当前位置: 仪器信息网 > 行业主题 > >

无水碳酸钠纯度标准物质

仪器信息网无水碳酸钠纯度标准物质专题为您提供2024年最新无水碳酸钠纯度标准物质价格报价、厂家品牌的相关信息, 包括无水碳酸钠纯度标准物质参数、型号等,不管是国产,还是进口品牌的无水碳酸钠纯度标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无水碳酸钠纯度标准物质相关的耗材配件、试剂标物,还有无水碳酸钠纯度标准物质相关的最新资讯、资料,以及无水碳酸钠纯度标准物质相关的解决方案。

无水碳酸钠纯度标准物质相关的资讯

  • 中国计量院为贵金属纯度鉴定建立了实物溯源标准,助力黄金纯度鉴定
    黄金具有重要的货币属性及装饰与保值功能,在人类几千年的历史中始终是财富和华贵的象征。黄金相关国家标准对杂质元素规定了明确的限量,例如,《金条》(GB/T 26021)对银(Ag)、铜(Cu)等十余种杂质元素进行了限量,《高纯金》(GB/T 25933)规定了更多杂质(21种)的限量要求。由于黄金价格的高昂,时有黄金掺假的报道出现,然而,魔高一尺,道高一丈,纯度计量的完善使贵金属纯度鉴定不再成为难题。中国计量科学研究院针对高纯金属纯度精准测量的需求,在重点研发计划“国家质量基础设施体系(NQI)”重点专项的支持下,综合利用多种高分辨测量手段,通过“地毯式”扫描,测量元素周期表中全部天然杂质元素,建立了基于全杂质扣除的高纯金属纯度测量方法,并在国际计量比对中取得优异成绩。在此基础上,创新研制了金、银、铂等高纯金属纯度国家一级标准物质(GBW02793~GBW02796),纯度定值大于99.999%,达到国际领先水平,为贵金属纯度鉴定建立了实物溯源标准。同时,为了助力黄金检测国家标准GB/T 25933和GB/T 38145的实施,研制金溶液中无机痕量杂质成分分析国家一级标准物质(GBW02797-GBW02800),使标准的使用更加便捷,测量结果更加一致和可靠。纯度计量作为“一双慧眼”,从计量学角度为黄金等贵金属纯度鉴定提供了科学的计量溯源标准,使造假行为无所遁形。
  • 阿尔茨海默症诊断标尺-Beta淀粉样肽(A-Beta)纯度标准物质出炉!
    p style="text-indent: 2em "中国计量科学研究院李红梅、冯流星团队近期在Analytical Chemistry,2020,doi.org/10.1021/acs.analchem.0c02381发文,介绍了基于同位素稀释质谱技术的阿尔茨海默症临床诊断标志物(Aβ)纯度标准物质研制方法。冯流星研究员为该论文的第一作者,李红梅研究员为共同通讯作者。/pp style="text-align: center margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/3c6fdaac-2942-41af-8bf7-0a1235c51c2b.jpg" title="1-1.png" alt="1-1.png"//pp style="text-indent: 2em "阿尔兹海默症(Alzheimer' s disease,AD)是不可逆的神经退行性疾病,随着人口的老龄化,AD的发病率越来越高,其致病机理和临床治疗已引起了广泛关注。众多临床研究表明, 血液、脑脊液和脑组织内的β淀粉样多肽(β amyloid peptide ,Aβ)水平异常与AD的病程进展密切相关,Aβ已成为目前研究AD的重要生物标志物之一。然而,临床上由于缺乏Aβ检测的标准物质,导致不同测量系统对Aβ的检测结果偏差较大,难以对AD病的病程进行准确的判断。因此,研制绝对准确的Aβ的定量方法及相关标准物质,对AD的早期诊断及治疗药物研发具有重要意义。/pp style="text-indent: 2em " 针对这一难题,李红梅团队研制了β淀粉样多肽(Aβ)纯品溶液标准物质(GBW09874-09875),采用基于氨基酸水解同位素稀释质谱法和硫元素同位素稀释质谱法的两种独立参考方法对Aβ纯度进行定值,量值准确可靠、不确定度评定合理。该标准物质为Aβ纯度标准物质,位于ISO17511溯源链的顶端,为AD症诊断中Aβ标志物检测参考方法的建立提供溯源源头。/pp style="text-align: center margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/160d2075-9f54-41f7-8217-0ffea64861d7.jpg" title="1-2.png" alt="1-2.png"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongspan style="font-size: 14px "基于ID-LC-MS和HPLC-ID-ICP-MS两种方法Aβ标准物质定值示意图/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) font-size: 16px "/span/ppstrongspan style="color: rgb(127, 127, 127) "学者简介:/span/strong/ppspan style="color: rgb(38, 38, 38) "李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者/span/ppspan style="color: rgb(38, 38, 38) "冯流星:研究员,中国计量科学研究院化学所无机化学研究室主任/span/p
  • 化学试剂常用分类,您知道多少?
    试剂分类的方法较多。如按状态可分为固体试剂、液体试剂。按用途可分为通用试剂、专用试剂。按类别可分为无机试剂、有机试剂。按性能可分为危险试剂、非危险试剂等。化学试剂又叫化学药品,简称试剂。化学试剂是指具有一定纯度标准的各种单质和化合物(也可以是混合物)。要进行任何实验都离不了试剂,试剂不仅有各种状态,而且不同的试剂其性能差异很大。有的常温非常安定、有的通常就很活泼,有的受高温也不变质、有的却易燃易爆:有的香气浓烈,有的则剧毒… … 。只有对化学试剂的有关知识深入了解,才能安全、顺利进行各项实验。既可保证达到预期实验目的,又可消除对环境的污染。因此,首先要知道试剂的分类情况。然后掌握各类试剂的存放和使用。化学试剂的分类从试剂的贮存和使用角度常按类别和性能2种方法对试剂进行分类。无机试剂和有机试剂这种分类方法与化学的物质分类一致,既便于识别、记忆,又便于贮存、取用。无机试剂按单质、氧化物、碱、酸、盐分出大类后,再考虑性质进行分类。有机试剂则按烃类、烃的衍生物、糖类蛋白质、高分子化合物、指示剂等进行分类。危险试剂和非危险试剂这种分类既注意到实用性,更考虑到试剂的特征性质。因此,既便于安全存放,也便于实验工作者在使用时遵守安全操作规则。危险试剂的分类根据危险试剂的性质和贮存要求又分为:(1)易燃试剂这类试剂指在空气中能够自燃或遇其它物质容易引起燃烧的化学物质。由于存在状态或引起燃烧的原因不同常可分为:①易自燃试剂:如黄磷等。②遇水燃烧试剂:如钾、钠、碳化钙等。③易燃液体试剂:如苯、汽油、乙-醚等。④易燃固体试剂,如硫、红-磷、铝粉等。(2)易爆试剂指受外力作用发生剧烈化学反应而引起燃烧爆炸同时能放出大量有害气体的化学物质。如氯酸钾等。(3)毒害性试剂指对人或生物以及环境有强烈毒害性的化学物质。如溴、甲醇、汞、三氧-化二砷等。(4)氧化性试剂指对其它物质能起氧化作用而自身被还原的物质、如过氧化钠、高锰酸钾、重铬酸铵、硝-酸铵等。(5)腐蚀性试剂指具有强烈腐蚀性,对人体和其它物品能因腐蚀作用发生破坏现象,甚至引起燃烧、爆炸或伤亡的化学物质,如强酸、强碱、无水氯化铝、甲醛、苯酚、过氧化氢等。非危险试剂的分类根根非危险试剂的性质与储存要求可分为:(1)遇光易变质的试剂指受紫外光线的影响,易引起试剂本身分解变质,或促使试剂与空气中的成分发生化学变化的物质。如硝酸、硝酸银、硫化铵、硫酸亚铁等。(2)遇热易变质的试剂这类试剂多为生物制品及不稳定的物质,在高气温中就可发生分解、发霉、发酵作用,有的常温也如此。如硝-酸铵、碳铵、琼脂等。(3)易冻结试剂这类试剂的熔点或凝固点都在气温变化以内,当气温高于其熔点,或下降到凝固点以下时,则试剂由于熔化或凝固而发生体积的膨胀或收缩,易造成试剂瓶的炸裂。如冰醋酸、晶体硫酸钠、晶体dian酸钠以及溴的水溶液等。(4)易风化试剂这类试剂本身含有一定比例的结晶水,通常为晶体。常温时在干燥的空气中(一般相对湿度在70%以下)可逐渐失去部分或全部结晶水而有的变成粉末。使用时不易掌握其含量。如结晶碳酸钠、结晶硫酸铝、结晶硫酸镁、胆矾、明矾等。(5)易潮解试剂这类试剂易吸收空气中的潮气(水分)产生潮解、变质,外形改变,含量降低甚至发生霉变等。如氯化铁、无水乙酸钠、甲基橙、琼脂、还原铁粉、铝银粉等。
  • 北京兴东达泰公司推出碳酸盐组份分析技术
    北京兴东达泰公司推出碳酸盐组份分析技术,这个分析技术可以直接将碳酸钠和碳酸氢钠组份直接测试出结果,测试过程不需要标准样品,测试精度可达+/-0.3%。详细内容欢迎直接登录我公司电子展台下载。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 我国发布全球首个泰国香米纯度检验标准
    “泰国香米”品牌鱼龙混杂,购买要多留神。  一直被人们誉为米中贵族的泰国香米,如今却频频陷入“丑闻”漩涡——今年央视“315晚会”曝光泰国假香米事件后,泰国香米质量问题再次受到人们的关注。  日前,国家标准委发布行业标准《泰国茉莉香米品种鉴定及纯度检验方法》。据悉,它由厦门检验检疫局和中国检验检疫科学研究院合作制定,将于今年5月1日起开始执行。  这是目前国际上首个公开发布的泰国香米纯度检验标准。主要涉及泰国茉莉香米品种鉴定和纯度检测的随机扩增多态性DNA技术检测法、感官检验法、水煮检验法等3种方法。  国际通俗称为“泰国香米”的就是泰国茉莉香米,是指由经泰国农业局、泰国农业部和泰国合作社注册的非糯性芳香水稻品种Kao Dok Mali 105或RD15的稻谷经碾磨获得的糙米或精米。泰国香米从1992年开始进入中国市场并逐步垄断国内高档米市场。目前每年输华的泰国香米大约20万吨,且进入中国市场销售的泰国香米价格高达1100美元/吨,较普通大米贵2倍以上,掺混白大米现象日趋严重。  首个纯度检验标准的出台执行,将有效规范进口香米市场。该标准适用性强,包括泰国茉莉香米品种鉴定和纯度检测RAPD及SSP基准检测方法和简便易行的感官检验法及水煮检验法两部分。  据介绍,基准检测方法是通过DNA扩增然后比对是否含有泰国香米特征性基因片断来判断、感官检验法详细描述了泰国香米颗粒特征、水煮检验法利用泰国香米和假香米水煮后的糊化程度判断。  DNA方法检测结果准确,但仪器设备要求高,检测费用高,而感官法和水煮法简单易懂,检测设备简易,检测费用低廉,寻常百姓在家里都能自己初步判断香米真假,感官法和水煮法结合使用可以获得较准确的检测结果。  泰国香米的特有的口感品质深受世界各国消费者喜爱。目前除泰国外,中国、美国、澳大利亚、印度、巴基斯坦、越南等均已种植香稻。但以泰国的产量最高,同时泰国也是全球最大的稻米出口国。泰国的稻田占全国耕地总面积52% 泰国大米出口遍及五大洲100多个国家 其中,泰国香米出口量约为每年110-200万吨,占泰国大米出口总量的20%左右。  中国是泰国香米的最大进口国,泰国香米中掺混白大米的现象趋多问题正引起有关各方高度关注,中央、地方新闻媒体多年来持续报导。据调查,我国的假香米主要是在泰国香米中掺入或全部由泰国巴吞米、泰国普通白大米、越南大米或直接由国产大米冒充。
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表:食品添加剂品种名称标准名称备注1.食品添加剂 柠檬酸GB 1987-2007 食品添加剂 柠檬酸 2.食品添加剂 乳酸GB 2023-2003 食品添加剂 乳酸 3.食品添加剂 dl-酒石酸GB 15358-2008 食品添加剂 dl-酒石酸 4.食品添加剂 L(+)-酒石酸GB 25545-2010 食品添加剂 L(+)-酒石酸卫生部公告2010年第19号5.食品添加剂 L-苹果酸GB 13737-2008 食品添加剂 L-苹果酸 6.食品添加剂 DL-苹果酸GB 25544-2010 食品添加剂 DL-苹果酸卫生部公告2010年第19号7.食品添加剂 冰乙酸(冰醋酸)GB 1903-2008 食品添加剂 冰乙酸(冰醋酸) 8.食品添加剂 碳酸钾GB 25588-2010 食品添加剂 碳酸钾卫生部公告2010年第19号9.食品添加剂 柠檬酸钾GB 14889-1994 食品添加剂 柠檬酸钾 10.食品添加剂 柠檬酸钠GB 6782-2009 食品添加剂 柠檬酸钠 11.食品添加剂 富马酸GB 25546-2010 食品添加剂 富马酸卫生部公告2010年第19号12.食品添加剂 磷酸三钾GB 25563-2010 食品添加剂 磷酸三钾卫生部公告2010年第19号13.食品添加剂 碳酸氢三钠(倍半碳酸钠)GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠)卫生部公告2010年第19号14.食品添加剂 盐酸GB 1897-2008 食品添加剂 盐酸 15.食品添加剂 氢氧化钠GB 5175-2008 食品添加剂 氢氧化钠 16.食品添加剂 碳酸钠GB 1886-2008 食品添加剂 碳酸钠 17.食品添加剂 氢氧化钙GB 25572-2010 食品添加剂 氢氧化钙卫生部公告2010年第19号18.食品添加剂 氢氧化钾GB 25575-2010 食品添加剂 氢氧化钾卫生部公告2010年第19号19.食品添加剂 碳酸氢钾GB 25589-2010 食品添加剂 碳酸氢钾卫生部公告2010年第19号20.食品添加剂 磷酸二氢钾GB 25560-2010 食品添加剂 磷酸二氢钾卫生部公告2010年第19号21.食品添加剂 磷酸三钠GB 25565-2010 食品添加剂 磷酸三钠卫生部公告2010年第19号22.食品添加剂 磷酸二氢钙GB 25559-2010 食品添加剂 磷酸二氢钙卫生部公告2010年第19号23.食品添加剂 磷酸氢钙GB 1889-2004食品添加剂 磷酸氢钙 24.食品添加剂 焦磷酸二氢二钠GB 25567-2010 食品添加剂 焦磷酸二氢二钠卫生部公告2010年第19号25.食品添加剂 焦磷酸钠GB 25557-2010 食品添加剂 焦磷酸钠卫生部公告2010年第19号26.食品添加剂 乳酸钠(溶液)GB 25537-2010 食品添加剂 乳酸钠(溶液)卫生部公告2010年第19号27.食品添加剂 磷酸GB 3149-2004 食品添加剂 磷酸 28.食品添加剂 六偏磷酸钠GB 1890-2005 食品添加剂 六偏磷酸钠 29.食品添加剂 硫酸钙GB 1892-2007 食品添加剂 硫酸钙 30.食品添加剂 乳酸钙GB 6226-2005 食品添加剂 乳酸钙 31.食品添加剂 L-乳酸钙GB 25555-2010 食品添加剂 L-乳酸钙卫生部公告2010年第19号32.食品添加剂 磷酸三钙GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠卫生部公告2011年第8号指定标准34.食品添加剂 亚铁氰化钾(黄血盐钾)GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾)卫生部公告2010年第19号35.食品添加剂 二氧化硅GB 25576-2010 食品添加剂 二氧化硅卫生部公告2010年第19号36.食品添加剂 硅铝酸钠GB 25583-2010 食品添加剂 硅铝酸钠卫生部公告2010年第19号37.食品添加剂 滑石粉GB 25578-2010 食品添加剂 滑石粉卫生部公告2010年第19号38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素卫生部公告2011年第8号指定标准39.食品添加剂 叔丁基-4-羟基茴香醚GB 1916-2008 食品添加剂 叔丁基-4-羟基茴香醚 40.食品添加剂 二丁基羟基甲苯(BHT)GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT)卫生部公告2010年第19号41.食品添加剂 没食子酸丙酯GB 3263-2008食品添加剂 没食子酸丙酯 42.食品添加剂 茶多酚QB 2154-1995(2009)食品添加剂 茶多酚 43.食品添加剂 植酸(肌醇六磷酸)HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸) 44.食品添加剂 特丁基对苯二酚GB 26403-2011食品添加剂 特丁基对苯二酚卫生部公告2011年第7号45.食品添加剂 甘草抗氧物QB 2078-1995(2009)食品添加剂 甘草抗氧物 46.食品添加剂 抗坏血酸钙GB 15809-1995食品添加剂 抗坏血酸钙 47.食品添加剂 L-抗坏血酸棕榈酸酯GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准48.食品添加剂 迷迭香提取物QB/T 2817-2006食品添加剂 迷迭香提取物 49.食品添加剂 D-异抗坏血酸钠GB 8273-2008食品添加剂 D-异抗坏血酸钠 50.食品添加剂 D-异抗坏血酸GB 22558-2008食品添加剂 D-异抗坏血酸 51.食品添加剂 抗坏血酸钠GB 16313-1996食品添加剂 抗坏血酸钠 52.食品添加剂 维生素E(dl-a-醋酸生育酚)GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚)卫生部公告2010年第19号53.食品添加剂 山梨酸GB 1905-2000食品添加剂 山梨酸 54.食品添加剂 山梨酸钾GB 13736-2008食品添加剂 山梨酸钾 55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精)卫生部公告2011年第8号指定标准56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯卫生部公告2011年第8号指定标准57.食品添加剂 连二亚硫酸钠(保险粉)GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉) 58.食品添加剂 焦亚硫酸钠GB 1893-2008食品添加剂 焦亚硫酸钠 59.食品添加剂 无水亚硫酸钠GB 1894-2005食品添加剂 无水亚硫酸钠 60.食品添加剂 焦亚硫酸钾GB 25570-2010 食品添加剂 焦亚硫酸钾卫生部公告2010年第19号61.食品添加剂 亚硫酸氢钠GB 25590-2010 食品添加剂 亚硫酸氢钠卫生部公告2010年第19号62.食品添加剂 硫磺GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号63.食品添加剂 碳酸氢铵GB 1888-2008食品添加剂 碳酸氢铵 64.食品添加剂 酒石酸氢钾GB 25556-2010 食品添加剂 酒石酸氢钾卫生部公告2010年第19号65.食品添加剂 复合膨松剂GB 25591-2010 食品添加剂 复合膨松剂卫生部公告2010年第19号66.食品添加剂 硫酸铝钾GB 1895-2004食品添加剂 硫酸铝钾 67.食品添加剂 硫酸铝铵GB 25592-2010 食品添加剂 硫酸铝铵卫生部公告2010年第19号68.食品添加剂 羟丙基淀粉醚QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚 69.食品添加剂 山梨糖醇液GB 7658-2005食品添加剂 山梨糖醇液 70.食品添加剂 聚葡萄糖GB 25541-2010 食品添加剂 聚葡萄糖卫生部公告2010年第19号71.食品添加剂 碳酸氢钠GB 1887-2007食品添加剂 碳酸氢钠 72.食品添加剂 碳酸钙GB 1898-2007食品添加剂 碳酸钙 73.食品添加剂 碳酸镁GB 25587-2010 食品添加剂 碳酸镁卫生部公告2010年第19号74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺卫生部公告2011年第8号指定标准75.食品添加剂 苋菜红GB 4479.1—2010 食品添加剂 苋菜红卫生部公告2010年第19号76.食品添加剂 苋菜红铝色淀GB 4479.2-2005食品添加剂 苋菜红铝色淀 77.食品添加剂 胭脂红GB 4480.1-2001食品添加剂 胭脂红 78.食品添加剂 胭脂红铝色淀GB 4480.2-2001食品添加剂 胭脂红铝色淀 79.食品添加剂 柠檬黄GB 4481.1—2010 食品添加剂 柠檬黄卫生部公告2010年第19号80.食品添加剂 柠檬黄铝色淀GB 4481.2—2010 食品添加剂 柠檬黄铝色淀卫生部公告2010年第19号81.食品添加剂 日落黄GB 6227.1—2010 食品添加剂 日落黄卫生部公告2010年第19号82.食品添加剂 日落黄铝色淀GB 6227.2-2005食品添加剂 日落黄铝色淀 83.食品添加剂 亮蓝GB 7655.1-2005食品添加剂 亮蓝 84.食品添加剂 亮蓝铝色淀GB 7655.2-2005食品添加剂 亮蓝铝色淀 85.食品添加剂 新红GB 14888.1-2010 食品添加剂 新红卫生部公告2010年第19号86.食品添加剂 新红铝色淀GB 14888.2-2010 食品添加剂 新红铝色淀卫生部公告2010年第19号87.食品添加剂 诱惑红GB 17511.1-2008食品添加剂 诱惑红 88.食品添加剂 诱惑红铝色淀GB 17511.2-2008食品添加剂 诱惑红铝色淀 89.食品添加剂 赤藓红GB 17512.1-2010 食品添加剂 赤藓红卫生部公告2010年第19号90.食品添加剂 赤藓红铝色淀GB 17512.2-2010 食品添加剂 赤藓红铝色淀卫生部公告2010年第19号91.食品添加剂 β-胡萝卜素GB 8821—2010 食品添加剂 β-胡萝卜素卫生部公告2010年第19号92.食品添加剂 天然β-胡萝卜素QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素 93.食品添加剂 甜菜红QB/T 3791-1999(2009)食品添加剂 甜菜红 94.食品添加剂 紫胶红色素GB 4571—1996食品添加剂 紫胶红色素 95.食品添加剂 辣椒红GB 10783-2008食品添加剂 辣椒红 96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) 97.食品添加剂 红米红GB 25534-2010 食品添加剂 红米红卫生部公告2010年第19号98.食品添加剂 栀子黄GB 7912-2010 食品添加剂 栀子黄卫生部公告2010年第19号99.食品添加剂 菊花黄QB 3792-1999(2009)食品添加剂 菊花黄 100.食品添加剂 黑豆红QB 3793-1999(2009)食品添加剂 黑豆红 101.食品添加剂 高粱红GB 9993-2005食品添加剂 高粱红 102.食品添加剂 可可壳色素GB 8818-2008食品添加剂 可可壳色素 103.食品添加剂 红曲米(粉)GB 4926-2008食品添加剂 红曲米(粉) 104.食品添加剂 红曲红GB 15961-2005食品添加剂 红曲红 105.食品添加剂 天然苋菜红QB 1227-1991(2009)食品添加剂 天然苋菜红 106.食品添加剂 姜黄色素QB 1415-1991(2009)食品添加剂 姜黄色素 107.食品添加剂 叶绿素铜钠盐GB 26406-2011 食品添加剂 叶绿素铜钠盐卫生部公告2011年第7号 108.食品添加剂 萝卜红GB 25536-2010 食品添加剂 萝卜红卫生部公告2010年第19号109.食品添加剂 二氧化钛GB 25577-2010 食品添加剂 二氧化钛卫生部公告2010年第19号110.食品添加剂 蔗糖脂肪酸酯食品添加剂 蔗糖脂肪酸酯GB 8272-2009食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯(丙二醇法)GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法) 食品添加剂 蔗糖脂肪酸酯(无溶剂法)QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法) 111.食品添加剂 酪蛋白酸钠QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89) 112.食品添加剂 蒸馏单硬脂酸甘油酯GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯 113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60)GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60)卫生部公告2010年第19号114.食品添加剂 山梨醇酐单油酸酯(司盘80)GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80)卫生部公告2010年第19号115.食品添加剂 单、双硬脂酸甘油酯GB 1986-2007食品添加剂 单、双硬脂酸甘油酯 116.食品添加剂 辛癸酸甘油酯QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯 117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 118.食品添加剂 木糖醇酐单硬脂酸酯QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯 119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90) 120.食品添加剂 山梨醇酐单月桂酸酯(司盘20)GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20)卫生部公告2010年第19号121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40)GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40)卫生部公告2010年第19号122.食品添加剂 双乙酰酒石酸单双甘油酯GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯卫生部公告2010年第19号123.食品添加剂 三聚甘油单硬脂酸酯GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯 124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60)GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60)卫生部公告2010年第19号125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80)GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80)卫生部公告2010年第19号126.食品添加剂 果胶GB 25533-2010 食品添加剂 果胶卫生部公告2010年第19号127.食品添加剂 卡拉胶GB 15044-2009食品添加剂 卡拉胶 128.食品添加剂 藻酸丙二醇酯GB 10616-2004食品添加剂 藻酸丙二醇酯 129.食品添加剂 松香甘油酯和氢化松香甘油酯GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯卫生部公告2011年第8号指定标准131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯卫生部公告2011年第8号指定标准132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙卫生部公告2011年第8号指定标准133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁卫生部公告2011年第8号指定标准134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠卫生部公告2011年第8号指定标准136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯卫生部公告2011年第8号指定标准137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯卫生部公告2011年第8号指定标准138.食品添加剂 乳糖醇 食品添加剂 乳糖醇卫生部公告2011年第8号指定标准139.食品添加剂 α-淀粉酶制剂GB 8275-2009食品添加剂 α-淀粉酶制剂  140.食品添加剂 糖化酶制剂GB 8276-2006食品添加剂 糖化酶制剂 141.食品添加剂 果胶酶制剂QB 1502-1992(2009)食品添加剂 果胶酶制剂 142.食品添加剂 真菌α-淀粉酶QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶 143.食品添加剂 α-葡萄糖转苷酶QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶 144.食品添加剂 a-乙酰乳酸脱羧酶制剂GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂 145.食品添加剂 纤维素酶制剂QB 2583-2003 纤维素酶制剂 146.食品工业用酶制剂GB 25594-2010 食品添加剂 食品工业用酶制剂卫生部公告2010年第19号147.食品添加剂 5'-鸟苷酸二钠QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠 148.食品添加剂 呈味核苷酸二钠QB/T 2845-2007食品添加剂 呈味核苷酸二钠 149.食品添加剂 甘氨酸(氨基乙酸)GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸)卫生部公告2010年第19号150.食品添加剂 L-丙氨酸GB 25543-2010 食品添加剂 L-丙氨酸卫生部公告2010年第19号151.食品用石蜡GB 7189-1994食品用石蜡  152.食品级白油GB 4853-2008食品级白油 153.食品添加剂 吗啉脂肪酸盐果蜡GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡卫生部公告2010年第19号154.食品添加剂 紫胶(虫胶)LY 1193—1996 食品添加剂 紫胶(虫胶) 155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯卫生部公告2011年第8号指定标准156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡卫生部公告2011年第8号指定标准157.食品添加剂 蜂蜡 食品添加剂 蜂蜡卫生部公告2011年第8号指定标准158.食品添加剂 三聚磷酸钠GB 25566-2010 食品添加剂 三聚磷酸钠卫生部公告2010年第19号159.食品添加剂 磷酸氢二钾GB 25561-2010 食品添加剂 磷酸氢二钾卫生部公告2010年第19号160.食品添加剂 磷酸二氢铵GB 25569-2010 食品添加剂 磷酸二氢铵卫生部公告2010年第19号161.食品添加剂 磷酸氢二钠GB 25568-2010 食品添加剂 磷酸氢二钠卫生部公告2010年第19号162.食品添加剂 磷酸二氢钠GB 25564-2010 食品添加剂 磷酸二氢钠卫生部公告2010年第19号163.食品添加剂 L-赖氨酸盐酸盐GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐  164.食品添加剂 牛磺酸GB 14759-2010食品添加剂 牛磺酸卫生部公告2010年第19号165.食品添加剂 左旋肉碱GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准166.食品添加剂 维生素AGB 14750-2010 食品添加剂 维生素A卫生部公告2010年第19号167.食品添加剂 维生素B1(盐酸硫胺)GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺)卫生部公告2010年第19号168.食品添加剂 维生素B2(核黄素)GB 14752-2010 食品添加剂 维生素B2(核黄素)卫生部公告2010年第19号169.食品添加剂 维生素B6(盐酸吡哆醇)GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇)卫生部公告2010年第19号170.食品添加剂 维生素C(抗坏血酸)GB 14754-2010 食品添加剂 维生素C(抗坏血酸)卫生部公告2010年第19号171.食品添加剂 维生素D2(麦角钙化醇)GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇)卫生部公告2010年第19号172.食品添加剂 烟酸GB 14757-2010 食品添加剂 烟酸卫生部公告2010年第19号173.食品添加剂 叶酸GB 15570-2010 食品添加剂 叶酸卫生部公告2010年第19号174.食品添加剂 乳酸亚铁GB 6781-2007 食品添加剂 乳酸亚铁 175.食品添加剂 柠檬酸钙GB 17203-1998 食品添加剂 柠檬酸钙 176.食品添加剂 葡萄糖酸钙GB 15571-2010食品添加剂 葡萄糖酸钙卫生部公告2010年第19号177.食品添加剂 生物碳酸钙QB 1413-1999(2009)食品添加剂 生物碳酸钙 178.食品营养强化剂 煅烧钙GB 9990-2009 食品营养强化剂 煅烧钙 179.食品添加剂 L-苏糖酸钙GB17779-2010 食品添加剂 L-苏糖酸钙卫生部公告2010年第19号180.食品添加剂 乙酸钙GB 15572-1995 食品添加剂 乙酸钙及第1号修改单 181.食品添加剂 葡萄糖酸锌GB 8820-2010 食品添加剂 葡萄糖酸锌卫生部公告2010年第19号182.食品添加剂 天然维生素EGB 19191-2003 食品添加剂 天然维生素E  QB 2483-2000(2009)食品添加剂 天然维生素E 183.食品添加剂 乙二胺四乙酸铁钠GB 22557-2008 食品添加剂 乙二胺四乙酸铁钠 184.食品添加剂 胆钙化醇《中华人民共和国药典》(2010年版)相应品种 维生素 D3卫生部公告2010年第18号指定标准185.食品添加剂 d-α醋酸生育酚《中华人民共和国药典》(2010年版)相应品种 维生素 E卫生部公告2010年第18号指定标准186.食品添加剂 植物甲萘醌《中华人民共和国药典》(2010年版)相应品种 维生素 K1卫生部公告2010年第18号指定标准187.食品添加剂 氰钴胺《中华人民共和国药典》(2010年版)相应品种 维生素 B12卫生部公告2010年第18号指定标准188.食品添加剂 烟酰胺《中华人民共和国药典》(2010年版)相应品种 烟酰胺卫生部公告2010年第18号指定标准189.食品添加剂 泛酸钙《中华人民共和国药典》(2010年版)相应品种 泛酸钙卫生部公告2010年第18号指定标准190.食品添加剂 硫酸镁《中华人民共和国药典》(2010年版)相应品种 硫酸镁卫生部公告2010年第18号指定标准191.食品添加剂 氧化镁《中华人民共和国药典》(2010年版)相应品种 氧化镁卫生部公告2010年第18号指定标准192.食品添加剂 硫酸亚铁《中华人民共和国药典》(2010年版)相应品种 硫酸亚铁卫生部公告2010年第18号指定标准193.食品添加剂 富马酸亚铁《中华人民共和国药典》(2010年版)相应品种 富马酸亚铁卫生部公告2010年第18号指定标准194.食品添加剂 氧化锌《中华人民共和国药典》(2010年版)相应品种 氧化锌卫生部公告2010年第18号指定标准195.食品添加剂 柠檬酸锌《中华人民共和国药典》(2010年版)相应品种 枸橼酸锌卫生部公告2010年第18号指定标准196.食品添加剂 碘化钠《中华人民共和国药典》(2010年版)相应品种 碘化钠卫生部公告2010年第18号指定标准197.食品添加剂 碘化钾《中华人民共和国药典》(2010年版)相应品种 碘化钾卫生部公告2010年第18号指定标准198.食品添加剂 L-肉碱酒石酸盐GB 25550-2010 食品添加剂 L-肉碱酒石酸盐卫生部公告2010年第19号199.食用硫酸镁QB 2555-2002(2009)食用硫酸镁 200.食品添加剂 二十二碳六烯酸油脂(发酵法)GB26400-2011 食品添加剂 二十二碳六烯酸油脂(发酵法)卫生部公告2011年第7号201.食品添加剂 花生四烯酸油脂(发酵法)GB 26401-2011 食品添加剂 花生四烯酸油脂(发酵法)卫生部公告2011年第7号202.食品添加剂 碘酸钾GB 26402-2011 食品添加剂 碘酸钾卫生部公告2011年第7号203.食品添加剂 叶黄素GB 26405-2011 食品添加剂 叶黄素卫生部公告2011年第7号204.食品添加剂 5'-胞苷酸二钠 食品添加剂 5'-胞苷酸二钠卫生部公告2011年第8号指定标准205.食品添加剂 苯甲酸GB 1901-2005食品添加剂 苯甲酸 206.食品添加剂 苯甲酸钠GB 1902-2005食品添加剂 苯甲酸钠 207.食品添加剂 丙酸钙GB 25548-2010 食品添加剂 丙酸钙卫生部公告2010年第19号208.食品添加剂 丙酸钠GB 25549-2010 食品添加剂 丙酸钠卫生部公告2010年第19号209.食品添加剂 对羟基苯甲酸乙酯GB 8850-2005食品添加剂 对羟基苯甲酸乙酯 210.食品添加剂 对羟基苯甲酸丙酯GB 8851-2005食品添加剂 对羟基苯甲酸丙酯 211.食品添加剂 乙氧基喹HG 2924-1988(2009) 食品添加剂 乙氧基喹(原GB 8849-88)食品添加剂 乙氧基喹 卫生部公告2011年第8号指定标准212食品添加剂 乳酸链球菌素QB 2394-2007食品添加剂 乳酸链球菌素 213.食品添加剂 稳定态二氧化氯溶液GB 25580-2010 食品添加剂 稳定态二氧化氯溶液卫生部公告2010年第19号214.食品添加剂 丙酸HG 2925-1989(2009)食品添加剂 丙酸(原GB 10615-89) 215.食品添加剂 过氧碳酸钠HG 2788-1996(2009)食品添加剂 过氧碳酸钠 216.食品添加剂 液体二氧化碳GB 10621-2006 食品添加剂 液体二氧化碳 217.食品添加剂 纳他霉素GB 25532-2010 食品添加剂 纳他霉素卫生部公告2010年第19号218.食品添加剂 双乙酸钠GB 25538-2010 食品添加剂 双乙酸钠卫生部公告2010年第19号219.食品添加剂 脱氢乙酸钠GB 25547-2010 食品添加剂 脱氢乙酸钠卫生部公告2010年第19号220.食品添加剂 硝酸钠 GB 1891-2007食品添加剂 硝酸钠 221.食品添加剂 亚硝酸钠GB 1907-2003食品添加剂 亚硝酸钠 222.食品添加剂 葡萄糖酸-δ-内酯GB 7657-2005食品添加剂 葡萄糖酸-δ-内酯 223.食品添加剂 氯化钙GB 22214-2008食品添加剂 氯化钙 224.食品添加剂 氯化镁GB 25584-2010食品添加剂 氯化镁卫生部公告2010年第19号225.食品添加剂 乙二胺四乙酸二钠 食品添加剂 乙二胺四乙酸二钠卫生部公告2011年第8号指定标准226.食品添加剂 环己基氨基磺酸钠(甜蜜素)GB 12488-2008食品添加剂 环己基氨基磺酸钠(甜蜜素) 227.食品添加剂 异麦芽酮糖 QB 1581-1992(2009)食品添加剂 异麦芽酮糖  228.食品添加剂 木糖醇GB 13509-2005食品添加剂 木糖醇 229.食品添加剂 甜菊糖甙GB 8270—1999食品添加剂 甜菊糖甙 230.食品添加剂 甘草酸一钾盐(甘草甜素单钾盐)QB 2077-1995(2009)食品添加剂 甘草酸一钾盐(甘草甜素单钾盐) 231.食品添加剂 乙酰磺胺酸钾GB 25540-2010 食品添加剂 乙酰磺胺酸钾卫生部公告2010年第19号232.食品添加剂 天门冬酰苯丙氨酸甲酯(阿斯巴甜)GB 22367-2008食品添加剂 天门冬酰苯丙氨酸甲酯(阿斯巴甜) 233.食品添加剂 赤藓糖醇GB 26404-2011 食品添加剂 赤藓糖醇卫生部公告2011年第7号234.食品添加剂 三氯蔗糖GB 25531-2010 食品添加剂 三氯蔗糖卫生部公告2010年第19号235.食品添加剂 糖精钠GB 4578-2008食品添加剂 糖精钠 236.食品添加剂 D-甘露糖醇 食品添加剂 D-甘露糖醇卫生部公告2011年第8号指定标准237.食品添加剂 明胶GB 6783-1994食品添加剂 明胶 238.食品添加剂 羧甲基纤维素钠GB 1904-2005食品添加剂 羧甲基纤维素钠 239.食品添加剂 褐藻酸钠GB 1976-2008食品添加剂 褐藻酸钠 240.食品添加剂 β-环状糊精QB 1613-1992(2009)食品添加剂 β-环状糊精 241.食品添加剂 田菁胶HG/T 2787-1996(2007)食品添加剂 田菁胶 242.食品添加剂 瓜尔胶QB 2246-1996(2009)食品添加剂 瓜尔胶 243.食品添加剂 琼脂(琼胶)GB 1975-2010 食品添加剂 琼脂(琼胶)卫生部公告2010年第19号244.食品添加剂 亚麻籽胶QB 2731-2005食品添加剂 亚麻籽胶 245.食品添加剂 结冷胶GB 25535-2010 食品添加剂 结冷胶卫生部公告2010年第19号246.食品添加剂 黄原胶GB 13886-2007食品添加剂 黄原胶 247.食品添加剂 羟丙基甲基纤维素(HPMC) 食品添加剂 羟丙基甲基纤维素(HPMC)卫生部公告2011年第8号指定标准248.食品添加剂 刺云实胶 食品添加剂 刺云实胶卫生部公告2011年第8号指定标准249.食品添加剂 罗望子多糖胶 食品添加剂 罗望子多糖胶卫生部公告2011年第8号指定标准250.食品添加剂 香兰素GB 3861-2008 食品添加剂 香兰素 251.食品添加剂 天然薄荷脑GB 3862-2006 食品添加剂 天然薄荷脑 252.食品添加剂 丁酸乙酯GB 4349-2006 食品添加剂 丁酸乙酯 253.食品添加剂 冷磨柠檬油GB 6772-2008 食品添加剂 冷磨柠檬油 254.食品添加剂 乙酸异戊酯GB 6776-2006 食品添加剂 乙酸异戊酯 255.食品添加剂 茉莉浸膏GB 6779-2008 食品添加剂 茉莉浸膏 256.食品添加剂 桂花浸膏GB 6780-2008 食品添加剂 桂花浸膏 257.食品添加剂 己酸乙酯GB 8315-2008 食品添加剂 己酸乙酯 258.食品添加剂 乳酸乙酯GB 8317-2006 食品添加剂 乳酸乙酯 259.食品添加剂 生姜(精)油(蒸馏)GB 8318-2008 食品添加剂 生姜(精)油(蒸馏) 260.食品添加剂 亚洲薄荷素油GB 8319-2003 食品添加剂 亚洲薄荷素油 261.食品添加剂 桉叶素含量80%的桉叶油GB 10351-2008 食品添加剂 桉叶素含量80%的桉叶油 262.食品添加剂 肉桂油GB 11958-1989 食品添加剂 肉桂油 263.食品添加剂 香叶(精)油GB 11959-2008 食品添加剂 香叶(精)油 264.食品添加剂 留兰香油GB 11960-2008 食品添加剂 留兰香油 265.食品添加剂 乙基麦芽酚GB 12487-2010 食品添加剂 乙基麦芽酚卫生部公告2010年第19号266.食品添加剂 2-甲基-3-呋喃硫醇GB 23487-2009 食品添加剂 2-甲基-3-呋喃硫醇 267.食品添加剂 2,3-丁二酮GB 23488-2009 食品添加剂 2,3-丁二酮 268.食品添加剂 大茴香脑(天然)GB 23489-2009 食品添加剂 大茴香脑(天然) 269.食品添加剂 正丁醇HG 2926-1989(2009)食品添加剂 正丁醇(原GB 10618-89) 270.食品添加剂 麝香草酚QB/T 1025-2007 麝香草酚 271.食品添加剂 环己基丙酸烯丙酯QB/T 1119-2007 食品添加剂 环己基丙酸烯丙酯 食品添加剂 3-环己基丙酸烯丙酯 卫生部公告2011年第8号指定标准272.食品添加剂 八角茴香(精)油QB/T 1120-2010 食品添加剂 八角茴香(精)油 273.食品添加剂 r-壬内酯QB/T 1121-2007 食品添加剂 r-壬内酯 274.食品添加剂 山楂核烟熏香味料I号、II号QB/T 1122-2007 食品添加剂 山楂核烟熏香味料I号、II号 275.食品添加剂 羟基香茅醛QB/T 1467-2007 羟基香茅醛 276.食品添加剂 丁香酚QB/T 1509-2007 食品添加剂 丁香酚 277.食品添加剂 复盆子酮 QB/T 1632-2006 复盆子酮 278.食品添加剂 丙酸苄酯QB/T 1772-2006 丙酸苄酯 279.食品添加剂 丁酸丁酯QB/T 1774-2006 丁酸丁酯 280.食品添加剂 异戊酸乙酯QB/T 1776-2006 异戊酸乙酯 281.食品添加剂 苯甲酸乙酯QB/T 1779-2006 苯甲酸乙酯 282.食品添加剂 苯甲酸苄酯QB/T 1780-2006 苯甲酸苄酯 283.食品添加剂 肉桂醇QB/T 1783-2007 肉桂醇 284.食品添加剂 r-十一内酯(桃醛)QB/T 1784-2007 r-十一内酯(桃醛) 285.食品添加剂 草莓醛 (杨梅醛)QB/T 1785-2007 草莓醛(杨梅醛) 286.食品添加剂 乙基香兰素QB/T 1791-2006 乙基香兰素 287.食品添加剂 枣子酊QB/T 1953-2007 食品添加剂 枣子酊 288.食品添加剂 丙酸乙酯QB/T 1954-2007 食品添加剂 丙酸乙酯 289.食品添加剂 庚酸乙酯QB/T 1955—2007 食品添加剂 庚酸乙酯 290.食品添加剂 甲基环戊烯醇酮QB/T 2641-2004 食品添加剂 甲基环戊烯醇酮 291.食品添加剂 麦芽酚QB/T 2642-2004 麦芽酚 292.食品添加剂 柠檬醛QB/T 2643-2004 食品添加剂 97% 柠檬醛 293.食品添加剂 苯乙醇QB/T 2644-2004 食品添加剂 苯乙醇 294.食品添加剂 乙酸苄酯QB/T 2645-2004 食品添加剂 乙酸苄酯 295.食品添加剂 丁酸异戊酯QB/T 2646-2004 食品添加剂 丁酸异戊酯 296.食品添加剂 异戊酸异戊酯QB/T 2647-2004 食品添加剂 异戊酸异戊酯 297.食品添加剂 己酸烯丙酯QB/T 2648-2004 食品添加剂 己酸烯丙酯 298.食品添加剂 丁酸苄酯QB/T 2649-2004 食品添加剂 丁酸苄酯 299.食品添加剂 α-戊基肉桂醛QB/T 2650-2004 食品添加剂 α-戊基肉桂醛 300.食品添加剂 松油醇QB/T 2651-2004 食品添加剂 松油醇 301.食品添加剂 四甲基吡嗪QB/T 2748-2005 四甲基吡嗪 302.食品添加剂 三甲基吡嗪QB/T 2749-2005 三甲基吡嗪 303.食品添加剂 2,3-二甲基吡嗪 QB/T 2750-2005 2,3-二甲基吡嗪 304.食品添加剂 甲基吡嗪QB/T 2751-2005 甲基吡嗪 305.食品添加剂 2-乙酰基噻唑QB/T 2752-2005 2-乙酰基噻唑 306.食品添加剂 4-甲基-5-(β-羟乙基)噻唑QB/T 2753-2005 4-甲基-5-(β-羟乙基)噻唑 307.食品添加剂 乙酸芳樟酯QB/T 2793-2010 食品添加剂 乙酸芳樟酯 308.食品添加剂 苯甲醇QB/T 2794-2010 食品添加剂 苯甲醇 309.食品添加剂 广藿香(精)油QB/T 2795-2010 食品添加剂 广藿香(精)油 310.食品添加剂 丁酸QB/T 2796-2010 食品添加剂 丁酸 311.食品添加剂 己酸QB/T 2797-2010 食品添加剂 己酸 312.食品添加剂 杭白菊浸膏QB/T 2798-2010 食品添加剂 杭白菊浸膏 313.食品添加剂 甲位已基肉桂醛QB/T2241-2010 甲位已基肉桂醛 314.食品添加剂 1,8-桉叶素(单离)QB/T2243-2010 1,8-桉叶素(单离) 315.食品添加剂 乙酸乙酯QB/T2244-2010 乙酸乙酯 316.食品添加剂 N,2,3-三甲基-2-异丙基丁酰胺GB 25593-2010 食品添加剂 N,2,3-三甲基-2-异丙基丁酰胺卫生部公告2010年第19号317.食用单宁酸LY/T1641-2005 (2010)食用单宁酸 质检总局卫生部联合公告2009年72号318.食品添加剂 d-核糖 食品添加剂 d-核糖卫生部公告2011年第8号指定标准319.食品添加剂 辛酸乙酯 食品添加剂 辛酸乙酯卫生部公告2011年第8号指定标准320.食品添加剂 棕榈酸乙酯(十六酸乙酯) 食品添加剂 棕榈酸乙酯(十六酸乙酯)卫生部公告2011年第8号指定标准321.食品添加剂 甲酸香茅酯 食品添加剂 甲酸香茅酯卫生部公告2011年第8号指定标准322.食品添加剂 甲酸香叶酯 食品添加剂 甲酸香叶酯卫生部公告2011年第8号指定标准323.食品添加剂 乙酸香叶酯 食品添加剂 乙酸香叶酯卫生部公告2011年第8号指定标准324.食品添加剂 乙酸橙花酯 食品添加剂 乙酸橙花酯卫生部公告2011年第8号指定标准325.食品添加剂 己醛 食品添加剂 己醛卫生部公告2011年第8号指定标准326.食品添加剂 正癸醛(癸醛) 食品添加剂 正癸醛(癸醛)卫生部公告2011年第8号指定标准327.食品添加剂 乙酸丙酯 食品添加剂 乙酸丙酯卫生部公告2011年第8号指定标准328.食品添加剂 乙酸2-甲基丁酯 食品添加剂 乙酸2-甲基丁酯卫生部公告2011年第8号指定标准329.食品添加剂 异丁酸乙酯 食品添加剂 异丁酸乙酯卫生部公告2011年第8号指定标准330.食品添加剂 异戊酸3-己烯酯(3-甲基丁酸3-己烯酯) 食品添加剂 异戊酸3-己烯酯(3-甲基丁酸3-己烯酯)卫生部公告2011年第8号指定标准331.食品添加剂 2-甲基丁酸3-己烯酯 食品添加剂 2-甲基丁酸3-己烯酯卫生部公告2011年第8号指定标准332.食品添加剂 2-甲基丁酸2-甲基丁酯 食品添加剂 2-甲基丁酸2-甲基丁酯卫生部公告2011年第8号指定标准333.食品添加剂 γ-己内酯 食品添加剂 γ-己内酯卫生部公告2011年第8号指定标准334.食品添加剂 γ-庚内酯 食品添加剂 γ-庚内酯卫生部公告2011年第8号指定标准335.食品添加剂 γ-癸内酯 食品添加剂 γ-癸内酯卫生部公告2011年第8号指定标准336.食品添加剂 δ-癸内酯 食品添加剂 δ-癸内酯卫生部公告2011年第8号指定标准337.食品添加剂 γ-十二内酯 食品添加剂 γ-十二内酯卫生部公告2011年第8号指定标准338.食品添加剂 δ-十二内酯 食品添加剂 δ-十二内酯卫生部公告2011年第8号指定标准339.食品添加剂 2,6-二甲基-5-庚烯醛 食品添加剂 2,6-二甲基-5-庚烯醛卫生部公告2011年第8号指定标准340.食品添加剂 2-甲基-4-戊烯酸 食品添加剂 2-甲基-4-戊烯酸卫生部公告2011年第8号指定标准341.食品添加剂 芳樟醇 食品添加剂 芳樟醇卫生部公告2011年第8号指定标准342.食品添加剂 乙酸松油酯 食品添加剂 乙酸松油酯卫生部公告2011年第8号指定标准343.食品添加剂 二氢香芹醇 食品添加剂 二氢香芹醇卫生部公告2011年第8号指定标准344.食品添加剂 d-香芹酮 食品添加剂 d-香芹酮卫生部公告2011年第8号指定标准345.食品添加剂 l-香芹酮 食品添加剂 l-香芹酮卫生部公告2011年第8号指定标准346.食品添加剂 α-紫罗兰酮 食品添加剂 α-紫罗兰酮卫生部公告2011年第8号指定标准347.食品添加剂 乳化香精GB 10355-2006 食品添加剂 乳化香精 348.食品用香精 [液体、浆(膏)状、粉末]QB/T 1505-2007 食用香精 349.咸味食品香精[液体、浆(膏体)状、粉末]QB/T 2640-2004 咸味食品香精 350.食品添加剂 4-氯苯氧乙酸钠HG 2302-1992(2009) 食品添加剂 4-氯苯氧乙酸钠 351.食品添加剂 过氧化氢GB 22216-2008 食品添加剂 过氧化氢 352.食品添加剂 硅藻土GB 14936-1994 硅藻土卫生标准 QB/T 2088-1995(2009) 食品工业用助滤剂 硅藻土  353.食品级凡士林SH/T 0767-2005 食品级凡士林 354.食品添加剂 活性白土GB 25571-2010 食品添加剂 活性白土卫生部公告2010年第19号355.食品添加剂 焦磷酸四钾GB 25562-2010 食品添加剂 焦磷酸四钾卫生部公告2010年第19号356.食品添加剂 次氯酸钠GB 25574-2010 食品添加剂 次氯酸钠卫生部公告2010年第19号357.食品添加剂 硅酸钙铝GB 25582-2010 食品添加剂 硅酸钙铝卫生部公告2010年第19号358.食品添加剂 硫酸锌GB 25579-2010 食品添加剂 硫酸锌卫生部公告2010年第19号359.食品添加剂 高锰酸钾GB 2513-2004 食品添加剂 高锰酸钾 360.食品添加剂 异构化乳糖液GB 8816-1988 食品添加剂 异构化乳糖液 361.食品添加剂 咖啡因GB 14758-2010 食品添加剂 咖啡因卫生部公告2010年第19号362.食品添加剂 氯化钾GB 25585-2010 食品添加剂 氯化钾卫生部公告2010年第19号363.食品级微晶蜡GB 22160-2008 食品级微晶蜡 364.食品添加剂 月桂酸 食品添加剂 月桂酸卫生部公告2011年第8号指定标准365.复配食品添加剂GB 26687-2011 复配食品添加剂通则卫生部公告2011年第18号备注:如卫生部发布食品添加剂新标准,则以新标准内容为准。
  • 广西标准化协会批准《甘蔗蔗汁重力纯度测定方法》等8项团体标准
    广西标准化协会批准团体标准《甘蔗蔗汁重力纯度测定方法》等8项团体标准, 现予以公告。附件:广西标准化协会团体标准批准发布表广西标准化协会2023年4月24日
  • 肉贩给待售猪肉抹白粉 经检为化工品纯碱
    九龙坡区冶金3村农贸市场肉贩,给待售猪肉抹的白粉粉是啥东西?4月12日,真相揭开---化工产品碳酸钠,也叫纯碱。  4月7日,肉贩蒙家治在凌晨6时许,将白色粉末涂抹在待售猪肉上,警方和工商等部门介入后,其坦言,涂抹后能使肉的颜色更好看更好卖。当天暂扣120多公斤问题猪肉及白粉粉送检。  4月12日,来自中国轻工业联合会食品质量监督检测重庆站的消息表明,白粉粉是化工产品碳酸钠,也叫纯碱。据了解,碳酸钠具弱刺激性和弱腐蚀性,误服可造成消化道灼伤、粘膜糜烂、出血和休克。  重庆市卫生局有关人士介绍,农产品禁止添加任何物品,猪肉属于农产品,也不例外。执法人员称,目前,碳酸钠虽允许适当添加进饼干等膨化食品,但剂量限制非常严格。蒙家治随手一抓就往猪肉上抹,剂量多少全凭感觉,这种猪肉有何危害尚需进一步检测。  九龙坡区工商执法人员称,对蒙家治已立案调查,将从重处罚,按国家法规,可处涉案金额5倍的罚款。  重庆汉尊律师事务所律师袁政认为,给猪肉涂抹碳酸钠的行为,属于掺入有毒有害的非食品原料,还可能涉嫌生产销售有毒有害食品罪,该罪轻则处以5年以下有期徒刑,最重可判死刑。首席记者 黄艳春  九龙坡区整治餐饮一条街  取缔19户无证经营者  九龙坡区通报了启动食品安全集中整治行动10天以来的整治成果。  除了查处肉贩蒙家治出售"化妆猪肉"一事,还检查了杨家坪直港大道餐饮一条街的110家单位,其中19户没有办理餐饮服务许可证的单位或个人被依法取缔 未取得健康证明的480名餐饮服务从业人员被责令限期体检,检查后有9人不合格,其中4人有开放性结核杆菌,不能直接从事餐饮服务业。
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。 今天关于新标准的技术解析,您都Get到了吗? 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 欧盟拟修改规定增甜剂纯度专门标准的第2008/60/EC指号令
    2010年2月23日,欧盟发布通报,拟修改规定增甜剂纯度专门标准的第2008/60/EC指号令。欧洲食品安全局(EFSA) 2007年9月27日评估了纽糖做作为增甜剂及增味剂的安全性并发表了它的意见。本指令草案的目的是修改2008年6月17日有关规定食品用增甜剂特殊纯度标准的第2008/60/EC号指令附件I。纽糖新定代号为E, 既:E 961。
  • 珀金埃尔默发布黄金纯度检测解决方案:《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》
    每当我们谈论起黄金,首先想到的是什么?千足金,18K,24K,纸黄金,那群曾经买遍全球的“中国大妈”,还有近期涨落不定的黄金股票和期货̷̷。黄金除了众所周知的金融属性之外,其耐腐蚀、易导电、易成型、储量稀少等特性使之成为地球上最珍贵且用途广泛的金属之一,被广泛用于珠宝、艺术品、电子、医学、航空航天和装饰等领域。实际应用中,不同用途要求使用的黄金纯度不同,美国材料实验协会(ASTM)为此制订了推荐标准“B562-95精炼金标准规格”,规定了精炼黄金的各种纯度规格。珀金埃尔默发布最新黄金纯度检测解决方案——《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》,按照ASTM B562-95标准规定,使用电感耦合等离子体发射光谱仪(ICP-OES)分析黄金纯度。之所以选用Avio ICP-OES,是基于其以下几个优势:Flat Plate™ 等离子技术消耗的氩气显著减少,大大降低操作成本PlasmaShear™ 技术生成一层薄的空气流切断等离子体的顶部,避免样品在轴向观测窗上发生沉积,实现在复杂基质中优异的稳定性,能够长时间分析复杂基体样品,几乎无需维护卓越的光学系统能够稳定且准确地进行即时分析,缩短样品间隔时间,分析速度快欲了解详情,请扫描二维码,获取资料《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》扫描上方二维码即可下载资料
  • 国家市场监督管理总局关于对《气体分析 基于比较测量的傅立叶变换红外光谱法》等34项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《石油与天然气地表地球化学勘探技术规范》等34项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年6月30日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001825,查询项目信息和反馈意见建议。2024年5月31日相关标准如下:#项目中文名称制修订截止日期1工业用氢氧化钠成分分析 第1部分:氢氧化钠和碳酸钠修订2024-06-302化学物质的热稳定性测定 第2部分:绝热量热法制定2024-06-303气体分析 基于比较测量的傅立叶变换红外光谱法制定2024-06-304无机化工产品 杂质离子的测定 离子色谱法修订2024-06-305无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS)修订2024-06-30
  • 酱油标准存漏洞国标无亚硝酸钠检测
    近日有媒体曝出某调味品企业竟用工业盐替代食用盐生产酱油的消息,一时引发了轩然大波。专家指出,用工业盐替代食用盐酿造酱油,除了造价较低外,国家标准检测上的漏洞,也是驱使企业使用工业盐的重要原因。  价格差异工业盐便宜一半  佛山市高明区政府5月22日通报,高明区杨和镇某食品公司涉嫌用工业盐制作酱油,65箱问题老抽流入市场。  环保专家董金狮告诉记者,国家已经明确规定,工业用料不得用于食品生产,工业盐和食用盐的价格差,是导致企业使用工业盐的主要原因。据介绍,目前纯度为99%以上的工业盐,其售价仅450-500元/吨之间,而正规食盐的价格则高居1000元/吨左右。  另外,董金狮也指出,这一事件的发生和我国的盐业体制也不无关系。在酱油生产过程中,用盐量非常大,如果酱油中盐水不足,酱油容易变酸变臭。而我国的盐业体制决定了市场并未全部放开,企业需要大量用盐,但如果采购不足,就会转而去找工业盐。  国标漏洞不检测亚硝酸钠  据介绍,工业盐广泛应用于制纯碱、氯碱等化工产品,虽然巨大的价差是刺激不法调味品厂铤而走险违规使用的主要原因,但现行的酱油标准中不涉及工业盐关键性指标亚硝酸钠的检测,在一定程度上也促进了商家的不法行为。  董金狮告诉记者,工业盐中有很多杂质,最普遍的就是亚硝酸钠和重金属离子。其中,重金属含量可能比食用盐更高,但并不一定会超标。更为危害人体健康的亚硝酸钠,却在现行的酱油标准检测中缺失。“因为食用盐经过处理,已经不含有或只含有极少的亚硝酸钠,因此国标不检测这一项,而这恰恰让不法商家钻了空子。”  记者了解到,亚硝酸钠主要用于染料、医药、印染、漂白等方面,由于有增色、抑菌防腐作用,在食品工业中多用作熟肉食品的发色添加剂。我国《食品添加剂使用卫生标准》规定,亚硝酸钠在肉食中最大使用量是0.15克/千克,其残留量在肉制品中不得超过0.03克/千克 在肉制品罐头中不得超过0.05克/千克。一般而言,人体只要摄入0.2~0.5克的亚硝酸钠,就会引起中毒 摄入3克亚硝酸钠,就可致人死亡。
  • LC-MS 和氮气发生器纯度的关系—是时候一探究竟了!
    概述本文阐述了LCMS仪器对氮气的要求,以及设计和选择氮气发生器时应考虑的问题,包括氮气纯度和氮气质量,以及氮气发生器的选择对LC-MS运行的影响。介绍杜瓦罐和钢瓶高纯氮的纯度一般是99.999%,也可采购到更高纯度的氮气,例如GC载气(是的,发生器也可用于提供载气!)纯度高达99.9999%。工业上传统的深冷空分制氮法,以空气为原料,利用液氧和液氮的沸点不同,采用低温蒸馏的方式,使它们分离来获得氮气。氮气是一种惰性气体,无法直接测试,氮气纯度主要指非氧化气体的含量,其中包括氮气和其他惰性气体等。通常我们会看到LC-MS适配的氮气发生器显示纯度在98-99.5%之间,为什么不提供99.999%的纯度呢?为什么所有LC-MS仪器制造商都建议氮气发生器产气的纯度大于95%就足以满足质谱的要求?(本文中所提到的LC-MS用气指的是离子源部分用的雾化干燥气,作为碰撞气用的高纯氮气,耗气量很少,一般由钢瓶提供)让我们先来看看LCMS的技术特点:简单来说,氧气并不会影响LCMS信号强度。事实上无碳氢化合物、无颗粒、干燥的空气是完全可以用于LC-MS分析的。我们选用氮气的原因是,在电离阶段,有机溶剂+氧气+高热+高压会导致爆炸,这不仅是一个巨大的安全风险,而且会对昂贵精密的LC-MS造成极大的损害。纯度实际上只是我们评估氮气的一个参数。仅仅因为一种气体纯度高,并不意味着其中没有像碳氢化合物(实验室溶剂挥发产生的VOC)、邻苯二甲酸酯类、硅氧烷类和其他影响灵敏度和基线的有机化合物,以及水份和会污染离子源的灰尘颗粒等,这些会造成昂贵的仪器清洁、维护和维修的成本。LC-MS离子源部分需要一个低氧环境,且不含颗粒和有机污染物,以防止发生爆炸,减少维护和离子源的清洁操作,以保证仪器本身的性能。接下来让我们看看氮气发生器的技术特点:从氮气发生器生产商的角度来看,有两个看起来一样但实际上是完全不同的概念,即氮气纯度和氮气质量。氮气纯度是指主要是指非氧化气体的含量(因为氮气不能直接测量,一般以氧气的含量来推算)。氮气质量定义了氮气中其他杂质的含量,通常是通过分析氧气、水分、碳氢化合物和其他有机物质的含量,这些物质可以通过分析方法分别进行测试和报告。氮气纯度通过良好的产品设计、生产工艺可实现纯度在98-99.5%之间的氮气。空气由78%的氮气、21%的氧气和1%的其他气体组成。通过分离得到的氮气,纯度要求越高,需要的空气也越多。纯度要求越低,所需空气就越少。而空气消耗与氮气纯度之间的关系不是线性的,详细见下图。尤其是当氮气纯度大于99.5%时,所消耗的空气量呈指数增长。关于氮气发生器原理的文章请点击以下链接(http://www.peakscientific.cn/articles/yuanli/)。毕克用于气相色谱载气的氮气发生器纯度99.9999%,这一纯度通过测量氧残余量、水份和碳氢化合物得出(有趣的是,要想测量这些氮气中的残余物,我们只能利用GC才能做到,其他的仪器设备都无法检测这种量级的残留物杂质)。但如图所示,在这种氮气纯度下,我们需要大约12-14倍的空气量。但因气相色谱仪用气量较少,所以如此高的空气消耗量就不是主要问题。但一般的LCMS离子源部分的氮气用量在24-30l/min,有些仪器高达60l/min,以纯度99.999%为例,我们需要向氮气发生器提供325-750l/min的空气。然而,在纯度为99.5%时,空气消耗量为75-150l/min。因此对氮气发生器的总体成本、尺寸、噪音和功耗都有很大的影响。所以,当使用氮气发生器时,高纯度氮气用于对LCMS离子源供气是不可取的。用户在选购发生器的时候需要注意什么?首先,若看到用于LC-MS离子源部分的氮气发生器宣称氮气纯度可高于99.5%,应有所质疑,因为我们知道,考虑到发生器的尺寸、噪音和成本,这其实是不合理的。客户还应选择信誉可靠的气体发生器生产商,因为如果氧气含量超过4%,那么在工作条件下,爆炸风险很高,而设计不佳的氮气发生器往往不能很好地控制氧含量。另外,过滤系统,特别是除水系统,应是高质量的,并根据使用情况定期更换。这将大大降低LC-MS维护的成本。氮气质量如前文所述,氮发生器选择性地去除氮气以外的其他分子,包括氧气、水份等。分离过程中还有哪些分子未被除去呢?首先是氩气,但由于是惰性气体,不会对LC-MS的灵敏度、离子源污染或爆炸造成任何风险。所以,将其归入氮气含量中是完全没有问题的。但其他的像碳氢化合物、硅氧烷类、邻苯二甲酸酯类、灰尘、溶剂、清洁用化学品(例如地板清洁材料等)等都会污染离子源,并出现在质谱图上。实际上,氮气发生器产生氮气的质量还取决于周边的空气质量。如今的环境污染日益增多,诸如汽车尾气、电站以及化工厂排放、化学制品、食品生产加工、日常工作中使用的溶剂、VOC(想想买新车或家具以及粉刷我们的办公室或公寓时的味道,我们将花费大量的时间和精力来去除这些气味,这些气味通常是VOC释放的)等都将出现在环境空气中。因此,一个好的氮气发生器需要一个完善的去除杂质的过程。 在我以往的经验中,有很多次遇到此类问题。我最美好的记忆是当我在家乡附近的一个食品检测实验室工作时。我的家乡是特伦特河畔伯顿镇,是英格兰中部的一个小镇。它以坐落在特伦特河上而闻名,特伦特河是英国最好的淡水来源之一。正因为如此,它拥有庞大的啤酒酿造业,也以马麦酱而闻名(我叫它英国臭豆腐)。正是这些生产过程,使这个区域周围的空气中总是含有化学物质,这些物质会干扰各种分析测试过程。我记得有一个案例,一位客户在LCMS校准过程中测到了硅氧烷物质,来源不明,经摸索,结果发现实验室有一个新的玻璃隔板,密封玻璃用的密封剂挥发产生了小分子链的硅氧烷,而污染了室内空气。另一个问题是汽车内部制造商试图制造低VOC含量的产品,但是当比较塑料材料释放出的VOC量与周围背景空气时,他们发现环境背景空气VOC含量变化很大,就像风向一样难以预测。那么用户可以从中学习到什么呢?由于氮气分离工艺不能去除这些物质,氮气发生器应具有去除这些杂质的过滤装置,且应根据使用情况定期更换。这将减少离子源的维护和清洗,并防止谱图上出现鬼峰等其他干扰。我们的用户在高质量的分析级溶剂上花费了大量的时间和成本,同样也应该重视气源的质量。希望这篇文章能为用户提供有用的信息。
  • 国家卫生健康委发布50项新食品安全国家标准
    近日,根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2021年第3号公告,发布50项新食品安全国家标准和4项修改单。本次公布的标准主要包括:《婴儿配方食品》(GB10765-2021)等3项营养与特膳食品标准、《干酪》(GB5420-2021)1项食品产品标准、《食品添加剂碳酸钠》(GB1886.1-2021)等38项食品添加剂质量规格标准、《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准、《食品中总酸的测定》(GB12456-2021)等4项检验方法与规程标准,以及《食品中污染物限量》(GB2762-2017)第1号修改单等4项修改单。上述食品安全国家标准的制定、修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,为食品安全监管所需,标准制定、修订过程充分征求了社会各方意见并向世贸组织通报。为保障婴幼儿特殊人群健康,本次还修订了《婴儿配方食品》(GB10765-2021)《较大婴儿配方食品》(GB10766-2021)《幼儿配方食品》(GB10767-2021)等3项营养与特膳食品标准。制定修订并实施婴幼儿配方食品系列标准,是保障婴幼儿配方食品安全性、营养充足性的重要手段,是指导和规范食品生产企业科学生产的技术要求,是监管部门开展监管执法的重要依据。为做好标准实施解读,同时发布婴幼儿配方食品标准问答。 为加强食品安全全程控制,我委组织制定了《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准。其中,《餐(饮)具集中消毒卫生规范》(GB31651-2021)制定以规范餐饮具集中消毒服务单位生产经营行为,保证餐饮具卫生满足人民群众健康需求为目的,为加强餐饮具集中消毒的监督执法提供科学的技术依据。《即食鲜切果蔬加工卫生规范》(GB31652-2021)将进一步规范即食鲜切果蔬加工过程,促进行业健康发展,确保此类产品安全卫生,满足消费者对健康、便利生活的追求。《餐饮服务通用卫生规范》(GB31654-2021)是我国首部餐饮服务行业规范类食品安全国家标准,对于提升我国餐饮业安全水平,保障消费者饮食安全、适应人民群众日益增长的餐饮消费需求具有重要意义。《食品中黄曲霉毒素污染控制规范》(GB31653-2021)重点关注食品链中黄曲霉毒素的产生、消除、降低、控制等措施,对于加强黄曲霉毒素的过程控制,确保原料及下游产品食用安全具有重要意义。其编号和名称如下: GB5420-2021食品安全国家标准干酪 GB10765-2021食品安全国家标准婴儿配方食品 GB10766-2021食品安全国家标准较大婴儿配方食品 GB10767-2021食品安全国家标准幼儿配方食品 GB1886.1-2021食品安全国家标准食品添加剂碳酸钠 GB1886.3-2021食品安全国家标准食品添加剂磷酸氢钙 GB1886.302-2021食品安全国家标准食品添加剂聚乙二醇 GB1886.303-2021食品安全国家标准食品添加剂食用单宁 GB1886.315-2021食品安全国家标准食品添加剂胭脂虫红及其铝色淀 GB1886.316-2021食品安全国家标准 食品添加剂 胭脂树橙 GB1886.317-2021食品安全国家标准食品添加剂β- 胡萝卜素(盐藻来源) GB1886.318-2021食品安全国家标准食品添加剂 玉米黄 GB1886.319-2021食品安全国家标准食品添加剂沙棘黄 GB1886.320-2021食品安全国家标准食品添加剂葡萄糖酸钠 GB1886.321-2021食品安全国家标准食品添加剂索马甜 GB1886.322-2021食品安全国家标准食品添加剂可溶性大豆多糖 GB1886.323-2021食品安全国家标准 食品添加剂 花生衣红 GB1886.324-2021食品安全国家标准 食品添加剂 偏酒石酸 GB1886.325-2021食品安全国家标准食品添加剂聚偏磷酸钾 GB1886.326-2021食品安全国家标准食品添加剂酸式焦磷酸钙 GB1886.327-2021食品安全国家标准食品添加剂 磷酸三钾  GB1886.328-2021食品安全国家标准食品添加剂 焦磷酸二氢二钠 GB1886.329-2021食品安全国家标准食品添加剂 磷酸氢二钠 GB 1886.330-2021食品安全国家标准食品添加剂 磷酸二氢铵 GB1886.331-2021食品安全国家标准食品添加剂 磷酸氢二铵 GB1886.332-2021食品安全国家标准食品添加剂 磷酸三钙 GB1886.333-2021食品安全国家标准食品添加剂 磷酸二氢钙 GB1886.334-2021食品安全国家标准食品添加剂 磷酸氢二钾 GB1886.335-2021食品安全国家标准食品添加剂 三聚磷酸钠 GB1886.336-2021食品安全国家标准食品添加剂 磷酸二氢钠 GB1886.337-2021食品安全国家标准食品添加剂 磷酸二氢钾 GB1886.338-2021食品安全国家标准食品添加剂 磷酸三钠 GB1886.339-2021食品安全国家标准食品添加剂 焦磷酸钠 GB1886.340-2021食品安全国家标准食品添加剂 焦磷酸四钾 GB1886.341-2021食品安全国家标准食品添加剂 二氧化钛 GB1886.342-2021食品安全国家标准食品添加剂 硫酸铝铵 GB1886.343-2021食品安全国家标准 食品添加剂 L-苏氨酸 GB1886.344-2021食品安全国家标准食品添加剂DL-丙氨酸 GB1886.345-2021食品安全国家标准食品添加剂桑椹红 GB1886.346-2021食品安全国家标准食品添加剂柑橘黄 GB1886.347-2021食品安全国家标准食品添加剂4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB1886.348-2021食品安全国家标准食品添加剂焦磷酸一氢三钠 GB31651-2021食品安全国家标准 餐(饮)具集中消毒卫生规范 GB31652-2021食品安全国家标准 即食鲜切果蔬加工卫生规范 GB31653-2021食品安全国家标准 食品中黄曲霉毒素污染控制规范 GB31654-2021食品安全国家标准 餐饮服务通用卫生规范 GB12456-2021食品安全国家标准 食品中总酸的测定 GB31604.51-2021食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定 GB31604.52-2021食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定 GB31655-2021食品安全国家标准 哺乳动物体内碱性彗星试验 GB1886.47-2016《食品安全国家标准食品添加剂天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)》第1号修改单 GB 1886.103-2015《食品安全国家标准食品添加剂微晶纤维素》第1号修改单 GB1886.169-2016《食品安全国家标准食品添加剂卡拉胶》第1号修改单 GB2762-2017《食品安全国家标准食品中污染物限量》第1号修改单
  • 方便面国家标准将出台 包装须明示添加剂
    新华网12月14日报道《方便面》国家标准已通过了专家审定,不久将正式推出。这是记者今天(14日)上午从全国粮油标准化技术委员会获悉的。  方便面包装须明示添加剂  对于消费者关心的食品添加剂问题,新国标明确提出,方便面中食品添加剂和营养强化剂的使用,应符合相关专项国家强制性标准的要求。包装须明示添加剂。  记者上午电话采访了朝阳区质量技术监督局食品所郎主任。郎主任告诉记者,新的方便面国家标准目前还未出台,但是,里面凡是涉及到食品添加剂的问题,都将按照GB2760《食品添加剂使用卫生标准》的规定添加,这是强制性的规定。  根据该强制性标准,“防腐剂”等必须在产品的包装标签中明确标注。  郎主任表示,目前,方便中一般添加的所谓消费者所说的“防腐剂”,其实指的就是碳酸钾、碳酸钠、乳化剂、水分保持剂、增稠剂等。这些添加剂,凡该标准中允许添加的,必须按照限量添加。  凡未在该标准中注明属允许添加的添加剂,一律不得在产品中检出。  为保证消费者的身体健康,国标还将对方便面的卫生指标提出明确要求,像沙门氏菌、金黄色葡萄球菌等致病菌,在方便面食品中将不得检出。  据了解,国家标准首次对蛋白质的含量作明确要求。  同时,像“干吃面”这样的近几年才出现的新品种,也将有自己的技术指标。  据了解,以前的行业标准中,方便面仅分为油炸面和风干面两类。而国家标准则按面块加工工艺,将方便面分为油炸方便面和非油炸方便面。在油炸方便面下面,按食用方式增加了“干吃面”和“泡面”两类,将指标细化。  方便面中的三项添加剂  (来自GB2760标准)  碳酸钠和碳酸钾:按生产需要适量使用  桅子黄:最大使用量为每千克面饼中不得超过0.3克  三聚磷酸钠:最大添加量为每千克面饼不得超过5.0克  注:方便面中涉及的添加剂很多,本报挑出3个重点的指标列出  市场探访  包装标注不规范添加剂主流品牌已明示  针对新的国家标准对于添加剂及包装标注的规定,记者近日在市场采访中发现,专家所提到的添加剂,“康师傅”等主流品牌方便面企业都在产品的配料表中明确标注。  对于净含量这一项,目前市场上的产品标注并不统一,像“康师傅”、“今麦郎”等品牌已开始按照国标进行标注。而有些品牌方便面标注则不明确。  绝大多数产品都能在标签中标明该产品是“油炸型”还是“非油炸型”,但有些字体较小,位置也不明显,消费者购买时不易找到。  根据方便面的国家标准,在产品的单位包装上应标明油炸方便面或非油炸方便面,并应标明所采用产品标准及配料标准。  方便面国家标准具体指标规定  蛋白质首次明确含量不低于8%  ◆国标干吃面及泡面规定:蛋白质含量是为使方便面向营养健康的方向发展新增的指标,为不低于8%.  ◆原行业标准规定:原行业标准中没有此项规定。  脂肪泡面含量上限为22%  ◆国标泡面规定:经对市售油炸型泡面测定发现,企业都有较好的控油措施,脂肪含量普遍较低。因此国标拟规定方便面脂肪含量上限为22%.  ◆国标干吃面规定:考虑到干吃面独特的酥脆性口感要求,国标将干吃面作为单独一项列出,将其脂肪含量上限规定为≤25%.  ◆原行业标准规定:油炸方便面的油脂含量为小于等于24%.  含盐量泡面不高于2.5%  ◆国标泡面规定:鉴于我国饮食习惯中盐的摄入量偏高,为引导方便面产业向营养健康消费方向发展,国标将该指标限定在≤2.5%.  ◆国标干吃面规定:鉴于目前大部分干吃面产品采用直接赋味的方式将配料直接喷在面饼上,为了满足口感上的需求,拟将含盐量指标规定在不超过3%.  ◆原行业标准规定:限值为小于等于2.5%  新闻背景  2007年,我国方便面总产量为489亿包,产值为357亿元,产量占到世界总量的二分之一。然而,目前方便面尚无产品国家标准。(法制晚报汪红)
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。  反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。  2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。  在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。反应顶空气相色谱的应用1. 测定造纸厂黑液中的碳酸盐含量  碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:  把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。(1) 温度的影响  二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。(2) 检测器线性和恒定的凝固相释放气体速率  这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。(3) 顶空气体稀释变化对分析准确度的影响  用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.  表 1 样品体积变对准确度的影响(1) 空气中二氧化碳的影响  空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。(2) 测定精度  作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。  表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法  柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。(1) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)  柱温:60℃  载气:He 3.1 mL/min  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min(2)样品分析步骤  (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (3)分析条件的影响  (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化  (b)空气中二氧化碳的影响  在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。  (c)液体样品的体积  一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。(3)这一方法的准确度和精密度  使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。表3 测定酸与滴定法的比较样品盐酸/(mol/L)相对偏差/%本方法滴定法1号溶液0.10020.10000.22号溶液0.04980.0500-0.33号溶液0.02470.0250-1.24号溶液0.01010.01001.0表4 测定碳酸钠与电导法的比较样品碳酸钠/%相对偏差/%本方法电导法1号黑液4.94.74.32号黑液23.224.1-3.73号黑液25.124.52.44号黑液42.042.8-1.93 用反应顶空气相色谱测定木纤维中羧基  在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。  所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。(1) 测定原理  木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下:(2) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )  柱温:60℃  载气:He 3.1 mL/min,使用不分流模式  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min  样品瓶如图2所示:图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶(3)测定步骤  首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。  取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。(4)这一方法的准确和精密度  表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果表4 顶空气相色谱分析木纤维中羧基的比较结果样品纤维中羧基含量/(mmol/g)相对偏差/%本方法滴定法1号样品0.07890.07860.352号样品0.06820.0739-7.113号样品0.04130.0415-0.574号样品0.06950.06940.045号样品0.08150.07558.016号样品0.06110.06100.107号样品0.02250.0241-6.878号样品0.05770.0581-0.69(1) 方法的进一步改进  两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。  (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。  (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。图3 测定纸浆中羧基的顶空样品瓶4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐  ( JChromatogr A,2006,1122:209-214)  测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:  这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。  氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。  柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。  下面列出部分相关的文献供读者参考:序号题目原始文献1制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法)J. Pulp Paper Sci., 1999, 256-262.2顶空气相色谱分析复杂基质中的非挥发性物质J. Chromatogr. A, 2001, 909:249-257.3木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量Ind. Eng. Chem. Res., 2003, 42: 5440-5444.4顶空气相色谱测定酸和碱组分J. Chromatogr. A, 2005, 1093:212-216.5顶空气相色谱测定木质素的甲氧基含量J. Agric. Food Chem., 2012, 60: 5307&minus 5310.6顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量J. Chromatogr. A, 2012,1235:182-184.7顶空气相色谱测定丁二酸酐改性纤维素的取代度J. Chromatogr. A,2012,1229:302-304.8一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量J. Ind. Eng. Chem., 2014,20:13-16.9一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量Anal. Lett., 2012, 45: 1028-1035.10顶空气相色谱技术快速测定个护用品中的甲醛含量Anal. Sci., 2012, 28: 689-692.11顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量J. Ind. Eng. Chem.,2013,19:748-751.12顶空气相色谱法检测纸浆中羰基含量的研究中国造纸, 2014,33(10): 36-39.13静态顶空气相色谱技术化学进展, 2008,20(5): 762-766.5 更多反应顶空气相色谱的应用  国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。序号题目方法要点 1顶空进样-气相色谱法测定大气中吡啶的研究用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。王艳丽等,中国环境监测,2013,29(2):62-642顶空气相色谱法测定粮食中的氰化物称取试样5-10 g于100 ml顶空管中加入纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。刘宇等,中国卫生检验杂志2009,19(3):552-5533顶空气相色谱法测定膨化大枣中的亚硫酸盐含量将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸, 在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量王晓云等,山东化工,2007,36(1):36-384使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳聂春林等,精细化工中间体,2010,40(6):63-665测定尿中三氯乙酸的自动顶空气相色谱法尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 卫生部发布97项食品安全国家标准
    据卫生部网站报道,根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查,现发布《食品添加剂琼脂(琼胶)》(GB1975-2010)等97项食品安全国家标准。  97项食品安全国家标准目录GB 1975-2010食品添加剂 琼脂(琼胶)GB 1900-2010食品添加剂 二丁基羟基甲苯(BHT)GB 3150-2010食品添加剂 硫磺GB 4479.1-2010食品添加剂 苋菜红GB 4481.1-2010食品添加剂 柠檬黄GB 4481.2-2010食品添加剂 柠檬黄铝色淀GB 6227.1-2010食品添加剂 日落黄GB 7912-2010食品添加剂 栀子黄GB 8820-2010食品添加剂 葡萄糖酸锌GB 8821-2010食品添加剂 β-胡萝卜素GB 12487-2010食品添加剂 乙基麦芽酚GB 12489-2010食品添加剂 吗啉脂肪酸盐果蜡GB 13481-2010食品添加剂 山梨醇酐单硬脂酸酯(司盘60)GB 13482-2010食品添加剂 山梨醇酐单油酸酯(司盘80)GB 14750-2010食品添加剂 维生素AGB 14751-2010食品添加剂 维生素B1(盐酸硫胺)GB 14752-2010食品添加剂 维生素B2(核黄素)GB 14753-2010食品添加剂 维生素B6(盐酸吡哆醇)GB 14754-2010食品添加剂 维生素C(抗坏血酸)GB 14755-2010食品添加剂 维生素D2(麦角钙化醇)GB 14756-2010食品添加剂 维生素E(dl-α-醋酸生育酚)GB 14757-2010食品添加剂 烟酸GB 14758-2010食品添加剂 咖啡因GB 14759-2010食品添加剂 牛磺酸GB 14888.1-2010食品添加剂 新红GB 14888.2-2010食品添加剂 新红铝色淀GB 15570-2010食品添加剂 叶酸GB 15571-2010食品添加剂 葡萄糖酸钙GB 17512.1-2010食品添加剂 赤藓红GB 17512.2-2010食品添加剂 赤藓红铝色淀GB 17779-2010食品添加剂 L-苏糖酸钙GB 25531-2010食品添加剂 三氯蔗糖GB 25532-2010食品添加剂 纳他霉素GB 25533-2010食品添加剂 果胶GB 25534-2010食品添加剂 红米红GB 25535-2010食品添加剂 结冷胶GB 25536-2010食品添加剂 萝卜红GB 25537-2010食品添加剂 乳酸纳(溶液)GB 25538-2010食品添加剂 双乙酸钠GB 25539-2010食品添加剂 双乙酰酒石酸单双甘油酯GB 25540-2010食品添加剂 乙酰磺胺酸钾GB 25541-2010食品添加剂 聚葡萄糖GB 25542-2010食品添加剂 甘氨酸(氨基乙酸)GB 25543-2010食品添加剂 L-丙氨酸GB 25544-2010食品添加剂DL-苹果酸GB 25545-2010食品添加剂 L(+)-酒石酸GB 25546-2010食品添加剂 富马酸GB 25547-2010食品添加剂 脱氢乙酸钠GB 25548-2010食品添加剂 丙酸钙GB 25549-2010食品添加剂 丙酸钠GB 25550-2010食品添加剂 L-肉碱酒石酸盐GB 25551-2010食品添加剂 山梨醇酐单月桂酸酯(司盘20)GB 25552-2010食品添加剂 山梨醇酐单棕榈酸酯(司盘40)GB 25553-2010食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温 60)GB 25554-2010食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温 80)GB 25555-2010食品添加剂 L-乳酸钙GB 25556-2010食品添加剂 酒石酸氢钾GB 25557-2010食品添加剂 焦磷酸钠GB 25558-2010食品添加剂 磷酸三钙GB 25559-2010食品添加剂 磷酸二氢钙GB 25560-2010食品添加剂 磷酸二氢钾GB 25561-2010食品添加剂 磷酸氢二钾GB 25562-2010食品添加剂 焦磷酸四钾GB 25563-2010食品添加剂 磷酸三钾GB 25564-2010食品添加剂 磷酸二氢钠GB 25565-2010食品添加剂 磷酸三钠GB 25566-2010食品添加剂 三聚磷酸钠GB 25567-2010食品添加剂 焦磷酸二氢二钠GB 25568-2010食品添加剂 磷酸氢二钠GB 25569-2010食品添加剂 磷酸二氢铵GB 25570-2010食品添加剂 焦亚硫酸钾GB 25571-2010食品添加剂 活性白土GB 25572-2010食品添加剂 氢氧化钙GB 25573-2010食品添加剂 过氧化钙GB 25574-2010食品添加剂 次氯酸钠GB 25575-2010食品添加剂 氢氧化钾GB 25576-2010食品添加剂 二氧化硅GB 25577-2010食品添加剂 二氧化钛GB 25578-2010食品添加剂 滑石粉GB 25579-2010食品添加剂 硫酸锌GB 25580-2010食品添加剂 稳定态二氧化氯溶液GB 25581-2010食品添加剂 亚铁氰化钾(黄血盐钾)GB 25582-2010食品添加剂 硅酸钙铝GB 25583-2010食品添加剂 硅铝酸钠GB 25584-2010食品添加剂 氯化镁GB 25585-2010食品添加剂 氯化钾GB 25586-2010食品添加剂 碳酸氢三钠(倍半碳酸钠)GB 25587-2010食品添加剂 碳酸镁GB 25588-2010食品添加剂 碳酸钾GB 25589-2010食品添加剂 碳酸氢钾GB 25590-2010食品添加剂 亚硫酸氢钠GB 25591-2010食品添加剂 复合膨松剂GB 25592-2010食品添加剂 硫酸铝铵GB 25593-2010食品添加剂 N,2,3-三甲基-2-异丙基丁酰胺GB 25594-2010食品工业用酶制剂GB 25595-2010乳糖GB 25596-2010特殊医学用途婴儿配方食品通则
  • 台湾地区修订食品添加剂柠檬酸钠的规格标准
    2013年9月12日,台湾地区“卫生福利部”发布部授食字第1021301699号令,修正“食品添加物使用范围及限量暨规格标准”第三条之附表二,修订了调味剂柠檬酸钠的规格标准。  修正对照表如下:修正规定现行规定§ 11009柠檬酸钠Sodium Citrate别名:Trisodium citrate; INS No.331(iii)化学名称:trisodium salt of 2-hydroxy-1,2,3- propanetricarboxylic acid, trisodium salt of ß -hydroxy-tricarballylic acid分子式:Anhydrous: C6H5Na3O7Hydrated:C6H5Na3O7‧ nH2O (n=2或5) 分子量:258.07(无水)1.含量:本品含C6H5O7Na3 不得低于99%(180 ℃干燥2小时后定量)。2.外观:无色结晶或白色结晶性粉末,无臭。3.性状:1.可溶于水,不溶于乙醇。2.本品应呈柠檬酸盐及钠盐之反应。4.干燥减重:无水柠檬酸钠:1%以下(180 ℃至恒重)。 二水柠檬酸钠:13%以下(180 ℃至恒重)。 五水柠檬酸钠:30.3%以下(180 ℃至恒重)。5.碱度:本样品1:20之溶液以石蕊测试为碱性。并于10 ml之此溶液中加入0.2 ml之0.1N硫酸及1滴酚酞后不呈粉红色。6.草酸盐:10 ml之样品溶液(1:10)加入5滴稀释醋酸试液及2 ml氯化钙试液,于1小时内未产生混浊。7.铅:2 mg/kg以下。8.分类:食品添加物第(十一)类。9.用途:调味剂。§ 11009柠檬酸钠Sodium Citrate 分子式:C6H5O7Na3‧ 2H2O 分子量:294.111.含量:本品含C6H5O7Na3 99~101 %(180 ℃干燥2小时后定量)。2.外观:无色结晶或白色结晶性粉末,无臭,具清凉碱味。3.溶状:本品1 g溶于水20 mL,其溶液应无色且浊度在「殆澄明」以下。4.液性:本品水溶液(1→20)之pH值应为7.6~8.6。5.氯化物:0.014 %以下(以Cl计)。6.硫酸盐:0.024 %以下(以SO4计)。7.砷:3 ppm以下(以As2O3计)。8.重金属:10 ppm以下(以Pb计)。9.易碳化物:本品0.5 g加硫酸5 mL,于约90 ℃加热1小时溶解后,其液色不得较比合液K为浓。10.干燥减重:10~13 %(180 ℃,2小时)。11.分类:食品添加物第(十一)类。12.用途:调味剂。
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • 三类化学试剂存放,每一个实验室人都应该知道!
    因为化学试剂的特殊性,所以对于它们的存放管理有很多需要注意的地方。今天我简单给大家讲解下,化学试剂的存放。化学试剂存放主要分3块,1是有机物化学试剂;还有2是无机物化学试剂;3是危险化学试剂的存放;下面来分开讲下。  一、有机物化学试剂存放  有机物化学试剂,按官能团分类: 如烃类、烃的衍生物、碳水化合物、含氮化合物、有机离分子化合物等。有机物化学试剂应按纯度级别依次排列,配制的溶液应与固体试剂分开存放。  二、无机物化学试剂存放  无机物化学试剂,应按盐类、单质、氧化物、碱类、酸类等类别分开存放。盐类一般按金属离子所在周期表中的位置,也就是从左向右,先下盐后酸式盐的方法分类。 如钠盐—硫化钠、碳酸钠、硅酸钠、亚硝酸钠、硫酸钠、硫代硫酸钠、钙盐等。单质再分成金属和非金属类,或以单质元素在元素周期表中的列分类。酸类中的不含氧酸可按酸根元素在周期表中位置由左向右,从上到下来分类。如氢卤酸、氢氟酸、盐酸、氢溴酸、氢碘酸等。含氧酸可按成酸元素的列分类: 硼酸、硝酸、硫酸、磷酸等。碱类主要按碱可中金属元素在周期表中的列分类: 如氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙等。  三、危险化学试剂存放  对于化学试剂管理本来就应该需要特别注意,而化学试剂的重中之重就是危险性化学试剂了。因为危险化学试剂具有较高化学活性的物质,如易燃易爆性、腐蚀性、毒害性、氧化性、放射性等有害于人和环境的一系列的“烈性”化学物质。其活性之高,甚至可以自行分解并威胁生命财产安全,必须加以认真对待。根据相关关规定,危险性化学试剂的包装上必须带有危险性标志、危规编号,在相关试剂手册上也要有文字说明。  1、易燃易爆性化学试剂必须存放在专用的危险性试剂仓库里,并存放在不燃烧材料制作的柜、架上,温度不宜超过28℃,按规定实行“五双”制度。实验室少量瓶装可设危险品专柜,按性质分格贮存,同一格内不得混放氧化剂等性质的试剂,并根据存储种类配备相应的灭火设备和自动报警装置。低沸点极易燃烧试剂宜低温下存储在5℃以下,禁用有电火花产生的普通家用电冰箱贮存。  2、氧化性试剂不得与其它性质抵触的试剂共同储存,而且包装要完好并且密封,严禁与酸类混放,应置于阴凉通风处,防止日光曝晒。  3、腐蚀性试剂储存容器必须按不同的腐蚀性来选择存放,酸类应与氰化物,发泡剂、遇水燃烧品、氧化剂等远离,不宜与碱类混放。  4、剧毒性试剂应远离明火、热源、氧化剂及食物用品,且通风良好处贮存,一般不与其它种类共同储存,且应按规定贯彻“五双”制度。  5、化学试剂中遇水易燃试剂一定要存放在干燥、严防漏水及暴雨或潮汛期间保证不进水的仓位。不得与有盐酸、硝酸等散发酸雾的物品存放在一起,亦不得与其它危险品混存混放。  以上这三大类是比较常见的化学试剂,其它还有如指示试剂就不另外说了。关于化学试剂的管理和存放,相信大家都知道大概流程了。但如果还仅依靠传统人工管理,那肯定容易出问题,这时借助专业试剂耗材管理系统,就能到到事半功倍之效。
  • 《乌索酸纯度的测定液相法》国标颁布
    近日,由宜春学院承担起草的GB/T24773-2009《乌索酸纯度的测定高效液相色谱法》国家标准已由国家标准委正式批准发布,这是宜春继《乌索酸国家标准样品》项目研制成功后,取得的又一项标准成果。  据悉,乌索酸作为一种化学物质在日用化工、功能食品及医药保健方面具有重要用途。宜春学院以天然植物为原料,成功地攻克了乌索酸提取工艺难关,达到了国内领先水平。为促进此项科研成果的推广应用,将科技成果尽快转化为国家标准,宜春质监部门从2005年就开始帮助宜春学院进行省地方标准、国家标准样品和国家标准的立项申报工作,并最终取得成功。  此项国家标准的正式发布实施是该市大力推进实施全市标准化战略的结果。宜春市质量技术监督部门将进一步加大工作力度,推进更多具有行业技术优势的企事业单位参与更高层次的国家标准化活动,争夺技术标准的话语权。
  • 卫计委拟批准纯度99.99%金箔用于白酒
    金箔酒(图片来源:网络)  行业协会称需要了解添加原因和目的  古代文学作品中时有吞金情节的描写,如今,纯度达到99.99%的金箔或许真的可以作为食品添加剂,就此我国开始征求意见。对此,行业协会和专家的态度并不积极。  卫计委  征求意见将金箔用于白酒  记者昨天注意到,国家卫计委官网近日刊登了《国家卫生计生委办公厅关于征求拟批准金箔为食品添加剂新品种意见的函》,函件称,经审核,拟批准金箔为食品添加剂新品种,现已开始征求各相关单位意见并向社会征求意见,时间截止到2月20日。  该函件中显示,允许金箔作为食品添加剂的产品仅为白酒,最大使用量为每公斤0.02克。在生产工艺上,函件中提到,将纯度为99.99%纯金以物理方式将其汽化,使其均匀分散成小分子,再将这些小金分子重新堆栈排列以精准控制分子磊晶堆栈的方式形成食品添加剂金箔。  至于为何在白酒中添加金箔以及添加金箔的好处,函件只字未提。  行业协会  要调查添加的理由和目的  &ldquo 协会方面刚刚收到这份征求意见函。&rdquo 中国食品工业协会、白酒专业委员会常务副会长兼秘书长马勇昨天接受记者采访时表示,&ldquo 但是我还没想明白,白酒中添加金箔能有什么作用。&rdquo 马勇表示,食品添加剂能否获得审批,应该看其是否具备技术的必要性。但是作为纯粮固态发酵白酒,添加金箔没有任何意义和技术必要性。  &ldquo 对于纯粮固态发酵工艺以外的白酒产品,是否有添加金箔的必要性?这些应当组织专家研讨,如果没有明显的技术必要性,那么行业协会肯定会持反对意见。&rdquo 马勇还表示,卫计委发布这种征求意见函,估计是有关方面提出了相关申请,&ldquo 我们还应该看提出申请方的理由和依据是什么,其目的又是什么。&rdquo   市场  白酒添加金箔涨身价  其实添加金箔的白酒在市场上并不新鲜,平时喜欢喝点白酒的赵先生告诉记者,他两三年前在老家就喝过这种添加了金箔的白酒,&ldquo 都是些地方品牌,但是同一品牌添加金箔的价格要达到300多元,而不添加的则仅需几十元钱。&rdquo   赵先生说,销售人员都说这种添加金箔的白酒对身体有保健功能,因为金箔不溶于酒,喝了能调节人体的一些机能 同时喝的时候也要故意摇一摇,&ldquo 金光闪闪,很有面子,但是其实口感也没什么区别&rdquo 。  记者了解到,去年就有媒体报道称,在位于南京的中国金箔艺术馆里有一种价值不菲的高档白酒在销售,这种白酒加入了真金打压而成的金箔,叫做&ldquo 金箔酒&rdquo ,一套礼盒3999元,厂家打出了&ldquo 常饮金箔酒定会让您精力充沛、心旷神怡&rdquo 的广告。报道还引述销售人员的话称,这些金都是处理过的,都能吃,此外公司还有金箔菜、金箔鸭。这些都是振精神、坚骨髓的,排毒的。然而这些产品上并未有保健品的标识。  专家说法  人体必要元素并不包括金  据了解,原卫生部相关部门曾于2011年下发过&ldquo 关于对&lsquo 金箔酒&rsquo 进行卫生监督有关问题请示的批复函&rdquo ,其中明确表示,金箔既不是酒类食品的生产原料,也不能作为食品添加剂使用。我国食品科学领域三院士之一中国工程院院士孙宝国昨天接受记者采访时表示,我国对食品添加剂采取许可管理,食品中使用金箔肯定是违规的。  中国农业大学食品学院营养与食品安全系副教授范志红表示,从营养学的角度看,目前已确定人体必要的元素有20多种,但肯定不包括金。  算金账  一瓶酒添金箔成本2块多  某大型黄金生产商相关负责人告诉记者,按现在制金工艺,0.5克99.99%黄金能够很轻松地打造成面积相当于100元人民币大小的金箔。此次卫计委征求意见稿即便通过,那么500克装白酒添加金箔量最多0.01克,而目前99.99%黄金原料价格也就200多元,也就是说一瓶白酒新增黄金原料成本不过2元多钱。
  • 建筑土壤限制铬,限铬只限六价铬
    2018年8月1日,国家发布实施《土壤环境质量 建设用地土壤污染风险管控标准》试行稿,加强对建筑用地土壤的环境调查评估,在重金属和无机物污染类别中,六价铬作为其中一项筛选和管控的项目用于区分不同的用地类别。因此,快速、准确的土壤中六价铬分析检测技术成为建设用地土壤的关注所在。 环境中稳定存在两种价态的铬,分别是三价铬[Cr(Ⅲ)]和六价铬[Cr(Ⅵ)]。六价铬是剧毒物质,其毒性除了免疫毒性、生殖毒性、肾脏毒性、神经毒性外,严重的还可致癌或者致突变,国际癌症研究中心明确六价铬化合物为人类致癌物。土壤环境质量中,对一类建设用地和二类建设用地的筛选含量分别为3.0 mg/kg和5.7 mg/kg,对分析方法的检出限提出了较高的要求。应对元素的形态分析要求,您是得心应手了然于胸?还是一切茫然手足无措?岛津公司忧您所忧,想您所想。为您从仪器配置、样品处理到分析条件优化做了系统准备。 ☆☆仪器配置☆☆ 岛津高效液相色谱仪LC-20Ai,电感耦合等离子体质谱仪ICPMS-2030。图1 岛津LC-20Ai+ICPMS-2030联用系统 ☆☆样品前处理☆☆准确称取建筑土壤样品2.50 g置于250 mL圆底烧瓶中,加入50 mL碳酸钠/氢氧化钠混合溶液(称取15.0 g碳酸钠和10.0 g氢氧化钠溶于超纯水中稀释至500 mL而得)、400 mg氯化镁和0.5 mL 0.5 mol/L K2HPO4/0.5 mol/L KH2PO4缓冲溶液,盖上盖子后置于恒温震荡水浴锅中,常温震荡搅拌5 min后,开启加热震荡至90-95℃,消解60 min。消解完毕后取出烧瓶冷却至室温。用0.45 μm滤膜过滤后,滤液用10%的硝酸调节pH值至7.0-7.4之间,加入超纯水定容至100 mL,摇匀,待测。 ☆☆ 形态铬分离☆☆ 使用岛津高效液相色谱仪LC-20Ai实现对不同形态铬的分离色谱柱 Dionex IonPacTM AG11-HC(50*4mm 10 μm)流动相 60 mM硝酸铵和0.6 mM乙二胺四乙酸二钠溶液(pH 7.0)流 速 1.0 mL/min柱 温 30℃进样量 50 μL洗脱程序 等度洗脱 图2 三价铬和六价铬的色谱图 ☆☆结果检验☆☆ 1、检出限考察 表3 检出限考察结果2、建筑土壤样品分析 表4 样品测定及回收率考察结果(%)
  • “好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用
    纳米碳酸钙又称超微细碳酸钙,是碳酸钙行业中的高端明星产品,其应用最成熟的行业是塑料工业,主要应用于塑料制品,可改善塑料母料的流变性,提高其成型性。另外,纳米碳酸钙用于油墨产品中体现出了优异的分散性、透明性和极好的光泽、及优异的油墨吸收性、高干燥性等优点。还有涂料、日化、造纸等行业,对纳米碳酸钙的应用需求也迅速发展。纳米碳酸钙的粒度检测,不但需要科学的检测方案(针对团聚的有效处理),更需要性能优异、分辨能力出众的高端激光粒度仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的表现以及一套行之有效的检测方案。纳米碳酸钙的生产过程中,碳化后的碳酸钙浆料,在经过脱水、烘干、活化等工序后形成最终碳酸钙粉体产品,其粒径分布将影响后续其在塑料、橡胶、油墨等产业的填加量和最终产品性能,因此,粒径分布是纳米碳酸钙生产企业十分关注的,作为产品质控的一个重要参数。其中,在纳米碳酸钙的生产中,通过加入适当的分散改性剂进行改性,增强了碳酸钙粉的分散性、减少团聚,在许多应用领域展现了更好的使用性能,在纳米碳酸钙的生产中,改性几乎成了标准的选择,不同改性剂种类和用量和改性工艺所生产产品质量各有异同,如何通过检测纳米碳酸钙在不同分散条件下的粒径分布情况,以协助调整碳化沉淀工艺并预测产品的应用效果,是近年来热议的课题。欧美克仪器深耕碳酸钙行业二十余载的岁月里,欧美克的仪器质量和品牌口碑,不断得到行业客户们的一致认可,行业仪器占有率高。Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,波长0.6328μm,并有蓝光辅助半导体光源,波长0.466μm,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。其具有量程宽(0.02-2000微米)、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的不二之选。Topsizer型激光粒度仪(湿法)纳米碳酸钙的检测方案与检测重钙、一般轻钙的主要区别是颗粒团聚的处理,若以检测一般改性轻钙的方法(制样时使用十二烷基苯磺酸钠SDBS作为分散试剂,外置超声10分钟),纳米碳酸钙的原生颗粒很难被分散出来,得出的结果是团聚后的二次粒径,如图:测试结果基本是稳定的,但粒径分布只有普通重钙的级别,在进样器开始内置超声后,部分团聚体逐步解聚,测试结果如下:由于纳米钙的改性程度要远远超越一般的轻钙、重钙,采用一般的分散剂(如六偏磷酸钠、-SDBS、酒精等),难以达到充分的分散效果以了解样品一次粒径情况(或接近一次粒径的稳定结果)。欧美克仪器测试人员,经过多年的探索和不断尝试,最终选着了一种含有OM7超细轻钙专用分散剂的复配分散剂对样品进行前处理,并伴随超声处理,结果如下:测试结果有明显的改善,但仍未符合纳米碳酸钙的粒径预期。纳米碳酸钙属于超细粉体,不易分散彻底,因此在加入分散解聚剂后以传统进样器内置超声外,同时进行了细胞粉碎机的大功率的超声分散15分钟,以纯净水作为测量介质,并以“通用模式”进行粒度分析,结果如下:针对于该广西某公司生产的纳米碳酸钙样品,仍然有部分的硬团聚体的存在,导致结果出现了第二个大颗粒小峰,但结果的稳定性和粒径分布是基本符合预期的。采用同样的测试方案,同样的Topsizer型激光粒度仪,我司在早两年测试某进口的纳米碳酸钙样品,其结果是完全符合纳米碳酸钙的粒径分布要求的,如下。在我司多年来接触的一般国产纳米碳酸钙中,或多或少是会出来粒度分布的“双峰”状态,D90大概在1-2微米间,这主要可能是在生产工艺中,碳化或活化没有完全做好,导致大量硬团聚体的产生,影响了整体粒径分布。这些硬团聚体在使用中难以被分散开,会影响纳米钙的使用性能,因此,对于硬团聚体含量的检测,是纳米碳酸钙产品质量控管的关键所在,同时对于激光粒度仪的检测性能也是较为苛刻的要求。对纳米碳酸钙的粒度测试,到底是将其彻底分散到最小粒径的结果可靠,还是选择与下游生产的分散程度相近地分散样品,进行二次粒径粒度分布测试更可靠,一直是一个有争论的问题。但如果要对纳米碳酸钙生产工艺进行监控,就需要更关注生产流程中碳化沉淀的一次粒径情况。同时通过对硬团聚体二次粒径的严格控制,以使最终产品能满足高端行业(如油墨等)的应用要求。技术进步,以人为本,欧美克仪器的检测技术和应用开发,是和碳酸钙行业同步发展、偕同并进的。欧美克仪器专业服务于客户纳米碳酸钙的检测需求,为客户生产出优质的纳米碳酸钙产品保驾护航!参考文献1. 沈兴志、吴瑾. 轻钙、活性钙、纳米钙产品激光粒度测试分析探讨.2. 纳米碳酸钙.百度百科.
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 周大生、中国黄金等贵金属纯度不足 是否足金问XRF
    p style="margin: 0px 0px 10px padding: 0px text-align: left background: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em "黄金作为硬通货,不仅可以作为金融市场的投资理财产品,同时在首饰、工业制造中有着广泛的应用,我国是全球黄金大国,黄金产量连续十二年领跑全球。近一年的金价走势非常喜人,可真实的黄金却让人生忧。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 316px height: 245px " src="https://img1.17img.cn/17img/images/201908/uepic/1de7f49f-3fc6-4d7c-8fd8-7033ca0e8a0c.jpg" title="微信截图_20190814115619.png" alt="微信截图_20190814115619.png" width="316" height="245"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "近日,甘肃省市场监督管理局发布《甘肃省市场监督管理局关于甘肃省2019年第2批工业产品质量省级监督抽查结果通报》,抽查了45家经销企业的50 批 次贵金属首饰及制品。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "结果表明,抽查样品中合格27批次,14批次产品名称或标识不规范,不合格9批次,产品质量抽查合格率82%。不合格9批次产品中,主要是质量偏差、贵金属纯度项目不符合标准要求。strong值得注意的是,周大生、中国黄金、中国珠宝、中国金店等知名品牌上榜。/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/8d9f9a5d-86f4-4957-9844-b59b15dedce3.jpg" title="图片1.png" alt="图片1.png"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "甘肃省市场监督管理局按照《2019年甘肃省贵金属首饰及制品产品质量监督抽查实施细则》(第二批工业产品)及相关产品标准要求,主要对产品名称、质量偏差、贵金属纯度、颜色、透明度、光泽、放大检查、折射率、双折射率、光性特征、多色性、荧光观察、密度、红外光谱分析、紫外光谱分析、摩氏硬度、标识等项目指标进行了检验。strong抽查结果显示,多个产品名称带“足金”二字的金饰并不“足金”。/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "科普时间:黄金的国家质量标准是什么/span/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "国家标准“GB11887-8P”规定:含金量不小于990‰为足金,含金量不小于999‰为千足金。同时对K金的纯度也作了规定,其中8K的含金量不小于333‰,18K的含金量不小于750‰,24K的含金量不小于999‰。/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "目前市场上销售的黄金饰品,分为足金和K金饰品,根据国家标准GB11887中的规定,常见的几种黄金首饰含量为:br/  24K——目前国际黄金价格市场偶见标有24K黄金饰品,根据国家标准,24K金含量理论值应为百分之百,金无赤足,因此严格的讲,24K是不存在的,销售中标有24K金是不正确的,不符合国家标准。br/  千足金——含量为99.9%,俗称三个9。br/  足金——含量为99.0%,以上,俗称二个9。br/  18K——含量为75.0%,K金的颜色有多种,通常有黄、红、白色之分。其中白色K金,实际上是黄金与镍、锌、铜等元素的合金。它不是通常所说的白金饰品。白金是指贵金属铂(Pt)。/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="color: rgb(255, 0, 0) "strong黄金检测仪器:能散型XRF是担当/strong/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "怎么知道足不足金?看色泽?听声音?掂重量?还是把刚买的金项链放在火上烤一烤观察颜色变化?这些大概都是19世纪的做法了。专业的验金方法还是需要依据行业标准,利用科学的仪器和技术手段进行。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "百度百科中对对黄金检测仪的解释:strong黄金检测仪是一种利用能量散射型X射线荧光分析技术(XRF)的智能化无损检测仪器,能准确的检测出黄金、铂金、钯金、K金、K白金等饰品中各种元素含量。/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "X射线荧光(XRF),顾名思义,利用了X射线和荧光技术,当原级X射线照射在待测样品上,产生的次级X射线叫X射线荧光,通过分析荧光的波长和能量对物质进行成分和化学形态的分析。XRF理论上可以测定元素周期表中所有的元素,但是在实际应用中,一般有效的元素测量范围为从铍(Be)到铀(U)的90余种元素。XRF详解见a href="https://www.instrument.com.cn/news/20190619/487247.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《XRF知多少》/span/a/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strong事实上,除了XRF外,黄金的检测用仪器其他仪器。/strong目前黄金检测标准多为推荐标准。在GB/T 17363.2-2009 黄金制品金含量无损测定方法中,规定使用的仪器为电子探针(或X射线荧光仪、二次离子质谱), GB/T 17362-2008 黄金制品的扫描电镜X射线能谱分析方法中规定的配置为扫描电镜上的X射线能谱仪(XPS),对黄金制品化学成分进行无损定量分析。此外,也有公司利用黄金密度属性测定黄金的含量,相关仪器有黄金纯度测试仪。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="color: rgb(255, 0, 0) "strong黄金检测仪器一览/strong/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strong能散型XRF/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/eff86828-4586-45c4-b8e4-324a40e544bb.jpg" title="微信截图_20190814171513.png" alt="微信截图_20190814171513.png"//pp style="margin: 0px 0px 10px padding: 0px background: rgb(255, 255, 255) line-height: 1.5em text-indent: 2em "strong其他仪器/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1ab8b034-756c-4ade-96b5-6f49894c83e5.jpg" title="啊啊啊.png" alt="啊啊啊.png"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "金融市场上,黄金是传说中的“保值神器”,现实生活中,则是我国广大群众尤其是“中国大妈”们喜爱的饰品和收藏品,今曝出中国黄金市场的不合格,值得黄金制品生产企业对质量控制的认真考量。span style="text-indent: 2em " /span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "附:部分黄金检测相关标准/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "GB/T 9288 金合金首饰 金含量的测定 灰吹法br/  GB/T 34167-2017 黄金矿业术语br/  GB/T 25933-2010 高纯金br/  GB/T 17363.2-2009 黄金制品金含量无损测定方法 第2部分:综合测定方法br/  GB/T 17363.1-2009 黄金制品金含量无损测定方法 第1部分:电子探针微分析法br/  GB/T 17362-2008 黄金制品的扫描电镜X射线能谱分析方法br/  GB/T 17723-1999 黄金制品镀层成分的X射线能谱测量方法br/  GB/T 17362-1998 黄金饰品的扫描电镜X射线 能谱分析方法br/  GB/T 17364-1998 黄金制品中金含量的无损定量分析方法/span/p
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制