当前位置: 仪器信息网 > 行业主题 > >

去甲肾上腺素氢酒石酸盐

仪器信息网去甲肾上腺素氢酒石酸盐专题为您提供2024年最新去甲肾上腺素氢酒石酸盐价格报价、厂家品牌的相关信息, 包括去甲肾上腺素氢酒石酸盐参数、型号等,不管是国产,还是进口品牌的去甲肾上腺素氢酒石酸盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合去甲肾上腺素氢酒石酸盐相关的耗材配件、试剂标物,还有去甲肾上腺素氢酒石酸盐相关的最新资讯、资料,以及去甲肾上腺素氢酒石酸盐相关的解决方案。

去甲肾上腺素氢酒石酸盐相关的资讯

  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 智能所将SERS技术用于复杂环境中肾上腺素的选择性检测
    p  近日,智能所杨良保研究员等利用表面共振增强拉曼光谱(SERRS)技术并结合界面组装的方法,实现了对复杂环境中肾上腺素的选择性检测。相关成果已发表在美国化学会旗下的ACS applied materials & interfaces (2017, 9, 7772-7779)杂志上。/pp  近年来,表面增强拉曼光谱(SERS)技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用于各大基础研究领域。然而真实样品往往存在于复杂环境中,目前SERS技术应用于复杂环境中目标分子的检测面临多个难题,如目标分子快速分离和富集,背景信号的干扰、SERS基底均一性的控制等。/pp  针对以上难题,研究人员将SERRS技术与界面组装相结合用于复杂环境中目标分子的检测。对于一些弱SERS活性的目标分子,通过设计拉曼探针与目标分子结合,使得入射光能量与目标分子中电子能量发生共振耦合,目标分子的拉曼散射光谱的强度将得到进一步增强。因此,SERRS能够实现复杂体系中特定分子的识别,适用于实际样品复杂条件下的选择性检测。然而直接对复杂体系检测,往往存在背景信号干扰和信号重复性差等问题。研究人员通过界面组装的方法,使得复杂体系中的目标分子被贵金属纳米材料表面的拉曼探针捕获后,快速分离并在界面富集,将在界面成膜的贵金属纳米材料用硅片转移,有助于进一步降低背景信号带来的干扰。值得强调的是,贵金属纳米材料倾向于形成规整排列的单层结构,有助于提高SERS基底的均一性,从而进一步改善复杂环境中SERS信号的重复性。该研究为各种复杂体系中的目标分子检测提供了一个新的途径。/pp  该研究工作得到了国家自然科学面上基金(21571180),国家自然科学青年基金(21505138),中国博士后特别资助基金(2016T90590)及中国博士后基金(2015M571950)等项目的支持。/pp  文章链接:a href="http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205"http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205/a /pp  p style="TEXT-ALIGN: center"img title="W020170504391376259648.jpg" src="http://img1.17img.cn/17img/images/201705/noimg/85491f21-d8b4-4dd4-b820-73f6585db53e.jpg"/ /pp style="TEXT-ALIGN: center"strong复杂环境中肾上腺素选择性检测示意图/strong/pp/pp/pp/p/p
  • 瘦肉精放倒柔道名将 刺激肾上腺素类属兴奋剂
    在国际和国内反兴奋剂的相关条文中,‘误服’是不被认可的,不存在这个概念。我国对于运动员的食品采购有严格规定,要求采购的时候必须经过安全检验,而且必须通过正规渠道来引进食物。  日前,一条突如其来的消息让所有人震惊,由于在比赛中被查出兴奋剂呈阳性,我国女子柔道运动员佟文将被禁赛两年。她也成为中国第一位被禁赛的奥运冠军选手。  这次“摔倒”佟文的不是对手,而是“瘦肉精”。据佟文教练介绍,佟文可能是去年在外地集训期间,为补充体力吃了很多排骨,致使她误服了兴奋剂。  佟文真是被“瘦肉精”摔倒的?难道在我国有关部门三令五申禁止添加的情况下,肉类中还存在瘦肉精?  中国反兴奋剂中心主任杜利军告诉记者,“瘦肉精”是一种β兴奋剂,学名叫“克伦特罗”,属于肾上腺素类激素。在医学上,克伦特罗能扩张支气管,改善呼吸。运动员服用克伦特罗,可以帮助其改善呼吸机能和肌肉结构。通常耐力型项目的选手会使用,如游泳等。  对于佟文教练的“误服”一说,杜利军说,在国际和国内反兴奋剂的相关条文中,“误服”是不被认可的,不存在这个概念。我国对于运动员的食品采购有严格规定,要求采购的时候必须经过安全检验,而且必须通过正规渠道来引进食物。  其实,瘦肉精不是一种特定的物质,而是一类药物,是指能够促进瘦肉生长的饲料添加剂。任何能够促进瘦肉生长、抑制肥肉生长的物质都可以叫做“瘦肉精”。  使用瘦肉精并不是中国人的首创,20世纪80年代初,美国一家公司偶然发现将其添加到饲料中,可以起到增加瘦肉率的作用,但如果作为饲料添加剂,使用剂量是人用药剂量的10倍以上。虽然这样可以提高瘦肉率,但由于用量大的原因,直到生猪屠宰上市,猪体内的药物残留量依然很大。这些残留物质一旦进入人体,就会使人体渐渐地中毒,因而被禁用。  在中国,通常所说的“瘦肉精”则是指克伦特罗。它曾经作为药物用于治疗支气管哮喘,后由于其副作用太大而遭禁用。瘦肉精在上海曾经引发了几百人的中毒事件。而在台湾地区,由于从美国进口的猪肉里含有瘦肉精,几乎挑起一场政治争端。它们也因而在全球遭到禁用。  医学研究表明“瘦肉精”吸收快,人食用了含有“瘦肉精”的猪肉和内脏,会造成群体性的恶性食物中毒事故。人食用后15~20分钟即起作用,2~3小时血浆浓度达峰值。一般摄入20微克就可以出现症状,食量过大则出现心慌、头痛、震颤等症状,对于高血压、心脏病、甲亢等病患者更能诱发病状,危险性更大,中毒严重的可致人死亡。  “由于瘦肉精的副作用大,我国政府已经明令禁止作为饲料添加剂使用。”中国农业大学食品营养与安全系主任何计国副教授告诉《北京科技报》。  国家虽然禁止在生猪生产过程中添加瘦肉精,但市场上销售猪肉的摊贩告诉记者,顾客还是喜欢瘦肉多的肉,这种肉虽然价格要高一些,但是卖得很快,每天剩下的往往是肥肉较多的肉。  何计国说,既然瘦肉多的好卖,在经济利益的驱使下,一些农户私自在饲料中添加,造成瘦肉精就像“白骨精”一样屡打不绝。  记者发现,对于瘦肉精是否可以添加在饲料中,各国的规定不尽相同。大部分国家采用了和中国一样的禁止添加的政策,但是,在美国、加拿大、新西兰等国,瘦肉精这类物质的使用却是合法的。  1999年底,美国食药局(FDA)批准将盐酸莱克多巴胺添加于猪饲料中。如今,在美洲和亚洲的24个国家,比如美国、泰国等等,均允许使用培林(莱克多巴胺的商品名)提高猪的瘦肉率。不过,这些国家有一个硬性前提:猪肉上市前,培林残余量须低于50ppb,以免造成人体中毒。这个标准相当于允许每千克猪肉中含有50微克培林。  为什么中国不允许在饲料中添加瘦肉精呢?这个问题何计国也曾经向农业部的有关人员提出国。  “美国的生猪大部分是在大型养殖场中饲养,对于瘦肉精的添加量容易控制。但是,我国的生猪生产有很大一部分是农户的散养,对于他们的监管无法做到,所以添加瘦肉精的口子不能开。”农业部的官员这样回答何计国。  对于瘦肉精的检测,国家规定农业部门负责在生猪屠宰前,对生猪的尿液进行逐一检测,检查是否存在瘦肉精 而在流通和销售环节,有关部门采取抽检的方式进行。国家有关部门出台了相关法规,但是在实际执行过程中存在诸多问题。即使极具检测经验的执法人员,光凭肉眼也是区分不开的,只能通过仪器进行检测。  “对于瘦肉精的监管从源头抓起,就是从生猪的饲养环节开始,禁止在饲养环节使用。”何计国说。其实,国内大型养殖场由于国家有关部门监控严格,他们的猪肉还是比较安全的,市民可以放心食用。但是,在农户散养的这块,监控难度比较大。  山东某县畜牧局局长就表示,县级监测站根本做不了饲料的检测,查“瘦肉精”只能去养殖场库房突击检查 产地检疫,只能看看活畜禽的精神状态、测测体温,对“瘦肉精”的检测无计可施。  因为现有的通过仪器检测瘦肉精的方式太慢,检测结果要几个小时才能出来,等结果出来后猪都已经卖掉了。另外,检测费用很高,平均下来每头猪光瘦肉精检测这一项就需要30元左右,这直接导致地方检测部门和养殖户的积极性不高。  对于这一问题,何计国建议可以采用快速、廉价的检测试纸和检测盒替代目前的检测仪器,这样最大的好处是可以降低检测的成本。  “虽然检测试纸和检测盒没有检测仪器准确,但具有快速低廉的优势。”何计国说。科学研究发现,检测试纸和检测盒的检查结果呈假阳性的多,假阴性的少,就是绝对不会放过任何一个添加瘦肉精的生猪,但有可能把没有添加瘦肉精的错误地检测为添加了的。  “有关部门再把通过检测试纸和检测盒检测出来的怀疑添加瘦肉精的生猪,进行仪器检测,最后确定其是否添加,这样可以大大减少仪器检测带来的问题。”何计国说。  虽然国家下大力气检测瘦肉精,但是何计国不无忧虑地说,目前国内已经出现克伦特罗的替代品。由于一种检测仪器和试纸只能针对一种检测目标,现有的检测试纸和检测仪器主要是针对克伦特罗进行检测的,一旦出现替代品,检测仪器和试纸在它们面前将彻底“失灵”。  “如何从根本上杜绝瘦肉精这类物质的使用,将考验我们科学家和政府的智慧。”何计国最后说。
  • Neuron︱利用微型化双光子技术揭示“摆烂躺平”背后的神经环路机制
    世上无难事,只要肯放弃。你是否也遇到连绵不断花样百出的工作挑战曾经想要摆烂躺平?社会竞争压力越来越大,打工人是“扶我起来,我还能肝”,还是“大胆躺平,妥妥摆烂”,这成为当下社会讨论的焦点。科学家们试图从科学的角度帮助阐述这个问题。既往研究表明,在充满挑战的情况下,个体可能会锲而不舍以实现期望的结果,甚至每次尝试后会更加努力。但是经过多次重复失败后通常会导致个体放弃或者躺平。哺乳动物的大脑如何在挑战性经历中做出从主动出击到摆烂躺平的决定,仍然是一个未解决的问题。目前的人类影像学资料表明,前额内皮质、扣带皮质、背外侧和腹外侧前额皮质、眶皮质、颞-顶区和前扣带回可能会参与放弃的决策过程。但是,支持这种适应性决策的确切神经解剖学和神经化学基础尚未阐明。2023年6月23日,复旦大学脑科学研究院Nashat Abumaria(那德)老师和顾宇老师团队合作于国际著名期刊Neuron发表题为“A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice”的研究论文。在本研究中,作者发现投射到眶额叶皮层(OFC)内GABA能神经元的去甲肾上腺素能神经元是关键的调节因素。利用微型化双光子成像技术(FHIRM-TPM)和其他在体记录手段,作者发现自由行为小鼠OFC中去甲肾上腺素的减少和α1受体的下调,减少了驱动动作行为所必需的GABA能神经元的数量和活性,从而导致行为转变,促使个体在反复结果不可控的状态中做出从行动模式切换到放弃行动模式的决定。作者首先构建了两种从行动模式到放弃行动模式的小鼠模型。在第一个模型中,将小鼠暴露于3天的足底电击。从第1天到第3天,小鼠行为从跳跃和转圈等行动模式为主逐渐转变为放弃行动模式。在另外一个模型中,将小鼠暴露于3天不可逃脱游泳中,从第1天到第3天,小鼠行为从攀爬和转圈等行动模式为主逐渐转变为放弃行动模式。图1:两种动物模型中小鼠从行动模式到放弃行为模式转换过程作者随后通过药物操作手段排除了血清素、多巴胺等对于该行为模式的调控,并发现去甲肾上腺素能神经元的激活和抑制调节了这种行为转变。作者进一步通过顺行示踪和逆行示踪的手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射。OFC神经元接受蓝斑核去甲肾上腺素能输入;蓝斑核去甲肾上腺素能神经元逆行投射到OFC,主要与抑制性神经元形成连接。光激活OFC去甲肾上腺素能神经元后可增加行动模式,抑制该神经元导致放弃行动模式的发生增多。图2:示踪手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射为了在活体动物细胞水平上提供进一步的探究,作者使用微型化双光子成像技术(FHIRM-TPM)对模式动物自由行为下OFC GABA能神经元的实时活动进行了成像。在实验时间过程中跟踪同一群细胞,发现这群细胞整体钙信号逐渐下降,与从行动模式到放弃行动模式的行为转变一致。GABA能神经元活性的降低不是由于光漂白或其他成像伪影,因为在行为训练的3天内基线荧光信号保持相似(没有下降)。作者通过对细胞水平的详细分析发现,并非所有OFC GABA能神经元都对实验有反应。除了降低细胞的总体活性外,作者观察到在实验时间过程中响应的GABA能神经元百分比逐渐降低。图3:微型化双光子成像揭示行为转变期间OFC中的GABA能神经元活动作者随后利用多通道电极,光遗传学刺激,药物刺激等实验手段进一步验证了该发现,OFC GABA能神经元(接受去甲肾上腺素能输入)通过促进行动模式和防止向放弃行动模式的转变来调节行为转换。长时间接触无法控制的结果会导致去甲肾上腺素浓度逐渐降低和OFC中α1受体的下调,两种因素共同导致维持行动模式所必需的OFC GABA能神经元的数量和活性减少,最终使得行为模式转变为放弃行动模式。在这项研究中,作者建立了两种小鼠在长时间经历不可控结局时的行为转变模型。使用这些模型来定义OFC中去甲肾上腺素、α-1a肾上腺素受体和GABA能神经元活动的释放如何调节这种行为。结合微型化双光子显微镜在细胞水平进一步探究这种适应性决策的确切神经解剖学和神经活动基础机制。这些发现为面对反复失败的个人行为(例如戒烟机制)提供了见解,并为该领域的进一步研究提供了易于操作的模型。希望随着该领域的进一步深入研究,对“躺平摆烂”神经机制的更多认识,或许将帮助我们更科学地设立奋斗目标,更积极有效地应对无法掌控的困难,在更多的挑战中都能百折不挠兵来将挡水来土掩。【参考文献】Li, C., T. Sun, Y. Zhang, Y. Gao, Z. Sun, W. Li, H. Cheng, Y. Gu and N. Abumaria (2023). "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron.
  • 基于质谱成像的大鼠肾上腺组织中衍生化皮质酮的分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "摘 要:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)需要应用到特殊的样品前处理方法,从而使目标化合物的可视化分析具有高灵敏度和高分辨率。在分析类固醇激素时,基质辅助激光解吸离子化的效率往往较低。此外,类固醇激素也不能用现有的IMS 前处理方法进行分析。本报告描述了一种组织衍生化方法,借助iMScope iTRIO/i 质谱显微镜实现皮质酮的可视化和高灵敏度、高分辨率的IMS 分析。另外,我们还介绍了一种通过离子阱三级质谱鉴定皮质酮结构异构体的技术。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.研究背景/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)包括直接对组织表面进行质谱分析以检测被成像的目标物质。IMS 是一种分子成像方法,可以显示成像目标物的位置、类型和数量,且无需进行靶向标记。现有的IMS 样品前处理方法主要是将基质溶液喷涂于组织表面,形成直接诱导电离的基质-晶体层。然而,尽管我们已经知道这种方法有助于并在组织表面大量存在的极性的磷脂的可视化分析,但是对于非磷脂分子的可视化却没什么效果。因此,一些研究者认为IMS 技术只能对磷脂进行可视化分析。然而,IMS 其实同样可用于检测与现有的高灵敏度质谱方法相同的那些目标分子,前提是采用适当的样品前处理方法。实现这种可视化的技术包括两步法基质涂敷和组织衍生化方法。我们描述了一种IMS 分析方法,使用这两种技术成功实现大鼠肾上腺组织上的皮质酮的可视化分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.1 两步法基质涂敷/pp style="text-align: justify text-indent: 2em line-height: 1.75em "非常精细的基质晶体可以提高基质辅助激光解吸电离(MALDI)得到的谱图的信噪比(S/N)。因此,在组织表面形成非常精细的基质晶体不仅有助于提高IMS 的S/N,同时也有助于提高成像结果的空间分辨率。然而,IMS 分析的组织样品在测试前通常不清洗,其表面包含大量的盐和污染物。在这种类型的表面上涂敷基质会导致形成的基质晶体聚集,从而在某些区域形成非常薄的基质层。晶体层的这种不均匀性影响了图像的成像质量,使所获得的成像数据十分难以解释,因为目标分子浓度的变化可能仅仅是由于晶体层的不均匀性造成的。为了改善这种情况,我们开发了两步法基质涂敷技术(以下称为两步法)(图1)。两步法的第一步是使用iMLayer 系/pp style="text-align: justify text-indent: 2em line-height: 1.75em "统对基质晶体进行升华,第二步是用基质溶液进行喷涂。使用iMLayer 进行升华会在组织表面产生非常精细的基质晶体。而第二步在基质溶液的喷涂过程中,组织表面的这些细小晶体可以作为基质晶体生长的核心进行外源生长。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/854041eb-dace-41db-92d1-f351db385434.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图 1. 两步法基质涂敷的操作流程/pp style="text-align: justify text-indent: 2em line-height: 1.75em "用扫描电子显微镜捕获图像如图2 所示,我们比较了两步法和传统的直接喷涂法得到的基质晶体的形态。这两幅图像都以相同的放大倍数显示,两步成像法(图2a)得到的晶体比喷雾法(图2b)得到的晶体要精细得多,间距也更密。众所周知,这种非常精细和间距致密的晶体层的形成会使目标分子(包括药物和生物代谢物等化合物)的质谱峰强度增加数十倍sup[1,2]/sup。进行高分辨IMS 分析也需要这样精细的晶体层。当我们想实现高分辨分析(间距≤20μm)时,通过喷涂法会在组织表面形成非常大的基质晶体,这将导致成像结果会直接受这些基质晶体形状的影响和改变sup[3]/sup。基于上述情况,两步法被认为是获得高灵敏度、高分辨率结果的一种必不可少的前处理方法。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e2775274-1fb4-47bd-b926-b5f288e97d45.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图2 基质晶体的扫描电镜图/pp style="text-align: center text-indent: 2em line-height: 1.75em "(a) 两步升华法 (b) 喷雾法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.2 组织衍生化处理/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化是一种进一步提高灵敏度的前处理方法,近年来备受关注。在进行液相色谱测试时,在溶液中衍生化可提高其检测灵敏度sup[4]/sup。在组织切片制备后,将相同的衍生化试剂喷洒在样品上,也可提高IMS 的灵敏度。这种处理方法甚至可以使以前无法检测的分子被检测出来。在本报告中,我们选择一种有效的类固醇检测衍生化试剂吉拉德试剂T 作为衍生化试剂[5],皮质酮([M+H]+: 347.22)与吉拉德试剂T 在室温下快速反应,然后形成衍生化皮质酮([M]+: 460.31)作为检测目标物(图3)。由于三甲胺基团的加入,衍生化的皮质酮表现出更高的离子化效率。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/39921082-faaa-4eae-9f8b-42a3a181427a.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图3. 使用吉拉德试剂T 对皮质酮进行衍生/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.实验方法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化试剂:吉拉德试剂T (购于Sigma-Aldrich),浓度10mg /mL,以20%醋酸水溶液制备。样本组织:将冷冻的大鼠肾上腺切片置于ITO 载玻片上(Matsunami Glass 100Ω,span style="text-indent: 2em "无镁铝硅酸盐涂层)。基质溶液:α-氰基-4-羟基肉桂酸(α-CHCA,纯度≥98%,购于Sigma-Aldrich),浓度10mg /mL,以30%的乙腈、10%的异丙醇和0.1%的甲酸混合物作为溶剂进行配制。显微镜图像采集:在样品预处理前,用iMScope iTRIO/i 显微镜采集样品的光学图像。衍生化试剂喷涂:使用喷笔(GSICreos Procon BOY)将衍生化试剂喷涂于组织表面。喷涂量大约为60μL /组织切片。在喷涂过程中,在确认表面略有湿润的情况下,我们需要对组织表面反复干燥,当衍生化试剂喷涂完成后,样品在室温下放置90 分钟。基质涂敷:衍生化反应完成后,使用α-CHCA 在250℃条件下升华3分钟,以在组织表面形成一层基质薄膜,然后用喷笔将基质溶液喷到组织表面,喷涂量为100μL /组织切片,喷涂方法与衍生化试剂相同,但是衍生化试剂和基质需要采用独立喷笔。IMS 分析:使用iMScope iTRIO /i质谱显微镜。IMS 激光光斑直径选择d = 2 即像素大小约为25μm,d = 1 即像素大小10μm。所有IMS 采用二级质谱进行分析。对每个激光光斑直径对应的激光强度和碰撞能量进行优化,以保证产物离子质谱峰强度最大化。通过对溶液中衍生化的皮质酮标准品的分析,确定最佳实验条件。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f53f3658-d8f1-4846-8eb4-c69f65645f43.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 2em line-height: 1.75em "图4 MS/MS 质谱图的比较。(a) 非衍生皮质酮(前体离子: m/z347.22) (b) 衍生后皮质酮(前体离子: m/z 460.31) 上图:标准物质 下图: 肾上腺组织上的皮质酮/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3 实验结果/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 标准品与组织样品的皮质酮产物离子谱图/pp style="text-align: justify text-indent: 2em line-height: 1.75em "比较皮质酮标准品和组织样品的产物离子质谱图如图4 所示。图4a 显示了未衍生化皮质酮的产物离子谱图。标准品谱图通过测试在ITO 玻璃上滴加10 mg/mL 皮质酮标准品获得。质谱图显示了皮质酮的分子离子峰m/z 347.22,以m/z 347.22 为前体离子,其主要产物离子为m/z329.21。该产物离子是皮质酮脱水产生的。对肾上腺组织进行同样的分析,得到的谱图皮质酮信号。这一结果表明,在未进行衍生化的情况下,无法对皮质酮进行有效成像。图4b 展示了使用衍生化皮质酮进行相同分析的结果。衍生化皮质酮的质谱信号为m/z 460.31,可以将之理解为[M]+。选择m/z 460.31 作为前体离子进行二级质谱分析,得到碎片离子m/z 401.24,如图4b 所示,由三甲胺基团发生中性丢失产生。对组织样品进行分析获得高信噪比的产物离子质谱图,与标准品的谱图完全一致。这些结果表明,组织衍生化是检测皮质酮的有效方法。除了在衍生化皮质酮分析中检测到的m/z 401.24 处的质谱峰外,另一个主要峰值出现在m/z 373.25 处,为丢失-CO 基团的皮质酮。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 肾上腺组织中皮质酮的成像/pp style="text-align: justify text-indent: 2em line-height: 1.75em "根据上述实验条件,我们对大鼠肾上腺组织进行衍生化,获得其质谱成像数据。大鼠肾上腺组织的二级质谱成像结果(前体离子m/z 460.31,产物离子m/z 401.24)如图5 所示。肾上腺为分层结构,包括(由内而外)髓质、网状带、束状带、肾小球带和被膜。使用专为iMScope 设计的成像质谱分析软件,将二级质谱成像结果与光学图像相叠加,显示皮质酮在束状带内积累。对包含髓质、网状带和束状带的区域进行高空间分辨率检测,发现髓质中含有少量皮质酮,皮质酮主要在位于分析区域的最外层的束状带中积累。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/84c3d869-d851-4978-b790-2bed2cd4f5f3.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图5 肾上腺组织的MS/MS 成像结果(m/z 460.31,m/z 401.24)/pp style="text-align: center text-indent: 2em line-height: 1.75em "上图, 标尺: 400μm, 像素大小: 25μm/pp style="text-align: center text-indent: 2em line-height: 1.75em "下图: 标尺: 100μm, 像素大小: 10μm/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.4 在生物组织中应用多级质谱分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "除使用大气压MALDI 源实现高分辨IMS 分析外,iMScope iTRIO/i 还可以被用于多级质谱分析。 双羟孕酮(图6b)是类固醇激素皮质酮的结构异构体。能否对结构异构体进行有效区分对于实现皮质酮分布的精确成像十分重要。使用目前的衍生化法,双羟孕酮的二级质谱也为丢失三甲胺产生的碎片,因此现有的方法无法区分皮质酮的不同结构异构体。但是,iMScope iTRIO/i 可以利用离子阱进行三级质谱分析,从而可以间接确定出成像结果中是否存在结构异构体产生,这也是通过对标准品和组织样品的三级质谱分析比较,所获得的结果。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "然而,常规前处理可能无法产生足够强度的质谱峰来进行组织上的三级质谱分析。在本实验中,我们将两步法基质涂敷和组织衍生化方法相结合,成功地进行了组织上的三级质谱分析,获得了足够强度的三级质谱信号。图7 是由二级碎片离子m/z 401.24 得到的三级质谱结果。虽然质谱图中相对噪音较高,但组织样品上的三级质谱图依然具有较高的信噪比,与标准品获得的主要三级碎片一致(图7 底部)。基于这些发现,图5 所示的IMS结果能够比较准确地展示皮质酮的分布。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4 结论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "本报告介绍了利用两步法基质涂敷和组织衍生化技术的IMS 靶向物质可视化分析技术。我们通过样品前处理方法的发展以及应用仪器的技术创新,实现了IMS 分析灵敏度的提高。我们相信,随着IMS 应用范围的扩大,对更加适合的样品前处理方法的需求也会增加,未来我们将开发多种如此文中所介绍的方法,从而更加深入地挖掘IMS 技术的巨大应用潜力。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "【参考文献】/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[1] Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix/pp style="text-align: justify text-indent: 2em line-height: 1.75em "application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization ef.ciency.span style="text-indent: 2em "J Mass Spectrom. 48, 1285–90, 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[2] Shimma S. Characterizations of Two-step Matrix Application Procedures for Imaging Mass Spectrometry.span style="text-indent: 2em "Mass Spectrum. Lett. 6: 21–25, 2015./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[3] Taira S, Sugiura Y , Moritake S, Shimma S, Ichiyanagi Y , Setou M. Nanoparticle-assisted laser/pp style="text-align: justify text-indent: 2em line-height: 1.75em "desorption/ionization based mass imaging with cellular resolution. Anal. Chem. 88: 4761–6, 2008./pp style="text-align: justify text-indent: 2em line-height: 1.75em "[4] Higashi T, Yamauchi A, Shimada K. 2-Hydrazino-1-methylpyridine: a highly sensitive derivatization r/pp style="text-align: justify text-indent: 2em line-height: 1.75em "eagent for oxoster oids in liquid chromatography–electrospray ionization-mass spectr ometry. J. Chromatogr. Bspan style="text-indent: 2em "2: 214–222, 2005./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[5] Cobice DF, Mackay CL, Goodwin RA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andr ew/pp style="text-align: justify text-indent: 2em line-height: 1.75em "R. Mass Spectr ometry Imaging for Dissecting Steroid Intracrinology within Target Tissues. Anal. Chem., 85,span style="text-indent: 2em "11576–11584. 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bc3e121f-5fd4-4c49-a17c-c362290f17d2.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//ppbr//p
  • 科学家揭示神经损伤后的自发性疼痛产生的新机制
    自发性疼痛是指在没有外界刺激的情况下发生的疼痛。它是慢性疼痛的主要症状。发生机制仍不清楚,仍然难以治疗。近期,来自约翰霍普金斯大学和辛辛那提大学的研究团队利用在体成像技术研究了同步聚集放电引起神经损伤后的自发性疼痛发生机制,证实交感神经-肾上腺素受体通路介导了同步聚集放电和自发性疼痛的产生。该研究成果发表在《Neuron》上,题为:Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain。  研究人员对背根神经节(DRG)神经元进行了在体成像,发现周围神经损伤后异常自发活动的一种独特形式:相邻的DRG神经元聚集同步、偶尔性放电。聚集放电水平与神经损伤诱发的自发性疼痛行为直接相关。研究人员进一步证明了聚集放电由交感神经的活动触发。交感神经在损伤后会传导到DRG,去甲肾上腺素是介导这种独特放电的关键神经递质。交感神经活性和去甲肾上腺素受体对于DRG神经元同步聚集放电和自发疼痛行为至关重要。  这项研究提出了阻断交感神经介导的同步聚集放电可能是治疗自发性疼痛的新手段,为在临床上靶向该通路治疗神经损伤引起的自发性疼痛提供了理论支持和研发方向。   论文链接:  https://www.sciencedirect.com/science/article/abs/pii/S0896627321008345?via%3Dihub
  • 促肾上腺皮质激素ACTH(18-39)抗体现货促销
    【详细说明】:促肾上腺皮质激素ACTH(18-39)抗体【浓 度】:1mg/1ml 抗体来源【宿 主】:兔源、鼠源、其他 克隆:单克隆抗体、多克隆抗体【适 用】:Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Sheep, Monkey, others。 抗体类型:一抗 研究领域:细胞生物、神经生物学等 【性 状】:促肾上腺皮质激素ACTH(18-39)抗体冻干粉或液体【相关标记】:FITC、Gold 、HRP、PE PE-Cy3、PE-CY5、PE-CY5.5 、PE-CY7 、RBITC 、 Alexa Fluor 350、Alexa Fluor 488 、 Alexa Fluor 555 、Alexa Fluor 647、AP 、APC 、Biotin 、Cy3 、Cy5 、Cy5.5 、Cy7 。【储 存 液】: Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4 or PBS with 0.1% sodium azide and 50% glycerol pH 7.3. -20oC, Avoid freeze / thaw cycles.【产品应用】 :Immunohistochemistry (IHC), Flow Cytometry (FACS) , Western Blotting (WB) , ELISA , Immunohistochemistry , Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)) , Immunoprecipitation (IP) , Immunocytochemistry (ICC) ,Immunofluorescence (IF)等。促肾上腺皮质激素ACTH(18-39)抗体ADCY8 腺苷酸环化酶8抗体 (1)IgG :血清中含量最高,因此是最重要的抗感染分子,包括抗菌、抗病毒、抗毒素等。 IgG 还能激活补体,结合并增强巨噬细胞的吞噬功能(调理作用和 ADCC 效应),穿过胎盘,保护胎儿及新生婴儿免受感染。 (2)IgA :分单体和双体两种。前者存在血清中,后者存在于黏膜表面及分泌液中,是黏膜局部抗感染的重要因素。(3)IgM :是分子量最大,体内受感染后最早产生的抗体,具有很强的激活补体和调理作用,因此是重要的抗感染因子,且常用于诊断早期感染。  (4)IgD :主要存在于成熟 B 细胞表面,是 B 细胞识别抗原的受体。 (5)IgE :血清中含量最少的抗体,某些过敏性体质的人血清中可检测到,参与介导 I 型超敏反应和抗寄生虫感染。促肾上腺皮质激素ACTH(18-39)抗体现货促销中,为您推荐相关优质检测抗体:Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Lgr5/GPR49 肠上皮干细胞蛋白抗体 Anti-LH (Mouse Anti-Human Luteinizing Hormone Monoclonal Antibody) 鼠抗人促黄体生成素抗体 Anti-L-HDC (L-Histidine decarboxylase) L-组氨酸脱羧酶抗体 hu, mo, rat, bov, dog, pig, chi Anti-LHRH/GNRH (luteinizing hormone-releasing hormone) 黄体激素释放激素抗体/促性腺激素释放激素抗体 Anti-LIF (leukemia inhibitory factor) 白血病抑制因子抗体 Anti-Lingo-1 Nogo受体作用蛋白抗体 Anti-Livin (Inhibitors of apoptosis proterins Livin) 一种新的凋亡抑制蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 Anti-LN (laminin) 层粘连蛋白抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-LRP/MVP (Lung resistance related protein) 肺耐药相关蛋白抗体 Anti-LRRK2 (Leucine-rich repeat kinase 2) 帕金森氏病致病基因/神经系统新功能基因抗体 Anti-Lumbrokinase 抗蚯蚓纤溶酶抗体/抗蚓激酶抗体 Anti-Lysozyme 溶菌酶抗体 anti-LYVE-1(lymphalic vessel endotheilial hyaluronan receptor 1) 淋巴管内皮透明质酸受体抗体 Anti-M2-PK ( pyruvate Kinase M2) 丙酮酸激酶-M2抗体 Anti-M2-PK (pyruvate Kinase M2) 丙酮酸激酶-M2(小鼠来源抗体) Anti-Integrin αM/CD11b (Mac-1/CR3A)(Integrin-alpha2) 巨噬细胞表面分子/整合素-α2抗体 Anti-ChRM1 (muscarinic acetylcholine receptor) 毒蕈碱型乙酰胆碱受体M1抗体 Anti-MADCAM-1(-Mucosal addressin cellular adhesion molecule-1) 粘膜选址素抗体 Anti-MAG-a/b (Myelin associated glycoprotein L / S -MAG ) 髓鞘相关糖蛋白a/b抗体 Anti-MAG-a/L-MAG (Myelin associated glycoprotein) 髓鞘相关糖蛋白-a抗体 Anti-MAGE-1/HLA-A1 protein (melanoma antigen family A member 1) 黑素瘤抗原-1抗体 Anti-MAPKK1 (MAP kinase kinase 1) 丝裂原活化蛋白激酶激酶1 Anti-MAPKK2 (MAP kinase kinase 2) 丝裂原活化蛋白激酶激酶2抗体 Anti-Maspin (mammary serine protease inhibitor) 抑癌基因抗体 Anti-Matriptase 蛋白裂解酶(一种新的癌基因)抗体 Anti-MBP (Myelin Basic Protein, MBP) 髓鞘碱性蛋白抗体 Anti-MCP-1 (monocyte chemotactic protein1) 巨噬细胞趋化蛋白-1抗体 Anti-M-CSF (Macrophage Colony Stimulating Factors) 巨噬细胞克隆刺激因子抗体 Anti-MDM2 (urine double minute 2) 双微体2癌基因抗体 Anti-Megsin/SER—PINB7 丝氨酸(或半胱氨酸)蛋白酶抑制剂B7抗体 Anti-Melan-A/MART-1 黑色素瘤相关抗原/黑色素-A抗体 Anti-Metal ion transporter 拟南介金属离子转运蛋白抗体 Anti-Mfn1 (Mitofusin1) 线粒体融合蛋白1抗体 Anti-MGMT (O6-methylguanine-DNA methyltransferase) O6甲基鸟嘌呤DNA甲基转移酶抗体 anti-MT(metallothionein) 金属基质硫蛋白抗体 anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(NT) 层粘连蛋白受体1抗体(N端) anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(CT) 层粘连蛋白受体1抗体(C端) Anti-MICA(MHC class I polypeptide-related sequence A) 一种细胞应激分子抗体 Anti-Midnolin isoform Protein 1 中脑核仁蛋白1抗体 Anti-Midnolin isoform Protein 2 中脑核仁蛋白2抗体 Anti-MIF (Macrophage Migration Inhibitory Factor) 巨噬细胞移动抑制因子抗体 Anti-MIP-1α (macrophage inflammatory protein 1α) 巨噬细胞炎症因子1α抗体 Anti-MIP-1β (macrophage inflammatory protein 1β) 巨噬细胞炎症因子1β 抗体 Anti-MMP-1(matrix metalloproteinases-1) 基质金属蛋白酶-1抗体 Anti-MMP-1(matrix metalloproteinases-1)anti-Mouse 基质金属蛋白酶-1抗体(小鼠) Anti-MMP-13 (Matrix metalloproteinase 13) 基质金属蛋白酶13抗体 Anti-MMP-14(Matrix metalloproteinase-14) 基质金属蛋白酶-14抗体 Anti-MMP-2(Collagenase IV /Gelatinase A/Metallo proteinase-2) 基质金属蛋白酶-2抗体 Anti-MMP-3(matrix metalloproteinase-3/Transin-1/SL-1/Stromelysin-1 precursor) 基质金属蛋白酶-3抗体 Anti-MMP-7(Matrilysin/matrix metalloproteinases-7) 基质金属蛋白酶-7抗体 Anti-MMP-9(matrix metalloproteinase 9) 基质金属蛋白酶-9抗体 Anti-β-2-MG 鼠抗人β2微球蛋白抗体(单抗) Anti-Mo anti-KLH 小鼠抗血蓝蛋白抗体 Anti-MOG (myelin oligo-dendrocyte glycoprotein-MOG) 髓鞘少树突胶质细胞糖蛋白抗体 Anti-Mouse anti-human HAS 鼠抗人血清白蛋白单克隆抗体 Anti-Mouse IgA 兔抗小鼠IgA抗体 Anti-MPO (myeloperoxidase) 髓过氧化物酶抗体 Anti-MRP1(Multidrug Resistanec-Associated Protein 1) 多药耐药相关蛋白1抗体 Anti-MRP2 (multidrug resistance-associated protein2) 多药耐药相关蛋白2抗体 Anti-MRP3(Multidrug Resistanec-Associated Protein 3) 多药耐药相关蛋白3抗体 Anti-MrpL28 (mitochondrial ribosomal protein L28) 线粒体核糖体蛋白L28抗体 Anti-MSH-2 (MutS homolog 2) 错配修复蛋白2抗体 anti-MLH1(Mutl homolog l gene) 错配修复蛋白1抗体 Anti-MSLN (mesothelin) 间皮素抗体 anti-MUC5AC/Mucin 5AC(Gastric Mucin M1) 胃粘液素抗体 Anti-MTR-1A (Melatonin receptor-1A) 褪黑素受体/松果体素受体抗体 Anti-mucin-1/Muc-1/CD227 antigen (Epithelial Membrane Antigen ) 粘蛋白-1/上皮膜抗原抗体 Anti-MyD88 (myeloid differential protein-88) 髓样分化蛋白抗体 Anti-Myelin P0 protein( peripheral myelin prothein Zero MPZ MPP) 外周髓磷脂P0蛋白/P0蛋白抗体 Anti-Myosin (Smooth Muscle) 鼠抗人心肌肌凝蛋白(平滑肌) 单抗 Anti-N-AChR α4 (Nicotinic-Acetylcholine receptor α4) 烟碱型乙酰胆碱受体α4抗体 Anti-N-AChR α7 (Nicotinic-Acetylcholine receptor α7) 烟碱型乙酰胆碱受体α7抗体 Anti-Nanog 胚胎干细胞关键蛋白抗体 anti-Natrexone 抗纳曲酮抗体IgG Anti-NAP1 (nucleosome assembly protein 1) 核小体组装蛋白1抗体 Anti-N-cadherin N-钙粘附分子抗体 Anti-N-coR1 (Nuclear receptor co-repressor 1) 核受体辅助抑制因子抗体 Anti-Nephrin Protein 肾病蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Neurobeachin protein (AKAP550) 蛋白激酶锚定蛋白/激酶固定蛋白抗体 Anti-Neurocan 神经粘蛋白抗体 Anti-Neurofascin-155 神经束蛋白-155 Anti-NF-H(Neurofilament triplet H) 高分子量神经丝蛋白抗体 Anti-NFKBp65(p65 NF-kappa B p65NFKB) 细胞核因子/k基因结合核因子抗体 Anti-NF-L(Neurofilament triplet L) 低分子量神经丝蛋白抗体 Anti-NF-M (Neurofilament triplet M) 中分子量神经丝蛋白抗体 Anti-NF-κBp50(p50 NF-kappa B p50NFKB) 细胞核因子50/κ基因结合核因子50抗体 Anti-NGF-R/p75NTR/CD271(p75 Neurotrophin R) 神经生长因子受体抗体 Anti-NGF-β 神经生长因子-β抗体 anti-NGN3(neurogenin 3 Neurog3) 神经元素3抗体 Anti-NGX6 (nasopharyngeal carcinoma/NPC associated gene 6) 鼻咽癌细胞相关基因6抗体 Anti-NHE1(Na+/H+ Exchanger) 钠氢通道蛋白抗体 Anti-NIK(NF-kappaB-Inducing Kinase) NFkB诱导的激酶抗体 Anti-NIS(Na+/I-symporter) 钠碘转运体蛋白抗体 Anti-NK-1/SuRCtance P Receptor (Neurokinin receptor1 Tachykinin receptor1) P物质受体抗体
  • Nature突破! | 马秋富团队揭示针灸驱动迷走神经—肾上腺抗炎通路的神经解剖学基础
    针灸治疗疾病的核心机理之一是通过刺激身体特定的部位(穴位)来远程调节机体功能,而经络被认为是达到这种远程效应的重要传输载体。尽管现代解剖学研究尚未明确经络特异性结构基础的存在,但揭示了针刺刺激的远程效应可以通过躯体感觉神经-自主神经反射来实现。这种反射首先是激活来自位于背根神经节 (DRG) 或三叉神经节中的外周感觉神经纤维,随后将感觉信息传到脊髓和大脑,进而激活外周自主神经,最终实现对各种机能的调节。从上世纪70年代开始,就陆续发现此类反射存在躯体区域特异性。2020年哈佛大学医学院马秋富教授团队发表在Neuron的研究结果,揭示了低强度针刺刺激小鼠后肢穴位(如足三里ST36)可以激活迷走神经-肾上腺抗炎通路,而针刺刺激腹部穴位 (如天枢ST25) 却不能诱导出此抗炎通路(详见BioArt报道:Neuron | 马秋富团队报道针刺激活不同自主神经通路调节全身性炎症)。这种躯体区域特异性(或者说穴位部位的相对专一特异性)背后的神经解剖学基础至今尚不清楚。2021年10月13日,马秋富教授团队与复旦大学王彦青教授,中国中医科学院针灸研究所景向红教授团队合作(第一作者为柳申滨博士和王志福博士)在Nature又发表文章A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis,实现了针灸研究的历史性突破,揭示了一类PROKR2-Cre标记的DRG感觉神经元,是低强度针刺刺激激活迷走神经-肾上腺抗炎通路所必不可少的。尤为值得关注的是,根据此类神经的躯体分布特点,可以预测在不同部位低强度电针刺激抗炎的效果,从而为穴位相对特异性的存在提供了现代神经解剖学基础。首先,PROKR2-Cre标记的有髓鞘的神经元主要富集表达于支配四肢节段的DRG中,并且此类神经元特异性支配四肢的深层筋膜组织(如骨膜、关节韧带和肌筋膜等),而不支配皮肤的表皮组织和腹部的主要筋膜组织(如腹膜)。其次,为了研究PROKR2-Cre标记的神经元在针刺诱导迷走神经-肾上腺抗炎通路中的作用,研究团队运用交叉遗传等方法特异性地敲除此类DRG感觉神经元。当敲除这类神经元后,低强度针刺刺激后肢穴位ST36不能激活迷走神经-肾上腺通路,也无法抑制LPS(细菌脂多糖)所诱发的炎症风暴;而敲除此类神经元并未影响高强度刺激后肢穴位ST36和腹部穴位ST25所诱导的交感神经抗炎通路。研究团队进一步运用交叉遗传的方法特异性诱导光敏蛋白CatCh表达于PROKR2-Cre标记的神经元,并用473nm蓝光特异性地激活支配后肢穴位ST36的此类感觉神经纤维。研究发现,激活此类神经纤维能显著诱发迷走传出神经的放电,并且能以迷走神经依赖的方式诱导肾上腺释放儿茶酚胺类神经递质,抑制LPS诱导的促炎细胞因子释放,进而显著提高动物的存活率。这一部分研究结果,几乎模拟了低强度电针刺激后肢穴位ST36的抗炎效果。最后,研究人员根据PROKR2-Cre标记的 感觉神经纤维的组织支配模式准确验证了对低强度电针刺激诱导的抗炎效应结构基础。而与下肢胫骨附近筋膜组织中的密集投射相反,下肢后部的肌肉组织中,包括小腿的腓肠肌和大腿区域的半腱肌,PROKR2-Cre感觉神经纤维支配很少。低强度针刺刺激这些部位未能显著抑制 LPS诱导的炎症反应。奇妙的是,PROKR2-Cre神经纤维很少投射的腓肠肌和半腱肌等部位,正好很少分布传统穴位。进一步研究发现, PROKR2-Cre标记的感觉神经元也密集支配到前肢的深层筋膜组织(如桡骨骨膜),此处为手三里穴区(LI10),进一步通过针尖靠近含有这类神经纤维的桡神经深支,对其进行了双侧低强度刺激,发现针刺刺激此穴位也可通过此类神经元和迷走神经依赖方式,显著抑制LPS诱导的炎症反应。以上研究表明,对于针刺刺激诱导迷走神经-肾上腺抗炎通路,存在躯体部位的选择性(如有效的 ST36 、LI10 和无效的 ST25穴位)、穴位特异性(如ST36 与无效的后肢肌肉中的传统非穴位)。这种穴位的相对特异性与PROKR2神经纤维的部位特异性分布有关。此外,针刺强度、深度、检测结果指标都是影响穴位特异性发挥作用的重要要素。这些发现充实了针灸等体表刺激疗法的现代科学内涵,为临床优化针刺刺激参数,诱发不同自主神经反射,从而治疗特定的疾病(如炎症风暴等)提供了重要的科学依据。据悉,该研究获得了复旦大学王彦青教授、中国中医科学院针灸研究所景向红研究员的支持帮助,福建中医药大学王志福副教授、中国中医科学院针灸研究所宿杨帅博士, 还有杨维、祁鲁、傅鸣洲参与了本研究的工作。
  • 复旦学者:PM2.5暴露可引起人体应激激素分泌增加
    p  复旦大学16日披露,该校公共卫生学院教授阚海东课题组在大气细颗粒物(PM2.5)健康危害机制研究中取得新进展,发现PM2.5暴露可引起人体应激激素水平显著上升,并促进机体的脂类氧化以及糖类和氨基酸的代谢。/pp  本研究首次将代谢组学和随机双盲交叉实验设计结合用于PM2.5人体健康研究,结果显示PM2.5可以激活人体下丘脑-垂体-肾上腺轴(HPA轴),引起神经内分泌活动和基础代谢发生改变,进而产生血压升高、炎症反应等一系列变化。/pcenterimg alt="点击进入下一页" src="http://i2.chinanews.com/simg/cmshd/2017/08/16/23ce89cf50fb4892a1d9f810c65a9fca.jpg" width="500" height="332"//centercenter /centerp   据悉,这一发现为防治PM2.5相关的健康风险提供了新的思路。复旦大学方面披露,相关成果发表于《循环》杂志(Circulation)。/pp  目前已有大量流行病学证据证实PM2.5能够对人体的心血管系统造成危害,但其作用机制至今尚未完全明确。对此,阚海东团队采用随机交叉的实验设计,观察志愿者暴露于不同PM2.5水平后的代谢组学差异。/pp  研究发现,不同PM2.5暴露水平下,志愿者小分子血清代谢物出现显著差异,并最终筛选出了97种差异代谢物。受试者暴露于PM2.5后,血清中应激激素(皮质醇、肾上腺素和去甲肾上腺素)显著升高,且伴有糖类、蛋白质代谢和脂类氧化增强等改变。这些变化可能是PM2.5暴露对居民心血管系统产生健康危害的途径之一。/pp  据悉,该研究获得了国家自然科学基金委“中国大气复合污染的成因、健康影响与应对机制联合重大研究计划”的资助。/p
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺检测试剂盒产品优势检测试剂盒适用仪器Agilent 1290-6470 LC-MS/MS 以及6430 / 6465 / 6495系列SCIEX QTRAP 6500+ LC-MS/MS 以及4500 / 5500 / 7500系列检测试剂盒技术专利检测试剂盒关于 曼哈格 & 博莱克
  • 国家食药监局征求化妆品中禁用物质检测方法
    2012年3月15日,国家食品药品监督管理局保健食品化妆品监管司组织起草了化妆品中替硝唑等禁用物质或限用物质检测方法(征求意见稿),并向社会公开征求意见,详情如下:国家食品药品监督管理局保化司关于征求化妆品中替硝唑等禁用物质或限用物质检测方法意见的函  食药监保化函[2013]127号  各省、自治区、直辖市食品药品监督管理局(药品监督管理局),有关单位:  为进一步加强化妆品安全评价工作,规范化妆品中禁用物质或限用物质检测方法,我司组织起草了化妆品中替硝唑等禁用物质或限用物质检测方法(征求意见稿)。现向社会公开征求意见,请将修改意见于2013年3月31日前反馈我司。  联 系 人:林庆斌  联系电话:010-88330884  传  真:010-88373268  电子邮件:linqb@sfda.gov.cn  附件:1.化妆品中替硝唑等15种禁用硝基咪唑类抗生素的检测方法(征求意见稿)、起草说明及编制说明     2.化妆品中11种二苯酮类紫外线吸收剂的检测方法(征求意见稿)、起草说明及编制说明     3.化妆品中甲氧基肉桂酸乙基己酯等16种紫外线吸收剂及二苯酮的检测方法(征求意见稿) 、起草说明及编制说明     4.化妆品中氟离子、溴酸根、碘离子、氰根的检测方法(征求意见稿)、起草说明及编制说明     5.化妆品中肾上腺素、去甲肾上腺素、异丙肾上腺素的检测方法(征求意见稿)、起草说明及编制说明     6.反馈意见表                   国家食品药品监督管理局保健食品化妆品监管司                          2012年3月15日
  • 315瘦肉精事件再现,为何餐桌美食成毒药?
    自2017年央视3.15曝光瘦肉精事件后,时隔4年之久,瘦肉精问题又再度登上315晚会。据315晚会报道,沧州青县是河北省的重要养殖基地,每年大约产出70万只羊,养殖户为了增加羊的出肉率,在饲料中偷偷混入“瘦肉精”,喂羊吃下,吃了瘦肉精的羊“一只可以多卖五六十元”。为了逃避监管,当地人一般会在运羊车上装上几只没有喂过瘦肉精的“绿色羊”应付检查。一肉联厂的负责人称:“无锡有客户,天津也有客户,河南也有客户。”目前,相关涉事企业负责人已被控制,郑州连夜突查流入市内的问题羊肉。什么是瘦肉精?瘦肉精的学名叫做「β2 肾上腺素受体激动剂」,它是一类物质的总称,而不是代表一种物质,任何能够促进瘦肉生长、抑制肥肉生长的物质都可以叫做“瘦肉精”,如一代瘦肉精:克伦特罗(clenbuterol)、沙丁胺醇(Salbutamol)和二代瘦肉精莱克多巴胺(Ractopamine)等等,这些药物都可以使动物体产生较多的瘦肉。使用“瘦肉精”后会在动物组织内形成残留,消费者食用后直接危害人体健康。国务院食品安全委员会办公室《“瘦肉精”专项整治方案》(食安办〔2011〕14号)规定的“瘦肉精”品种目录:盐酸克伦特罗、莱克多巴胺、沙丁胺醇、硫酸沙丁胺醇、盐酸多巴胺、西马特罗、硫酸特布他林、苯乙醇胺A、班布特、盐酸齐帕特罗、盐酸氯丙那林、马布特罗、西布特罗、溴布特罗、酒石酸阿福特罗、富马酸福莫特罗。民以食为天,为了保障广大群众餐桌上的安全,支持国家和各地瘦肉精相关药物残留监测工作的开展,坛墨质检多年以来持续进行瘦肉精相关兽药残留的标准物质研制工作,为食品安全保驾护航。
  • 食品补充检验方法《植物源性食品中奥克巴胺的检测》解读
    一、目的和依据奥克巴胺也叫章鱼胺,因首次于章鱼唾液中发现而得名,是一种天然的β3-肾上腺素能受体激动剂,具有对-羟苯-β-羟乙胺的化学结构,是去甲肾上腺素的同类物。世界反兴奋剂组织《世界反兴奋剂条例国际标准禁用清单》(WADA清单)中明确将其列为赛内禁用物质。研究表明奥克巴胺在水果、蔬菜、肉、奶和鱼等食品中被检出,然而,目前关于食品中奥克巴胺的研究和监测多关注动物源食品,对植物源食品关注较少。研究发现,奥克巴胺在柑橘类植物源性食品及相关制品中被广泛检出。此外,在某些保健食品或膳食补充剂中可能非法添加奥克巴胺用于减肥。适量的奥克巴胺对人体的健康有益,但过量摄入会引起人体的内分泌紊乱和新陈代谢失衡,引起诸如头痛、恶心、心悸、血压变化、血糖不稳、呼吸紊乱等反应,严重的还会危及生命。目前国内关于奥克巴胺的检测标准仅有GB 5009.208-2016《食品安全国家标准 食品中生物胺的测定》,其仅适用于酒类、调味品、水产品以及肉类,不包含柑橘类水果及其制品等植物源性食品,我国尚无适用植物源性食品中奥克巴胺检测的国家标准,无法满足大型赛事食源性兴奋剂防控及日常监管需求。为避免食用含奥克巴胺浓度较高的柑橘类水果及制品、保健食品或膳食补充剂给运动员带来兴奋剂检出风险,降低对人民群众身体健康的不良影响,北京市食品检验研究院制定了BJS202211《植物源性食品中奥克巴胺的检测》方法。二、在食品监管实际中的应用BJS202211《植物源性食品中奥克巴胺的检测》适用于柑橘类(柑橘、橙子、柚子)及其制品(橘子汁、橙子汁、柚子汁)中奥克巴胺含量的测定,可用于柑橘等植物源性食品中奥克巴胺分布情况、本底含量等情况的系统调研活动,用以在大型赛事过程中加强柑橘类及果汁制品中奥克巴胺的内部控制。该检测方法的制定可为食品安全监管提供技术支撑,对减少运动员兴奋剂检出风险具有重要意义。三、先进性和创新性本次是对《植物源性食品中奥克巴胺的检测 液相色谱-串联质谱法》的首次制定。试样中的奥克巴胺经1%甲酸50%乙腈溶液提取、固相萃取净化后,采用液相色谱-串联质谱仪进行分离和测定,内标法定量。由于食品基质中组分复杂,本方法引用了内标,可使基质效应得以矫正,使其具有更好的适用性,从而极大提高分析结果的准确度、精密度和方法的可靠性。使用的液相色谱-质谱联用技术是近年来广泛使用的检测技术,由于其准确、高效和高灵敏度,符合目前食品安全检测所追求的快速高效的要求。该方法填补了奥克巴胺在植物源食品中无检测方法标准的空白,对柑橘及其制品中奥克巴胺含量的检测,可以建立奥克巴胺的防控规范,避免运动员的误食风险,为供赛食品供应渠道把关筛选工作提供了技术支撑,为大型体育赛事供应食品食源性兴奋剂防控工作提供了技术手段。四、操作注意事项实验操作中需要注意的要点如下:1.称取样品后加入内标,再进行提取净化操作,在前处理步骤之前加入内标可以更好地校正前处理带来的目标物损失;2.由于内标离子(139.193.1)对附近存在较强的基质干扰,在选择色谱柱及流动相条件时,应着重考察此内容;3.试样中奥克巴胺的测定值超曲线范围时,须重新进行测定,建议适量减少称样量,并通过增加提取液、复溶液体积等方式,对样品进行重新测定。在此过程中,要注意对稀释倍数进行准确的计算,使最终溶液中内标含量与标准溶液上样浓度保持一致,使其上机浓度在线性范围内再进行定量。
  • 康泰克可制冰毒被限售 感冒药市场洗牌在即
    麻黄碱类药物限制令落地。12月6日,国家药监局发文,要求对复方盐酸伪麻黄碱缓释胶囊在内的6类含麻黄碱超过30mg的药品进行说明书修订,并转为处方药管理。这意味着几大类感冒药都将无法直接从药店买到。  这其中新康泰克首当其冲,12月11日,葛兰素史克(GSK)企业传播总监张飒英确认:“公司所产的新康泰克有一个品规在限制之列。” GSK同时发函表示,中美史克已在2012年7月1日调整了渠道分销模式,复方盐酸伪麻黄碱缓释胶囊(简称康泰克胶囊)由非处方药转为处方药,仅在医院渠道销售。  医药业内人士根据市场规模分析,康泰克胶囊销售额接近20亿元,其中在零售市场销售规模估计约12亿元,这意味着其零售市场销售将受到影响。  除此之外,海王生物旗下的海王药业、利君国际、浙江震元等企业的数款感冒药也将被转为处方药。  由于绝大多数麻黄碱类感冒药的麻黄碱含量均为30mg或以下,因此白加黑、百服宁、泰诺及大部分国产感冒药躲过了转为处方药的命运。  针对“康泰克”  麻黄碱类物质通过简单的化学加工,就可以制成毒品甲基苯丙胺,即俗称的冰毒  GSK并未回应新规对于康泰克胶囊销售的影响,仅表示新康泰克片剂仍为非处方药,可以在药店正常销售。  新康泰克两款产品长期盘踞国内化学类OTC感冒药销售排名的第一位。国家药监局南方药物经济研究所的统计数据显示,2011年其市场份额为6.9%,远高于泰诺、白加黑等产品。  康泰克胶囊热销的原因之一就是其伪麻黄碱的含量。麻黄碱类物质主要用于缓解鼻黏膜充血,对于鼻塞有较好的治疗作用。国内主流感冒药中,麻黄碱类物质每粒含量多为30mg,而康泰克胶囊高达90mg,其缓解鼻塞效果不言而喻。  但麻黄碱类物质通过简单的化学加工,就可以制成毒品甲基苯丙胺,即俗称的冰毒。中国非处方药协会秘书长王伟尴尬的表示:“国际上对于麻黄碱类药品都比较关注,但真正拿药来制造毒品的,好像只有中国有类似案例。”  江苏曾破获过用康泰克胶囊制毒的案件,800多盒康泰克共提炼出95克冰毒,每克冰毒的成本价为100元左右。而相对来说,用含30mg麻黄碱类的药物提取冰毒,利润诱惑并不大,因此犯罪分子的黑手频频伸向康泰克胶囊。  国家药监局曾多次发文要求限制麻黄碱类药物在药店的销售,但正如外商制药协会发言人左玉增所说:“在流通环节中出现了问题,并非是药品本身安全性的问题,药监部门也很难完全监管到。”  今年6月26日,最高检、最高法、公安部联合出台文件,掀起了新一轮打击麻黄碱类药物制毒的风潮。9月4日,国家药监局终于明确下文,要求将单位剂量在30mg以上的麻黄碱药物列入处方药管理。  这意味着康泰克胶囊等数个品种今后无法在大众媒体上进行广告宣传,患者无法在药店随意购买到。GSK可能早已预见到了这一点,从2009年至今,江苏、贵州、云南等省份的基本药物增补目录中康泰克胶囊都获得了一席之地,保证了其医院销售的途径。  其他麻黄碱类感冒药则在新规中暂时得到喘息的机会。拜耳、强生等外资感冒药生产企业均表示此次限制令不会影响公司产品的销售。中国非处方药协会内部人士透露:“其实出台限制令主要就是针对新康泰克,因为它能制毒,社会影响很不好。”  市场空间几何  引发行业忧虑的是限制令范围的进一步扩大。  有市场人士认为,此次新政的推出无异于感冒药市场的再次洗牌。事实上,众多企业均对此保持谨慎态度。  海南快克药业总经理何天立表示:“感冒药市场中,麻黄碱类和非麻黄碱类的比例大致为3:8。即便所有麻黄碱类感冒药都转为处方药,腾出的市场空间也很有限。而且非麻黄碱类感冒药生产企业众多,竞争非常激烈。”  根据药监局南方所的数据,2011年我国OTC市场中医疗市场终端为658亿元,药品零售市场终端为959.9亿元。其中感冒咳嗽和过敏类药物的销售比例一直维持在28%左右,粗略估计该类药物的销售额为450亿元。  根据上述数据,医院终端与零售终端销售额比例大致在2:3。市场业内人士估算,康泰克胶囊销售额接近20亿元,其零售市场空间约为12亿元左右。  2011年全国医院市场OTC销售增幅为16.8%,仅略低于零售市场17.3%的增幅。随着新一轮基本药物目录的下发和应用,OTC在医院渠道的销售还将高速增长。而限制令主要影响的是零售市场。  引发行业忧虑的是限制令范围的进一步扩大。  30mg是目前转为处方药的“门槛”,大多数麻黄碱类药物都将麻黄碱含量做到了30mg。一旦未来不法分子发现此规格的麻黄碱药物也存在制毒的利润空间,或许监管部门还会出台更严格的限制措施。  王伟表示:“很多企业已经开始在研究麻黄碱的替代产品,虽然药品配方的研究和审批会有一个漫长的过程,但相信会有一些替代品先受益。”  2008年时,美国食品与药物管理局曾表示,去甲肾上腺素为主要成分的感冒药对缓解鼻塞有效。  GSK方面曾表示,公司正在努力研发将来可替代麻黄碱的配方。继PPA严重不良反应事件之后,遭遇麻黄碱危机的康泰克能否走出阴霾?
  • 151种非法食品添加物黑名单公布
    记者23日从国务院食品安全委员会办公室获悉,为严厉打击食品生产经营中违法添加非食用物质、滥用食品添加剂以及饲料、水产养殖中使用违禁药物,卫生部、农业部等部门根据风险监测和监督检查中发现的问题,不断更新非法使用物质名单,至今已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”的名单。  根据有关法律法规,任何单位和个人禁止在食品中使用食品添加剂以外的任何化学物质和其他可能危害人体健康的物质,禁止在农产品种植、养殖、加工、收购、运输中使用违禁药物或其他可能危害人体健康的物质。这类非法添加行为性质恶劣,对群众身体健康危害大,涉嫌生产销售有毒有害食品等犯罪,依照法律要受到刑事追究,造成严重后果的,直至判处死刑。  这次公布的151种食品和饲料中非法添加名单,是由卫生部、农业部等部门在分次分批公布的基础上汇总再次公布,目的是提醒食品生产经营者和从业人员严格守法按标准生产经营,警示违法犯罪分子不要存侥幸心理 同时,欢迎和鼓励任何单位个人举报其他非法添加的行为。  表一 食品中可能违法添加的非食用物质名单序号名称可能添加的食品品种检测方法1吊白块腐竹、粉丝、面粉、竹笋GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法2苏丹红辣椒粉、含辣椒类的食品(辣椒酱、辣味调味品)GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法3王金黄、块黄腐皮4蛋白精、三聚氰胺乳及乳制品GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法 GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5硼酸与硼砂腐竹、肉丸、凉粉、凉皮、面条、饺子皮无6硫氰酸钠乳及乳制品无7玫瑰红B调味品无8美术绿茶叶无9碱性嫩黄豆制品 10工业用甲醛海参、鱿鱼等干水产品、血豆腐SC/T 3025-2006 水产品中甲醛的测定11工业用火碱海参、鱿鱼等干水产品、生鲜乳无12一氧化碳金枪鱼、三文鱼无13硫化钠味精无14工业硫磺白砂糖、辣椒、蜜饯、银耳、龙眼、胡萝卜、姜等无15工业染料小米、玉米粉、熟肉制品等无16罂粟壳火锅底料及小吃类参照上海市食品药品检验所自建方法17革皮水解物乳与乳制品含乳饮料乳与乳制品中动物水解蛋白鉴定-L(-)-羟脯氨酸含量测定(检测方法由中国检验检疫科学院食品安全所提供。该方法仅适应于生鲜乳、纯牛奶、奶粉联系方式: Wkzhong@21cn.com)18溴酸钾小麦粉GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法19β-内酰胺酶(金玉兰酶制剂)乳与乳制品液相色谱法(检测方法由中国检验检疫科学院食品安全所提供。联系方式: Wkzhong@21cn.com)20富马酸二甲酯糕点气相色谱法(检测方法由中国疾病预防控制中心营养与食品安全所提供21废弃食用油脂食用油脂无22工业用矿物油陈化大米无23工业明胶冰淇淋、肉皮冻等无24工业酒精勾兑假酒无25敌敌畏火腿、鱼干、咸鱼等制品GB T5009.20-2003食品中有机磷农药残留的测定26毛发水酱油等无27工业用乙酸勾兑食醋GB/T5009.41-2003食醋卫生标准的分析方法28肾上腺素受体激动剂类药物(盐酸克伦特罗,莱克多巴胺等)猪肉、牛羊肉及肝脏等 GB-T22286-2008 动物源性食品中多种β-受体激动剂残留量的测定,液相色谱串联质谱法29硝基呋喃类药物猪肉、禽肉、动物性水产品GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检测方法,高效液相色谱-串联质谱法30玉米赤霉醇牛羊肉及肝脏、牛奶GB/T 21982-2008 动物源食品中玉米赤霉醇、β-玉米赤霉醇、α-玉米赤霉烯醇、β-玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法,液相色谱-质谱/质谱法31抗生素残渣猪肉无,需要研制动物性食品中测定万古霉素的液相色谱-串联质谱法32镇静剂猪肉参考GB/T 20763-2006 猪肾和肌肉组织中乙酰丙嗪、氯丙嗪、氟哌啶醇、丙酰二甲氨基丙吩噻嗪、甲苯噻嗪、阿扎哌垄阿扎哌醇、咔唑心安残留量的测定,液相色谱-串联质谱法无,需要研制动物性食品中测定安定的液相色谱-串联质谱法33荧光增白物质双孢蘑菇、金针菇、白灵菇、面粉蘑菇样品可通过照射进行定性检测面粉样品无检测方法 34工业氯化镁木耳无35磷化铝木耳无36馅料原料漂白剂焙烤食品无,需要研制馅料原料中二氧化硫脲的测定方法37酸性橙Ⅱ黄鱼、鲍汁、腌卤肉制品、红壳瓜子、辣椒面和豆瓣酱无,需要研制食品中酸性橙II的测定方法。参照江苏省疾控创建的鲍汁中酸性橙II的高效液相色谱-串联质谱法(说明:水洗方法可作为补充,如果脱色,可怀疑是违法添加了色素)38氯霉素生食水产品、肉制品、猪肠衣、蜂蜜GB/T 22338-2008 动物源性食品中氯霉素类药物残留量测定 39喹诺酮类麻辣烫类食品无,需要研制麻辣烫类食品中喹诺酮类抗生素的测定方法40水玻璃面制品无41孔雀石绿鱼类GB20361-2006水产品中孔雀石绿和结晶紫残留量的测定,高效液相色谱荧光检测法(建议研制水产品中孔雀石绿和结晶紫残留量测定的液相色谱-串联质谱法)42乌洛托品腐竹、米线等无,需要研制食品中六亚甲基四胺的测定方法43五氯酚钠河蟹SC/T 3030-2006水产品中五氯苯酚及其钠盐残留量的测定 气相色谱法44喹乙醇水产养殖饲料水产品中喹乙醇代谢物残留量的测定 高效液相色谱法(农业部1077号公告-5-2008);水产品中喹乙醇残留量的测定 液相色谱法(SC/T 3019-2004)45碱性黄大黄鱼无46磺胺二甲嘧啶叉烧肉类GB20759-2006畜禽肉中十六种磺胺类药物残留量的测定 液相色谱-串联质谱法47敌百虫腌制食品GB/T5009.20-2003食品中有机磷农药残留量的测定  表二 食品中可能滥用的食品添加剂品种名单序号食品品种可能易滥用的添加剂品种检测方法1渍菜(泡菜等)、葡萄酒着色剂(胭脂红、柠檬黄、诱惑红、日落黄)等GB/T 5009.35-2003食品中合成着色剂的测定GB/T 5009.141-2003 食品中诱惑红的测定2水果冻、蛋白冻类着色剂、防腐剂、酸度调节剂(己二酸等)3腌菜着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等) 4面点、月饼乳化剂(蔗糖脂肪酸酯等、乙酰化单甘脂肪酸酯等)、防腐剂、着色剂、甜味剂 5面条、饺子皮面粉处理剂 6糕点膨松剂(硫酸铝钾、硫酸铝铵等)、水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)、甜味剂(糖精钠、甜蜜素等)GB/T 5009.182-2003 面制食品中铝的测定7馒头漂白剂(硫磺) 8油条膨松剂(硫酸铝钾、硫酸铝铵) 9肉制品和卤制熟食、腌肉料和嫩肉粉类产品护色剂(硝酸盐、亚硝酸盐)GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定10小麦粉二氧化钛、硫酸铝钾 11小麦粉滑石粉GB 21913-2008 食品中滑石粉的测定12臭豆腐硫酸亚铁 13乳制品(除干酪外)山梨酸GB/T21703-2008《乳与乳制品中苯甲酸和山梨酸的测定方法》14乳制品(除干酪外)纳他霉素参照GB/T 21915-2008《食品中纳他霉素的测定方法》15蔬菜干制品硫酸铜无16“酒类”(配制酒除外)甜蜜素 17“酒类”安塞蜜 18面制品和膨化食品硫酸铝钾、硫酸铝铵 19鲜瘦肉胭脂红GB/T 5009.35-2003食品中合成着色剂的测定20大黄鱼、小黄鱼柠檬黄GB/T 5009.35-2003食品中合成着色剂的测定21陈粮、米粉等焦亚硫酸钠GB5009.34-2003食品中亚硫酸盐的测定22烤鱼片、冷冻虾、烤虾、鱼干、鱿鱼丝、蟹肉、鱼糜等亚硫酸钠GB/T 5009.34-2003 食品中亚硫酸盐的测定  食品动物禁用的兽药及其它化合物清单序号兽药及其它化合物名称禁止用途禁用动物1β-兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂所有用途所有食品动物2性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂所有用途所有食品动物3具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol,Acetate及制剂所有用途所有食品动物4氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂所有用途所有食品动物5氨苯砜Dapsone及制剂所有用途所有食品动物6硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂所有用途所有食品动物7硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂所有用途所有食品动物8催眠、镇静类:安眠酮Methaqualone及制剂                   所有用途所有食品动物9林丹(丙体六六六)Lindane 杀虫剂所有食品动物10毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂所有食品动物11呋喃丹(克百威)Carbofuran 杀虫剂所有食品动物12杀虫脒(克死螨)Chlordimeform 杀虫剂所有食品动物13双甲脒Amitraz 杀虫剂水生食品动物14酒石酸锑钾Antimonypotassiumtartrate 杀虫剂所有食品动物15锥虫胂胺Tryparsamide 杀虫剂所有食品动物16孔雀石绿Malachitegreen 抗菌、杀虫剂所有食品动物17五氯酚酸钠Pentachlorophenolsodium 杀螺剂所有食品动物18各种汞制剂包括:氯化亚汞(甘汞)Calomel,硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂所有食品动物19性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate、苯丙酸诺龙 NandrolonePhenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂促生长所有食品动物20催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定) Diazepam及其盐、酯及制剂、促生长所有食品动物21硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂、促生长所有食品动物
  • 《Nature》公布 2020 年十大科学发现:冷冻电镜达到原子分辨率,破解挑食之谜
    p style="text-align: justify text-indent: 2em "12 月 17 日,《自然》(Nature)杂志盘点了今年发表的科学新闻和研究观点,从中选出了十项最为重大的科学发现,既包括新冠病毒研究、压力如何导致白发、HIV 治疗等医学方面的研究,也有银河系快速射电暴等天文学发现,其中,科学家首次将冷冻电镜分辨率达到原子级别,并获得了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置。这对于未来生物学的研究意义重大。/pp style="text-align: justify text-indent: 2em "据悉《Nature》每年都会公布其认为的十大科学发现,其中不乏一些科学仪器上的重大突破。2020年span style="text-indent: 2em "这十大科学发现涉及 14 篇研究论文,其中 12 篇发表于《自然》杂志,另两篇发表于《科学》(Science)杂志。/span/pp style="text-align: justify text-indent: 2em "strong1、打破物质 - 反物质的镜像对称性/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/616dfc92-094a-4a8c-a85b-17f37a6a557e.jpg" title="1.jpg" alt="1.jpg"//pp style="text-indent: 0em text-align: center "在 T2K 实验中,位于日本神冈天文台的地下探测器探测到穿过地球 295 公里的中微子(或反中微子)/pp style="text-align: justify text-indent: 2em "日本 T2K 中微子合作组织的研究发表于 4 月 15 日的《自然》杂志,报告了轻子破坏粒子 - 反粒子镜像对称(也称为 CP 对称)的可能发现。轻子的 CP 破缺难以观测,却可以利用中微子进行搜索。中微子有三种 “味”,由它们所关联的带电轻子(电子、μ子或τ子)决定,并且可以在运动过程中从一种味转变为另一种味。如果 CP 对称守恒,μ中微子到电中微子转换的振荡概率将与反μ中微子到反电中微子转换的振荡概率相同。在 T2K 实验中,位于日本神冈天文台的地下探测器探测到穿过地球 295 公里的中微子(或反中微子)。实验测量了μ中微子到电中微子转换的振荡概率,结果在 95% 的置信水平上排除了 CP 守恒,这可能是宇宙中物质 - 反物质不对称性起源的最早标志。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 580,339-344(2020)。/pp style="text-align: justify text-indent: 2em "strong2、南极上空臭氧层的修复使高速气流停止漂移/strong/pp style="text-align: justify text-indent: 2em "20 世纪 80 年代中期,科学家在南极上空发现了春季大气臭氧层空洞,这揭示了人类制造的臭氧消耗物质(ODSs)对大气层的威胁。位于海拔 10 到 20 公里处的南极臭氧层空洞也影响了南半球大气环流,进而影响地表的气候。最明显的一个趋势是,夏季的高速气流开始向极地移动。高速气流是行星尺度的大气环流现象,地球上有数条环绕的高速气流带。1987 年的《蒙特利尔议定书》及其随后的修正案禁止了臭氧消耗物质的生产和使用。因此,大气中臭氧消耗物质浓度正在下降,臭氧层已经出现初步的恢复迹象。Banerjee 等人的研究指出,自臭氧层开始恢复以来,空洞相关的环流效应已经停止。以前曾有人注意到这种环流效应停止的趋势,但 Banerjee 等人首次正式将其归因于《蒙特利尔议定书》的影响。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 579,544-548(2020)。/pp style="text-align: justify text-indent: 2em "strong3、史前爱尔兰贵族墓葬遗址/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/57593d22-37f8-49cc-a8b3-0f28ce8a3e0c.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em text-align: center "纽格莱奇墓(Newgrange)是爱尔兰最著名的石隧墓,也是该国最著名的史前墓地之一,由复杂的工程技术建造而成/pp style="text-align: justify text-indent: 2em "爱尔兰都柏林三一学院的 Cassidy 等人研究了农耕社会的社会结构,重点研究了被埋葬在石隧墓(欧洲的一种通道式巨石墓葬建筑)中的古代贵族。纽格莱奇墓(Newgrange)是爱尔兰最著名的石隧墓,也是该国最著名的史前墓地之一,由复杂的工程技术建造而成,墓室在一条很长的石砌通道的尽头。在陵墓入口上方有一个像窗一样的开口,在一年中白天最短的那天(冬至),这个开口可以让阳光照进墓室。研究人员对墓中发现的古代人类遗骸进行了 DNA 分析,揭示了一场罕见且出人意料的事件。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 582,384–388 (2020)。/pp style="text-align: justify text-indent: 2em "strong4、卫星图像绘制地球树木地图/strong/pp style="text-align: justify text-indent: 2em "Brandt 等人的论文报道了他们对覆盖西非西撒哈拉和萨赫勒地区超过 130 多万平方公里的高分辨率卫星图像的分析结果,他们绘制了大约 18 亿棵树木的位置和大小。在此之前,科学家还从未在如此大的区域内绘制出如此精细的树木地图。商业卫星已经开始收集数据,能够捕捉到大小在 1 平方米或以下的地面物体。陆地遥感领域因此即将迎来根本性的飞跃:从侧重于综合景观尺度的测量,到有可能在大范围或全球尺度上绘制每棵树的位置和树冠大小。这一进展无疑也将根本性地改变我们思考、监测、模拟和管理全球陆地生态系统的方式。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 587,78–82 (2020)。/pp style="text-align: justify text-indent: 2em "strong5、杀死潜伏的 HIV 病毒/strong/pp style="text-align: justify text-indent: 2em "导致艾滋病的 HIV 病毒可以长期 “潜伏”在宿主细胞中,几乎不进行转录,因此不会被免疫系统发现。在《自然》杂志 1 月同期发表的两项研究中,报道了被称为 “激活并杀死”(Shock and kill)的治疗策略,旨在扭转这种潜伏期,通过增加病毒基因的表达(激活),使被感染细胞更容易被免疫系统消灭(杀死)。两组研究人员都描述了在动物模型中的干预措施,这可能是迄今为止报道的最有效的激活手段,而且是可重复的。Nixon 及其同事使用了一种名为 AZD5582 的药物,用于激活转录因子 NF-κB——HIV-1 基因表达的主要刺激因子。McBrien 等人则将两种免疫干预措施结合起来,先通过抗体疗法耗竭 CD8+ T 细胞(降低病毒转录水平的免疫细胞),再进行 N-803 药物治疗,该药物可激活 HIV-1 的转录。除了这些进展,这两项研究还展示了用药物逆转病毒潜伏相关的概念和技术挑战。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 578,154-159 (2020); Nature 578,160–165 (2020)。/pp style="text-align: justify text-indent: 2em "strong6、基因编辑破解挑食之谜/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9a948422-5a68-488a-accf-f56686806425.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center text-indent: 0em "一种学名为 Drosophila sechellia 的果蝇只以有毒的诺丽果柑(Morinda citrifolia)为食,是什么让这个物种如此挑食?/pp style="text-align: justify text-indent: 2em "一种学名为 Drosophila sechellia 的果蝇只以有毒的诺丽果柑(Morinda citrifolia)为食。与其他喜欢各种水果的果蝇相比,是什么让这个物种如此挑食?Auer 等人利用基因组编辑工具 CRISPR-Cas9 破解了这个谜题。他们发现,相比其他果蝇,D。sechellia 体内表达气味受体 22a 蛋白(Or22a)的感觉神经元格外丰富,而 Or22a 氨基酸序列的微小变化正是果蝇 D。sechellia 偏爱诺丽果的关键原因。他们还发现了其他几种可能导致这种简单行为转变的演化改变。即使是喜欢臭水果的小小果蝇,也能有力地揭示大脑如何演化出复杂的行为。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 579,402-408(2020)。/pp style="text-align: justify text-indent: 2em "strong7、银河系中的快速射电暴/strong/pp style="text-align: justify text-indent: 2em "发表在 11 月《自然》杂志上的三篇论文报道了对一个快速射电暴(FRB)现象的探测,显示其来源位于银河系内。有趣的是,快速射电暴伴随着 X 射线的爆发。这一发现是通过综合了多台太空望远镜和地面望远镜的观测结果得出的。顾名思义,“快速射电暴”是指一种瞬态的无线电波明亮脉冲,爆发持续时间约为毫秒级。研究者于 2007 年首次发现了这一现象,由于存在时间很短,使得探测它们并确定其在天空中的位置变得异常困难。这是第一个被探测到具有除无线电波外辐射的快速射电暴,也是该现象在银河系内的首次发现。这三项观测也首次证实了磁星是快速射电暴的来源之一,这是目前唯一被观测验证的可产生快速射电暴的天体。值得一提的是,其中一篇论文来自中国的研究团队,第一作者为北京师范大学的林琳博士,观测结果则是来自中国 “天眼”——500 米口径球面射电望远镜(FAST)。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 587,54–58 (2020); Nature 587,59–62 (2020); Nature 587,63–65 (2020)。/pp style="text-align: justify text-indent: 2em "strong8、冷冻电镜达到原子分辨率/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/f07a8b58-30c2-4331-afbb-cc59a021f45d.jpg" title="5.jpg" alt="5.jpg"//pp style="text-indent: 0em text-align: center "Yip 等人和 Nakane 等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置/pp style="text-align: justify text-indent: 2em "结构生物学的一个基本原理是,一旦研究人员能够以足够的分辨率直接观察到大分子,就有可能理解其三维结构与生物功能之间的联系。在今年 10 月《自然》杂志同期发表的两项研究中,Yip 等人和 Nakane 等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置。两个小组使用的硬件都经过改良,突破了以往 cryo-EM 成像在分辨率上的限制。随着这些技术的发展,cryo-EM 图像信噪比的提高将扩展冷冻电镜技术的适用性。也许这些技术的融合将使 cryo-EM 的结构测定达到甚至超越 1 埃(0.1 纳米)的分辨率——这在过去几乎是不可能实现的成就。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 587,157–161 (2020); Nature 587,152–156 (2020)。/pp style="text-align: justify text-indent: 2em "strong9、干扰素缺乏可导致新冠重症/strong/pp style="text-align: justify text-indent: 2em "在 9 月在线发表于《科学》的两篇论文中,Zhang 等人和 Bastard 等人阐明了影响感染新冠病毒后是否发展为重症的一个关键因素——干扰素尤其是 I 型干扰素(IFN-I)的缺乏。这种缺乏可能由不同原因导致,比如编码关键抗病毒信号分子的基因发生遗传突变,或由于抗体与 I 型干扰素结合并使其 “中和”。I 型干扰素缺乏如何导致危及生命的重症 COVID-19?最直接的解释是这种缺乏导致病毒不受控制地复制和传播。另一方面,I 型干扰素缺乏也可能对免疫系统功能有其他影响。IFN-I 诱导通路基因突变的个体将从提供干扰素的治疗中受益。此外,那些对 IFN-α和 IFN-ω具有中和性抗体的人也可能受益于治疗中提供的其他类型的干扰素,如 IFN-β和 IFN-λ。/pp style="text-align: justify text-indent: 2em "原始论文:Science 370,eabd4570 (2020); Science 370,eabd4585 (2020)。/pp style="text-align: justify text-indent: 2em "strong10、压力为何会使头发变白?/strong/pp style="text-align: justify text-indent: 2em "这是《自然》杂志 “新闻与观点”栏目在 2020 年读者浏览最多的一项研究报道。目前对压力对头发变白的相对作用尚不完全清楚。头发的颜色由黑素细胞决定,这些细胞来自于毛囊凸起部分的黑色素干细胞(MeSCs)。这篇发表于 1 月《自然》杂志的论文是哈佛大学许雅捷团队的成果,第一作者是张兵博士。研究报告称,在压力引起的 “战斗或逃跑”反应中,交感神经系统的神经元会释放出神经递质分子去甲肾上腺素;在极端应激或高水平去甲肾上腺素暴露下,黑色素干细胞的增殖分化显著增加,导致黑色素细胞大量迁移,远离毛囊隆突区,但由于没有替代的干细胞,便导致头发变白。这项研究将有助于了解压力如何影响其他的干细胞,也为寻找阻止和逆转压力的方法提供了线索。/pp style="text-align: justify text-indent: 2em "原始论文:Nature 577,676-681(2020)。/pp style="text-align: justify text-indent: 2em "br//p
  • 从活脑中提取神经递质- HPLC-MS / MS方法
    p style="text-align: justify text-indent: 2em "神经递质,大脑中在突触传递中担当“信使”的特定化学物质,称作神经递质,简称递质。图1、图2为其示意图。随着神经生物学的发展,陆续在神经系统中发现了大量神经活性物质。在中枢神经系统(CNS)中,突触传递最重要的方式是神经化学传递。神经递质由突触前膜释放后立即与相应的突触后膜受体结合,产生突触去极化电位或超极化电位,导致突触后神经兴奋性升高或降低。神经递质组成复杂,包括多种生化物质。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/fbdc9fad-1519-44e3-a655-6b3885113b87.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center text-indent: 2em "图1 神经递质示意图/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/0c74c60c-889b-43a7-9e53-78cd8567cd74.jpg" title="图片 2.png" alt="图片 2.png"//pp style="text-align: center text-indent: 2em "图2 大脑中的“神经递质”,span style="text-align: justify text-indent: 2em "黑质就被称为“神经递质”/span/pp style="text-align: justify text-indent: 2em "要对神经递质进行分析,必须首先从活脑中提取神经递质,然后用HPLC-MS / MS进行分析,这实在有点匪夷所思,令人难以置信。然而,加拿大滑铁卢大学雅努什· 波利西恩(Janusz Pawliszyn)领导的团队成功了。/pp style="text-align: justify text-indent: 2em "从活脑中提取神经递质,本质上是侵入性的。但是,他们通过利用固相微萃取(SPME)技术,已设法使其成为非侵入性的。他们的方法是将涂有某种形式的吸收性SPME材料的细不锈钢丝插入活体的大脑中。由于钢丝较细,对大脑造成的干扰较小,雅努什的团队使用150μm粗的不锈钢丝。他们首先用酸蚀刻了不锈钢丝的下端部分,直到它只有100μm粗。然后,他们将SPME涂在蚀刻部分,将其直径又增加至150μm。最后,又在涂层部分再添加了50μm厚的覆盖层。/pp style="text-align: justify text-indent: 2em "该团队在特制的神经递质混合物(包括去甲肾上腺素,乙酰胆碱和5-羟色胺)上测试了各种不同的市售聚合物SPME材料,但没有一种被证明是理想的。问题在于性能最好的SPME材料是以相对较大的颗粒形式出现的,尺寸可达60μm,需要将其研磨成细粉末涂在钢丝上。但这种研磨导致材料失去了一些官能团,使其在吸收神经递质方面的效率降低。/pp style="text-align: justify text-indent: 2em "所以波利西恩和他的团队选择使用来自沃特世的一种名为HLB(亲水 - 亲脂平衡)的SPME材料,这种材料在吸收神经递质方面不如其他一些材料有效,但其颗粒直径却只有5μm,可直接应用于钢丝。然后,他们在颗粒表面添加了强阳离子交换(SCX)基团,提高了材料对神经递质的有效性。在吸收神经递质混合物方面时,HLB-SCX材料被证明优于任何其他测试的SPME材料。/pp style="text-align: justify text-indent: 2em "SPME材料确定后,他们用提取的脑组织和琼脂凝胶的混合物制成了人造大脑材料,以方便研究。在人造大脑材料中,加入了另一种神经递质混合物。他们发现,将HLB-SCX涂层的钢丝插入人造大脑,20min后,足以使HLB-SCX材料吸收令人满意的神经递质。将HLB-SCX涂层的钢丝取出,浸泡在水、乙腈和甲醇的混合物中,释放神经递质,然后以高效液相色谱 - 串联质谱(HPLC-MS / MS)仪进行分析。/pp style="text-align: justify text-indent: 2em "实验表明HLB-SCX材料可以从脑材料中提取几种加标的神经递质,包括去甲肾上腺素、乙酰胆碱和5-羟色胺,用于通过HPLC-MS / MS在低于生理水平进行鉴定。然而,其他神经递质,包括牛磺酸,谷氨酸和γ-氨基丁酸,只能在高于正常生理水平的浓度下检测到。/pp style="text-align: justify text-indent: 2em "最后,他们在活恒河猴猕猴的大脑上测试了他们的SPME方法。这包括在三个不同的场合同时将HLB-SCX涂层的钢丝插入猴脑的三个不同区域。当科学家用HPLC-MS / MS分析提取的物质时,能够检测到多种不同的神经递质,包括多巴胺、谷氨酸和色氨酸。他们用人工脑材料进行测试,甚至能够检测到牛磺酸,这是用生理检测方法检测不到的。他们还测量了大脑不同区域的不同浓度的神经递质,其中,在某区域发现的神经递质,在其它区域可能根本没有发现,即使在同一区域内,场合不同其神经递质也不同。/pp style="text-align: justify text-indent: 2em "在此成功之后,波利西恩及其团队正在计划使用他们的SPME方法对活恒河猴猕猴大脑中神经递质的分布进行详细研究。他们还在考虑进一步提高方法提取效率的方法,以便它可以解释可能存在的所有神经递质。/pp style="text-align: right text-indent: 2em "(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)/pp style="text-align: justify text-indent: 2em "根据Brain extraction: A novel method for extracting neurotransmitters from live brains编写/pp style="text-align: justify text-indent: 2em "Published: Apr 15, 2019/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "Author: Jon Evans/span/pp style="text-indent: 2em "SeparationsNOW.com sample Preparation Newsletter/pp style="text-align: justify text-indent: 2em "br//ppbr//p
  • 案例解读 | 子宫液代谢组分析,开发卵巢癌早期诊断新方法
    01研究背景生命的代谢是一个永不停息的过程。任何疾病的发生和发展都会影响人体代谢,进而导致体液中代谢物质发生显著变化。分析代谢物对机体的影响以及寻找疾病的生物标志物是疾病研究中的重要研究方向。然而,代谢物的分子量一般都非常小,只有几百道尔顿。在进行研究代谢物和目标蛋白的互作时,常常由于代谢物分子量太小,无法获得信噪比高的结果。下面的案例为大家带来2023年北京大学第三医院郭红艳/李默团队发表在《Cell Heliyon》文章,他们使用MST技术成功检测了靶标蛋白和代谢物的互作,以及代谢物与疾病关系。02案例解读doi.org/10.1016/j.xcrm.2023.101061IF: 14.3 Q1 研究内容由于早期诊断的生物标志物无效,卵巢癌(OC)在女性群体中死亡率高,因此迫切需要探索准确和实用的策略来早期发现OC。作者以子宫液为研究材料,对96名妇科患者的子宫液进行代谢组学分析。建立7种代谢物标记panel,用于检测早期OC。同时发现过量的4-羟雌二醇(4-OHE2)影响机体正常代谢,并且促进肿瘤发生。结果作者研究发现,在大多数OC细胞中,去甲肾上腺素(NE)和4-羟雌二醇(4-OHE2)升高,考虑到儿茶酚-O-甲基转移酶(COMT)代谢NE和4-OHE2的双重作用,作者假设OC细胞中的4-OHE2可能与NE竞争。为了验证这种猜想,需要检测COMT对对4-OHE2和NE的相互作用。4-OHE2和NE的分子量分别仅有288D和169D,常规基于分子量变化的亲和力检测方法很难获得信噪比高得结果。MST不依赖分子量的变化,即使小至离子也可获得准确Kd。文中作用使用MST检测到4-OHE2对COMT的结合亲和力比NE对COMT的结合亲和力更强,见下图。结合细胞水平实验确定过量4-OHE2拮抗COMT对NE的分解代谢。此外,暴露于4-OHE2可诱导细胞DNA损伤和基因组不稳定,从而导致肿瘤发生。图注:MST检测COMT与NE和4-OHE2亲和力该研究不仅揭示了不同类型妇科疾病患者的子宫液代谢物特征,还为卵巢癌患者提供了一个无创的早诊早治新策略。03产品技术优势MST进行亲和力检测不依赖于分子量,因此,即使分子量非常小的代谢物也可以轻松完成互作检测。此外,MST对互作buffer不做要求,即使代谢物为酸性/碱性/粘稠等不同性质,亲和力检测的结果也不受影响。Monolith分子互作检测仪
  • 全国生命分析化学研讨会:生命分析基础理论
    仪器信息网讯 2010年8月20-22日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。  大会同期举办了“生命分析基础理论”系列报告会,300余人参加了此会。会议由厦门大学江云宝教授、中国科学院长春应用化学研究所张柏林研究员、南京大学徐静娟教授和苏州大学屠一锋教授共同主持,16位来自科研院所和高校的专家学者做了精彩的报告,部分报告内容摘录如下。  湖南大学 杨荣华教授  几种提高核酸探针检测灵敏度的新方法  杨荣华教授课题组围绕核酸探针设计和传感机制做了一系列工作,发展了几种提高核酸探针检测灵敏度的新方法:(1)设计可控核酸二级结构,改变分子内信号报告基因之间距离,降低背景信号;(2)利用金纳米颗粒、碳纳米管等纳米材料的强荧光猝灭能力,基于纳米材料/单链DNA自组装原理设计单标记荧光传感平台,降低背景信号;(3)分离分子识别单元与信号转换单元,设计免标记核酸探针、利用滚环放大原理放大检测信号。  大连理工大学 袁景利教授  一种NO测定用新型铕配合物荧光探针的设计、合成与应用  以稀土配合物为荧光标记探针的高灵敏度时间分辨荧光生化分析技术已经在临床检测与生命科学领域得到了广泛的应用,但现有的生物标记用稀土配合物数量十分有限,极大的限制了时间分辨荧光生化分析技术的发展。袁景利教授在报告中介绍了他们课题组设计、合成的一种NO测定用新型铕配合物荧光探针,并探讨了其在生物标记及时间分辨荧光生物成像测定中的应用。  北京化工大学 杨屹教授  微波辅助合成在功能性毛细管制备中的应用  杨屹教授首先介绍了微波在化学中的作用,然后着重介绍了微波在开管毛细管柱制备和酶微反应器制备中的应用。她的课题组通过研究发现:微波辅助下,树枝状大分子的引入可扩大柱容量,并具有较好的生物相容性 微波辅助合成大大缩短了毛细管和毛细管酶微反应器的制备时间,有望应用于其他类型的毛细管内壁修饰或者整柱制备中。  湖南师范大学 谢青季教授  酶催化聚合法用于酶固定和生物传感的研究  谢青季教授介绍了他们课题组将酶催化聚合法用于酶固定和生物传感的研究:通过漆酶(Lac)催化聚合法,制备了儿茶酚胺类神经递质聚合物-酶-多壁碳纳米管复合酶膜,研制了安培酶生物传感器和生物燃料电池 采用紫外光谱、循环伏安法(CV),石英晶体微天平等手段,考察了Lac对多巴胺(DA)、肾上腺素(EP)和去甲肾上腺素(NA)的催化氧化和聚合,发现中性水溶液中三者的聚合速率满足DANAEP。  同济大学 田阳教授  高选择性的细胞信号分子电化学分析  田阳教授的课题组围绕细胞的分子识别分析这一基础问题,进行了层层深入的探索和研究:首先,研究了蛋白质在纳米界面上电子传递的行为,通过纳米界面调控蛋白质电化学电位,提高了细胞信号分子电化学分析的选择性;其次,为了进一步提高其灵敏度,把等离子共振效应产生的电荷分离机理与蛋白质电化学和电化学分析相结合,在提高选择性的同时,提高了电化学分析的灵敏度;再者,为了提高传感器的稳定性和再现性,对仿生酶进行了功能化的设计、合成与表面组装;最后,在前述研究基础上,结合光电化学的微阵列技术,实现了细胞的阵列式培养、增殖与高选择性电化学分析的一体化。  中国科学院烟台海岸带研究所 秦伟研究员  聚合物膜离子选择性电极生物传感新方法  秦伟研究员课题组以酶、核酸适体、仿生分子印迹聚合物等作为分子识别材料,开展了电位型生物传感器的研究,主要内容如下:以可卡因、有机磷农药的靶标酶-胆碱酶为模型,基于电极膜相流向样品溶液相的离子通道,构建了丁酰胆碱聚合物离子选择电极;将聚合物膜离子选择性电极的电位信号传导和核酸适体的分子识别相结合,发展了一种免标记的电位型传感器;发展了一种通用的基于聚合物膜离子选择性电极技术检测电中性有机分子的新方法,拓宽了离子选择电极的应用范围。  中国科学院长春应用化学研究所 于聪研究员  核酸诱导的小分子探针的集聚及自组装  于聪研究员的课题组探索了核酸检测的新方法:利用核酸分子诱导的探针分子的聚集、自组装,和由此引发的探针分子的各种特性的改变,及相对应的分析手段的响应信号的改变,来检测核酸的存在;研究核酸分子间的相互作用,例如含多个鸟嘌呤核苷片段的单链DNA形成四连体结构;利用核酸适配体分子与被检测物之间的特异性相互作用检测蛋白质、小分子或金属离子等 并研究一些重要的生理过程,例如核酸酶活性的检测。  中南大学 王建秀教授  癌症抑制转录因子p53与DNA相互作用的研究  癌症抑制转录因子p53是一种隐性肿瘤抑制基因,p53蛋白质的突变水平与细胞的癌变程度有直接的关系,因此,检测p53蛋白质的突变水平对癌症的临床研究具有非常重要的意义。王建秀课题组采用电化学以及表面等离子体激元共振(SPR)技术研究了p53与DNA的相互作用过程,克服了传统的酶联免疫吸附分析操作步骤繁琐、且使用酶标抗体的缺陷。此外,采用荧光共振能量转移研究野生型p53蛋白质与一致性双链DNA的特异性相互作用,从而达到区分正常人细胞以及癌细胞的目的。  此外,在本次“生命分析理论基础”报告会上作报告的还有:(排名不分先后)姓名职称单位报告题目欧阳津教授北京师范大学基于量子点标记的蛋白质检测新方法王雪梅教授东南大学基于符合纳米界面的肿瘤细胞识别与检测马宏伟研究员中国科学院苏州纳米技术与纳米仿生研究所“零背景”免疫分析:基于抗蛋白质非特异性吸附的iPDMS的多指标蛋白质微阵列曹成喜教授上海交通大学基于移动反应界面的蛋白质组学研究关键聚焦分离技术的研究进展罗红霞副教授中国人民大学腺嘌呤/纳米金刚石修饰电极对NADH的传感作用王振新研究员中国科学院长春应用化学研究所基于凝集素修饰金纳米粒子的比色法研究抗生素与活细胞的相互作用聂周副教授湖南大学新型无标记功能酶分析方法张鹏博士贝克曼库尔特公司市场部无鞘液式毛细管电泳-质谱联用(HSPS CE-MS)技术
  • 农业部公告禁用兽药目录汇总
    p style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "食品动物禁用的兽药/span/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "1、禁用于所有食品动物的兽药(11类)/span/pp style="line-height: 1.75em "  (1)兴奋剂类:克仑特罗、沙丁胺醇、西马特罗及其盐、酯及制剂;/pp style="line-height: 1.75em "  (2)性激素类:己烯雌酚及其盐、酯及制剂;/pp style="line-height: 1.75em "  (3)具有雌激素样作用的物质:玉米赤霉醇、去甲雄三烯醇酮、醋酸甲孕酮及制剂;/pp style="line-height: 1.75em "  (4)氯霉素及其盐、酯(包括:琥珀氯霉素)及制剂;/pp style="line-height: 1.75em "  (5)氨苯砜及制剂;/pp style="line-height: 1.75em "  (6)硝基呋喃类:呋喃西林和呋喃妥因及其盐、酯及制剂;呋喃唑酮、呋喃它酮、呋喃苯烯酸钠及制剂;/pp style="line-height: 1.75em "  (7)硝基化合物:硝基酚钠、硝呋烯腙及制剂;/pp style="line-height: 1.75em "  (8)催眠、镇静类:安眠酮及制剂;/pp style="line-height: 1.75em "  (9)硝基咪唑类:替硝唑及其盐、酯及制剂;/pp style="line-height: 1.75em "  (10)喹噁啉类:卡巴氧及其盐、酯及制剂;/pp style="line-height: 1.75em "  (11)抗生素类:万古霉素及其盐、酯及制剂。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "2、禁用于所有食品动物、用作杀虫剂、清塘剂、抗菌或杀螺剂的兽药(9类)/span/pp style="line-height: 1.75em "  (1)林丹(丙体六六六);/pp style="line-height: 1.75em "  (2)毒杀芬(氯化烯);/pp style="line-height: 1.75em "  (3)呋喃丹(克百威);/pp style="line-height: 1.75em "  (4)杀虫脒(克死螨);/pp style="line-height: 1.75em "  (5)酒石酸锑钾;/pp style="line-height: 1.75em "  (6)锥虫胂胺;/pp style="line-height: 1.75em "  (7)孔雀石绿;/pp style="line-height: 1.75em "  (8)五氯酚酸钠;/pp style="line-height: 1.75em "  (9)各种汞制剂包括:氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "3、禁用于所有食品动物用作促生长的兽药(3类)/span/pp style="line-height: 1.75em "  (1)性激素类:甲基睾丸酮、丙酸睾酮、苯丙酸诺龙、苯甲酸雌二醇及其盐、酯及制剂;/pp style="line-height: 1.75em "  (2)催眠、镇静类:氯丙嗪、地西泮(安定)及其盐、酯及其制剂;/pp style="line-height: 1.75em "  (3)硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "4、禁用于水生食品动物用作杀虫剂的兽药(1类)/span/pp style="line-height: 1.75em "  双甲脒。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "其它违禁药物和非法添加物/span/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "禁止在饲料和动物饮用水中使用的药物品种(5类40种)/span/pp style="line-height: 1.75em "  1、肾上腺素受体激动剂/pp style="line-height: 1.75em "  盐酸克仑特罗、沙丁胺醇、硫酸沙丁胺醇、莱克多巴胺、盐酴多巴胺、西巴特罗、硫酸特布他林。/pp style="line-height: 1.75em "  2、性激素/pp style="line-height: 1.75em "  己烯雌酚、雌二醇、戊酸雌二醇、苯甲酸雌二醇、氯烯雌醚(Chlorotriansene)、炔诺醇、炔诺醚(Quinestml)、醋酸氯地孕酮、左炔诺孕酮、炔诺酮、绒毛膜促性腺激素(绒促性素)、促卵泡生长激素(尿促性素主要含卵泡刺激FSHT和黄体生成素LH)/pp style="line-height: 1.75em "  3、蛋白同化激素/pp style="line-height: 1.75em "  碘化酷蛋白、苯丙酸诺龙及苯丙酸诺龙注射液。/pp style="line-height: 1.75em "  4、精神药品/pp style="line-height: 1.75em "  (盐酸)氯丙嗪、盐酸异丙嗪、安定(地西泮)、苯巴比妥、苯巴比妥钠、巴比妥、异戊巴比妥、异戊巴比妥钠、利血平、艾司唑仑、甲丙氨脂、咪达唑仑、硝西泮、奥沙西泮、匹莫林、三唑仑、唑吡旦、其他国家管制的精神药品。/pp style="line-height: 1.75em "  5、各种抗生素滤渣/pp style="line-height: 1.75em "  该类物质是抗生素类产品生产过程中产生的工业三废,因含有微量抗生素成分,在饲料和饲养过程中使用后对动物有一定的促生长作用。但对养殖业的危害很大,一是容易引起耐药性,二是由于未做安全性试验,存在各种安全隐患。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "最新增添/span/pp style="line-height: 1.75em "  禁止在食品动物中使用洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "公告如下/span/pp style="line-height: 1.75em "  一、自本公告发布之日起,除已有产品批准文号有效期届满申请换发外,停止受理洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂的兽药产品批准文号的首次申请;已受理尚未核发的,不予核发。/pp style="line-height: 1.75em "  二、自2015年9月1日起,停止生产洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂,涉及的相关企业的兽药产品批准文号同时注销。之前生产的产品,在2015年12月31日前可以流通使用。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "相关公告/span/pp style="line-height: 1.75em "  1. 禁止在饲料和动物饮用水中使用的药物品种目录,农业部公告176号。/pp style="line-height: 1.75em "  2. 食品动物禁用的兽药及其它化合物清单,农业部公告193号。/pp style="line-height: 1.75em "  3. 禁止在饲料和动物饮水中使用的物质,农业部公告1519号。/pp style="line-height: 1.75em "  4. 农业部关于决定禁止在食品动物中使用洛美沙星等4种原料药的各种盐、脂及其各种制剂的公告(征求意见稿)/ppbr//p
  • Neuron | 李毓龙实验室开发新型GRAB荧光探针用于检测胞外ATP的时空动态变化
    三磷酸腺苷(ATP)、二磷酸腺苷(ADP)、腺苷(Adenosine,Ado)等嘌呤类分子细胞内外广泛存在。胞内的嘌呤类分子主要负责调控细胞能量代谢等过程;而胞外的嘌呤类分子则作为信号分子(被称为“嘌呤类递质”),通过作用在其相应受体调节呼吸调控、味觉感受、睡眠等生理活动;嘌呤类递质及其受体还参与调节癫痫、疼痛、炎症反应、脑外伤和缺血等病理状态。此外,嘌呤能信号失调还与抑郁、精神分裂症等精神类疾病密切相关。迄今,解密嘌呤能信号传递功能的一大技术瓶颈是缺乏灵敏、特异且非侵入性的工具,以高时空分辨率地报告嘌呤类递质的动态变化。 2021年12月22日,北京大学李毓龙实验室在Neuron杂志在线发表了题为A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo的研究论文,报道了新型基因编码的ATP探针GRABATP1.0的开发和在体外及活体动物的应用。李毓龙实验室自2018年以来,先后开发了针对乙酰胆碱、多巴胺、去甲肾上腺素、腺苷、五羟色胺、内源大麻素等神经递质或调质的荧光探针,此次发表的GRABATP1.0是其又一力作,进一步扩展了GRAB系列荧光探针家族。 在这一工作中,李毓龙实验室运用其先前设计的GRAB探针策略(GPCR Activation-Based sensor),基于人源ATP受体P2Y1和循环重排的绿色荧光蛋白cpEGFP开发了ATP探针GRABATP1.0(简称为ATP1.0)。在体外培养的HEK293T细胞、原代神经元及星形胶质细胞中,ATP1.0探针均表现出优异的细胞膜定位。神经元表达的ATP1.0对外源加入的ATP及ADP有~780%的信号响应、~80 nM的亲和力(EC50),及高度的分子特异性。此外,ATP1.0能够在亚秒级别响应胞外ATP浓度的变化。ATP1.0探针能否用来检测内源释放的ATP呢?作者从原代培养的海马细胞入手,发现ATP1.0能够检测到机械刺激及低渗透压刺激引发的ATP释放,药理学实验及突变型探针实验进一步验证了ATP1.0检测信号的特异性。有意思的是,在不给予额外刺激时,ATP1.0也能灵敏地记录到直径约为30微米的自发性ATP释放事件,表明ATP的释放具有化学分子特异和空间特异性。 ATP1.0探针能否在活体动物加以运用呢?过去的研究发现,当细胞受到损伤时,胞内毫摩尔级别的ATP被释放胞外,作为“危险信号”被周围的胶质细胞感受,从而激活小胶质细胞释放趋化因子等,产生免疫反应。胶质细胞上表达的嘌呤类受体在小胶质细胞激活、迁移及分泌信号因子过程中发挥重要作用。那么,在这一过程中,信号分子ATP的传播和小胶质细胞的迁移是如何动态并变化的?作者将ATP1.0探针表达在斑马鱼中,通过激光照射引发局部损伤时发现ATP的释放呈现“波状”传播;通过将绿色ATP1.0探针表达在红色荧光蛋白标记小胶质细胞的转基因斑马鱼中,能够直观地检测到随着ATP信号的传播小胶质细胞的迁移过程(图1上)。 图1:ATP1.0报告斑马鱼受到局部损伤时及小鼠发生免疫反应时大脑中的胞外ATP信号 当大脑处于疾病状态时,ATP的释放又会呈现什么样的变化?如上所述,嘌呤能信号在免疫中扮演着重要角色。为了检测免疫反应过程中大脑中ATP信号的变化,作者通过腹腔注射脂多糖(Lipopolysaccharide,LPS)的方式引发小鼠的系统性免疫反应,同时通过AAV病毒介导的方法将ATP1.0表达在小鼠的大脑皮层,并借助双光子成像记录ATP的信号。有意思的是,LPS注射后,小鼠大脑皮层呈现出强烈、但空间特异的ATP信号上升现象。除了开发高灵敏的ATP1.0探针外,作者还开发了反应动力学更快及亲和力更低的ATP探针ATP1.0-L。在神经元中表达的ATP1.0-L对胞外的ATP的亲和力(EC50)约为32 μM。当在原代培养的海马细胞及活体的斑马鱼中表达,ATP1.0-L均能检测到更加局部的ATP信号。 综上所述,在这项工作中作者开发了新型遗传编码的ATP荧光探针,实现了对胞外ATP的高时空分辨率的记录。在此之前,李毓龙课题组在2020年还开发了另外一种嘌呤类递质腺苷的GRAB荧光探针,并助力中国科学院脑科学与智能技术卓越创新中心徐敏团队在睡眠调控中的研究。相信一系列新型成像工具的开发,将助力科学家更加深入地研究嘌呤能信号传递在生理和病理条件下的功能和调控机理。
  • 英国发现69种感冒药 不治病反有致命危险
    据英国《星期日电讯报》3月1日报道,英国政府下属的药物安全管理机构日前发现,有69种常用的非处方类儿童感冒药和咳嗽药不仅不管用,而且还可能带来各种副作用甚至是致命危险。  该机构称,要警惕大多数感冒咳嗽药都含有的15种成分,正是这些成分带来了危险的副作用。我国药剂师指出,基本上我国出售的治疗感冒、咳嗽类的西药里面都含有这些成分。  MHRA援引报告称,有至少5名两岁以下儿童因过量服用此类感冒药而死亡,而且有超过100个出现有害反应的严重病例,在有些病例中,有儿童不得不因为药物反应而入院接受治疗。  MHRA称,要警惕大多数感冒咳嗽药都含有的15种成分,正是这些成分带来了危险的副作用。这些成分包括使鼻腔黏膜血管收缩的伪麻黄碱、麻黄素、去氧肾上腺素(新福林)、羟甲唑啉、塞洛唑啉;抗组胺剂——苯海拉明、氯苯那敏、异丙嗪、曲普利啶、抗敏安;抑制咳嗽的右美沙芬、福尔可定以及用于除痰的愈创甘油醚、吐根剂等。  目前,英国药店里出售的大多数感冒咳嗽药都含有这15种成分。MHRA收到的报告显示,服用含有这15种成分的药物后,已有几十人死亡,另有超过3000人出现“有害反应”。  在英国出现的儿童死亡案例中,主要是因为过量使用抗组织胺和麻黄素,前者会导致心律不齐、昏迷;后者会导致心跳加速和血压上升,有关成分常见于治疗伤风咳的药物。  ■专家说法  解放军第306医院药学部副主任药剂师刘刚指出,基本上我国出售的治疗感冒、咳嗽类的西药里面都含有上述15种成分,比如白加黑、新康泰克、感叹号等。  刘刚副主任提醒说,治疗感冒、咳嗽类的西药都主要是针对成人的,儿童用药要慎之又慎,而且尽量不用西药,在临床上使用中药类的更多些。家长若发现子女有伤风咳病征,可以用盐水、蜜糖纾缓病征。  针对感冒药的安全问题,搜狐健康第一时间采访了我国著名的药物不良反应专家、国家卫生部合理用药监测网专家、原海军总医院药剂科主任孙忠实教授。  孙忠实教授指出,在我国市场上销售的感冒药基本都含有上述的三类成分,但是目前还没有收到儿童因为服用感冒药死亡的严重不良反应报告,主要是一些心慌、恶心呕吐以及头疼等的不良反应。、  2岁以下的儿童不要服用止咳和抗感冒药物 易导致死亡  孙教授进一步指出,英国药物安全管理机构发布这个信息其实并不新鲜,其实早在2007年低,美国疾病控制与预防中心曾公布,在2004年和2005年,至少有1500名2岁以下儿童服药后出现惊厥及心血管、呼吸、神经系统副作用。美国食品和药品管理局(FDA)也报告说,从1969年到2006年,接到过54例患者因服用解充血剂而死亡的病例,还收到69例因服用抗组胺药死亡的病例,其中大部分为2岁以下的婴儿。  因此,FDA建议2岁以下的儿童不要服用止咳和抗感冒药物,6岁以下的儿童谨慎使用。同时,强生公司、诺华公司等制药商主动召回其在美国市场上出售的14种非处方药类儿童感冒药。英国的这些数据再一次证实了婴儿服用感冒药的危险,因为这些感冒药和镇咳药通常含用减充血剂、抗组胺剂、镇咳药等成分,2岁以下儿童服用,可能引发致命性并发症,在美国、加拿大、澳大利亚等国家都有这方面的死亡记录。  感冒药中三大类危险成分  对于感冒药中的危险成分,孙教授指出主要为三大类,第一类是减低充血类药物,主要是伪麻黄碱、麻黄碱、去氧肾上腺素(新福林)等,起到收缩血管,减轻鼻塞症状的作用,这类药物主要对心血管系统有影响,造成心悸、心律失常,甚至死亡。第二类是抗阻胺药,主要有苯海拉明等,起到抗过敏作用,减轻打喷嚏、流鼻涕等症状,这类药物严重情况也可以引起死亡。第三类药物是止咳类药物,包括左美沙芬等,也主要是对心脏有影响。  其实上面提到的三类药物,主要的作用就是缓解感冒症状,改善生活质量,并没有抗感冒病毒的作用。感冒本身也是一种自限性疾病,大概一周左右会自愈。因此,孙教授强调,感冒药千万不要长期服用,一般在感冒初期服用2-3天即可,平时要多注意喝水、休息、通风。而对于小儿感冒由于服用药物比不用药危险性更大,建议采取一些物理的方法,比如物理降温、冲洗鼻子、注意通风等方法,也完全可以起缓解症状的作用。  最后,孙忠实教授指出,对于儿童感冒药和止咳药的不良反应问题,国家食品药品监督管理局正在研究中,相信最终也会是禁用和慎用。
  • 2012年诺贝尔化学奖揭晓
    北京时间2012年10月10日下午5点45分,2012年诺贝尔化学奖揭晓,两位美国科学家罗伯特莱夫科维茨(Robert J. Lefkowitz)和布莱恩克比尔卡(Brian K. Kobilka)因“G蛋白偶联受体研究”获奖。二人将均分800万瑞典克朗奖金。  罗伯特莱夫科维茨  布莱恩克比尔卡  罗伯特莱夫科维茨(Robert J. Lefkowitz),美国公民。1943年出生于美国纽约。1966年从纽约哥伦比亚大学获得MD。美国霍华德休斯医学研究所研究人员,美国杜克大学医学中心医学教授、生物化学教授。  布莱恩克比尔卡(Brian K. Kobilka),美国公民。1955年出生于美国明尼苏达州Little Falls。1981年从耶鲁大学医学院获得MD。斯坦福大学医学院医学教授、分子与细胞生理学教授。(克比尔卡《科学》文章: G蛋白偶联受体“停靠站”结构被确定)(《自然》特写文章报道克比尔卡)  细胞表面的聪明受体  每个人的身体就是一个数十亿细胞相互作用的精确校准系统。每个细胞都含有微小的受体,可让细胞感知周围环境以适应新状态。罗伯特莱夫科维茨和布莱恩克比尔卡因为突破性地揭示G蛋白偶联受体这一重要受体家族的内在工作机制而获得2012年诺贝尔化学奖。  长期以来,细胞如何感知周围环境一直是一个未解之谜。科学家已经弄清像肾上腺素这样的激素所具有的强大效果:提高血压、让心跳加速。他们猜测,细胞表面可能存在某些激素受体。但在上个世纪大部分时期里,这些激素受体的实际成分及其工作原理却一直是未知数。  莱夫科维茨于1968年开始利用放射学来追踪细胞受体。他将碘同位素附着到各种激素上,借助放射学,成功找到数种受体,其中一种便是肾上腺素的受体:β-肾上腺素受体。他的研究小组将这种受体从细胞壁的隐蔽处抽出并对其工作原理有了初步认识。  研究团队在1980年代取得了下一步重要进展。新加入的克比尔卡开始挑战难题,意欲将编码β-肾上腺素受体的基因从浩瀚的人类基因组中分离出来。他的创造性方法帮助他实现了目标。当研究人员分析该基因时,他们发现该受体与眼中捕获光的受体相类似。他们认识到,存在着一整个家族看起来相似的受体,而且起作用的方式也一样。  今天这一家族被称作“G蛋白偶联受体”。大约一千个基因编码这类受体,适用于光、味道、气味、肾上腺素、组胺、多巴胺以及复合胺等。大约一半的药物通过G蛋白偶联受体起作用。  莱夫科维茨和克比尔卡的研究对于理解G蛋白偶联受体如何起作用至关重要。此外,在2011年,克比尔卡还取得了另一项突破:他和研究团队在一个精确的时刻——β-肾上腺素受体被激素激活并向细胞发送信号——获得了β-肾上腺素受体图像。这一图像是一个分子杰作,可谓几十年辛苦研究的成果。新闻专题:
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 食品中禁限用药物及环境污染物识别检测技术研究取得最新进展
    针对食品安全和北京市环境污染现状,北京市科委于2012年启动实施了&ldquo 食品中禁限用药物及环境污染物识别检测技术研究&rdquo 课题。目前,该课题在食品中禁限用药物识别检测技术研究和环境污染物识别检测技术研究等方面取得了新的进展。  通过研究,建立了肾上腺素受体激动剂、性激素、精神药品等60种药物的禁限用药物识别谱库,建立了动物肌肉、肝脏、肾脏等动物源性食品中肾上腺素受体激动剂、性激素、精神药品等多种禁限用药物同时定量检测方法,构建了食品中痕量多环芳烃、烷基酚、邻苯二甲酸酯多组分检测技术体系,覆盖了23种多环芳烃、3种烷基酚、17种邻苯二甲酸酯的食品污染物,涉及的食品种类包括烧烤肉制品、食用植物油、水产品三类重点食品。  本课题通过食品中禁限用药物和环境污染物识别检测技术的应用,能够提升重大食品安全突发事件应急处理能力与食品安全日常监管能力,完善首都食品安全风险监管体系,为政府科学决策、快速应对突发食品安全事件提供强有力的技术支持。
  • 临床检测中LC-MS/MS应用——访复旦大学附属中山医院检验科副主任郭玮
    p  临床检验由临床实验室将患者的血液、体液、分泌物、排泄物等标本进行定性或定量分析,为临床医学提供的一系列实验室检测工作和项目的结果,用于疾病的诊断。近几十年来,有关基础科学飞速发展,新的分析检测的方法和仪器不断涌现,大大推动了临床检验的发展,使临床检验在疾病的预防、诊断和治疗中发挥着越来越大的作用。上海中山医院临床检验在国内始终走在前沿,也是首批采用LC-MS/MS技术的国内医院之一。我们特别请到检验科郭玮老师来谈谈这项技术在临床检测中的应用和意义。/pp  我们此次就临床检测中的LC-MS/MS应用采访复旦大学附属中山医院检验科副主任郭玮。/pp style="text-align: center "img title="guowei.jpg" style="width: 296px height: 400px " src="http://img1.17img.cn/17img/images/201708/insimg/9b400c47-968c-44cf-8694-0612fb8a056c.jpg" height="400" hspace="0" border="0" vspace="0" width="296"//pp style="text-align: center "strong复旦大学附属中山医院检验科副主任 郭玮/strong/pp  span style="color: rgb(84, 141, 212) "strong面对检验医学领域新技术、新方法的迅猛发展,作为主流临床实验室的检验科面临哪些机遇和挑战?/strong/span/pp  strong郭玮:/strong随着高新技术的日新月异,新的检测方法和新的项目不断涌现,对我们检验科也提出了更高的要求同时也是巨大的发展机遇。包括质谱分析技术、聚合酶链扩增技术、基因测序等新技术平台与检测手段的出现使我们的检测方法发生了翻天地覆的变化,临床检验不再是简单的三大常规,更多高灵敏度和特异性的检测方法在临床上得以推广运用,甚至使我们能够在分子层面对疾病的本质进行认知,也催生了大量对疾病的分层诊断、预后评估及疗效判断更有价值的新项目。应对此类发展趋势,我们科室以国家重点临床检验专科为契机,相继引进了CellSearch循环肿瘤细胞检测系统、高效液相色谱串联质谱分析仪、基因测序仪、荧光原位杂交仪、高效毛细管电泳仪等先进检测系统,使我们检验科的检测结果与报告在临床诊疗工作中扮演了愈发重要的角色,能够为临床医生提供更全面,更有帮助的临床信息。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院为什么会考虑引进LC-MS/MS检测平台?该方法在临床上的推广应用到底有什么意义?/span/strong/pp  strong郭玮:/strongLC-MS/MS方法作为一种新兴的检测平台,已广泛应用于生物医学研究领域。随着技术的不断革新,LC-MS/MS逐渐转向临床实验室检测,为临床内分泌相关疾病诊疗监测提供更具可靠的检测结果。/pp  相比目前市场上广泛使用的商品化免疫学方法,这一方法具有多种目标分析物共检测、抗干扰能力强(嗜异性抗体、自身抗体、交叉反应)、高特异性和灵敏度等优点。参考国外的临床应用,随着质谱技术的发展和管理的完善,LC-MS/MS将会成为未来检测小分子激素的趋势。/pp  span style="color: rgb(84, 141, 212) "strongLC-MS技术相比之前传统检测方法有什么不同或改变?能否举例说明?/strong/span/pp  strong郭玮:/strong从技术上讲,LC-MS相比于传统免疫方法,更加准确可靠,特异性和灵敏度更高。质谱检测技术的检测灵敏度能够达到pg/mL的水平,传统方法受制于标准曲线检测限的原因远达不到该水平。同时质谱法是通过被检测物的荷质比进行精确定量的,与传统的免疫学检测方法相比,特异性更好,准确性更高。例如在进行一些激素水平检测时,由于该类物质在人体内浓度都相对较低,且结构相似的物质较多,传统免疫方法和HPLC方法的敏感性和特异性均无法达到检测要求。而相关激素检测在肾上腺肿瘤的鉴别诊断、前列腺癌患者的激素抑制治疗的效果评价、甲状腺肿瘤的根治治疗中的预后判断方面均具有重要价值。比如说临床上诊断嗜铬细胞瘤,传统方法检测的诊断指标包括血和尿儿茶酚胺(CA)、尿香草扁桃酸等,但均缺乏足够的敏感性和特异性,受多种物质及疾病状态的干扰。而近年来研究发现CA在嗜铬细胞内的儿茶酚-O-甲基转移酶的作用下生成变肾上腺素类物质(MNs),血浆MNs的半衰期较CA长,因此血浆游离MNs的诊断性能更加稳定且直接反应肿瘤细胞状态。血浆游离变肾上腺素类物质对嗜铬细胞瘤因其较高的特异性和敏感性,已成为嗜铬细胞瘤诊治导则中的推荐标志物。/pp  span style="color: rgb(84, 141, 212) "strong目前中山医院检验科使用LC-MS/MS方法主要有哪些方面的检测?他们分别具有怎样的临床应用价值?/strong/span/pp strong 郭玮:/strong目前,我们主要使用LC-MS/MS进行激素类物质的检测,包括血浆间甲肾上腺素类物质、甲氧酪胺、尿儿茶酚胺、17羟α孕酮、25羟基维生素D及治疗药物浓度等的相关检测。我们开展的间甲肾上腺素类激素(MNs)包括间甲肾上腺素(MN)和去甲变肾上腺素(NMN),已有临床研究表明多种内分泌代谢性疾病及精神类疾病都会表现出变肾上腺素类激素异常,如嗜铬细胞瘤、神经母细胞瘤、脑梗死、重症肌无力、进行性肌营养不良、心肌梗死、躁狂性精神病,帕金森病、癫痫等疾病等。北美神经内分泌肿瘤协会2010年就嗜铬细胞瘤,副神经细胞瘤,甲状腺髓样瘤在内的三类肿瘤的诊断和治疗发布导则指出,对于不同检测物质在不同样本中的诊断价值方面,血液中MN和NMN水平在所有组合中具有很好的敏感度和特异性。而维生素D是一种类固醇激素,维生素D家族中最重要的是维生素D2和维生素D3。研究表明,佝偻病、骨质疏松、肿瘤、心血管疾病、糖尿病、高血压等疾病都与维生素D缺乏有关。传统免疫学方法检测不能区分维生素D2和维生素D3,会影响结果准确性。当使用LC-MS/MS检测时,首先使用有机溶剂提取血液中的维生素D,之后使用LC-MS/MS系统对复杂的血样进行色谱分离,根据维生素D2和维生素D3不同的分子量进行特异性质谱检测,从而得到血液中维生素D的含量。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS应用于治疗药物检测,不同检测指标通常应用方法存在一定差异,如何保证在不同时间、不同仪器上的重现性?换句话说,如何保证检测质量?/span/strong/pp  strong郭玮:/strong我们有着严格的实验室管理流程,作为实验室自建项目(LDT),我们科室也制定了相应的LDT规范及质量保证体系。我们对LC-MS/MS的每一种新的方法都进行了相应的性能验证,包括回收率、技术验证等。很多方法都有对应的应用方法和标准品、试剂盒,不同时间、不同仪器上的重现性是有保证的。除此之外,我们也得到厂家工程师专业维护和技术支持,以保证良好运行的检测状态。/pp  span style="color: rgb(84, 141, 212) "strong您如何看待LC-MS/MS技术的今后发展前景,中山检验在这方面有何相应举措?/strong/span/pp  郭玮:LC-MS/MS的迅速发展已受到医药、制剂、科研等多个领域的广泛关注。内分泌领域涉及有关LC-MS/MS方法的文献每年增加超过100篇,随着研究数据的积累,相对于免疫学方法和GC-MS,LC-MS/MS优势显露无疑。目前国际上已经先后将许多激素及小分子的质谱检测方法定义为参考测量程序,并作为检测“金标准”应用于临床。我们科室内部近年来也快速建立起了一支基于质谱检测技术平台的高素质人才队伍,注重硬件与软件并进,转化先进的研究和技术成果,为临床提供更加灵敏、准确及可靠的检验信息,提高肾上腺肿瘤、乳腺癌、前列腺癌以及甲状腺肿瘤的诊疗水平。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院检验科率先在国内检验领域采用质谱等先进检验技术,请问有什么体会?/span/strong/pp  strong郭玮:/strong我们一直致力于推进包括质谱技术在内的一些新技术新方法在临床检测工作中的良性发展,将国际上最先进的临床检验技术与中国实际的临床需求相结合,满足临床对于各类内分泌激素、新生儿代谢性疾病、小分子物质等检测诊断的需求,使临床检验更好地支撑临床诊断与治疗,实现疾病的早期发现,早期诊断,以获得更好的治疗效果,节约医疗资源,真正使患者得到更优质的临床诊疗服务。/pp style="text-align: center"img style="width: 225px height: 300px " src="http://img1.17img.cn/17img/images/201708/insimg/2a376f39-b850-4328-945c-b9bfb58384d8.jpg" title="A1431680066png_small.jpg" height="300" hspace="0" border="0" vspace="0" width="225"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongLC-MS/MS技术在激素检测中的应用/strong/span/ppstrongspan style="color: rgb(84, 141, 212) "目前,中山医院开展的醛固酮检测项目主要针对哪些疾病的临床诊断?/span/strong/pp  strong郭玮:/strong醛固酮是由肾上腺皮质合成的一种甾体激素,作为肾素-血管紧张素系统的主要效应分子,它可以调节离子及水在肾脏的重吸收,对人体血容量和钠钾代谢有着重要影响。血浆醛固酮检测是诊断原发性醛固酮增多症(简称原醛症)的主要参考指标,对鉴别肾上腺皮质增生、肿瘤等相关疾病引起的继发性高血压具有重要价值。/pp  研究表明高血压人群中原醛症患病率大于 5%,这类患者接受常规降压药物治疗的效果往往不理想或难以持续,原醛症在难治性高血压人群中的患病率甚至可高达 17~23%,为他们鉴明病因并采取具有针对性的治疗,可以有效改善预后。美国内分泌协会近年在更新原醛症管理指南时,除建议扩大筛查人群外,不断强调血浆醛固酮/肾素比值在诊断中的地位,也指出了串联质谱技术应用对改进醛固酮检测标准化及准确性的重要价值。/pp  span style="color: rgb(84, 141, 212) "strong在引入 LC-MS 系统进行醛固酮检测之前,中山医院(或业界)主要采用哪种检测方法?在使用之前检验方法的过程中,遇到了哪些困难?/strong/span/pp  引入 LC-MS 系统进行检测之前,醛固酮的检测主要采用放射免疫法,这一方法也是以往认为用于甾体激素测定灵敏而有效的理想方法。但由于甾体激素代谢物在结构上具有很高的相似性,放射免疫法难以避免标本中结构类似物的干扰。/pp  美国内分泌协会的新版原醛症管理指南中也指出:「放射免疫法在检测实际浓度低于 200pmol/L 的血浆醛固酮样本时,结果易产生 50%~100% 不等的高估,主要源自其可溶性代谢产物所引起的交叉反应」。在开展放射免疫法醛固酮检测的过程中,我们也确实遇到过临床表现与检测结果不符的个例,其中可能受到交叉反应的影响。/pp span style="color: rgb(84, 141, 212) "strong LC-MS 系统在醛固酮检测方面具有哪些传统方法所不具有的优势?LC-MS 系统又是如何解决传统醛固酮检测方法所面临的挑战?/strong/span/pp  strong郭玮:/strong中山医院采用的 LC-MS/MS 方法,采用高效液相色谱将待测样本准确分离,再通过串联四极杆质谱进行多反应监测扫描,根据醛固酮特有的离子对对物质含量进行准确的定量,有效提高了检测的灵敏度和特异性,同时准确性显著提升,解决了放射免疫法中无法避免的抗体交叉反应的问题。/pp  并且,应用 LC-MS/MS 技术还可以同时检测多种物质,克服了传统方法一次实验只能检测一种特定物质的局限性。醛固酮的检测前处理经过固相萃取,应用配套的前处理装置,操作简单,重现性与稳定性良好,检测方法的灵敏度和特异性能更好满足临床需求。/pp  strongspan style="color: rgb(84, 141, 212) "截至今年年底,中山医院开展了多少例醛固酮检测?LC-MS 系统为中山医院开展醛固酮检测带来了哪些受益?/span/strong/pp strong 郭玮:/strong截至 2016 年底,中山医院检验科采用 LC-MS/MS 方法进行了数千例次的醛固酮检测,在协助临床诊疗方面取得了不错的反响。随着新指南对放宽原醛症筛查适应征的建议,来自临床科室的送检数量未来还会逐步提高。LC-MS/MS 方法开展至今,其优异的性能表现帮助临床相关科室提升了相关疾病的检测效率与准确性,获得了临床相关科室的广泛认可。/pp span style="color: rgb(84, 141, 212) "strong 除了醛固酮检测,中山医院是否已经开展了别的激素检测项目?/strong/span/pp  strong郭 玮:/strong除了醛固酮检测,中山检验目前还开展了基于 LC-MS/MS 平台的甲氧基肾上腺素类物质、尿儿茶酚胺类物质、维生素 D 检测等项目,年样本检测例次逾千。/pp  span style="color: rgb(84, 141, 212) "strong最近临床实验室自建项目(Laboratory Developed Tests, LDTs)受到了广泛的关注,您对这种方式有哪些理解和看法?LC-MS/MS 技术在 LDTs 的应用前景如何?/strong/span/pp  strong郭 玮:/strong所谓「工欲善其事,必先利其器」,精准医疗的实现离不开新技术手段、新检测项目的发展应用,我们对 LDTs 应持有鼓励态度,注重以临床需求为中心的开发与拓展。但所有医疗决策都需要准确的实验室检测性能作为基础,LDTs 的监管应跟上其发展的步伐。LC-MS/MS 技术无疑是 LDTs 中一个重要的板块,临床应用前景广阔。/pp strongspan style="color: rgb(84, 141, 212) " 一直以来,您对于使用 LC-MS/MS 技术开展临床检验项目非常的重视,这点对于临床实验室建设和医院实力提升有哪些帮助?/span/strong/pp  strong郭 玮:/strong中山检验以「不断提升检测质量、不断改善服务态度」作为质量方针,LC-MS/MS 平台的建设与应用也体现了这一点。结合 LC-MS/MS 技术开展的现有检测项目不仅性能优势明显,也正契合临床科室急需。检验科在不断提升与填补空缺的过程中,开拓了一批「人无我有」、「人有我优」的实验室检测项目,也为相关临床科室提升诊疗水平创造了技术先决 临床学科形成了专业特色病种,加强了学科乃至医院的影响力,吸引了更多患者慕名而来,为我们科室未来的开拓与发展也提供了更多的资源积累与经验总结。检验科与临床科室间是能够形成这种良性互动的,在同步提升、共同发展的同时,也令更多患者切实受益。/pp style="text-align: center "span style="font-family: 宋体,SimSun "strongspan style="color: rgb(255, 0, 0) "LC-MS/MS技术在治疗药物检测中的应用/span/strong/span/ppspan style="color: rgb(84, 141, 212) "strong什么是治疗药物监测?/strong/span/pp  strong郭玮:/strong顾名思义,“治疗药物监测”是监测用于治疗某些疾病的药物浓度,具体是指在使用一些容易产生不良反应的治疗药物时,临床实验室需要检测血液或体液中的药物浓度,临床医生根据检测结果调整给药方案,从而使患者获得最佳的治疗效果,避免不良反应。/pp  strongspan style="color: rgb(84, 141, 212) "治疗药物监测的目的是什么?/span/strong/pp  strong郭玮:/strong目前,精准医疗的概念受到广泛关注。利用治疗药物监测,采用量体裁衣式的治疗方案,指导临床合理用药,则是精准医疗的一种有效的实现形式。首先,由于个体间存在差异,不同个体接受同等剂量的药物治疗而疗效却不一定相同。比如成人,无论性别,身高,体重,说明书一般都推荐服用相同的剂量。那么如果一个身高 180 cm,体重 100 公斤的男性和一个身高 160 cm,体重 50 公斤的女性服用相同剂量的药物,获得的治疗效果却并不相同,这是由于药物体内代谢过程中存在差异,这将直接影响药物的治疗效果,或者产生不良反应。其次,某些药物的有效治疗窗口较“窄”,由于治疗效果与药物在体内的有效浓度密切相关,浓度过高或者过低,均有可能会引起不良反应的发生。/pp  strongspan style="color: rgb(84, 141, 212) "哪些药物推荐进行治疗药物监测?/span/strong/pp strong 郭玮:/strong并非所有的药物或者所有的患者均需要进行治疗药物监测,有下列情况者需进行监测:1、易成瘾性的药物,如免疫抑制剂,精神类药物,抗抑郁药物及抗肿瘤药物。2、应用治疗指数低、安全范围小、不良反应强、无明确判断指标的药物,如地高辛。3、应用具有非线性药代动力学特征的药物和药代动力学个体差异大的药物,如阿司匹林、双香豆素、保泰松等。4、多种药物联合用药时。/pp  综合以上几点,就免疫抑制剂而言,是一类需要定期进行监测的药物,主要用于预防器官移植术后的排斥反应,也可用于治疗自身免疫性疾病。临床常用的免疫抑制剂有环孢霉素、他克莫司、西罗莫司、依维莫司等,剂量不足或者血药浓度过低可能会导致移植物的排斥反应 浓度过高常会引起肝、肾、神经系统、生殖系统的毒性反应,这些药物长期服用会损害胰腺,导致高血糖等危害。/pp  strongspan style="color: rgb(84, 141, 212) " 临床治疗药物监测的主要方法有哪些?/span/strong/pp  strong郭玮:/strong 主要方法包括传统免疫学方法,光谱法和色谱法。色谱法又包括液相色谱紫外检测法和液相色谱串联质谱检测法(LC-MS/MS)。目前,免疫学方法和 LC-MS/MS 方法是主流的检测手段,但从技术上而言,LC-MS/MS 技术相比于免疫学方法,更加准确可靠,特异性和灵敏度也更高。此外,LC-MS/MS 方法能够同时检测多种化合物且不会产生相互干扰。而传统的免疫学方法一次检测只能针对一种药物,且可能存在交叉反应,影响检测结果的准确性。目前,国内外越来越多的实验室已采用 LC-MS/MS 方法替代免疫学方法开展临床治疗药物监测。/pp  strongspan style="color: rgb(84, 141, 212) "为什么 LC-MS/MS 技术相比免疫检测方法具有以上的这些优势?/span/strong/pp  strong郭 玮:/strong这要从两种技术的原理上说起。传统免疫学方法是基于抗原与抗体在体外特异性结合,对样品中的待测物定量的检测。当待测物的分子量很大的时候,如 10kDa,免疫学方法具有极好的特异性。但当待测物分子量 1kDa时,免疫学方法的特异性就会变差,主要原因是交叉反应。由于小分子药物和药物代谢物结构相似,抗体很难区分原型药物和代谢物,会同时与原型和代谢物相结合,造成检测结果偏高。此外,在临床上还有一些联合用药的情况,也就是我们俗称的“鸡尾酒疗法”。免疫学方法一次实验只能检测一种化合物,如果联合用药,一个样本则需要进行多次实验。/pp  相比之下,LC-MS/MS 技术从原理上就突破了这两个限制。在 LC-MS 技术中 LC 主要是分离作用,MS/MS 负责检测部分。样本进样后首先经过液相色谱柱的分离进入到质谱中,在离子源内气化,并发生离子化进入到四级杆质量分析器中,根据被测物的质荷比(m/z)分析,第一个四级杆只允许具有特定质荷比的母离子通过,之后被测物在碰撞室内在碰撞气的作用下发生碎裂,进入到第三个四级杆。第三个四级杆只允许特定质荷比的子离子通过,最后被测物到达检测器进行检测。这一过程具有极高的特异性,能够根据化合物的极性、母离子和子离子的不同进行分析检测。无论待测物分子量大小 LC-MS/MS 方法能够实现特异性检测,解决免疫学方法交叉反应的问题。另外,LC-MS/MS 技术检测速度极快,一个化合物检测通道仅需几个毫秒, 可以同时设置上千个检测通道检测不同化合物,因此一次实验可以同时检测多种药物,没有相互干扰,提高了检测效率。/pp  strongspan style="color: rgb(84, 141, 212) "国外药物浓度监测发展的新趋势有哪些?/span/strong/pp  strong郭 玮:/strong欧美国家采用质谱进行药物浓度监测早于国内大约 10 多年时间。在美国,临床质谱检测技术的快速发展,得益于临床实验室和与质谱公司的大力合作,不仅从技术层面进行创新,而且不断更新升级软硬件设备,完善应用支持服务等。除此以外,美国对于临床质谱管理采用实验室自建方法体系(Labortaory Developed Test,LDT),美国鼓励技术创新,并遵守管理严谨的风格,不断研发临床所需的药物浓度监测项目,通过对其进行严格的方法学验证,保证该技术能够可控地进入临床诊疗工作中,而这种应用模式极大地促进了美国国内质谱技术的快速发展,得到了患者、医院、第三方实验室、保险公司的广泛认可。这几年,质谱在国内临床检验领域也发展很快,我们正在努力推动实验室自建方法体系相关指南的修订,以促进质谱更好地用于临床。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院是如何开展治疗药物监测的?/span/strong/pp  strong郭 玮:/strong中山医院作为上海地区规模最大的临床检验实验室之一,一直致力于推进质谱技术在临床检测工作中的发展。积极开展 LC-MS/MS 进行免疫抑制剂的监测。中山医院应用 LC-MS/MS 质谱系统开发了人体血液中环孢霉素、他克莫司和西罗莫司的体内药物浓度监测的方法,采用极少的血液样本,通过简单的样本前处理即可在 3 分钟同时实现多种免疫抑制剂的检测。我们正在开发和验证精神类药物,抗抑郁药物和抗肿瘤药物的检测项目,服务于临床,并使更多的患者受益。/pp style="text-align: center "span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "strongspan style="color: rgb(255, 0, 0) "LC-MS/MS技术在新生儿筛查与代谢性疾病检测方面的应用/span/strong/span/ppspan style="color: rgb(84, 141, 212) "strong作为卫生部部属的综合性医院,目前贵医院采用液相色谱串联质谱(LC-MS/MS)开展了哪些临床检验项目?/strong/span/pp  strong郭玮:/strong目前,我们医院主要使用LC-MS/MS进行激素类物质的检测,包括血浆间甲肾上腺素类物质、尿儿茶酚胺、25羟基维生素D及治疗药物浓度等的相关检测。/pp  strongspan style="color: rgb(84, 141, 212) "与传统的免疫学方法相比,LC-MS/MS在哪些项目上的应用突显了其价值?/span/strong/pp  strong郭玮:/strong人体内某些激素、小分子药物含量十分稀少,甚至仅为pmol/L这样低浓度的数量级,通过LC-MS/MS的检测,能准确地得到结果,并且能避免化学结构类似物的干扰。因此,在儿茶酚胺或者类固醇激素的检测上,LC-MS/MS方法发挥了重要作用。传统的免疫学方法因方法学的限制,无法得到准确的结果。此外,LC-MS/MS技术可以一次进样得到多个结果。例如,遗传代谢性疾病筛查或者治疗药物浓度监测。/pp  strongspan style="color: rgb(84, 141, 212) "据您的了解,目前LC-MS/MS在国内医疗机构的应用覆盖范围是怎样的?应用前景如何?/span/strong/pp  strong郭玮:/strong目前,国内大部分的省级妇幼保健院,甚至市级妇幼保健院都在使用LC-MS/MS对新生儿遗传代谢性疾病进行筛查。北京、上海等一线城市的三甲医院,其检验科、药剂科也已经开始逐渐关注LC-MS/MS在临床中的应用。我相信拥有IVD认证的LC-MS/MS会在临床诊疗领域中发挥越来越重要的作用。/pp  span style="color: rgb(84, 141, 212) "strong临床应用上使用LC-MS/MS,医院检验科的人员能够短时间内就掌握这项检测技术?/strong/span/pp  strong郭玮:/strong我觉得任何一个新技术的出现都会带来一些挑战,医院检验科会对人员进行系统性的培训,操作人员也需要通过专业认真的学习和经验的积累,才能正确掌握LC-MS/MS这项技术。我们使用的是Waters的LC-MS/MS系统,厂家也会派应用专家也会对我们的操作人员进行培训,协助方法开发。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS用于遗传代谢性疾病检测,对所得的结果具体怎样进行分析,以及对检测出阳性的指标要如何进行后续的干预呢?此项技术是否真的能很好的应用于临床研究呢?/span/strong/pp  strong郭玮:/strong目前,美国和欧洲大部分的国家和地区已采用LC-MS/MS进行新生儿遗传代谢性疾病筛查,并且已经有十余年的历史了,覆盖率达到90%以上。在国内,北京、上海、浙江等地区也早已开展此类检测项目。在进行遗传代谢性疾病筛查时一般会通过专门的应用软件,分析新生儿(或儿童)血液中氨基酸或者酰基肉碱的含量,确定是否有阳性结果。对于阳性样本会再进行一次复检,之后通过电话通知家长或者就诊医生,及时进行后续的确诊检查,并采取有针对性的治疗措施。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS对不同检测,其结果要如何确认?临床如何对LC-MS/MS所提供的数据进行疾病分析?/span/strong/pp  strong郭玮:/strong目前,LC-MS/MS在临床中主要用于新生儿遗传代谢性疾病、小分子药物、体内较微量类固醇激素等物质的检测。该技术具有灵敏度高,准确度好的特点。LC-MS/MS方法检测得到的数据仍需要临床医生结合患者相应的临床表现,综合进行判断。/pp  strong郭玮简介/strong/pp  复旦大学附属中山医院检验科副主任、硕士生导师。主要研究方向:肿瘤分子诊断、肿瘤转移复发机制。在国内外统计源期刊发表论文40余篇,主编、参编专著7部。现任中华医学会检验分会第九届委员会青年委员会委员、上海市医学会检验医学分会第九届委员会委员、中华医学会检验分会临床生化学组成员、《检验医学》等多本杂志编委。主持癌变与侵袭原理教育部重点实验室开放课题基金1项、上海市科委基金2项、上海市卫生局基金3项 参与完成“十二五”国家科技支撑计划子课题1项、卫生部医政司课题1项、国家自然科学基金2项、国家科技重大专项课题1项。获上海市医学科技奖二等奖1项。/pp  strong中山医院检验科介绍/strong/pp  复旦大学附属中山医院检验科始建于1940年,经过几代人的共同努力,从单一手工操作的简单化验室发展成为了一个检测设备先进齐全、兼具现代化硬件和软件的医学检验科。特别是近20年来,有了飞速发展与长足进步,2009年成为上海市首家通过ISO15189医学实验室质量与能力认可的实验室,同年成为美国NGSP认证的HBA1c一级参考实验室,2010年获首批国家临床重点检验专科建设项目,相继引进了CellSearch循环肿瘤细胞检测系统、高效液相色谱串联质谱检测平台、基因测序仪、荧光原位杂交仪等先进检测系统及技术平台。近年来先后被欧洲最大的检验集团之一BARC公司以及美国最大的检验集团QUEST公司选择作为全球药物临床试验大中华区中心实验室。目前检验科开展检测项目数超过500项,年工作量超过3500万项次,是上海地区规模最大的临床检验实验室之一。在如此巨大的工作量面前,科室本着“不断提高检测质量、不断改善服务态度”的发展目标,从细节着手,优化检验流程,力求用最短的时间让病人拿到检测报告,TAT时间在行业内首屈一指,实现了门诊患者一天内完成就医的愿望,极大的方便了周边患者,取得了卓越的社会效益,受到多家主流媒体报道。/pp style="text-align: center "img title="A1430981437_small1.jpg" style="width: 600px height: 149px " src="http://img1.17img.cn/17img/images/201708/insimg/a65b3584-14b6-49c8-af4e-a851ef5caf92.jpg" height="149" hspace="0" border="0" vspace="0" width="600"//p
  • 警察的发现导致头发中替扎尼定的LC-MS / MS新方法
    法国警察在自行车队的房间中发现了替扎尼定(Tizanidine),导致开发新的LC-MS / MS方法,用于测定头发样品。警察发现替扎尼定替扎尼定是肌肉松弛剂,禁止在运动中使用。然而,在法国的三周骑自行车比赛中,法国警察的特殊公共卫生部门发现了一个国际骑自行车团队的一名医生的房间里的替扎尼定药盒。替扎尼定是一种具有肌肉松弛剂活性的α-2肾上腺素能受体激素,用于治疗多发性硬化症、脊髓损伤或脑损伤患者的肌肉痉挛。其他应用包括疼痛管理和阿片类药物和酒精戒断治疗。该药物仅在法国根据指定的临时使用授权计划提供,该计划在没有其他合适治疗的情况下允许指定患者使用某些医疗产品(可能是开发性或非标签使用)。因此,在法国,替扎尼丁不能从大街上的药剂师那里买到。尽管世界反兴奋剂机构(WADA)并未禁止使用这种肌肉松弛剂,但这种肌肉松弛剂对运动员的康复、缓解痉挛和治疗运动损伤可能很有帮助。它也可以与其他药物联合使用。在队医室发现替扎尼丁后,警方联系了Légale医疗研究所(法国斯特拉斯堡)的反兴奋剂分析员,要求分析从自行车队成员处获得的头发是否含有替扎尼丁。文献中没有关于头发中替扎尼丁的测定方法报道,因此分析员团队开发并验证了一种新的LC-MS/MS方法,并通过LC-HRMS进行确认。开发专用的LC-MS/MS方法一位法医病理学家从七名骑自行车的人身上采集了头发样本,将头发剪得尽可能靠近头皮。样本长度范围为2-12 cm(通常为2-3 cm),保存至分析,确保从根部到尖端的方向保持不变,这是分段时间分析的一个重要步骤(尽管由于样本限制,此处未进行此操作)。样品在环境温度下由快递员送到实验室进行测试。所有头发样本均为黑色至深棕色。实验室工作人员的空白头发样本用于比对。首先,用二氯甲烷清洗完整的头发,然后用剪刀剪成1 mm的区段。将剪下的头发(20mg)在1mL pH 9.5硼酸盐缓冲液(40°C)中培养过夜,然后冷却并与5mL乙醚/二氯甲烷/己烷/异戊醇(50/30/20/0.5,V/V)混合。离心后,将获得的上清液干燥,然后溶于30 μL的5 mM甲酸铵缓冲液,用于分析。使用XEVO TQS微型三重四极质谱仪配备Waters Acquity HSS C18柱(150×2.1mm×1.8μm,在50°C下保持) ,用于分析。使用甲酸缓冲液(pH 3;流动相A)和0.1%甲酸的乙腈溶液(流动相B)进行梯度洗脱。以地西泮-d5为内标,以正模式电离。LC-MS/MS方法验证良好,线性范围为1至100 pg/mg。使用加标空白头发样本检查精确度,精确度低于15%,可接受。LOD为0.4 pg/mg,在头发中掺杂剂的预期范围内。头发没有出现任何干扰分析物或内标物的峰,基质效应较低。七名自行车运动员中有三名对替扎尼丁呈阳性反应,但水平较低(1.1至11.1 pg/ng),结果通过作者的标准验证性LC-HRMS方法得到证实。筛查和确认是法医毒理学和兴奋剂控制的一种可靠和成熟的方法。首次测定头发中的替扎尼丁反兴奋剂科学家首次成功测定了头发样本中的替扎尼丁。头发测试似乎适合于确认是否接触替扎尼丁。在测试头发中的药物时,解释结果非常重要。不幸的是,缺乏将替扎尼丁加入头发的文献数据或警方关于运动员给药的信息,这意味着无法确定运动员可能给药的剂量、频率或持续时间。未来的研究需要将给药方案与头发浓度联系起来,分段头发分析有助于区分一次性和长期使用。原文载于Separation LC Mass Spectrometry 11 November 2021相关文献Kintz P, Gheddar L, Raul J-S. Liquid chromatography–tandem mass spectrometry and confirmation by liquid chromatography–high-resolution mass spectrometry hair tests to evidence use of tizanidine by racing cyclists. Drug Test Anal. 2021. doi:10.1002/dta.3164Tizanidine. British National Formulary, National Institute for Clinical Excellence (https://bnf.nice.org.uk/drug/tizanidine.html accessed 9 November 2021).Kintz P, Ameline A, Gheddar L, Raul J-S. Testing for GW501516 (cardarine) in human hair using LC/MS–MS and confirmation by LC/HRMS. Drug Test Anal. 2020. https://doi.org/10.1002/dta.2802(符斌 供稿)
  • Reflectoquant:葡萄酒酿酒业测试专用产品
    葡萄的丰收真的意味着从此高枕无忧? Reflectoquant 葡萄酒酿酒业测试专用产品 葡萄酒的酿造过程需要您全心全意的关注 优质的葡萄酒是由最佳的环境打造的,比如需要不同种类的葡萄的最佳配比、适宜的地理位置、土壤结构以及生长阶段的气候条件。而葡萄种植者的技术也是一个重要的影响因素,例如修枝、土壤的管理、簇叶的修剪以及葡萄的采摘,从而确保收获时质与量的双收。然而,酿造葡萄酒的最高工艺要求却是在酿酒专用的酒窖里展现的。 当葡萄充分吸收了阳光雨露成熟之后,就会立刻被采摘下来,进入到酿造的流程中。从葡萄被压榨开始,就需要酿酒师运用其知识与技巧将质量上乘的葡萄转变成为最优质的葡萄酒。 观察、闻味、品尝并且检验 迄今为止,酿酒师在葡萄酒酿造过程中最常用的检查方法仍是使用其感官,即使采用最先进的工业技术也无法取代酿酒师丰富的知识与经验。但是,科学技术还是可以协助酿酒流程的进行以确保每个过程的完善。 默克公司出品的Reflectoquant 反射仪的快速检测系统能在这一技术领域中得到充分的应用。此系统能够提供酸度、总糖、pH值、二氧化硫、酒精含量等多项数据的精确数值,以支持用传统的视觉、嗅觉和味觉测试的方法。这样的话,葡萄酒酿造过程的监控就变得更加让人安心与可信。 在您运用您知识的同时,新型葡萄酒监测系统为您提供详实的数据与资料 用于葡萄酒酿造过程中的Reflectoquant 反射仪系统能够助您在酿酒过程中及时进行各种重要的处理以使您生产出最完美的葡萄酒。 了解、决定与付诸行动—— 弹指之间即可完成 在以往的酿酒工艺中,要想及时获得可信的第一手数据资料是很难做到的。现在,当您使用了默克公司出品的 Reflectoquant反射仪系统之后,您就能够随时随地快速掌控酿酒过程中的每一个细节。 压榨葡萄过程的检测——您是否加入了适量的二氧化硫? 使用默克的Reflectoquant 测试条是检测二氧化硫含量的最简便的方法。从葡萄被压榨开始直到第二次澄清的整个过程,它都能为您提供及时的指示。虽然加入适量二氧化硫的目的是为了抑制细菌的增长并防止氧化,但我们相信,它亦能为获得葡萄酒更佳的口感提供不少帮助。 未发酵的葡萄汁的检测——酸度、pH值、糖份与酒精的含量您监控了吗? 在对于葡萄酒质量的分级时,必须对其酸度与pH值的数值进行精确的记录,必要的时候还可能需要降低酸度或者添加糖份。默克的Reflectoquant 仪器能让您在使用时无需采用复杂与昂贵的检测手法就能得到整个酿酒过程中的酸度、pH值、糖含量与酒精浓度的精确数据。 发酵过程——需要降低酸度吗? 默克的Reflectoquant 测试条能迅速地为您提供总酸度、苹果酸含量、酒石酸含量和乳酸的含量的数值。比如在葡萄酒的酿造过程中被检测出酸度超标,这时您就需要具体的处理未发酵的葡萄汁或是正在酿造的葡萄酒以降低酸度。 第一次澄清与存储——二氧化硫含量是否适量? 为确保二氧化硫含量的达标,必须重复测试葡萄酒中的硫含量以得到可信的数据。默克的Reflectoquant 反射仪能及时的为您提供您所需要的结果。 第二次澄清——二氧化硫的含量是否达到最佳?还需要添加糖份吗? 在第二次澄清时,您可使用默克的Reflectoquant 测试条来检测硫含量以及残留的糖含量。 简便而又完美的质量控制测试助您大获全胜 您为制造不易变质的葡萄酒提供了良好的环境,并且已经创造出了一件真正的杰作。 默克与您携手共同努力,悉心呵护,严格监控酿造葡萄酒的每一道工序,以期将最优秀的呈现给质量监控委员会与葡萄酒鉴赏家们。 我们相信,您酿造出的集色香味的完美融合于一体的葡萄酒一定能够经得起您最严格的评审。 产品一览 RQflex 系列反射测试仪及相关产品 订货号 仪器名称与相关信息 1.16970.0001 RQflex10 普通型多参数反射仪 性能与配置 含试纸条适配器和仪器校正包;双光束测试,保证结果的准确性;可同时设置5种测试方法;最多可存储50组测量结果(时间、日期、测试参数和结果),带PC接口。批次试纸特性的校正功能(条形码技术),使用电池供电,仪器及相关试纸条都有详细的说明书 1.16998.0001 RQdata数据传输软件和数据线 1.16957.0001 RQcheck仪器检测包 1.17990.0001 Reflectoquant 样品稀释套装 1.17992.0001 Reflectoquant 活性炭脱色剂,包装:4 x 9 g,使用次数 100 1.17964.0001 RQeasy Malic 果酸 单参数测试仪 250组数据储存能力(时间、日期、测试结果),批次试纸特性的校正功能,使用3V锂电池操作,仪器及相关试纸条都有详细的说明书 1.17965.0001 RQeasy Malic 果酸 单参数测试仪专用测试条,5-60mg/l, 50次测试 Reflectoquant反射仪专用测试条——产品监控 订货号 名称 测试项目 测试量程mg/l 测试次数 1.16130.0001 Reflectoquant Alcohol Test 乙醇,酒精 20-200 50 1.16892.0001 ReflectoquantAmmonium Test 氨,氮 0.2-7.0 50 1.16899.0001 ReflectoquantAmmonium Test 氨,氮 5.0-20.0 50 1.16981.0001 ReflectoquantAsorbic Acid Test 维生素C 25-450 50 1.16125.0001 ReflectoquantCalcuim Test 钙 5-125 50 1.16137.0001 ReflectoquantFree Sulfurous Acid 二氧化硫(亚硫酸盐) 1.0-40.0 50 1.16720.0001 ReflectoquantGlucose Test 葡萄糖 1-100 50 1.16982.0001 ReflectoquantIron-Test 二价铁 0.5-20.0 50 1.16127.0001 ReflectoquantLactic Acid Test 乳酸 1.0-60.0 50 1.16124.0001 ReflectoquantMagnesium Test 镁 5-100 50 1.16128.0001 ReflectoquantMalic Acid Test 果酸 1.0-60.0 50 1.16995.0001 ReflectoquantNitrste Test 硝酸盐 3-90 50 1.16894.0001 ReflectoquantpH Test pH值 1.0-5.0 50 1.16722.0001 ReflectoquantSulfite Test in white wine 总亚硫酸(葡萄酒) 10-200 50 1.16721.0001 ReflectoquantTartaric Acid Test 酒石酸 0.5-5.0g/l 50 1.16135.0001 ReflectoquantTotal Acidity Test,pH7.0 总酸pH7.0 2.0-14.0g/l 100 1.16138.0001 ReflectoquantTotal Acidity Test,pH8.2 总酸pH8.2 2.0-14.0g/l 100 1.16136.0001 ReflectoquantTotal Sugar Test 总糖 (葡萄糖和果糖) 65-650 50 Reflectoquant反射仪专用测试条——清洗消毒监控 订货号 名称 测试项目 测试量程 mg/l 测试次数 1.16896.0001 Reflectoquant Chlorine Test 余氯 0.5-10.0 50 1.16975.0001 ReflectoquantPeracetic Acid Test 过氧乙酸 1.0-22.5 50 1.16976.0001 ReflectoquantPeracetic Acid Test 过氧乙酸 75-400 50 1.16974.0001 ReflectoquantPeroxide Test 双氧水 0.2-20.0 50 1.16731.0001 ReflectoquantPeroxide Test 双氧水 100-1000 50 为葡萄酒酿酒业度身定做的其他相关产品 Turbidity 系列浊度仪 订货号 仪器名称与相关信息 1.18324.0001 Turbiquant1100 IR 便携式浊度仪 带电池的便携式仪器,3项校正标准0.02-10.0-1000NTU, 2个空测试管,附操作手册,简易参考卡 1.18325.0001 Turbiquant1100T 便携式浊度仪 带电池的便携式仪器,3项校正标准0.02-10.0-1000NTU, 2个空测试管,附操作手册,简易参考卡 1.18335.0001 Turbiquant1100IR/T 标准溶液套装,0.02-10.0-1000NTU 卫生监测系统 订货号 仪器型号 1.30100.0301 HY-LiTE2 卫生(ATP)监控系统 1.30101.0021 HY-LiTE 补充包(表面监控笔和涂抹棒) 1.30102.0021 HY-LiTE 取样笔 1.31200.0001 HY-RiSE 表面洁净度测试条 当您在处理葡萄酒酿酒过程中产生的废水时,我们推荐您使用默克的Spectroquant水质分析系统。该系统与Spectroquant系列试剂配套使用,可用于测定COD与BOD。同时,Spectroquant光度测量系统可测量其他更多不同的参数。 上海恒奇仪器仪表有限公司电 话:021-51693889-22 传 真:021-61304216 网址:www.hq17.com
  • 依云水亚硝酸盐超标连续六年上黑榜
    国家质检总局公布最近一批209批次进口不合格食品和化妆品,“依云”天然饮用水等上黑榜,而这已经是依云6年6上黑榜了。  《第一财经日报》从依云方面获得的声明中看到,达能依云食品营销有限公司认为涉及产品非依云官方渠道进口,无法确定该产品出自依云。  国家质检总局检查发现,北京大自然贸易有限责任公司从法国进口的一批2.376吨“依云”天然饮用水,因存在亚硝酸盐超标被退货。记者了解到,去年11月,北京盛世唯嘉商贸有限公司从法国进口的依云天然矿泉水也存在亚硝酸盐超标情况。  此外,国家质检总局官方网站显示,2011年1月份,中国从法国进口的80.44吨依云天然矿泉水同样被检出亚硝酸盐超标。而在之前的2006年和2007年,分别有三个批次的依云矿泉水被检出细菌总数超标。依云矿泉水在六年多的时间内六上黑榜。  对于亚硝酸盐超标的原因,依云方面并没有回应,仅表示,依云矿泉水完全符合国家标准。并将与国家质检总局联系,获取相关产品样本重新检验后,再公布结果。  业内专家表示,可能在水源、仓储以及物流等环节出问题。  曾在国内矿泉水企业任职的相关人士表示,很多国际奢侈品公司在对待中国市场的态度上存在双面性,一方面,他们乐于享受远高于本国市场的高利润 另一方面,又缺乏对中国市场精耕细作的耐心,在商品的生产、流通等环节执行双重标准。  事实上,依云矿泉水在国外与普通饮用水价格无异。记者从美国亚马逊官网上查询得知,一瓶500ml依云矿泉水价格为2.16美元,而雀巢一瓶500ml矿泉水售价1.5美元,此外,在美国亚马逊上的普通矿泉水价格基本在2美元左右,也就是说,依云在美国跟普通矿泉水价格无异。在法国,依云矿泉水价格更低,500ml一瓶价格约0.5欧元,折合人民币4元左右。而在国内,记者在一号店上查询得知,依云矿泉水500ml售价9.6元/瓶,而在国内星级酒店的价格更是40元~80元不等,而雀巢500ml纯净水只有1.2元/瓶,依云水是雀巢水价格的8倍。  不仅如此,依云在国外市场占有率也不高。美国饮料行业调查机构BMC(Beverage Marketing Corporation)2011年6月数据显示,美国销量前十位纯净水中,没有依云品牌。  中投顾问研究报告指出,国内矿泉水的平均利润率仅为3.85%,但高端矿泉水的利润率大概为普通水的6~7倍。在生产工艺上,高端水并无特殊之处,唯一的卖点就在其水源的独特性上。  依云产品与国外并无二异,但是依云在中国营销却完全不同于国外,在中国,依云俨然成为高端饮用水的代表,目前牢牢占据中国高端饮用水市场份额第一位。在依云进入中国市场之初,其运营团队就不遗余力地推广品牌的文化内涵,其定价也一直远高于国内的同类产品。与很多国外的大众品牌一样,依云的高定价在中国市场收到了意想不到的效果。同时通过在高端商超等场所布局的渠道策略,无形中也提升了依云的品牌,令其迅速占领了中国高端水市场。  不过,品牌研究专家高剑锋表示,从一个国外大众消费品牌,到如今在中国矿泉水市场建立奢侈品地位,是建立在当时中国消费市场尚不成熟的基础上。如今市场竞争趋白热化,依云也应抛弃之前品牌现行的战略,将更多的精力投入到产品品质及渠道管控等方面。
  • 瘦肉精变身兴奋剂!食品检测如何帮助运动员避免躺枪?
    目前,来源于肉类食品的饮食污染、其他食品或药物误服而导致的食源性兴奋剂困扰事件层出不穷,食源性兴奋剂的预防控制也成为各类体育赛事管理机构和供应服务基地保障的重要内容。 食源性兴奋剂食源性兴奋剂是指来源于食品中的兴奋剂,包括一般性食品及保健食品中从生产到加工过程中天然存在或故意添加而残留的兴奋剂成分,如肉类食品多次被爆出的“瘦肉精”。“瘦肉精”是一大类药物的总称从兴奋剂的分类来看,它属于β-肾上腺素受体激动剂。克伦特罗、沙丁胺醇、莱克多巴胺是常见的三种在畜牧养殖使用的“瘦肉精”,同时也是常见的人为服用兴奋剂。[1]世界反兴奋剂机构在其2021年的指导性文件里特别指出,如果克伦特罗、莱克多巴胺等四种违禁物质的阳性结果显示浓度低于5纳克/毫升,他们将进行调查。[2] 兴奋剂成分检测仪器灵敏度及相应物质的检测标准的不断提升、新技术的应用为反兴奋剂管理机制提供了坚强保障。有关单位通过开展微生物检验、样品制备管理等,高质量、高标准、高效率开展食品检验检测工作,监测评估食品安全风险,竭力保障食源性兴奋剂“零检出”,使运动员得以安心训练备战。[3] 食品中4种瘦肉精类残留量测定依据《GB/T 22286-2008 动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法》,试样中的β-激动剂经过酶解,用高氯酸调节pH值,沉淀蛋白后离心,上清液用氢氧化钠调节pH后用异丙醇-乙酸乙酯提取,用阳离子交换柱净化,采用液相色谱-串联质谱法进行测定,内标法定量。仪器和耗材1 仪器Fotector Plus高通量全自动固相萃取仪;Auto EVA 60全自动平行浓缩仪;Agilent 1290II/6470 高效液相色谱-串联质谱MCX固相萃取柱(RayCure,60mg/3mL)全自动固相萃取仪全自动氮吹浓缩仪 2 试剂乙酸乙酯、异丙醇、甲醇均为色谱纯;甲酸、高氯酸、氨水、氢氧化钠;β-盐酸葡萄糖醛苷酶/芳基硫酸酯酶。0.2mol/L乙酸钠缓冲液:称取13.6g乙酸钠,溶解于500ml水中,用适量乙酸调节pH至5.2。标准品:莱克多巴胺盐酸盐,克伦特罗盐酸盐,沙丁胺醇,特布他林硫酸盐,100ng/ml。内标物:沙丁胺醇-D3,克伦特罗-D9,10ng/ml。 样品制备1 酶解准确称取5g(精确到0.01g)经捣碎的样品于50mL离心管内,加入0.2moL/L乙酸钠溶液(pH=5.2)20mL,再加入β-盐酸葡萄糖醛苷酶/芳基硫酸酯酶100μL,漩涡混匀,于37℃下避光水浴水解12h。2 提取添加1ml的内标工作液于待测样品中,加盖置于水平振荡器震荡15min,5000r/min高速离心10min,准确取10mL上清液于另一50mL离心管中,用高氯酸调节PH至1.0±0.3,4000r/min离心5min,将上清液转移至另一50mL离心管中,用10moL/L氢氧化钠溶液调节pH至11,加入4~5g氯化钠,加入异丙醇:乙酸乙酯=6:4 15mL,充分提取,4000r/min离心5min,吸取全部有机相到睿科全自动氮吹浓缩仪EVA-60plus 50℃下氮气吹干,加入0.2M乙酸铵溶液5mL溶解,超声混匀,使残渣充分溶解后备用。3 净化将MCX固相萃取柱安装在Raykol Fotector Plus高通量全自动固相萃取仪上,依次用甲醇3 mL、水3 mL活化。备用液全部过柱,用水2 mL、2%甲酸水2ml、甲醇2 mL依次淋洗,抽干,用5%氨水甲醇溶液2 mL洗脱,收集洗脱液,使用EVA-60plus全自动氮吹浓缩仪于40℃水浴氮气吹干,用10%乙腈水溶液(含0.1%甲酸)1.0 mL溶解,滤过,液相色谱-串联质谱测定。具体的固相萃取方法见图。 结果与讨论为了验证该方法的回收率,本实验分别在猪肉样品中加入盐酸克伦特罗、沙丁胺醇、莱克多巴胺、特布他林4种混合标准品进行加标回收验证(n=3),加标水平为0.5ug/kg,数据如表-2所示。加标回收率在87.8-112.4%之间,RSD值控制在10%以内。说明该方法能够很好地运用于猪肉中瘦肉精残留量的检测。表-2.猪肉样品加标回收率及RSD值注:其中克伦特罗的内标为克伦特罗-D9;沙丁胺醇、特布他林与莱克多巴胺的内标为沙丁胺醇-D3。 本解决方案操作方便、提取和浓缩效率高、回收率好。符合GB/T 22286-2008《动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法》要求。 食源性兴奋剂的风险控制不仅要依靠检测标准,还应借鉴“预防为主”原则,加强“从农田到餐桌”整个链条中食品安全的监控,与时俱进的检测方法和技术手段的应用利于防止误食兴奋剂事件的发生,运动员得以吃得健康、吃得安心。 参考文献[1]黄炜:运动员冬奥会期间不要吃中国肉!反兴奋剂机构又来了… … ,观察者网[2]冬奥会食品符合食源性兴奋剂“零检出”特殊要求,新华每日电讯/2022 年/1 月/19 日/第 006 版[3]严字当头“零容忍” 全力以赴“零出现”——心怀“国之大者”,反兴奋剂中心备战北京冬奥会,国家体育总局反兴奋剂中心
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制