当前位置: 仪器信息网 > 行业主题 > >

测序仪性能评价用脱氧核

仪器信息网测序仪性能评价用脱氧核专题为您提供2024年最新测序仪性能评价用脱氧核价格报价、厂家品牌的相关信息, 包括测序仪性能评价用脱氧核参数、型号等,不管是国产,还是进口品牌的测序仪性能评价用脱氧核您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测序仪性能评价用脱氧核相关的耗材配件、试剂标物,还有测序仪性能评价用脱氧核相关的最新资讯、资料,以及测序仪性能评价用脱氧核相关的解决方案。

测序仪性能评价用脱氧核相关的资讯

  • 中检院发布《第二代测序技术检测试剂质量评价通用技术指导原则》
    为加强第二代测序技术检测试剂的规范和指导,进一步保证和提高相关产品的质量,中国食品药品检定研究院(中检院)组织制定了《第二代测序技术检测试剂质量评价通用技术指导原则》,现予以发布。  该文件是中检院发布的首个质量评价技术指导原则,旨在对产品设计、研发及验证的各关键环节进行规范,从而有效地保证产品质量。此次发布的通用技术指导原则对相关产品的质量控制提出指导性意见,广泛适用于各类第二代测序技术检测试剂,有利于行业发展。  指导原则主要针对第二代测序(next generation sequencing,NGS)技术检测试剂(以下简称“NGS检测试剂”)产品质量提出指导性要求,涉及基本原则、主要原材料、检测流程及性能评价等方面。  指导原则适用于基于NGS技术的检测试剂的质量评价。NGS检测试剂的预期用途包括但不限于以下内容:肿瘤相关基因异常、遗传疾病相关基因异常、胚胎植入前染色体非整倍体、胎儿染色体非整倍体及病原微生物等临床检测应用。此类检测试剂涉及的NGS技术包括靶向性测序和非靶向性测序:靶向性测序法是指对样本中的基因组进行部分测序,如靶基因测序、外显子(组)测序等 非靶向性测序是指对样本中潜在生物体的基因组进行测序。原则上不建议企业应用全基因组测序进行检测,如果企业应用全基因组测序技术,应进行充分的技术适用性验证并提交报告。  待测样本可以是人源样本(如体液、组织、排泄物等)或病原微生物分离培养物(如血培养物、痰培养物等),检测对象可以是脱氧核糖核酸(DNA)、核糖核酸(RNA)或两者的混合物。第二代测序技术检测试剂质量评价通用技术指导原则.doc
  • 技术分享 | 如何准确测试含脱氧剂的包装氧气透过率
    脱氧剂主要应用于食品、饮料和药品等行业,它帮助提高包装的性能及提供所需的保质期。脱氧剂吸收包装中的氧气,使包装内呈无氧状态,因此产品得以保持保鲜。另外脱氧剂可以有效地抑制霉菌和需氧菌的生长,延长产品货架期。作为产品保鲜的材料,脱氧剂与产品装在同一包装中,测试这种状态下的包装材料的透氧性会非常耗时,必须在常规消耗脱氧剂和无脱氧剂两种状态下测量氧气传输率 (OTR),以全面了解产品在整个生命周期内的包装性能。含脱氧剂包装材料检测确保包装性能符合预期的货架期在实践中,脱氧剂可以以多孔小袋、包装内涂层的形式出现,也可以内置于聚合物中,如瓶壁或瓶盖衬里。无论是哪种形式,都必须在消耗脱氧剂之前和之后测试氧气透过率,以确定与没有脱氧剂的原始包装相比的有效脱氧能力。这种类型的渗透测试需要更长的时间来完成,因为他们必须等待脱氧剂完全的被耗尽。这通常会在实验室中造成瓶颈。有三种方法可以帮助缓解这类包装测试的瓶颈。 01.更高的温度下测试高温加速氧气和脱氧剂之间的化学反应。通常温度每升高10°C,估计的OTR就增加一倍,从而减少脱氧剂耗尽所有氧气的总时间。 02.较高的氧气浓度下测试扁平样品如果使用100%的氧气代替室内空气 (20.9% 氧气) 进行测试,则可以消耗更多的氧气分子。与使用室内空气测试所需的时间相比,这将导致测试时间缩短约20%。 03.离线预处理系统以上两种方法都可以“加速”脱氧剂的消耗以减少整体测试时间,在比较不同的涂层、涂层方法或脱氧剂材料层时,它们可以提供有用的数据。但是对于实际产品来说,这两种方法都有实施的限制性。MOCON离线预处理系统提供真实的测试条件,可与仪器同步运行。仪器用于测试,而消耗脱氧剂所需的时间可以离线完成,这提高了实验室的测试效率。MOCON提供可离线预处理的包装测试解决方案离线预处理系统提供了最真实的测试条件,同时缓解了仪器测试瓶颈。可按照下列步骤操作:• 测试完全相同的不含脱氧剂的包装作为参考样品,这将提供基本的OTR水平和测试时间• 对使用脱氧剂的包装进行初始OTR评估。由于包装内含脱氧剂,测试数据可能低于检测限• 当到达参考样品的测试时间时停止测试• 相同条件下开始离线预处理• 定期将包装重新连接到仪器并检查OTR水平• 直到OTR与参考样品测试结果相同或接近(向上滑动可查看)延迟渗透曲线显示脱氧剂的效果注:了解脱氧剂的吸收能力有助于估计离线预处理的时间。另外,许多脱氧剂会被水分激活,在指定的RH条件下进行OTR测试至关重要。 方案优势:• 在没有加速条件的情况下,离线预处理进行真实的脱氧剂包装样品测试• 当样品离线预处理时,仪器可以测试其他样品,提高实验室效率• MOCON OX-TRAN 2/40包装件测试分析仪带有可选的预处理架或PackRack夹具,满足不同形状的包装的离线预处理MOCON OX-TRAN 2/40包装件OTR分析仪带预处理架选项对带有脱氧剂的包装进行渗透测试整个过程需要很长的测试时间。MOCON提供离线预处理的包装测试解决方案:不仅提升仪器测试效率,还满足提供准确和一致的测试结果,提高了实验室的经济效率。
  • 二手基因测序仪 二代中三大品牌性能PK
    二手基因测序仪 是测序产业链的起点也是关键环节,它为整个中下游测序服务提供基本的测序支撑,同时也处于基因测序产业价值链顶端。基因测序仪对于基因产业的重要性,如同发动机之于汽车行业,芯片之于电子通信行业。基因测序也称DNA测序,是现代生物学研究中重要的手段之一。基因测序技术经过了三个发展阶段。一代测序:指双脱氧末端终止法,扩增后通过毛细管电泳读取序列,每次获取数据量少。二代测序:为高通量测序,采用微珠或高密度芯片边合成边测序,代表有454,Solexa,SOLID,高通量,可一次获得数G数据,相对与第三代,都仍然需要扩增的方法放大信号,扩增后再检测。三代测序:特点是单分子测序,多基于纳米科技,无需扩增,对单分链DNA/RNA直接用合成、降解、通过纳米孔等方源式直接测序,核心特点是无需扩增所以成本更低。二手基因测序仪 二代技术中三大品牌性能PK,结果如何?Roche公司的454测序平台、Illumina公司的Solexa测序系统以及ABI公司的SOLID测序系统标志着二代测序技术诞生。尽管各系统在高通量水平、测序准确度、存储格式、技术方法上各有差异,但共同特征是大大降低了测序成本并大大地提高了测序速度,完成一个人的基因组测序只需一周左右时间。然而二代测序技术在测序前要通过PCR段对待测片段进行扩增,增加了测序的错误率。而且二代测序产生的测序结果长度较短,需要对测序结果进行人工拼接,因此比较适合于对已知序列的基因组进行重新测序,而在对全新的基因组进行测序时还需要结合一代测序技术。简而言之: Roche 454是焦磷酸测序; illumina Solexa是合成法测序; ABI SOLID是连接法测序。就读长来看: Roche 454 illumina Solexa ABI SOLID。就Reads数来看: ABI SOLID illumina Solexa Roche 454。就应用来看: Roche 454读长较长,便于拼接 ,因此在denovo测序方面有很大优势;ABI SOLID虽然读长很短,但是Reads数多,而且ABI的双色球编码技术,使得每个碱基都会被读取两遍,准确率很腐, 因此ABI SOL心在检测SNP、转录组测序、ChIP-Seq等方面很有优势;illumina Solexa的读长和Reads数均位于中间,比较适合于基因组重测序。而在实际应用中 ,由千Roche454成本太商,因此illumina Solexa 也被较多的应用于denovo测序。
  • 恒创立达发布急速脱氧在线随时膜脱气仪新品
    恒创立达产品介绍: 急速脱氧在线随时膜脱气仪和排液,没有容量限制,最小250ml,主要对纯水、蒸馏水进行脱气。主要特点:1.设计简便界面:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。2.在线加热功能:溶出介质在进行脱气前进行预加热(极限可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。3.高精度供液系统:溶出介质加注体积精度为设定体积的±3%4.可处理多种溶出介质:溶出实验常用的纯水、蒸馏水。6.可变温度设定功能:温度调节范围为室温到45℃7.易于维护和保养,机内所有配件可快速更换及维护。 技术指标:定量分配体积容量:无容积限制,设定精度0.1L体积分配精度值:±3%加热功率:1500W可大加热能力:极限可达45°C的供液温度(视初始温度而定)温度精确度值:±1°C极大真空度:-96.0KPa脱气效果:目标含氧量≤2.8mg/l过滤器:前置40um/25um/20um金属丝网过滤器可选外型尺寸:主机500*340*295( mm)创新点:1.设计简便:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。2.在线加热:溶出介质在进行脱气前进行预加热(最高可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。3.高精度供液:溶出介质加注体积精度为设定体积的± 3%急速脱氧在线随时膜脱气仪
  • 药典委公示微生物全基因组测序技术指导原则标准草案
    11月29日,国家药典委员会官方网站公示了关于微生物全基因组测序技术指导原则标准草案,公示时间为3个月。详情如下:编号:Fg2022-0216号我委拟制定微生物全基因组测序技术指导原则,为确保标准的科学性、合理性和适用性,现将拟制定标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:朱冉、陈蕾电话:010-67079581 010-67079566电子邮箱:zhuran@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061国家药典委员会2022年11月29日附件:微生物全基因组测序技术指导原则公示稿.pdf微生物全基因组测序技术指导原则起草说明.pdf微生物全基因组测序技术指导原则 本指导原则对全基因组测序技术用于药品微生物控制给予通用性技术规定,为药用原料、辅料、制药用水、中间产品、终产品、包装材料、环境、设备和人员等药品全生命周期质量控制中微生物精准鉴定、溯源分析和风险识别等提供指导。微生物全基因组测序(Microbial whole-genome sequencing)是指利用高通量测序技术对微生物个体的整个基因组序列进行测定,获取遗传信息的过程。高通量测序技术主要包括:边合成边测序、半导体测序、DNA (Deoxyribonucleic acid, DNA)纳米球测序、连接酶测序等第二代测序技术(又称下一代测序,Next Generation Sequencing)和基于单分子测序(Single Molecule Sequencing)的第三代测序技术。第二代测序技术的基本原理主要是利用物理或酶切的方法将待测样本的基因组打断到1kb以内的DNA片段,在其两端连接特定接头序列后,固定于测序介质中,通过核酸扩增技术,如聚合酶链式反应、等温扩增技术等将待测样本放大收集成库,然后进行平行循环测序。当需要获得微生物样本基因组精细图、完成图时,可采用能够实现大片段测序读长的第三代测序技术。第三代测序技术的基本原理主要有:采用荧光标记脱氧核糖核苷酸,用光学镜头实时记录DNA合成过程中新引入脱氧核糖核苷酸的荧光变化,通过不断地重复合成、成像、淬灭等过程进行单分子荧光测序;或采用电泳技术驱动单个分子逐一通过纳米孔,通过检测不同碱基的电信号,进行单分子纳米孔测序。本指导原则以目前发展成熟、应用较为广泛的第二代测序技术为主要技术手段,对实验室的一般要求、全基因组测序的主要技术指标、技术流程、影响测序结果的主要因素、方法学考察和应用指导等方面进行通用性技术规定。一、实验室的一般要求1.实验场地及人员 开展微生物全基因组测序的实验环境应具备分子生物学实验室的基本条件,并符合相应级别的生物安全等级要求。实验区域一般应设置:试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区,各个区域在物理空间上相互独立,并标识明确;另外,根据使用仪器的功能,相关区域可适当合并。应单向流进入各工作区域,按照试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区的先后顺序进行实验操作。实验区域应定期进行清洁消毒。实验人员应具备分子生物学和微生物学专业背景,或经专业培训。2. 实验仪器实验室一般应具备高通量核酸测序仪、核酸扩增仪、片段分析仪、核酸定量仪、生物安全柜、混匀器、高速离心机、水浴或加热模块、冰箱、微量加样器等分子生物学检验常用仪器设备。影响测序质量的仪器设备应定期进行性能确认和维护,以保证仪器处于良好的运行状态。3. 实验试剂除另有规定外,所有实验使用的试剂均应不含DNA和DNA降解酶,宜大体积配制、小体积分装,并保证试剂的无菌性,必要时可采用高压灭菌或0.22 μm孔径滤膜过滤除菌。用于核酸扩增的相关试剂应避免反复冻融。关键试剂应制定质量控制程序,以确保试剂质量。采用适宜的商品化试剂或试剂盒进行核酸提取、文库构建和核酸测序时,应按照说明书操作,并符合说明书中的质量控制要求。二、全基因组测序的主要技术指标1. 测序通量测序通量是指单次测序可获得序列信息的基因片段数量或可测定的DNA (以碱基表示)数量。核酸测序仪器的测序通量直接关系到测序输出的数据量。微生物的基因组DNA较小,但不同种属之间变化幅度较大,如:葡萄球菌属、埃希菌属、假单胞菌属、沙门菌属等常见细菌的基因组DNA大小约3~6 Mbp;酵母菌的基因组DNA大小约12~16 Mbp;典型致病霉菌的基因组DNA通常大于30 Mbp。在进行微生物全基因组测序时,应根据待测样本基因组大小、样本数量等实际需求,选择适宜测序通量的测序仪器和配套试剂,保证测序结果的准确性。2. 碱基识别质量碱基识别质量是衡量碱基正确识别的概率(通常以数字值直接表示)。碱基识别质量与碱基识别错误率之间的关系为:Q=-10lg P(Q为碱基识别质量,P为碱基识别错误率)。Q=20代表碱基识别正确率≥99%;Q=30代表碱基识别正确率≥99.9%。高通量测序仪器应能自动判读碱基识别质量。三、 技术流程 全基因组测序的一般流程包括:测序样本的获得、测序文库的构建、全基因组测序和数据分析等。1. 测序样本的获得 全基因组测序主要用于待测微生物的核酸序列测定。待测微生物应进行分离纯化,以获得生长状态稳定的纯培养物,可参考“微生物鉴定指导原则”(通则9204)。分离纯化后的纯培养物应采用适宜的方法,可参考“细菌DNA 特征序列鉴定法”(通则1021),获得浓度、纯度和完整性良好的基因组测序样本。2. 测序文库的构建 测序文库是指将基因组样本随机打断后,在其两端加入特定接头序列(adapters),并经过大规模平行扩增,形成的DNA片段集合。测序文库中样本的核酸浓度、纯度、片段的大小分布等因素,都会影响测序输出的数据量和碱基识别质量。应对构建的测序文库进行纯化、定量、均一化处理,使文库中各待测样本的浓度保持均等;必要时,采用凝胶电泳或毛细管电泳等方法检测文库的质量。3. 全基因组测序 将测序文库中的待测样本固定在测序介质中,通过特定接头序列,将测序引物与待测核酸序列进行结合。加入底物脱氧核糖核苷酸,在DNA聚合酶作用下,使结合在待测核酸序列上的测序引物进行延伸,并利用信号收集器采集信号,包括但不限于光信号、电信号或离子信号等,通过信号分析软件对采集到的信号进行分析,获得待测样本的碱基序列信息,以及物理通量、有效通量、测序读长、测序深度、碱基识别质量等参数。4. 数据分析 采用适宜的序列分析方法和软件,对得到的核酸测序下机数据进行序列拼接,最终获得待测微生物样本的全基因组序列信息。四、 影响测序结果的主要因素 1. 待测样本核酸质量 应采用适宜的方法提取待测样本的基因组DNA,并保证提取的基因组DNA 在适宜的浓度和纯度范围内,无蛋白、多糖等污染。一般情况下,核酸浓度宜不低于10 ng/μl,A260/A280比值宜在1.8~2.0之间。核酸浓度较低,或发生降解等导致质量不佳的情况,可导致基因组DNA片段化不完全,影响文库质量,进而影响测序深度和测序结果。2. 测序文库质量 应对测序文库进行质量控制。当测序文库中包含多个待测样本时,不同样本的核酸浓度应基本一致,保证测序后的输出数据量均匀稳定。推荐采用荧光分析法定量检测不同样本的基因组DNA浓度,测序文库制备完成后,采用适宜的稀释倍数,确定上机测序文库的浓度。3. 测序深度 测序深度是指待测样本中某个指定核苷酸被检测的次数。一般高通量测序仪器输出的测序深度指待测样本基因组序列中核苷酸被检测次数的平均值。测序深度与基因组覆盖率之间是正相关,测序深度越大,重复测序次数越多,待测样本基因组覆盖率越大,测序带来的错误率也会随着测序深度的提高而降低。一般而言,基因组测序深度应不少于50倍;建立全基因组序列参考数据库时,测序深度应不少于100倍。4. 碱基识别质量 碱基识别质量是评价测序结果准确率的重要因素。根据核酸测序仪器的正常运行参数,单个样本的核酸测序的结果应保证Q20≥80%或Q30≥70%;也即测序数据中80%及以上的碱基正确率大于99%,或者70%及以上的碱基正确率大于99.9%。五、 方法学考察 除考察影响测序结果的主要因素,包括:待测样本核酸质量、测序文库质量、测序深度、碱基识别质量等,还应进行相应的分析方法学考察;可在测序过程中增加已知序列的参考品,评估测序仪器性能,以保证全基因组测序结果的准确性和重现性。六、 应用指导 微生物全基因组序列能够提供全面丰富的遗传信息,通过全基因组序列的比对分析,可以实现待测微生物,包括:标准菌株、模式菌株、质控菌株、生产检定用菌(毒)种、益生菌等,以及从药用原料、辅料、制药用水、中间产品、终产品、包装材料和环境等中检出污染微生物等的精准鉴定、溯源分析以及风险评估等。精准鉴定当基于常规生化筛选、表型和基因型鉴定方法无法获得待测微生物样本准确的鉴定信息时,可利用全基因组测序技术获得更加精准的鉴定结果或遗传变异信息等。全基因组序列分析还对研究微生物的系统进化具有重要价值,有助于新种或亚种的发现和遗传分类单元的系统发育解析,提高对新种或亚种的生物学认识。溯源分析当出现无菌试验结果阳性、培养基灌装等模拟工艺失败、生产过程严重异常事件时,如常规基因型鉴定方法无法提供足够的分辨力,可在获得菌种鉴定信息的基础上,采用全基因组测序技术对目标微生物以及相关环节中分离的同种微生物进行全基因组序列的同源性分析,结合污染调查信息,实现目标微生物的溯源分析风险评估全基因组序列包含了微生物菌株全部的遗传信息,基于全基因组数据分析还能够用于毒力、耐药以及其他基因的功能分析与表型预测,为开展微生物的风险评估分析提供参考依据。起草单位:上海市食品药品检验研究院联系电话:1800677839复核单位:中国食品药品检定研究院、天津市药品检定研究院、辽宁省药品检验检测院参与单位:浙江现代生物技术发展中心、中国工业微生物菌种保藏中心
  • 基因测序:亟待加入中国元素
    近几年,随着基因概念股在股市上的热浪,国际癌症基因组计划完成的消息,启动又停止、停止又启动的高通量测序的唐氏筛查工作等等。每天不断更新的消息使得基因测序这个产业和概念成为了一个非常热门的话题。  在&ldquo 创新中国智库专题讲座&rdquo 上,中国科学院北京基因所技术研发中心常务副主任任鲁风作了《基因测序技术在中国应用前景》主题讲座。他主要从基因到底是什么?测序是干什么?基因测序到底能解决我们什么问题以及测序技术、应用在中国及全球的发展态势等方面解读了基因测序的相关内容。  什么是基因测序  &ldquo 首先做一个基本概念的科普。把地球比作生命之树的话,那么人只是大树末端的一个枝节。就动物而言,全球有1000万种动物,其中哺乳类就有5000。人只是其中一种。&rdquo 任鲁风介绍。  据了解,几乎每个生命体都由细胞组成,这个细胞里有一个细胞核,细胞核包裹着遗传物质,从父母那儿遗传的染色体,把它松散拉直之后,就是平常所说的DNA(脱氧核糖核酸),即通过核苷酸作为基本单位,排列形成生命密码。  任鲁风表示,在细胞DNA转化为RNA(核糖核酸)之后,通过RNA在细胞核外面的翻译,生产出蛋白质。而蛋白质也是通过DNA和RNA的排列顺序,构成生命体的不同结构。在这里所有生命活动都是来源于这个顺序,关注这个顺序就可以解决生命的发生和发展问题。  DNA与RNA只有四种基本组成单位,也就是核苷酸,这四种核苷酸仅仅在化学分子结构上具有细微的差异,而这四种不同化学结构的分子在DNA链上的排列顺序,决定了所有生命活动的本质,&ldquo 测序&rdquo 就是把这个顺序决定出来。  &ldquo 人和人之间的差异只有千分之一,就是这个排列的顺序只有千分之一的差别,这种差别引发了无数的遐想,这些遐想促进了生命科学和医学等一系列科研和应用的不断前行。&rdquo 任鲁风说。  测序技术发展了40年,已经走过了四代技术阶段。第一代测序技术已经趋于稳定,在特定市场里保持着独占性应用。第二代测序技术从2006年推向市场后,10年来产生了诸多激烈的竞争,国内厂家也有参与。而第三代和第四代技术,现在还都是处于技术有待成熟和发展阶段。所以近年来主要的竞争还将集中于第二代技术上。  基因测序能做什么  &ldquo 成本的进一步降低,让基因组学衍生出更多的组学相关研究,并延伸至极为广泛的基础研究和实践应用中。&rdquo 任鲁风说。  &ldquo 在涉及生命科学的领域目前都用得到这项技术,目前用基因测序逐渐开始解决实践应用的问题,成本也已经达到实践应用的要求。&rdquo 任鲁风表示,这项技术应用领域包括检验检疫,食品安全、种质鉴定、临床诊断、环境检测、疾病防控、微生物的进化。在农业、林业、畜牧业、渔业等领域,测序技术也已经开始应用其中。  任鲁风介绍,现在突发传染病每时每刻都在发生,但不会再出现像2003年SARS疫情时长时间不能准确判别病原的情况了。基因测序技术能够在新突发传染病发生的72小时内获得病原的确切信息。  法医鉴定方面早已将测序技术作为基本物证鉴别手段。在国家安全层面,基因信息的安全性和生物反恐都是值得注意的发展领域。实际上这些都是细分领域,目前已经开始呈现市场容量急剧扩张的趋势。&ldquo 基因测序在应用市场里的蓬勃发展和爆发式的增长将从2015年开始。&rdquo 任鲁风说。  基因测序重在医学  据悉,奥巴马在国情咨文里边提到,要启动精准医学计划,要把所有人基因组全都测完,指导后期的健康分析。这被定义成医学上的一个划时代的开端。  那么究竟什么是精准医学呢?任鲁风介绍,根据大量数据积累和分析,得到一个数据库,这样就会得到不同的基因型和疾病与用药之间的关系,之后通过每个人不同的基因或基因表达水平的不同,与这个数据库去对照,会发现每个人每一种疾病的预防、发生、发展、治疗、预后均和基因具有显著的相关性,这样直中靶心,采取有针对性的不同的治疗方法,这就是所谓的精准医学。  在目前这个初级阶段,基因测序可能更多集中在遗传病的诊断,传染病的病原检测,肿瘤的个体化治疗以及药物基因组学方面,也就是根据基因来判断病因是什么、药物能不能用和好不好用等问题。&ldquo 在这个过程中个人基因组和临床相关性研究,是目前精准医学首先要做的工作。&rdquo 任鲁风说。  任鲁风把健康相关领域分成两个部分,一个是疾病易感性,一个是药物敏感性,疾病易感性是指每个人都有患某种疾病的风险,这个风险来自本身的遗传物质。如果医生可以看到病人的基因组谱,就可以提前获知和进行干预。  当然,除了预防还要治病。&ldquo 药物对这个疾病有治疗作用,还没有毒性,这是最好的情况。如果没有治疗作用,药毒还可能对病人有损伤,对于患者而言就是灾难。但通过基因水平来判断,就可以选择既没有毒性又起作用的药物。&rdquo 任鲁风说。  基因测序应加快自主研发  &ldquo 在基因测序方面,中国现在处于机遇与挑战并存的时期。&rdquo 任鲁风告诉记者。基因组学从概念的出现到现在只不过二三十年的时间。伴随着信息技术的发展,国内外信息互通,让中国的科学家有更多与国外同行直接交流和沟通的机会,加之大量的海外高水平人才回国,使中国在基因组学基础研究,测序技术领域并不比西方国家落后多少。  2011年的统计显示,人类基因组计划完成以后,对美国经济的影响是巨大的。意味着通过38亿美元的投资,获得了将近8000亿美元经济带动作用,创造了31万个工作岗位,到2013年,对美国经济的带动作用达到了1万亿美元。  据悉,中国第一台测序仪是由深圳华因康公司生产的,而华大基因从美国收购CG公司,也是看中了其测序技术在未来的应用前景。  &ldquo 虽然中国的测序技术刚起步,但包括LifeTech和Illumina这两家测序技术巨头,在通过贴牌方式进入中国医疗市场,一定程度上阻碍了我国自主研发的进程。&rdquo 任鲁风表示。  在测序技术这一领域,自主研发,自主原理,自主技术平台的缺失一直造成我国应用领域永远给国外这种厂商打工的局面,从机器、软件甚至数据分析方面都要依托外国。  &ldquo 中国有广泛的医疗资源和人群,最基础的医疗资源是不缺的,缺的是没有一项是自主创新的技术。&rdquo 任鲁风说。例如,生物技术必要的功能性软件,所有进行基因数据分析的算法基本上均来源于国外原创性的基础算法。中国的高性能计算硬件资源已经达到了先进水平,但对于数据解读、挖掘和数据库建立等方面还落后很多。另外一个问题在于,我国的基础研究和基础数据积累方面,碎片化严重,无法形成统一有效率的研究计划和数据挖掘,这些有待于国家层面的科学布局规划。  在技术发展层面,据了解,美国对基因测序技术的研发,从2004年到2014年持续进行资助,从第二代测序技术到目前的第四代测序技术,累积已经投入超过2亿美元。而我国的国家级别支持的基因测序技术研发经费一共大概2000万元人民币。  &ldquo 这项技术是决定中国在国际市场上竞争力的关键,我国的科技体制改革,需要在这方面有所考虑。&rdquo 任鲁风说。还有就是目前有一些饮鸩止渴的现象,除了华大收购的CG还算是国产,其他获得国产医疗器械证书的测序产品,均来自于国外。  &ldquo 我们已经坚持了六七年的时间来做基因测序技术,目前已经完成了产品样机的生产,即将给国内客户进行免费试用。&rdquo 任鲁风介绍。另外,其领导的科研团队正在策划针对应用的整体解决方案,包括样品处理、测序、数据分析等流程的全自动化实现,&ldquo 用户可以在对样品进行测序和数据分析中实现无人操作,通过云计算和自主研发的算法,可以解决数据的有序积累和挖掘过程&rdquo 。  任鲁风表示,在中国缺乏核心精密工业条件和高端生命科学仪器开发生产经验的情况下,如何依靠和支持自主创新来抵抗国外技术蚕食中国市场,值得我们反思。
  • 一文知晓:纳米孔测序技术
    在基因测序领域,谁控制仪器,谁就会赢得天下,从ABI的3730测序仪到后来的illumina的测序仪,都可以证明这点,这个行业目前是由上游技术驱动的,对技术的依赖度很强。测序公司、诊断公司都加大对测序技术领域的投资,以期能在未来基因测序爆发时期,获得可观的市场份额。根据安永的最近一份报告显示,未来5年内,基因测序的仪器市场规模同基因测序服务基本相当。  罗氏、illumina公司都加大对新技术的投资。2012年,Roche公司宣布基因测序仪454从测序市场退出时,就加紧在纳米测序技术领域的布局,先后投资了Genia Technologies公司和Stratos Genomics公司。illumina公司也早就盯上了纳米孔测序技术,是牛津Nanopore公司的主要股东之一。然而令illumina公司恼火的是,2013年10月,牛津Nanopore公司回购了illumina公司持有的13.5%股份,从而保持该公司更加独立运营,此次回购价值共超过5640万美元。  纳米孔测序原理  在A,T,G,C四种不同的脱氧核苷酸通过纳米孔进入的时候,其所引起的电流变化也是不一样的,随即可通过电流来检测DNA序列。双链DNA直径为2nm,单链DNA直径为1nm,所以采用的纳米孔尺寸有着近乎苛刻的要求。纳米孔:分为生物纳米孔和固体纳米孔,生物纳米孔:a溶血素(一般嵌入在双层脂膜当中),最窄直径尺寸为1.5nm,可允许单链DNA分子通过。但是生物纳米孔对稳定性、电流、噪声等方面有很高的要求。固态纳米孔:由硅及其衍生物制造,通过电子束和离子束在硅或其他材料薄膜上钻出纳米尺度的孔洞。固态纳米孔在稳定性、电流噪声、工艺集成方面有着显著的优势,但是目前有技术瓶颈,以及造价高昂。  固态纳米孔工艺  固态纳米孔的制作与半导体工艺的结合使得DNA测序芯片的大规模生产成为可能. 2001年,Li等人使用聚焦离子束在 Si3N4 薄膜上制作出了直径61 nm 的孔,随后又采用 Ar将孔径缩小到了1.8nm。2003年, Storm等人用高能电子束在SiO2薄膜上制作出了直径2 nm的孔. 如今, 人们已经可以在很多材料上制作出亚 10 纳米尺度的固态纳米孔,例如,SiNx,SiO2,SiC,Al2O3等. 此外, 石墨烯因其本身超薄的结构和特殊的电子特性也作为薄膜材料的一种新选择,它的超薄的单原子层结构十分适合隧道电流的测量。  纳米电极制作  纳米电极的制作在测序用纳米孔制造工艺中也是一项重要的挑战。前文提到, 纳米电极的形状、与纳米孔重合度的好坏直接影响到电流信号的好坏, 因此要在纳米尺度制作出形状规则、 电学特性良好的电极并不容易。  目前研究者们所做的工作都是在实验室中对单个纳米孔进行研究, 而无法将其运用到商业中. 到目前为止, 还没有办法能够快速制作出直径大小均一且都在5 nm以下的纳米孔阵列, 在DNA测序芯片向商业化转变的道路上, 这是必须解决的一个问题. 但是, 相信随着半导体制造工艺和纳米电子学的不断发展, 人们一定会制作出高质量的纳米孔芯片。  产品:Minion  由英国公司Oxford Nanopore开发设计MinION测序仪则拥有很长的读长,而且只有普通U盘大小,由一个传感器芯片,专用集成电路和一个完整的单分子感应测试所需的流控系统构成,可随身携带,理论上可实现想测就测。日前该测序仪已投入市场使用,或许未来它将基因测序仪变得如同手机一样普通、便捷、廉价。该技术被MIT Technology Review杂志评为&ldquo 2012年10大年度科技突破之一&rdquo 。但是其错误率很高,据称有35%的错误率,平均10个碱基,就有3.5个测序错误。这也意味着基因突变检测成为纳米孔测序的禁区,也成为纳米孔测序的致命弱点,并让其长读长的优势黯淡无光。  面临挑战  虽然纳米孔测序的优点十分明显,与前几代技术相比在成本、速度方面有着很大优势,但是目前还处在起步阶段,从测序原理到制造工艺都存在有许多问题,许多技术也都只停留在理论阶段。其面临的挑战主要是如下几个部分:  电流检测系统:电流识别最短距离为3nm,而且目前的材料几乎很难寻找到孔径这么小的材料。  纳米膜系统:限制目前的纳米孔大小,目前有关纳米孔制作方面仍有很大的阻力  数据分析系统:即使很多人获取这些数据,但是对于数据的运行和分析仍旧存在很大障碍。  主要纳米孔技术公司  Base4, UK  Fullgen, Argentina  Genia, USA, California  INanoBio, USA, Arizona  Ionera, Germany  Izon Science, New Zealand  Nabsys, USA, Providence  Nanion, Germany  Nanopore, USA, New Mexico  Noblegen Biosciences, USA, Massachusetts  Oxford Nanopore Technologies, UK  Quantapore, USA, California  Quantum Biosystems, Japan  中国从事相关技术研究学者  龙亿涛  华东理工大学,上海市曙光学者,&ldquo 东方学者&rdquo 特聘教授,研究方向纳米光谱电化学,纳米通道单分子分析,仿生界面等。  赵清  北京大学凝聚态所副教授,主要从事ZnO、AlN纳米线的制备、掺杂,表征,电学,光学,场致电子发射性能方面的研究。  注:部分内容来自生物通和贺建奎博客
  • 博奥生物二代测序仪获准上市
    2015年2月12日,国家食品药品监督管理总局对博奥生物集团研制生产的BioelectronSeq 4000基因测序仪和胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)分别颁发了医疗器械注册证。  BioelectronSeq 4000基因测序仪通过生物电子芯片对核苷酸聚合反应中的酸碱度信号进行检测,用于人脱氧核糖核酸(DNA)测序,以检测基因的序列变化。该仪器可在临床上与此次由国家食品药品监督管理总局同时批准的体外诊断试剂以及仪器配套的专用生物信息分析软件配合使用,适用于胎儿染色体21三体、18三体、13三体的非整倍体检测。  胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)用于定性检测孕周为12-24周的高危、单胎孕妇外周血血浆中胎儿游离脱氧核糖核酸(DNA),通过分析样本中胎儿游离DNA的21号、18号及13号染色体数量的差异,对胎儿染色体非整倍体疾病21-三体综合征(唐氏综合征)、18-三体综合征(爱德华综合征)和13-三体综合征(帕托综合征)进行产前辅助诊断。  博奥生物集团是我国集成医疗(疾病的预测、预防和个体化治疗)领域的领军型企业,自2000年成立以来开发和推出了大量高水平的生物芯片创新性产品与服务,在科技部863和卫计委重大专项支持下构建了一套基于生物芯片的核酸提取、基因扩增、直至微阵列杂交测序和微流控测序的完整的分子诊断技术平台,为我国基因检测技术进入世界先进行列做出了重要贡献。  BioelectronSeq 4000基因测序仪、  胎儿染色体非整倍体(T21、T18、T13)检测试剂盒(半导体测序法)  BioelectronSeq 4000基因测序仪医疗器械注册证  胎儿染色体非整倍体检测试剂盒医疗器械注册证
  • 浅议基因测序技术的代际
    编者按 NGS技术,到底是下一代测序,还是二代测序?NGS到底包含了哪些技术?关于NGS的定义,一直困扰着业内外人士。曾参与“国际人类基因组单体型图计划中国卷”项目 、“炎黄一号” 等多个重大科研项目的基因测序专家王威博士,近期发表了文章《浅议基因测序技术的代际》,文中清晰地解释了测序技术代际问题。小编特将该文转载,欢迎各位交流探讨。 正文: 相对于较早出现的Sanger双脱氧核苷酸测序技术(简称Sanger测序),2005年后出现的NGS测序技术,使得基因组研究进入高通量时代,促进了基因组学科学研究及技术转化应用。 在基因组学领域,NGS通常是next-generation sequencing的缩写,意为下一代或者新一代测序技术,亦有人称之高通量测序技术(High-throughput sequencing,HTS)、二代测序技术(second-generation sequencing)。至于到底哪些测序技术属于NGS,并无明确统一的界定,目前主要有两种观点,存在些许差别。 01 对NGS的最初种理解 自动化的Sanger测序技术,以Sanger技术为起点,新出现的技术被称为下一代测序技术(简称NGS)1。 这些新技术涉原理,依赖不同的模板制备方法(例如乳液PCR、DNA纳米球、桥式扩增 、单分子模板)、序列测定方法(焦磷酸测序、基于可逆终止化学测序、基于连接反应的测序、磷酸连接荧光核苷酸或实时测序)、基因组比对与组装方法等。 这种观点认为目前的大规模并行测序技术都属于NGS,包括Roche/454测序、Illumina/Solexa测序、Life的SOLiD与ION系列以及华大基因的BGISEQ/MGISEQ系列等;此外,持这种观点的学者还将Helicos BioScience、Pacific BioSciences以及Oxford Nanopore的单分子及纳米孔测序技术均纳入NGS技术,并未单独将其定义为第三代测序技术1~3。 02 对NGS第二种理解 另一种理解认为 NGS主要是指基于大规模并行测序(massively parallel sequencing,简写MPS)的测序技术4。 大规模并行测序的关键技术诞生于上世纪90年代,于2005年商业化进入市场。这一技术同时对成百上千万的待检测DNA模板分子进行测序,加大了测序反应的效率与通量,使得一次测序实验便能够完成一个或更多的人类基因组序列的测定。尽管不同的大规模并行测序技术原理各不相同,但有一些共同特点,杨焕明老师有非常简洁的总结5:(1)“裸”、“密”并行,每一个分子簇为一个裸露的测序反应,使得测序通量提高了几个数量级;(2)测序通量 的提高,损失了下机的读长(初期只有约20个碱基,现在已有显著提升)。 尽管MPS的标本制备和测序原理不同于Sanger测序,但它与Sanger 测序一样,仍需要对测序分子进行扩增,因而也不可避免的增加引入序列误差的概率和GC偏差,也不能直接分析不同修饰的核苷酸5。 按照这一观点,单分子测序不属于NGS,而是更加新的技术。 03 NGS:Next-generation 还是 Now-generation? 随着MPS成熟稳定,在2008~2010年左右,NGS有了一个新的含义,即Now-generation sequencing6、7,直译为“当代”或者“现代“测序技术。 也就是说,“下一代”测序技术变成了“现代”测序技术。不过,Now-generation sequencing这一说提法并未被广泛使用。因此在多数情况下,NGS主要是指Next-generation sequencing。 在高通量测序技术刚刚问世时,人们并没有预料到测序技术的后续发展如此迅猛。因此,无论是Next-generation 还是Now-generation,其实都是一个比较笼统的提法,本身也意味着变化和发展。这也就不难理解为什么目前对于哪些技术属于NGS会存在不同观点了。 04 关于测序技术的代际 上述话题牵涉出所谓的测序技术代际的问题。然而目前来看似乎并没有统一的认定。 如果按照上文对NGS的理解,目前的代际划分似乎更多的用来区分Sanger 测序与非Sanger 测序。这两类技术在原理和测序通量上都有存在较大差异,但也有相通之处。例如,无论是Sanger双脱氧核苷酸测序,还是高通量测序中的边合成边测序技术,或者是基于连接反应的测序,其原理都依赖核苷酸的聚合反应。 目前测序仪代际划分的分歧点主要围绕“二代测序”和“三代测序”技术。“三代测序”这种提法出现于2008~2009年,当时主要是指有别于NGS的新型测序技术。一些学者认为单分子测序、实时测序以及核心方法有别于已有技术的方法,应是三代测序技术的定义性特征。目前,三代测序通常是指无需DNA扩增的单分子测序技术4。这种技术从原理与特点来看,有其自身优势(比如测序能够获得较长的读长,有望解决单倍体基因组组装和结构变异识别),是测序技术发展的重要思路。 有学者指出,目前测序技术代际划分,也许更多的是出于商业上的考虑,因为人们通常习惯性的认为技术代际升级代表了技术的演化。例如,Pacific BioSciences 公司在其发表的论文中,将单分子实时测序技术与NGS进行了区分,被归入三代测序技术8,其用意是不言而喻的。 单分子测序技术早在2003年就有概念性的论文发表9。2008年,Helicos BioSciences推出了单分子测序仪,随后Pacific BioSciences与Oxford Nanopore也推出了各自商业化的测序仪。不过,也许是由于单分子测序对技术体系要求更高,这项技术的发展远不如当初人们预想得那般迅猛,直至今日尚未达到NGS这样的市场规模。这期间,Helicos BioScience已于2012年破产,尽管其技术符合目前对三代测序技术的界定。 随着更多的应用,单分子技术也陆续暴露出一些技术问题。例如,在近期的一篇论文中,研究人员对利用长读长测序技术组装的人类基因组进行分析,发现与短读长组装相比,长读长组装的蛋白编码区域含有更多的错误10。尽管有学者指出,新的生物信息学工具已经能够改善纳米孔测序的组装结果,有望从Oxford Nanopore和PacBio的测序数据中获得高质量的序列11。但是,真正的长读长技术,只有达到或超越现有技术的性能和准确度时,才有实用意义。 从测序技术应用角度来看,某些应用也许并不需要长读长的单分子测序技术。例如,基于外周血游离DNA测序的无创产前检测,因目标DNA本身就是一百多个碱基的短片段,采用NGS就能够比较好的进行检测与分析,且成本也在逐渐下降。此外,通过一些间接技术手段,比如华大智造近期推出的stLFR测序12,也能够在全基因组范围内提供基因组长片段信息,包括分型、突变及基因组结构变异。 单分子测序技术从原理上具备潜力与优势,值得进一步研发完善。但是未来能否达到预期的市场规模,甚至成为主流测序技术,还需要经过实践检验。技术发展代际内的升级相对比较频繁,而代际间的升级则相对缓慢,只有核心原理有创新并且跨越式超越前一代的技术,也许才更适合被定义为新一代技术。 总之,目前测序技术代际划分较为模糊,且测序技术目前仍处于快速发展中。其中,SANGER与 NGS均引领了基因组技术,推动了基因组学科技进步。前者为人类基因计划(HGP)做出了主要贡献,目前仍在是很多生物学与医学实验室的常规技术;后者则是当前基因组研究与应用的主流技术,直接为基因组测序的广泛应用扫清了经济上的障碍,使其不仅能更好的服务于科研,也正在成为医学界以及其他应用领域的重要工具。单分子技术则是测序技术发展的重要方向,开始崭露头角,但成熟与完善尚需时日。以上这些测序技术,均有各自的特点,也有其适合的应用范围与应用场景。 附笔: 写这篇小文的初衷,是近期因为有朋友提出过此类问题,也有人常将测序技术类比IT技术的发展。因此在这里分享自己的观点,也期望与持不同意见的朋友交流探讨。 特别感谢两位曾经参与过水稻基因组计划等早期基因组大项目的同事张建国博士与李胜霆博士,在春节假期期间分享了各自的观点,并协助完善本文。 目前测序技术的代际划分并没有统一的认定。即使一个人,其观点也会随时间与认知的改变而发生某些变化。在2008年前后,我们单位的NGS平台刚刚进入规模化稳定运行阶段。也正是那个时候,出现了“三代技术”。业内不少人都认为这类单分子技术很快将取代NGS。但事实并非如此。我曾经的观点认为单分子测序技术属于三代技术,而目前则倾向于将其归入NGS。 关于测序技术的代际,可以看看IT的代际。百度上是这样划分的:初代计算机被称为电子管计算机,第二代计算机被称为晶体管计算机,第三代计算机成为中小规模集成电路计算机,第四代计算机成为大规模和超大规模集成电路计算机,第五代计算机,指具有人工智能的新一代计算机。IT的代际划分主要源自技术原理的革新(第五代感觉主要是软件上的革新),是认识计算机发展史和技术原理的需要,具有客观存在的价值。新一代在性能上全面超越前一代。 从认识论的角度来讲,大家习惯于根据技术划分代际,代际升级代表了技术的演化。只有核心原理新并且跨越式超越前一代的技术才能被称为新一代。新一代的出现首先是从技术原理上提出,有希望和潜力超越现有技术,然后从商业角度宣传,有一些最终行不通的被淘汰,能发展成熟超越前一代的才会真正成为新一代。也有可能方向是对的,但是技术暂时跟不上,会经历曲折的发展。这种代际认识在回顾历史的时候最清楚。 王威 博士 华大智造副总裁,医学遗传学研究员,科学技术委员会成员。 先后参与、负责完成“国际人类基因组单体型图计划中国卷”项目 (简称 HapMap 计划) 北京区域的基因分型任务、初个中国人基因组图谱的绘制工作 (简称“炎黄一号”) 等多个重大科研项目。主要从事基因组医学新技术开发、推广与应用。
  • 吉因加国产测序平台获准RNA预期用途
    近日,国家药品监督管理局(NMPA)官网公开信息显示,已批准吉因加自主品牌国产基因测序仪Gene+Seq-2000和Gene+Seq-200的适用范围变更申请。两款仪器分别于4月14日和4月27日通过审批,新增了“对核糖核酸(RNA)进行测序”的适用范围。在基因检测应用场景不断扩展的今天,单纯的DNA测序无法满足迅猛增长的临床需求,而RNA测序扮演者越发重要的角色,国产测序平台在该领域获批应用,为临床提供了更加丰富的选择,必将更好地支撑起相关产业的发展,推动NGS技术在临床合规落地。 吉因加表示:根据《医疗器械监督管理条例》、《医疗器械注册管理办法》等相关法律法规的要求,应用于临床的医疗器械产品应具备相应的适用范围并获得国家药品监督管理局批准。但是,目前市面上的测序仪大多是“在临床上用于对来源于人体样本的人的脱氧核糖核酸(DNA)进行测序”,例如聚焦生育领域DNA检测、肿瘤DNA检测以及遗传病DNA检测等,不包含人的RNA,也不包含来源于人体样本的病原的DNA和RNA检测等应用,不能够完全满足目前临床合规开展各类基因检测的需求。 本次Gene+Seq-2000和Gene+Seq-200获批 “可用于人体样本的不仅限人的DNA和RNA测序”,可以检测包括肿瘤融合基因、病原RNA、全转录组等多种需求,可以真正实现DNA和RNA基因检测需求的全覆盖。测序仪适用范围/预期用途Gene+Seq-200该产品采用联合探针锚定聚合测序技术,在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序Gene+Seq-2000该产品采用联合探针锚定聚合测序技术,在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序测序仪A该产品用于对来源于福尔马林固定石蜡包埋(FFPE)组织的人基因DNA测序测序仪B该产品用于人脱氧核糖核酸(DNA)测序测序仪C该产品基于边合成边测序技术,在临床上用于对来源于人体样本的人的脱氧核糖核酸(DNA)进行测序在临床应用方面,其实已经有较为成熟的RNA应用场景,比如对肿瘤融合基因的检测。DNA测序在检测融合基因时,对于仅发生在RNA或DNA层面融合丰度低的情况,以及对于存在长内含子或重复序列融合的情况均存在局限性,而RNA测序除了能够有效检出这些融合之外,还能发现更多未知融合,为未来的药物研发提供更丰富的信息。目前,已有多项研究证明,将DNA检测与RNA检测相结合,可以实现核心治疗靶点及罕见、有效的融合变异的同时测定,弥补常规检测方法可能出现的漏检、融合基因不明确等不足,有效提高融合基因检出率,更好地帮助医生进行临床诊断及治疗。因此,多项指南都在推荐将DNA检测与RNA检测相结合,以更全面覆盖基因融合/重排,更大程度地提高临床获益。
  • 厦大杨朝勇团队开发新技术 极大提高单细胞测序性能
    单细胞全基因组测序(WGS)对于表征DNA中动态细胞间变化至关重要。当前用于单细胞WGS的样品制备技术复杂,昂贵,并且存在高扩增偏差和误差。  2020年12月9日,厦门大学杨朝勇团队在Science Advances 在线发表题为“Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics”的研究论文,该研究描述了Digital-WGS,这是一个样品前处理平台,可基于数字微流体的自动处理功能来简化高性能单细胞WGS。  数字微流控(DMF)是一种新兴的微流控自动化技术,可通过电介质上电润湿现象处理电极阵列上微升至纳升大小的液滴。该研究开发了Digital-WGS,这是一种基于DMF的单细胞样品制备平台,该平台集成了并行纳升体积多重置换扩增(MDA)的所有主要步骤,包括从单细胞分离到全基因组扩增(WGA)的自动处理。通过在DMF芯片上结合流体动力学和表面润湿性,无论细胞类型和输入如何,都可以通过液滴操作自动有效地(100%)分离单个细胞。Digital-WGS允许在所有步骤中对液滴进行可寻址的控制,以大大提高裂解效率和反应的均匀性。可寻址和非接触式工作流程减少了与污染物或内源性背景的竞争,从而提高了基因组模板的有效浓度。  该研究应用Digital-WGS进行了许多单细胞纳升体积的MDA反应,并使用低深度和深度全基因组测序将性能与其他已报道的MDA方法进行了全面比较。该结果表明,Digital-WGS在多个方面都优于现有的MDA方法,从而大大降低了放大偏差和指数放大误差。使用该方法,该研究能够以最小的150 kb bin和等位基因剔除(ADO)率为5.2%的单核苷酸变体实现出色的检测。因此,Digital-WGS提供了解决WGA当前问题的独特途径,从而为执行单细胞测序提供了一种有效而强大的方法。这种方法对于单细胞分析的任何化学方法都具有可扩展性和通用性,这对于单细胞基因组测序有广阔的应用前景。
  • 第三代基因组测序仪问世 实现单分子速读
    据《自然》杂志网站2月8日报道,在上周末于美国佛罗里达州马可岛召开的&ldquo 基因组生物学与技术进展大会&rdquo 上,来自加利福尼亚门洛帕克市的太平洋生物科技公司介绍了其研制的第三代基因组测序仪,该测序仪实现了一次标记一个分子式的单分子速读。  研究人员指出,第三代测序仪的关键优势是能够对单个DNA(脱氧核糖核酸)分子进行测序,而目前市场上的主流测序仪只能对分子群体进行平均测序。单分子测序能对DNA中罕见的序列变异进行分析,也不需要在测序之前对DNA样本进行放大,因为放大过程可能引发错误,导致对某个DNA序列检测失败。其工作原理是用一种聚合酶将DNA的复制限制在一个微小的间隙中,给各种碱基加上荧光示踪标记,当碱基合成DNA链时,这些荧光标记就会发出不同颜色的闪光,根据闪光颜色就可识别出不同的碱基。  用户使用报告表明,新仪器读出碱基对的平均长度是1500对,这是代表该领域目前技术发展水平的伊鲁米那公司(Illumina)所生产测序仪的10倍。阅读长度越长,将DNA序列片段拼接成完整基因组序列就越容易。去年12月,公司首席科学官埃里克· 斯凯德和研究小组用这些新仪器来追踪海地霍乱的起源。他们对5个S型霍乱菌种进行了基因组测序,不到一个小时就完成了全部测序任务,而用伊鲁米那的150碱基测序仪则需要一个星期。太平洋生物科技公司曾在2008年提出,到2013年将实现15分钟内完成对一个人的全基因组测序,而当时这项工作需要一个月。  得克萨斯州休斯顿贝勒医学院测序技术专家迈克尔· 麦茨科表示,单分子测序仪代表了DNA测序的未来,但目前这项技术的最大障碍是失误率高。现有其他测序仪准确率能达到99%以上,而根据使用报告,太平洋生物科技公司的仪器准确率约为85%。但斯凯德认为,这一缺点能通过重复测序来克服。  研究人员称,该仪器有望于今年第二季度进入市场,每台成本70万美元,将比伊鲁米那公司的最新测序仪低12.5万美元,虽然短期内不大可能会对市场造成冲击,但它能检测DNA的某些化学改变,因而在如表观遗传学等目前传统测序仪难起作用的领域将大显身手。
  • 卫计委将基因测序试点评估工作委托给中华医学会
    备受关注的&ldquo 基因测序临床应用&rdquo 事件又有了新动态。8月14日,中华医学会发布《关于召开二代高通量基因测序试点单位评估工作研讨会的函》,提到由于目前没有二代测序技术临床应用基本条件和相关规范,为避免临床滥用,国家卫计委将高通量基因测序试点单位评估工作委托给中华医学会进行。以下为函件全文:  中华医学会函件,文字版见文末  这则通知的发布,意味着基因检测(特别是无创产前检测)离临床应用又近了一步。根据药监局和卫计委的通知文件,目前国内还没有&ldquo 合规&rdquo 的无创产前检测机构。2014年2月,两部委在联合发布的&ldquo 叫停令&rdquo 中明确指出,包括产前基因检测在内的所有医疗技术需要应用的检测仪器、诊断试剂和相关医用软件等产品,需经食品药品监管部门审批注册,并经卫生计生行政部门批准技术准入方可应用。也就是说,基因测序临床应用需要经过药监局和卫计委的二次审批。药监局批准仪器和试剂,卫计委批准试点单位。卫计委的批准直接关系着申报单位能否进入医疗系统,真正用于临床。此前华大基因两款测序仪和配套试剂盒获批即是获得药监局批准,还未获得卫计委批准,因此华大无创产前检测目前还不能&ldquo 按规&rdquo 进行。  另外值得注意的是,此次卫计委将试点单位评估工作委托给中华医学会进行。为什么要委托给中华医学会?从中华医学会官网的简介中我们或许可以看出答案:  &ldquo 中华医学会( Chinese Medical Association )是中国医学科学技术工作者自愿组成并依法登记成立的学术性、公益性、非营利性法人社团,是党和国家联系医学科技工作者的桥梁和纽带,是发展中国医学科学技术事业的重要社会力量,成立于1915年。现有83个专科分会,50万名会员,下设部门16个,法人实体机构3个,另与解放军军事医学科学院合办医学图书馆1个。中华医学会现任理事会于2010年4月成立,会长陈竺,副会长刘雁飞、买买提· 牙森、刘俊、刘德培、祁国明、吴明江、张雁灵、李兰娟、杨宝峰、柯杨、贺福初、赵玉沛、郝希山、顾玉东、戴建平、魏于全。  中华医学会的主要业务包括:开展医学学术交流 编辑出版数百种医学、科普等各类期刊及100余种音像出版物 开展继续医学教育 开展国际间学术交流 开展医学科技项目的评价、评审和医学科学技术决策论证 评选和奖励优秀医学科技成果(包括学术论文和科普作品等) 开展专科医师的培训和考核 发现、推荐和培养优秀医学科技人才 宣传、奖励医德高尚、业务精良的医务人员 承担政府委托职能及承办委托任务 设立临床研究专项资金,提高临床科研水平 组织医疗事故技术鉴定和预防接种异常反应技术鉴定工作 推动医学科研成果的转化和应用 向党和政府反映医学科技工作者的意见和要求。&rdquo   除了华大基因,达安基因、贝瑞何康、安诺优达等公司都在紧锣密鼓地准备着。到底谁会率先通过卫计委批准,拿到基因测序临床应用的&ldquo 头牌&rdquo 呢?让我们拭目以待吧。  附:基因检测临床应用政策通知简要回顾  2014年1月,国家食品药品监督管理总局发布《食品药品监管总局办公厅关于基因分析仪等3个产品分类界定的通知》,提到基因测序诊断产品(包括基因测序仪及相关诊断试剂和软件),符合医疗器械的定义,应作为医疗器械管理。其中测序反应通用试剂盒作为Ⅰ类医疗器械管理,基因分析仪作为Ⅲ类医疗器械管理,胎儿染色体非整倍体(T21、T18、T13)基因检测(测序法)Z值计算软件则需要按情况而定。  2014年2月,两部委联合发布《食药监管总局、国家卫计委办公厅关于加强临床使用基因测序相关产品和技术管理的通知》,要求基因测序诊断产品应按规定经食品药品监管部门审批注册,并经卫生计生行政部门批准技术准入方可应用。在相关的准入标准、管理规范出台以前,任何医疗机构不得开展基因测序临床应用,已经开展的,要立即停止。通知下发后仍继续开展的,属地卫生行政部门要依法依规予以查处。  2014年3月,国家卫计委发布《关于开展高通量基因测序技术临床应用试点单位申报工作的通知》,组织高通量基因测序技术的临床应用试点申报与推荐工作。通知要求申请的试点单位需满足&ldquo 具有通过省级技术审核的临床基因扩增检验实验室的三级甲等综合医院,妇幼保健院,专科医院,医学检验所 具有与拟申报项目相关的诊疗科目 具备自制试剂的标准化操作规程&rdquo 等条件,申报与推荐4月10日截止。卫计委表示&ldquo 将会同有关司局按照试点单位准入标准组织专家进行遴选,并确定试点单位,提出试点工作要求。"  2014年6月,国家食品药品监督管理总局发布通告,批准华大基因的两款测序仪和配套的试剂盒,这是国家食药监总局首次批准注册的第二代基因测序诊断产品。  2014年8月,国家卫计委将高通量基因测序试点单位评估工作委托给中华医学会进行。  &hellip &hellip 精彩待续&hellip &hellip   《关于召开二代高通量基因测序试点单位评估工作研讨会的函》文字版  各有关专科分会、有关单位:  近日学会接到国家卫生计生委关于高通量基因测序试点单位评估工作的文件,国家卫生计生委高通量基因测序试点单位申报工作已经结束,国家食品药监总局也已公布批准了二代基因测序诊断产品上市,但鉴于目前没有该类技术临床应用基本条件和相关规范,为避免临床滥用,国家卫生计生委医政医管局委托中华医学会尽快对全国各地申报的试点单位进行评估,开展试点工作。  经与国家卫生计生委医政医管局沟通,定于2014年8月18日上午9:00在国家卫生计生委西直门办公区2号楼203会议室(地址:北京市西城区北礼士路甲38号)召开二代高通量基因测序试点单位评估工作研讨会,请分会主任委员或有关专家参加,可带一名助手,并请将参会人员名单告我会。  中华医学会  2014年8月15日
  • 基因测序深入临床第一步!国家药监局公开征求测序仪临床评价注册意见
    国家药品监督管理局发布通知,公开征求基因测序仪临床评价注册审查指导原则。该指导原则为对基因测序仪的一般要求,意见稿规定临床申报产品需明确基本原理、产品类型、核心部件等结构组成、性能参数要求及软件核心功能算法、适用范围及预期用途、安全性评价等产品评价方面。以下是通知详情:各有关单位:  根据国家药品监督管理局2021年度医疗器械注册技术指导原则制修订计划的有关要求,我中心组织起草了《基因测序仪临床评价注册审查指导原则(征求意见稿)》。经文献汇集、企业调研、专题研讨和专家讨论,形成了征求意见稿。  为使该指导原则更具有科学合理性及实际可操作性,即日起在网上公开征求意见,衷心希望相关领域的专家、学者、管理者及从业人员提出意见或建议,推动指导原则的丰富和完善。  请将意见或建议以电子邮件的形式于2021年10月27日前反馈我中心。  联系人:郑生伟、方丽  电话: 010-86452541;010-86452538  电子邮箱:zhengsw@cmde.org.cn;       fangli@cmde.org.cn  附件:1.基因测序仪临床评价注册审查指导原则(征求意见稿)(下载)     2.《基因测序仪临床评价注册审查指导原则(征求意见稿)》意见反馈表(下载)国家药品监督管理局医疗器械技术审评中心2021年10月13日
  • 英开发出简化的基因组测序新方法
    据物理学家组织网报道,英国研究人员简化了基因组测序的标准流程,首次无需进行文库制备便完成了DNA(脱氧核糖核酸)单分子测序,而且新方法只要很少量的DNA就能获得序列数据,用量可低至不到1纳克(10亿分之一克),仅为常规测序方法的500分之一到600分之一。  文库制备是指从测序前基因组样本中提取不同长度的DNA片段,这一过程不仅费力、费时,还会浪费DNA,而新技术能极大地减少DNA的损耗,并缩短测序时间。  该研究论文的第一作者、英国威康信托基金会桑格研究所的保罗· 库普兰说:&ldquo 我们用这种方法对病毒和细菌的基因组测序后发现,即使在相对较低的水平,我们也能够确定所检测的是何种有机物,不论样本中是否存在特定的基因或质粒(这对于确定抗生素耐药性很重要),或者其他信息,如对特定DNA碱基的修改等。&rdquo 他表示,一旦技术得到优化,将在快速、高效地识别医院和其他医疗场所中的细菌和病毒方面具有很大的应用潜力。  研究小组利用第三代单分子测序系统PacBio RS演示了这种简化的直接测序方法。他们仅仅用800皮克(千分之一纳克)DNA来分析一个生物体的基因组,尽管测序仪只读取了基因组的70个序列片段,相对于常规测序方法获得的数据来说不过是很小的一部分,但这些信息足以让研究人员确定他们所检测的生物体的品种。  这项技术也使得科学家能够对此前无法识别的宏基因组(也称微生物环境基因组)样本中的生物体进行确认。&ldquo 为微生物测序,首先需要能够在实验室中培养它们。&rdquo 论文的主要作者、英国巴布拉汉研究所的塔米尔· 钱德拉说,&ldquo 这不仅耗费时间,而且有时候微生物不生长,为它们的基因组测序极其困难。&rdquo 他表示,新方法可以直接对微生物测序,短时间内便可确定其&ldquo 身份&rdquo 。  论文的另一主要作者、威康信托基金会桑格研究所的哈罗德· 斯维尔德洛说:&ldquo 我们的技术可以在对所测序列没有任何先验知识、没有特定微生物试剂的条件下,在很短的时间内操作,这是一种很有前途的替代手段,可应用于控制感染等临床需要。&rdquo
  • 个人基因组测序收费将大幅降价
    新华社伦敦2月9日电针对个人的基因组测序服务刚出现时,测序费用高达上百万美元,普通人望尘莫及。不过,美国一家公司计划从今年6月开始,推出低价个人基因组测序业务,顾客只需支付5000美元,就可向这家公司预约基因组测序服务。  据英国《新科学家》杂志网站报道,这家名为&ldquo 完全基因组&rdquo 的公司位于美国加利福尼亚州。这家公司称,其测序技术最关键的一点是将放大后的DNA(脱氧核糖核酸)片段固定在硅阵列上,从而实现快速、高效测序。  世界首份&ldquo 个人版&rdquo 基因组图谱数据的拥有者是DNA双螺旋结构的发现者之一詹姆斯&bull 沃森。2007年,美国贝勒医学院和&ldquo 454生命科学公司&rdquo 共同完成了沃森个人基因组的测序工作,并将图谱数据免费赠予沃森,当时这一测序的费用总计约100万美元。沃森当时在接受媒体采访时预测说,将来一旦个人基因组测序的费用&ldquo 降到一辆雪佛兰汽车的价格&rdquo ,那么人类基因变异研究领域将迎来一场变革。  此后,几家生物公司相继利用更为快速、成本更低的测序技术推出了&ldquo 个人版&rdquo 基因组测序服务。例如,加州一家名为&ldquo 应用生物系统&rdquo 的公司去年就曾宣布,他们为一名尼日利亚男子测序了基因组,花费不到6万美元。  如今,&ldquo 完全基因组&rdquo 公司的报价甚至比许多二手汽车的价格还要低。2月5日,该公司在美国举行的一个基因组生物学会议上公布了他们完成的第一份个人基因组测序数据,并将相关数据刊登在公司网站上。据悉,他们的目标是2009年完成1000个客户的基因组测序,2010年完成2万个客户的测序。
  • 三代测序技术相关仪器工艺创新概述
    DNA 测序是一种确定 DNA 分子中碱基(A、T、C 和 G)顺序的技术,在生物学、医学、法医学和其他领域有着广泛的应用,例如基因组学、遗传学、分子生物学、疾病诊断和个性化医疗。 DNA 测序技术自 1970 年代以来经历了多次革命性的发展,从第一代测序到第二代测序,再到第三代测序。这些测序技术在原理、方法、优势和局限性方面有着显著的差异。本文将对基于这三代测序技术的相关仪器工艺创新进行概述,并比较其特点和应用。  一、第一代测序仪  基于桑格测序方法,该方法使用链终止双脱氧核苷酸(ddNTP)生成不同长度的DNA片段,通过电泳分离并通过荧光检测。 代表性仪器是 Applied Biosystems 及其 3730xl DNA 分析仪。 工艺创新主要有自动毛细管电泳、荧光标记和碱基识别算法的开发 。  a. 自动毛细管电泳:通过向填充有凝胶或聚合物基质的细毛细管施加电场来分离不同长度的 DNA 片段的过程。 DNA 片段根据其大小和电荷在毛细管中迁移,较小的片段比较大的片段移动得更快。 毛细管电泳系统可以自动并行加载、进样、分离和检测多个样品,从而提高 DNA 测序的通量和效率 。  b. 荧光标记:将荧光染料附着到链终止核苷酸 (ddNTP) 上的过程,用于在测序反应中生成 DNA 片段。 荧光染料根据 ddNTP 的碱基类型(A、T、C 或 G)发出不同颜色或波长的光。 荧光信号由毛细管电泳末端的激光和相机或扫描仪检测 。  c. 碱基识别算法:分析毛细管电泳产生的荧光信号并确定 DNA 片段中碱基序列的过程。 碱基检出算法使用各种方法来校正信号中的噪声、伪影和错误,例如峰检测、峰对齐、峰归一化、峰反卷积和质量评分。 碱基检出算法以各种格式输出序列数据,例如色谱图、跟踪文件或 FASTA 文件 。  二、第二代测序仪  基于大规模并行边合成边测序 (SBS),它使用修饰的核苷酸或探针,在每个循环后终止 DNA 合成(或允许可逆终止终止子、可切割探针)。 DNA 分子通过聚合酶链式反应 (PCR) 或桥式 PCR 在固体表面或乳液液滴中进行扩增,并通过光学或化学检测进行测序。 代表性仪器主要有Illumina的基因组分析仪、HiSeq和MiSeq平台 罗氏及其 454 平台 以及 Ion Torrent 及其个人基因组机器和 Proton 平台。 工艺创新主要有测序反应的小型化、光学/化学检测方法和核苷酸化学方法。  a. 测序反应小型化:减少第二代测序仪中 DNA 样本和测序反应的大小和体积的过程,涉及使用微流体装置或显微孔阵列来限制 DNA 分子,并通过聚合酶链式反应 (PCR) 或桥式 PCR 对其进行扩增,减少了所需的 DNA 量并增加了测序反应的密度。  b. 光学/化学检测方法:测量第二代测序仪中 DNA 合成过程中碱基掺入所产生的光或化学信号的过程,涉及使用荧光标记的核苷酸或探针,根据碱基类型发出不同的颜色或强度。 光学/化学检测方法根据测序平台和化学成分而有所不同,通常遵循以下步骤:  i. 在测序反应中,DNA 模板与引物和 DNA 聚合酶杂交。  ii. 测序反应提供标记的核苷酸或探针,它们在每个循环后终止 DNA 合成或允许可逆终止(例如可逆终止子、可切割探针)。  iii. 根据碱基配对规则将标记的核苷酸或探针添加到DNA模板的互补链上。  iv. 荧光信号或化学信号(例如 pH 值变化)由高分辨率相机或扫描仪捕获并转换为数字数据。  v. 通过计算分析信号以确定碱基身份和序列。  c. 核苷酸化学方法:涉及使用修饰核苷酸或探针影响第二代测序仪中 DNA 合成的过程。 它基于互补碱基配对的原理,其中A与T配对,C与DNA中的G配对。 核苷酸化学方法根据测序平台和化学方法的不同而有所不同,通常遵循以下步骤:  i. 在测序反应中,DNA 模板与引物和 DNA 聚合酶杂交。  ii. 测序反应提供经过修饰的核苷酸或探针,它们在每个循环后终止 DNA 合成或允许可逆终止(例如可逆终止子或可裂解探针)。  iii. 根据碱基配对规则将修饰的核苷酸或探针添加到DNA模板的互补链上。  通过光学/化学方法检测修饰的核苷酸或探针,然后通过化学或酶促步骤去除或灭活,从而允许下一个循环进行。  三、第三代测序仪  基于单分子实时(SMRT)测序,不需要扩增或终止DNA分子。 通过监测将荧光标记的核苷酸或探针掺入互补链的 DNA 聚合酶的活性,对 DNA 分子进行测序。 代表性仪器主要有 Pacific Biosciences 及其 PacBio RS II 和 Sequel 平台 Oxford Nanopore Technologies 及其 MinION、GridION 和 PromethION 平台 以及 Ultima Genomics 及其 Ultima 平台。 工艺创新主要有使用零模波导(ZMW)、纳米孔或纳米通道来限制和观察单个 DNA 分子 使用磷酸化核苷酸或纳米孔接头来实现连续测序 以及使用人工智能来提高碱基识别准确性。  a. 零模波导 (ZMW)、纳米孔和纳米通道是三种类型的纳米结构,可以限制和观察单个 DNA 分子以进行第三代测序。  i. ZMW 是金属薄膜中的纳米级孔径,可产生高度受限的光学观察空间。 当激光照射在金属薄膜上时,只有少量的光可以进入ZMW并激发内部的荧光分子。 这样可以检测通过 DNA 聚合酶掺入 DNA 链的单个荧光标记核苷酸或探针。 Pacific Biosciences 在其 SMRT 测序技术中使用 ZMW。  ii. 纳米孔是膜上的纳米级孔,可在膜上产生电势差。 当 DNA 分子穿过纳米孔时,它会破坏离子电流并产生反映 DNA 碱基序列的特征信号。 纳米孔可以是生物的(例如蛋白质孔)或合成的(例如固态孔)。 Oxford Nanopore Technologies 在其 MinION、GridION 和 PromethION 测序平台中使用了纳米孔 。  iii. 纳米通道是表面上的纳米级凹槽,为 DNA 分子拉伸和排列创造了一个有限的空间。 当荧光染料应用于 DNA 分子时,可以通过显微镜对它们进行成像,并且可以通过将荧光图案映射到参考基因组来确定它们的序列。 纳米通道可以通过多种方法制造,例如蚀刻、光刻或模制。 Ultima Genomics 在其 Ultima 测序平台中使用了纳米通道。  b. 磷酸化核苷酸和纳米孔接头是两种类型的修饰核苷酸或探针,可对单个 DNA 分子进行连续测序。  i. 磷酸化核苷酸是荧光标记的核苷酸,其磷酸基团上连接有可移除的接头。 连接体可防止焦磷酸盐的释放,否则会终止 DNA 合成。 连接子还允许在每个掺入循环后裂解荧光染料,从而可以在多个循环中重复使用相同的 ZMW。 Pacific Biosciences 在其 SMRT 测序技术中使用了磷酸化核苷酸 。  ii. 纳米孔接头是具有发夹结构和条形码序列的合成寡核苷酸。 这些接头连接到 DNA 分子的两端,形成可以多次通过纳米孔的环状 DNA 分子。 条形码序列允许对同一 DNA 分子的重复读取进行识别和比对,从而提高准确性和共识质量。 Oxford Nanopore Technologies 在其 MinION、GridION 和 PromethION 测序平台中使用 Nanopore 适配器 。  c. 人工智能是计算机科学的一个分支,它使用机器学习、深度学习、神经网络和其他方法来执行需要人类智能的任务,例如自然语言处理、图像识别、语音识别和决策。 人工智能通过以下方式提高第三代测序中的碱基检出准确性:  i. 使用来自不同测序平台和化学物质的原始信号和相应序列的大型数据集来训练神经网络。  ii. 开发可以纠正原始信号中的噪声、伪影和错误的算法,例如信号漂移、同聚物错误、插入/删除错误和碱基修饰。  iii. 实施可以利用多个来源信息的方法,例如参考基因组、共识序列、质量评分和元数据。  iv. 优化方法,适应不同的测序条件,例如读长、覆盖深度、测序速度和样品质量。  d. 用于第三代测序中碱基检出的人工智能方法的一些示例:  i. DeepNano:一种深度循环神经网络,使用原始电流信号执行碱基识别。  ii. Guppy:一种基于神经网络的软件工具,使用原始电流信号执行 Oxford Nanopore MinION 读取的碱基识别。  iii. DeepMod:一种双向循环神经网络,使用原始电流信号进行碱基识别和碱基修饰检测。  iv. NanoMod:一种卷积神经网络,使用原始电流信号进行碱基修饰检测。  v. Megalodon:一种软件工具,可使用原始电流信号读取执行碱基识别、碱基修饰检测和选择性剪接检测。  vi. DeepSimulator:一种深度卷积生成对抗网络,模拟 Oxford Nanopore MinION 从参考基因组中读取的内容。  vii. Clairvoyante:一种多任务卷积神经网络,使用原始信号强度值对 Pacific Biosciences SMRT 读取执行变体识别。  viii. IsoPhase:一种深度卷积神经网络,使用原始信号强度值读取执行单倍型感知亚型重建。  ix. DeepIso:一种深度卷积神经网络,使用原始信号强度值读取进行异构体量化。  总之,第一代、第二代和第三代测序是DNA的三种不同读取方法,在原理、方法、优势和局限性方面有着显著的差异。第一代测序是基于桑格测序方法,使用链终止双脱氧核苷酸(ddNTP)生成不同长度的 DNA 片段,并通过电泳分离和荧光检测,工艺创新主要有自动毛细管电泳、荧光标记和碱基识别算法的开发。第二代测序是基于大规模并行边合成边测序 (SBS),使用修饰的核苷酸或探针,在每个循环后终止或可逆终止 DNA 合成,并通过光学或化学检测进行测序,工艺创新主要有测序反应的小型化、光学/化学检测方法和核苷酸化学方法。第三代测序是基于单分子实时(SMRT)测序,不需要扩增或终止 DNA 分子,而是通过监测将荧光标记的核苷酸或探针掺入互补链的 DNA 聚合酶的活性进行测序,工艺创新主要有使用零模波导(ZMW)、纳米孔或纳米通道来限制和观察单个 DNA 分子;使用磷酸化核苷酸或纳米孔接头来实现连续测序;以及使用人工智能来提高碱基识别准确性。这三代测序技术各有优缺点,适用于不同的目标和场景。选择合适的测序技术需要考虑多种因素,例如读长、准确性、速度、成本和样品质量。随着科技的进步,DNA 测序技术仍在不断发展和改进,为生命科学领域带来新的机遇和挑战。
  • 迄今最全面人类基因组测序完成,比原图增加2亿碱基对和2000多个基因
    最新测序的完整的人类基因组图谱。图片来源:英国《新科学家》网站20年前,科学家宣布读取了一个人的全部脱氧核糖核酸(DNA),其实,他们漏掉了少许。现在,由于读取DNA方法的改进,科学家终于可以从头到尾读取人类的全部基因组了!据生物预印本网站(biorxiv)近日报道,美国科学家对全部人类基因组30.55亿个碱基对进行了测序,与此前结果相比,新结果增加了2亿个碱基对以及2000多个基因。人类拥有数万个基因,它们储存于DNA分子中,基因信息以4种碱基(C、G、T和A)的形式存在,两个碱基相互配对形成碱基对。科学家于1990年启动了人类基因组测序项目,并于2001年公布了首个人类基因组草图。但当时不得不将基因组分成小段读取,然后重新组装在一起,而这样无法将一些高度重复的片段放回原位。随后遗传学家继续改进,但重点还是放在提高现有序列的精确度,而非增加新序列,仍有约8%的序列缺失或错误。新版本基因组由“端粒到端粒”(T2T)联盟绘制。该联盟由加州大学圣克鲁斯分校的卡伦米加和国家人类基因组研究所的亚当菲利皮领导。研究人员选择从一个被称为CHM13的细胞系中读取DNA。该细胞系来自水泡状胎块——一种妊娠失败情况,可以在实验室中培养这种细胞。菲利皮说:“CHM13的独特之处在于,它不是任何人的基因组。”普通人类细胞的每段DNA都有两个副本,往往存在重大差异,一个来自母亲,另一个来自父亲,这使得对DNA精确测序变得更加困难,因为要搞清楚什么是测序过程中的失误、什么是真正的差异非常棘手。使用CHM13避免了这个问题,因为两个副本几乎完全相同。为组装基因组序列,研究团队利用了两种技术:一种是能读取非常长(超过100万个碱基对)片段的测序技术;另一种是精确度极高、能处理差别极小的片段(比如同一个基因的多个副本)的技术。2020年7月,该团队公布了完整的决定性别的人类X染色体。现在,他们公布了完整的人类基因组,新版本比上一个版本增加了近2亿个碱基对以及2226个新基因,是自人类参考基因组首次发布以来进行的最大改进。
  • 最新测序技术能用单个细胞分析基因组
    最近,来自美国加利福尼亚大学圣地亚哥分校、克雷格· 文特尔研究院和Illumina公司的科学家对现代基因测序算法进行了改良,只需从一个细菌细胞中提取的DNA(脱氧核糖核酸)就可组装成接近完整的基因组,准确率达到90%,而传统的测序方法至少需要10亿个相同的细胞才能完成。这一突破为那些无法培养的细菌提供了测序方法。研究发表在9月18日的《自然· 生物技术》网络版上。  实验室无法培养的细菌范围极广,约占99.9%,从产生抗体和生物燃料的微生物,到人体内的寄生菌。它们的生存条件特殊,比如必须和其他菌种共生,或只能生存在动物皮肤上,因此很难进行人工培养。  论文合著者、文特尔研究院的罗杰· 拉斯肯教授10年前曾开发出一种多重置换扩增(MDA)技术,可对实验室无法培养的细菌测序,能恢复70%的基因。其工作原理是对一个细胞的基因片断多次复制,直到其数量相当于10亿个细胞那么多。不过,这种技术却给测序软件带来很多麻烦,它在复制DNA时会出现各种错误,而且并非完全统一放大,有些基因组被复制数千次,有一些却只被复制一两次。但测序算法不能处理这些不一致,而是倾向于舍弃那些只复制了少数次的基因,即使它们对整个基因组来说很关键。  加州大学圣地亚哥分校雅各布工程学院计算机科学教授、现代基因测序技术算法创建人帕维尔· 帕夫纳和同事改进了这一方法,保留了那些少量复制的基因片断,并用新方法对一个大肠杆菌测序以检验其精确性,发现它能恢复91%的基因,接近传统的培养细胞水平。这已足够解答许多重要的生物学问题,比如该细菌能产生什么抗体。  人体细菌占体重的约10%,它们有些会造成传染病,但也有的能帮助消化,最近研究还发现,它们能改变人的行为方式,比如引诱人吃更多的东西。新方法也有助于科学家理解细菌行为,研究人体内细菌能产生哪种蛋白质和多肽,这些蛋白质和多肽是细菌之间、细菌和宿主之间互相沟通的工具。  研究小组还用新方法对一种以前未曾测序过的海洋细菌进行了测序,获得了相当完整而且能解释的基因组,掌握了它是如何生存和运动的,该基因组将被存入美国国家卫生研究院的基因银行(GenBank)。研究人员表示还将对更多迄今未知的细菌进行测序。
  • 基于半导体芯片测序仪的无创产前诊断方法问世
    5日,美国和中国研究人员在美国《国家科学院学报》(PNAS)上报告说,他们开发出一种基于半导体芯片测序仪的无创产前诊断方法,可以根据孕妇血样检测出胎儿是否患唐氏综合征等与染色体异常有关的先天缺陷。  对于有必要接受染色体异常检查的孕妇,传统诊断多采用羊膜穿刺或绒毛膜采样的方法,大多在怀孕12周左右进行。这些介入性方法有两大缺点:一是时间长,需要2周到3周才能出结果。二是穿刺针有不到1%的几率扎到胎儿,可能引发感染甚至流产。  由加州大学圣迭戈分校、广州医科大学、广东省妇幼保健院与广州爱健生物技术公司等机构研发的新诊断方法则基于新型高通量测序技术,只需抽取孕妇2毫升血样,就能诊断与染色体异常有关的先天缺陷,包括最常见的唐氏综合征、导致形体和器官多种异常的爱德华氏综合征等。  这种高通量测序技术,能一次对几十万到几百万条DNA(脱氧核糖核酸)进行序列测定。这项研究的负责人、加州大学圣迭戈分校遗传医学研究所所长张康教授表示,新诊断方法速度快,可把诊断提前到怀孕第9周,4天便能出结果,准确率也非常高。  张康表示,其所用的测序仪器基于半导体芯片,每次工作只需15个样本,测序时间只有2.5小时,可由医院直接完成所有检测,能提高诊断速度,降低检测成本。  张康还认为,随着大龄母亲越来越多,新生儿出生缺陷几率呈上升趋势。上述新技术利用母亲的少量外周血,就可以把胎儿染色体缺陷准确检测出来,有助于降低出生缺陷对于社会和家庭造成的负担。
  • 268万!南宁市第一人民医院二代测序仪采购项目
    项目编号:NNZC2022-G1-991943-JGJD项目名称:二代测序仪采购项目预算金额:268.0000000 万元(人民币)最高限价(如有):268.0000000 万元(人民币)采购需求:序号货物名称单位数量简要技术需求或者货物要求1二代测序仪台1一、基因测序仪参数1证书:需具有NMPA认证,可以用于临床的应用。2在临床上用于对来源于人体样本的脱氧核糖核酸(DNA)和核糖核酸(RNA)进行测序,以检测基因序列。3可开展全基因组测序、全外显子测序、表观基因组测序、转录组测序、宏基因组测序、单细胞测序等科研应用,可开展胎儿染色体异常无创产前基因检测、胚胎植入前染色体异常检测、单基因遗传病基因检测、遗传性肿瘤基因检测、遗传性乳腺癌基因检测、肺癌个体化诊疗基因检测、未知病原微生物基因检测等临床应用。具体详见招标文件《货物需求一览表》合同履行期限:自签订合同之日起30日内交货完毕。本项目( 不接受 )联合体投标。
  • 用户点评基因测序仪:配套试剂耗材应降价
    当前,基因测序仪的主要生产企业有Illumina、Life technologies、Pacific Biosciences等。近日,仪器信息网编辑随机采访了基因测序仪用户,所采访用户涉及高校、科研院所、测序公司的实验室等,共计3名用户,其中A用户使用Life technologies 公司产品ABI 3730XL,主要应用于PCR产物测序,质粒和细菌人工染色体的末端测序 B用户使用Illumina公司推出的 hiseq-2000,主要应用基因组组装、重测序、外显子测序、转录组测序以及小RNA测序的研究 C用户使用Pacific Biosciences公司研发生产的PacBio RSI,主要应用于基因组从头测序,检测DNA修饰。仪器信息网所采访的产品涵盖了第一、第二和第三代基因测序仪。ABI 3730XL测序仪Illumina hiseq-2000测序仪PacBio RSI 测序仪  仪器价格:一代更比一代高  在采访中了解到,用户A所使用的ABI 3730XL测序仪购于2010年,当时购买的价格是100万元人民币左右,这是一款第一代测序仪,其基于毛细管电泳和荧光标记技术进行测序。  用户B使用的第二代测序仪Illumina hiseq-2000于2011年购买,价格约为75万美元,其采用可逆终止法的边合成边测序技术。  用户C使用的PacBio RS I测序仪是一款第三代测序仪,其利用DNA单分子的直接测序的原理进行测序。该仪器于2012年购进,当时购买价格约为100万美元。  用户开机率:普遍较高  A用户来自测序公司,每天都收到来自其他单位的测序样本,因此使用频率非常高,几乎每天都开机,  B用户来自科研机构,该仪器作为平台仪器,为单位所在的整个科研系统服务,两年中都是满负荷使用。  C用户来自高校,仪器主要为高校内部系统提供服务,1年中使用频率较高。  测序速率,读长,通量都可以满足需求  相比之下,ABI 3730XL测序仪的测序速度在第一代基因测序仪中是最高的。但是,由于其依赖于电泳分离技术,所以速率方面难以进一步升级,96样本的测序运行时间约为1小时40分钟。每天的数据通量可以达到600000bp,主要适合于基因测序和基因分型研究。  Illumina hiseq-2000测序仪作为第二代测序仪,测序速率大大提升,每天最高可以产生75Gb的数据。可以实现De Novo从头测序,DNA重测序等各种测序目标。  PacBio RSI的测序速度可以达到每分钟60个碱基,从样品制备到获得碱基序列的全部流程可在1天内完成。每天可获得的数据是200Mb mappable data。能够完成各种测序目标。  读长方面,ABI 3730XL的准确读长可以达到800bp。Illumina hiseq-2000测序仪读长可以达到2× 100bp。PacBio RSI目前可以获得1300bp的平均读长。  前处理环节:第三代测序仪优势明显  用户表示,ABI 3730XL和Illumina hiseq-2000虽然与同类仪器相比建库准备实验相对方便,但仍需花费较长时间和大量人力。但作为第三代测序平台的PacBio RSI测序仪,利用DNA单分子的直接测序的原理,无需进行文库制备,可直接从DNA片段获得测序数据,从样本制备到获得测序结果,所需的时间还不到一天。并且与传统标准方法相比,所需的DNA量也相当少,用量可低至不到500ng。  收费售后服务:用户满意度高  Illumina、Life technologies的售后服务获得了用户的一致认可,用户认为,其服务&ldquo 响应速度快,专业性高,解决问题十分彻底&rdquo 。  基因测序仪的产品生产商相对较少,过了免费的质保服务期之后,用户需要承担高额的售后服务费用,但几名用户对此并未产生不满,ABI 3730XL的用户表示,&ldquo 我们认为一年10万元的售后费用物有所值。&rdquo   改进意见:配套试剂耗材应降价  尽管ABI 3730XL在速度和成本方面都已达到了极限,但与二三代测序仪相比,其通量较低,成本较高,并且由于其对电泳分离技术的依赖,速度成本难以进一步提升。尽管如此,ABI 3730XL用户认为,ABI 3730XL方法可靠,并且已形成规模化,将继续发挥重要作用。  使用Illumina hiseq-2000的用户认为,该仪器的配套试剂价格过高,另外读长还有待增加,并且希望建库准备实验可以实现自动化。  PacBio,RSI的用户表示,这台仪器的不足之处主要在于试剂耗材价格过高,通量还有待提高。另外,PacBio RSI系统可购买升级包,将原有系统转化成最新的PacBio RSII,但是,升级耗资巨大也是令用户头痛的问题。  附:基因测序仪简介  DNA测序技术是现代生物学研究中重要的研究手段之一。成熟的DNA测序技术始于20世纪70年代中期。1977年,Maxam和Gilbert报道了通过化学降解测定DNA序列的方法。同一时期,Sanger发明了双脱氧链终止法。20世纪90年代,荧光自动测序技术将DNA测序带入自动化测序时代。目前,基因测序仪已发展到第三代,Illumina、Life technologies(ABI)等公司共同占据着全球基因测序仪市场。 撰稿编辑:乔峰
  • 拉曼光谱助力 新型纳米孔器件有望用于表观遗传学快速测序
    p  比利时校际微电子中心(IMEC)9日发表公报说,该中心成功开发出一种能直接读取单分子DNA(脱氧核糖核酸)碱基的新型光学纳米孔器件,有望用于遗传学研究快捷测序。/pp  据介绍,新型器件结合了表面增强拉曼光谱和纳米孔流体技术,能以超高分辨率,实现无标记检测DNA中的遗传编码以及表观遗传变异。研究近期发表在英国《自然· 通讯》杂志上。/pp  具体来说,这项技术通过纳米流体技术驱动DNA分子穿过一种拉长的纳米孔结构--表面等离子体纳米缝。而拉曼光谱是一种可反映分子特征结构的分子振动光谱。当DNA分子穿过纳米缝时,就会同时激发表面增强拉曼光谱,提供碱基分子的“指纹图”,以达到化学键水平的精准识别。/pp  据介绍,这种新型纳米孔器件不仅可以“读取”DNA编码,还可以“读取”碱基的各种化学修饰产物。这些修饰产物通常携带了与表观遗传变异相关的大量信息,同时它们也影响细胞中的基因表达,对进化研究和分析癌症等疾病的发展具有重要意义。/pp  表观遗传学是遗传学研究中最为前沿的领域之一,研究基因的DNA序列不发生改变的情况下,基因表达发生了可遗传的改变等现象。目前使用的表观遗传测序方法大都繁琐费时且价格昂贵。新型器件“是向开发可用于表观遗传学研究的快捷测序方案迈出的重要一步”,IMEC资深研究员陈昌博士说。/pp  比利时校际微电子中心成立于1984年,是一家在纳米电子、能源和数字技术研究和创新领域领先的独立研究中心,总部位于比利时鲁汶,并在荷兰、美国和中国等地拥有研发小组。/p
  • 三种新一代测序仪性能对比结果公布
    台式高通量基因组测序仪承诺将基因组学普及到大众,但对非专业测序技术人员而言,却无法分辨这些承诺是不是激烈的行业竞争中过头的宣传手段。据《自然》网站4月22日报道,英国伯明翰大学、卫生保护局等机构研究人员组成的一个研究小组对目前市场上3种主要的基因组测序仪进行了调查,用分离的埃希氏菌对它们的组测序性能进行了对比分析。研究结果发表在当日的《自然· 生物技术》上。  目前市场上有3种主要的高通量基因组测序仪:罗氏公司的454 GS Junior、Illumina公司的MiSeq和生命技术公司的PGM测序仪,它们的安装和运行成本都在最适中范围,都能满足绘制细菌基因组序列草图的需求,作为医疗设备用来鉴定和识别病原体具有很大优势。  对比检测显示,这3种测序平台各有优劣。如果想要每小时检测总流量最大,PGM是首选,达到80Mb/小时&mdash 100Mb/小时 如果想要每次检测流量最大,当属MiSeq,达到1.6Gb,每小时60Mb,同时它的精确度也是最高的 如果看谁一次读取序列最长,连续性最好,则454GS Junior夺冠,达到600个碱基,但它流量最低,每次检测仅为70Mb,每小时9Mb。PGM和454 GS Junior在检测同聚物的精度方面略逊一筹(插入缺失误差分别为每100个碱基1.5和0.38)。在成本因素方面,研究人员指出,只看价格并非万全之策。  去年夏天,埃希氏菌在德国夺去了40多人的生命。该研究作者之一、英国伯明翰大学生物信息专家尼古拉斯· 罗曼介绍说,下一代基因组测序即将进入医务室和公共健康领域,服务对象是那些非专业人士。人们不得不依赖市场信息和公司博客发布才能获得一些比较信息,在激烈的市场竞争中,这些有关性能分析的信息非常有用,但也非常难得。此外,他们的报告也揭示了当前基因微生物诊断学方面的情况。  罗曼还说,他们力图把检测中的两大误差源结合起来,这两个主要误差源是核苷酸替换(此时测序仪读的是不正确的碱基)和同聚物插入缺失(插入并探测不正确的序列数据)。同聚体区段误差属于系统误差,即使对样本多次检测,误差依然存在。如果竭力追求从检测结果中排除仪器误差是非常困难的,反而会遏制了公众卫生领域的细菌基因组分析能力。
  • 未来40年基因测序展望
    p  研究人员对基因测序数据的需求越来越大。/ppstrong  /strongEric Green、Edward Rubin和Maynard Olson三位科学家对未来40年基因测序技术的应用进行了展望。/ppstrong  /strong四十年前,也就是1997年前,两篇论文首次报道了确定DNA片段中化学碱基顺序的简易方法。在此之前,分子生物学家们只能检测DNA片段,而不能检测碱基。/pp  此后,DNA测序技术的发展一日千里——从最开始的简单检测逐渐演变到今天的高通量测序。过去30年,数据生成呈指数增长,而过去10年里,由于高通量测序,数据产生量呈超指数增长。并且,基因测序产生的数据已经在基础生物学等诸多领域产生了革命性的影响,应用范围渗透到考古学、刑事调查和产前诊断等多个行业。/pp  那么,未来40年基因测序会取得哪些发展?/pp  对于哪些技术(或更重要的是哪些应用)将是最具革命性的,预言者往往错得离谱。在互联网发展初期,很少有人预测到电子邮件会全球普及。同样地,华尔街的交易员和硅谷的投资者都没有预见到,游戏、在线视频和社交媒体会成为现今网络的“三驾马车”。/pp  虽然我们对DNA测序的未来的预测也没有做的更好,但是,还好我们提供了一个思考性的框架。我们的核心观点是,DNA测序的发展将由杀手级应用驱动,而非由杀手级技术驱动。/pp  strong需求/strong/pp  技术的改进可以增加或减少需求。正如Bill Gates曾经举过一个例子:随着轮胎设计越来越耐用,市场对轮胎的需求反而会减小,最后导致轮胎行业萎缩。/pp  不过我们认为DNA测序的发展将遵循计算机和照相机的模式,而不是轮胎的发展模式。随着成本的降低、速度的加快,DNA测序的应用将会增加,需求将会上升(图“更好、更快、更便宜”)。随着DNA测序从实验室进入临床、消费者和其它领域,DNA测序的发展将遵循“更多供应意味着更多需求”的规则。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/d8474bf1-fd8e-4fdc-92ca-4782c1ca53bc.jpg" title="NewsDataAction-2.jpeg"//ppstrong  /strong目前研究者对于基因测序数据的需求不断扩大。在20世纪90年代,对人类基因组进行测序似乎是不可能的任务。现在,遗传学家希望对地球上每个人每个组织中的每个细胞的每个发育阶段(包括表观遗传修饰)都进行测序。他们还希望通过测序信使RNA分子的互补DNA拷贝来获得全面的基因表达谱。与此同时,考古学家们开始使用DNA测序重建人类祖先的基因漂流,正如以前推断语言、文化风俗和物质的演变一样。生态学家、微生物学家和进化生物学家也希望使用DNA测序技术分析所有生物(包括已灭绝的物种)物种,乃至整个生态系统的基因组。/pp  显然,对数据的持续需求将需要大规模的数据解读。目前,DNA测序的瓶颈在于分析和解读数据。但是,正如新的信息学方法和大量数据集大幅改善了语言翻译和图像识别一样,我们预测大量DNA序列数据集与表型信息相结合将使研究人员推断出各个基因组序列对应的生物功能。/pp  更重要的是,解读数据所需的大部分基础科学已经适用于实际应用(例如细菌基因组的高质量参考序列,或某些基因网络在健康人群中运行的规则)。例如,识别环境或临床样品中的微生物DNA序列,或鉴定与已知生物学表型相关的基因突变。/pp  strong杀手级应用/strong/pp  多年来,DNA测序的平台发生了巨大变化(文末“测序平台的进展——多种DNA测序方法”)。然而,从类似的、需求似乎永远无法满足的技术(如智能手机、电脑和相机)的发展轨迹来看,真正推动DNA测序发展的,将会是应用,而非技术本身。/pp  我们确信DNA测序在医学领域会产生革命性的影响。/pp  在临床应用方面,DNA测序最具突破的是——单单针对使用频率——检测染色体数量异常的产前检测,例如导致唐氏综合症的21三体。这种基因筛查依赖于检测母体血液中循环的少量无细胞胎儿DNA。人类基因组计划的参与者们可没有想到,唐氏筛查会成为“医学史上发展最快的基因测试”。事实上,该领域的专家估计,全世界每年大约有400万到600万孕妇接受这一测试,十年之内这个数字将超过1500万。鉴于这类测试是非侵入性的、易于执行的,并且对核苷酸级精确度的要求较低(染色体数目评估可以不需要评估基因突变),所以这类测试在未来初级医疗中可能大有所为。/pp  在高收入国家,基因组测序已经常用于检测患有研究不充分的先天疾病的儿童。30%的的情况下,基因检测可以发现这类疾病的致病突变,这一数字将会随着DNA测序解读数据的能力的成熟而上升。在某些情况下,DNA测序得到的诊断结果显著改善了治疗效果。更重要的是,基因检测得到的诊断较为准确,从而免除了患者和医生一一排除可能疾病的麻烦。/pp  在肿瘤学方面,大量投资正在流入液体活检开发领域。液体活检技术将会发展成癌症筛查的常规工具,就像目前常用的Pap涂片和结肠镜检查一样。随着针对特定突变,而不是肿瘤类型的癌症治疗的出现,即使找不到肿瘤的具体位置,仅能通过血液样本DNA分析确定肿瘤的存在,液体活检检查也能最终指导治疗干预。/pp  事实上,除了临床以外,DNA测序还有很多用武之地,例如手持DNA测序仪。流行病学家可以使用手持测序仪对空气、水、食物、动物和昆虫进行检测,更不用说人类咽拭子和体液了。事实上,在低收入和中等收入国家,这种简易DNA测序仪已推动了全球病毒组学项目(Global Virome Project)的开展。这样做的目的是要对许多野生动物DNA样本进行测序,以确定可以传播给人类,并导致疾病的病毒。/pp  同时,公共卫生专家也开始讨论如何通过对城市垃圾中微生物进行测序,以加强对疾病疫情的监控。海洋生物学家正在探索如何通过系统的宏基因组学研究来监测海洋的生态环境。/pp  在司法领域,便携式DNA测序仪可以将DNA分析带出实验室,使DNA测序成为一线警务工具。警方可能会“读取”人的DNA,就像他们现在检查车牌或身份证件一样。事实上,便宜和容易的DNA测序可能导致大规模监控情况的出现,这一点最近已经引起了人权团体的关注。/pp  在家中,DNA测序设备可能可以成为继烟雾报警和恒温器之后,下一个“智能”或“连接”设备。一位评论员甚至认为,卫生间是通过实时DNA测序监测家人健康的理想场所。/pp  strong碰到天花板/strong/ppstrong  什么是DNA测序发展的绊脚石?/strong/pp  在仅仅40年里,细胞分子数据实际应用的核心目标从得到信息本身,变成了元信息化(meta-informational)。/pp  以基因测序的临床应用为例。可能在不久的将来,DNA测序会成为体液分析的常规工具。但是,问题在于,百万人的多年医疗史的数据必须精心组织,才能提供解读元信息的框架,才能明确哪些数据应该保留,哪些应该深挖。/pp  关于医学,我们同意美国国家研究委员会精密医学委员会(US National Research Council' s Precision Medicine Committee)等咨询小组的建议——全球需要创造一个广泛的“信息共享体”。这将覆盖数百万人生殖细胞基因组测序的分子和临床数据。目前有一些项目正在开展这样的大规模人口工作,这些项目包括英国生物银行(UK Biobank resource)和美国全美研究计划(US All of Us Research Program)。/pp  这里我们给出了最好的猜测。惊喜是确定的。事实上,从现在开始的几十年里,世界上大部分的数据(现在存储在硬盘或云端上)都可以存储在DNA中,而DNA测序的主要驱动力也不是疾病的诊断和治疗,而是我们对数据存储的迫切需求。/pp测序平台的进展——多种DNA测序方法/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/f7a52012-e9a1-444e-84f7-cc7ef2544d9c.jpg" title="NewsDataAction-3.jpeg"//pp style="text-align: center "上图:彩色的DNA条带/pp  过去40年,DNA测序技术曾多次更新换代。到1985年,几乎所有的DNA测序都用Sanger法或双脱氧链终止法进行:反应产物用放射性核苷酸标 记,在丙烯酰胺板凝胶上分离,并用放射自显影(使用X射线或照相胶片检测样品中的放射性标记) 进行检测。到了2000年,四色荧光法成为主流:使用终止链式反应的核苷酸类似物标记反应产物, 在填充有果冻样培养基的毛细管中电泳分离,并用能量转移荧光染料检测。到了2010年,测序技术 就更加多元化了。主要的手段是基于大规模平行分析DNA克隆(单个DNA分子的克隆扩增)和边合成 边测序的化学方法(这些方法依赖于可逆链终止子)。/pp  从现在开始,每个DNA测序平台的性能将取决于它的用途。在肿瘤学和医学遗传学中,目标通常是正确识别每个基因,并定义存在于多个拷贝中的每个突变。相比之下,在一些只要求知道是否与特定序列匹配的应用——例如物种识别——中,便携快速成为了第一要务,此时准确性就没有那么重要了。/pp  此外, DNA测序集中化和分散化的相对需求也可能发生变化。例如,一名流行病学家试图实时评估病毒对塞拉利昂某个特定村庄的影响,那么他可能需要便宜的便携设备。但是对于那些需要生成大量数据集的人来说,将样品运送到集中商业运作的DNA测序中心可能会更高效、更经济,尤其是那些对质量控制和样品追踪要求严格的应用(如临床应用)。/p
  • 我们到底有必要做基因测序吗?
    最近不少人问我,是否应该进行DNA测序。他们还问我:&ldquo 你做过DNA测序吗?&rdquo 作为一名研究患者基于何种原因进行基因测序的医生,遇到这样的问题不足为奇,有时我自己也想知道。  12年前,科学家首次对人类基因组进行测序,当时的成本约为10亿美元。此后,基因测序的成本直线下滑,如今已降至约5000美元,且很快会跌至1000美元以下,使得这样的问题变得越来越常见。与之前的检测手段能够提供的基因信息量相比,全基因组测序能提供数百万倍的信息量。为此,许多患者都进行了基因测序。  此外,美国总统奥巴马在2015年国情咨文演讲中还推出了&ldquo 精准医疗计划&rdquo (precision medicine initiative),其中就涉及到基因组测学工程。这也会让基因测序变成一个普通的问题。  随着成本下滑,越来越多的人开始进行基因测序。例如,大量癌症患者选择了全基因组测序,因为根据基因信息能够预测他们对各种化学疗法的反应。那些患有先天性疾病儿童的父母也迫切想知道,基因突变是否是孩子患病的罪魁祸首。如果真是这样,将来他们可以对此进行干预,以防影响第二胎。  此外,对于特定疾病患者,整个基因组测序的价格已经接近于单个基因测序的价格,如乳腺癌。为帮助治疗,医生也在对一些婴儿的基因组进行测序。将来,我们之中的大多数可能都会经历基因测序。医生只要在办公室里,就能利用你面前的计算机完成DNA测序。  许多人还会主动找到基因测序公司进行基因测序。在过去的几年中,许多人在23andMe这样的基因测序公司进行了基因测序。目前,这些基因测序公司只是检测人类整个基因组的一小部分基因,仅占人体DNA的百万分之一,即所谓的单核苷酸多态性(SNPs)分析。  但随着时间的推移,这些公司将启动更多的SNPs测序。即便如此,也仅占人体DNA的十万分之一。不管怎样,这些公司表示,将提供血统之外更多有医疗价值的信息。SNPs所提供的信息相对有限,而整个基因组测序所能提供的信息要高出数十万倍。  DNA分子由四种脱氧核糖核苷酸组成,分别是腺嘌呤、嘧啶、胸腺嘧啶和鸟嘌呤,英文字母缩写分别为A、C、T和G,涵盖30亿个碱基对的序列信息。尽管如此,人与人之间的基因相似度高达99.9%。(人与黑猩猩基因相似度为98%,与牛基因相似度为80%,与鸡基因相似度为60%。)  让我们用一个形象的例子对此进行说明。书架上有1000册书籍,其内容共包含30亿个字母。如果将这些字母比作DNA,那么其中999本书的信息都是相同的。只有1本书中包含的字母是不同的,并决定了我们眼睛颜色、头发颜色、鼻子形状,以及患某种疾病的可能性等等。  如果检测100万个SNPs,相当于每3000个字母中检测1个字母,即每页检测1个字母。如果看书时只看每页的一个字母(或一个基因),那我们从中得到的信息将十分有限。  但是,进行整个基因组测序,患者将拥有整个基因组测序信息,即阅读全部1000册书籍。目前,一些基因测序公司正在直接面向消费者提供该服务。这些服务所产生的大量数据是极具价值的,包括用于医疗领域。  基因测序后,你可能会被发现存在一些与某种疾病相关的遗传标记。其实,其中一部分是可以预防的,如乳腺癌。但人们习惯于认为,发现一个致病基因将来就一定会患病,如恶性肿瘤基因或肥胖基因。其实,大部分常见病是多个基因和环境因素共同作用的结果。因此,你可能有一个基因会导致患某种疾病的风险提高2倍(从10%提高到30%),那么你不会患病的几率仍高达70%。当然,这种疾病目前可能还没有治疗方案,如阿尔茨海默病(即老年痴呆症)。因此,对患者进行相关教育至关重要。  许多患者担心基因歧视问题。《遗传信息无歧视法案》(GINA)确保了美国民众的基因信息不被滥用和歧视。根据这部法律,如果基因检测显示某人可能易患某种疾病,保险公司不得据此提高医疗保险费用或者拒绝为其提供保险,其他公司也不得把基因信息作为招聘、解雇或提拔员工的依据。虽然这部法案涵盖了大多数医疗保险,但目前还没有解决人寿、伤残或长期就医保险问题。但我相信,将来这部法案会进一步保护这些人群。  当然,是否进行基因检测不一定完全由患者来决定。当前,一些医生已经开始为特定患者提供基因检测服务。一些进行特定疾病研究的研究人员也开始进行整个基因组测序,试图找出病因,给出治疗方案。很显然,我们之中的许多人将被包括在内,或者是从中受益。  因此,当人们问我是否应该进行基因测序时,我回答说:&ldquo 你为什么要进行基因测序呢?&rdquo 一些人,尤其是对科学感兴趣的人,他们通常会说&ldquo 知道自己的基因信息会很酷&rdquo 。有人认为&ldquo 知识就是力量&rdquo ,还有人担心自己的健康问题。如果你真想进行基因测序,最好先咨询一下医生。另外,临床遗传学专家和遗传咨询顾问可能比你的医生更了解一些具体的问题。  我也很想了解自己DNA中究竟蕴藏着哪些信息。幸运的是,我很健康,没有什么重大医学问题,因此目前还没有进行DNA测序的必要。当然,将来可能会改变。  不管怎样,无论是医生还是患者,我们都进入了一个美好的新世界,做任何事情都要谨慎。因此,我还没有进行DNA测试,至少目前如此。  备注:本文作者罗伯特&bull 克里兹曼(Robert Klitzman)是哥伦比亚大学临床精神病学教授。
  • 首个国产三代测序仪投产 将再次大幅降低成本
    p  中国首个应用于临床的第三代测序仪投产,有望把一个人的全基因测序成本从1000美元降至100美元,但仍需进一步完善相关技术。/pp  7月31日,南方科技大学生物系80后教授、瀚海基因创始人贺建奎宣布,自主研发的第三代基因测序仪GenoCare正式投产,首笔订单达到700台测序仪。/pp  21世纪经济报道记者独家获悉,该笔订单合同期三年,购买方包括国内外研究机构和医疗机构。目前测序仪已在科研市场应用,但投入临床市场所需的批文还在申报中。/pp  贺建奎表示:“我们使用单分子测序,不需要扩增,并可大幅降低试剂消耗量,同时,所有试剂、仪器都在国内生产、集成和组装,成本因此降低,一个人的全基因组测序价格可降到100美元。”/pp strong 截至目前,全球自主研发三代测序仪的企业只有三家,另外两家分别是美国Pacific Biosciences和英国Oxford Nanopore Technologies。/strong/pp  过去的十余年里,三代测序主要在科研市场崭露头角,但因错误率高、成本高等原因始终未能进入临床市场,更谈不上产业化。/pp  目前,基因测序市场的主流是二代测序,三代测序的样本量、数据量需要积累,中下游应用开发也刚起步。即便是应用相对广泛的二代测序,在各病种的覆盖率也不算高,三代测序的普及之路更为漫长。/ppstrong  研发破壁 估值15亿/strong/pp  瀚海基因已开始在罗湖莲塘工业园建设1万平米的第三代测序仪生产线,建成之后产能将达到每年1000台,产生50亿元价值。/pp  “除团体订单外,我们的测序仪没有公开发售,价格还不能透露,”贺建奎表示,“目前已进入小批量试产阶段,年底生产线建好后可以大批量生产,年终可接受国内外医院、科研机构订单,到明年年初,群众就能用到三代测序服务了。”/pp  深圳一名熟悉瀚海基因的投资机构合伙人告诉21世纪经济报道记者:“瀚海基因的技术是吸收后创新。”/pp  记者了解,贺建奎在斯坦福大学的导师斯蒂芬· 奎克教授是一位拥有12家公司的企业家,也是世界上首个第三代单分子测序仪Helicos的发明人。资料显示,Helicos公司于2004年创办,并于2012年破产。/pp  也是在2012年,贺建奎完成斯坦福大学博士后研究员的工作,回国入职南方科技大学,成为该校生物系第一位教师。同年,他创办了瀚海基因,启动国产三代测序仪研发。/pp  起初行业内外对这一项目并不看好,瀚海基因前4年也一直没有销售收入,研发遭遇资金危机,两次险些关门倒闭。贺建奎直言:“一开始见了20多位风险投资人,无一例外都被拒绝,理由之一是当时还没有在职教授创业的例子。”/pp  另外,测序仪研发难度非常大,国产三代测序仪更是首次尝试。贺建奎指出:“基因测序的样品前处理非常复杂,耗费时间、人力,还需要有后续的生物信息及专业人才。三代测序仪要把这些集成在一起,改变二代测序的半自动场景,测完自动完成生物信息学分析,难度不小。”/pp  测序仪研发对人才要求很高,其涉及光学、流体、化学、分子生物学、生物信息学和精密机械等,需要多学科交叉知识和人才。/pp  即便到了今天,瀚海对人才的渴求依旧跃然纸上。记者获悉,与生产线同时启动的是瀚海研究院计划,预计未来5年引入至少50名遗传解读分析专家以及50名医学专家(包括生殖、肿瘤、传染病等各学科)。/pp  2015年,瀚海基因终于拿到第一笔大额融资——南京中正科技投资1700万元,同年,瀚海基因发布了GenoCare原理样机。此后,公司身价一路水涨船高,目前共获得5轮、2亿元风险投资,测序仪虽未真正走向市场,但估值已达15亿元。/pp  深圳一名中小企业投资机构负责人告诉21世纪经济报道记者:“去年11月我们去看的时候,估值已经10亿元了,项目还很早期,对我们来说太贵,投不起。”/pp  strong产业化起步 大幅降低成本/strong/pp  采访过程中,贺建奎多次提到,降低临床基因测序成本,这也是二代测序仪的发力方向。/pp  原中国科学院北京基因组研究所副所长于军指出:“第一代测序仪测一个人的基因组测序接近30亿美元,第二代降到1000美元,第三代使用单分子测序,不需要扩增,价格有望降到100美元。”业内将其称为摩尔定律,以说明价格急剧下降趋势。/pp  翻看基因测序成长史,第一代测序技术主要基于Sanger双脱氧终止法的测序原理,结合荧光标记和毛细管阵列电泳技术来实现测序自动化,基本方法是链终止或降解法,人类基因组计划就是基于一代测序技术。/pp  第二代测序技术设备供应商主要是Illumina,业内普遍认为,其市场占有率达到70%。今年年初,Illumina公司宣布推出NovaSeq系列测序仪,据称,其简捷操作、低成本及灵活性有望将基因组测序成本降至100美元。/pp  根据Illumina2017年第一季度财报,Illumina共收到135个NovaSeq测序仪订单。不过,中国科学院院士陈润生指出:“NovaSeq系列测序仪的使用窗口目前没有开放。”/pp  国内基因企业也在通过技术合作、收购等方式破壁测序仪国产化。如Illumina和贝瑞和康、安诺优达开发了一款适用于无创产前检测的二代测序仪NextSeq CN500和NextSeq 550AR,并已获得CFDA批准。/pp  华大基因通过收购的方式布局,先后推出三款国产二代测序仪。华大基因CEO尹烨此前向21世纪经济报道记者透露:“算上临床机构、科研机构和友商,国内应该已经超过两百多台我们的测序仪在‘服役’了。”/pp  第三代测序技术原理最早发表于2003年,后来,Pacific Biosciences和Oxford Nanopore相继入局,Pacific Biosciences于2015年10月推出小型单分子测序仪Sequel。一名基因测序公司技术总监告诉记者:“中国市场目前唯一的三代测序仪就是这家公司提供,也是针对科研市场。”/pp  英美测序仪的研发起步虽早,但进展一直缓慢,临床应用更谈不上。瀚海基因化学部副总监赵陆洋告诉21世纪经济报道记者:“三代测序仪很受科研市场欢迎,因其提供了RNA直接测序的可能性,这是二代测序做不到的。”/pp  上述投资机构合伙人表示:“科研型测序仪对易用性、可靠性要求低一些,对可调节因素要求高一些,也不需要申请注册证。相比之下,临床市场的门槛高很多,空间也比较大。”/pp  虽然瀚海基因对自己的测序仪信心满满,但在评价一款基因测序仪的三大核心指标:通量、读长、准确度方面,瀚海基因却三缄其口。/pp  据贺建奎介绍,GenoCare第三代基因测序仪的核心技术为单分子荧光测序,此项技术使用全内反射荧光成像方法,能够检测单个荧光分子,无需PCR扩增。/pp  资料显示,二代基因测序技术在上机测序前需要对样本进行PCR扩增,可以在试管里、在很短的时间内,将待测基因扩增50万倍乃至上百万倍,这能提高基因诊断的灵敏度,但带来问题是实验要求比较高,成本也居高不下。/pp  同时,贺建奎团队联合中美两国科学家协作使用Genocare对大肠杆菌测序。数据结果显示,Genocare与测序行业龙头Illumina生产的MiSeq二代基因测序仪的一致性达到99.7%。/pp  “预计明年年初会公开发售价格。临床实验也已经启动了,在走试验、申报流程。其他领域如科研市场不需要医疗器械证就可以使用,这些领域已经有我们的测序仪在应用了。”贺建奎说。/pp  strong应用存短板核心部件依赖进口/strong/pp  研发出三代测序仪后,瀚海基因一面要推动大批量生产,一面要开拓中下游。/pp  目前,基因测序已形成了明确的产业链分工:上游为设备和耗材供应商 中游为第三方测序服务供应商,需依赖设备投入、运营管理与终端维护开发 下游为生物信息分析服务商。/pp  贺建奎阐述了瀚海基因的商业模式:“中游的应用开发比如肿瘤基因检测、遗传基因检测、传染病检测,通过合作伙伴来完成。希望越来越多的测序服务公司和相关的机构在我们测序仪上开发各类疾病检测,形成生态圈,并且通过他们或者其他人把测序仪销售到医院。”/ppstrong  上下游企业的互相“成全”,也是Illumina和华大基因成长的路子。/strong/pp  前述投资机构合伙人指出:“华大基因向Illumina购买了100多台测序仪才成为第一,华大基因也通过这些测序仪开发出了很多服务。测序仪未来的销售量如何,可能要依靠整个行业,包括合作伙伴、临床以及科研机构有没有充分地把临床意义和科研意义发挥出来。”/pp  记者在瀚海基因测序仪上市发布现场注意到,华大基因、北科生物、从事体外诊断的安图生物等都有相关负责人到场,这些都是瀚海的潜在合作伙伴。/pp  不过,是否牵手瀚海基因还需要考量。一家生物技术公司产品部负责人告诉21世纪经济报道记者:“瀚海的测序仪一次只能测一个人的全基因组,Illumina的人数会多一点。另外,现在体外诊断主要还是对已知疾病的检测,瀚海基因主要是早期筛查,这虽然是趋势,但目前市场有限,二代测序也很早就在做了,样本和数据更多。”/ppstrong  而更多的挑战还是来自老问题:错误率高。/strong/pp  兴证医药研报指出,第三代基因测序单读长错误率依然偏高,在15%-40%,二代测序的错误率低于1%。前述中小企业投资机构负责人告诉记者:“单分子测序不需要切断DNA和RNA序列,看重对碱基对一下子读下去能读多长,而影响读长的一个是机器,一个是生物合成酶。”/pp  广发证券也指出,单分子测序可收集到的信号非常弱,这对光电元件提出很高要求,虽然目前部分仪器已经实现商业化,但离理想状态还有较大距离。另外,还有测序通量不高、插入缺失错误等不足之处,这都影响了三代测序的推广。/pp  值得一提的是,与其他国产测序仪一样,瀚海基因测序仪核心零部件依旧需要进口,例如光学系统中的部分核心器件来自日本、德国,测序芯片和微流控系统需来自新加坡、美国。/pp /p
  • 测序公司比较二代测序结果: Hiseq X ten VS NovaSeq 6000
    p  从1977年Sanger发明了双脱氧链终止法一代测序技术开始,测序技术发展至今已有四十多年时间,先后经历了以GS FLX、Solexa、SOLID为基础的二代测序技术,以及基于单分子实时测序(SMRT)和纳米孔测序技术的三代测序技术。虽然三代测序在蓬勃发展,并在基因组和转录组测序等领域展现出前所未有的优势,但限于成本问题,其应用范围尚不及二代测序。br//ppbr//pp  二代测序技术以其短读长、高通量、准确性高的特点,仍在测序市场上占优势地位。以Illumina Solexa为例,首先利用超声波将DNA打断成200-500bp小片段文库,加接头后DNA片段随机附着于flowcell表面,经过桥式PCR扩增形成“DNA簇”,实现碱基信号强度放大,采用边合成边测序的方法,进行全基因组全面,准确的测序。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/55d34bab-6612-47a8-873c-49b4c5dcb0eb.jpg" title="1.jpg" style="width: 600px height: 276px " width="600" vspace="0" hspace="0" height="276" border="0"//ppbr//pp style="text-align: center "strong图1 Hiseq Xten (左) 与 NovaSeq 6000(右)/strong/ppbr//pp  2014年Illumina推出HiSeq X Ten测序仪,它利用数十亿个纳米孔的流动槽,较大缩短了测序周期。2017年它又推出了新一代测序仪NovaSeq系列,我们以相同文库分别进行Hiseq Xten系列和NovaSeq系列测序,DNA重测序产出数据指标如下:/ppbr//ppstrong表1 DNA重测序结果比较/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5454c24d-abf7-4aef-b3d4-a4cfe7b68c24.jpg" title="2.jpg"//ppbr//ppbr//pp看完重测序,再看看转录组文库测序比较:/ppbr//ppstrong表2 转录组测序结果比较/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/9429bf33-74ea-4c0a-b71e-150a0478b58e.jpg" title="3.png"//pp基于以上结果,图谱君总结了以下几点:/ppbr//ppstrong1.测序原理/strong:X-ten与Nova6000测序原理均是基于solexa的边合成边测序的原理;Nova6000采用Illumina的EX-AMP簇生成技术,以及新一代的Patterned Flow Cell。/ppstrong2.Q30质量值/strong:在实际测序中Nova6000的Q30相对于X-ten更稳定且测序时长更短,试剂衰减对质量影响更小,整体的Q30 Nova6000要优于X-ten。/ppstrong3.测序方式/strong:受限于X-ten的控制软件以及试剂等因素,X-ten只能进行单Index的测序识别;而Nova6000可以进行I7 I5双端Index的测序,理论上可以做到更精准的识别。/ppstrong4.DNA文库冗余度/strong:Nova6000明确优于X-ten平台。/ppbr//pp  有没有发现随着二代测序仪器的发展,测序结果真是又快又好,目前二代测序较多的应用于基因组重测序,转录组分析,小分子RNA研究等领域。基于二代测序技术进行遗传图谱构建,基因定位的研究也越来越多。/p
  • 美研究员报告称完成“生命暗物质”基因组测序
    正当物理学家苦苦寻找宇宙暗物质之际,美国研究人员10日报告说,他们完成了对&ldquo 生命暗物质&rdquo 的基因组测序。  1996年,科学家首次发现了一种名为&ldquo 候选门TM6&rdquo 的细菌。这种细菌广泛存在于水环境中,却无法在实验室中培养,除了其标志性的16S基因外,科学界对它的生命活动特点几乎一无所知。正因此,&ldquo 候选门TM6&rdquo 细菌被称为&ldquo 生命暗物质&rdquo 。  美国克雷格?文特尔研究所的研究人员在新一期美国《国家科学院学报》报告说,他们采用能从单个细胞中捕获基因组的自动化技术,从一家医院休息室的水槽下水管生物膜上收集了TM6细菌,并使用DNA(脱氧核糖核酸)拼接方法成功重建了该细菌的基因组。  测序结果表明,这种细菌无法制造氨基酸,可能需要寄居在生物膜中或者单细胞微生物内部。不过,目前尚不清楚TM6细菌对人体是否有害。  研究人员表示,该研究成果或将有助于培养和研究类似微生物,从而进一步了解它们的生态特征和功能。
  • 测序仪笔记分享(万字长文,建议收藏)
    一. 测序仪对比测序技术代表仪器读长通量准确度成本Sanger法ABI 3730xl DNA Analyzer500-800bp0.096Gbp/天99.99%0.24美分/bpIlluminaHiSeq X Ten System150bp1800Gbp/运行99.9%0.01美分/bp华大智造MGISEQ-2000200bp(单端)或2×150bp(双端) 60Gbp/运行 99.9% 0.015美元/bpRoche 454GS FLX+ System700bp0.7Gbp/运行99.9%0.02美元/bpABI SOLiDSOLiD System 5500xl75bp120Gbp/运行99.94%0.13美分/bpPacBioSequel II System10kb60Gbp/运行99%0.15美元/bpNanoporeMinION Device100kb30Gbp/运行90%0.02美元/bpHelicosHeliScope Single Molecule Sequencer25-50bp28Gbp/运行80%未知  1. ABI 3730xl DNA Analyzer图源自thermofisher官网  1.1. 相关原理   DNA测序:基于Sanger法的原理,利用DNA聚合酶在体外DNA复制过程中随机掺入带有荧光标记和终止子的双脱氧核苷酸(ddNTPs),从而得到不同长度的DNA片段。这些片段经过电泳分离后,通过激光激发和CCD检测,得到每个碱基发出的荧光信号,从而确定DNA的碱基序列。   片段分析:基于荧光检测的原理,利用不同颜色的荧光染料标记不同长度或类型的DNA片段,如微卫星、SNP、AFLP等。这些片段经过电泳分离后,通过激光激发和CCD检测,得到每个片段发出的荧光信号,从而确定片段的大小或等位基因。  1.2. 主要组成  ABI 3730xl DNA Analyzer仪器是一种高通量的DNA测序和片段分析的平台,它可以同时使用48或96根毛细管进行电泳分离和荧光检测。   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software、SeqScape Software、GeneMapper Software等。   毛细管阵列:提供预组装的48根或96根毛细管阵列,它们与业界标准的96孔和384孔板配合使用。毛细管为内部无涂层毛细管,可提供300次的运行质保。   DNA测序试剂和耗材:包括BigDye Terminator循环测序试剂盒、GeneScan分子量标准品、片段分析标准品、POP-7聚合物分离胶等。  1.3. 主机模块   电泳系统:负责将DNA片段在毛细管中进行电泳分离,根据不同长度的DNA片段在电场中的迁移速度不同,将它们按照从小到大的顺序排列。电泳系统由高压电源、电泳缓冲液、毛细管阵列等组成。  o 高压电源:提供高达30kV的电压,使DNA片段在电场中迁移。  o 电泳缓冲液:提供电导性和pH稳定性,使DNA片段在毛细管中顺利运行。  o 毛细管阵列:提供预组装的48根或96根毛细管,它们与业界标准的96孔和384孔板配合使用。毛细管为内部无涂层毛细管,可提供300次的运行质保。   自动进样系统:负责将样品从96孔或384孔板中自动吸取,并注入到毛细管阵列中。自动进样系统由进样针、进样泵、进样阀等组成。  o 进样针:用于从样品板中吸取样品,并通过进样阀将样品注入到毛细管中。  o 进样泵:用于控制进样针的吸取和释放动作,以及进样量的大小。  o 进样阀:用于控制进样针与毛细管之间的连接和断开,以及进样时间的长短。   激光系统:负责将激光光束照射到毛细管阵列的出口处,激发荧光信号。激光系统由激光器、光纤、光学开关等组成。  o 激光器:提供单波长、505nm、固态、长寿命的激光光源,用于激发荧光染料。  o 光纤:用于将激光光束从激光器传输到毛细管阵列上。  o 光学开关:用于控制激光光束的开启和关闭,以及激光功率的大小。   光学系统:负责将荧光信号收集并转换为电信号。光学系统由滤光片、透镜、CCD相机等组成。  o 滤光片:用于选择不同颜色的荧光信号,并过滤掉背景噪声。  o 透镜:用于聚焦和放大荧光信号,并将其投射到CCD相机上。  o CCD相机:用于将荧光信号转换为数字化的电信号,并传输给计算机工作站进行数据采集和分析。   温控系统:负责控制仪器的温度,保证测序的稳定性和可靠性。温控系统由温度传感器、风扇、加热器等组成。  o 温度传感器:用于监测仪器内部和外部的温度,并反馈给温控器进行调节。  o 风扇:用于散热和通风,维持仪器的适宜温度。  o 加热器:用于加热和保温,防止仪器的过冷。   聚合物输送系统:负责将聚合物分离胶从储存瓶输送到毛细管阵列中,作为电泳介质。聚合物输送系统由压力罐、气压调节器、流量计等组成。  o 压力罐:用于储存聚合物分离胶,并提供一定的压力,使聚合物分离胶能够流动。  o 气压调节器:用于控制压力罐的气压,以及聚合物分离胶的流速。  o 流量计:用于测量聚合物分离胶的流量,以及毛细管中的胶量。  2. HiSeq X Ten System图源自Illumina官网  HiSeq X Ten System是Illumina公司的产品。Illumina是一家生物技术公司,它的测序仪是基于桥式PCR和荧光检测的技术,也是目前最流行的二代测序平台之一。它的测序仪有多个系列,如NovaSeq、HiSeq、MiSeq、MiniSeq等,它们的核心技术原理是相同的,但在通量、读长、准确度、成本等方面有所不同。  2.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与流通池表面探针互补的序列(P5/P7)、用于区分不同文库的索引(Index)、以及用于测序引物结合的序列(Rd1 SP/Rd2 SP)。文库构建后需要进行质量检测和定量。   聚集体生成:将文库DNA片段注入到流通池中,并与表面探针杂交结合。然后进行桥式PCR扩增,使每个DNA片段形成一个聚集体。聚集体生成后需要进行温度变化和化学处理,使其单链化并去除P5端的DNA链,只留下P7端的DNA单链。   边合成边测序:将带有荧光染料和可逆终止子的四种dNTPs逐一加入到流通池中,并利用DNA聚合酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。然后用化学剂去除荧光染料和可逆终止子,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BCL文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后根据索引将不同文库的数据分离,并进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  2.2. 主要组成   流通池(Flow cell):是一个微型的玻璃芯片,它的表面覆盖了数亿个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过杂交结合。流通池内部有多个通道,每个通道可以进行不同的测序反应。   聚集体(Cluster):是指通过桥式PCR在流通池表面扩增形成的由相同DNA片段组成的簇,每个聚集体可以发出荧光信号,从而被检测为一个读长(Read)。聚集体的密度和质量会影响测序的效率和准确度。   荧光染料(Fluorescent dye):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光染料还带有可逆终止子,可以控制每次只加入一个碱基。   激光器(Laser):是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   计算机系统(Computer system):是指用于控制测序仪运行和处理数据的设备,它预装了用于仪器控制、数据收集和样品文件自动分析的软件,如BaseSpace Sequence Hub、Sequencing Analysis Software等。  3. MGISEQ-2000图源自华大智造官网  MGISEQ-2000测序仪是一种基于荧光检测的第二代测序技术,可以实现高通量、高精度、低成本的基因组测序。  3.1. 相关原理  o DNA测序:基于双端测序的原理,利用DNA聚合酶在体外DNA复制过程中随机掺入带有荧光标记和终止子的双脱氧核苷酸(ddNTPs),从而得到不同长度的DNA片段。这些片段经过桥式扩增后,形成单分子簇,然后通过四色荧光检测,得到每个碱基发出的荧光信号,从而确定DNA的碱基序列。  o 片段分析:基于荧光检测的原理,利用不同颜色的荧光染料标记不同长度或类型的DNA片段,如微卫星、SNP、AFLP等。这些片段经过桥式扩增后,形成单分子簇,然后通过四色荧光检测,得到每个片段发出的荧光信号,从而确定片段的大小或等位基因。  3.2. 主要组成  o 测序仪主机:包含流体控制系统、温控系统、激光系统、光学系统、信号采集系统等多个模块,用于控制仪器的运行和数据的采集。  § 流体控制系统:负责控制样品和试剂的输送,以及测序反应的进行。流体控制系统由进样针、进样泵、进样阀等组成。  § 进样针:用于从样品板中吸取样品,并通过进样阀将样品注入到芯片上。  § 进样泵:用于控制进样针的吸取和释放动作,以及进样量的大小。  § 进样阀:用于控制进样针与芯片之间的连接和断开,以及进样时间的长短。  § 温控系统:负责控制仪器和芯片的温度,保证测序的稳定性和可靠性。温控系统由温度传感器、风扇、加热器等组成。  § 温度传感器:用于监测仪器和芯片内部和外部的温度,并反馈给温控器进行调节。  § 风扇:用于散热和通风,维持仪器和芯片的适宜温度。  § 加热器:用于加热和保温,防止仪器和芯片的过冷。  § 激光系统:负责将激光光束照射到芯片上,激发荧光信号。激光系统由激光器、光纤、光学开关等组成。  § 激光器:提供单波长、532nm、固态、长寿命的激光光源,用于激发荧光染料。  § 光纤:用于将激光光束从激光器传输到芯片上。  § 光学开关:用于控制激光光束的开启和关闭,以及激光功率的大小。  § 光学系统:负责将荧光信号收集并转换为电信号。光学系统由滤光片、透镜、CCD相机等组成。  § 滤光片:用于选择不同颜色的荧光信号,并过滤掉背景噪声。  § 透镜:用于聚焦和放大荧光信号,并将其投射到CCD相机上。  § CCD相机:用于将荧光信号转换为数字化的电信号,并传输给计算机工作站进行数据采集和分析。  § 信号采集系统:负责对数字化的电信号进行滤波、校准、分段、碱基识别等处理,最终生成测序结果。信号采集系统由数据采集卡、数据处理软件等组成。  § 数据采集卡:用于将CCD相机传输的电信号接收并转换为数字信号,以及进行一定的滤波和校准处理。  § 数据处理软件:用于对数字信号进行进一步的分段、碱基识别、质量评估等处理,以及生成测序结果文件。  o 计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件。  o 芯片:芯片是MGISEQ-2000测序仪的核心部件,它是一种微流控芯片,上面有数百万个微孔,每个微孔都可以进行单分子簇测序,实现高通量的数据产出。芯片有不同的规格和类型,如单端测序芯片、双端测序芯片、片段分析芯片等,可以根据不同的需求选择合适的芯片。  4. GS FLX+ System图源自罗氏官网  GS FLX+ System测序仪是一种基于焦磷酸测序(Pyrosequencing)技术的二代测序平台,它可以提供高通量、高准确度和超长读长的DNA测序服务。  4.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与DNA捕获珠表面探针互补的序列(A/B)、以及用于测序引物结合的序列(P1/P2)。文库构建后需要进行质量检测和定量。   乳液PCR:将文库DNA片段与DNA捕获珠混合,并加入油相形成乳液滴。每个乳液滴中只包含一个DNA捕获珠和一个文库DNA片段。然后进行PCR扩增,使每个DNA捕获珠上形成一个单分子聚集体。乳液PCR后需要进行破乳液和洗涤处理,去除多余的油相和PCR试剂。   PTP装载:将经过乳液PCR处理后的DNA捕获珠注入到PTP中,并使每个微孔中只有一个DNA捕获珠。然后进行温度变化和化学处理,使聚集体单链化并去除A端的DNA链,只留下B端的DNA单链。   边合成边测序:将带有荧光染料和可逆终止子的四种dNTPs逐一加入到PTP中,并利用DNA聚合酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。然后用化学剂去除荧光染料和可逆终止子,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(SFF文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTA/FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  4.2. 主要组成   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software等。   PicoTiterPlate(PTP):是一个微型的塑料板,它的表面覆盖了数百万个微孔,每个微孔可以容纳一个DNA捕获珠(DNA Capture Bead),并进行单分子测序反应。   DNA捕获珠(DNA Capture Bead):是一种直径约28微米的磁性珠子,它的表面覆盖了数千个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过乳液PCR(Emulsion PCR)扩增形成单分子聚集体(Single Molecule Cluster)。   荧光染料(Fluorescent dye):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光染料还带有可逆终止子,可以控制每次只加入一个碱基。   激光器(Laser):是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。  4.3. 主机组成   电泳系统:是指用于将带有荧光染料和可逆终止子的四种dNTPs逐一加入到PTP中,并利用DNA聚合酶将它们连接到聚集体的DNA链上的系统。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。   自动进样系统:是指用于将经过乳液PCR处理后的DNA捕获珠注入到PTP中,并使每个微孔中只有一个DNA捕获珠的系统。然后进行温度变化和化学处理,使聚集体单链化并去除A端的DNA链,只留下B端的DNA单链。   激光系统:是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   温控系统:是指用于控制PTP板和反应液的温度,以保证测序反应的稳定性和效率的系统。   聚合物输送系统:是指用于将不同类型和浓度的聚合物溶液输送到PTP板中,以提供不同阶段所需的反应条件和试剂的系统。  5. SOLiD System 5500xl图源自thermofisher官网  SOLiD System 5500xl测序仪是一种基于连接法测序(Sequencing by Ligation)技术的二代测序平台,它可以提供高通量、高准确度和中等读长的DNA测序服务。  5.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与DNA捕获珠表面探针互补的序列(P1/P2)、以及用于测序引物结合的序列(Rd1 SP/Rd2 SP)。文库构建后需要进行质量检测和定量。   乳液PCR:将文库DNA片段与DNA捕获珠混合,并加入油相形成乳液滴。每个乳液滴中只包含一个DNA捕获珠和一个文库DNA片段。然后进行PCR扩增,使每个DNA捕获珠上形成一个单分子聚集体。乳液PCR后需要进行破乳液和洗涤处理,去除多余的油相和PCR试剂。   FlowChip装载:将经过乳液PCR处理后的DNA捕获珠注入到FlowChip中,并使每个微孔中只有一个DNA捕获珠。然后进行温度变化和化学处理,使聚集体单链化并去除P1端的DNA链,只留下P2端的DNA单链。   边连接边测序:将带有荧光探针和可逆终止子的四种dNTPs逐一加入到FlowChip中,并利用DNA连接酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基对,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基对序列。然后用化学剂去除荧光探针和可逆终止子,使下一个碱基对可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BCL文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基对序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  5.2. 主要组成   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software等。   FlowChip:是一个微型的玻璃芯片,它的表面覆盖了数百万个微孔,每个微孔可以容纳一个DNA捕获珠(DNA Capture Bead),并进行单分子测序反应。   DNA捕获珠(DNA Capture Bead):是一种直径约28微米的磁性珠子,它的表面覆盖了数千个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过乳液PCR(Emulsion PCR)扩增形成单分子聚集体(Single Molecule Cluster)。   荧光探针(Fluorescent probe):是指用于标记不同碱基对的四种荧光分子,它们分别对应A/T、T/A、C/G、G/C四种碱基对,并发出不同颜色的光。荧光探针还带有可逆终止子,可以控制每次只加入一个碱基对。   激光器(Laser):是指用于激发荧光探针发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。  5.3. 主机组成   电泳系统:是指用于将带有荧光探针和可逆终止子的四种dNTPs逐一加入到FlowChip中,并利用DNA连接酶将它们连接到聚集体的DNA链上的系统。每次只能加入一个碱基对,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基对序列。   自动进样系统:是指用于将经过乳液PCR处理后的DNA捕获珠注入到FlowChip中,并使每个微孔中只有一个DNA捕获珠的系统。然后进行温度变化和化学处理,使聚集体单链化并去除P1端的DNA链,只留下P2端的DNA单链。   激光系统:是指用于激发荧光探针发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   温控系统:是指用于控制FlowChip板和反应液的温度,以保证测序反应的稳定性和效率的系统。   聚合物输送系统:是指用于将不同类型和浓度的聚合物溶液输送到FlowChip板中,以提供不同阶段所需的反应条件和试剂的系统。  6. Sequel II System图源自PACB官网  Sequel II System测序仪是一种基于单分子实时测序(Single Molecule Real-Time Sequencing,SMRT)技术的三代测序平台,它可以提供高通量、高准确度和超长读长的DNA测序服务。  6.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含用于测序引物结合的序列(P1/P2)。文库构建后需要进行质量检测和定量。   SMRT Cell装载:将文库DNA片段与DNA聚合酶混合,并注入到SMRT Cell中,并使每个微孔中只有一个DNA聚合酶。然后进行温度变化和化学处理,使文库DNA片段与测序引物结合,并形成环状结构。   边合成边测序:将带有荧光核苷酸的四种dNTPs逐一加入到SMRT Cell中,并利用DNA聚合酶将它们连接到环状DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个微孔发出的荧光信号,从而确定碱基序列。然后用化学剂去除环状DNA链上的碱基,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BAM文件),并进行质量控制和过滤,去除低质量的信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  6.2. 主要组成   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software等。   SMRT Cell 8M:是一个微型的玻璃芯片,它的表面覆盖了数百万个微孔,每个微孔可以容纳一个DNA聚合酶(DNA Polymerase),并进行单分子测序反应。   荧光核苷酸(Fluorescent nucleotide):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光核苷酸在被DNA聚合酶催化加入到DNA链上时,会释放出荧光信号,并被去除。   激光器(Laser):是指用于激发荧光核苷酸发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。  6.3. 主机组成   电泳系统:是指用于将带有荧光核苷酸的四种dNTPs逐一加入到SMRT Cell中,并利用DNA聚合酶将它们连接到环状DNA链上的系统。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个微孔发出的荧光信号,从而确定碱基序列。   自动进样系统:是指用于将文库DNA片段与DNA聚合酶混合,并注入到SMRT Cell中,并使每个微孔中只有一个DNA聚合酶的系统。然后进行温度变化和化学处理,使文库DNA片段与测序引物结合,并形成环状结构。   激光系统:是指用于激发荧光核苷酸发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   温控系统:是指用于控制SMRT Cell板和反应液的温度,以保证测序反应的稳定性和效率的系统。   聚合物输送系统:是指用于将不同类型和浓度的聚合物溶液输送到SMRT Cell板中,以提供不同阶段所需的反应条件和试剂的系统。  7. MinION Device图源自Oxford官网  MinION Device测序仪是一种基于单分子实时测序(Single Molecule Real-Time Sequencing,SMRT)技术的三代测序平台,它可以提供高通量、高准确度和超长读长的DNA和RNA测序服务。  7.1. 相关原理   文库构建:将待测DNA或RNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含用于测序引物结合的序列(P1/P2)。文库构建后需要进行质量检测和定量。   SMRT Cell装载:将文库片段与DNA聚合酶混合,并注入到SMRT Cell中,并使每个微孔中只有一个DNA聚合酶。然后进行温度变化和化学处理,使文库片段与测序引物结合,并形成环状结构。   边合成边测序:将带有荧光核苷酸的四种dNTPs逐一加入到SMRT Cell中,并利用DNA聚合酶将它们连接到环状DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个微孔发出的荧光信号,从而确定碱基序列。然后用化学剂去除环状DNA链上的碱基,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(FAST5文件),并进行质量控制和过滤,去除低质量的信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  7.2. 主要组成   测序仪主机:是一个小巧的USB设备,它可以连接到任何电脑或笔记本,并通过软件进行控制和数据传输。   SMRT Cell:是一个微型的塑料芯片,它的表面覆盖了数千个微孔,每个微孔可以容纳一个DNA聚合酶(DNA Polymerase),并进行单分子测序反应。   荧光核苷酸(Fluorescent nucleotide):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光核苷酸在被DNA聚合酶催化加入到DNA链上时,会释放出荧光信号,并被去除。   激光器(Laser):是指用于激发荧光核苷酸发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给电脑进行数据分析。  7.3. 主机组成   电泳系统:是指用于将带有荧光核苷酸的四种dNTPs逐一加入到SMRT Cell中,并利用DNA聚合酶将它们连接到环状DNA链上的系统。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个微孔发出的荧光信号,从而确定碱基序列。   自动进样系统:是指用于将文库片段与DNA聚合酶混合,并注入到SMRT Cell中,并使每个微孔中只有一个DNA聚合酶的系统。然后进行温度变化和化学处理,使文库片段与测序引物结合,并形成环状结构。   激光系统:是指用于激发荧光核苷酸发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给电脑进行数据分析。  8. HeliScope Single Molecule Sequencer  HeliScope Single Molecule Sequencer测序仪是一种基于荧光测序原理的单分子测序平台,它可以直接对DNA进行测序,无需进行PCR扩增或文库构建。  8.1. 相关原理   文库准备:将待测DNA打断成小片段,并在每个小片段(约200bp)的末端加上poly-A尾。   芯片装载:将文库DNA片段与固定在芯片上的poly-T引物进行杂交,并精确定位,使每个微孔中只有一个DNA模板。   边合成边测序:将带有荧光探针和可逆终止子的四种dNTPs逐一加入到芯片中,并利用DNA聚合酶将它们连接到DNA链上。每次只能加入一个碱基对,然后用激光激发荧光信号,并用CCD相机记录每个微孔发出的荧光信号,从而确定碱基对序列。然后用化学剂去除荧光探针和可逆终止子,使下一个碱基对可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BCL文件),并进行质量控制和过滤,去除低质量的信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基对序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。图源自portorford.info|  8.2. 主要组成   测序仪主机:是一个大型的设备,它可以连接到电脑或服务器,并通过软件进行控制和数据传输。   测序芯片:是一个微型的玻璃芯片,它的表面覆盖了数亿个微孔,每个微孔可以容纳一个DNA模板,并进行单分子测序反应。   荧光探针:是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光探针在被DNA聚合酶催化加入到DNA链上时,会释放出荧光信号,并被去除。   激光器:是指用于激发荧光探针发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给电脑进行数据分析。  二. 测序原理和发展   测序技术的概念和原理:介绍什么是测序技术,它是如何工作的,以及它的主要分类和特点 。   测序技术的发展历史:回顾测序技术的发展过程,从第一代测序技术(如Sanger法)到第二代测序技术(如Illumina法)再到第三代测序技术(如Nanopore法) 。   测序技术的应用领域:介绍测序技术在生命科学中的各种应用,如基因组学、转录组学、表观遗传学、微生物组学、个体化医疗等 。   测序技术的挑战和未来:分析测序技术面临的主要挑战,如数据量、数据质量、数据分析、数据存储、数据共享等 ,以及展望测序技术的未来发展方向和趋势 。  1. 基本概念   读长(read length):读长是指测序得到的DNA片段的长度,一般来说,读长越长,越有利于拼接基因组和发现结构变异。在这方面,三代测序技术(如Nanopore和PacBio)具有明显的优势,它们可以测定长达数十kb甚至Mb级别的读长,而二代测序技术(如Illumina和Roche 454)的读长一般在数百bp到数千bp之间,Helicos的读长则最短,只有25-50bp。   准确度(accuracy):准确度是指测序结果与真实DNA序列的一致性,一般用错误率来衡量。   通量(throughput):通量是指测序平台每次运行可以产生的数据量,一般用Gbp或Tbp来表示。   成本(cost):成本是指进行测序所需的费用,包括仪器、试剂、人工、时间等因素。  2. 技术的选择  “如何选择合适的测序技术”这是一个很重要的问题,因为不同的测序技术有不同的特点和适用范围。一般来说,选择测序技术需要考虑以下几个因素:   测序目的:你想要测定什么样的DNA或RNA?是基因组、转录组、表观遗传组、微生物组还是其他?你想要了解什么样的信息?是序列变异、基因表达、基因调控、基因功能还是其他?   测序需求:你需要多少数据量来达到你的测序目的?你需要多高的准确度和重复性来保证你的测序质量?你需要多长的读长来覆盖你的目标区域?   测序资源:你有多少样品可以进行测序?你的样品质量和数量如何?你有多少时间和预算可以用于测序?  根据这些因素,你可以对比不同的测序技术的优缺点,选择最适合你的测序方案。   如果你想要测定全基因组或全转录组,并且对数据量和成本有较高的要求,那么你可以选择Illumina或Roche 454等二代测序技术,它们可以提供高通量和低成本的测序服务。   如果你想要测定特定的基因或区域,并且对准确度和重复性有较高的要求,那么你可以选择Sanger法等一代测序技术,它们可以提供高准确度和高重复性的测序服务。   如果你想要测定长片段或结构变异,并且对读长和拼接有较高的要求,那么你可以选择Nanopore或PacBio等三代测序技术,它们可以提供超长读长和单分子测序的服务。  3. 概念和原理  测序技术是指获得目的核酸分子(DNA或RNA)碱基排列顺序的技术,它是生命科学研究的基础和核心。测序技术的原理是利用不同的方法对目的核酸分子进行合成、标记、检测和识别,从而确定其碱基序列。  测序技术可以根据其使用的方法和原理分为不同的代数和类型,主要有以下几种:   第一代测序技术:是指最早出现的基于荧光测序原理的测序技术,如Sanger法和Maxam-Gilbert法,它们通过使用特殊的链终止核苷酸或化学降解剂来中断DNA合成反应,并通过凝胶电泳和放射自显影来检测荧光信号,从而确定碱基序列。Sanger法是基于DNA聚合酶在体外DNA复制过程中随机掺入终止链延伸的双脱氧核苷酸(ddNTPs)的原理。这些ddNTPs可以用放射性或荧光标记来检测,从而得到DNA的碱基序列。Sanger法由英国生物化学家弗雷德里克桑格于1977年发明,是第一代DNA测序技术,曾被广泛用于人类基因组计划等大规模的基因组分析。   第二代测序技术:是指基于高通量测序原理的测序技术,如Illumina法、Roche 454法、ABI SOLiD法等,它们通过使用特殊的接头、引物、荧光探针等来对目的核酸分子进行扩增、标记和检测,并通过芯片或微珠等平台来实现大规模并行测序,从而大大提高了测序速度和通量。  o Roche 454技术:这是一种基于焦磷酸测序法的技术,它利用喷雾法将DNA打断成小片段,并在两端加上接头。然后将这些片段结合在微珠上,并在乳液PCR中进行扩增。最后将这些微珠放入一个含有许多小孔的反应板中,每个小孔只容纳一个微珠。在测序过程中,每次加入一种dNTP,并检测每个小孔中是否发生了焦磷酸释放反应,从而确定碱基序列。  o Illumina/Solexa技术:这是一种基于桥式PCR和荧光检测的技术,它也是目前最流行的测序技术之一。它将DNA打断成小片段,并在两端加上接头。然后将这些片段吸附在流动槽(flowcell)的表面,并进行桥式PCR扩增,形成聚集体(cluster)。在测序过程中,每次加入四种带有不同荧光标记的dNTP,并利用激光和相机记录每个聚集体发出的荧光信号,从而确定碱基序列。  o ABI SOLiD技术:这是一种基于连接酶和荧光检测的技术,它与Illumina技术类似,也是将DNA打断成小片段,并在两端加上接头。然后将这些片段结合在微珠上,并在乳液PCR中进行扩增。最后将这些微珠固定在玻璃滑片上,形成聚集体。在测序过程中,每次加入四种带有不同荧光标记的二聚体(如AA,AC,AG,AT等),并利用连接酶将它们连接到模板链上。然后利用激光和相机记录每个聚集体发出的荧光信号,从而确定碱基序列。   第三代测序技术:是指基于单分子实时测序原理的测序技术,可以直接测定单分子的DNA或RNA的测序方法,不需要进行PCR扩增,从而减少错误和偏差,并且可以获得更长的读长(read length)。如Nanopore法、PacBio法、Helicos法等,它们通过使用特殊的微孔、DNA聚合酶、荧光探针等来对单个核酸分子进行直接测序,无需进行扩增或文库构建,并通过电信号或光信号来检测碱基加入的过程,从而获得超长读长和高准确度的碱基序列。  o PacBio公司的单分子实时测序技术(SMRT),它是基于DNA聚合酶在体外DNA复制过程中随机掺入带有荧光标记的dNTPs的原理。这些dNTPs可以用激光和相机检测,从而得到DNA的碱基序列。PacBio的优点是可以测定长达数十kb的读长,以及检测一些碱基修饰情况,如甲基化等。PacBio的缺点是测序错误率较高(约10-15%),主要为随机的插入和缺失错误,但可以通过多次测序和自身校正来提高准确度。  o Oxford Nanopore公司的单分子纳米孔测序技术(Nanopore),它是基于电信号检测原理,当DNA分子穿过纳米孔时会产生电流信号,一般以5个碱基为一组检测电流信号,对电流信号进行解码。Nanopore的优点是可以测定超长的读长,最长可达Mb级别,以及便携性和实时性。Nanopore的缺点是测序错误率也较高(约10-15%),主要为同聚物和串联重复区域的错误,以及反向重复序列对测序质量的影响。  o Helicos公司的真正单分子测序技术(tSMS),它是基于荧光检测原理,将DNA打断成小片段,在每个小片段的末端加上poly-dA,并于玻璃芯片上随机固定多个poly-dT引物。然后逐一加入带有荧光标记和终止子的dNTPs,并利用显微镜记录每个小片段发出的荧光信号,从而确定碱基序列。Helicos的优点是可以避免PCR扩增带来的偏差,以及对样品量和纯度要求低。Helicos的缺点是测序错误率最高(约20-30%),主要为缺失错误,以及同聚物对测序质量的影响。  4. 发展历史  测序技术的发展历史可以追溯到1975年,当时Frederick Sanger提出了链终止法,并用它成功地测定了噬菌体φX174的基因组序列(5375个碱基),这是人类历史上第一个完整的基因组图谱。  1977年,Walter Gilbert提出了链降解法,并用它成功地测定了噬菌体MS2的基因组序列(3569个碱基)。  1980年,Sanger和Gilbert因为在测序技术方面的贡献而共同获得了诺贝尔化学奖。  1986年,Leroy Hood等人发明了第一台自动化荧光测序仪,并用它成功地完成了人类线粒体DNA(16569个碱基)的全长测序。  1990年,人类基因组计划正式启动,目标是在15年内完成人类全基因组(约30亿个碱基)的测定。  1995年,Craig Venter等人利用全基因组随机打断法(Whole Genome Shotgun Method)首次完成了一种自由生活细菌——溶血性链球菌的全基因组测序(180万个碱基)。  1996年,Roche公司收购了454 Life Sciences公司,并开始开发基于焦磷酸测序法(Pyrosequencing)的高通量测序技术。  1998年,ABI公司推出了第一台基于荧光原位合成法(Fluorescence In Situ Sequencing,FISSEQ)的高通量测序仪——ABI 3700 Genetic Analyzer。  2001年,人类基因组计划和Celera Genomics公司分别公布了人类基因组的初步草图,标志着人类基因组计划的完成。  2005年,Solexa公司推出了第一台基于桥式扩增法(Bridge Amplification)和可逆终止法(Reversible Terminator)的高通量测序仪——Solexa 1G Genome Analyzer。  2006年,Illumina公司收购了Solexa公司,并开始开发基于桥式扩增法和可逆终止法的高通量测序技术。  2007年,Roche 454公司推出了第一台基于乳胶珠扩增法(Emulsion PCR)和焦磷酸测序法的高通量测序仪——Roche 454 GS FLX。  2008年,ABI公司推出了第一台基于乳胶珠扩增法和荧光连接法(Ligation Sequencing)的高通量测序仪——ABI SOLiD System。  2009年,Helicos Biosciences公司推出了第一台基于单分子荧光测序法(Single Molecule Fluorescent Sequencing)的单分子测序仪——HeliScope Single Molecule Sequencer。  2010年,Pacific Biosciences公司推出了第一台基于单分子实时测序法(Single Molecule Real-Time Sequencing,SMRT)的单分子测序仪——PacBio RS。  2011年,Ion Torrent公司推出了第一台基于半导体测序法(Semiconductor Sequencing)的高通量测序仪——Ion Torrent PGM。  2012年,Oxford Nanopore Technologies公司推出了第一台基于纳米孔测序法(Nanopore Sequencing)的单分子测序仪——MinION Device。  2015年,BGI公司推出了第一台基于芯片化荧光测序法(Chip-based Fluorescent Sequencing)的高通量测序仪——BGISeq-500。  2017年,10x Genomics公司推出了第一台基于连线染色体构象捕获技术(Linked-Reads Technology)的高通量测序仪——Chromium Genome System。  至此,从第一代到第三代的各种测序技术已经形成了一个多样化、竞争性和互补性的生态系统,为生命科学研究提供了丰富而强大的工具。  2018年到2023年最近5年测序技术的发展:   测序技术的创新和优化:在这段时间内,各种测序技术都在不断地进行创新和优化,以提高测序的速度、准确度、通量、成本效益等方面的性能。例如,Illumina公司推出了NovaSeq系列测序仪,可以实现每天测序6000个人类基因组 PacBio公司推出了Sequel II和Sequel IIe测序仪,可以实现每次测序8Tb的数据和平均读长20kb Oxford Nanopore公司推出了PromethION和GridION测序仪,可以实现每次测序100Tb的数据和平均读长30kb Ion Torrent公司推出了Genexus集成化测序系统,可以实现24小时内完成从样本到报告的全流程 10x Genomics公司推出了Chromium X系列测序仪,可以实现每次测序1.2Tb的数据和平均读长150kb BGI公司推出了DNBSEQ-T7和DNBSEQ-G400测序仪,可以实现每次测序6Tb和400Gb的数据和平均读长100bp。   测序技术的多样化和互补性:在这段时间内,各种测序技术都在不断地扩展其应用范围和领域,以满足不同的研究需求和目标。例如,Illumina公司推出了TruSeq Nano DNA Library Prep Kit,可以实现从低至100ng的DNA样本进行全基因组测序 PacBio公司推出了HiFi Reads技术,可以实现单分子测序的高准确度(99%) Oxford Nanopore公司推出了LamPORE技术,可以实现从RNA直接进行SARS-CoV-2病毒检测 Ion Torrent公司推出了Oncomine Precision Assay,可以实现从肿瘤组织或血液样本进行癌症基因检测 10x Genomics公司推出了Visium Spatial Gene Expression Solution,可以实现从组织切片进行空间转录组测序 华大智造推出DNBelab C系列高通量文库制备试剂盒,自动化文库制备系统,节省人力物力,提高通量,减少操作失误。   测序技术的应用和赋能:在这段时间内,各种测序技术都在不断地应用于各个领域和行业,以促进科学发现和社会进步。例如,在基因组学领域,完成了人类基因组计划第二阶段(HGP-write)的启动、人类细胞图谱计划(Human Cell Atlas)的进展、人类变异图谱计划(Human Variome Project)的更新等重大项目 在转录组学领域,完成了人类脑转录组计划(BRAIN Initiative)的初步结果、人类免疫细胞转录组计划(Human Immunome Project)的部分结果、人类肠道菌群转录组计划(Human Gut Microbiome Project)的部分结果等重要研究 在表观遗传学领域,完成了人类表观组计划(Human Epigenome Project)的部分结果、人类表观组图谱计划(Human Epigenome Atlas)的部分结果、人类表观组变异计划(Human Epigenome Variation Project)的部分结果等关键研究 在微生物组学领域,完成了地球微生物组计划(Earth Microbiome Project)的部分结果、人类口腔微生物组计划(Human Oral Microbiome Project)的部分结果、人类皮肤微生物组计划(Human Skin Microbiome Project)的部分结果等重要研究 在个体化医疗领域,完成了百万人基因组计划(Million Genomes Project)的部分结果、百万人精准医疗计划(Million Precision Medicine Project)的部分结果、百万人癌症基因组计划(Million Cancer Genomes Project)的部分结果等重大项目。  5. 应用领域  o 基因组学:是指研究生物体所有遗传信息及其功能、结构、表达、变异、进化等方面的学科,它依赖于测序技术来获取基因组序列和注释,以及进行基因组比较、基因组变异、基因组编辑等研究。  o 转录组学:是指研究生物体在特定条件下所有转录本的类型、数量、结构、功能和相互作用的学科,它依赖于测序技术来获取转录本序列和表达量,以及进行转录本组装、差异表达分析、可变剪接分析、非编码RNA分析等研究。  o 表观遗传学:是指研究生物体在不改变DNA序列的情况下,通过化学修饰或染色质重塑等方式调控基因表达的学科,它依赖于测序技术来获取DNA甲基化、组蛋白修饰、染色质可及性等信息,以及进行表观遗传标记分布、表观遗传变异、表观遗传调控等研究。  o 微生物组学:是指研究特定环境或宿主中所有微生物的种类、数量、功能和相互作用的学科,它依赖于测序技术来获取微生物的16S rRNA或全基因组序列,以及进行微生物分类鉴定、微生物群落结构、微生物功能分析等研究。  o 个体化医疗:是指根据个人的基因组、转录组、蛋白质组等信息,为其提供最适合的预防、诊断和治疗方案的医疗模式,它依赖于测序技术来获取个人的遗传变异和表达谱,以及进行个人风险评估、个人药物反应预测、个人靶向治疗选择等应用。  6. 挑战和未来  测序技术虽然已经取得了巨大的进步和成就,但仍然面临着一些挑战和问题,主要包括:   数据量:随着测序技术的发展,测序数据的产生速度远远超过了数据存储和处理的能力,导致数据管理和分析成为一个瓶颈。   数据质量:不同的测序技术有着不同的数据质量特征,如读长、准确度、偏好性等,这些特征会影响数据分析的结果和可靠性。   数据分析:测序数据的分析涉及到多种复杂的算法和工具,如比对、组装、注释、变异检测等,这些算法和工具需要不断地优化和更新,以适应不同的数据类型和需求。   数据存储:测序数据的存储需要占用大量的硬件资源和空间,同时也需要考虑数据的安全性和可访问性。   数据共享:测序数据的共享需要解决数据的标准化、元数据、伦理、法律等方面的问题,同时也需要建立有效的数据交换和利用的机制和平台。  测序技术的未来发展方向和趋势主要包括:   数据集成:通过将不同来源、不同层次、不同类型的测序数据进行整合和融合,以提高数据的信息量和价值。   数据挖掘:通过运用机器学习、人工智能等先进的技术和方法,对测序数据进行深入的分析和挖掘,以发现数据中隐藏的规律和知识。   数据应用:通过将测序数据与其他领域的数据进行关联和对比,以拓展测序数据的应用范围和意义。   数据创新:通过开发新的测序技术和平台,以提高测序数据的质量和效率,以及实现新的测序功能和目标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制