品质量。&bull 成品药:如片剂、注射剂、胶囊,水分关乎安全性,严格控制防变质控。 三、选购要点 1.精度与范围:选择测量分辨率0.01ug级别,覆盖医药广泛需求。2.自动化:多工位、自动进样、自动滴定,提高效率,减少误差。3.兼容性:支持多种样品类型,固体、液体、气体、粉末,满足医药多样性。4.软件:数据处理能力强,自动生成报告,支持LIMS兼容,便于合规记录。5.安全与认证:符合医药标准如GMP、GLP规范,确保安全、质量体系可靠。6.服务:售前售后支持,快速响应、定期校准、培训,保证长期使用无忧。 四、推荐型号示例 1、AKF-CAS6多工位全自动水分测定仪 适合医药全链,多工位、自动,精度高,满足批量检测2、AKF-V6卡尔费休水分测定仪 ■医药用溶剂:冰乙酸■原料与辅料:六水合氯化镁、聚维酮K30、乳糖、淀粉软胶囊壳■成品药:阿莫西林颗粒、布洛芬胶囊、钙片、酒石酸氢胆碱、软胶囊3、AKF-CH6微量水分测定仪 ■手术缝合线:PLA、PGA、PVA■冻干粉:蛋白类冻干、血清类冻干等■体外诊断试剂:钆布醇、依替菲宁■原料与辅料:硬胶囊壳■医用胶:502/5044、AKF-IS2020V不溶性固体卡氏水分测定仪 ■眼药水:地夸磷索5、AKF-C6卡尔费休水分测定仪 ■医药用溶剂:甲苯、乙腈、三氯甲烷 选择卡尔费休水分仪,是医药质控的基石,关乎安全与效率。依据本指南,细究其性能、需求,匹配度身定制,方能选得宜器,为医药品质护航。医药前行,每一滴定,精准,安全,始于明智选。
  • 保健品掺假现状曝光:虫草混合铁粉铅粉出售
    “医药保健品的原材料造假比较常见,何止阿胶以猪皮造假这一例!”  当记者就央视曝光阿胶造假事件采访几位业内人士时,意外获得他们的一致回应。业内人士揭露,除了造假,以次充好、缺斤短两等情况在中药材行业更普遍,尤其在药材集散地、中小型加工企业,以及私人收购站点。  对于阿胶造假事件,国家药监部门高度重视,并对问题阿胶展开调查。记者了解到,这类市场混乱现象,早在央视报道阿胶造假之前,已为大众所关注,之所以依旧屡禁不绝,除了商家为牟利,还因为监管上存在空白。  ●花旗参里掺萝卜干  在广州清平药材市场,记者走访了十多家中药材档口发现,同是美国花旗参,不同的店家价格从200元/公斤到1200元/公斤不等。“同是花旗参,价格怎么相差如此之多?”面对记者的疑问,不少店主给出的解释是,不同价位的花旗参治疗和药效不同,自然价格也不同。而对于同一大小、外观的花旗参价格不一致,一位店主小心地向记者透露,那些比较便宜的、个头较大的花旗参,跟萝卜干极其相似,少数无良中药材卖家会往花旗参里掺萝卜干,以假充真,欺骗消费者。  ●湿燕窝增重量  燕窝中最好的要数血燕了,价格卖到17000元/公斤。”一位档主随后向记者推荐了一种碎的燕窝,她告诉记者,这些都是整盏燕窝的边角料,但效果并不差,价格也相对便宜,卖到6000元/公斤。她同时透露,购买燕窝最需要注意的是燕窝的干湿度,很多价格比较便宜的燕窝正是因为没有晒干,水分比较大,有不少消费者不明白缘由而上当受骗。  ●树胶成山寨版蜂胶  蜂胶的造假竟来自树胶,这是一位国内保健品企业负责人向记者透露的秘密。他介绍,蜂胶是蜜蜂采集树脂、挥发油等分泌物,经过蜜蜂反复咀嚼加工,与蜜蜂上颚腺、舌腺等腺体分泌物和一定比例的蜂蜡、花粉混合转化而成的,具有抗氧化、增强免疫等作用。上述保健品企业负责人介绍,相比树胶,蜂胶产量很有限,由于蜂胶、树胶外观上没有明显差别,成分也有类似的,因此树胶成为最好的山寨版蜂胶。  ●虫草混合铁粉、铅粉卖  作为名贵药材,虫草也不能幸免。和萝卜干、树胶不一样,虫草造假问题可以很严重,因为有的不法商家为了增加重量牟暴利,不惜损害他人健康在虫草里添入铁粉、铅粉。广东省中医院一位药师介绍,虫草造假还有用面粉和模具做、用其他生物做混进去的,但是铅粉的危害最大,因为“煲到汤里还是看不出来,全部融进去喝掉了”!  原因监管缺失、检测水平滞后  多年研究医药保健品市场的中国保健协会市场工作委员会秘书长王大宏分析说,就个人看来,造成现今市场混乱的因素有三个重要方面。  首先是有些企业为求生存,缺乏自律,通过造假来牟利。再则是医药保健品原材料行业的监管薄弱,没有生产许可证,也没有行业准入许可证,从而导致管理出现盲区。  其次,我国医药成品有卫生部、药监局、中医药管理局来监管,但中药原材料却属于农副产品,而且天然的中药材以自然采摘居多,如虫草是一种天然的菌类,人工几乎无法种植,采收更难统一监管。目前,全国大部分药材都是由民间的药材公司在负责采购、收购。而民间的药材公司很难由专人负责对药农进行技术指导,农民没有种植中药的专业知识,又缺乏相应的监管部门,因此很容易在这个环节出现造假现象。  再次,科学研究、检测水平的发展滞后于行业的发展,这也是导致市场混乱、造假频现的一个重要因素。  提醒买中药材勿贪小便宜  不法商贩造假,很重要一点是看中真品和假货价格差别大,可获得巨大利润。上述保健品企业负责人介绍说,例如蜂胶1公斤几百元,而树胶质量上乘的也才1公斤几十元,如果用次等的树胶造假,利润会更高。专家表示,在市面上同种药材什么价位的都有,因此提醒消费者,不要贪小便宜,越是那种价格低得离谱的产品越要留心,通常掺假产品价格可以比正品便宜一半到六成。
  • 警惕!日本多地水体检出全氟化合物含量超标,这些仪器及标准或引起关注
    据新华社6月26日报,日本多地近期陆续出现水体和居民血液中有机氟化合物含量超标的情况。现阶段,日本对全氟和多氟烷基物质含量的暂定国家标准为每升水50纳克,而多处水质检查报告显示,这类物质含量甚至达到日本暂定国家标准的420倍。那么,什么是全氟化合物?又有哪些危害呢?全氟化合物,一般指全氟和多氟烷基类物质 (per- and polyfluoroalkyl substances, PFASs),是碳骨架上氢原子部分或全部被氟原子取代的一类人工合成化合物。PFAS具有较强的的表面活性(加入水中可以降低水的表面张力)、化学和热稳定性(不易发生化学反应)、疏水性和疏油性。PFAS 半衰期(自行转变为无害元素,浓度降到一半的时间)长达10年之久,其稳定性强且极难降解,易在环境和生物体内累积,呈现出明显的生物富集性。其中,全氟辛烷磺酸(perfluorooctanesulfonic acid, PFOS)及其盐类以及全氟辛酸(perfluorooctanoic acid, PFOA)已被联合国环境规划署认定为持久性有机污染物(persistent organic pollutants, POPs),并被列入《斯德哥尔摩公约》进行国际管控。已有的毒理研究表明,全氟化合物会对实验动物造成肝脏毒性、发育与生殖毒性、遗传和免疫毒性以及致癌性等。美国环境保护署(EPA)也指出,暴露于一定水平的PFAS下可能会导致人体健康风险,包括影响胎儿和婴儿发育、癌症、肝损害、免疫疾病、甲状腺失调和心血管疾病等。全氟化合物检测标准有哪些?所属行业标准号标准名称所用仪器及设备环境ISO 21675:2019水质全氟及多氟化合物的测定固相萃取-液相色谱/质谱法固相萃取仪、液质联用仪、液相色谱仪更多实验室常用设备,请查看:旋转蒸发仪、浓缩仪、超纯水机、涡旋混匀器点击查找更多…EPA 533-2019饮用水中的全氟和多氟烷基物质的测定同位素稀释阴离子交换固相萃取-液相色谱/串联质谱法ASTM D7979-2019采用液相色谱串联质谱法(LC/MS/MS)测定水、污泥、流入物、 流出物和废水中全氟烷基和多氟烷基物质的标准试验方法EPA 537.1-2020固相萃取-液相色谱/串联质谱法测定饮用水中的多氟烷基物质DB 32/T 4004-2021水质 17种全氟化合物的测定高效液相色谱串联质谱法ASTM D7968用液相色谱串联质谱法(LC/ MS/MS)测定土壤中多氟化合物的标准试验方法DIN 38414-14:2011德国检验水,废水和污泥的标准方法.污泥和沉淀物(第5组)-第14部分:污泥,堆肥和土壤中选定全氟化合物(PFC)的测定.使用高性能液相色谱法的方法食品GB 5009.253-2016食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB 31604.35-2016食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB/T 5750.8-2023生活饮用水标准检验方法:第8部分:有机物指标工业制造GB/T 31126-2014纺织品 全氟辛烷磺酰基化合物和全氟羧酸的定GB/T 37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定 超高效液相色谱串联质谱法SN/T 5352-2021纸制耐热材料中全氟和多氟化合物的测定
  • 国务院:第二批对美加征关税商品第二次排除清单公布
    5月12日,国务院关税税则委员会发布关于第二批对美加征关税商品第二次排除清单的公告。根据《国务院关税税则委员会关于试行开展对美加征关税商品排除工作的公告》(税委会公告〔2019〕2号),经国务院批准,国务院关税税则委员会公布第二批对美加征关税商品第二次排除清单,对第二批对美加征关税商品,第二次排除其中部分商品,自2020年5月19日至2021年5月18日,不再加征我为反制美301措施所加征的关税。对已加征的关税税款予以退还,相关进口企业应自排除清单公布之日起6个月内按规定向海关申请办理。第二批对美加征关税的其余商品,暂不予排除。未列入第一批、第二批对美加征关税商品排除清单的商品,企业可根据《国务院关税税则委员会关于开展对美加征关税商品市场化采购排除工作的公告》(税委会公告〔2020〕2号),申请市场化采购排除。第二批对美加征关税商品第二次排除清单序号EX①税则号列②商品名称125070010高岭土225120010硅藻土325199091化学纯氧化镁425262020已破碎或已研粉的天然滑石525309020稀土金属矿626161000银矿砂及其精矿7ex26169000黄金矿砂8ex28046190其他含硅量>99.9999999%的多晶硅(太阳能级多晶硅、多晶硅废碎料除外)928100020硼酸1028181090其他人造刚玉1128401100无水四硼酸钠1228401900其他四硼酸钠13ex28439000贵金属汞齐14ex28439000其他贵金属化合物(不论是否已有化学定义),氯化钯、铂化合物除外15ex28444090其他放射性元素、同位素及其化合物(子目2844.10、2844.20、2844.30以外的放射性元素,同位素),含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:铀-233及其化合物(包括呈金属、合金、化合物或浓缩物形态的各种材料);氚、氚化物和氚的混合物,以及含有上述任何一种物质的产品[氚-氢原子比 1‰的,不包括含氚(任何形态)量 1.48× 103GBq的产品];氦-3(3He)、含有氦-3的混合物(不包括氦-3的含量 1克的产品);发射α粒子,其α半衰期为10天或更长但小于200年的放射性核素(1.单质;2.含有α总活度为37GBq/kg或更大的任何这类放射性核素的化合物;3.含有α总活度为37GBq/kg或更大的任何这类放射性核素的混合物;4.含有任何上述物质的产品,不包括所含α活度小于3.7GBq的产品)1628459000税目2844以外的其他同位素及其化合物1728500012氮化硼1829032990其他无环烃的不饱和氯化衍生物1929033990其他无环烃的氟化、溴化或碘化衍生物2029051990其他饱和一元醇21ex290539901,3-丙二醇2229054400山梨醇序号EX①税则号列②商品名称23ex29159000其他饱和无环一元羧酸及其酸酐[(酰卤、过氧)化物,过氧酸及其卤化、硝化、磺化、亚硝化衍生物],茅草枯、抑草蓬、四氟丙酸和氟乙酸钠除外2429182900其他含酚基但不含其他含氧基羧酸及其酸酐等衍生物25ex29269090己二腈26ex29319000硫酸三乙基锡,二丁基氧化锡等(包括氧化二丁基锡,乙酸三乙基锡,三乙基乙酸锡)2729333100吡啶及其盐28ex29336990西玛津、莠去津、扑灭津、草达津等(包括特丁津、氰草津、环丙津、甘扑津、甘草津)2929371210重组人胰岛素及其盐3038030000妥尔油31ex38089400医用消毒剂3238112100含有石油或从沥青矿物提取的油类的润滑油添加剂3338180019经掺杂用于电子工业的,已切成圆片等形状,直径>15.24cm的单晶硅片3438180090其他经掺杂用于电子工业的化学元素,已切成圆片等形状;经掺杂用于电子工业的化合物355603129025g<每平米≤70g其他化纤长丝无纺织物365603131070g<每平米≤150g浸渍化纤长丝无纺织物375603139070g<每平米≤150g其他化纤长丝无纺织物38ex59119000半导体晶圆制造用自粘式圆形抛光垫3968042110粘聚合成或天然金刚石制的砂轮4068042190粘聚合成或天然金刚石制的其他石磨、石碾及类似品4168151000非电器用石墨或其他碳精制品4269091100实验室、化学或其他技术用陶瓷器4369091200莫氏硬度为9或以上的实验室、化学或其他技术用品4470071110航空航天器及船舶用钢化安全玻璃4573181510抗拉强度在800兆帕及以上的螺钉及螺栓,不论是否带有螺母或垫圈4674101100无衬背的精炼铜箔4774101210无衬背的白铜或德银铜箔4874102110印刷电路用覆铜板4975052200镍合金丝5075062000镍合金板、片、带、箔5175071200镍合金管序号EX①税则号列②商品名称5276082010外径不超过10厘米的铝合金管5381089040钛管5485013100输出功率不超过750瓦的直流电动机、发电机5585015200输出功率超过750瓦,但不超过75千瓦的多相交流电动机5685044014功率小于1千瓦,精度低于万分之一的直流稳压电源5785044091具有变流功能的半导体模块(静止式变流器)5885052000电磁联轴节、离合器及制动器5985073000镍镉蓄电池6085112010机车、航空器及船舶用点火磁电机、永磁直流发电机、磁飞轮6185113010机车、航空器及船舶用分电器及点火线圈62ex85143000电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)6385168000加热电阻器6485177060光通信设备的激光收发模块6585258011特种用途的电视摄像机6685258021特种用途的数字照相机6785261010导航用雷达设备68ex85261090飞机机载雷达(包括气象雷达,地形雷达和空中交通管制应答系统)6985291010雷达及无线电导航设备用天线或天线反射器及其零件7085299050雷达设备及无线电导航设备用的其他零件7185371011用于电压不超过1000伏线路的可编程序控制器72ex85371090数字控制器(专用于编号84798999.59电动式振动试验系统)7385392120火车、航空器及船舶用卤钨灯7485392190其他卤钨灯7585394900紫外线灯管或红外线灯泡7685407910调速管77ex85437099飞行数据记录器、报告器7885439021输出信号频率小于1500兆赫兹的通用信号发生器用零件79ex85489000非电磁干扰滤波器注:①ex表示排除商品在该税则号列范围内,以具体商品描述为准。②为《中华人民共和国进出口税则(2020)》的税则号列。延伸阅读:中国公布第一批对美加征关税商品第二次排除清单
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 复混肥料新标准即将实施
    记者1日从内蒙古自治区质量技术监督局了解到,国家标准《复混肥料(复合肥料)》将于2010年6月1日正式实施,该标准将代替2001年的国家标准《复混肥料(复合肥料)》。  据了解,新标准与旧标准的主要差异在于进一步明确了适用范围 调整了高浓度产品的水溶磷占有效磷百分率的指标 将水分改为以出厂检验数据为准 增加了标明含氯的产品的氯离子含量指标,按低氯、中氯、高氯分别规定 增加了用自动分析仪器测定产品的氮、磷、钾含量,适用于快速检验 增加了缩二脲含量的测定方法和应在产品质量证明书中标注缩二脲含量的要求 细化了产品包装标识的规定,增加了含尿素态氮的产品和含氯(高氯)产品的警示语的要求等。 新标准实施后,除了产品质量必须符合新标准的技术要求外,袋面标识也应符合新标准的要求。新标准在原来的基础上又增加了以下几条新的规定:氯离子含量大于3.0%的产品,应根据技术指标中的“氯离子含量”,用汉字明确标注“含氯(低氯)”、“含氯(中氯)”或“含氯(高氯)”,标明“含氯”的产品,包装容器上不应有忌氯作物的图片,也不应有“硫酸钾(型)”、“硝酸钾(型)”、“硫基”等容易导致用户误认为产品不含氯的标识 有“含氯(高氯)”标识的产品应在包装容器上标明产品的适用作物品种和“使用不当会对作物造成伤害”的警示语 含有尿素态氮的产品应在包装容器上标明以下警示语:“含缩二脲,使用不当会对作物造成伤害” 产品外包装袋上应有使用说明,内容包括:警示语、使用方法、适宜作物及不适宜作物及作物的使用量等 每袋净含量应标明单一数值。
  • 国务院关税税则委员会公布对美加征关税商品第四次排除延期清单
    5月17日,财政部官方网站公布对美加征关税商品第四次排除延期清单,将对《国务院关税税则委员会关于第二批对美加征关税商品第二次排除清单的公告》(税委会公告〔2020〕4号)中的79项商品延长排除期限,商品包括1,3-丙二醇、乙二腈、山梨醇等多种有机试剂。对美加征关税商品第四次排除延期清单序号 EX①税则号列② 商品名称125070010高岭土225120010硅藻土325199091化学纯氧化镁425262020已破碎或已研粉的天然滑石525309020稀土金属矿626161000银矿砂及其精矿7ex26169000黄金矿砂8ex28046190其他含硅量>99.9999999%的多晶硅(太阳能级多晶硅、多晶硅废碎料除外)928100020硼酸1028181090其他人造刚玉1128401100无水四硼酸钠1228401900其他四硼酸钠13ex28439000贵金属汞齐14ex28439000其他贵金属化合物(不论是否已有化学定义),氯化钯、铂化合物除外15ex28444090其他放射性元素、同位素及其化合物(子目2844.10、2844.20、2844.30以外的放射性元素,同位素),含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:铀-233及其化合物(包括呈金属、合金、化合物或浓缩物形态的各种材料);氚、氚化物和氚的混合物,以及含有上述任何一种物质的产品[氚-氢原子比1‰的,不包括含氚(任何形态)量1.48×103GBq的产品];氦-3(3He)、含有氦-3的混合物(不包括氦-3的含量1克的产品);发射α粒子,其α半衰期为10天或更长但小于200年的放射性核素(1.单质;2.含有α总活度为37GBq/kg或更大的任何这类放射性核素的化合物;3.含有α总活度为37GBq/kg或更大的任何这类放射性核素的混合物;4.含有任何上述物质的产品,不包括所含α活度小于3.7GBq的产品)1628459000税目2844以外的其他同位素及其化合物1728500012氮化硼1829032990其他无环烃的不饱和氯化衍生物序号 EX①税则号列② 商品名称1929033990其他无环烃的氟化、溴化或碘化衍生物2029051990其他饱和一元醇21ex290539901,3-丙二醇2229054400山梨醇23ex29159000其他饱和无环一元羧酸及其酸酐[(酰卤、过氧)化物,过氧酸及其卤化、硝化、磺化、亚硝化衍生物],茅草枯、抑草蓬、四氟丙酸和氟乙酸钠除外2429182900其他含酚基但不含其他含氧基羧酸及其酸酐等衍生物25ex29269090己二腈26ex29319000硫酸三乙基锡,二丁基氧化锡等(包括氧化二丁基锡,乙酸三乙基锡,三乙基乙酸锡)2729333100吡啶及其盐28ex29336990西玛津、莠去津、扑灭津、草达津等(包括特丁津、氰草津、环丙津、甘扑津、甘草津)2929371210重组人胰岛素及其盐3038030000妥尔油31ex38089400医用消毒剂3238112100含有石油或从沥青矿物提取的油类的润滑油添加剂3338180019经掺杂用于电子工业的,已切成圆片等形状,直径>15.24cm的单晶硅片3438180090其他经掺杂用于电子工业的化学元素,已切成圆片等形状;经掺杂用于电子工业的化合物355603129025g<每平米≤70g其他化纤长丝无纺织物365603131070g<每平米≤150g浸渍化纤长丝无纺织物375603139070g<每平米≤150g其他化纤长丝无纺织物38ex59119000半导体晶圆制造用自粘式圆形抛光垫3968042110粘聚合成或天然金刚石制的砂轮4068042190粘聚合成或天然金刚石制的其他石磨、石碾及类似品序号 EX①税则号列② 商品名称4168151000非电气用的石墨或其他碳精制品4269091100实验室、化学或其他技术用陶瓷器4369091200莫氏硬度为9或以上的实验室、化学或其他技术用品4470071110航空航天器及船舶用钢化安全玻璃4573181510抗拉强度在800兆帕及以上的螺钉及螺栓,不论是否带有螺母或垫圈4674101100无衬背的精炼铜箔4774101210无衬背的白铜或德银铜箔4874102110印刷电路用覆铜板4975052200镍合金丝5075062000镍合金板、片、带、箔5175071200镍合金管5276082010外径不超过10厘米的铝合金管5381089040钛管5485013100输出功率不超过750瓦的直流电动机、发电机5585015200输出功率超过750瓦,但不超过75千瓦的多相交流电动机5685044014功率小于1千瓦,精度低于万分之一的直流稳压电源5785044091具有变流功能的半导体模块(静止式变流器)5885052000电磁联轴节、离合器及制动器5985073000镍镉蓄电池6085112010机车、航空器及船舶用点火磁电机、永磁直流发电机、磁飞轮6185113010机车、航空器及船舶用分电器及点火线圈62ex85143000电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)序号 EX①税则号列② 商品名称6385168000加热电阻器6485177060光通信设备的激光收发模块6585258011特种用途的电视摄像机6685258021特种用途的数字照相机6785261010导航用雷达设备68ex85261090飞机机载雷达(包括气象雷达,地形雷达和空中交通管制应答系统)6985291010雷达及无线电导航设备用天线或天线反射器及其零件7085299050雷达设备及无线电导航设备用的其他零件7185371011用于电压不超过1000伏线路的可编程序控制器72ex85371090数字控制器(专用于编号84798999.59电动式振动试验系统)7385392120火车、航空器及船舶用卤钨灯7485392190其他卤钨灯7585394900紫外线灯管或红外线灯泡7685407910调速管77ex85437099飞行数据记录器、报告器7885439021输出信号频率小于1500兆赫兹的通用信号发生器用零件79ex85489000非电磁干扰滤波器注:①ex表示排除商品在该税则号列范围内,以具体商品描述为准。 ②为《中华人民共和国进出口税则(2021)》的税则号列。附件:P020210517559333286903.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制