当前位置: 仪器信息网 > 行业主题 > >

三甲基苯基氢氧化铵溶液

仪器信息网三甲基苯基氢氧化铵溶液专题为您提供2024年最新三甲基苯基氢氧化铵溶液价格报价、厂家品牌的相关信息, 包括三甲基苯基氢氧化铵溶液参数、型号等,不管是国产,还是进口品牌的三甲基苯基氢氧化铵溶液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三甲基苯基氢氧化铵溶液相关的耗材配件、试剂标物,还有三甲基苯基氢氧化铵溶液相关的最新资讯、资料,以及三甲基苯基氢氧化铵溶液相关的解决方案。

三甲基苯基氢氧化铵溶液相关的资讯

  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物Oxalic acid dihydrate6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物Bis[3-(triethoxysilyl)propyl] tetrasulfide40372-72-3D-薄荷醇D-Menthol15356-60-2L-薄荷醇L-Menthol2216-51-51-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-辛醇1-Octanol111-87-55-甲基呋喃醛5-Methylfurfural620-02-0N-环己基甲酰胺N-Cyclohexylformamide766-93-84-甲基-2-戊醇4-Methyl-2-pentanol108-11-2N,N-二甲基-对苯二胺N,N-Dimethyl-p-phenylenediamine99-98-95,6,7,8-四氢-1-萘胺5,6,7,8-Tetrahydro-1-naphthylamine2217-41-6肼二盐酸盐Hydrazine dihydrochloride5341-61-7硫氰酸钾Potassium thiocyanate333-20-0二甲基硫醚Dimethyl sulfide75-18-3聚苯醚Polyphenyl ether31533-76-3叔丁基甲基醚 气相色谱级Tert-Butyl methyl ether1634-04-4七氟丁酸Heptafluorobutyric acid375-22-4甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-53,4-二羟基苄胺氢溴酸盐3,4-Dihydroxybenzylamine hydrobromide16290-26-9N,N-二(羟基乙基)椰油酰胺Coconut diethanolamide(CDEA)68603-42-9/61791-31-9甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-5异冰片基丙烯酸酯Isobornyl acrylate5888-33-5N,N' -二苯基硫脲1,3-Diphenyl-2-thiourea102-08-9聚合氯化铝Aluminum chlorohydrate1327-41-9四丁基氢氧化铵10%溶液Tetrabutylammonium hydroxide solution2052-49-5四丁基氢氧化铵25%溶液Tetrabutylammonium hydroxide solution2052-49-5L-苯基丙氨酸L-Phenylalanine63-91-2无水硫酸铈Cerium(IV) sulfate13590-82-4硫酸铈铵四水合物Ammonium cerium(Ⅳ) sulfate tetrahydrate18923-36-9脂蛋白脂肪酶Lipoprotein Lipase9004/2/8乙二胺≥99.5%标准品Ethylenediamine107-15-3壬二酸Azelaic acid (Nonanedioic acid)123-99-9N,N-二甲基-1-萘胺N,N-Dimethyl-1-naphthylamine86-56-6双(三氟甲烷)磺酰亚胺锂盐Bis(trifluoromethane)sulfonimide lithium salt90076-65-6
  • CEM EDGE-采用EPA方法1633从土壤和组织中提取40种PFAS化合物
    01 摘要全氟和多氟烷基物质(PFAS)是一类在各种工业中广泛使用的人造化学品,得益于其对非粘锅和灭火泡沫等产品的优异性能。这类化合物的稳定性和普遍应用已经导致它们在环境中的积累,并且缺乏有效的去除技术使得它们能够在人类和动物体内生物积累。已经证实,PFAS 会引发人体健康问题,包括癌症、内分泌干扰和不孕等。因此,对土壤和组织等环境固体样本的监测变得至关重要。EDGE PFAS&trade 系统是一个为从固体样本中提取 PFAS 设计的自动化溶剂提取系统。在本研究中,我们依照美国环保署 1633.1 方法,使用 EDGE PFAS 从土壤和组织中提取了 40 种添加的 PFAS 化合物。自动化提取过程每个样本耗时不足 10 分钟,且获得了令人满意的回收率和相对标准偏差,同时确保系统中无交叉污染。对于希望实现固体样本 PFAS 提取自动化的实验室而言,EDGE PFAS 是最佳选择。02 引言在当今工业界,已有数千种全氟和多氟烷基物质(PFAS)被广泛应用。这些化合物因其出色的耐用性和生物累积性而被称为“永恒化合物”。PFAS 的结构包含一个碳原子主键,氟原子从该主键延伸出去,形成的强碳-氟键是这些化合物稳定性的关键。由于其广泛使用,PFAS 已通过生产和废水排放渗透到环境中,并进入水源。一旦进入水源,PFAS 可以迅速扩散,进而污染土壤和生物体组织。更严重的是,这些化合物在动物和人体内显示出生物累积性,且对人体的暴露已被证实会导致不良健康后果。因此,评估环境中 PFAS 水平对于保障人类健康与安全至关重要。美国环境保护局(EPA)提供了 EPA 第 1633 方法来分析包括土壤和组织样本在内的 PFAS。该方法中详细介绍的固体样本提取过程是一个漫长的手工操作。然而,由于该方法是基于性能的,只要满足质量控制要求,就可以对提取过程进行修改。EDGE PFAS 系统能够在不到 10 分钟的时间内完成土壤和组织样本的提取,自动化了溶剂添加、提取和提取物过滤过程。这为从这些固体环境样本中快速、高效、简便地提取 PFAS 提供了可能。在本研究中,我们利用 EDGE PFAS 有效地从土壤和组织样本中提取了 PFAS,并且获得了可接受的回收率和 RSD 值。动物组织是特别难以提取的基质,它增加了样本制备和分析的复杂性。使用 EDGE PFAS 系统,一个简单的方法就可以适用于许多不同的困难样本类型。03 材料与方法试剂与样本土壤参考物质(编号Soil 2022-110)购自北美能力验证测试组织(NAPT)。磨碎的鸡肉购自当地食品零售商,按照美国环保署(EPA)推荐的方法 1633,用作组织样本的代表基质。大部分使用的试剂包括 HPLC 级别的甲醇、HPLC 级别的水、氢氧化钾、甲酸和乙酸,均采购自 MilliporeSigma 公司。氢氧化铵由霍尼韦尔提供。内标替换 PFAS 溶液(PFAC-MXF)、原生全氟烷基醚羧酸和磺酸盐溶液(PFAC-MXG)、原生PFAS溶液(PFAC-MXH)、N-甲基/乙基 FOSA 原生溶液(PFAC-MXJ)、X:3 氟调聚羧酸原生溶液(PFAC-MXJ)以及质量标记的PFAS提取标准溶液(MPFAC-HIF-ES)均由惠灵顿实验室提供。所使用的净化材料,包括石墨化碳黑,由雷斯特克公司提供。用于 PFAS 分析的 OasisWAX 6cc 真空柱购自沃特世公司。EDGE 样本制备在使用前,每个 Q-Cup 需用甲醇冲洗并干燥。Q-Cups 装配 Q-DiscPFAS 后,分别称取 5 克土壤或 2 克磨碎的鸡肉加入其中。每个样本按照表 1 所示浓度添加了原生 PFAS。提取的内部标准(EIS)按照 EPA 方法 1633 所述浓度添加。每个样本都准备了四份。随后,将所有的 Q-Cups 连同聚丙烯离心管一起放入 EDGE PFAS 架子中,并依照所列方法在 EDGE PFAS 系统上进行提取。表1. 原生PFAS化合物的添加浓度EDGE PFAS 从土壤和组织中提取 PFAS 的方法Q-Disc: Q-Disc PFAS周期 1提取溶剂:甲醇中的0.3%氢氧化铵(土壤)或甲醇中的0.05 M KOH(组织)顶部添加:15 mL冲洗:0 mL温度:65º C保持时间:03:00(分:秒)周期 2提取溶剂:甲醇中的0.3%氢氧化铵(土壤)或甲醇中的0.05 M KOH(组织)顶部添加:10 mL冲洗:5 mL温度:65º C保持时间:03:00(分:秒)洗涤 1洗涤溶剂:提取溶剂洗涤体积:15 mL温度:65º C保持时间:00:15(分:秒)洗涤 2洗涤溶剂:提取溶剂洗涤体积:15 mL温度:---保持时间:--:--(分:秒)提取后净化处理样本在 55°C 下通过氮气吹扫浓缩至 7 mL,随后使用高效液相色谱(HPLC)级别的水重新稀释至 50 mL。使用 50% 甲酸或 30% 氢氧化铵调整样本的 pH 值,使其达到 6.5 ± 0.5 的范围内。接着,根据美国环保署(EPA)第 1633 方法,样本经由松散的石墨化碳黑和 WAX 固相萃取(SPE)进行净化。分析过程分析工作由沃特世公司采用 ACQUITY&trade Premier 系统完成,该系统配备了 Xevo&trade TQ Absolute 质谱仪。液相色谱(LC)系统经过沃特世 PFAS 分析套件的改造。化合物在 ACQUITY Premier BEH C18 色谱柱(2.1 mm x 50 mm, 1.7 µ m)上实现分离。进样量为 2 µ l,流动相 A 为 2 mM 乙酸铵水溶液,流动相 B 为 2 mM 乙酸铵乙腈溶液。使用的梯度程序详见表2。监测每种化合物的 MRM(多反应监测)跃迁所用的离子源参数详见表3。表2. 用于分离的超高效液相色谱(UPLC)梯度程序表3. 使用的源参数04 结果土壤和鸡肉样本均采用了一种简洁快速的自动化提取方法进行提取;两种样本类型使用了相同的参数,唯有提取溶剂例外。提取溶剂的选择遵循了 EPA 第 1633 方法的建议。无论样本类型如何,从溶剂添加、提取到过滤的整个过程均在 10 分钟内完成。所有样本均采用了统一的净化和分析流程。如表 4 所示,两种样本类型的全部 40 种原生 PFAS 化合物均达到了合格的回收率和 RSD 值。同时,表 5 显示,两种样本类型的提取内标也实现了令人满意的回收率和 RSD 值。采用传统的提取技术时,通常需要三个长时间周期才能有效提取土壤和组织样本,组织样本的提取时间甚至超过 16 小时。而通过 EDGE PFAS 技术,仅需两个短周期,每个周期 3 分钟,就能实现土壤和鸡肉样本的良好回收率。土壤样本的回收率略高,RSD 值也更为集中,不过所有数据均处于可接受范围内。这一细微差别可能源于鸡肉样本中较高的脂肪含量及其他干扰物质的存在。组织样本被认为是提取过程中的一个具有挑战性的基质。对于这些难处理的样本,能够采用一种快速、简单且高效的自动化提取方法,将极大地助力那些面临大量 PFAS 样本分析需求的环境 PFAS 实验室。表4. 土壤和鸡肉中 40 种原生 PFAS 的平均回收率和RSD(n=4)表5. 土壤和鸡肉中提取内标的平均回收率值及%RSD(n=4) 05 结论全氟烷基物质(PFAS)的环境污染是一个全球性问题,其影响范围和程度随着检测技术的进步而日益显现。PFAS 在环境中的广泛分布已经触及地球上的多个角落,并在各种生物体内留下了污染的痕迹。随着我们对这一问题认识的深入,对于高效、快速的样本处理方法的需求也相应增加。在本研究中,我们采用了一种名为 EDGE PFAS 的技术,成功地从加标的土壤和组织样本中提取了 PFAS。这种方法不仅快速、简单,而且高效,能够自动化地进行大量样本的处理。实验结果显示,使用该技术获得的回收率和相对标准偏差(RSD)值均达到了可接受的水平。这一发现对于应对不断增长的样本处理需求具有重要意义,并为未来的环境监测和污染治理提供了有力的技术支持。参考1 United States Environmental Protection Agency. Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS)in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS, Revision 1, January, 2024. 在本次项目中,我们得到了 Waters Corporation 的大力支持与帮助。他们负责对提取物进行深入分析,展现了卓越的专业能力。对此,我们深感感激,并对他们长期以来的积极参与和持续合作表示衷心的感谢。
  • 上海汉尧携手色谱先生重磅推出耐阳离子对鬼峰柱
    鬼峰是液相色谱分析中常见问题之一,由于鬼峰来源很多,想要去除它是很难的事情,2018年色谱先生品牌推出Ghost Sniper Column,能有效去除常规流动相和泵中带来的鬼峰,然而含离子对流动相中鬼峰无法去除;通过一年多研究,2019年12月,我们将重磅推出阳离子对鬼峰捕集柱,为Ghost Sniper Column捕集柱系列增加一名新成员。 该阳离子鬼峰捕集柱不仅可以捕集常规流动相中的鬼峰,亦可捕集含阳离子对流动相中的鬼峰,从而降低不明因素对分析方法的干扰,提高分析结果的准确性。从图1 中可以看出该鬼峰捕集柱可适用于我们绝大多数常用的流动相体系。 实测案例:洗脱条件:流动相A:四甲基氢氧化铵溶液(取10%四甲基氢氧化铵溶液100ml,加水900ml,用磷酸调节pH至5.0)-乙腈(85:15)流动相B:乙腈流速:1.0ml/min检测波长:210nm时间038131420A%958240409595B%518606055 使用上述色谱条件,对空白与样品进行了安装与不安装阳离子对鬼峰捕集柱的对照测试。 实验结果:从上述4张图可以看出,阳离子对鬼峰捕集柱可以完美去除含阳离子对流动相中鬼峰。 从12月16日起,我们将正式开始发售阳离子对鬼峰捕集柱,欢迎新老客户前来咨询。
  • 同行客户通过仪器信息网成功订购远慕缓冲液
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 同行客户通过仪器信息网成功订购远慕缓冲液,下面是客户跟我们的聊天记录: 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当时就下了订单。 常用缓冲溶液的配制: 乙醇-醋酸铵缓冲液(pH3.7) 取5mol/L醋酸溶液15.0ml,加乙醇60ml和水20ml,用10mol/L氢氧化铵溶液调节pH值至3.7,用水稀释至1000ml,即得。 三羟甲基氨基甲烷缓冲液(pH8.0) 取三羟甲基氨基甲烷12.14g,加水800ml,搅拌溶解,并稀释至1000ml,用6mol/L盐酸溶液调节pH值至8.0,即得。 三羟甲基氨基甲烷缓冲液(pH8.1) 取氯化钙0.294g,加0.2mol/L三羟甲基氨基甲烷溶液40ml使溶解,用1mol/L盐酸溶液调节pH值至8.1,加水稀释至100ml,即得。 三羟甲基氨基甲烷缓冲液(pH9.0) 取三羟甲基氨基甲烷6.06g,加盐酸赖氨酸3.65g、氯化钠5.8g、乙二胺四醋酸二钠0.37g,再加水溶解使成1000ml,调节pH值至9.0,即得。 乌洛托品缓冲液 取乌洛托品75g,加水溶解后,加浓氨溶液4.2ml,再用水稀释至250ml,即得。 巴比妥缓冲液(pH7.4) 取巴比妥钠4.42g,加水使溶解并稀释至400ml,用2mol/L盐酸溶液调节pH值至7.4,滤过,即得。 巴比妥缓冲液(pH8.6) 取巴比妥5.52g与巴比妥钠30.9g,加水使溶解成2000ml,即得。 巴比妥-氯化钠缓冲液(pH7.8) 取巴比妥钠5.05g,加氯化钠3.7g及水适量使溶解,另取明胶0.5g加水适量,加热溶解后并入上述溶液中。然后用0.2mol/L盐酸溶液调节pH值至7.8,再用水稀释至500ml,即得。 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 涉及上百台仪器,晶瑞光刻胶研发工艺曝光
    IC光刻胶开发一般来说会涉及研发设备和测试设备,其中研发设备主要就是以混配釜和过滤设备为主,此类设备需考虑纯度控制,设备内一般使用PFA内衬或PTFE涂层,避免金属离子析出。测试设备(必备的)ICP-MS、膜厚仪、旋涂机、显影器、LPC、质谱、GPC,另外关于光刻机也是核心部分。光刻胶是半导体产业重要的耗材,而有这样一家企业从事光刻胶研发多年,去年却因采购光刻机投入了人们的视野,登上了风口浪尖。苏州晶瑞化学股份有限公司(已更名为“晶瑞电子材料股份有限公司”)是一家微电子化学品及其它精细化工品生产商,公司的产品主要包括超净高纯试剂、光刻胶、功能性材料以及锂电池粘结剂等,可应用于半导体、光伏太阳能电池、LED等相关行业,具体应用到下游电子信息产品的清洗、光刻、制备等工艺环节。其采购光刻机主要用于晶瑞化学集成电路用高端光刻胶研发项目。近日,仪器信息网从公开文件了解到该项目的相关信息,涉及工艺流程和仪器配置等信息,详情如下:项目主体工程研发方案建设项目工程一览表本项目主要生产设备一览表营运期工艺流程及产污分析:工艺流程及简述:本项目通过小试实验为晶瑞化学股份有限公司生产提供技术支撑,不产生具体产品,实验室在进行实验后得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料作为危险废物委托有资质单位处理,不作为产品销售或外卖。1. 研发工艺流程图因研发中心项目每次开发过程中所使用的化学原料、可能发生的化学反应等均具有不确定性,因此研发中心项目的流程以实验研发中心为单元进行表示如下:本次研发中心项目工作流程图工艺流程描述研发中心项目具体操作流程如下:a、实验前风险评估:在此阶段科学家将对需进行的研究进行预研发风险分析,并通过相关的安全分析得出需研究项目的试验安全等级,确定试验过程中需采取的安全和环保措施。b、风险评估通过后将进入研发小试实验阶段:因研发中心项目每次实验需用到的物料和用量均无法事先设定,需根据具体的研发方向和实验要求来确定,因此研发中心项目的物料使用种类和使用量具有不确定性。但公司从环保角度考虑,研发中心项目各实验室均按标准化实验室进行建设,本次研究实验除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实验室通风橱内进行,通风橱收集率为 90%,光刻机为密闭系统,产生的废气由单独的管道收集,收集率为 98%。收集后的废气经一套“蜂窝活性炭+袋式活性炭”两级活性炭处理装置处理后由 30m 高排气筒 P4 排放。研发中心项目实验过程得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料均收集后作为危废委外处理,有妥善的处理处置方式。具体研发实验工艺:1、树脂合成工艺:树脂合成工艺流程树脂合成工艺流程简述如下:除氧:常温、常压下,向搭载机械搅拌、冷凝管和温度计的四口烧瓶中持续通入氮气,除去反应瓶中的氧气,氮气作为保护气体,可以保护后续反应不受氧气干扰。聚合反应:除氧后向四口烧瓶中依次加入反应所需单体,引发剂及适量溶剂后,将四口烧瓶置于油浴锅(加热辅材为硅油)中使用机械搅拌器搅拌至四口烧瓶中的物料搅拌成透明均一的溶液,于设定温度条件下油浴锅加热反应,红外监测反应进程。油浴加热为间接加热,使用硅油作为加热辅材,硅油的沸点高于100摄氏度,油浴加热所需的加热温度为 20~60 摄氏度,该温度下硅油几乎不产生油雾,反应在通风橱中进行。引发剂和溶剂的添加种类与添加量,单体的配比等根据设定的工艺路线及实验的测试结果进行优化。该过程使用的单体有:(A)丙烯酸酯类单体(甲基丙烯酸 5-氧代四氢呋喃-3-基酯,2-甲基 2-金刚烷基甲基丙烯酸酯,丙烯酸叔丁酯);(B)马来酸酐;(C)降冰片烯;加入的溶剂为二氧六环;引发剂为:对甲基苯磺酸、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁腈、过氧化苯甲酰,以及氨水。反应过程中无废液产生,反应装置使用自来水间接冷却。该反应过程产生G1-1 有机废气、G1-2 氨气。聚合反应方程式一次清洗、过滤、干燥:使用滴液漏斗将树脂溶液用丙酮稀释,通过滴液漏斗缓慢滴加到 5 倍用量纯水中,将上述混合物倒入布氏漏斗,并用真空泵抽滤,得到白色粉末产物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止)。树脂沉淀过滤过程中,产生 S1-2 废滤材及 S1-2 清洗废液,均作为危废委托有资质单位进行处理。干燥过程产生 G1-2 有机废气。金属离子去除:将离子交换树脂填充到离子交换柱中。将醋酸丁酯和聚合物粉末于烧杯中溶解,并调节体系固含至 15-20 wt%。将树脂溶液直接倒入离子交换柱中,流经离子交换树脂,循环多次,ICP-MS 金属离子浓度低于 10 ppb。该过程产生固体 G1-3 有机废气、S1-3 离子交换树脂。二次清洗、过滤、干燥:将树脂溶液缓慢滴加到去 5 倍用量的纯水中(1L废水量),抽滤得到白色粉末状聚合物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止),产生 S1-4 废液、S1-5 废滤材、G1-4 有机废气。水分测试:加入卡尔菲休试剂,使用水分仪检测水分含量至 2000ppm,该过程产生 G1-5 有机废气,S1-6 测试废液。理化性质测试:树脂经过真空干燥后,在测试实验室中使用四氢呋喃、DMF、四氢呋喃、重水、氘代丙酮、氘代氯仿、DMSO-d6、甘油、丙二醇甲醚醋酸酯、乙腈、丙酮、溴化钾、硝酸钾等溶剂对树脂的理化性质进行测试。通过核磁测试聚合物结构,通过凝胶渗透色谱测定聚合物分子量大小,该过程产生 G1-6 有机废气以及 S1-7 测试废液。2、光产酸剂制备工艺:光产酸剂制备工艺流程生产工艺流程简述如下:备料:光产酸剂制备研发实验常用的原料包括:对羟基苯磺酸钠、十二烷基苯磺酸、樟脑坤磺酸钠、和三苯基氯化硫鎓盐,二苯基氯化碘鎓盐、醋酸酐、间苯二酚等;溶剂包括:纯水、甲醇等;该工序产生 G2-1 有机废气。合成:将光产酸合成所需原料钠盐加入到搭载机械搅拌的四口烧瓶中,用水溶解。光产酸剂合成反应方程式萃取:通过滴液漏斗向烧瓶中缓慢滴加鎓盐溶液,于室温下反应 3-5 个小时。静止分层,除去上层水溶液,并继续用水洗涤 3 次,用甲醇萃取产物,该工序产生 S7 废液。该工序产生 S2-1 废液以及 G2-2 有机废气。干燥、过滤:用无水硫酸钠干燥甲醇萃取液 24h,然后过滤。该工序产生 S2-2硫酸钠以及 S2-3 废滤材。旋蒸:使用旋转蒸发仪将滤液旋蒸后得到产物光产酸剂。该过程产生 G2-3有机废气。3、光刻胶制备与测试:光刻胶制备与测试工艺流程该工艺全部在光刻机中进行,工艺流程简述如下:样品制备与测试:样品制备所用树脂为实验室自主研发合成,光致产酸剂为自主研发合成;所用溶剂包括:丙二醇甲醚醋酸酯、乳酸乙酯、二甲苯、γ -丁内酯、丁酮、丙二醇单甲醚、醋酸丁酯、石油醚、二甘醇单丁醚、甲基异丁基酮、DMAC、NMP等。调制时根据设定的工艺路线或前次的测试结果选择加入不同的树脂和溶剂。将所用的树脂与光致产酸剂、碱性添加物三辛胺等和溶剂按照一定的比例混合、溶解。样品调制用树脂主要包括:酚醛树脂、重氮萘醌磺酸酯、叠氮类化合物、甲醚化三聚氰胺等。光产酸剂有:三苯基硫鎓盐、二苯基碘鎓盐、三嗪类化合物等。样品制备过程中无化学反应发生,不产生污染物。过滤:使用漏斗等过滤仪器将样品过滤,该工序产生 S3-1 废滤材。光刻胶成膜、烘干:使用匀胶显影涂布机将调制好的光刻胶涂布在硅片上,涂布好的硅片用100℃热板烘干。涂布、烘干过程中光刻胶中的有机溶剂挥发产生 G3-1 有机废气;剩余的光刻胶报废处理,产生 S3-2 废光刻胶。冷却:将涂布、烘干后的硅片冷却至室温,该工序产生 G3-2 有机废气。光刻胶曝光显影:将冷却至室温的硅片放入曝光机内曝光。曝光结束后将硅片放入显影液中显影,显影后使用纯水清洗硅片即可得到微米或纳米级别图案。实验室常用的显影液包括:四甲基氢氧化铵、氢氧化钾、氢氧化钠溶液等,该工序产生 S3-3 碱性废液。成像测试:主要通过显微镜、椭偏仪等仪器观察光刻胶图形的成像效果。测试后产生 S3-4 废硅片。4、仪器清洁:仪器清洗工艺流程工艺流程简述如下:残余物溶解:加丙酮溶解仪器内残留的光刻胶或树脂,产生溶解废液 S4-1,丙酮挥发产生有机废气 G4-1;清洗溶剂:加少量纯水,清洗仪器内残留的废液,产生含有机溶剂的清洗废液 S4-2,丙酮挥发产生有机废气 G4-2;擦拭:使用无尘布蘸取少量丙酮擦拭干净仪器内壁,产生有机废气 G4-3。润洗:待仪器干燥后,使用纯水对仪器进行润洗,产生的 W1 润洗水排入污水管网;干燥:仪器清洗干净后放在置物架自然晾干或放入烘箱烘干。上述流程除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实验室通风橱内进行。5、设备清洗设备清洗工艺流程使用纯水对设备进行清洗,使用的工段有:(1)显影工艺中对硅片进行喷淋清洗;(2)湿法曝光工段中作为镜头与硅片间的浸没液体;该工序产生清洗废液,作为危废委托有资质单位进行处理。纯水使用情况详情见下表:设备清洗用水汇总
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果结果:分离度,峰型都满足要求,完美。当然还是需要重现方法的。三根新色谱柱重现结果:zui终色谱条件:色谱柱:月旭Xtimate C18(4.6*250mm,5μm)。流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20检测波长:220nm;柱温:30℃;流速:1mL/min;进样体积:10μL。搞定交差!04 实验小结在液相应用方法开发过程中,首先需结合需要分离的目的,确定思路,一个方法zui初的思路,是决定这个方法开发的效果,效率的zui根本因素;其次是细节,任何细节都有可能导致你实验的成功与否;zui后是运气,牛顿发现万有引力还有运气成分呢,说不定你是下一个。同时,在一个方法确定好之后,一定需要使用一根新的色谱柱来验证,因为在方法开发过程中,我们会使用到各种流动相条件,会对色谱柱一个改性,特别是使用离子对试剂的方法,否则后续的重现性问题会是一个非常头痛的事情。
  • 我国重金属污染防控又升级!更省时精准的检测方法,你不能不知道
    第三次全国土壤普查2月16日,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。其中,土壤污染状况调查或作为此次普查中至关重要的一环。在土壤、水源等污染被人们越来越重视的今天,对于重金属污染中六价铬的高效、痕量检测方法,也越来越广泛的被运用。什么是六价铬?六价铬有什么可怕的?铬广泛应用于金属合金、表面涂层、颜料和其它产品等制造业中,同时存在于土壤和地下水中。其中六价铬是毒性最强的,比Cr3+大100倍。它可影响细胞的氧化、还原功能,能与核酸结合,对呼吸道、消化道有刺激性,有致癌、诱变作用。例如在1985年,我国全国调查铬酸盐生产工人发现,他们的肺癌发生率为52.63/10万,是一般人群的3.58倍,肺癌死亡率是43.85/10万,是一般人群的3.28倍。根据调查发现,六价铬具有高溶解度,强毒性,危害性极大,并且可谓是“无孔不入”。如何检测Cr6+?以生活饮用水为例,国标《GB5749-2006生活饮用水》中对六价铬限量值为0.05mg/l,检验方法为二苯碳酰二肼分光光度法,最低检出限为0.004mg/l,此方法干扰因素多、灵敏度低。PickeringLaboratories科学家们优化美国EPA218.7规定的柱后衍生结合UV/VIS检测器分析饮用水中六价铬的方法,提出检测时间短、噪音水平低、高灵敏度的检测方法——离子色谱/柱后衍生结合UV/VIS检测器法。离子色谱/柱后衍生结合UV/VIS检测器法样品制备玻璃器皿和容器用1:1水和硝酸清洗后用去离子水冲洗。用250mM硫酸铵和500mM氢氧化铵,将所有样品和标准品pH调节至9.0-9.5,调节pH时每100mL样品缓冲液的使用不能超过1ml。所有样品和标准品放置冰箱,24h分析。分析条件离子色谱:ICS900或具备相同功能的离子色谱系统(ThermoScientific);分析柱:IonPacAS22,4x250mm(ThermoScientific);预柱:IonPacAS22,4x250mm(ThermoScientific)流速:1mL/min;柱温:30℃;流动相:250mM硫酸铵和500mM氢氧化铵;进样体积:100μL;柱后衍生条件柱后衍生系统:VectororOnyxPCX六价铬专用型反应池体积:1.0ml;反应池温度:30℃;试剂:2mM二苯基卡巴肼,1N硫酸,10%甲醇试剂;流速:0.33mL/min;检测器:UV/VIS,530nm。实验结果
  • 最小化交叉污染 扩展LC/MS/MS定量范围
    目的为证实在进行四个以上数量级进行定量时, LC/MS/MS的样品残留量可降低至可测得的水平以下。背景现今质谱仪的灵敏度已经能够实现跨五个数量级的检测,且柱上进样量的定量下限可低至阿克级。要使高性能质谱仪的灵敏度不断增加,也要求LC系统上的样品交叉污染达到最低,以优化分析性能。有关验证跨多个数量级的生物分析方法的规范通常要求最高浓度校准品的样品残留量不多于最低浓度校准品的20%。1因此,为使校准范围跨四个数量级,必须使样品残留量低至0.002%以下。若校准范围在四个数量级以上,则必须使交叉污染减少至更低的水平。通常,随着对柱上进样量交叉污染的要求不断严格,系统污染变得非常关键。LC系统及方法必须能够重复地将分析物自进样器、管道及色谱柱上去除,以使每次进样都没有交叉污染。在对奥美拉唑进行分析时,Xevo TQ-S上的ACQUITY UPLC I-Class系统可使样品残留量减少至0.0005%以下,且其线性定量范围跨度可达四个数量级以上。解决方案Xevo TQ-S是具有高灵敏度的用于LC/MS/MS分析的质谱仪。它需要一个能够解决交叉污染问题的UPLC 入口,以与该仪器宽泛的线性动态范围相匹配。ACQUITY UPLC I-Class系统可选用两种样品管理器:固定定量环(SM-FL)或流通针式(SM-FTN)进样器,这两者在设计上均能实现良好的抗交叉污染性能。在分析奥美拉唑时,采用SM-FTN设计。该种类型的进样器,在分析过程中,以移动相(梯度)冲洗针头内部。在进样口,FTN采用单种溶剂清洗针头外部,且在设计上能够实现防止清洗溶液与样品或流动相接触。在密封面同时清洗针头以及密封垫可减少污染几率。清洗程序已编入本方法中,且可设置为在进样之前以及进样之后清洗。清洗溶剂的组成取决于样品,且其必须能够很容易地溶解分析物。对于pKa为8.8的奥美拉唑来说,可采用含有氢氧化铵的清洗溶剂来清洗注射器。此外,当将氢氧化铵用于流动相时,系统的交叉污染将更低。在碱性条件下,可使奥美拉唑的离子化效率进一步提高。为评估交叉污染,向色谱柱注射具最高浓度(10 ng/mL或10 pg)的标准品。如图1所示,在注射最高浓度标准品之后首次进行空白注射时,未观察到有交叉污染。基于校准曲线,确定样品残留量低于0.0005%,而这低于质谱的检测下限。如图2所示,在500 ag至10 pg范围内,采用1/x权重系数,可获得相关系数为0.99997的线性,这足以证实可在与Xevo TQ-S连用的ACQUITY UPLC I-Class系统上对奥美拉唑进行线性校准。小结ACQUITY UPLC I-Class系统非常适用于需要跨四个以上数量级进行定量的高灵敏度LC/MS/MS方法的交叉污染要求。在对奥美拉唑进行分析时,在Xevo TQ-S上未检测到样品残留,且由此可知,样品残留量已减少至0.0005%以下。由于样品残留量很少,可在500 fg/mL至10 ng/mL或500 ag至10 pg之间进行校准。参考文献1. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(三)——流动相在线除盐技术
    药物中的杂质是指除药物化学体以外的任何成分,是反映药品质量和安全性的重要指标。在制药工业中,关于药物杂质的研究主要是聚焦在使用液相色谱对其进行分离、鉴别和定量上。ICH规定当药物中的杂质含量大于0.1%时,应进行定性。传统的方法是先将杂质进行分离制备,得到纯品后再通过NMR、IR及MS等仪器进行结构鉴别。此方法,一是周期长;二是分离制备成本高;三是一些含量较少且不稳定的杂质难于制备。而近年发展迅速的LC-MS联用技术,根据杂质的来源,产生条件,推测药物中可能含有的杂质,并结合药物母核的质谱裂解规律和杂质的产生原理推断杂质的结构,可以很好地解决这些缺点,已成为杂质研究的一种新理念,且该技术已被广泛应用于药物发现、开发、制造以及质量控制等各个阶段。 LC-MS联用技术中,液相色谱分离是进行质谱结构鉴别的基础,然而现有的很多液相色谱分离方法为改善分离或检测经常会使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液或离子对试剂),这显然与质谱的ESI(APCI)-MS不兼容。因此当采用LC-MS联用技术时,必须将流动相转换为适合于ESI(APCI)-MS的挥发性流动相。而摸索新的适合于LC-MS联用技术的流动相体系往往很难对杂质进行有效分离,且又耗时费力。赛默飞UltiMate 3000双三元液相色谱(DGLC)可实现在线去除流动相中的非挥发性缓冲盐,让您无需改变现有的分析方法就可轻松使用LC-MS联用技术对药物杂质进行更深入的研究。 仪器系统连接双三元梯度泵的右泵保持原来的分析流动相条件不变,各杂质成分在一维分析柱中实现分离,通过2位置六通阀将已被常规检测器检测的目标杂质峰储存至loop环中;左泵采用与MS兼容的挥发性流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,利用质谱上固有的六通阀,将流动相中的非挥发性盐除去,再调整左泵流动相比例将目标待测物洗脱至MS中,通过子离子扫描等方式,得到杂质的裂解碎片,结合物质的裂解规律,对药物中的杂质进行逐一鉴别。系统流路连接见图1.。图1 系统流路连接示意图 最适合质谱前端使用的在线脱盐技术应用阿莫西林(Amoxicillin),是一种最常用的青霉素类广谱&beta -内酰胺类抗生素,在2010版《药典》二部中,有关物质分析采用HPLC-UV法,流动相为0.05mol/L磷酸二氢钾溶液(用2mol/L氢氧化钾溶液调节pH值至5.0) 和乙腈,梯度洗脱。样品溶液在经过碱破坏后,其分离谱图见图2.。采用双三元液相色谱的在线脱盐技术,在一维色谱保持原有分析条件并经过UV检测后,可将其中的未知杂质成分(包括降解产物)切换并储存至loop环中;二维色谱分离系统采用与MS兼容的流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,在线去除一维流动相中的磷酸二氢钾等非挥发性缓冲盐后,利用MS进行多级碎片离子扫描,结合&beta -内酰胺类抗生素的裂解规律,推断未知杂质成分的结构。整个过程在密闭系统内自动并连续地完成,而且可对其中的多个杂质同时进行结构鉴别。图2 阿莫西林碱破坏后的样品分离谱图(UV 230nm)图3 4号杂质TIC谱图(上图为负离子模式,下图为正离子模式)图4 4号杂质特征离子谱图(左图为负离子模式[M-H]-=338.1,右图为正离子模式[M+H]+=340.1,初步推断杂质分子量=339.1) 头孢地尼(cefdinir) 也属&beta -内酰胺类抗生素,用于对头孢地尼敏感的葡萄球菌属、链球菌属等菌株所引起的感染。原标准分析方法中使用了0.25%四甲基氢氧化铵溶液(用磷酸调节pH=5.5)+0.1mol/L乙二胺四醋酸二钠溶液的非挥发性流动相,样品经过热破坏后分离谱图见图5. 在不改变原流动相条件的情况下,采用DGLC的流动相在线除盐技术,使用LC-MS联用技术对原料药中的杂质(包括降解杂质)成功进行了定性研究。且该方法可以将杂质逐一进行分析,结合已知文献,共鉴别了其中的6种杂质。 图5 样品经过热破坏后一维分离谱图(UV254 nm)图6 其中15号杂质的特征离子谱图(左图为负离子模式[M-H]-=367.9,右图为正离子模式[M+H]+=369.6,初步推断杂质分子量368.8) 药典中收载的关于杂质的分析方法很多都含有非挥发性盐类。赛默飞UltiMate 3000双三元液相色谱(DGLC)采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,可以将流动相中的非挥发性缓冲盐在线去除。当您需要使用LC-MS联用技术对杂质进行进一步的深入研究时,赛默飞UltiMate 3000双三元液相色谱(DGLC)的流动相在线除盐技术,可让您永远不再为流动相中的非挥发性缓冲盐而烦恼。且该系统可同时实现在线富集、在线浓缩、在线净化等,可谓是最适合质谱使用的液相色谱仪。参考文献1、采用二维柱切换液质联用法对流动相进行在线除盐分析阿莫西林中有关物质2、采用二维柱切换液质联用流动相在线除盐分析头孢地尼中有关物质3、双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 哪些方法可以测定柴油的氧化性?
    1、按SH/T0175方法进行测定  方法概要:将以过滤过的350mL试样,注入氧化管,通入氧气,速率为50 mL /min在93℃的温度下氧化16h。然后将氧化后的试样冷却到室温,过滤得到的可过滤的不溶物。用三合剂把粘附性不溶物从氧化管上洗下来,把三合剂蒸发除去,得到的粘附性不溶物。可过滤不溶物和粘附性不溶物的量之和为总不溶物量硫含量2、按GB/T 380方法进行测定  方法概要:将适量样品在灯中燃烧,用0.3%碳酸钠水溶液吸收燃烧生成的二氧化硫,并用0.05N的盐酸标准溶液滴定吸收液,用溴甲酚绿甲基红作滴定指示剂酸度3、按GB/T 258方法进行测定  方法概要:容量法,本方法系用沸腾的乙醇抽出轻柴油中的有机酸,然后趁热用0.05N氢氧化钾乙醇溶液滴定,中和100亳升石油产品所需氢氧化钾的毫升数称为酸度十六烷值4、按GB/T 386方法进行测定  十六烷值是指与柴油自燃性相当的标准燃料中所含正十六烷的体积百分数。标准燃料是用正十六烷与2-甲基萘按不同体积百分数配成的混合物。其中正十六烷自燃性好,设定其十六烷值为100,α-甲基萘(1-甲基萘)自燃性差,设定其十六烷值为0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),设定其十六烷值为15,十六烷值测定是在实验室标准的单缸柴油机上按规定条件进行的。十六烷值高的柴油容易起动,燃烧均匀,输出功率大;十六烷值低,则着火慢,工作不稳定,容易发生爆震。一般用于高速柴油机的轻柴油,其十六烷值以40-55为宜;中、低速柴油机用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低与其化学组成有关,正构烷烃的十六烷值高,芳烃的十六烷值低,异构烷烃和环烷烃居中。当十六烷值高于50后,再继续提高对缩短柴油的滞燃期作用已不大;相反,当十六烷值高于65时,会由于滞燃期太短,燃料未及与空气均匀混合即着火自燃,以致燃烧不完全,部分烃类热分解而产生游离碳粒,随废气排出,造成发动机冒黑烟及油耗增大,功率下降。加添加剂可提高柴油的十六烷值,常用的添加剂有硝酸戊酯或已酯。
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 欧洲化学品管理署(ECHA)寻求三种化学物质测试数据
    欧洲化学品管理署(ECHA)近日对三种化学物质的利益相关方发出通知,寻求三类化学物质的测试数据,以避免重复的数据测试,这三种物质为:  • 四乙基氢氧化铵,2-羟基-N-(2-羟乙基)-N,N-二甲基,十六~十八烷和十八烷不饱和脂肪酸,氯化物:两代生殖毒性(6月10日前)   • 三聚磷酸钠:亚慢性毒性(5月24日前)   • 11-氨基十一酸:生殖毒性(5月24日前)。
  • 动态表面张力在半导体行业的应用
    5G、人工智能、智慧交通等消费电子、汽车电子、计算机等应用领域的发展,对芯片的性能提出更高的要求,加快了芯片制程升级,从而带动了半导体行业的发展。半导体晶圆制造工艺包括清洗、曝光、显影、刻蚀、CMP(化学机械抛光)、切片等环节,需要用到各种特殊的液体,如显影液,清洗液,抛光液等等,这些液体中表面活性剂的浓度对工艺质量效果产生深刻的影响。动态表面张力在半导体晶圆清洗工艺的应用半导体晶圆清洗工艺要求芯片制造技术的进步驱动半导体清洗技术快速发展。在单晶硅片制造中,光刻,刻蚀,沉积等工艺后均设置了清洗工艺,清洗工艺在芯片制造进程中占比最大,随着芯片技术节点不断提升,对晶圆表面污染物的控制要求也越来越高。为了满足这些高的清洁度要求,在其中部分需要化学清洗的工序,清洗剂的浓度一定要保持在适当的浓度范围之内,成功的清洗工艺有两个条件:1. 为了达成所需的清洁效果,清洗剂的浓度需要在规定范围内。2. 在最后的漂洗过程后,须避免表面活性剂在硅晶圆上残留,残留的表面活性剂对后面的处理工艺会造成不利影响。清洗工艺的好坏直接影响下一道工序,甚至影响器件的成品率和可靠性,然而在清洗工艺过程中,工人往往疏于监控清洗和漂洗工序中表面活性剂的浓度,表面活性剂经常过量,而为了消除表面活性剂过量带来的不利影响,又往往要费时费力地增加漂洗工序阶段的成本。德国析塔SITA动态表面张力仪监控晶圆清洗工艺中清洗剂的添加德国析塔SITA动态表面张力仪通过动态表面张力的测试,建立清洗槽液的表面张力值与表面活性剂浓度关系曲线,进而实现通过监控晶圆清洗工艺中表清洗剂表面张力的变化来调整清洗剂的添加量,从而优化晶圆清洗工艺。动态表面张力在半导体晶圆切片工艺的应用半导体晶圆切片和CMP工艺要求晶圆切片工艺是在“后端”装配工艺中的第一步。该工艺将晶圆分成单个的芯片,用于随后的芯片接合(die bonding)、引线接合(wire bonding)和测试工序。在芯片的分割期间,金刚石刀片碾碎基础材料(晶圆),同时去掉所产生的碎片。在切割晶圆时某一种特殊的处理液会用于冷却工作时的刀片,这种处理液中会加入某种表面活性剂,以此来润滑刀片并移除切割过程中产生的碎片,改善切割品质、延长刀片寿命。在半导体晶圆CMP工艺中,利用机械力作用于晶圆片表面,同时研磨液中的化学物质与晶圆片表面材料发生化学反应来增加其研磨速率。抛光液是 CMP 技术中的决定性因素之一,其性能直接影响被加工工件表面的质量以及抛光加工的效率。在CMP抛光液中,一般使用水基抛光液作为加工介质,以去离子水作为溶剂,加入磨料(如 SiO2、ZrO2 纳米粒子等)、分散剂、pH 调节剂以及氧化剂等组分,每个组分都具有相应的功能,对化学机械抛光过程起到不同的作用。磨料通过抛光液输送到抛光垫表面后,在抛光垫和被加工表面之间同时受到压力作用以及相对运动的带动,通过对被加工表面形成极细微的切削、划擦以及滚压作用,对表面材料进行微量去除。磨料的形状、硬度、颗粒大小对化学机械抛光都具有重要的影响。分散剂是一种兼具亲水性与亲油性的界面活性剂,能够均匀分散一些不溶于液体的固体颗粒,对于抛光液而言,分散剂能够减少抛光液中磨料颗粒的团聚,提高抛光液中磨料的分散稳定性。德国析塔SITA动态表面张力仪监控晶圆切片和CMP工艺种特殊处理液和抛光液的添加目前在晶圆切片和CMP工艺中,监测切片过程中的特殊处理液和研磨液表面活性剂浓度往往容易出现问题,如果将样品送到第三方实验室进行检测,成本高,且有一定时差,无法快速矫正表面活性剂浓度。德国析塔SITA动态表面张力仪,可以建立液体表面张力值与表面活性剂浓度关系曲线。在几分钟内完成特殊处理液和研磨液动态表面张力的测量,进而可以量化数据呈现液体表面活性剂浓度,帮助工人迅速将实际值与期望值作比较,及时调整表面活性剂浓度。动态表面张力在半导体晶圆光刻工艺的应用半导体晶圆在光刻工艺中使用显影剂溶解光刻胶,将光刻胶上的图形精确复制到晶圆片上。四甲基氢氧化铵(TMAH)溶液是常用的显影剂,人们往往在四甲基氢氧化铵(TMAH)溶液中添加表面活性剂,以降低表面张力,改善光刻工艺中光刻胶的粘附性,改善光刻显影液对硅片涂胶面的润湿,使溶液更易亲和晶圆表面,确保一个稳定且不与表面几何形状相关的蚀刻过程。德国析塔SITA动态表面张力仪监控TMAH溶液表面活性剂浓度德国析塔SITA动态表面张力仪,可以建立TMAH溶液表面张力值与表面活性剂浓度关系曲线。通过快速连续监控TMAH溶液表面张力,并在设定的范围内自动比较数据,使用工人可以在表面活性剂浓度超出限定值后,短时间迅速反应采取相关措施。同时析塔SITA动态表面张力仪可对MAH溶液的润湿性能进行简便快捷的分析。操作简单、无需任何专业经验。动态表面张力在半导体晶圆蚀刻工艺中的应用在太阳能电池生产过程中,需要对晶圆进行蚀刻工艺,将显影后的简要蚀刻区域的保护膜去除,在蚀刻时接触化学溶液,达到溶解腐蚀的作用,形成凹凸或者镂空成型的效果,使用工人往往在蚀刻液中添加异丙醇IPA,以降低蚀刻液表面张力。晶圆蚀刻工艺中容易存在的问题是:蚀刻过程的对流会引起异丙醇的快速蒸发,蚀刻液表面张力增加,蚀刻工艺质量下降。因此需要将蚀刻液中异丙醇浓度控制在规定范围内。德国析塔SITA动态表面张力仪监控蚀刻液中异丙醇浓度德国析塔SITA动态表面张力仪可以精确快速测量蚀刻液动态表面张力,使用工人可以将测量值与实际所需值进行对比,得出异丙醇浓度是否在规定范围内,如超出限定值后,则可以在短时间内快速采取相应措施,达到高质量的蚀刻工艺和避免异丙醇过量,节省成本。 析塔SITA动态表面张力仪在半导体行业的客户案例德国析塔SITA动态表面张力仪介绍德国析塔SITA动态表面张力仪采用气泡压力法测量液体动态及静态表面张力,通过智能控制气泡寿命,测出液体中表面活性剂分子迁移到界面过程中表面张力的变化过程,即连续的一系列动态表面张力值以及静态表面张力值。德国析塔SITA动态表面张力仪,共有4种型号。附录(英文原文)●Monitoring of wetting characteristics of etchants and developers●Monitoring the surfactant concentration of TMAH-solutions●Monitoring the surfactant concentration in wafer cleaning processes翁开尔是德国析塔SITA中国独家代理,如需了解各种关于析塔表面张力仪信息以及应用,欢迎致电【400-6808-138】咨询。
  • 继血碘尿碘之后,食品中碘元素再次启动ICPMS方法
    继血碘尿碘之后,食品中碘元素再次启动ICPMS方法关注我们,更多干货和惊喜好礼● 碘的检测 ●iCAP RQ ICPMS碘元素是人体必需的微量元素,90%以上来源于食物,由消化系统进入血液循环到达在人体各个组织器官,碘的代谢主要通过肾脏由尿液排出。碘元素在人体处于动态平衡状态,缺乏或过量均会导致相关疾病,可通过检测血液尿液中的碘元素判断个体对碘元素的需求,从而精确选择含碘食物的摄入。ICPMS作为元素分析利器之一,很早就被广大分析工作者应用于血液尿液中碘的测定。此前WS/T 107.2-2016《尿中碘的测定》第2部分便将电感耦合等离子体质谱法作为尿液中碘元素分析方法之一,近日发布的最xin食品标准GB5009.267-2020《食品中碘的测定》再一次新增ICPMS方法,将ICPMS测定碘的方法推广至食品安全领域。ICPMS测定碘元素 关于ICPMS测定碘元素方法,赛默飞具有丰富的经验,很早之前便采用iCAP Q和RQ ICPMS实现血液尿液中碘元素的精确分析。WS/T 107.2-2016《尿中碘的测定》第2部分采用的稀释剂为0.25%四甲基氢氧化铵(TMAH)和0.02%曲拉通X-100混合溶液,方法检出限为0.4μg/L(换算至上机溶液检出限为0.04μg/L),可以直接测定碘含量为0 μg/L~1000 μg/L的尿样。本次GB5009.267-2020《食品中碘的测定》中ICPMS方法采用的稀释剂为0.5%TMAH,方法检出限为0.01mg/kg(换算至上机溶液为0.1μg/L),两个方法难度相当。为了消除同学们对新标准实施忧虑,我们采用赛默飞iCAP RQ ICPMS对GB5009.267-2020中ICPMS方法进行验证,实验证明iCAP RQ ICPMS具有极高的灵敏度,对于碘元素的检出限可达0.014 μg/L(实验中所用TMAH为分析纯试剂,碘的背景较高,若使用纯度更高的TMAH可获得更低检出限),按照0.5g取样量,定容至50mL计算,可获得0.0014mg/kg方法检出限,远低于标准要求。0.5% TMAH为碱性试剂,属于高基体样品,对仪器的基体耐受性提出挑战,下图为对0.5% TMAH连续分析4h以上内标(Re、In和Rh)回收情况,内标回收率均稳定在90%~110%之间。 iCAP RQ ICPMS之所以长期测试0.5% TMAH仍能保持出色的稳定性,有赖于其稳健的等离子性能和专利嵌片耐盐技术,对于0.5% TMAH无需气体稀释,采用标配进样系统即可获得稳定的测试效果。针对碘元素,赛默飞不仅具有成熟的元素总量分析方案,还有丰富的碘形态分析案例,更多精彩敬请关注!飞飞祝大家圣诞快乐!MERRY CHRISTMAS“码”上下载填写表单即刻获取【ICPMS应用文集】 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • 《重磅新闻:新国标GB5009.34-2022 食品中二氧化硫的测定发布》济南盛泰科技推出专用机
    2022年7月28日国家卫生健康委颁布了新的食品二氧化硫国家标准《GB5009.34-2022 》,并定于2022年12月30日实施。新国标与原GB 5009.34-2016比较,其主要变化有以下几点:(1)修订了原滴定法为酸碱滴定法。(2)增加分光光度法、离子色谱法。第一法 酸碱滴定法,前处理使用充氮蒸馏方法,试样酸化后在加热条件下亚硫酸盐等系列物质释放二氧化硫,使用过氧化氢溶液吸收,二氧化硫被氧化为硫酸根离子,采用氢氧化钠标准溶液滴定,根据消耗量计算二氧化硫的含量。第二法 分光光度法,样品使用甲醛缓冲吸收液浸泡或加酸充氮蒸馏使其中的二氧化硫释放被甲醛溶液吸收,生成稳定的羟甲基磺酸加成化合物,酸性条件下与盐酸副玫瑰苯胺生成蓝紫色络合物,通过测定该络合物的吸光度得到二氧化硫的浓度。第三法 离子色谱法,前处理通过将试样中的亚硫酸盐系列物质进行酸处理后转化为二氧化硫,采用充氮-水蒸气蒸馏方法随水蒸气馏出,被过氧化氢吸收并氧化为硫酸根离子,使用离子色谱仪进行测定。在标准附录B中,对水蒸气蒸馏装置(图5)进行了要求。相比于前两种方法,离子色谱法的水蒸气蒸馏装置更加复杂,对检测机构和食品企业出厂检测的效率提出了挑战。同时存在占用实验室空间、蒸气与氮气流量不易控制、装置气密性难以保证等问题,最终影响到检测结果。在新标准中,上述第一法与第二法的前处理过程均使用了玻璃充氮蒸馏器装置(图2)济南盛泰电子科技有限公司继为《GB5009.34-2016》国标研制了全国第一台型号为:ST106-1RW的智能一体化蒸馏仪(又名:食品二氧化硫测定仪),具有:远红外自动加热+自动称重计量蒸馏+内置压缩机冷却水自循环系统+自动清洗等特色功能,深受国内各级食药检验检测单位、海关、高等院校、科研院所等单位的喜爱。这次新国标的修订,济南盛泰科技全程参与了新国标数据的验证,并为此次新国标研发了四款全新配套仪器,ST109A/ST109B/ST109C/ST109D。可适用于第一法、第二法的全自动化检测或充氮蒸馏预处理;第三法离子色谱法的水蒸气蒸馏。这四款产品的型号分别为:ST109A全自动食药二氧化硫分析仪ST109B智能食药二氧化硫测定仪ST109C智能食药二氧化硫测定仪ST109D智能一体化水蒸气蒸馏仪欢迎大家做更多的了解!济南盛泰电子科技有限公司
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。预 处 理水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。仪 器 100ml具塞量筒或比色管。试 剂(1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。试 剂 水样稀释及试剂配制均用无氨水。(1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。(2) 1mol/L盐酸溶液。(3) 1mol/L氢氧化钠溶液。(4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。(5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。(6) 防沫剂,如石蜡碎片。(7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。步 骤(1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。(2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项(1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。(2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。(3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法 GB7479--87概 述1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。仪 器(1) 分光光度法。(2) pH计。试 剂 配制试剂用水应为无氨水。1. 纳氏试剂 可选择下列一种方法制备。(1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。步 骤1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。2. 水样的测定(1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。注意事项(1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。(2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法GB7481--87概 述1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。仪 器(1) 分光光度计。(2) 滴瓶(滴管流出液体,每毫升相当于20±1滴)试 剂 所有试剂配制均用无氨水。1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。步 骤1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。试 剂(1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。(2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。(3)0.05%甲基橙指示液。步 骤1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。计 算氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法概 述1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。仪 器(1) 离子活度计或带扩展毫伏的pH计。(2) 氨气敏电极。(3) 电磁搅拌器。试 剂 所有试剂均用无氨水配制。(1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。(2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。(3) 电极内充液:0.1mol氯化铵溶液。(4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。步 骤1. 仪器和电极的准备 按使用说明书进行,调试仪器。2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。注意事项(1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。(2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。(3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。(4) 水样不要加氯化汞保存。(5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。(6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 碱溶液提取-火焰法测定土壤中的六价铬
    土壤中铬通常以三价铬和六价铬的形式存在,六价铬有剧毒,是一种被公认的致癌物。因此,掌握土壤中的六价铬污染状况势在必行。为贯彻《中华人民共和国环境保护法》和《中华人民共和国土壤污染防治法》,规范土壤和沉积物中六价铬的测定方法,中华人民共和国生态环境部于19年12月发布了HJ 1082-2019.土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法。 本文参考HJ 1082-2019.的方法,使用日立原子吸收分光光度计ZA3000,测定土壤中的六价铬。土壤的碱溶液提取法碱性提取液 :分别称取30 g碳酸钠和20 g氢氧化钠,溶解于纯水中,并定容至1 L。(pH>11.5)磷酸氢二钾?磷酸二氢钾缓冲液 : 分别称取87.1 g磷酸氢二钾和68.0 g磷酸二氢钾,溶解于纯水中,并定容至1 L。■ 操作步骤 通过碱溶液提取法,可以仅提取土壤中的六价铬。土壤碱提取液中的六价铬分析(火焰法)通过碱溶液提取法提取5.00 g样品,定容至100mL,测定出的检出限为0.5mg/kg。使用高盐燃烧头。■测定条件 ■测定结果 对土壤1和土壤2样品进行了测定,测得土壤1中含六价铬的量微1.80±0.04,土壤2并未检测到六价铬。分别对两个样品进行1mg/LCr加标实验,土壤1和土壤2回收率分别为99%和101%,证明实验结果准确可靠。 综上所述,日立原子吸收分光光度计ZA3000采用偏振塞曼校正法,即使对含盐分高的土壤分解液样品,也可以不受共存物质的背景吸收干扰,高精度分析土壤中的六价铬。
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分:土壤中总砷的测定》(GB/T 22105.2-2008)。5.2.53 总铅5.2.53.1 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.53.2 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.53.3 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.53.4 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.54 总镉5.2.54.1 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.54.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55 总铬5.2.55.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.55.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.56 总镍5.2.56.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.56.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.56.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。土壤含水量的测定按《土壤检测 第 3 部分:土壤机械组成的测定》(NY/T 1121.3-2006)。采用林业行业标准的检测方法按《森林土壤含水量的测定》(LY/T 1213-1999)测定含水量。5.3 结果上报检测实验室完成样品检测后,检测员需及时填写检测原始记录。原始记录经三级审核无误后,检测结果(附表 4)及时录入上报至土壤普查工作平台,经省级质量控制化验室审核后确认。原文下载:全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 聚焦3.15,海能在行动:食品酸价和过氧化值的检测解决方案
    消费者权益日3.15黑名单之夜刚刚过去,消费安全不容忽视。无论你来自何方,从事什么样的职业,我们都有一个共同的名字——消费者。今年央视3.15晚会的主题是:“信用让消费更放心”。消费领域一些失信和侵犯消费者权益的情况在很大程度上影响着消费者的满意度和消费信心,制约着消费潜力的进一步扩大。从晚会曝光的情况来看,各类食品安全问题依旧层出不穷:生产车间“辣眼睛”的辣条、“化妆”出来的“土鸡蛋”……针对以上问题,海能实验室迅速做出反应,为各位消费者总结了最新解决方案,希望对大家有所帮助。辣条是近年来非常热销的小零食,但很多三无辣条的生产车间是真的“辣眼睛”,不仅卫生毫无保障,还存在违规使用添加剂的情况。晚会中曝出的一家辣条厂商,生产车间内满地的粉尘与机器渗出的油污交织在一起,水桶、水瓢都被厚厚的污垢所覆盖,这样的辣条你还敢吃吗?不合格辣条怎样识别? 其实大家可以发现辣条一般都含有大量的油脂,这些油脂的品质在一定程度上可以反映辣条的品质。油脂品质一般体现在酸价和过氧化值两项检测指标上。酸价即酸值,是脂肪中游离脂肪酸含量的标志,酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。过氧化值则是衡量油脂酸败程度的指标,一般来说过氧化值越高其酸败程度越高。那么,这两项指标怎么测呢?莫慌,我们已经为您准备好了检测方案。当当当当~海能实验室电位滴定法检测食品中的酸价和过氧化值仪器与试剂1、仪器T960电位滴定仪,Hamilton pH复合电极 铂复合电极,10mL滴定管单元T960电位滴定仪2、试剂氢氧化钾滴定液(0.0991mol/L,滴定液的浓度用邻苯二甲酸氢钾基准物质标定);硫代硫酸钠滴定液(0.01mol/L,滴定液浓度用重铬酸钾基准物质标定);异丙醇:乙醚=1:1(v:v);异辛烷:冰醋酸 =2:3(v:v);碘化钾。实验方法1、样品制备食品样品按照国标要求经过干燥、粉碎,使用石油醚浸提或者抽提,得到待测油脂试样。如果样品为液态澄清食用油脂,也可充分混匀后直接取样。2、实验过程2.1 酸价准确称取20g左右制备好的油脂样品,置于滴定杯中,加入异丙醇-乙醚混合溶液50mL溶解,搅拌均匀,用氢氧化钾滴定液,以pH非水电极为工作电极,滴定至终点。2.2 过氧化值准确称取5g左右样品,置于滴定杯中,加入冰醋酸-异辛烷混合液50mL溶解,搅拌均匀,向滴定杯中准确加入0.5mL饱和碘化钾溶液,搅拌反应60s,立即向滴定杯中加入40mL去离子水,插入电极和滴定头,用硫代硫酸钠滴定液,以铂复合电极为工作电极,滴定至终点。数据分析与讨论1、实验数据2、酸价实验典型谱图3、过氧化值实验典型谱图4、讨论由酸价实验谱图可知,不同的样品走势不同,所以需要根据国标中提供的参考图仔细分辨。另外,酸价图谱前端均出现高突跃量的杂峰,所以应设置相应的预控pH值,以免影响最终结果的判定。过氧化值图谱明显,但由于滴定体积较小,建议使用0.01mol/L的硫代硫酸钠溶液进行滴定。结果表明,T960对两种指标测试的结果平行良好,且手工的结果无明显差异,能够满足实验需求。另外,煎炸油的酸价明显高于普通食用油,而辣条中若使用类似的劣质油、地沟油,会给消费者带来健康隐患。
  • 一针进样,3 min知晓环境水中砷、铬、硒形态含量
    自然环境中砷(As)、铬(Cr)、硒(Se)存在多种化学形态,在不同环境条件下,氧化还原行为存在差异,不同形态对环境和健康影响不同。传统的元素总量分析不能提供足够的信息去了解元素的存在形态,而不同元素形态存在物理、化学、生物活性差异,并与其毒性、生物可利用性、迁移性密切相关。 砷、铬、硒常见形态/价态见表1,其中无机砷(三价砷和五价砷)毒性远大于有机砷,三价铬(Cr Ⅲ)和硒是人体必需的营养元素,人体内过量的硒会导致疾病,六价铬(Cr Ⅵ)则具有致癌毒性。 表1 砷、铬、硒形态/价态 有机砷和有机硒主要是生物吸收砷、硒无机形态后转化而来。在地表水和生活饮用水中砷、硒主要以无机形态存在,六价铬是地表水、地下水和生活饮用水常规控制指标。水中的砷、铬、硒形态分析对于环境质量评价、生态效应和人体健康具有重要意义。 岛津方案 高效液相色谱(HPLC)技术作为高效的分离技术,在元素形态分析中得到广泛应用,与高灵敏度的电感耦合等离子体质谱(ICP-MS)联用,使HPLC-ICP-MS成为砷、铬、硒、汞等元素形态分析的主要方法。但是,不同元素形态分析通常使用不同的分离原理和流动相,分离时间较长,需要多次、长时间才能完成一个样品中砷、铬、硒形态的测试。基于以上因素,我们利用岛津LC-20Ai+ICPMS-2030系列联用系统开发了一种同时分离地表水中砷、铬、硒无机形态的方法。 图1 岛津LC-20Ai+ICPMS-2030系列联用系统 • 方法学使用岛津惰性液相色谱仪LC-20Ai,以C8色谱柱对砷、铬、硒元素无机形态进行分离,流动相为含2 mM四丁基氢氧化铵(TBAH)和0.5 mM乙二胺四乙酸二钠(EDTA-2Na)的5%甲醇水溶液,以氨水和硝酸调节pH为7.4,分析条件见表2、3。 表2 液相色谱LC-20Ai条件表3 ICPMS-2030系列测试条件在3 min内实现砷、铬、硒无机形态的快速分离,分离度良好。 图2 砷、铬、硒色谱图(单位kcps) • 水样分析结果某河水和生活饮用水样本分析结果见表4,如表中结果所示,砷、铬、硒无机形态加标回收率为91.5~112%。 表4 某河水和生活饮用水样本测试结果备注:N.D.-未检出 结语水是生命之源,为环境保护提供分析解决方案是岛津的使命所在。一针进样,3 min知晓地表水、饮用水中无机砷、铬、硒形态含量,助力水环境研究和水资源安全,共同守护绿水青山。
  • 半导体材料无机非金属离子和金属元素解决方案——光刻胶篇
    半导体材料无机非金属离子和金属元素解决方案——光刻胶篇李小波 潘广文 近年来,随着物联网、人工智能、新能源汽车、消费类电子等领域的应用持续增长以及5G的到来,集成电路(integrated circuit)产业发展正迎来新的契机。集成电路制造过程中,光刻工艺约占整个芯片制造成本的35%,是半导体制造中最核心的工艺。涉及到的材料包括多种溶剂、酸、碱、高纯有机试剂、高纯气体等。在所有试剂中,光刻胶的技术要求最高。赛默飞凭借其在离子色谱和ICPMS的技术实力,不断开发光刻胶及光刻相关材料中痕量无机非金属离子和金属离子的检测方案,助力光刻胶产品国产化进程。从光刻胶溶剂、聚体、显影液等全产业链,帮助半导体客户建立起完整的质量控制体系。 光刻胶是什么?光刻胶又称抗刻蚀剂,是半导体行业的图形转移介质,由感光剂、聚合物、溶剂和添加剂等四种基本成分组成。将光刻胶旋涂在晶圆表面,利用光照反应后光刻胶溶解度不同而将掩膜版图形转移到晶圆表面,实现晶圆表面的微细图形化。根据光刻机的曝光波长不同,光刻胶种类也不同。 光刻相关材料光刻相关材料主要有溶剂、显影剂、清洗剂、刻蚀剂和去胶剂,这些材料被称为高纯湿电子化学品,是集成电路行业应用非常广泛的一类化学试剂。光刻胶常用溶剂有丙二醇甲醚/丙二醇甲醚醋酸酯(PGME/PGMEA)、甲醇、异丙醇、丙酮和N-甲基吡咯烷酮(NMP)等。常见的正胶显影剂有氢氧化钠和四甲基氢氧化铵等,对应的清洗剂是超纯水。 光刻胶及光刻相关材料中金属离子、非金属阴离子对集成电路的影响半导体材料拥有独特的电性能和物理性能,这些性能使得半导体器件和电路具有独特的功能。但半导体材料也容易被污染损害,细微的污染都可能改变半导体的性质。通常光刻胶、显影液和溶剂中无机非金属离子和金属杂质的限量控制在ppb级别,控制和监测光刻工艺中无机非金属离子和金属离子的含量,是集成电路产业链中非常重要的环节。 光刻胶及光刻相关材料中无机金属离子、非金属离子的测定方法国际半导体设备和材料产业协会(Semiconductor Equipment and Materials International,SEMI)对光刻胶、光刻工艺中使用的显影剂、清洗剂、刻蚀剂和去胶剂等制定了严格的无机金属离子和非金属离子的限量要求和检测方法。离子色谱是测定无机非金属离子杂质(F-、Cl-、NO2- 、Br-、NO3- 、SO42-、PO43-、NH4+)最常用的方法。在SEMI标准中,首推用离子色谱测定无机非金属离子,用ICPMS测定金属元素。赛默飞凭借其离子色谱和ICPMS的领先技术,紧扣SEMI标准,为半导体客户提供简单、快速和准确的光刻胶和光刻相关材料中无机金属离子和非金属离子的检测方案,确保半导体产业的发展和升级顺利进行。针对光刻胶及光刻相关材料中痕量无机非金属离子和金属元素的分析,赛默飞离子色谱和ICPMS提供三大解决方案。 方案一 NMP、PGMEA、DMSO等有机溶剂中痕量无机金属和非金属离子的测定方案 光刻胶所用有机溶剂中无机非金属离子的限量要求低至ppb~ppm级别。赛默飞离子色谱提供有机溶剂直接进样的方式,通过谱睿技术在线去除有机基质,一针进样同时分析SEMI标准要求监控的无机非金属离子。整个分析过程无需配制任何淋洗液和再生液,方法高效稳定便捷,避免了试剂、环境、人员等因素可能引入的污染。ICS 6000高压离子色谱有机试剂阀切换流路图 滑动查看更多 光刻胶溶剂中ng/L级超痕量金属杂质的测定,要求将有机溶剂直接进样避免因样品制备过程引起的污染。由于 PGMEA 和 NMP具有高挥发性和高碳含量,其基质对ICPMS分析会引入严重的多原子离子干扰,并对等离子体带来高负载。iCAP TQs ICP-MS 中采用等离子体辅助加氧除碳,并结合冷等离子体、串联四级杆和碰撞反应技术,可有效去除干扰。变频阻抗式匹配的RF发生器设计,可轻松应对有机溶剂直接进样,并可实现冷焰和热焰模式的稳定切换。 冷焰TQ-NH3模式测定NMP中Mg热焰TQ-O2模式测定NMP中V NMP、PGMEA有机溶剂直接进样等离子体状态未加氧(左),加氧(右) 方案二 显影液中无机金属离子及非金属离子测定方案 光刻工艺中常用的正胶显影液是氢氧化钠和四甲基氢氧化铵,对于这两大碱性试剂赛默飞推出强大的在线中和技术,样品仅需稀释2倍或无需稀释直接进样,避免了样品前处理引入的误差和污染,对此类样品中阴离子的定量限达到10ppb以下。这一方法帮助多家高纯试剂客户解决了碱液检测的技术难题,将该领域的高纯试剂纯度提升到国际先进水平。中和器工作原理四甲基氢氧化铵TMAH是具有强碱性的有机物,作为显影液的TMAH常用浓度为2.38%, 为了避免样品处理中引入的污染,ICPMS通常采用直接进样方式测定。在高温下长时间进样碱性样品,会导致腐蚀石英炬管,引起测定空白值的提高。iCAP TQs使用最新设计的SiN陶瓷材料Plus Torch,耐强酸强碱,可一劳永逸地解决碱性样品中痕量金属离子的测定。新型等离子体炬管Plus Torch 方案三 光刻胶单体和聚体中卤素及金属离子测定方案 光刻胶单体和聚体不溶于水,虽溶于有机试剂但容易析出,常规方法难以去除基质影响。赛默飞推出CIC在线燃烧离子色谱-测定单体和聚体中的卤素,通过燃烧,光刻胶样品基质被完全消除,实现一次进样同时分析样品中的所有卤素含量。燃烧过程实时监控,测定结果准确稳定,满足光刻胶中痕量卤素的限量要求。图 CIC燃烧离子色谱仪SEMI P32标准使用原子吸收、ICP光谱和ICP质谱法来测定光刻胶中ppb级的Al Ca Cr 等10种金属杂质,样品前处理可采用溶剂溶解和干法灰化酸提取两种方法。溶剂溶解法是使用PGMEA等有机溶剂将样品稀释50-200倍,超声波振荡充分溶解后,直接进样测定。部分聚合物较难溶解于有机溶剂中,将采用500-800度干法灰化处理,并用硝酸溶解残留物提取。iCAP TQs采用在样品中添加内标工作曲线法测定,对于不同基质样品及处理方法的样品可提供准确的测定结果。 总结 针对集成电路用光刻胶及光刻相关材料,赛默飞离子色谱和ICPMS提供无机非金属离子和金属离子杂质检测的完整解决方案,为光刻胶及高纯试剂客户提供安全、便捷可控的全方位支持。“胶”相辉映,赛默飞在行动,助力集成电路产业发展,促进光刻胶国产化进程,欢迎来询! 参考文献:1.SEMI F63-0521 GUIDE FOR ULTRAPURE WATER USED IN SEMICONDUCTOR PROCESSING2.SEMI P32-1104 TEST METHOD FOR DETERMINATION OF TRACE METALS IN PHOTORESIST3.SEMI C43-1110 SPECIFICATION FOR SODIUM HYDROXIDE, 50% SOLUTION4.SEMI C46-0812 GUIDE FOR 25% TETRAMETHYLAMMONIUM HYDROXIDE5.SEMI C72-0811 GUIDE FOR PROPYLENE-GLYCOL-MONO-METHYL-ETHER (PGME), PROPYLENE-GLYCOL-MONO-METHYL-ETHER-ACETATE (PGMEA) AND THE MIXTURE 70WT% PGME/30WT% PGMEA6.SEMI C33-0213 SPECIFICATIONS FOR n-METHYL 2-PYRROLIDONE7.SEMI C28-0618 SPECIFICATION AND GUIDE FOR HYDROFLUORIC ACID8.SEMI C35-0118 SPECIFICATION AND GUIDE FOR NITRIC ACID9.SEMI C36-1213 SPECIFICATIONS FOR PHOSPHORIC ACID10.SEMI C44-0618 SPECIFICATION AND GUIDE FOR SULFURIC ACID11.SEMI C41-0618 SPECIFICATION AND GUIDE FOR 2-PROPANOL12.EMI C27-0918 SPECIFICATION AND GUIDE FOR HYDROCHLORIC ACID13.SEMI C23-0714 SPECIFICATIONS FOR BUFFERED OXIDE ETCHANTS
  • 【安捷伦】食品中碘元素测定新国标:ICP-MS 方法为何站稳 C 位?
    电感耦合等离子体质谱仪(ICP-MS)结合了等离子体光源的稳定性和质谱的高灵敏度,诞生即自带光环,商品化后更成为微量和痕量元素分析的不二之选。值得一提的是,安捷伦在 1987 年制造了世界上第一台电脑控制的 ICP-MS,成为 ICP-MS 自动化控制的开端。2016 年,食品国标 GB 5009.268-2016 将 ICP-MS 推到多元素分析的聚光灯下,成为食品实验室多元素分析的首选仪器。经过食品行业分析专家四年的探索、优化,食品中碘的测定国标方法 GB 5009.267-2020 发布( 2021 年 3 月实施), ICP-MS 站上 C 位,成为食品中碘元素通用分析的第一法。不以提高实验室工作效率的方法改进只能叫“炫技”,表 1 总结了GB 5009.267-2020 中四种推荐方法分别用到的试剂和设备,从使用的试剂种类上,便可以推想其它方法的复杂程度。而 ICP-MS 方法只需恒温提取-离心-过滤-上机测量,行云流水般的样品处理过程极大地提高了实验室工作效率,妥妥证明了 ICP-MS 方法的简单高效。“简单高效”只是 ICP-MS 方法通往 C 位路上的鲜花,真正成为新国标碘元素测定第一法还是要靠过硬本领。对比四种方法的检测能力,ICP-MS 方法以 0.5 g 的较低取样量实现了 0.03 mg/kg 的方法定量限,即使在应对更低碘含量的分析时,仍然保持过量的检测能力。表 1. 新国标碘元素测定推荐方法比较最简单的样品处理过程,最广泛的使用范围,最低的定量限,使得 ICP-MS 方法成为食品碘元素分析的第一法。真正想站稳 C 位,作为硬件的 ICP-MS 仪器还需要证明一件事——连续分析 0.5% 四甲基氢氧化铵(TMAH)的稳定性。这个不难,安捷伦的 UHMI 专利技术可以帮你做到!只需将等离子体条件设置为 UHMI-4 或者按照国标参考条件中将稀释气设到 0.3 - 0.4 L/min,就可以长时间分析0.5% 四甲基氢氧化铵而不用担心内标漂移。2020 年,安捷伦全新发布 7850 ICP-MS, 全线升级配备UHMI,复杂食品样品基体耐受性大幅提升。ICP-MS 超高基质进样系统 (UHMI) 附件(上图右)您在碘元素测定过程中面临过哪些问题?欢迎在文章下方留言交流。接下来,安捷伦还将介绍乳品中碘元素测定方案,敬请关注!参考文献及标准:1. GB 5009.267-2020 食品安全国家标准 食品中碘的测定2. 安捷伦 ICP-MS 技术简介:高基质进样技术(5994-1170ZHCN)关注安捷伦微信公众号,获取更多市场资讯
  • 吉天仪器FIA 6000+ 全自动流动注射分析仪在河流污染中的应用
    水是生命之源,但是随着我国人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成河流污染严重,本来已是极少的淡水资源加剧短缺,无法为人所用。  随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法。  本文介绍了一种快速、准确、安全的流动分析技术,使用聚光科技下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)fia6000+全自动流动注射分析仪对河水中的挥发酚、氰化物、阴离子表面活性剂和硫化物进行分析及加标回收率的测定。该仪器应用非稳态fia理论,使用在线加热、蒸馏、冷凝、萃取等系统,完全符合环保部最新发布的国家环境保护标准。吉天仪器fia6000+为环境行业的水质分析提供了高效准确的溶液化学分析解决方案。吉天仪器fia6000+可以做什么?fia 6000+ 全自动流动注射分析仪方案优势  完全符合环境新标准hj 825-2017、hj 824-2017、hj 823-2017、hj 826-2017。  配有试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。  检测过程高效,反应在密闭的管路中进行,避免接触有害试剂。  检测项目全面,广泛应用于水质分析、环境分析等多个领域。样品制备  挥发酚  采集河水样品,需现场检测有无游离氯等氧化剂存在,参照hj825-2017方法,“样品滴于淀粉-碘化钾试纸上出现蓝色,说明存在氧化剂”。氧化剂(如游离氯)能将一部分酚类化合物氧化使结果偏低,如有氧化剂存在(水样酸化后滴于碘化钾-淀粉试纸上出现蓝色),立即加入过量的硫酸亚铁铵消除干扰。(硫酸亚铁铵的配制方法:在500ml的容量瓶中,溶解0.55g硫酸亚铁铵[fe(nh4)2(so4)2?6h2o]于包含0.5ml浓硫酸的250ml去离子水,用去离子水定容,摇匀)。  现场未发现河水样品存在氧化剂。样品储存在硬质玻璃瓶中,采用氢氧化钠固定,冷藏(4℃),在采集后24h内进行测定。  氰化物  采集河水样品,首先检验是否有硫化物和活性氯等氧化剂的干扰,参照hj823-2017方法,“试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(na2so3)溶液消除干扰”“试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(cdco3)或碳酸铅(pbco3)固体粉末消除干扰”。  采样现场滴一滴样品在乙酸铅试纸上,如果试纸变黑,则显示有硫化物存在于样品当中,加碳酸镉或碳酸铅固体粉末,生成黄色的硫化镉或黑色的硫化铅沉淀,再用乙酸铅试纸检测是否使试纸变黑,如果确定试纸不变黑,则过滤溶液除去硫化物。  采样现场滴一滴样品在淀粉-碘化钾试纸上,如果试纸显示蓝色,则样品需要预处理,加入一些抗坏血酸固体于水样中,过一段时间再用淀粉碘化钾试纸检测,如不显示蓝色证明干扰已被消除,然后在每升水样中加入0.6g抗坏血酸。亚砷酸钠和亚硫酸钠也用来消除此干扰。  现场未发现河水样品存在硫化物和活性氯等氧化剂。因此采取立即加氢氧化钠固定的方法,一般每升水加0.5g固体氢氧化钠,尽量使样品的ph12,并将样品存于聚乙烯塑料瓶或硬质玻璃瓶中,存放在暗处,避免紫外光的照射。  阴离子表面活性剂  采集河水样品,采样和保存样品应使用清洁的玻璃瓶,并事先经甲醇清洗过。  hj826-2017说明“主要干扰物为有机的磺酸盐、羧酸盐、酚类以及无机的硫酸盐、亚硫酸盐、硝酸盐、氰酸盐、硫氰酸盐等”,可以通过水溶液反洗,消除这些正干扰,未能除去的可用气提萃取法,参见gb7494。  在测量前,将水样经0.45μm的滤膜过滤,以除去悬浮物。吸附在悬浮物上的表面活性剂不计在内。  硫化物  采集河水样品。现场采集并固定的样品应保存在棕色瓶内。为了消除样品采集过程中的损失,首先对于每100ml样品,加入10 滴15m naoh(大约0.5ml)和400mg 抗坏血酸于容器中,然后加样品于容器中(样品的ph11)。冷却至4oc,马上进行分析。  为防止采集的河水样品中大颗粒堵塞管路,所有采集的样品都使用0.45μm的膜过滤后再进行分析。 仪器  吉天仪器fia6000+流动注射仪:包括自动进样器、挥发酚、氰化物、阴离子表面活性剂和硫化物4个化学反应模块(预处理通道、注入泵、反应通道及流通检测池)、数据处理系统。  分析天平:精度为0.1mg。  超声波仪:频率 40 khz。试剂配置  吉天仪器和安谱实验强强联合,为仪器配有专门的试剂包方案,是适用于全自动流动注射分析仪fia6000+的配套产品,方便、快速、可靠、绿色的试剂配置方式。试剂无需称量,开包溶解即用。  挥发酚  hj825-2017规定了测定水中挥发酚的流动注射-4-氨基安替比林分光光度法。表1 吉天挥发酚试剂包与hj825试剂配制比较试剂类型吉天仪器试剂包hj825要求比较蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾溶液ph=10.3铁氰化钾溶液ph=10.3配制过程完全相同显色剂4-氨基安替比林溶液ρ=0.64 g/l4-氨基安替比林溶液:ρ=0.64 g/l配制过程完全相同  氰化物  hj823-2017规定了测定水中氰化物的流动注射-分光光度法。其中包括异烟酸-巴比妥酸法和吡啶-巴比妥酸法。  由于吡啶剧毒,不建议采用,实际上异烟酸无吡啶的剧毒性,显色原理基本相同,因此采用异烟酸-巴比妥酸法进行检测。表2 吉天仪器氰化物试剂包与hj823试剂配制比较试剂类型吉天试剂包hj823要求比较载流、吸收液氢氧化钠c=0.025mol/l氢氧化钠c=0.025mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾缓冲液ph=10.3铁氰化钾缓冲液ph=10.3配制过程完全相同氯胺t氯胺t溶液ρ=4 g/l氯胺t溶液ρ=6 g/l或=2 g/l配制密度略有差异显色剂异烟酸-巴比妥酸试剂异烟酸-巴比妥酸试剂配制过程完全相同  阴离子表面活性剂  hj826-2017规定了测定水中阴离子表面活性剂的流动注射-亚甲基蓝分光光度法。  hj826-2017中的甲基蓝原液需净化萃取,将甲基蓝原液萃取6-7次,直至有机相澄清;吉天试剂包优化了试剂配制方法,甲基蓝原液无需净化萃取。 表3 吉天仪器阴离子试剂包与hj826试剂配制比较试剂类型吉天仪器试剂包hj826要求比较碱性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异酸性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异氯仿不含氯仿优级纯氯仿需要单独购买  硫化物  hj824-2017规定了测定水中硫化物的流动注射-亚甲基蓝分光光度法。表4 吉天仪器硫化物试剂包与hj824试剂配制比较试剂类型吉天仪器试剂包hj824要求比较载流及吸收液氢氧化钠c=0.025 mol/l氢氧化钠c=0.025 mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异显色剂对氨基二甲基苯胺溶液对氨基二甲基苯胺溶液配制过程完全相同氯化铁氯化铁溶液ρ=13.3g/l氯化铁溶液ρ=13.3g/l配制过程完全相同标准曲线  新环境标准中的“标准系列的准备”将工作曲线的最高浓度设置为测定范围的最高值,本解决方案对于标准样品的配置浓度进行了优化,如表5所示。标准曲线的绘制按照新环境标准的要求“以信号值(峰面积)为纵坐标,对应的浓度为横坐标”进行绘制,所得到的曲线如图1所示,相关系数都可以达到0.999以上,说明相关性很好。表5 标准样品浓度对比表(μg/l)挥发酚总氰阴离子硫化物实验数据hj825推荐实验数据hj823推荐实验数据hj824推荐实验数据hj824推荐0.000.000.000.000.000.000.000.002.0010.02.002.025.010020.01005.0025.05.005.050.020050.020010.050.010.010.010050010050020.010020.050.02001000200100030.020050.01255002000500200050.0-100250800-1000-100-2005001000---四种方法的工作曲线检出限和精密度  计算了仪器测定4种方法的检出限和精密度,与新环境标准进行比较,数据见表6。其中,仪器检出限采用epa方法dl=t(n-1,α=0.99)*(s),当测定次数n=7时,t=3.14,计算结果;仪器的精密度则通过连续进样7次得到的数据进行计算。表6 仪器检出限、精密度与新环境标准对比项目检出限(μg/l)精密度rsdfia6000+新hj标准fia6000+新hj标准挥发酚0.31220.0μg/l0.77%20.0μg/l0.7-2.9%氰化物0.26120μg/l0.92%20μg/l0.7%-2.1%阴离子8.9540500.0μg/l1.11%500.0μg/l 1.1%-4.9%硫化物1.884200.0μg/l0.85%200.0μg/l1.5%-2.3%质量控制  以挥发酚为例:采用国家环境保护总局标准样品研究所的挥发酚质控样(200331,标准值49.8μg/l,不确定度±4.5μg/l),对方法及仪器进行检验,测定结果见表7。质量控制的结果符合要求,说明仪器稳定可靠。表7 挥发酚质控样的测定序号样品属性已知浓度(μg/l)回算浓度(μg/l)吸光度峰面积1质控样品49.8±4.548.00.872982质控样品49.8±4.548.80.887663质控样品49.8±4.548.10.87486实验结果  参照环境标准的方法,我们对采集的河水水样进行了分析,并进行了加表实验。实际样品并未检出挥发酚和硫化物,检出的氰化物和阴离子表面活性剂的浓度分别为11.8μg/l和1.20μg/l。  参照环境标准的要求,挥发酚、氰化物、硫化物的加标回收率应在70%~120%之间,阴离子表面活性剂的加标回收率应在80%~120%之间。实际的加标回收结果均符合要求。表8 实际样品检测结果及加标回收实验结果检测项目空白浓度(μg/l)加标浓度(μg/l)加标后回算浓度(μg/l)回收率挥发酚010098.098.0%氰化物11.820.032.2102.5%阴离子表面活性剂1.2020020097.8%硫化物0500498.599.7%结论  本文基于环保部最新发布的四项国家环境保护标准(水质),为测定环境水(河水)中的挥发酚、氰化物、阴离子表面活性剂和硫化物提供了解决方案。用fia6000+全自动流动注射分析仪测定这几种物质,完全符合环境标准方法,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 远慕技术:电泳后的凝胶染色实验
    实验概要本文介绍了电泳后主要的凝胶染色方法,包括:标准考马斯亮蓝染色法、快速考马斯亮蓝染色法、凝胶铵银染色法、凝胶中性银染色法及凝胶铜染色法。实验步骤1. 标准考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%甲醇和10%乙酸中); 2) 室温下振摇温育4h至过夜; 3) 去除染色液,收集保存可重复使用20-40次; 4) 依次在25%甲醇和7.5%乙酸中室温振摇下脱色。灵敏度为0.1-0.5ug蛋白/每条带。注:使用加热的染色液或脱色液可以缩短染色或脱色时间。将染色液或脱色液在微波炉或水浴中加热,(大约50-60℃),染色时间可缩短至20min,脱色时间约 1-2h。2. 快速考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%三氯yi酸中); 2) 室温下振摇温育20min; 3) 去除染色液,收集保存可重复使用多次; 4) 加入数倍体积的脱色液(25%甲醇、7%乙酸)室温振摇下脱色。必要时可更换脱色液。灵敏度为1.0ug蛋白/每条带。3. 凝胶铵银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的50%乙醇和10%乙酸,振摇30min至过夜; 2) 去除50%乙醇和10%乙酸,用去离子水清洗凝胶。加入20%乙醇, 室温振摇30min; 3) 去除20%乙醇,再加5倍体积的20%乙醇,室温振摇30min; 4) 去除20%乙醇,将凝胶转入通风柜内,加入5倍体积的用去离子水配制的5%戊二醛,室温振摇30min; 5) 去除戊二醛,用去离子水清洗凝胶。加入5倍体积的20%乙醇,室温振摇20min; 6) 去除20%乙醇,重复6两次; 7) 去除20%乙醇,用去离子水清洗凝胶。再加入5倍体积的用去离子水,室温温育10min; 8) 去除去离子水,加入4倍体积新鲜配制的氨水/银溶液,室温振摇30min。配制100ml:加1.4ml 14.8mol/L氢氧化铵到100ml水中,再加入190ul 10mol/L氢氧化钠;放置涡旋器上缓缓加入1ml新鲜配制的硝酸银溶液(0.8g硝酸银/ml水),直至出现沉淀物,但很快溶解。 9) 去除氨水/银溶液,用去离子水清洗凝胶20min以上,其间更换水数次; 10) 去除水,加入5倍体积新鲜配制的0.005%柠檬酸,0.019%的甲醛。轻柔混匀,数分钟内条带即显现出。当背景开始变化时,去除显影剂,用用去离子水清洗凝胶。在10%乙酸和20%乙醇中温育凝胶,以终止反应。灵敏度为1-10ng蛋白/每条带。注:操作时,应戴手套并使用洁净的玻璃器皿,以免污染,影响反应的灵敏度。4. 凝胶中性银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的30%乙醇和10%乙酸,振摇30min至过夜; 2) 去除乙醇/乙酸溶液,加入5倍体积的30%乙醇, 室温振摇30min; 3) 去除乙醇,再加5倍体积的30%乙醇,室温振摇30min; 4) 去除乙醇,加入10倍体积的去离子水,室温振摇10min;重复用去离子水清洗两次; 5) 去除去离子水,加入4倍体积新鲜配制的0.1%硝酸银溶液(用室温下贮存于棕色瓶内的20%原液稀释而得),室温振摇30min; 6) 去除硝酸银溶液,用去离子水清洗凝胶20s; 7) 去除水,加入5倍体积的2.5%碳酸钠和 0.02%的甲醛(pH4.0),室温振摇温育,数分钟内条带即显现出。当背景开始变黑时,停止温育; 8) 在1%乙酸内清洗,停止反映。用去离子水清洗,更换数次,每次10min 灵敏度为1-10ng蛋白/每条带。5. 凝胶铜染色法凝胶铜染色法为考马斯亮蓝或银染色法的替代染色方法。将凝胶氯化铜溶液中温育,在Tris和SDS同时存在时可形成明显的白色不透明的沉淀物。蛋白条仍然清晰,留下一个多肽分离模式的附染图象。由于蛋白质未结合在凝胶上,可通过EDTA去除Cu离子而得以洗脱,因而该方法特别适合需快速定位蛋白条带用于免疫反应,或进一步进行蛋白质化学研究。其染色模式如同考马斯亮蓝或银染色法的凝胶,易进行拍照。 1) 电泳后,凝胶用蒸馏水短时清洗数次,每次30s,勿洗过长时间; 2) 将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.3mol/L CuCl2; 3) 室温振摇5min,较厚的凝胶可适当延长时间。当CuCl2进入凝胶时,在不含蛋白的区域会出现白色沉淀; 4) 用蒸馏水清洗数分钟,在黑色背景下观察结果。灵敏度为10-100ng蛋白/每条带(0.5mm厚的凝胶)或1ug蛋白/每条带(1mm厚的凝胶)。注:将凝胶在0.25mol/L EDTA、0.25mol/L Tris溶液中温育可使铜染逆转。
  • 沃特世推出全新SFC制备柱,助力纯化方法的放大研究
    全新Torus色谱柱可有效满足分析级到制备级的非手性SFC分离要求 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出四款全新制备型超临界流体色谱(SFC)柱,为Torus™ SFC色谱柱产品系列再添新成员。这四款新的非手性SFC色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。 智能新闻发布(Smart News Release)拥有多媒体功能。如需查看完整新闻稿,请访问:http://www.businesswire.com/news/home/20161219005035/en/ 沃特世全新非手性超临界流体色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。(图片:美国商业资讯)。 圣地亚哥专用药品制药公司及研究机构Dart Neuroscience LLC最近评估了Torus色谱柱对小分子药物化合物的纯化性能。该公司的结构化学副总监Gerard Rosse表示:“全新Torus 2-PIC固定相能够有效避免保留损失,在采用甲醇和0.2%氢氧化铵分析碱性、中性和酸性类药分子时,能带来出色的选择性和优异的峰形。2-PIC色谱柱极具应用前景,有望成为一款通用型SFC固定相。” 沃特世公司消耗品团队副总裁Jeff Mazzeo指出:“两年多前,我们推出了Torus SFC分析柱并取得了不俗的成绩。此后,我们不断拓展Torus SFC色谱柱系列,以期为客户提供更多具有不同分离性能和分离能力的产品。对于采用Torus 1.7 μm色谱柱实现了标准化的实验室而言,现在可以直接放大分离方法,轻松开展更大规模的化合物纯化。而对于利用正相液相色谱法进行分析的人员,该系列色谱柱将推动其深入探索SFC的诸多优势,譬如优异的稳定性、更长的色谱柱使用寿命、更快的分离速度、更低的溶剂处置成本,以及更加环保的实验室。” Torus色谱柱适用于从分析级到制备级的所有非手性分离专用于制备级SFC分离的Torus色谱柱将赋予研究人员强大的分离能力,以全面满足其加速方法开发、将分析级非手性分离放大为制备级分离的需求。这些色谱柱以全新的专利键合填料为基础,提供四种不同的固定相,具有选择性广、稳定性高、重现性好等特点,可确保日间和批次间的分析一致性。Torus 1.7和5 μm色谱柱有四种填料可供选择:2-氨甲基吡啶(PIC)、二乙胺(DEA)、高密度二醇(DIOL)和1-氨基蒽(1-AA),并提供多种内径和柱长规格,且与Waters SFC 100系统及其它市售制备型SFC仪器搭配销售。 更多信息:www.waters.com/torus 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制