当前位置: 仪器信息网 > 行业主题 > >

氨苄青霉素非对映异构体

仪器信息网氨苄青霉素非对映异构体专题为您提供2024年最新氨苄青霉素非对映异构体价格报价、厂家品牌的相关信息, 包括氨苄青霉素非对映异构体参数、型号等,不管是国产,还是进口品牌的氨苄青霉素非对映异构体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨苄青霉素非对映异构体相关的耗材配件、试剂标物,还有氨苄青霉素非对映异构体相关的最新资讯、资料,以及氨苄青霉素非对映异构体相关的解决方案。

氨苄青霉素非对映异构体相关的资讯

  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。  研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 从“红曲风波”认识软毛青霉酸、桔青霉素和红曲色素
    软毛青霉素及相关青霉菌毒素近期,日本著名药企小林制药被推上了风口浪尖,部分消费者在服用该公司含有红曲成分的保健品后,出现肾脏等方面的健康问题,导致小林制药已撤回8种红曲保健品作为功能性标识食品的备案,其中3种商品已经召回。图片图片来源:财经网一般情况下,红曲类保健食品会检测是否含有已知的真菌毒素—桔青霉素。小林制药表示,他们选择的红曲菌不携带能产生桔青霉素的基因,在原材料测试报告中也的确没有检测到桔青霉素。3月29日,小林制药公司向日本厚生劳动省报告,其红曲产品中导致问题的成分可能为“软毛青霉酸(Puberulic acid)”。软毛青霉酸是在发酵过程中由青霉菌产生的天然毒素。据文献报道,从青霉菌发酵液中已分离出软毛青霉酸(Puberulic acid)、密挤青霉酸(Stipitatic acid)及其三种类似物Viticolins A–C等环庚三烯酚酮类(Tropolone)毒素。青霉菌毒素具有耐高温和侵害实质器官的特性,加热烹调也很难使其毒性减弱。目前,有关软毛青霉酸等青霉菌毒素导致的肾脏毒性报道较少,仍需进行相关研究。由于红曲菌在发酵过程中并不能产生软毛青霉素,有专家推测小林制药的红曲产品可能因为原料受到了青霉菌的污染而产生了软毛青霉酸,但具体原因还需后续的调查确认。相信该事件的发生将进一步促进红曲类食品检测的加强,相关检测标准将在不远的将来应运而生。红曲及其用途图片来源:财经网红曲也叫红曲红、红曲霉、红曲米,其作为一种天然发酵产物,成分复杂,包括多种具有生物活性的物质。红曲可应用于制药、酿酒、食品着色等方面,具有悠久的历史和公认的保健价值,特别是在降血脂、降胆固醇方面具有积极效果。目前,国内生产的红曲主要有三类,分别是酿酒红曲、色素红曲和功能红曲。▶ 酿酒红曲的糖化力高、酯化力强、有独特的曲香,广泛用于各种黄酒、白酒、醋、酱的酿造;▶ 色素红曲的色价很高,是纯天然的食品着色剂,通常用于肉制品、腐乳等食品的着色。▶ 功能红曲是指以大米为原料,用纯培养的红曲菌发酵生成的莫纳可林K(又称洛伐他汀,结构式见下图)等生物活性物质的红曲,常被用作防治心血管疾病的保健品和药品的原材料。各大厂商包括小林制药已将红曲米类食品开发为具有降血脂、降胆固醇功能的保健食品。我国对红曲类产品的使用要求红曲色素,属于复合色素,常用红曲添加剂为大米的红曲酶发酵产物或其提取物,为多种天然色素的混合物。目前, 已确定出化学结构的红曲色素主要有6种,包括黄色素、橙色素和红色素,结构如下:随着科学认识的不断深入和对食品安全要求的提高,我国对红曲及其制品的应用和管理日趋严格。国家食品药品监督管理局在《关于以红曲等为原料保健食品产品申报与审评有关事项的通知》中规定,红曲推荐量每日暂定不超过2g,产品中洛伐他汀应当来源于红曲,总洛伐他汀推荐量每日暂定不超过10mg,且不适宜在少年儿童、孕妇、哺乳人群使用等;《GB 2760-2024食品安全国家标准 食品添加剂使用标准》红曲米及红曲红作为着色剂可用于腐乳、碳酸饮料、果冻、糕点、配制酒等多种食品中,其中风味发酵乳中的最大使用量不得超过0.8g/kg,糕点中的使用量不得超过0.9g/kg,焙烤食品馅料及表面用挂浆不得超过1.0g/kg;另外,《GB 5009.150-2016食品安全国家标准 食品中红曲色素的测定》规定了对风味发酵乳、果酱、腐乳、干杏仁、糖果、方便面制品等食品中红曲红素、红曲素、红曲红胺3种红曲色素的测定方法。值得注意的是,红曲色素(又称红曲红)是发酵产生的多种天然色素的混合物,由于发酵工艺的不同,市售红曲色素所含的色素成分及其含量不尽相同,也并非上述所有常见成分均可检出。另外,GB 5009.150-2016和SN/T 3843-2014标准中将红曲红胺的CAS号3627-51-8写为126631-93-4,而后者对应的名称为N-芴甲氧羰基-8-氨基辛酸(N-Fmoc-8-Aminooctanoic acid),对应的结构式见下图。尽管该化合物的分子式和分子量与红曲红胺完全相同,导致二者在一级质谱的分子离子峰完全相同(均为[M+H]+ = 382, [M-H]- = 380),然而二者的化学结构却差别巨大,因此其核磁谱图和二级质谱上的碎片离子峰有显著差别,在HPLC上的出峰时间和UV吸收也有明显的区别。检测人员在标准物质选择、采购和使用中应多加注意,避免产生错误的检测结果。红曲在发酵过程中可能因菌株变异或污染产生桔青霉素,其有很强的肾脏毒性,摄入过量会导致肾损害,因此桔青霉素是红曲类产品必检项。《GB 1886.181-2016食品安全国家标准 食品添加剂 红曲红》中规定红曲红中桔青霉素的限量为0.04 mg/kg。《GB 1886.66-2015食品安全国家标准 食品添加剂 红曲黄色素》中规定红曲黄色素中桔青霉素的限量为1.0 mg/kg。阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,根据科研单位检测热点,快速响应,积极研发软毛青霉酸、桔青霉素、红曲色素及其相关产品,助力食品安全检测,为守护广大消费者的身体健康保驾护航。 红曲发酵过程可能产生的相关毒素标准品:了解更多产品或需要定制服务,请联系我们
  • 赛默飞方案:TSQ Quantis 测定9 种 青霉素类药物残留
    本文参考GB/T 20755-2006、GB/T 21315-2007 等国标,在赛默飞全新三重四极杆TSQ Quantis 上建立了青霉素类抗生素的液质检测方法。9 种化合物在其相应的浓度范围内线性关系良好(r20.998),完全满足国标对青霉素类抗生素残留的检测要求。引言青霉素(Penicillins)是属于β- 内酰胺类药物的一类广谱抗生素,一直广泛应用于人类、畜禽业及水产养殖中的各种细菌感染的防治。随着产量和用量的不断增加,加之药品的盲目使用,食品、水体等抗生素残留问题日益突出。抗生素的残留可增强细菌耐药性,破坏人体和动物胃肠道及环境微生态平衡,可能对人体健康产生严重影响。本文建立了基于Thermo Fisher TSQ Quantis 三重四极杆串联质谱仪检测9 种青霉素类抗生素的方法。本方法灵敏度高,稳定性好,满足GB/T 20755-2006 畜禽肉中九种青霉素类药物残留量的测定以及GB/T 21315-2007 动物源性食品中青霉素抗生素残留量检测方法,适用于食品安全监控中有关青霉素类抗生素的残留检测。结论本文建立了三重四极杆液质联用仪(TSQ Quantis)分析9 种青霉素类抗生素的检测方法。由实验结果可以看出,基于Thermo Fisher TSQ Quantis 建立的检测方法具有优异的灵敏度和线性范围,可用于青霉素类抗生素的日常分析检测。点击 TSQ Quantis 测定9 种 青霉素类药物残留 查看详细实验方案。
  • 兽药分析大讲堂丨青霉素类新标实施,一起解锁分析难点!
    导读兽药残留是影响动物性食品安全的主要化学因素之一,尤其是兽用抗生素残留会进一步加速细菌耐药性进程。青霉素类作为最早应用的抗生素,历经九十余年,已发展三代,曾为增进人类健康做出过巨大贡献。青霉素价格低廉、抗菌性强,在水产养殖上被广泛用于鱼、虾细菌感染的防疗。然而,此类抗生素的不合理使用,会给食品安全带来隐患,其产生的耐药性问题或将导致人类进入无药可用的后抗生素时代或可怕的“耐药时代”。近期,农业农村部发布实施《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,青霉素类含有β-内酰胺环,是一类化学性质非常活泼的物质,容易在高温、水或酸碱条件下发生降解,一度给分析检测带来挑战。针对该难点项目,我们推出了岛津最新的应用解决方案,来一起看看!水产品中青霉素类分析相关法规GB 31650-2019 《食品安全国家标准 食品中兽药最大残留限量》中规定,在鱼虾中青霉素G、阿莫西林、氨苄西林残留限量(MRLs)为50 μg/kg,氯唑西林、苯唑西林MRLs为300 μg/kg。近期,农业农村部发布的《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,对《GB/T 22952-2008 河豚鱼和鳗鱼中阿莫西林、氨苄西林、哌拉西林、青霉素G、青霉素V、苯唑西林、氯唑西林、萘夫西林、双氯西林残留量的测定 液相色谱-串联质谱法》标准进行了更新,增加了阿洛西林和甲氧西林,并增加了固相萃取和超滤管离心的净化步骤,修改了方法的检出限和定量限。青霉素类分析难点β-内酰胺类抗生素的基本结构如下图,β-内酰胺环易光解,或与水、醇发生反应。β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1]因此,实验过程中需注意:• 宜采用粉末标品,现配现用,前处理避光,配制后尽快分析;• 考虑到溶解性和溶剂效应,标准品母液推荐30%乙腈水配制,-18℃避光存储,保质期5d,工作液则现配现用,尽快上机分析;• 有机相为甲醇时,青霉素G与甲醇生成了青霉酸甲酯,如下图所示,青霉素甲酯MRM通道有色谱响应,且响应强度比青霉素G更高。为了保证定量准确,流动相、前处理试剂应该避免接触醇类试剂。岛津解决方案• 分析仪器岛津三重四极杆液质联用仪• 目标物青霉素类抗生素药物的化合物信息11种青霉素类抗生素在2~300 ng/mL范围内,线性良好,相关系数R均大于0.999。部分代表性青霉素类抗生素的校准曲线• 样品加标分析结果对市售南美白虾进行分析,未检出青霉素成分,并且在出峰区域无杂峰干扰。以下是在南美白虾样品中添加5 μg/kg青霉素得到的加标样品MRM色谱图。青霉素加标样品MRM色谱图(5 μg/kg)结语看了本期的难点项目经验分享,相信大家都有所了解,β-内酰胺类化合物稳定性差,分析测试过程尤其注意光照、pH等的影响。除此之外,岛津应用云后续还将发布兽药分析大讲堂系列,聚焦难点项目,陆续发布检测关键点小贴士及解决方案,帮助大家共克食品安全难关。“兽药分析大讲堂系列”后续预告四环素分析篇多肽类抗生素分析篇硝基呋喃分析篇… … 参考文献[1] .刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.本文内容非商业广告,仅供专业人士参考。
  • 岛津推出牛奶中青霉素分解剂—β-内酰胺酶检测方法
    随着国家对食品安全问题的关注和部分乳制品企业无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为&beta ‐内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用解抗剂去降解牛乳中残留的抗生素,生产人造&ldquo 无抗奶&rdquo 。目前市售解抗剂的主要成分是&beta ‐内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的&beta ‐内酰胺类抗生素。&beta ‐内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。&beta ‐内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。为此,长期关注中国&ldquo 食品安全&rdquo 的岛津公司发挥技术优势,推出了基于岛津超快速液相UFLCXR的&beta ‐内酰胺酶的检测方法。 本方法通过检测牛奶中的青霉噻唑酸钾,间接检测牛奶中是否添加了&beta ‐内酰胺酶,供相关检测人员参考。在本方法中,使用岛津超快速液相UFLCXR,配合岛津shim pack XR‐ODS II 75 mm L.× 3.0 mm I.D.,2.2 &mu m 快速分析色谱柱,测定了市售牛奶中青霉噻唑酸钾的含量,标准曲线线性良好,重现性良好,1#样品中青霉噻唑酸钾为31.2&mu g/mL , 2# 样品中青霉噻唑酸钾为5.4&mu g/mL,说明牛奶中添加过&beta ‐内酰胺酶。 有关本方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171132.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 860万!中国检验检疫科学研究院环形离子淌度色质联用仪采购项目
    项目编号:22CNIC01-2163项目名称:中国检验检疫科学研究院环形离子淌度色质联用仪采购项目预算金额:860.0000000 万元(人民币)最高限价(如有):844.5200000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品环形离子淌度色质联用仪1台主要用于食品中毒素、农药、环境污染物类中的构造异构、顺反异构、非对映异构体等化合物的分离,并进行精细结构的鉴定。合同签订后90天是合同履行期限:合同签订后90天本项目( 不接受 )联合体投标。
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 手性世界拆分的创新之路
    手性世界手性一词来源于希腊语“手”(cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。也就是说,生命最基本的东西也有左右之分。为什么自然界选择左旋氨基酸而不是右旋氨基酸作为生命的基本结构单元一直是个迷。而更加复杂的蛋白质和dna的螺旋构象都是右旋的。海螺的螺纹和缠绕植物也都是右旋的。因此生物体内存在着手性的环境,使得生物体可以识别常规化学和物理性能完全一样的手性异构体分子。作用于生物体内的手性药物及农药,其药效作用多与它们和体内靶分子间的手性匹配和手性相关。因此,手性药物的不同对映异构体,在生理过程中会显示出不同的药效。甚至会出现一种对映异构体对治疗有效,而另一种对映异构体表现为有害性质这种现象。自然界中的手性表现形式(图片来自于网络)在手性药物未被人们认识以前,二十世纪六十年代的“反应停(thalidomide)悲剧”就是一个突出的例子。当时欧洲一些医生曾给孕妇服用没有经过拆分的消旋体药物(由一对等量对映异构体分子组成)对作为镇痛药或止咳药,很多孕妇服用后,生出了无头或缺腿的先天畸形儿。仅仅四年时间,导致世界范围内诞生了1.2万多名畸形的“海豹婴儿”。这就是被称为“反应停”的惨剧。后来经过德国波恩大学研究人员发现,反应停的r-构型的单一对映体有镇静作用,而s-构型对胚胎有严重的致畸作用。惨痛的教训使人们认识到,手性药物必须对它的两个异构体进行分别考察,都要经过严格的生物活性和毒性试验,以避免其中所含的另一种手性分子对人体的危害,慎重对待一些药物的另一对映异构体。所以手性拆分技术越来越多用于手性药物开发和生产。自然界生物体本身具有手性环境,因此对手性药物的不同对映异构体,会显示出不同的疗效。美国食品与药品管理局(fda)早在1992年就明确规定:对含有手性因素的药物倾向于开发单一的对映体产品;对于外消旋的药物(一对等量对映异构体组成),则要求提供立体异构体的详细生物活性和毒理学研究数据。近二三十年,世界上手性药物的销售以及占据药物总数的比例也呈逐年上升趋势。手性化合物既可以通过不对称合成来获得,也可以通过天然手性化合物的提取,还可以通过手性拆分获得单一对映体。手性化合物的拆分是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到由一对等量对映异构体组成的消旋体。手性色谱分离纯化是获得单一对映体最常用的方法,其自身具有分离效果好、速度快、灵敏度好、操作方便等优点。已成为手性化合物分离分析和制备的重要手段之一,也是不对称合成方法得到单一对映体的辅助方法之一。手性化合物的分离被认为是最有挑战性的色谱分离技术之一。因为色谱分离技术往往是利用混合样品各组份在固定相(色谱填料)和流动相中的分配系数不同,当流动相推动样品中的各组份在色谱填料填充的柱中迁移时,由于各组份在两相中进行连续反复吸附和脱附或其他亲和能力作用的差异,从而形成差速移动,达到分离的目的。分子之间的物理和化学性质相差越大,越容易建立色谱分离方法。但手性分子就像左右手一样,看起来似乎一模一样,其分子组成、分子量一样,物理和化学性质也相同,只是它们在空间结构上却无法完全重合,因此分离难度最大。在精细化工、生物工程及制药工业中制备高纯度的单一对应体手性分子将具有巨大的商业价值和应用前景,因此建立对映体的手性分离方法显得日益重要。因为许多手性药物真正起作用的是其中的一种单一对映体,而另一种对映体可能不仅无药理作用,还会有副作用。二十世纪六十年代以来,色谱技术作为一种分析技术在生命科学、环境科学、药物分析等领域的应用日益普遍。应用在手性色谱分离方面得到很快的发展,而其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的“心脏”。高性能的色谱填料一直是色谱研究中最丰富、最有活力、最富于创造性的研究方向之一。手性化合物可通过物理吸附或化学键合的方式固定到多孔固相载体表面,对应体由于与固定化的手性分子形成非对映异构体络合物的结合能力差异而达到拆分,这样的固定相称手性固定相又称手性色谱填料。一个有效的手性填料应当具有能够快速分离对映体,测定对映体的纯度,尽可能适应多种类型的对映体的分离;应当具有较高的对映体分离选择性和柱容量。目前手性色谱填料主要是在多孔二氧化硅基球上涂覆或键合带有手性结构的生物材料如功能化纤维素,直链淀粉,大环抗生素,环糊精等制备的。所有这些手性材料中,纤维素和直链淀粉型色谱填料使用最为普遍。手性化合物的色谱分离技术已被广泛地用于手性分子的分离和检测。手性色谱填料基本上是由日本的d公司一家独霸,当其它常规色谱柱每根只卖几千元人民币时,而一根装有2.5克的手性填料的色谱柱价格超过1万元人民币,因此每公斤的手性色谱填料装成柱子可以卖到几百万人民币的价格。手性色谱填料寿命短、价格贵,让手性药物研发工作者尽可能地寻找其它解决方案,不对称合成生产手性药物分子就是为了避免昂贵的手性分离工艺。手性色谱填料的高额利润让世界许多色谱公司和精英前仆后继去挑战这些技术,却无法撼动日本d公司的垄断地位,说明手性色谱分离技术壁垒之高及产品产业化难度之大。手性色谱填料国产化创新之路手性色谱填料主要是通过在多孔二氧化硅基球上涂覆或键合带有手性识别位点的生物材料如纤维素,直链淀粉。如要做手性色谱填料,首先要解决的就是合成超大孔硅胶基球作为手性色谱填料的固定相载体。在纳微科技做出超大孔硅胶基球之前,全世界上只能从日本公司才能买到这种超大孔的硅胶基球,价格昂贵,每公斤高达10万元人民币。虽然中国拥有全世界最多的色谱科研究员,发表色谱领域文章数量也于2011年就超过美国稳居世界首位,但遗憾的是中国色谱填料尤其是球形硅胶色谱填料一直未能实现产业化。主要原因就是色谱填料制备技术壁垒高,产业化周期长,投资大,世界上可以大规模生产球形硅胶色谱填料的也就只有四家公司,日本就占了三家。可见日本对色谱填料技术掌控能力的强大。绝大多数商业化的硅胶色谱填料的孔径一般都在10-30纳米,而用于手性硅胶色谱填料的孔径要求达到100纳米,手性色谱用的大孔硅胶比小孔硅胶制备技术难度更大。为了实现球形硅胶色谱填料产业化,纳微投资近5000万元人民币,坚持了十多年跨领域技术研发,最后突破了单分散球形硅胶色谱填料精准制造的世界难题,纳微也因此成为全球首个具备大规模生产单分散球形硅胶色谱填料的公司。纳微不仅填补中国在高性能球形硅胶色谱的空白,而且为世界硅胶色谱填料精准制备技术的进步做出贡献。在此基础上,纳微又研发出超大孔硅胶色谱填料以满足手性色谱填料的要求。电子扫描电镜图对比图及孔径分布对比图可以明显看出纳微大孔硅胶无论是粒径的精确性,粒径均匀性,孔径均匀性,还是球的完整性及机械强度都超过日本产品。超大孔硅胶色谱填料对比图(左-纳微产品,右-国外某公司产品)纳微unisil硅胶填料与国际三大硅胶色谱填料品牌粒径分布对比图纳微unisil大孔硅胶填料与日本大孔硅胶色谱填料孔径分布对比图手性色谱填料是通过在大孔球形硅胶中涂敷或键合带有手性识别位点的材料,主要包括衍生化的纤维素和直链淀粉两大类。为了达到光学异构体拆分的目的,涂覆或键合后的纤维素和直链淀粉必须保持手性结构环境,使得对映异构体间呈现物理特征的差异。纤维素和直链淀粉手性结构容易在涂覆或键合过程中受到破坏,因此制备手性色谱填料不仅对硅胶要求高,对涂覆或键合工艺要求也高,还对纤维素和直链淀粉的本身的结构、分子量、及衍生功能基团都有极高的要求,因此手性色谱填料的制备技术壁垒极高。纤维素和直链淀粉涂覆大孔硅胶制备的unichiral手性色谱填料突破手性色谱填料的制造壁垒,不仅要解决大孔硅胶基球生产问题,还要解决纤维素和直链淀粉生产及其衍生化工艺问题;有了硅胶基球及手性材料后,还要解决涂覆和偶联工艺问题。纤维素和淀粉通常是极为常见而丰富的物质,但能够满足手性色谱填料制备要求的纤维素和淀粉却极难获得,尤其是直链淀粉。全世界上只有日本的一家公司可以买到,但其价格超乎一般人的想象,每公斤直链淀粉的价格高达60万人民币。为了开发手性色谱填料,我们在项目开发期间以这种天价买了日本的直链淀粉,遗憾的是即使用这么昂贵的直链淀粉,做出的手性色谱填料,其性能还是达不到日本公司的水平,因此最好的东西即使我们花天价也不一定能买到。从手性分离填料开发的过程中我们可以发现日本d公司对上下游产业链及其关键材料的掌控程度达到惊人的地步,日本上下游厂家的紧密配合也值得我们学习。这也是为什么这么多年全世界其它公司都无法撼动日本d公司在手性材料的垄断地位的又一原因。过去的二十年,日本被很多国人认为是失落的二十年,但从这件事上可以看出日本并没有失落而是在深耕科技,从原来掌控生产消费端的产品转变成为上游的关键材料,进而掌控产业链源头的技术。去年闹得沸沸扬扬的日本对韩国贸易制裁事件,日本就是通过限制“氟聚酰亚胺”、“光刻胶”和“高纯度氟化氢”等关键材料出口到韩国,就让强大的韩国半导体和显示产业短时间内陷入困境。日本之所以会控制很多产业的关键材料和技术不是因为日本人比别国人聪明,而是日本人有足够的耐心及其精益求精的工匠精神让他们可以把先进材料做到极致,这也是我们中国最该向日本人学习的地方。世界上可以掌握纤维素和直链淀粉的涂覆或偶联技术制备出手性色谱填料的公司屈指可数,但能大规模生产大孔硅胶的公司全世界不到4家,而能大规模生产直链淀粉的公司更是凤毛麟角。纳微是一个专业做微球的公司,制备出能满足手性色谱填料的大孔球形硅胶并不是那么难,但直链淀粉生产技术完全超出纳微的研究领域,因此纳微要突破直接淀粉生产技术,其难度是可以想象。为了解决直链淀粉生产技术问题,纳微一开始是希望与科研院所及专业淀粉公司合作,但合作伙伴最后都没有坚持到成功。为了解决直链淀粉供应问题,纳微不得不自己组建团队边学边做,经过多年的努力和坚持,纳微成功突破直链淀粉生产技术难题并实现规模化生产。从专业来说,纳微科技团队对直链淀粉知识的理解远远不如国内外的专家,但最后能实现产业化,最主要的是保持着耐心和恒心。直链淀粉的生产问题解决之后,纳微接着又解决了涂覆工艺技术问题,最后生产出系列unichiral?手性色谱填料及产品,其分离性能达到国外公司同类材料的水平,而且由于纳微科技自主研发生产的基球粒径均匀,孔径分布窄,使得纳微科技生产的手性色谱填料具有更高柱效,更低的柱压,和更长的寿命。纳微unichiral产品涂覆工艺及产品类型纳微unichiral产品与国外手性色谱填料在分离手性分子效率的对比图纳微unichiral产品实物图例及相关产品订货信息纳微突破手性色谱填料的生产技术这一难题,可以说明耐心和坚持的重要性,只要有足够的付出和努力,足够的坚持,即使一开始看去遥不可及的目标也总有一天可以完成。纳微就是凭借这种坚韧不拔的精神突破了单分散硅胶色谱填料精确制造的世界难题,解决了直链淀粉供应问题,并解决了涂覆工艺问题,最后生产出高性能的手性色谱填料。目前纳微不仅可以提供系列手性色谱填料,而且可以为手性分离纯化方面为客户提供分离纯化整体解决方案,具备生产毫克级到到公斤级甚至百公斤级的手性原料拆分能力。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。图1. 离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图。针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105 Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。成果优势利用高场离子云扫描分析技术,对四种二糖异构体 (海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 沃特世超高效合相色谱系统荣获绿色创新奖
    沃特世ACQUITY UPC2系统荣获绿色创新奖  使用压缩二氧化碳替代有机溶剂作为主要流动相,实现更环保的实验室分离操作  阿姆斯特丹市-2013年6月17日  沃特世公司(纽约证券交易所代码:WAT)的ACQUITY UPC2&trade 系统在法国最重要的实验室科学商业展会&mdash &mdash Forum LABO and BIOTECH 2013上荣获绿色创新奖。ACQUITY UPC2系统主要使用二氧化碳来替代有机溶剂用于色谱分离,在多种应用中表现优异,包括脂溶性维生素、脂类、有机发光二极管(OLED)和手性化合物分析等。  实验室往往需要消耗大量有机溶剂,这些溶剂不仅价格昂贵,并且在使用后进行废液处理也需要更多的费用。许多实验室都根据自身的需求制定了积极的可持续发展目标,并且开始挖掘Waters UPC2技术的潜力来帮助他们实现这些目标,以期在长远发展中上节省大量资金。正相色谱是一种非常消耗溶剂的技术,而ACQUITY UPC2的目标就是取代这种技术。  因此,运营大型实验室的企业对于这项技术的兴趣尤为强烈。 在一段采访录像中,罗氏公司(瑞士巴塞尔)制药部门资深科学家Daniel Zimmerli也谈及UPC2技术在节约溶剂用量方面的潜力,并提出UPC2技术预计能在&ldquo 3到5年内&rdquo 取代正相色谱。  技术创新和企业可持续性举措的增加对SFC和合相色谱重新成为热点起到了重要作用。根据Genetic Engineering and Biotechnology News 6月1日刊登的一篇关于UPC2的文章中写到乙腈生产过程中的碳排放量十分巨大。乙腈是一种常见的LC溶剂,一瓶四升装的乙腈价格在300到400美元之间,并且使用后废液处理成本是这个价格的两倍。由于这一成本,很多机构不得不开始再次审视实验室的有机溶剂消耗。而与此相比,CO2既可以从大气中提取,使用后还能再次排回大气中。正如文中所言,CO2是&ldquo 最易得、最绿色的HPLC溶剂&rdquo 。  UPC2技术以UltraPerformance Convergence Chromatography&trade 原理为基础,采用压缩CO2作为主要流动相。该仪器基于Waters ACQUITY UPLC平台稳定可靠的低扩散设计,非常适合结合亚2微米颗粒技术色谱柱使用。  ACQUITY UPC2系统作为LC和GC的补充技术,已经在制药与生命科学、化工材料、环境以及食品饮料行业得到了广泛应用。这项技术适用于多种化合物,包括大部分有机可溶化合物、大多数有机酸和碱形成的盐类、亲脂性小分子肽和非极性液体。它非常适合分析结构类似的化合物,包括手性异构体、非对映异构体、对映体、位置异构体和结构相似物。几乎所有可溶于有机溶剂的化合物都可以使用合相色谱分析。该技术还可以兼容一些最常用的检测模式,包括质谱等等。  关于UPC2的更多信息和应用纪要请浏览:www.waters.com/upc2  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。  ###  Waters、ACQUITY UPLC、ACQUITY UPC2、UltraPerformance Convergence Chromatography和UltraPerformance LC是沃特世公司商标。
  • 单克隆抗体标准物质电荷异构体研究
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。br//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 272px " src="https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title="图片1.png" alt="图片1.png" width="600" height="272" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办span style="color: rgb(255, 0, 0) "strong第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)”/strong/span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title="图片3.png" alt="图片3.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "strongspan style="text-indent: 0em "欢迎各位专家、同仁报名参会!/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right "供稿:崔新玲 胡志上span style="text-indent: 2em " /span/p
  • 诺奖得主手中的那株青霉菌被首次测序
    1928年,亚历山大?弗莱明(Alexander Fleming)在伦敦圣玛丽医院的医学院工作时发现了第一种抗生素——青霉素(penicillin)。这种抗生素是由青霉属中的霉菌产生的,能够抑制葡萄球菌的生长。凭借此项发现,弗莱明在1945年被授予诺贝尔生理学或医学奖。之后,弗莱明所发现的青霉菌菌种被交给牛津大学的研究小组保存。如今,来自伦敦帝国理工学院、牛津大学和国际应用生物科学中心(CABI)的研究人员利用五十多年前冷冻保存的样本,对这个原始青霉菌菌株开展了基因组测序。这项成果于9月24日发表在《Scientific Reports》杂志上。研究小组还将弗莱明的青霉菌菌株和美国现在大规模生产抗生素所用的菌株进行比较。他们发现,英国菌株和美国菌株生产青霉素的方式略有不同,这可能对抗生素的工业生产有意义。帝国理工学院生命科学系和牛津大学动物学系的Timothy Barraclough教授说:“我们原本打算将亚历山大?弗莱明的青霉菌用于一些其他实验,但让我们惊讶的是,没有人对这个原始的青霉菌基因组进行测序,尽管它在生物界具有历史意义。”尽管弗莱明霉菌因青霉素的发现而闻名,但后来美国研究人员却选择发霉哈密瓜上的霉菌来生产抗生素。他们从发霉的哈密瓜上分离出原始的野生霉菌分离株,经过多轮X射线、化学和紫外线诱变以及人工选择,最终获得青霉素产量高的分离株。在这项研究中,研究团队获得了保存在CABI菌种保藏库中的冷冻样本,并重新培养了弗莱明的原始青霉菌(Penicillium rubens)。他们提取出DNA,利用Illumina MiSeq测序平台开展基因组测序,并将此基因组与先前发表的两种青霉属工业菌株的基因组进行比较。研究人员特别关注两类基因:一类是编码各种酶的基因(pcbAB、pcbC和penDE),青霉菌利用这些酶来产生青霉素;另一类是调控基因,这些基因能够控制酶的产量。他们发现,对于英国和美国的菌株,调控基因有着相同的遗传密码,但美国菌株拥有更多的拷贝,使得菌株产生更多的青霉素。不过,青霉素生产酶的编码基因却不相同。这表明,英国和美国的野生青霉菌经过自然进化,产生了略有不同的版本。像青霉菌这样的霉菌会产生抗生素来对付微生物,而微生物也会不断进化以躲避这些攻击,如此这般,“军备竞赛”不断升级。英国菌株和美国菌株的进化方式可能不同,以适当其当地的微生物。就目前而言,微生物进化已成为一个大问题,因为许多细菌已对我们的抗生素产生了耐药性。研究人员表示,尽管他们尚不清楚英国和美国菌株中不同酶的序列对抗生素有何影响,但这有望带来青霉素生产的新方法。文章的第1作者、帝国理工学院生命科学系的Ayush Pathak表示:“我们的研究有望激发对抗耐药性的新解决方案。青霉素的工业生产主要关注产量,而人为提高产量的步骤导致基因数量的改变。”
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。  针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。    图1.离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图  利用高场离子云扫描分析技术,对四种二糖异构体(海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。    图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 标准解读|化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法
    液相色谱-串联质谱法是一种集高效分离和多组分定性、定量于一体的方法,对高沸点、不挥发和热不稳定化合物的分离和鉴定具有独特优势,成为近年来化学分析中一种重要的检测技术。与高效液相色谱法、气相色谱法相比,高效液相色谱一中联质谱法前处理方法相对简单,基质干扰小,方法灵敏度高,定量和定性(分子结构信息)于一体,因而特别适用化妆品成分测定。 液相色谱-串联质谱法在化妆品行业中测定方法的汇总标准编号标准名称1GB/T 30926-2014化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法2GB/T 30939-2014化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法3GB/T 30937-2014化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法4GB/T 32986-2016化妆品中多西拉敏等9种抗过敏药物的测定 液相色谱-串联质谱法5GB/T 30930-2014化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法6GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法7GB/T 41710-2022化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法8GB/T 32121-2015牙膏中4-氨甲基环己甲酸(凝血酸)的测定 高效液相色谱-串联质谱法9GB/T 34918-2017化妆品中七种性激素的测定 超高效液相色谱-串联质谱法10GB/T 35956-2018化妆品中N-亚硝基二乙醇胺(NDELA)的测定 高效液相色谱-串联质谱法11GB/T 35951-2018化妆品中螺旋霉素等8种大环内酯类抗生素的测定 液相色谱-串联质谱法12GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法13GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法14GB/T 37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定 液相色谱-串联质谱法 GB/T 41710-2022《化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法》标准规定了化妆品中林可霉素和克林霉素的液相色谱-串联质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本文件适用于水剂类、非蜡基膏霜类、乳液类化妆品中林可霉素和克林霉素的测定。 本文件中林可霉素和克林霉素的方法检出限和定量限:检出限均为0.1mg/kg,定量限均为0.3 mg/kg。 制定背景 林可霉素和克林霉素属于大环内酯类抗生素,由于其抗菌活性高,临床应用相当广泛。国家对化妆品中的林可霉素和克林霉素也做了详细规定,林可霉素和克林霉素禁止在化妆品中检出,部分不法商家为了追求产品短期功效,非法添加抗生素,导致抗生素滥用产生耐药性。 本标准中的林可霉素和克林霉素是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 现状分析标准编号分析方法应用范围1SN/T 3585-2013液相色谱、液相色谱串联质谱海产品2GB 29685-2013气相色谱-质谱法动物性食品3GB/T 22946-2008液相色谱-串联质谱法蜂王浆和蜂王浆冻干粉4GB/T 20762-2006液相色谱-串联质谱法畜禽肉5GB/T 22941-2008液相色谱-串联质谱法蜂蜜 在现行的标准中,林可霉素和克林霉素的分析方法有液相色谱、液相色谱串联质谱和气相色谱-质谱法,液相色谱-串联质谱法前处理方法相对简单,基质干扰小,因而特别适用于基质成分复杂物质的测定。
  • Vanquish Core带你探索生命之源
    Vanquish Core带你探索生命之源蛋白质作为生命的物质基础,可以说没有蛋白质就没有生命,而氨基酸作为蛋白质的基本单位,可以说是生命之源。氨基酸分子为手性分子,有左旋和右旋两种光学异构体,被称为L型(左)和D型(右)两种。照常理讲,氨基酸化学反应需要L型氨基酸和D型氨基酸等量搭配作用。但存在于地球上所有的生物体中,氨基酸都为左旋型。这种被戏称为“左撇子地球”的偏差一直是一个谜题。在古生物化石中,我们却能发现D型氨基酸的存在。这是由于生物死亡后埋在地下,有机体在自然条件下也被水解为氨基酸保存在化石中,但氨基酸的左旋体结构慢慢地会向右旋体结构转化,而各种左旋体结构的氨基酸都有自己的“半衰期”,考古学家就可以依据化石中氨基酸左旋体与右旋体的比例来确定化石的年代。目前测定氨基酸通常使用氨基酸专用分析仪或液相色谱仪,而液相色谱法的广泛适用性具有其优势性,但常规液相检测氨基酸的分析中,需要进行衍生化处理,由于氨基酸衍生产物衰减较快,而离线手动衍生操作至进样分析的时间和操作强度很难保证均一,常常导致结果不稳定。Vanquish Core赛默飞全新的Vanquish Core 液相色谱仪,无需繁琐的离线手动衍生化操作,只需2ul以内的样品,利用邻苯二甲醛/ N-异丁酰基-L-半胱氨酸 (OPA/IBLC)在线柱前衍生化,生成非对映异构体衍生物(如图1所示),无需成本较高的手性柱,即可完成L型和D型氨基酸异构体的分离和测定。图1 衍生化过程仪器配置:• 系统底座:Vanquish System Base (VC-S01-A)• 泵:Vanquish Binary Pump C(VC-P10-A-01)• 自动进样器:Vanquish Split Sampler CT(VC-A12-A-02)• 柱温箱:Vanquish Column Compartment C(VC-C10-A-03)• 检测器:Vanquish Fluorescence Detector(VC-D50-A-01)色谱条件:• 色谱柱:Accucore XL C18(150mm×4.6 mm,4 μm,P/N:74104-154630)• 流动相:A:50mM乙酸钠水溶液(pH=6.0);B:乙腈/甲醇/水=45:45:10,流速:1.0 mLmin-1,梯度洗脱见表1表1 梯度洗脱程序• 进样量混标:0.5ul ( 注:在线衍生试剂需0.25 ul)样品:2.0ul ( 注:在线衍生试剂需2.2 ul)• 柱 温:30℃• 检测器:激发波长:230nm,发射波长:450nm,灵敏度:5,灯模式:标准在线针内衍生程序和常规进样方式相比,在线针内衍生方法需要使用Vanquish Core液相的用户自定义进样程序功能(User Defined Program,UDP),氨基酸在线针内衍生程序见图2。图2 在线针内衍生程序Position R:A2, 硼酸缓冲液;Position R:A3, 衍生试剂; Position R:A4, 稀释液(点击查看大图)表2 衍生剂信息色谱图:滑动查看更多(点击查看大图)实验结果与讨论本方法使用OPA/IBLC作为手性拆分衍生化试剂,利用全自动衍生功能的自动进样器进行在线衍生,衍生后直接进样分析,完成了手性异构体氨基酸的分离测定,消除了离线衍生进样时间不同和手工操作造成的误差,不仅提高了结果的准确性,而且大大降低了成本和工作强度。不止于此Vanquish Core 液相色谱仪不仅可用于生命的探索,对于测定我们目前生活密切相关的食品、药品以及化妆品中的氨基酸,Vanquish Core 液相色谱仪也不在话下。其可完全满足《SN/T 5223— 2019 蜂蜜中18 种游离氨基酸的测定高效液相色谱- 荧光检测法》中在线自动衍生法测定氨基酸;而对于中草药中的氨基酸,胶原蛋白、肽类等化妆品中的氨基酸,Vanquish Core液相色谱仪也均可满足测定和研发的需求。另外,Vanquish Core液相色谱仪结合赛默飞du有的电雾式检测(CAD)无需衍生化处理,可直接完成氨基酸的测定,省时省力更经济。
  • 沃特世超高效合相色谱系统荣获全球百大科技研发奖(R&D 100 Award)
    超高效合相色谱系统以其卓越的创新性获得奖项认可美国马萨诸塞州米尔福德市,2013年7月29日&mdash 沃特世公司(WAT)今日宣布:R&D Magazine评选沃特世(Waters) ACQUITY UPC2TM系统为&ldquo 过去一年中进入市场的最具技术影响力的100种产品&rdquo 之一。 ACQUITY UPC2系统是首款基于超高效合相色谱(UltraPerformance Convergence ChromatographyTM ,UPC2)技术的新型分离工具。作为LC和GC的补充技术,ACQUITY UPC2系统高效、稳定且可靠,它采用压缩二氧化碳替代有机溶剂作为主要流动相组分,因此对于许多行业的多种应用(包括手性和非手性)来说是一种更为环保的替代选择。 &ldquo 我们对ACQUITY UPC2系统获得R&D Magazine第51届年度全球百大科技研发奖的认可感到无比自豪,&rdquo 沃特世公司总裁Art Caputo说道,&ldquo ACQUITY UPC2自推出以来,已经在我们服务的所有领域获得了广泛的应用&mdash 包括制药、食品、环境、化工材料和临床研究应用。现在,我们比以往任何时候都更加确信,ACQUITY UPC2是一个适用范围广泛的互补分析平台,它将与液相、气相色谱并肩成为现代实验室分析的三大关键分离技术之一。&rdquo ACQUITY UPC2系统曾经获得的奖项:- 2012年Pittcon撰稿人最佳新产品金奖- SelectScience.net的2012年最佳新型分离产品科学家选择奖- 2013年Forum LABO& BIOTECH第一届创新奖的绿色创新奖杯关于沃特世ACQUITY UPC2系统UPC2技术以超高效合相色谱原理为基础,采用压缩二氧化碳作为主要流动相组分。该仪器基于沃特世ACQUITY UPLC平台稳定可靠的低扩散设计,非常适合与亚2微米颗粒技术结合使用。这项技术适用于多种化合物,包括大部分可溶性有机化合物、大多数有机酸和碱形成的盐类、亲脂性小分子肽和非极性溶质。它非常适合结构类似的化合物,包括手性实体、非对映异构体、对映异构体、位置异构体和结构类似物。几乎所有可溶于有机溶剂的化合物都可以使用合相色谱进行分析。该技术还可以与一些常用的检测模式联用,包括沃特世质谱仪全系产品。已采购ACQUITY UPC2系统的实验室发现,它能够完美适用于手性分离,可作为溶剂消耗量较大的正相LC的替代方法。帮助实验室达成可持续发展目标以实验室为基础的机构通常需要消耗大量有机溶剂,这些溶剂不仅价格昂贵,并且在使用后进行弃置处理时更是需要加倍的费用。许多这样的机构都根据自身的需要制定了积极的、可持续的发展目标,并且开始挖掘沃特世UPC2技术的潜力来帮助他们满足这些目标,以期在长远角度上为他们节省大量资金。因此,拥有大型实验室的企业对于这项技术的兴趣尤为强烈。在一段采访录像中,罗氏公司(瑞士巴塞尔)制药部门的一位资深科学家Daniel Zimmerli也谈及UPC2技术在节约溶剂用量方面的潜力,并提出UPC2技术预计能在&ldquo 3到5年内&rdquo 取代正相LC。技术创新和企业可持续性举措的增加对SFC和合相色谱重新成为热点起到了重要作用。根据《基因工程和生物技术新闻》近期刊登的一篇关于UPC2的文章报道,乙腈生产过程中的碳排放量十分巨大。乙腈是一种常见的LC溶剂,一瓶四升装的乙腈价格在300到400美元之间,并且使用后弃置成本是这个价格的两倍。目睹这一成本,广大机构不由得开始再次审视实验室的有机溶剂消耗。而与此相比,二氧化碳既可以从大气中提取,使用后还能再次排回大气中。正如文中所言,二氧化碳是&ldquo 最易得到、最绿色的HPLC溶剂。&rdquo 自1962年开始角逐奖项以来,沃特世曾经六次获得R&D 100 Award,获奖的产品包括M6000 HPLC泵、U6K进样器、高温凝胶渗透色谱、径向压缩模块、Oasis 96孔(微孔)洗脱萃取板和ACQUITY UPLC系统。关于全球百大科技研发奖(R&D 100 Award)由R&D Magazine举办的每年一度的全球百大科技研发奖评选如今已进入第51个年头,该奖项主要奖励在过去12个月内推出的100项最具技术影响力的产品。产品或工艺必须在评比前一年内上市销售或注册才拥有评比资格,由独立的专家小组选出最终获胜者。多年以来,R&D 100 Award甄选出了很多家喻户晓的获奖产品,例如Polacolor胶片(1963)、立方闪光灯(1965)、自动取款机(1973)、卤素灯(1974)、传真机(1975)、液晶显示器(1980)、触摸屏和彩图打印机(1986)、Kodak Photo CD (1991)、Nicoderm戒烟贴(1992)、数字盒式磁带(1993)、Taxol抗癌药物(1993)和Power Beat汽车电池(1994)。R&D Magazine将会在其九月/十月的刊物上登出获奖者及其产品,并在11月7日于佛罗里达州奥兰多举行庆典,庆祝他们的成就。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。# # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的商标。
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • 岛津推出二十烷以及其同分异构体的超快速LC/MS/MS同时检测方案
    在疾病研究中二十烷担负着重要作用,本方案将二十烷以及其同分异构体及代谢物50种成分的MRM条件最优化,建立了由54个通道组成的同时检测法。使用LCMS-8040对多成分检测,定量限达到pg以下。 花生四烯酸串联是非常重要的代谢路径之一,作为其代谢产物的二十烷以及其同分异构体及代谢物的同时分析方法,在疾病研究中起到重要作用。LC/MS/MS的MRM测定具有高灵敏度与高选择性,广泛应用于二十烷的分析,但随着成分数的增多,从分离・ 离子化的观点来看,现在很难获得稳定的分析结果。本方案使用快速LC/MS/MS系统开发了全面地定量分析二十烷和其类似物的新方法。 本方案作为全面、快速、高灵敏度分析脂信号分子的方法行之有效。 了解详情,请点击&ldquo 基于超快速LC/MS/MS的二十烷以及其同分异构体的同时分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 沃特世对超高效合相色谱寄予厚望
    沃特世对超高效合相色谱ACQUITY UPC2寄予厚望  仪器信息网讯 2012年10月16日,第六届慕尼黑分析生化展期间,沃特世公司(Waters)召开媒体午餐会,二十多家行业及大众媒体到场。沃特世向各媒体代表介绍了公司概况及产品,并在其上海公司接受了仪器信息网等4家媒体的专访。ACQUITY UPC2TM系统是此次专访的焦点。沃特世首次面向中国市场展出ACQUITY UPC2  2012年3月,沃特世发布世界首款超高效合相色谱ACQUITY UPC2,并夺得今年的Pittcon“撰稿人”奖金奖。此次慕尼黑分析生化展上,沃特世首次面向中国市场展出这款产品。在对ACQUITY UPC2的介绍中,沃特世使用了“再次重新定义色谱分离科学”这样的文字,究竟何谓超高效合相色谱?该产品是否能够“重新定义色谱分离科学”?超高效合相色谱的市场前景如何?专访期间,笔者就这些问题提问了沃特世公司战略项目总监Barry Upton、市场发展总监舒放及市场服务总监Clara Ng,沃特世公司制药市场发展经理黄静陪同接受采访。  Instrument:何谓超高效合相色谱?它的技术优势是什么?  Barry Upton:超高效合相色谱(UltraPerformance Convergence Chromatography™ ,简称UPC2)是分离科学的一个全新类别,它结合了沃特世公司的UPLC技术及成熟的SFC(超临界流体色谱)理论,可以分离、检测和定量结构类似物、同分异构体、对映异构体和非对映异构体混合物等目前实验室技术难以处理的物质或样品等。由于将CO2作为主要流动相,它大幅度降低了有机溶剂的使用。Barry Upton在沃特世媒体午餐会上介绍公司及产品  UPC2可以取代当前的手性和正相色谱分析方法,因为它在分析速度、灵敏度以及分辨率上具有明显的优势 对于极性范围很大、极性很大或者极性很小的样品,UPC2的优势会很明显。  Instrument:贵公司为何称ACQUITY UPC2“再次重新定义色谱分离科学”?  舒放:沃特世在成功推出UPLC之后面临的一个考虑是,未来技术创新要朝哪个方向发展?我想我们的抉择就是SFC。我们在2008年收购了全球最大的SFC生产厂商Thar Instruments,然后于2011年推出UPSFC,接着在今年推出了UPC2并获得Pittcon“撰稿人”奖金奖。在用户试用UPC2之后我们发现,它的应用范围绝不仅仅局限在SFC先前的应用范围之内。UPC2之所以能获得Pittcon金奖,我想是因为它让评委们看到了色谱技术的新的发展方向。舒放向媒体代表介绍SFC、LC、GC技术原理  实际上SFC理论早在1965年就已出现并得到公认,按照这个理论,它既可分析气相色谱(GC)不适应的高沸点、低挥发性样品,又比高效液相色谱(HPLC)有更快的分析速度和条件,有如此一些优势却迟迟得不到很好地推广,最主要的问题在于它的检测结果重现性不好。UPC2克服了这些技术弊端,大幅提高了SFC的分辨率、灵敏度和分析速度,重现性也非常好。  Barry Upton:2004年UPLC的推出是分离科学发展史上的一个里程碑,我们同样认为UPC2的推出也会对分离科学的发展带来重大影响。UPLC“重新定义”了填料颗粒的大小,而我们这次则是在流动相上做起了“文章”,UPC2有很好的应用前景,甚至是前所未知的应用。  Instrument:未来,UPC2是否会取代SFC?从技术层面而言,它与LC和GC是完全互补的关系还是部分替代的关系?  Barry Upton:UPC2使用的就是SFC理论,可以将它理解为一种SFC技术,它肯定可以取代当前所谓的常规或分析型SFC。  UPC2与LC、GC之间更多的是一种互补关系,它可以解决两者所难解决或者边缘性的分析问题,不过在一些方面,也可以替代LC、GC的部分工作。  Instrument:贵公司如何看待超高效合相色谱的市场前景?目前欧美市场对它的接受程度如何?  Barry Upton:我想UPC2最终会在市场上成为与LC、GC并驾齐驱的技术,它将成为一种常规的实验室分析仪器。目前,它在药物分析、化工、食品和环境领域已经得到成功的应用,此外我们还在开发它的其它应用,我相信它的市场会越来越大。  UPC2现在北美和欧洲的接受度比较高,特别是大的制药公司,他们比较能够接受这项新技术,因为它能分析很多不同成份甚至是之前没有观察到的组分,而且节省了有机溶剂消耗,能为他们节省投资。  舒放:有两类人群是很容易接受UPC2的:一种是技术敏感人群,另一种是对投资回报敏感的人群。我认为,市场对任何一种新技术都需要一定的反应时间,我们对UPC2的前景抱有很大的期望,它还有很多应用尚待我们挖掘,这恰恰也是UPC2充满魅力的地方。我们很欣喜地看到在欧美市场,已有不少企业接受了这一新的技术并对它充满信心。沃特世公司本届慕尼黑分析生化展位(虽然沃特世还有LC、MS、耗材等产品线,但只有ACQUITY UPC2有实物展出,看出沃特世公司对它的重视和期待)  Instrument:目前ACQUITY UPC2的检测器、色谱柱配置情况如何?它对作为流动相的CO2的规格有什么要求?  黄静:ACQUITY UPC2目前配有4款1.7μm颗粒的色谱柱,它也兼容所有在SFC上使用的柱子,不需要做任何调整。  ACQUITY UPC2可以配套的检测器包括:二极管阵列检测器(PDA)、蒸发光散射检测器(ELSD)、质谱(MS、MS/MS)。  而关于流动相CO2,要求纯度在99%以上,99.9%或纯度更高的CO2则更好。这些规格的CO2国内很多厂家都能提供。  Instrument:ACQUITY UPC2的易用性如何?  黄静:跟UPLC比起来,它的硬件系统并不是全新的,配置的软件类型是一样的。对用户的操作要求并不高。  Barry Upton:我想让大家知道的一点是,UPC2会减少样品前处理的步骤,无论是什么溶剂溶解的样品,简单过滤之后就能直接进样。避免了正相和反相色谱由于对一些溶剂的“忌讳”而需进行的旋蒸等样品前处理环节。整体而言,UPC2比LC还要好用。  媒体采访合影    附录1:仪器信息网“仪器论坛”关于UPC2的典型讨论  【讨论】Waters推出超高效合相色谱UPC2,大家怎么看?  【讨论】Waters最近推出了超临界流体色谱,请大家都来说说   附录2:沃特世科技(上海)有限公司(Waters)  http://waters.instrument.com.cn
  • 清华大学脂质同分异构体及小型质谱研究成果登Nature子刊
    p  最新一期的Nautre Methods杂志对清华大学瑕瑜课题组和欧阳证课题组在脂类同分异构体及小型质谱技术研究中取得的进展进行了报道。长期以来,质谱小型化技术被国外研究机构所垄断,欧阳证课题组的研究为我国在质谱仪的研发与产业化领域争取到了“原创话语权”。脂类同分异构体中C=C双键位置的确定在全世界一直是难点,瑕瑜课题组利用Paternò –Bü chi反应找到了定位C=C双键的方法,为脂质组学开辟了一个全新的研究维度。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/256c243d-6a9f-40d6-a0d8-13f84fb196f5.jpg"//pp style="text-align: center "span style="font-family: 楷体,楷体_GB2312, SimKai "Nautre Methods杂志是Nature子刊,影响因子25.06,主要提供生命科学领域的新方法和基础研究技术重大进展的相关报道/span/pp  span style="color: rgb(79, 129, 189) "strong根据C=C做脂质组学定性、定量分析/strong/span/pp style="text-align: center "img title="1.jpg" style="width: 230px height: 295px " src="http://img1.17img.cn/17img/images/201801/insimg/ac5de0cd-a2ab-4b34-a39f-a9f38337697c.jpg" height="295" hspace="0" border="0" vspace="0" width="230"//pp style="text-align: center "strong清华大学教授 瑕瑜/strong/pp  瑕瑜长期从事生物质谱为基础的气相化学自由基研究,一个偶然的机会,瑕瑜课题组的马潇潇博士(现为清华大学精密仪器系助理教授)在进行光化学自由基反应时发现受激发的丙酮与脂质C=C反应的结果并没有形成断裂加成峰,而是整个丙酮加到脂质分子上去。查阅资料之后,发现这是一个已知反应Paternò -Bü chi(PB反应)。根据PB反应的机理就能够清晰地解析离子碎裂谱图从而确定C=C位置。“这个发现对确定脂质同分异构体C=C位置,以及进行脂质定量分析非常有帮助。”瑕瑜说。/pp style="text-indent: 2em "从2014年发表第一篇文章起,他们将这一理论应用在了脂质组学研究中。 PB反应在鸟枪法策略中进行脂质同分异构体的定性与定量分析的研究已经取得了成功。目前,PB反应在液质联用策略中的脂质组学分析研究工作也已经完成。瑕瑜表示:“液质联用分析脂质组学能够得到更多的分子信息,应用面会更加广泛。将PB反应用在这个技术中,能够给脂质组学的发展提供更多机会。”/pp  strongspan style="color: rgb(79, 129, 189) "小型质谱技术简化脂质分析工作流程/span/strong/pp style="text-align: center "img title="2.jpg" style="width: 230px height: 295px " src="http://img1.17img.cn/17img/images/201801/insimg/e3ddfcc2-869d-4a4b-a052-469cdb80b27a.jpg" height="295" hspace="0" border="0" vspace="0" width="230"//pp style="text-align: center "strong清华大学教授 欧阳证/strong/pp  不同双键位置揭示的是不同的代谢通路,不同的发病机理,通过脂质同分异构体的定性与定量分析,可应用于临床诊断。现有的商业脂质解析数据库并不包括脂质C=C位置信息,并不能进行脂质同分异构体的定性与定量分析。目前,欧阳证与瑕瑜的研究团队正在进行基于小型质谱的包含C=C位置信息的脂质组学分析工作。“我们希望让更多做脂质组学研究的人知道这个技术,并通过建立数据库帮助到需要了解脂质C=C信息的研究。”欧阳证在谈到该数据库的建立时说,“事实上,我们将要建立的不止是一个数据库,而是包括前端液相方法、PB反应、质谱方法、数据库与软件分析在内的整体工作流程。”/pp style="text-indent: 2em "该工作已取得了一系列产业化成果,由欧阳证创立的清谱科技在10月份召开的BCEIA2017上推出了Mini β小型质谱仪、脂质组学双键定位系统Ω反应器以及MS Mate快速检测方案,结合了PB光化学反应的特异性、高效性以及质谱检测的特异性和灵敏度,可实现脂质中双键的快速定位、精准定量、全方位读取。此外,搭载的庞大的数据库可以实现数据检索、数据读取、报告生成一体化工作流程。/pp style="text-align: center "img title="3.jpg" style="width: 400px height: 290px " src="http://img1.17img.cn/17img/images/201801/insimg/9b657d8e-0702-4f7b-a363-4b1a7a569ed6.jpg" height="290" hspace="0" border="0" vspace="0" width="400"//pp style="text-align: center "strongMini β小型质谱仪/strong/pp  Mini β小型质谱仪与液质联用分析脂质组学的方法相比,突破了实验室环境的束缚,其简化的工作流程,大大降低了对操作人员专业性及检测环境的要求,可在现场检测,更利于质谱脂质分析走向临床、基层。/pp  更多详细内容:/pp style="text-align: left text-indent: 2em "a title="" href="http://www.instrument.com.cn/news/20170616/222209.shtml" target="_blank"span style="color: rgb(79, 129, 189) "C=C位置探索思路或将发现脂质生物标志物——访清华大学瑕瑜教授、欧阳证教授/span/a/pp style="text-align: left text-indent: 2em "a title="" href="http://www.instrument.com.cn/news/20171013/230960.shtml" target="_blank"span style="color: rgb(79, 129, 189) "十年一剑 欧阳证带领清谱科技推出Mini β小型质谱分析系统/span/a/p
  • 沃特世超高效合相色谱获匹兹堡编辑金奖
    UPC2技术架起了联接LC与GC的桥梁,为实验室解决复杂分析问题提供了一种新选择奥兰多,福罗里达州沃特世公司(WAT:NYSE)的新产品沃特世ACQUITY UPC2™ (ACQUITY 超高效合相色谱)系统,今天在2012年分析化学和应用光谱学匹兹堡会议上荣膺最佳新产品,获得了颇具声誉的2012匹兹堡编辑金奖。ACQUITY UPC2系统运用了超高效合相色谱(UPC2)的原理扩展了反相液相色谱法(LC)和气相色谱法(GC)分离的界限,提供了一种能够补充正相色谱的选择。沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。沃特世公司总裁Art Caputo致辞说:“我们谨代表沃特世公司遍布全世界的所有员工,最诚挚地感谢匹兹堡大会的编辑们对全新ACQUITY UPC2系统,及其为分离科学带来的新范畴的认可。”“自从61年前成立以来,匹兹堡大会就已经跻身于重要年会的行列,科研人员借此之际了解能够帮助他们加快研发速度、揭示全新真相,以及进一步推动科学发展的最新实验室科技发展。2004年匹兹堡大会的编辑们授予了ACQUITY UltraPerformance LC(UPLC)最佳金奖。从此之后,全世界数以千计的知名实验室采用了ACQUITY UPLC系统,从而改变了色谱分析的模式和影响。我们坚信,ACQUITY超高效合相色谱在LC和GC技术之间架起了一座桥梁,因此她具备同样的潜质——很显然,知名的科学编辑们也同意这一点。”控制压缩的CO2拓宽了分离的选择压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。配以业界领先的亚2微米颗粒色谱柱,沃特世的ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、系统压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留——这些化合物以任何其他方法分离通常都是困难的。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。ACQUITY UPC2系统是沃特世公司高品质产品设计与研发经验悠久历史的结晶,它体现了沃特世品牌的耐用性、可靠性和易用性。它的主要特点包括:10微升的固定进样环可实现所载样品进行体积为0.5微升至10微升的部分进样,消除了更换进样环的需求。 减少了系统容积,可以缩短运行时间、优化梯度性能、减小带宽,使用更小粒径的色谱柱。 助溶剂和色谱柱切换功能,可以快速地筛选溶剂和色谱柱,提高了方法开发的灵活性。 梯度的准确性与精确性保证了保留时间的重现性。 改善了光学检测和MS的兼容性,可以进行定量和定性分析。 由于其具有溶剂载量少、分离度高、峰形窄、分离速度快等特点,因此也可以作为MS的完美接口。无论您需要对天然产物、传统药物、药品、食品添加剂或污染物、杀虫剂、表面活性剂、聚合添加剂、脂质或生物燃料进行分析,沃特世ACQUITY UPC2系统都能呈现给您无与伦比的分离性能和峰形。与所有以ACQUITY为基础的产品一样,ACQUITY UPC2系统将沃特世在化学行业领先的信息软件以及专家支持方面最大化的优势。目前,ACQUITY UPC2系统已经与LC和GC并驾齐驱,成为实验室应对极其困难分离问题的有力武器。了解更多信息:www.waters.com/upc2关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 瑕瑜团队新成果:基于质谱的脂质异构体分析有助于疾病诊断与靶点发现
    近期,清华大学化学系瑕瑜教授课题组与清华大学药学院尹航教授课题组以及北京清华长庚医院王韫芳研究员团队合作在Angew. Chem. Int. Ed杂志上发表了题为 “sn-1 Specificity of Lysophosphatidylcholine Acyltransferase-1 Revealed by a Mass Spectrometry-based Assay” 的文章。第一作者为清华大学化学系博士生赵雪与梁家琦,通讯作者为瑕瑜教授。该工作首次揭示磷脂酰胆碱酰基转移酶1(LPCAT1)在合成胆碱甘油磷脂 (PC)时对甘油骨架的sn-1位置具有选择性 该选择性与LPACT1在人肝细胞癌组织中的高表达直接导致了sn位置异构体PC 18:1/16: 0的显著升高。以上研究对于发展基于脂质异构体分析的新型疾病诊断与靶点发现具有启示意义。  LPCAT1是细胞内PC的合成通路中脂质重塑过程关键的酶。已有相关研究表明,LPCAT1在多种癌症组织中表达上调并且对饱和或单不饱和的酰基辅酶具有选择性。然而LPCAT1对甘油骨架sn位置的选择性还尚不明确,这主要是由于sn位置异构体难以区分与定量。2019年瑕瑜教授课题组利用PC碳酸氢根加合物([PC+HCO3]-)在串级质谱中碎裂产生的“sn-1 frag.”实现了sn位置异构体的定性与定量(Zhao X, Xia Y, et al. Chemical Science, 2019, 10:10740)。基于此,本工作建立了测定LPCAT的sn位置选择性的LC-MS流程。作者以sn-1 LPC和sn-2 LPC的混合物为底物,LPCAT1过表达的HEK 293T细胞膜碎片作为酶源,加入酰基辅酶,37℃下进行孵育。酶反应产物通过反相液相色谱(RPLC)中分离及质谱检测 其与内标的色谱峰面积比对总的合成产物(sn位置异构体之和)进行定量。继而对酶反应产物的碳酸氢根加合物进行串级质谱分析,通过“sn-1 fragment”的百分比对sn位置异构体进行定量(分析流程如图1)。继而通过建立sn-1 LPC和sn-2 LPC的酶反应动力学曲线,比较动力学常数来确定sn位置选择性。  图1. LC-MS/MS流程用于定量分析LPCAT催化所产生的PC sn位置异构体  鉴于不同分子量的PC分子可以在RPLC中分离,该流程可以同时测定LPCAT1对多种酰基辅酶(如,17:0-CoA, 18:1-CoA和20:4-CoA)的选择性。结果显示LPCAT1对三种酰基辅酶均表现出活性,20:4-CoA的活性最低。当LPCAT1将三种酰基辅酶连接到甘油骨架上时,均选择性的加在了sn-1位置,即只合成了PC 17:0/16:0,PC 18:1/16:0和PC 20:4/16:0。因此,基于图1的LC-MS/MS分析流程,该研究首次明确了LPCAT1对甘油骨架的sn-1位置具有选择性。  已有研究表明LPCAT1在肝细胞癌组织中表达上调。为了探究肝细胞癌中PCsn位置异构体的组成是否会受到LPCAT1对sn-1位置选择性的影响,该工作对人肝细胞癌组织和正常肝组织中PC的sn位置异构体进行LC-MS/MS分析。结果显示PC 18:1/16:0在肝细胞癌组织中显著上升。该工作进一步对常用的肝癌细胞系HepG2中的LPCAT1进行敲降,敲降后PC 18:1/16:0的含量显著下降。这表明肝细胞癌组织中PC 18:1/16:0的含量与LPCAT1对sn-1位置的选择性以及LPCAT1的表达上调直接相关。更重要的是,解吸电喷雾电离质谱(DESI)对PC 18:1/16:0的分布成像与人肝细胞癌组织连续切片的LPCAT1的免疫荧光成像以及H&E染色高度吻合(图2)。因此PC 18:1/16:0可能作为新型生物标志物,用于划分癌变区域和癌旁区域。  图2. 人肝细胞癌组织连续切片H&E染色(a)组织中LPCAT1的免疫荧光成像(b)以及DESI MS2 对PC 16:0_18:1的sn位置异构体分布的成像(c, d)  总的来说,该工作建立了用于测定LPCAT的sn位置选择性的快速、灵敏、高通量的LC-MS/MS分析流程。它深度剖析了组织中sn位置异构体的组成、分布与酶的功能、分布的关系 阐明了脂质异构体作为新型生物标志物用于疾病的诊断与治疗的巨大潜力。不过其他几种LPCAT在连接酰基辅酶时对sn位置选择性还有待进一步研究。
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 【Q&A】手性药物合成、纯化与表征技术进展
    p style="text-align: justify text-indent: 2em "首届“span style="color: rgb(0, 112, 192) "strong手性药物合成、纯化及表征技术进展/strong/span”主题网络研讨会圆满落幕。会议上共有4位专家老师为大家带来了精彩的报告。针对报告中的内容,大家展开了积极的讨论。本会汇总了网友的相关问题以及专家的权威解答。/pp label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 155, 155) "Questions & Answers/spanbr//pp1,网友- m3190541 (14:51:39)/ppstrongspan style="color: rgb(255, 0, 0) "安东帕多波长旋光仪都可以设哪些波长?/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong胡伟 (15:04:32):/strong/span365 nm,405 nm,436 nm,546 nm,578 nm,589 nm,633 nm等波长。/pp style="margin-top: 15px "2,网友- Insm_d8fd8220 (14:52:06)/ppstrongspan style="color: rgb(255, 0, 0) "请问老师,是否可以结合显微技术一起做?/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong胡伟 (15:06:50):/strong/span这个需要有探头伸进腔体,所以显微不太合适。/pp style="margin-top: 15px "3,网友- m3010836 (14:59:57)/ppspan style="color: rgb(255, 0, 0) "strong微波合成仪无法回流吧?/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong胡伟 (15:06:11):/strong/span拉曼探头是可以隔着玻璃管进行检测的。/pp style="margin-top: 15px "4,网友- Insm_0dbf3a70 (15:00:27)/ppspan style="color: rgb(255, 0, 0) "strong旋光仪检测什么物质呢?/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong杨金囤 (15:53:54):/strong/span测量有旋光性质的溶液的旋光度,可以计算样品浓度、纯度等。br//pp style="margin-top: 15px "5,网友- 186****3862 (15:18:03)/ppspan style="color: rgb(255, 0, 0) "strong帕尔贴控温还有其他应用吗?/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong杨金囤 (16:00:24):/strong/span我知道的一个例子是,北方室外安装的仪表,在仪表箱里可以安装帕尔贴控温装置,夏天致冷,冬天加热,保证仪表在正常操作温度下工作。比安装空调要简单省事,费用也低。/pp style="margin-top: 15px "6,网友- 186****3862 (15:27:31)/ppspan style="color: rgb(255, 0, 0) "strong玻璃旋光管有什么优势?不锈钢的有什么好处?/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong杨金囤 (16:09:15):/strong/span两种旋光管都有不同的适用样品。另外,玻璃旋光管透明,可以看到内部样品,不锈钢旋光管导热性更好。/pp style="margin-top: 15px "7,网友- p3307088 (16:11:16)/pp style="text-align: justify "span style="color: rgb(255, 0, 0) "strong王老师,我们做分析,对于手性化合物的分离,尤其是色谱柱的筛选一直很头疼,对于色谱柱填料的筛选有没有什么常识性的建议?/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong王玉记(16:32:18/strong/spanspan style="color: rgb(0, 112, 192) "strong):/strong/span如果是非对映异构体的分离,可以自己摸索+结合文献类似的结构;但如果是对映异构体,一定要看文献。还要补充的就是,可以试试手性柱子,我们有ADH的手性柱,但是分离成功率不高,经常因为溶解度和流动相不合适,没法分离。/pp style="margin-top: 15px "8,网友- v3240216 (16:11:09)/ppspan style="color: rgb(255, 0, 0) "strong请问老师,旋光测试与EE值测试,哪个更能准确反映手性纯度?/strong/spanstrongspan style="color: rgb(255, 0, 0) "ee值和旋光度能互相代替吗?/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong王玉记 (16:31:31):/strong/spanee值的计算主要基于测量数据,特别是LC-UV-MS的数据;旋光值的准确性主要看仪器。一般来说ee值比较关键,旋光仪参差不齐,数据飘得厉害,我主要是参考一下。/pp style="line-height: 16px margin-top: 20px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_rar.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202008/attachment/03ccc889-2ebd-475f-9ac6-475fcdf5fb93.rar" title="20-0821手性药物会议-王玉记老师资料.rar"20-0821手性药物会议-王玉记老师资料.rar/a/pp style="margin-top: 15px "相关资料请关注strong会议主页/strong:/pp style="margin-top: 5px "a href="https://www.instrument.com.cn/webinar/meetings/chiraldrug2020/" target="_blank"https://www.instrument.com.cn/webinar/meetings/chiraldrug2020//a/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/chiraldrug2020/" target="_blank"img style="max-width: 100% max-height: 100% width: 553px height: 184px " src="https://img1.17img.cn/17img/images/202008/uepic/f5d7db4a-de88-49b9-8a4d-c8b20eaf0598.jpg" title="1035_345fenzi.jpg" alt="1035_345fenzi.jpg" width="553" height="184"//a/p
  • 护肤品中活性成分玻色因的分析检测
    护肤品中活性成分玻色因的分析检测秦旭阳 金燕玻色因(Pro-xylane,羟丙基四氢吡喃三醇)是一种从木糖衍生而来的糖蛋白混合物,而木糖大量存在于山毛榉树中,因此玻色因最初是从山毛榉树中提取分离得到的。玻色因通过促进胶原蛋白合成来增加皮肤弹性。皮肤会随着衰老而逐渐失去弹性,细胞的活性也开始下降,降低或不再生成促进胶原蛋白的合成。而玻色因可以激活粘多糖的合成,促进IV型和VII型胶原蛋白的合成,通过这种促进合成,增加胶原蛋白纤维数量,使我们的表皮层和真皮层更加稳固,紧密,让皮肤重新变得饱满充盈,变得更加紧致和富有弹性。 玻色因还可以通过刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤皱纹。皮肤细胞外基质中的GAGs以网状结构存在,可防止皮肤水分流失,连接皮肤中的各组织,维持皮肤的弹性和紧致。随着皮肤衰老,合成GAGs的能力不断下降,导致皮肤松弛,产生皱纹。而玻色因可以刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤弹性、有效缓解皮肤皱纹。 研究发现玻色因改善皮肤弹性和缓解皮肤衰老的功效,因此化妆品企业便进行大规模的人工合成,并添加进各种护肤品中,深受广大消费者的欢迎。 由于玻色因没有紫外吸收,一般采用通用型检测器进行检测。同时护肤品的基质较为复杂,容易产生干扰,因此对检测器灵敏度有着较高的要求。而CAD电雾式检测器作为新型通用型检测器,较传统紫外检测器、ELSD检测器等有着独特的优势:分析物既不需要发色团也不需要离子化,适用于不挥发及半挥发化合物的高灵敏度检测。CAD检测器有更高的灵敏度、更宽的线性范围、更好的重现性,非常适合作为主要检测手段。本实验利用Vanquish Core液相色谱系统和Charged Aerosol Detector H电雾式检测器来分析护肤品中的玻色因。 仪器配置:Vanquish Core系列泵:Quaternary Pump C自动进样器:Split Sampler CT柱温箱:Column Compartment C检测器:Charged Aerosol Detector H 色谱条件:分析柱:Shodex Asahipak NH2P-50 4E 4.6 mm×250 mm,5 μm柱 温: 30℃CAD检测器参数:过滤常数:3.6s,雾化温度:50℃,采集频率:5Hz流动相:乙腈:水(85:15)流速:0.8mL/min进样量:5µL稀释溶剂:乙腈:水(50:50) 实验结果与讨论:玻色因是由两个非对映异构体组成的混合物(Isomer 1和Isomer 2),故CAD图谱表现为两个峰。玻色因对照品色谱图Isomer 1和Isomer 2在0.0586~1.172mg/mL范围内线性良好,相关系数R2 0.999。对照品溶液连续进样5针,其中 Isomer 1峰面积RSD为1.94%,Isomer 2峰面积RSD为2.31%。本方法Isomer 1和Isomer 2检测限为0.0586mg/mL (S/N4),定量限为0.1172mg/mL(S/N10)。对照品检测限色谱图样品前处理简单,样品经溶剂稀释后可直接进样分析。两种护肤品精华液色谱图由实验结果可知,本方法利用CAD电雾式检测器检测护肤品中的玻色因,样品前处理简单,灵敏度高,分离度和重复性好,抗干扰能力强,适合常规的产品质量控制。
  • 饮料中棒曲霉素(展青霉素)的测定(SPE-LC/MS)
    了解详情请进入安谱公司网站:http://www.anpel.com.cn/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制