当前位置: 仪器信息网 > 行业主题 > >

溶血磷脂酰胆碱对照品

仪器信息网溶血磷脂酰胆碱对照品专题为您提供2024年最新溶血磷脂酰胆碱对照品价格报价、厂家品牌的相关信息, 包括溶血磷脂酰胆碱对照品参数、型号等,不管是国产,还是进口品牌的溶血磷脂酰胆碱对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溶血磷脂酰胆碱对照品相关的耗材配件、试剂标物,还有溶血磷脂酰胆碱对照品相关的最新资讯、资料,以及溶血磷脂酰胆碱对照品相关的解决方案。

溶血磷脂酰胆碱对照品相关的资讯

  • 血浆甘油磷脂与生活方式和心血管代谢性疾病风险研究获进展
    中国科学院上海营养与健康研究所研究员林旭研究组与中国科学院分子细胞科学卓越创新中心研究员曾嵘研究组合作,分别在Diabetologia、The American Journal of Clinical Nutrition上,发表了题为Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese、Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women的研究论文。  近几十年来,我国居民的肥胖、代谢综合征及糖尿病等心血管代谢性疾病的患病率快速攀升,威胁居民健康。健康的生活方式是国际公认的预防和控制这类疾病经济有效的方法,但目前人们对其在疾病过程中的复杂影响和调控路径认识有限。近年来,包括脂质组在内的代谢组学技术的快速发展,为发现疾病早期的生物标记物、阐释疾病发生发展相关的代谢通路和调控因素提供了契机。在诸多脂质分子中,甘油磷脂(glycerophospholipid, GPLs)作为哺乳动物细胞膜含量丰富的磷脂,参与了多种生理功能,如细胞信号传导、脂蛋白分泌和代谢,以及内质网、线粒体的功能等。大量动物研究提示,GPL代谢紊乱能引发内质网应激、以及肥胖、胰岛素抵抗、血脂异常等代谢异常。迄今为止,国际上有关GPL与糖尿病、代谢综合征的前瞻性队列研究有限,尤其是在亚洲人群中的研究十分匮乏。  林旭团队与曾嵘团队合作,通过采用高通量靶向液相色谱-电喷雾串联质谱法定量检测了2248名参加“中国老龄人口营养健康状况研究”志愿者的基线血浆脂质组(728种脂质),其中包括160种GPLs。林旭组博士生陈双双和副研究员孙亮等在GPL与糖尿病的相关研究(Diabetologia)中发现:(1)8种GPLs [1种溶血磷脂酰胆碱、6种磷脂酰胆碱(PC)以及1种磷脂酰乙醇胺(PE)],尤其是与脂质从头合成途径(de novo lipogenesis pathway,DNL)脂肪酸相关的PC水平升高可显著增加6年糖尿病发病风险(相对风险比值比:1.13-1.25;图1);(2)其中4种仅包含饱和、单不饱和的脂肪酸酰基链的GPLs[PC(16:0/16:1, 16:0/18:1, 18:0/16:1)和PE(16:0/16:1)]与高精制谷物(大米和面条),低鱼类、奶制品和大豆制品摄入相关的膳食模式呈显著正相关(P 0.001;图2);(3)上述8种GPLs与糖尿病风险之间的正相关性在体力活动水平较低的个体中更为显著(P-inter 0.05;图3)。而在与代谢综合征相关的研究(AJCN) 中则发现:(1)11种GPLs(1种PC、9种PE以及1种磷脂酰丝氨酸)水平的升高可显著增加6年后代谢综合征的发病风险(相对风险比值比:1.16-1.30;图4),而这些GPLs的sn-2位置大部分含有长链或超长链多不饱和脂肪酸(PUFAs);(2)其中7种GPLs与代谢综合征发病风险之间的正相关性在红细胞膜n-3 PUFAs水平较低的人群中更显著(P-inter 0.05;图5)。上述研究提示特定GPL能显著增加6年后糖尿病或代谢综合征的发病风险,但增加体力活动或摄入n-3 PUFAs可能有助于降低其对心血管健康的负面影响。  研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金及上海市科技重大专项等的资助。  论文链接:1、2
  • “嗜血”的质谱——关于流感嗜血杆菌和溶血嗜血杆菌的鉴定问题
    p  卫生部临检中心组织的2018年第一次临床微生物室间质评已经结束,但关于流感嗜血杆菌和溶血嗜血杆菌的鉴定问题,在微信朋友圈里谈得正热烈 (见文《溶血 or 流感?傻傻分不清?》)[1]。主要是因为在这次质评中,生化鉴定仪和有些品牌的质谱仪的鉴定结果出错了。令小布自豪的是,布鲁克MALDI Biotyper质谱的鉴定结果与标准答案完全相符!所以小布在这里来一段点评。/pp  流感嗜血杆菌和溶血嗜血杆菌虽然同属,但属于两个不同的种,致病性和临床意义也大不相同,前者是上呼吸道感染的常见致病菌,而后者是上呼吸道的正常定植菌。小布认为要认真、仔细地把它们区分开,千万不要混淆!/pp  可是这两种菌的亲缘关系很近,用传统的形态学和生化方法难以区分。虽然产荚膜的流感嗜血杆菌可以通过荚膜肿胀实验区别于溶血嗜血杆菌,但有些流感嗜血杆菌是不产荚膜的,通常被认为是无法分型的。同样,虽然有的溶血嗜血杆菌能够通过卫星试验观察到溶血环,但不是所有的溶血嗜血杆菌都能观察到明显的溶血环。/pp  难道就没有好办法了吗?当然不是!/pp  span style="color: rgb(31, 73, 125) "strong质谱是区分流感嗜血杆菌和溶血嗜血杆菌的好方法/strong/span/pp  早在2013年中国CDC的研究人员就通过质谱图的聚类分析,发现质谱可以把流感嗜血杆菌和溶血嗜血杆菌清楚地分成两类,甚至可以把不同地区来源的菌株进一步细分(见图1)[2]。/pp style="text-align: center"strongimg src="http://img1.17img.cn/17img/images/201805/insimg/dfbc448c-6829-4363-bbc8-eb80e5161d6e.jpg" title="1.jpg" width="450" height="409" border="0" hspace="0" vspace="0" style="width: 450px height: 409px "//strong/ppstrong  ▲图1. 流感嗜血杆菌和溶血嗜血杆菌的聚类分析树状图(MALDI Biotyper结果)/strong/pp  2014年荷兰公共卫生区域实验室、荷兰医学中心与布鲁克微生物研发中心共同发表了MALDI Biotyper能够正确鉴定流感嗜血杆菌和溶血嗜血杆菌的文章 [2],专家们通过分析不同来源的277个菌株,发现质谱法与测序法鉴定流感嗜血杆菌和溶血嗜血杆菌的结果几乎完全一致(见表1)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/5e7cf664-5cee-4464-b1b3-ac63e6d76a51.jpg" title="2.jpg"//pp  strong▼表1.流感嗜血杆菌和溶血嗜血杆菌的MALDI Biotyper质谱法与测序法鉴定结果比较/strong/pp  另外,布鲁克公司在美国FDA注册进行临床试验的结果显示:通过对74个流感嗜血杆菌和31个溶血嗜血杆菌的检测MALDI Biotyper质谱法鉴定100%正确!(结果摘自布鲁克公司提交美国FDA的报告)/pp  可见,质谱是区分流感嗜血杆菌和溶血嗜血杆菌可以信赖的方法!有些老师不免心生疑问:既然布鲁克质谱的鉴定结果都是正确的,那为什么其它品牌的质谱鉴定错了呢?/pp  strongspan style="color: rgb(31, 73, 125) "质谱法的数据库和鉴定结果的算法非常重要/span/strong/pp  原来呀,质谱鉴定微生物时,需要通过软件拿采集到的样品“蛋白指纹图”到数据库里进行逐个比对,因此,数据库建立与比对时所采用的理念与算法,以及数据库的容量,是影响鉴定结果非常重要的因素。/pp  布鲁克MALDI Biotyper的建库理念是以菌株为单位,数据库中每个条目都是一个独立的菌株。它的比对算法是采用指纹识别中的“模式识别”算法,就是把样品的“蛋白指纹图”与数据库中所有菌株的“蛋白指纹图”快速自动地进行逐个图逐个峰的比较,看看每对比对的“蛋白指纹图”之间有哪些峰是匹配的,哪些峰是不匹配的,以及匹配的谱峰之间相对强度的相关性,从而得到一个综合的匹配分数,并根据分数值告诉我们鉴定的可信程度。/pp  MALDI Biotyper的算法看上去通俗、简单,正可谓“大道至简”吧,不仅非常实用!而且最大程度上避免了误判!就像警察通过指纹比对来识别罪犯一样,只要数据库里有罪犯的指纹,它就能正确地识别出罪犯 即使数据库里没有罪犯的指纹,它也不会找错,只是告诉我们当前数据库里没有匹配的指纹,只要扩大搜索数据库的范围,定会让罪犯无以循形,不会造成冤假错案!/pp  有些老师可能会问:我们是做菌种鉴定,MALDI Biotyper的数据库为什么不以菌种为单位,而是以菌株为单位建立的呢?难道它能鉴定到菌株吗?/pp  大家知道,微生物种类繁多,每种微生物又包含丰富多样的不同菌株,而同一菌种内不同菌株之间的差异是天然存在的,并和微生物的种类有关,有的种内差异大,有的种内差异小。所以,布鲁克决定在菌株水平上建库,并在选择每个菌种的建库菌株时,尽可能包含差异大的菌株,而剔除差异小的菌株。MALDI Biotyper在菌株水平建库,具有以下优势:/pp  span style="color: rgb(255, 0, 0) "给代表性菌株预留了充分的覆盖范围/span/ppspan style="color: rgb(255, 0, 0) "  避免了数据库不必要的冗余/span/ppspan style="color: rgb(255, 0, 0) "  容易实现数据库的扩充和更新/span/ppspan style="color: rgb(255, 0, 0) "  能快速适应分类学的改变/span/pp  充分发挥了质谱技术分辨能力远远高于传统方法(如生span style="color: rgb(255, 0, 0) "/span化方法)的特点,不丢失种水平之内菌株之间的差异。/pp  正是由于上述优势,美国CDC、加拿大国家微生物实验室和美国NIH等多家机构也在采用布鲁克的仪器和理念建立数据库并对外开放。/pp  通过以上对布鲁克MALDI Biotyper质谱的数据库与软件算法的简单介绍,相信各位老师就能理解为什么这次卫生部的质评中,布鲁克质谱的鉴定结果是正确的,也就很好理解为什么美国FDA批准Bruker MALDI Biotyper CA系统作为首个鉴定新型致病菌耳念珠菌(C. auris) 的新方法了[4-6]。/pp  参考文献/pp  1. 溶血 or 流感?傻傻分不清?/pp  2. B. Q. Zhu, D Xiao et al. MALDI-TOF MS Distinctly Differentiates Nontypable Haemophilus influenzae from Haemophilus haemolyticus.PLoS One. 2013 8(2): e56139/pp  3. J. P. Bruin, M. Kostrzewa et al. Identification of Haemophilus influenzae and Haemophilus haemolyticus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis 2014, 33:279–284/pp  4. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm605336.htm/pp  5. FDA首次批准质谱方法鉴定新型致病菌耳念珠菌 (Candida auris)/pp  6. “布”下天罗地网,防止“耳念”侵袭/p
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授江苏省儿童呼吸疾病(中医药)重点实验室骨干成员。2012年毕业于中国药科大学药学(药物代谢动力学)专业。美国NIH West Coast Metabolomics Center (UC Davis)访问学者。近年来主持国家自然科学基金等厅局级以上课题研究8项;以第yi作者或者通讯作者在Anal Chim Acta,J Chromatogr A等杂志发表SCI论文10篇。现为世界中医药学会联合会儿科专业委员会理事。研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • 食药监局征求化妆品禁用组分修订意见
    各有关单位:  根据《化妆品卫生规范》(2007年版)规定,胆碱盐类及它们的酯类属于禁用组分,由于化妆品生产的需要,基于安全风险评估的原则,参照国外相关资料,经组织专家论证,拟对禁用组分“胆碱盐类及它们的酯类”作如下修订:  一、禁止使用的胆碱盐类及它们的酯类:氯化胆碱、菲诺贝特胆碱(choline fenofibrate)、胆碱水杨酸盐、胆碱葡萄糖酸盐、胆茶碱、硬脂酸等长链烷烃羧酸胆碱酯、甲基胆碱及其盐和酯等。  二、非禁止使用的胆碱盐类及它们的酯类:卵磷脂(Lecithin)、甘油磷酸胆碱(Glycerophosphocholine)、氢化溶血卵磷脂酰胆碱(Hydrogenated lysophosphatidylcholine)、氢化磷脂酰胆碱(Hydrogenated phosphatidylcholine)、磷脂酰胆碱(Phosphatidylcholine)。  三、其它胆碱盐类及它们的酯类原料需按《化妆品卫生规范》(2007年版)要求,经安全风险评估后,确定是否可以使用。申请人提交的有关安全性风险评估资料还应该包括原料规格、纯度、结构式、分子量范围、残余单体和杂质的种类及残留量。  现公开征求意见,请将修改意见于2009年12月28日前反馈国家食品药品监督管理局食品许可司。  联 系 人:曹蕊 陈少洲  联系地址:北京市西城区北礼士路甲38号,邮编:100810  联系电话:010-88330452/0405  传 真:010-88373268 电子邮件:caorui217@yahoo.com.cn;chensz@sfda.gov.cn
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • 许国旺研究员课题组建立一种高覆盖的代谢组和脂质组的定量分析方法
    近日,许国旺研究员课题组在代谢组学定量分析方面取得新进展,建立了适用于代谢组和脂质组交替定量分析的双反相液相色谱-质谱新方法(RPLC/RPLC-MRM-MS),可定量分析超过1,000个代谢物和脂质。代谢组学在精准医疗中发挥着越来越重要的作用。然而,代谢组学在精准医疗研究的应用需要大规模定量数据的支持。目前,仍然缺乏高覆盖度的代谢组靶向定量分析方法。针对上述问题,研究团队首先开发了包含397个代谢物MRM离子对和1,080个脂质MRM离子对的双液相色谱-质谱(RPLC/RPLC-MRM-MS)交替分析方法。然后利用221个标准品定量分析了超过1,000个代谢物和脂质,包括胺、氨基酸、苯衍生物、肽、核酸碱基及其相关物质、胆汁酸、羧酸、脂肪酸、激素、吲哚等代谢物的绝对定量,以及肉碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、自由脂肪酸、鞘磷脂、磷脂酰胆碱、磷脂酰乙醇胺和甘油三酯等的半定量。与Biocrates MxP Quant 500试剂盒相比,建立的交替RPLC/RPLC-MRM-MS方法可定量的代谢物数量提高了约1倍。该交替RPLC/RPLC-MRM-MS定量方法为大规模临床样本高覆盖定量数据的获取提供了可靠的分析平台,并将在健康人群代谢物的基准浓度测定中发挥积极的作用。相关研究成果以“Comprehensive Metabolite Quantitative Assay Based on Alternate Metabolomics and Lipidomics Analyses”为题,于近日发表在《分析化学学报》(ANALYTICA CHIMICA ACTA)上。该工作的第一作者是许国旺研究员课题组博士研究生吕王洁,通讯作者为赵欣捷副研究员和许国旺研究员。以上工作得到了国家自然科学基金、大连市重点基金、大连化物所创新基金等项目的资助。(文/图吕王洁)文章链接:https://www.sciencedirect.com/science/article/abs/pii/S0003267022005505
  • 精准筛查!岛津临床质谱让新生儿罕见病无所遁形
    2019年,国家卫健委出台《健康中国行动(2019-2030年)》,围绕疾病预防和健康促进两大核心,提出将开展15个重大专项行动,其中,“妇幼健康促进行动”主要针对婚前和孕前、孕期、新生儿和儿童早期各阶段分别给出妇幼健康促进建议,新生儿罕见病筛查将得到更大关注。 X-连锁肾上腺脑白质营养不良(X-linked adrenoleukodystrophy,ALD)为过氧化物酶体功能异常导致的脂代谢异常疾病,属于遗传代谢病。临床主要表现为大脑白质进行性脱髓鞘病变和肾上腺皮质功能不全。 本病较为罕见,预后差,主要以听觉和视觉功能损害、智能减退、行为异常、运动障碍为主要表现。其中95%的患者为男性,而女性多为杂合子,属于疾病基因突变的携带者。2018年5月11日,该疾病被列入国家卫生健康委员会等5部门联合制定的《第一批罕见病目录》。 ALD如何快筛? 随着串联质谱筛查技术的不断发展,通过准确定量干血斑中四种溶血磷脂酰胆碱(lysophosphatidylcholine,LPC):二十碳溶血磷脂酰胆碱(C20:0 LPC)二十二碳溶血磷脂酰胆碱(C22:0 LPC)二十四碳溶血磷脂酰胆碱(C24:0-LPC)二十六碳溶血磷脂酰胆碱(C26:0 LPC)可快速筛查诊断ALD,从而尽早进行饮食控制、类固醇替代、造血干细胞移植等治疗,可预防患儿智力、精神、运动发育落后和肾上腺皮质功能受损。 岛津ALD筛查方案 岛津公司ALD筛查方案使用岛津临床质谱LCMS-8050 CL及X连锁肾上腺脑白质营养不良筛查和诊断试剂盒(质谱生物科技有限公司)配套岛津Neonatal遗传代谢病筛查软件,通过对ALD诊断标志物4种溶血磷脂酰胆碱的测定,可快速、准确筛查ALD,该方案进样量仅需1 μL,减少仪器污染;每个样品分析时间仅需60秒,使通量最大化;Neonatal遗传代谢病筛查软件的强大数据处理功能可匹配多种遗传代谢病筛查,对于ALD筛查处理数据操作简单,无需逐一原始数据处理,软件即让分析结果一目了然,软件内置质量控制管理系统,可随时查看质控信息。 岛津临床质谱及Neonatal遗传代谢病筛查软件 完善的新生儿疾病筛查方案使ALD筛查变得更简单岛津具备完善的新生儿疾病筛查方案及成熟的样品前处理流程,不但可以应对新生儿基础筛查,在高级筛查如ALD筛查及NBSgamt筛查等方面均可完美匹配。 LCMS-8050 CL优异性能保证卓越的灵敏度及稳定性 岛津临床质谱LCMS-8050 CL具备业界最快的扫描速度及最短的正负极切换时间,该性能可保证卓越的数据灵敏度及稳定性,利血平信噪比可达50万,满足宝宝溶血磷脂酰胆碱(LPC)准确测定。 低浓度质控、高浓度质控及正常新生儿干血斑测定谱图 低质控干血片样本连续进样分析6针,四种溶血磷脂酰胆碱的RSD在1.2%-3.6%之间,结果证明仪器精密度良好,满足临床测定需求。 精密度考察数据(n=6) 专业的Neonatal遗传代谢病筛查软件提供智能数据分析及实时质量控制 Neonatal遗传代谢病筛查软件强大的功能可适应多种筛查实验数据处理,软件自动进行批量数据处理,节省时间,避免人为差错,切值的设定使阴阳性结果一目了然,从而使数据处理变得轻松。 应用串联质谱进行ALD筛查已被广泛应用。2016年, 美国医学遗传学会经评估后提议将ALD列入新生儿筛查的核心疾病谱,目前美国多个州已立法开展该项筛查。 美国纽约州建立了一整套疾病诊断、监测和治疗的指南,并率先对所有新生儿开展ALD筛查,在18个月内筛查新生儿36.5万名,采用MS/MS技术检测其滤纸干血片样本的LPC及其他相关指标,对筛查阳性患儿ABCD1基因的所有外显子进行测序,共确诊33例ALD患儿,包括13例男性患儿、13例女性杂合子患儿和7例其他过氧化物酶体病患儿。 应用串联质谱进行ALD筛查具有采血量少、分析速度快、假阳性率低及特异性高等优点,未来会得到更大范围谱及。 一切为了“人类和地球的健康”,岛津新生儿筛查解决方案让罕见病无所遁形,与您共同守候宝宝健康成长! 编辑:孙亮
  • 李鬼李逵,实验结果辨真假!
    故事背景话说客户已经采购了某牌子山寨版的elsd,但检测的时候在关键位置出现基线波动大的问题,正好影响到用户关键物质的检测。怎么办?怎么办?这时候啊,客户最关注的就是物质的定量不准的问题,所以他们就想试试我们瑞士步琦的elsd3300。 接到这个情况后,我们迅速把buchi elsd33300样机发给用户,而我们的杨工也亲自飞到北京进行现场测试,并在现场连续测试了两天,同时也给客户做了elsd3300的操作和维护培训,客户对我们的产品非常感兴趣,说没有想到小小elsd3300还有这么多学问。两天测试和检测方法优化后,步琦elsd基线平稳,噪音小,漂移小,重现性高,当时又正好是酷暑季节,用户对我们的产品质量以及工作态度都非常肯定。目前最新的消息是用户已经将某山寨仪器退货,而瑞士步琦的elsd3300已经进入采购流程。不得不说,李鬼李逵,实验结果辩真假啊!另外还想说瑞士步琦不仅可以有专家现场实验指导,还可以到我们专业的实验室试样,这也是区别李鬼李逵的好方法!现在的我们为了更加的贴近客户,帮助大家排忧解难,在客户选购仪器之前,我们提供免费一天的试机机会,免费,免费哦,重要事情说三遍。详见上篇微信《免费!!真的吗?过完七夕还得约!》 专业应用磷脂酰胆碱(1,2-diacyl-sn-glycero-3-phosphocholine)是一种两性分子,由亲水的头部和疏水的尾部组成。亦称卵磷脂。磷脂酰胆碱是磷脂的主要成分之一,从植物中提取,磷脂酰胆碱将大脑的指令迅速传递,信息传递速度越快,记忆力越强,是健脑食物。它能增强婴儿智力,提高学习效率。尤其是胎儿,在生长发育中对磷脂酰胆碱的需求极大。卵磷脂在蛋黄和大豆中特别丰富,食品行业中广泛用作乳化剂,本文详细报告了用buchi公司elsd3300蒸发光散射检测器检测磷脂酰胆碱的检测结果。图 1: elsd3300蒸发光散射检测器设备:elsd3300蒸发光散射检测器shimadzu lc-20 hplc(配pc55n)试剂及耗材:流动相a:甲醇:水:冰醋酸:三乙胺(85:15:0.45:0.05)流动相b:正己烷:异丙醇:流动相a (20:48:32)色谱柱:silica,4.6*250mml, 5um样品:磷脂酰胆碱及溶血磷脂酰胆碱样品预处理:样品经流动相溶解后过0.22um滤膜过滤后待上样进样体积:20ul按照表1的梯度比例进行检测,运行时间为26min。时间/min流动相a流动相b0109020307035955361090411090表 1:buchi elsd3300蒸发光散射检测器检测磷脂酰胆碱及溶血磷脂酰胆碱样品检测:样品配置好后置于自动进样器中,使用编辑好的方法进行自动进样分析 结果:buchi elsd3300蒸发光散射检测器检测磷脂酰胆碱及溶血磷脂酰胆碱检测结果见表2 。表 2:磷脂酰胆碱及溶血磷脂酰胆碱本次实验的难点是样品没有紫外吸收,流动相比较复杂,样品具有双亲特性,且elsd3300运行参数如气体流速和检测温度以及增益值必须优化。 结论本实验严格按照2010版药典方法使用elsd3300检测了磷脂酰胆碱及溶血磷脂酰胆碱。实现了低至0.8ug溶血磷脂酰胆碱的检测,从上述图谱来看elsd3300具有噪音小且基线漂移小和重现性高等特点。参考文献[1] 2010版药典步琦申明:针对市场上一些混淆市场,虚假宣传的行为,我们再次发出严正申明:瑞士步琦公司buchi是全球(包括港澳台等地)提供美国grace公司的flash chromatography (reveleris prep和reveleris x2), alltech elsd蒸发光散射检测器(alltech elsd 3300), 以及色谱柱等相关产品线的唯一合法供应商。步琦实验室设备贸易(上海)有限公司(作为瑞士步琦在中国的唯一分公司)有权针对任何混肴市场、虚假宣传等侵权行为,要求其停止侵权行为并将委托上海市海华永泰律师事务所追究其法律责任!
  • 氯盐类融雪剂浓度快速测定和用量控制方法
    融雪剂是冬季常用的除雪方法,国内外常见的融雪剂按主要成分一般分为醋酸钾(有机融雪剂)和氯盐两类。氯盐类融雪剂因其价格便宜、效果明显,从而被国内广泛使用。氯盐类融雪剂的融雪原理是:&ldquo 氯盐类&rdquo 融雪剂溶于水(雪)后,其冰点在零度下,如,氯化钠(食盐)溶于水后冰点在-10℃,氯化钙在-20℃左右,醋酸类可达-30℃左右。盐水的凝固点比水的凝固点低,因此在雪水中溶解了盐之后就难以再形成冰块。此外,融雪剂溶于水后,水中离子浓度上升,使水的液相蒸气压下降,但冰的固态蒸气压不变。为达到冰水混和物固液蒸气压等的状态,冰便融化了。这一原理也能很好地解释了盐水不易结冰的道理。简单地说,就是融雪剂降低了雪的熔点,使其更容易融化。融雪剂使用时并非越多效果越好,需要针对不同的情况精确计算使用量并进行均匀铺撒。因此发达国家禁止人工撒布融雪剂,要求必须用撒布机进行机械式撒布。但在中国,多数城市融雪剂的撒布完全依靠人工进行,根本无法做到精确均匀,融雪效果难以保证的同时也浪费了大量的融雪剂,间接导致其滥用。发达国家融雪剂撒布设备的剂量精确与否会由专门的检测机构进行标定,以确定撒布设备是否可以使用。标定不通过的设备,严禁上路进行除雪作业。中国很长一段时间内缺乏融雪剂制造和使用标准。直到2002年,北京市才出台了中国首个融雪剂地方标准,对融雪剂的腐蚀性和污染性进行了规范,并同时出台了专门的《融雪剂使用管理办法》。而北京市的融雪剂使用量却连年上升,从之前的1000吨到2003年的7000吨,再到2010年的3万吨,这相当于此前5年冬季融雪剂使用量的总和。融雪剂浓度、用量与融雪效果密切相关,同时控制融雪剂的用量,检测融化后的盐水浓度,可以最大的降低对道路桥梁、土壤生态的破坏作用。ATAGO氯盐类手持式浓度快速测定仪可以快速方便随身携带,在3秒之内的测量各类氯盐了,如氯化钠(NaCl)PAL-03S( 氯化钠浓度计)、氯化钙(CaCl2)PAL-41S( 氯化钙浓度计)、氯化镁(MgCl2)的浓度PAL-43S( 氯化镁浓度计)。 图为ATAGO(爱拓)融雪剂浓度折射仪 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)科技的信息,请访问:http://www.atago-china.com
  • 氯盐类融雪剂浓度快速测定和用量控制方法
    融雪剂是冬季常用的除雪方法,国内外常见的融雪剂按主要成分一般分为醋酸钾(有机融雪剂)和氯盐两类。氯盐类融雪剂因其价格便宜、效果明显,从而被国内广泛使用。 氯盐类融雪剂的融雪原理是:&ldquo 氯盐类&rdquo 融雪剂溶于水(雪)后,其冰点在零度下,如,氯化钠(食盐)溶于水后冰点在-10℃,氯化钙在-20℃左右,醋酸类可达-30℃左右。盐水的凝固点比水的凝固点低,因此在雪水中溶解了盐之后就难以再形成冰块。此外,融雪剂溶于水后,水中离子浓度上升,使水的液相蒸气压下降,但冰的固态蒸气压不变。为达到冰水混和物固液蒸气压等的状态,冰便融化了。这一原理也能很好地解释了盐水不易结冰的道理。简单地说,就是融雪剂降低了雪的熔点,使其更容易融化。 融雪剂使用时并非越多效果越好,需要针对不同的情况精确计算使用量并进行均匀铺撒。因此发达国家禁止人工撒布融雪剂,要求必须用撒布机进行机械式撒布。但在中国,多数城市融雪剂的撒布完全依靠人工进行,根本无法做到精确均匀,融雪效果难以保证的同时也浪费了大量的融雪剂,间接导致其滥用。 发达国家融雪剂撒布设备的剂量精确与否会由专门的检测机构进行标定,以确定撒布设备是否可以使用。标定不通过的设备,严禁上路进行除雪作业。中国很长一段时间内缺乏融雪剂制造和使用标准。直到2002年,北京市才出台了中国首个融雪剂地方标准,对融雪剂的腐蚀性和污染性进行了规范,并同时出台了专门的《融雪剂使用管理办法》。而北京市的融雪剂使用量却连年上升,从之前的1000吨到2003年的7000吨,再到2010年的3万吨,这相当于此前5年冬季融雪剂使用量的总和。 融雪剂浓度、用量与融雪效果密切相关,同时控制融雪剂的用量,检测融化后的盐水浓度,可以最大的降低对道路桥梁、土壤生态的破坏作用。ATAGO氯盐类手持式浓度快速测定仪可以快速方便随身携带,在3秒之内的测量各类氯盐了,如氯化钠(NaCl)PAL-03S( 氯化钠浓度计)、氯化钙(CaCl2)PAL-41S( 氯化钙浓度计)、氯化镁(MgCl2)的浓度PAL-43S( 氯化镁浓度计)。 图为ATAGO(爱拓)融雪剂浓度折射仪欢迎登陆东南科仪官网www.sinoinstrument.com了解详情。我们将热情提供完整、快速的现场分析试用!
  • CAIA标准《乙酰胆碱酯酶 活性检测 分光光度法》将于12月1日实施
    10月25日,中国分析测试协会发布《乙酰胆碱酯酶 活性检测 分光光度法》CAIA标准,于12月1日实施。据悉,此标准由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领域委员会提出;由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领委员会科学试验创新方法技术委员会归口;由北京市科学技术研究院分析测试研究所、吉林大学、广东省科学院测试分析研究所、长春吉大小天鹅仪器有限公司、盘锦检验检测中心、广州市食品检验所六家单位为起草单位。文件规定了用分光光度法测定乙酰胆碱酯酶活性的方法,适用于有机磷与氨基甲酸酯类农药残留检测专用试剂中乙酰胆碱酯酶活性的测定。 具体内容详见附件:《乙酰胆碱酯酶 活性检测 分光光度法》.pdf更多内容:《中国分析测试协会标准》团体标准合集
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT 参考文献(1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimma and T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 擒魔序曲——脂质组学研究中的样品处理
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析前言  脂质是一类自然界存在的疏水或两性、难溶于水而易溶于非极性溶剂的有机物小分子,存在于大多数生物体系中。脂质是细胞膜的骨架物质和第二能量来源,还参与细胞的许多重要功能,人类许多重大疾病都与脂质代谢紊乱有关,如糖尿病、肥胖病、癌症、阿兹海默症、以及一些传染病等,  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  2005年国际上把组织、细胞中的脂质分子分为8大类(J Lipid Res 2009,50(Supp) 9-14),有明确结构的脂质化合物已经有38000个(BMC Bioinformatics 2014, 15(Suppl 7):S9),这8类脂质分子见表1。表 1 8大类脂质分子类别缩写数据库中的结构数量脂肪酰类(Fatty acyls)FA2678甘油脂类(glycerolipids )GL3009甘油磷酸脂类(glycerophospholipids)GP1970鞘脂类(sphingolipids )SP620固醇脂类(sterol lipids )ST1744异戊烯醇脂类(prenol lipids ()PR610糖脂类(saccharolipids )SL11多聚乙烯类(polyketides )PK132  在过去,由于技术限制人们难以分析数量巨大的脂质分析,因为多种脂质代谢产物的物理性质需要大批纯化系统、分离的复杂技术操作。2003年韩贤林等继基因组学、蛋白质组学等之后提出脂质组学(lipidomics)(Han X et a1.J Lipid Res,2003,44:1071),脂质组学的发展推动了新分析平台的研发,特别是在质谱法领域,该方法已使这些操作合理化,并且已允许更多的脂质分子得到非常详细的分析。  脂质存在于细胞、细胞器和细胞外的体液如血浆、胆汁、乳、肠液、尿液中。若要研究某一特定部位的脂质,首先要将这部分组织或细胞分离出来。由于脂质不溶于水,通常采用有机溶剂进行萃取。传统的萃取剂是氯仿、甲醇和水的混合液。所需的样品在这种混合液中提取所有脂质,向提取液中加入过量的水使之分成2个相,上面是甲醇和水,下面是氯仿。脂质就留在氯仿相,蒸发浓缩后,使之干燥就得到所需的脂质。这种脂质提取方法,能够提出组织样品中的总脂。这种方法降低了脂质的损失率,操作简便,而且提取效果较好。对于只检测总脂中的部分脂质,固相萃取(SPE)是一种较好的方法,利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。固相萃取技术设备要求低,操作简单,能快速分离组分复杂及含量低的样品。当然由于化学分析样品前处理技术的发展,有许多其他可用的样品前处理方法。  总体上对脂质组学的研究Chin Chye Teo等归纳为如下的工作流程,第一步就是对样品的处理。1、脂质组学研究的工作流程  根据Chin Chye Teo的综述报告(Chin Chye Teo et al,TrAC,2015,65:1-18),脂质组学研究的工作流程如下表1.表1 脂质组学研究的工作流程从患者得到脂质组学研究的样品液体固体体液,泪水,血清,血浆,尿液(低温保存样品)细胞,组织,器官对上述样品进行萃取方法对极性化合物,单独的有机化合物进行:液-液萃取,固相萃取对能源性物质进行:加压液相萃取,微波辅助萃取,超声辅助萃取萃取得到的脂质化合物使用色谱方法分离:气相色谱,液相色谱,电泳不使用色谱方法分离:直接进样,成像上述分离或未分离样品进行质谱分析质谱分析的接口质量分析器电子轰击电离(EI),电喷雾电离(ESI),化学电离(CI),大气压(APCI)化学与电离,基质辅助激光解析电离(MALDI)四级杆飞行时间质谱(qTOF),三重四级杆质谱( qqq),轨道阱质谱(Orbitrap)质谱原始数据语预处理(利用商品或自制软件)分类和脂质鉴定(使用各种资源如LIPID maps,Lipid Bank,Lipid Blast)判定在疾病中的机制/在疾病演化中的作用为进一步诊断找出生物标记物(预防),提供药物治疗的指导2、脂质组学的样品制备  本文只讲脂质组学的样品制备,Chin Chye Teo等总结了近年在脂质组学研究中使用的样品处理方法,见表2.表2 脂质组学研究中的样品处理方法比较(Chin Chye Teo et al,TrAC,2015,65:1-18) 萃取方法临床样品类型(生物液体或固体)优点缺点原文文献编号单一有机溶剂萃取(SOSE)血清(生物液体) 皮肤(固体)容易完成萃取时间短成本低低温适于热敏感化合物无需外部能量使用有毒有机溶剂分析时难以摆脱使用有机溶剂1.2 3液-液萃取(LLE)眼泪(生物液体)血清(生物液体)血浆(生物液体)尿液(生物液体)滑液(生物液体)动脉粥样硬化血小板(生物液体)皮肤(固体)组织(固体)易于建立的方法容易完成设备便宜萃取时间短使用廉价溶剂(如甲醇,水)低温适于热敏感化合物无需外部能量萃取时间短使用大量有毒有机溶剂常使用超过一种类型的溶剂需要排除溶剂以免影响分析24,9-135,14-228,23724 25-2728,29固相萃取(SPE) 血清(生物液体)血清(生物液体)血浆(生物液体)眼(固体)皮肤(固体)容易完成清除干扰基体EPE的选择低温适于热敏感化合物萃取时间短SPE萃取小柱比较贵需要洗掉有机溶剂以免影响分析使用有毒有机溶剂分析时难以摆脱使用有机溶剂 1,12230263,27固相微萃取(SPME)肺(固体)头发(固体)容易完成可与GC和GC xGC 联用对挥发性化合物可以进行顶空气相色谱有毒溶剂消耗量少低温适于热敏感化合物无需外部能量萃取时间短萃取头比较贵需要洗掉有机溶剂以免影响分析分析时难以摆脱使用有机溶剂3132超临界流体萃取(SFE)血浆(生物液体)容易完成萃取时间短对非极性化合物萃取效率高CO2可循环使用温度压力可控可加改性剂提高萃取液极性和效率要精心操作设备昂贵33微波辅助萃取(MAE) 血浆(生物液体)皮肤(固体)容易完成萃取时间短萃取效率高萃取溶剂消耗量少温度压力可控需要冷却防止溶剂逃逸购买设备费用高34 35超声辅助萃取(UAE)血(生物液体)容易完成萃取时间短萃取溶剂消耗量少温度压力可控听力会受损要使用有毒有机溶剂会吸入有害溶剂需要外部能源购买设备费用高提高温度会使化合物降解36,373、脂质组学的溶剂萃取  液-液萃取是脂质组学研究中使用最为普遍的方法,这一方法是使用两种互不混溶的有机溶剂&mdash &mdash 使用最多的是氯仿、甲醇和水&mdash &mdash 为了对关键脂质类得到最大的萃取效率,从磷脂类和糖脂类到脂肪酸,三酰基甘油类(TAGs)、二酰基甘油类(DAGs)。最初使用的是Folch 脂质萃取法(氯仿/甲醇/水为 8:4:3 v/v/v),之后有Bligh 和 Dyer脂质萃取法(氯仿/甲醇/水为 1:2:0.8 v/v/v)。  (1)Folch 脂质萃取法(Folch et al., J Biol Chem 1957, 226: 497)  把样品组织用2:1氯仿/甲醇均一化,最后的溶剂体积是组织的20倍(20mL 溶剂里有1g样品),分散均匀后于室温下把混合物在轨道振荡器上震动15-20min。均匀混合物经漏斗中折叠滤纸过滤,或进行离心处理,回收液相。  液相溶剂用0.2体积的水(20 mL液相使用4 mL水),最好使用0.9%的NaCl溶液洗涤,涡旋几秒后在低速离心机(2000 rpm)上离心混合物,用虹吸方法弃去上层液相,用以分析神经节糖苷或小分子有机极性化合物,如需要(需移去标记分子),用1:1甲醇/水洗涤交界处的有机相两次,无需混合全部制备物。  经离心分离后虹吸掉上面的液相,下面含有脂质的氯仿在旋转蒸发器中真空蒸发,或用氮气吹拂到2-3 mL体积。  (2)Bligh 和 Dyer脂质萃取法(Can J Biochem Physiol 37:911-917)  a. 每1 mL 样品加入3.75mL 1:2(v/v) CHCl3:CH3OH 很好涡旋,如果要进行GC 分析,溶剂中要含有内标(如0.5&mu g谷甾醇)  b. 然后加入1.5mL CHCl3很好涡旋  c. 最后加入1.25mL蒸馏水很好涡旋  d. 在1000rpm离心机中室温下离心5min,得到一个两相分离(上层为水相,下层为有机相)的液体  e. 回收有机相:用一个巴斯德吸管(Pastuer pipette)通过上层水相,轻微施加正压避免上层水相浸入吸管,吸管口到达离心管底部,吸取下层有机相溶液的90%到吸管中。下表列出不同样品容积需要加入的试剂量  如果你要得到干净的底部的有机相溶液,就要用上层&ldquo 真正&rdquo 的上层液相洗涤有机相溶液,方法如下:  a 制备&ldquo 真正&rdquo 的上层液相:取一个大的玻璃管,或者几个常规玻璃管,以水代替样品胺上述方法进行萃取操作,把几个管子中的上层水相合并在一起备用。  b 把上述第5步得到的底层溶液倒入一个玻璃管中,然后加入适量(样品+蒸馏水的体积)&ldquo 真正&rdquo 的上层液相。比如你是1 mL样品就加入2.25mL&ldquo 真正&rdquo 的上层液相。  c 好好地涡旋,离心,收集下层相。  Cui等的改进Bligh 和 Dyer脂质萃取法(Cui L,e al, PLoS Negl Trop Dis,2013,7:e2373):  900µ L氯仿-甲醇(1:2)加入到100 µ L样品中,进行涡旋,在4° C下保温,然后加入300µ L氯仿和300µ L双重蒸馏水,以9000 rpm离心2 min,脂质物在离心管底部的有机相中,然后加入500 µ L氯仿在4° C下进行涡旋20 min。从有机相中回收脂质物并与前次得到的脂质物合并,脂质萃取物经真空干燥后于&minus 80° C下存放备用。  多少年来人们使用类似于上述方法进行脂质的萃取,例如:李国琛等在脂质组学研究中也采用Bligh 和 Oyer法萃取磷脂,并作适当改进.他们的方法是:  称取100 mg鱼肉样品,加入400 p,L甲醇/氯仿(体积比2:1),涡旋混匀后,于一30℃放置过夜.取出后于4℃以10000 转速离心5 min.将上清液转出,在残渣中加入200 mL甲醇/氯仿(体积比2:1)再次提取,将2次所得上清液合并.在上清液中先后加入100 mL氯仿及100mL水,离心后,将磷脂所在的氯仿相与水相分离.采用真空离心蒸发浓缩器干燥氯仿相(温度不超过45℃,下同),将干燥后的样品于一30℃保存备用.(高等学校化学学报,2010,31(2):269-273)  人们为了提高某些脂质种类的萃取效率,改变氯仿/甲醇/水的比例,并加入一些其他添加剂,如乙酸、盐酸等,探索改进萃取各类脂质化合物的得率,如酸性磷脂和脂肪酸。(Jensen S K, Lipid Technol,2008, 20: 280&ndash 281)。HCl-Bligh萃取法步骤:  为了更好地萃取生物样品中的脂肪酸,使用加盐酸的HCl-Bligh萃取法:取0.6 g均匀好的样品装入10-ml 带盖的培养试管中,加如1 ml 3M HCl,在80℃水浴上加热1 h,之后加入1.50 ml甲醇和1.00 ml氯仿,以及17:0脂肪酸内标,把混合物摇震1 min,然后加入ELGA-纯水系统制备的纯水1.00 ml 和2.00 ml氯仿,把试管振荡1 min,然后在3000 rpm离心机上进行离心处理5 min。把1 ml氯仿相进行甲基化,用氮气把氯仿蒸发掉,加入0.8 ml NaOH/甲醇溶液,把试管充满氮气,密封在100 ℃下烘箱中15 min,冷却后加入1 ml BF3溶液,密封在100 ℃下烘箱中45 min。在冷却后加入2 ml辛烷和4 ml饱和NaCl溶液,把混合物进行涡旋,在3000 rpm离心机上进行离心处理10 min。用1&mu L 样品进行气相色谱分析。  根据Jensen的研究,认为此方法可以对脂肪酸的萃取率提高15%,对多不饱和脂肪酸的萃取率可提高30-50%。  由于氯仿的毒性大人们就用二氯甲烷来代替氯仿(J Agr Food Chem,2008,56:4297-4303),之后就有许多研究者效仿用以萃取临床样品,包括生物液体,如血清/血浆,尿液和固体样品,如皮肤和动脉粥样硬化血小板(表中文献4,5,8,9,10,14-17,23-25,28).  近几年也用甲基特丁基醚(MTBM )做萃取溶剂代替氯仿(Matyash et al. J Lipid Res. 2008,49 (5) :1137&ndash 1146.)。Matyash 认为MTBM进行萃取快速而且可以得到干净的脂质,可以适合于自动进行鸟枪法得到脂质轮廓。因为MTBM的密度低,水相和有机相分开时,有机相在上层,这样简化了手机有机相的手续,减少了吸取的损失,不可萃取的基质小球处于离心管的底部,易于去除。严格的测试证明MTBM进行萃取对绝大多数脂质种类和&ldquo 黄金标准&rdquo Folch 或 Bligh and Dyer萃取方法类似或更好。2013年中科院大连化学物理研究所许国旺和德国图宾根大学医学院的R Lehmannb使用MTBM进行萃取开创了一个从一小片肝脏或肌肉组织同时进行道谢组学和脂质组学的研究(J Chromatog A, 2013, 1298:9&ndash 16)  人们的思路总是由简单到复杂,又由复杂回归到简单,所以脂质组学中的萃取方法,近来也有多种溶剂向单一溶剂发展, Stü biger G (表中文献1)就使用 Zhao Z等提出的单一溶剂萃取(SOSE)磷脂类脂质(J Lipid Res 2010 51:652)方法如下:  把500 mL甲醇加入到20 mL人血浆中,其中已经含有0.01% BHT(2,6-二叔丁基对甲酚)和0.5 mmol EDTA (用作抗氧化剂)和3mmol Pefablock(4-(2 aminoethyl) benzenesulfonylfluoride hydrochloride)用作磷脂酶的抑制剂,加入内标物,把样品激烈震荡1min,在冰浴中放置30 min,进行脂质的萃取,之后在10,000 rpm离心机上,离心5 min(4℃),最后把离心管上面的液体小心滴转移到2 mL玻璃样品瓶中,在零下70℃保存备用。4、固相萃取(SPE)  SPE 是十分成熟的样品预处理技术,使用装有固定相的小柱子和各种流动相选择性地保留与固定相有特定作用力的特殊种类分子。SPE的典型应用是和 SOSE 和 LLE相结合,作为一种附加的净化步骤或从生物液体或固体住址样品中富集某种特定种类的目标脂质(表中文献1,3,12,26,27),市场有各种各样的萃取小柱供选择。供脂质萃取的SPE小柱有正相硅胶柱和反相柱(C8 和 C18),以及离子交换柱(氨丙基柱),硅胶柱和氨丙基柱多用于分离中性和极性脂质,利用改变洗脱溶剂以达到分离的目的。而C8 和 C18柱用于从水基样品中分离卵磷脂(PC)、脑苷脂、神经节糖苷和脂肪酸。  针对不同的脂质使用不同的SPE,如 Stü biger(表2文献1)在进行导致动脉粥样硬化的磷脂的研究中,使用C18 净化柱从血浆脂质萃取和富集体液氧化磷脂(OxPLs),其步骤如下:  把脂质萃取液倒入微量制备高效固相萃取柱(mHP-SPE)C18 spin-columns (PepClean, Pierce)中,小柱事先用500mL MeOH:0.2%甲酸(70:30 重量比)洗涤,然后用700 mL MeOH:0.2%甲酸(82:18 重量比)洗脱一次,再用800 mL MeOH:0.2%甲酸(92:2 重量比)洗脱一次,最后小柱用500 mL 2-丙醇再生,以便从小柱中彻底清除脂质(即中性脂质),净化后的纯度用薄层色谱检查,得到的氧化脂质用LC-ESI-MS/MS进行分析。  而Ruben t&rsquo Kindt进行皮肤神经酰胺的脂质组学研究中,则使用氨丙基硅胶小柱对脂质萃取液进行净化(表2文献3),方法如下:  使用氨丙基硅胶小柱(100 mg, 3.0 mL)先用2 mL己烷洗涤,把已经干燥的脂质溶于300 &mu L 11:1 的己烷:异丙醇(v/v)中,用2 mL己烷/甲醇/氯仿(80/10/10 (v/v))洗脱神经酰胺,用氮气吹扫干燥,溶于300 &mu L异丙醇/氯仿(50/50)(v/v)中,进行HPLC/MS分析。5、固相微萃取(SPME)  Pawliszyn 研究组在1991年发明了SPME,1993年出现了SPME的商品化产品,使之成为广泛使用的样品前处理技术。这一方法是集萃取、浓缩、解吸、进样于一体,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维上的固定相(高分子涂层或吸着剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在气相色谱进样口中直接热解吸(或用HPLC流动相冲洗到液相色谱柱中,甚至可以直接进行质谱分析),这一技术适合于挥发性和半挥发性有机物的样品处理和分析。SPME有8大优点:1 操作简单,2 功能多样,3 设备低廉,4 萃取快捷,5 无需溶剂,6 可在线、活体取样,7 可自动化, 8 可在分析系统直接脱附。SPME可以对环境中的污染物进行检测,如:农药残留、酚类、多氯联苯、多环芳烃、脂肪酸、胺类、醛类、苯系物、非离子表面活性剂以及有机金属化合物、无机金属离子等,也可以用有类似特点的领域,如食品、医药、临床、法庭分析等方面。自然,在脂质组学中也会使用这一技术。  武汉大学曾昭睿研究组用自制的甲基丙烯酸丁酯/端羟基硅油萃取头,萃取肺组织中的长链脂肪酸(表2文献31)。F Pragst 利用SPME萃取头发中的脂肪酸乙酯和葡萄糖苷酸乙酯来诊断过度酗酒(表2文献32)。脂质中的脂肪酸都可以衍生化为酯类用SPME进行萃取。  SPME 的魅力在于它可以进行活体样品中萃取分析物,用于代谢组学和脂质组学的研究,对这一课题SPME的发明人 Pawliszyn 近年进行了阐述(Angew Chem, 2013, 125:12346 &ndash 12348 Anal Chem, 2014, 86:12022&minus 12029)。分析脂质代谢产物中游离脂肪酸的示意图如下。(Anal Chem, 2014, 86:12022&minus 12029)6、超临界流体萃取(SFE)  超临界流体具有特殊的理化特性,黏度为普通流体的1%~10% 扩散系数约为普通液体的10~100倍 密度比常压气体大100~1 000倍。因而超临界流体既有液体溶解能力大的特点,又有气体易于扩散和运动的特性,传质速率大大高于液相过程。所以从萃取效率和对环境友好都受到欢迎。最常用的超临界流体是超临界二氧化碳(SF-CO2)它的临界压力和温度低,只有7.4MPa和32℃。SF-CO2无毒易于从样品中排除,其极性与戊烷近似,很适于萃取疏水性化合物,如脂质化合物(J Chromatogr A 2007,1163:2-24)。为了分离极性化合物往二氧化碳中加入改性剂,如甲醇。过去更多的工作时从植物类物质中萃取脂质,但是近来已经扩展到从动物组织中萃取脂质,例如浙江大学药学院王龙虎利用江苏省南通市华安超临界萃取有限公司的 HA220-50-06 SFE装置萃取鸵鸟脂肪中的脂肪酸:萃取装置包括一个1 L 不锈钢萃取釜,两个1 L 分离器,一个注射泵,和一个冷凝装置。用压力调节器调节压力,用可调节温度的水浴控制温度,通过调节泵的频率来控制二氧化碳的流速。从液态二氧化碳钢瓶把二氧化碳送到萃取器中,并达到超临界状态,在分离器中调节压力和温度可把萃取出来的组分里出来。试验中取250 g鸵鸟脂肪组织用二氧化碳萃取5h,压力15&ndash 30 MPa,温度40&ndash 50℃,二氧化碳流速为15&ndash 35 L/h,用以考察萃取效果。(Eur. J. Lipid Sci. Technol. 2011, 113, 775&ndash 779)。  但是SFE更重要的是萃取人干血浆斑点中的脂质分子,Uchikata等(表2文献33)比较了用SFE和液液萃取(Bligh 和 Dyer方法)磷脂的效果,证明SFE要比液液萃取方法对磷脂具有更好的选择性,包括磷脂酰胆碱(PC)、溶血性磷脂酰胆碱(lysoPC)、磷脂酰乙醇胺(PE)和神经鞘磷脂(SM)。国内在1995年就有类似研究(薄层扫描法测定蛋黄磷脂中PC、SM和LPC的含量 &mdash &mdash 路萍 赖炳森,药物分析杂志,1995,(13):231-232),他们也是用SFE萃取之后进行薄层色谱分离。7、微波辅助萃取(MAE)  微波辅助萃取(MAE)是利用微波能强化溶剂萃取效率,即利用微波加热来加速溶剂对固体样品中目标萃取物的萃取过程。MAE 可以快速高效地把样品及溶剂中的偶极分子在高频微波能的作用下,产生偶极涡流,离子传导和高频率摩擦,从而在短时间内产生大量的热量。偶极分子旋转导致的弱氢键破裂、离子迁移等加速了溶剂分子对样品基体的渗透,待分析成分很快溶剂化,使微波萃取时间显著缩短。  微波加热具有选择性微波对介电性质不同的物料呈现出选择性的加热特点,介电常数及介质损耗小的物料,对微波的入射可以说是&ldquo 透明&rdquo 的。溶质和溶剂的极性越大,对微波能的吸收越大,升温越快,促进了萃取速度。而对于不吸收微波的非极性溶剂,微波几乎不起加热作用。所以,在选择萃取剂时一定要考虑到溶剂的极性,以达到最佳效果。  MAE具有生物效应(非热效应) ,由于大多数生物体内含有极性水分子,在微波场的作用下引起强烈的极性震荡,从而导致细胞分子间氢键松弛,细胞膜结构电击穿破裂,加速了溶剂分子对基体的渗透和待提取成分的溶剂化。因此,利用MAE从生物基体萃取待分析的成分时,能提高萃取效率。(李核等,分析化学,2003,31(109):126l~1268)  例如:万益群,吴世芳利用MAE萃取何首乌中的磷脂(分析测试学报,2008,27(7):782&mdash 784),方法如下:确称取约1.0 g何首乌样品于溶样杯中,加入20 mL萃取溶剂(氯仿与甲醇体积 比为1:2),把溶样杯放入罐体中,组装好罐体后放入微波制样系统中,插入温度探针。设置萃取压力为安全压力(1.5 MPa),萃取时间15 min,温度为45℃。微波萃取完毕后,将样品过滤。滤液用体积为滤液总体积l/4的8 g/L氯化钠溶液萃取2次,收集有机相。将有机相旋转浓缩至近干,用甲醇定容至10 mL。取样品溶液3 mL用甲醇稀释至10 mL,过0.45&mu m微孔滤膜,待测。7、超声辅助萃取(UAE)  超声波为频率高于20kHz以上的声波,是一种机械振动在介质中的传播过程,在传播过程中,超声波与介质的相互作用,可以使超声波的相位和幅度等发生变化 功率超声波则会使介质的状态、组成、结构和功能等发生变化,超声萃取中的应用可分为两类:一类是频率高,能量低(一般小于1W/cm2)的检测超声波,其频率多以MHz为单位 另一类是频率低,能量高(通常为10&mdash 100 W/cmz)的功率超声波,其频率则以kHz为单位。UAE是一种重复性好、萃取质量高的方法,它不像MAE,不会让萃取系统的温度升高,不利于热稳定差的代谢物萃取。UAE还可以和液液萃取配合改进生物样品中脂质的萃取效率。例如上海交通大学药学院的刘玉敏等(Anal Bioanal Chem,2011, 400:1405&ndash 1417)成功地开发了UAE 和 LLE结合萃取人血清样品中的代谢产物,从而比单独使用液液萃取脂肪酸提高5&ndash 60%。Pizarro等使用类似的方法以MTBE作溶剂辅以UAE萃取人血中的脂质,比单纯使用MTBE的液液萃取可以多检出30%的脂质种类,MTBE-UAE萃取方法具有更好的重复性,相对标准偏差降低6%,脂质成分的回收率提高7成(表2文献36)。除去萃取生物液体外,UAE-LLE也用于萃取样品中的脂肪酸,例如哈尔宾医科大学的李颖等研究了用UAE-LLE萃取鼠的肝脏组织,考察了超声波功率、萃取溶剂、萃取容积、萃取时间等,结果表明萃取时间比Folch萃取法萃取脂肪酸从12 h 缩短到 20 min,回收率在87&ndash 120%之间。(J Chromatogr Sci, 2013 51:376&ndash 382)8、其他可用的萃取方法  在化学分析样品处理中还有两种重要的样品前处理方法,即加速溶剂萃取(ASE)和基质固相分散萃取(MSPD),可以用于脂质组学研究的样品前处理。  加速溶剂萃取(Accelrated Solvent Extraction, ASE),这一方法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法。与其他液体萃取方法相比,其突出的优点是有机溶剂用量少、快速、回收率高。(牟世芬等,现代分析仪器,2001,(3):18-20)。 Spiric A等使用ASE萃取鲤鱼肉中的脂肪酸谱和胆固醇含量,并与改进的索氏萃取法进行比较,表明ASE萃取方法是可用的。(Anal Chim Acta,2010, 672:66&ndash 71)。Jansen B等利用ASE从土壤中萃取脂质生物标记物,萃取效果和其他萃取方法一样(Appl Geochem ,2006, 21:1006&ndash 1015)。Balasubramanian R K等用ASE和其他方法进行了从海水微海藻细胞中萃取脂质的研究,表明ASE是一种可以使用的方法(Chem Engineering J,2013, 215&ndash 216:929&ndash 936)。  MSPD方法是1989年首次提出是用来处理动物组织样品的方法,样品与涂渍有C18等的各种聚合物载体的固相萃取材料一起研磨,得到半干状态的混合物并将其作为填料装柱,然后用不同的的溶液洗脱柱子,将各种待测物洗脱下来。其依据是采用脂溶性材料(C18)破坏细胞膜并将组织分散,C18充当分散剂。在硅胶固相萃取材料表面键合有机相,与传统方法使用砂子做吸附剂类似,在样品与固体材料搅拌的过程中,利用剪切力作用将组织分散。键合的有机相就像溶剂或洗涤剂一样,将样品组分溶解和分散在支持物表面。这大大增加了萃取样品的表面积,样品按各自极性分布在有机相中,如非极性组分分散在非极性有机相中,极性小分子与硅胶上的硅烷醇结合,大的弱极性分子则分散在多相物质表面。(乌日娜等,食品科学,2006,26(6):266-268)。香港城市大学的Qing Shen等利用二氧化钛纳米颗粒作萃取剂,以基质固相分散萃取方法进行橄榄果的脂质组学研究,研究证明这一方法可以把磷脂从非磷脂中完全选择性地分离出来。(Food Research Int,2013, 54:2054&ndash 2061)。表2中的文献 1Stubiger G, et al, Atherosclerosis, 2012,224:177&ndash 186.2Zhao Z, et al, J Lipid Res, 2010, 51:652&ndash 6593t&rsquo Kindt R, et al, Anal Chem, 2012,84:403&ndash 4114Cui L, et al, PLoS Negl Trop Dis,2013,7:e23735Sandra K,et al, J Chromatogr A,2010,1217:4087&ndash 4099.6Lam S M, et al, J Lipid Res, 2014,55: 289&ndash 2987Giera M, et al, Biochim Biophys Acta, 2012, 1821:415&ndash 4248Min H K, Anal Bioanal Chem, 2011, 399:823&ndash 830.9Heilbronn L K, et al, Obesity,2013, 21:E649&ndash E65910Hilvo M, et al, Int J Cancer 134 (2014) 1725&ndash 173311Montoliu I, et al, Aging (Albany NY),2014,6:9&ndash 2512Chen Y , et al, Clin. Chim. Acta, 2013,428: 20&ndash 25.13Zivkovic A M, et al, Metabolomics,2009,5:507&ndash 51614Chen F,et al, Biomarkers, 2011, 16:321&ndash 33315M. Ollero, et al, J. Lipid Res, 2011, 52:1011&ndash 102216Shah V, Rapid Commun. Mass Spectrom, 2013, 27:2195&ndash 220017Lankinen M, et al, PLoS ONE, 2009,4:e5258.18J. Graessler, et al, PLoS ONE,2009, 4:e626119Lofgren L et al,, J Lipid Res, 2012,53:1690&ndash 170020Gurdeniz G, et al, PLoS ONE, 2013,8:e69589.21Zhou X, et al, PLoS ONE, 2012, 7:e48889.22Bui H H, et al, Anal Biochem, 2012,423:187&ndash 194.23Kim H, et al, Analyst, 2008, 133:1656&ndash 1663.24Stegemann C, et al, Circ Cardiovasc Genet, 2011,4:232&ndash 242.25van Smeden J, et al, J Lipid Res, 2011,52:1211&ndash 1221.26Acar N, et al, PLoS ONE,2012, 7:e35102.27Shin J H, et al, Anal Bioanal Chem,2014,406:1917&ndash 193228Cheng H, et al, J Neurochem, 2013,127:733&ndash 738.29Pietilainen K H,et al, PLoS Biol,2011, 9:e1000623.30Cha D, et al, J Chromatogr A,2009,1216:1450&ndash 1457.31Cha D, et al, Anal Chim Acta,2006, 572: 47&ndash 54.32Pragst F, et al, Forensic Sci Int,2010, 196: 101&ndash 11033Uchik T,et al, J. Chromatogr A, 2012,1250:69&ndash 75.34de Morais D R, et al, Rev Bras Hematol Hemoter,2010,32:439&ndash 443.35Gonzalez-Illan F,et al,J Anal Toxicol,2011,35:232&ndash 237.36Pizarro C, et al, Anal Chem,2013,8:12085&ndash 12092.37Pang L Q, et al, J Chromatogr B,2008,869: 118&ndash 125
  • JCP“期刊亮点”:MALDI-TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析
    p style="text-indent: 2em "最新一期的细胞生理学杂志(Journalof Cellular Physiology)期刊登载“期刊亮点”文章,介绍了研究者结合薄层色谱和MALDI TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析的成果。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/039a6bcf-8a77-418d-b5c3-a60306d87ad8.jpg"//pp  Parkin蛋白突变是早发性帕金森病(PD)的主要病因。蛋白质质量控制系统的损害以及线粒体和自噬过程的缺陷是导致神经退行性变的Parkin蛋白缺乏的结果。关于脂质在这些细胞功能改变中的作用知之甚少。在本研究中,parkin突变人皮肤原代成纤维细胞已被认为是PD的细胞模型,以研究与缺乏parkin蛋白相关的可能的脂质改变。皮肤成纤维细胞来自两个不同帕金酶突变的无关帕金森病患者,并将其脂质组成与两个对照成纤维细胞的脂质组成进行比较。通过组合基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF / MS)和薄层色谱(TLC)分析成纤维细胞的脂质提取物。同时,研究者通过跳过脂质提取步骤对完整的成纤维细胞进行了直接的MALDI-TOF / MS脂质分析。结果表明,帕金森突变体成纤维细胞脂质谱中一些磷脂和糖鞘脂的比例发生了改变。检测到的较高水平的神经节苷脂,磷脂酰肌醇和磷脂酰丝氨酸可能与自噬和线粒体转换功能障碍有关 此外,溶血症的增加可能是神经炎症状态的标志,这是PD的一个众所周知的组成部分。/p
  • 婴幼儿乳粉中胆碱的测定等7项国家标准审查会召开
    12月20日,受全国食品安全管理技术标准化技术委员会(SAC/TC313)、全国乳制品标准化技术委员会SAC/TC433和全国食品工业标准化技术委员会食品通用检测技术分技术委员会(SAC/TC64/SC8)的委托,吉林省质量技术监督局在长春主持召开了婴幼儿乳粉中胆碱的测定等7项国家标准(送审稿)审查会。  会上,标准审查委员会听取了标准编制组国家标准送审报告和征求意见稿反馈意见的处理意见汇报,查看了送审资料,并对标准送审稿中重要内容的编制依据和成熟度进行了认真审查,经充分讨论和协商,专家一致认为这7项标准的编制工作符合国家标准编制程序,提供的审查资料齐全、内容翔实,试验验证数据准确,送审稿达到了科学性、先进性、协调性和可操作性的要求,并在诸多方面具有重要创新。  据专家介绍,这7项标准项目主要涉及婴幼儿乳粉、燕窝等食品主要营养成分测定、植物源性食品农残含量测定、植物毒素含量测定、动物源性食品药残含量测定等食品质量和食品安全检测方法国家标准的研究制定,具有技术含量高、采标率高、覆盖范围广等特点,部分标准技术指标达到甚至超过国际标准,达到了国际先进水平,填补了国内空白。这些标准的发布和实施将为提高我国食品检测效率,及时应对食品安全突发事件,维护广大消费者的利益,保护消费者身体健康,提供科学依据和技术支撑。同时,也将促进食品工业技术进步,为我国农产品、食品生产企业应对国外技术性贸易壁垒,提升出口产品质量,提高产品国内外市场竞争力提供强有力的技术保障。  同时,这7项国家标准的制定也对完善我国的食品检测标准体系具有积极意义。不仅填补了国内食品质量安全检测方法标准空白,而且部分标准技术指标达到甚至高于国际标准,达到了国际先进水平。  相关链接  《婴幼儿乳粉中胆碱的测定-离子色谱法》《食品中胆碱的检测-液相色谱法》《燕窝及其制品中唾液酸含量的测定-液相色谱法》《大豆和花生中稀禾定的测定液相色谱/液相色谱-质谱/质谱法》《粮食、水果中戊唑醇残留量的测定—气相色谱-质谱法》《动物源性食品中庆大霉素、链霉素的测定液相色谱柱后衍生荧光法》《豆类食品中胰蛋白酶抑制剂活性的测定》7项国家标准项目2007年列入了国家标准制修订项目计划。  根据国家计划,这7项标准的起草制定工作由国家农业深加工产品质量监督检验中心暨吉林省产品质量监督检验院承担。  项目承担单位经过充分的调研、试验论证等前期工作,起草并形成了国家标准征求意见稿,在相关归口的国家专业标准化技术委员会、分技术委员会的支持下,在全国范围内进行了广泛的征求意见,完成了这7项国家标准送审稿。  审查会后,编制组将依据审查会专家提出的意见和建议,作进一步修改后形成报批稿。
  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style="text-align: left "  strong本文/strongstrong作者:江苏省食品药品监督检验研究院 李忠红/strong/pp style="text-align: left "  热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。/pp style="text-align: left "  目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 522px " src="https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title="图1 替格瑞洛DSC分析图.jpg" alt="图1 替格瑞洛DSC分析图.jpg" width="500" height="522" border="0" vspace="0"//pp style="text-align: center "strong图1 替格瑞洛DSC分析图/strong/pp  热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。/pp  当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。/pp  尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。/pp  strong一、药物多晶型的研究/strong/pp  各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。/pp  2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。/pp  2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title="图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt="图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg"//pp style="text-align: center "strong图2 加替沙星两种无定形物在不同升温速率下的DSC图谱/strong/pp style="text-align: center "(A)研磨法制备 (B)熔融-骤冷法制备/pp  对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。/pp  strong二、药物共晶的研究/strong/pp  共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 251px " src="https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title="图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt="图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width="500" height="251" border="0" vspace="0"//pp style="text-align: center "strong图3 吲哚美辛与糖精共晶研究的DSC图谱/strong/pp style="text-align: center "  (a)吲哚美辛与糖精物理混合物(1:1)/pp style="text-align: center "  (b)吲哚美辛与糖精物理混合物(2:1)/pp style="text-align: center "  (c)吲哚美辛与糖精物理混合物(1:2)/pp style="text-align: center "  (d)吲哚美辛与糖精共晶(原料比例1:1)/pp style="text-align: center "  (e)吲哚美辛与糖精共晶(原料比例2:1)/pp style="text-align: center "  (f)吲哚美辛与糖精共晶(原料比例1:2)/pp style="text-align: center "  (g)吲哚美辛/pp style="text-align: center "  (h)糖精/pp  strong三、药物新剂型的研究/strong/pp  纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 390px " src="https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title="图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt="图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width="500" height="390" border="0" vspace="0"//pp style="text-align: center "strong图4 载虾青素的纳米脂质体研究的DSC图谱/strong/pp style="text-align: center "(a)虾青素/pp style="text-align: center "(b)载虾青素的纳米脂质体/pp style="text-align: center "(c)大豆磷脂酰胆碱/pp style="text-align: center "(d)虾青素与大豆磷脂酰胆碱的物理混合物/pp  对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 350px " src="https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title="图5 载虾青素纳米脂质体的TG图谱.jpg" alt="图5 载虾青素纳米脂质体的TG图谱.jpg" width="500" height="350" border="0" vspace="0"//pp style="text-align: center "strong图5 载虾青素纳米脂质体的TG图谱/strong/pp  由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。/ppbr//pp  a href="https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target="_self"strong热分析技术在药物质量控制中的应用专题/strong:/a/pp style="text-align: center "a href="https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title="192042020200616.jpg" alt="192042020200616.jpg" width="600" height="131" border="0" vspace="0"//a/ppbr//pp  strong参考文献:/strong/pp  [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270/pp  [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118/pp  [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999/pp  [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856/pp  [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263/pp  [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & design, 2018, DOI: 10.1021/acs.cgd.8b01427/pp  [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules/pp  [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46/pp  [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270/pp  [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2/pp  [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558/pp  [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613/pp  [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules/pp  [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473/pp  [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70/pp  [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63/pp  [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612/pp  [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754/pp  [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16/pp  [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules/pp  [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1/ppbr//p
  • 西南大学通过仪器信息网订购远慕人磷脂酶A2(sPLA2)ELISA试剂盒
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 产品名称:人磷脂酶A2(sPLA2)ELISA试剂盒说明书定量检测试剂盒 规格:48T/96T(仅用于科研,不得用于临床诊断)。 贮藏条件:2-8℃低温保存 有效期:6个月 特异性: 人磷脂酶A2(sPLA2)ELISA试剂盒说明书可同时检测天然或重组的,且与其他相关蛋白无交叉反应。 检测种属:人、大小鼠、兔、羊、猴、猪、豚鼠ELISA检测试剂盒等种属。 西南大学客户通过仪器信息网平台订购远慕人磷脂酶A2(sPLA2)ELISA试剂盒 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • Metabolism | 单进军/杨勤合作发现肥胖人群为何更易感染新冠
    #Hot Spots / 今日热点近日,南京中医药大学-江苏省儿童呼吸疾病(中医药)重点实验室单进军教授和美国加州大学欧文分校杨勤教授在代谢性疾病领域权wei杂志Metabolism-Clinical and Experimental(JCR和中科院医学一区,IF: 13.934)合作发表了题为Reduced DMPC and PMPC in lung surfactant promote SARS-CoV-2 infection in obesity的研究性论文。肥胖是新guan病毒(SARS-CoV-2)高病毒载量的既定危险因素,会增加新guan肺炎感染者的住院率,患者的愈后情况也不容乐观,但是这一现象的潜在机制目前还未知。SARS-CoV-2主要侵袭肺部,它的刺突蛋白会与肺细胞上的ACE2受体结合。在进化过程中,肺发展出了专门的防御系统来预防感染,II型肺泡上皮细胞产生的表面活性物质是肺宿主防御系统的前线。肺表面活性物质是复杂的脂质和蛋白质混合物,脂质占比约90%,主要是磷脂酰胆碱(PCs)。而肥胖的特征是脂代谢异常,推测肺表面活性脂质的改变可能促进SARS-CoV-2感染,导致严重的新guan肺炎疾病。 但迄今为止有关肺表面活性脂质的研究报道较少(主要集中在表面活性蛋白),其原因可能是无法对复杂的脂质做出精zhun甄别。单进军教授团队利用Q Exactive高分辨质谱FullMS-ddMS2扫描模式可提供精确一、二级质谱信息这一优势,建立了肺表面活性脂质组学分析体系,并将之应用于肥胖小鼠肺组织和支气管肺泡灌洗液(BALF)的脂质分析,结果发现高脂饮食诱导的肥胖小鼠肺组织和BALF中的二肉豆蔻酰磷脂酰胆碱(DMPC)和1-棕榈酰-2-肉豆蔻酰磷脂酰胆碱(PMPC)的含量减少,而肺表面活性脂质中占比最多的二棕榈酰磷脂酰胆碱(DPPC)含量水平没有变化。在ACE2过表达的HEK293T细胞和内源性ACE2表达的Vero-E6细胞中研究PCs对SARS-CoV-2假病毒感染的影响,发现DMPC和PMPC均能显著抑制野生型和D614G突变株SARSCoV-2对HEK293T-ACE2和Vero-E6细胞的感染能力。但是,DMPC和PMPC并不能影响Spike-ACE2的相互作用。文献表明胆固醇在细胞膜中占脂质的30 mol%,在介导SARS-CoV-2进入靶细胞中起着重要作用,而PCs在哺乳动物细胞膜中也很丰富。通过细胞-细胞融合实验(以表达SARS-CoV-2 Spike/EGFP的HEK293T作效应细胞、以HEK293T-ACE2为靶细胞),探讨DMPC和PMPC可能的作用机制是通过替代细胞膜中的胆固醇来抑制SARS-CoV-2感染,并且DMPC和PMPC对SARS-CoV-2感染的抑制作用可以被胆固醇逆转。研究者还发现体外给予肥胖小鼠三肉豆蔻酸甘油酯,可增加其肺表面活性脂质DMPC和PMPC的水平。三肉豆蔻酸甘油酯组肥胖小鼠的肺泡灌洗液脂质提取物也可减轻野生型和D614G突变型SARS-CoV-2感染。综上所述,该研究应用肺表面活性脂质组学揭示了肥胖人群肺表面活性物质中DMPC和PMPC的含量变化和SARS-CoV-2感染能力的关系,并发现增加肺表面活性脂质DMPC和PMPC水平可能是防治肥胖患者感染新guan肺炎的一种创新策略,这为新guan肺炎的防治提供新的思路,具有重要的临床应用价值;在此研究基础上,研究者正从中药方剂中筛选可调控肺表面活性脂质的药效活性成分。单进军教授、杨勤教授为该文章的共同通讯作者,杜康博士和硕士生孙皊为共同第1作者。该研究获得美国国立卫生研究院R01基金和中国国家自然科学基金、江苏省自然科学基金、江苏省“六大人才高峰”资助项目和江苏高校优势学科(中医学)建设工程资助项目的资助。近年来,单进军教授团队积极采用现代科学技术,解读中医药原理。2018年11月与Oliver Fiehn教授领导的美国加州大学戴维斯分校NIH西海岸代谢组学中心共建“医学代谢组学联合实验室”,建立了基于质谱的一liu代谢组学/脂质组学技术平台;同时依托江苏省儿童呼吸疾病(中医药)重点实验室,率xian利用“肺表面活性脂质组学”策略研究中医药防治病毒性肺炎和哮喘等呼吸疾病。相关成果发表在Metabolism、Pharmacol Res、Gut Microbes、Anal Chim Acta、Front Immunol、Phytomedicine等期刊。如需合作转载本文,请文末留言。
  • 2274万!中南大学湘雅医院检验科一批试剂采购项目
    一、项目基本情况项目编号:HNWY-2023307项目名称:中南大学湘雅医院检验科一批试剂入围遴选项目预算金额:2274.130000 万元(人民币)采购需求:包号目录号试剂名称产地预算单价限价(元/人份)使用科室入围数量11解脲脲原体(UU)核酸检测试剂盒(PCR-荧光探针法)国产16.15检验科2家2沙眼衣原体(CT)核酸检测试剂盒(PCR-荧光探针法)国产16.153淋球菌(NG)核酸检测试剂盒(PCR-荧光探针法)国产16.1521EB病毒核酸定量检测试剂盒(PCR-荧光探针法)国产15.22家2人巨细胞病毒核酸定量检测试剂盒(PCR-荧光探针法)国产15.231BK病毒核酸定量检测试剂盒(PCR-荧光探针)国产14.252家2JC病毒核酸定量检测试剂盒(PCR-荧光探针)国产14.2541人MTHFR基因多态性检测试剂盒(PCR-荧光探针法)国产1522家51人CYP2C9与VKORCI基因多态性检测试剂盒国产1802家2人CYP2C19基因分型检测试剂盒(PCR-荧光探针法)国产18061人乳头状瘤病毒(HPV)检测试剂盒(PCR荧光法)进口106.42家2人乳头状瘤病毒(HPV)检测试剂盒(PCR荧光法)进口106.43沙眼衣原体/淋球菌/解脲脲原体核酸检测试剂盒进口7571septin9基因甲基化检测试剂盒国产2852家81葡萄糖6磷酸脱氢酶基因突变检测试剂盒(基因芯片法)国产4202家91新型冠状病毒2019-nCoV核酸检测试剂盒(快检)国产3.51家2新型冠状病毒2019-nCoV核酸检测试剂盒(快检)国产3.5101新型冠状病毒2019-nCoV核酸检测试剂盒国产3.331家2核酸提取试剂盒(磁珠法)及附件国产0.95111人类SLC01B1和ApoE基因检测试剂盒国产2102家121苯丙氨酸羟化酶基因突变检测试剂盒(基因芯片法)国产3202家131CYP3A5基因检测国产2102家141血细胞分析用溶血剂进口0.351家2血细胞分析用溶血剂进口0.883血细胞分析用WNR染色液进口1.484血细胞分析用WDF染色液进口1.335血细胞分析用血红蛋白溶血剂进口0.366血细胞分析用稀释液国产0.587血细胞分析仪用清洗液进口11.4/ml8血液分析仪用质控品进口171/ml9血液分析仪用质控品进口171/ml10血液分析仪用质控品进口171/ml11血细胞分析用染色液&网织红染色液进口7.9212血细胞分析用稀释液进口1.33151流式管进口0.82/根1家2流式细胞仪质控品进口87.53/ml3细胞质控品进口43.764流式细胞分析用溶血剂进口6.565HLA-B27 FITC/HLA-B7-PE检测试剂盒进口36.48161血细胞分析用染色液试剂盒进口3.661家2血液分析仪用质控品进口101.79/ml3库尔特血细胞分析系统专用试剂-DxH清洗液进口0.074库尔特白细胞五分类试剂包进口0.965血细胞分析用溶血剂进口1.096血细胞分析用稀释液国产1.44171尿液干化学分析质控物(阴性)&阴性质控液国产3.68/ml1家2尿液干化学分析质控物(阳性)&阳性质控液国产3.68/ml3尿液分析试纸条国产1.18181瑞氏-姬姆萨染色液-B液国产0.081家2瑞氏-姬姆萨染色液-A液国产0.293瑞氏-姬姆萨染色液国产0.25191精子采样管&精子质量分析仪测量仓进口221家201大便隐血检测试剂盒(胶体金法)国产31家2粪便分析系统专用试剂包国产0.683粪便分析系统专用试剂包&粪便专用采集管国产2.66211大便隐血检测试剂盒(胶体金法)国产2.472家221便隐血检测试纸(胶体金免疫层析法)&便隐血试纸国产2.472家2310139群霍乱弧菌检测试剂盒(胶体金法)国产11.972家201群霍乱弧菌检测试剂盒(胶体金法)国产12.54241尿沉渣计数板进口7.131家2尿液分析试纸条(干化学法)进口1.62251C反应蛋白检测试剂盒(免疫比浊法)进口5.021家2IMMAGE免疫化学系统专用试剂-清洗液进口0.04/ml3κ轻链检测试剂盒(免疫比浊法)进口8.214λ轻链检测试剂盒(免疫比浊法)进口8.215补体C3检测试剂盒(免疫比浊法)进口3.196补体C4检测试剂盒(免疫比浊法)进口3.197缓冲液(BUF3)国产1.05/ml8缓冲液(BUFI)国产0.73/ml9抗链球菌溶血素O检测试剂盒(免疫比浊法)进口5.9310缓冲液(BUF2)进口1.96/ml11类风湿因子检测试剂盒(免疫比浊法)进口5.4712免疫球蛋白A检测试剂盒(免疫比浊法)进口4.113免疫球蛋白G检测试剂盒(免疫比浊法)进口4.114免疫球蛋白M检测试剂盒(免疫比浊法)进口4.115尿免疫球蛋白G检测试剂盒进口6.3816铜蓝蛋白检测试剂盒(免疫比浊法)进口11.0817微量白蛋白检测试剂盒(免疫比浊法)进口6.6518样本稀释液进口0.73/ml19转铁蛋白检测试剂盒(免疫比浊法)进口2.7420尿转铁蛋白检测试剂盒(免疫比浊法)进口5.47261C反应蛋白测定试剂盒(胶乳免疫比浊法)国产3.81家2κ-轻链检测试剂盒(免疫比浊法)国产8.123λ-轻链检测试剂盒(免疫比浊法)国产8.124补体C3测定试剂盒(免疫比浊法)国产2.895补体C4测定试剂盒(免疫比浊法)国产2.896抗链球菌溶血素O测定试剂盒(胶乳增强免疫比浊法)国产4.757类风湿因子测定试剂盒(胶乳增强免疫比浊法)国产4.758免疫球蛋白A测定试剂盒(免疫比浊法)国产3.439免疫球蛋白G测定试剂盒(免疫比浊法)国产3.4310免疫球蛋白M测定试剂盒(免疫比浊法)国产3.4311铜蓝蛋白检测试剂盒(免疫比浊法)国产9.0312尿微量白蛋白测定试剂盒(免疫比浊法)国产3.813转铁蛋白测定试剂盒(免疫比浊法)国产2.26271丙型肝炎病毒抗体诊断试剂盒(酶联免疫法)国产1.92家281甲胎蛋白测定试剂盒(化学发光微粒子免疫检测法)进口11.971家291结核分枝杆菌IGG/IGM抗体检测试剂盒国产14.882家301梅毒螺旋体抗体检测试剂(胶体金法)国产2.852家311梅毒甲苯胺红不热血清诊断试剂盒国产0.292家321结核分歧杆菌特异性细胞免疫反应检测试剂盒1501家331丙型肝炎病毒核心抗原检测试剂盒(酶联免疫法)国产132家341抗核抗体谱IGG检测试剂盒进口125.41家2抗心磷脂抗体IGA/G/M检测试剂盒(酶联免疫吸附法)进口16.913抗心磷脂抗体检测试剂盒(胶体金标记免疫斑点渗滤法)国产4.09351幽门螺杆菌尿素酶抗体检测试剂盒(胶体金法)国产9.52家361EB病毒壳抗原(VCA)IGM抗体检测试剂盒(酶联免疫法)国产4.652家2单纯疱疹病毒Ⅰ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.183单纯疱疹病毒Ⅰ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.184单纯疱疹病毒Ⅱ型IGM抗体检测试剂盒(酶联免疫法)国产4.285单纯疱疹病毒Ⅱ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.186柯萨奇B组病毒IGM抗体检测试剂盒(酶联免疫法)国产4.657人呼吸道合胞病毒IGM抗体检测试剂盒(酶联免疫)国产4.188腺病毒IGM抗体检测试剂盒(酶联免疫)国产4.189人类免疫缺陷病毒P24抗原及抗体检测试剂盒(胶体硒法)进口21.85371伤寒、副伤寒及变形菌OX19、OX2、OXK诊断菌液国产95/盒2家2伤寒、副伤寒及变形菌OX19、OX2、OXK诊断菌液国产95/盒3血吸虫虫卵抗体检测试剂盒(胶体金法)国产10.364丙型肝炎病毒抗体(抗HCV)液体标准物质国产36.1/mL5乙肝肝炎病毒表面抗原(HBSAG)液体标准物质国产34.3/mL6乙型肝炎病毒C抗体(HBCAB)液体标准物质国产34.3/mL7乙型肝炎病毒E抗体(HBEAB)液体标准物质国产34.3/mL8乙型肝炎病毒E抗原(HBEAG)液体标准物质国产34.3/mL9乙肝肝炎病毒表面抗体(HBSAB)液体标准物质国产34.3/mL10乙型肝炎病毒表面抗体诊断试剂盒(酶联免疫法)国产0.4711乙型肝炎病毒E抗原诊断试剂盒(酶联免疫法)国产0.4712乙型肝炎病毒E抗体诊断试剂盒(酶联免疫法)国产0.4713乙型肝炎病毒核心抗体诊断试剂盒国产0.4714乙型肝炎病毒核心抗体检测试剂盒(酶联免疫法)国产0.66381胃蛋白酶原I检测试剂盒(酶联免疫法)进口17.582家2胃蛋白酶原II检测试剂盒(酶联免疫法)进口17.58391风疹病毒IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.21家2风疹病毒IGG测定试剂盒(化学发光微粒子免疫检测法)进口14.063风疹病毒IGM测定试剂盒(化学发光微粒子免疫检测法)进口14.064弓形体IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.955弓形体IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.956弓形体IGM测定试剂盒(化学发光微粒子免疫检测法)进口19.957弓形体IGM测定试剂盒(化学发光微粒子免疫检测法)进口19.958巨细胞病毒IgM测定试剂盒进口7.139巨细胞病毒IgM测定试剂盒进口7.1310巨细胞病毒IgG测定试剂盒进口7.1311巨细胞病毒IgG测定试剂盒进口7.13401促红细胞生成素测定试剂盒进口或国产13.291家2生化分析系统专用试剂-电解质参比液进口或国产984.23生化分析系统专用试剂-电解质内标液进口或国产768.894生化分析系统专用试剂-清洗液&系统冲洗液进口或国产966.155电极清洗液进口或国产959.56电解质标准液(低值)进口或国产615.67电解质标准液(高值)进口或国产6848反应杯进口或国产5170.859电解质缓冲液进口或国产1094.410清洗液进口或国产638.411全自动免疫检验系统用底物液进口或国产281212生化多项校准品进口或国产1444.9513维生素B12测定试剂盒进口或国产10.9414铁蛋白测定试剂盒进口或国产8.9315叶酸测定试剂盒进口或国产10.03411载脂蛋白A1测定试剂盒进口或国产1.732家2载脂蛋白B测定试剂盒进口或国产1.733乳酸测定试剂盒进口或国产0.364乳酸脱氢酶测定试剂盒进口或国产0.475钙离子测定试剂盒进口或国产0.126甘油三酯测定试剂盒进口或国产0.777高密度脂蛋白胆固醇测定试剂盒进口或国产1.728二氧化碳测定试剂盒进口或国产1.269胆碱酯酶测定试剂盒进口或国产0.9310低密度脂蛋白胆固醇测定试剂盒进口或国产1.9211a-淀粉酶测定试剂盒进口或国产2.5412a-羟丁酸脱氢酶测定试剂盒进口或国产0.2713γ-谷氨酰氨基转移酶测定试剂盒进口或国产0.3514铁离子测定试剂盒进口或国产0.515氨(AMM)测定试剂盒进口或国产1.2416白蛋白测定试剂盒进口或国产0.117丙氨酸氨基转移酶测定试剂盒进口或国产0.2618肌酐测定试剂盒进口或国产0.1619肌酸激酶MB同工酶测定试剂盒进口或国产2.8820肌酸激酶测定试剂盒进口或国产0.8121碱性磷酸酶测定试剂盒进口或国产0.2622镁测定试剂盒进口或国产0.4623尿素测定试剂盒进口或国产0.3224尿酸测定试剂盒进口或国产0.4625总蛋白测定试剂盒进口或国产0.126天门冬氨酸氨基转移酶测定试剂盒进口或国产0.2727酸性磷酸酶测定试剂盒进口或国产0.8528葡萄糖测定试剂盒进口或国产0.2929总胆固醇测定试剂盒进口或国产0.2230无机磷测定试剂盒进口或国产0.1831腺苷脱氨酶测定试剂盒进口或国产2.13421游离脂肪酸(NEFA)测定试剂盒进口或国产2.652家2直接胆红素(DBIL)测定试剂盒进口或国产0.123中性粒细胞明胶酶相关脂质运载蛋白检测试剂盒进口或国产22.84总胆红素(TBIL)测定试剂盒进口或国产0.125果糖胺(FMN)测定试剂盒进口或国产0.661,5-脱水-D-山梨醇(1,5-AG)测定试剂盒进口或国产10.87心型脂肪酸结合蛋白检测试剂盒进口或国产19.958免疫球蛋白E(IgE)测定试剂盒进口或国产6.464315'-核苷酸酶(5'-NT)测定试剂盒进口或国产2.382家2a-L-岩藻糖苷酶测定试剂盒进口或国产2.743β2微球蛋白测定试剂盒进口或国产2.714超敏C反应蛋白测定试剂盒进口或国产4.015前白蛋白测定试剂盒进口或国产1.246脂蛋白(a)测定试剂盒进口或国产4.01441脂蛋白相关磷脂酶A2测定试剂盒进口或国产38.952家2同型半胱氨酸测定试剂盒进口或国产173胱抑素C测定试剂盒进口或国产6.65451脑脊液与尿蛋白(CSF)测定试剂盒进口或国产1.142家2视黄醇结合蛋白测定试剂盒进口或国产2.853天冬氨酸氨基转移酶线粒体同工酶测定试剂盒进口或国产3.424小而密低密度脂蛋白胆固醇测定试剂盒进口或国产10.64461血清蛋白测定试剂盒进口5.991家471总胆汁酸测定试剂盒进口或国产1.52家481肌钙蛋白I测定试剂盒进口38.381家491血细胞分析用溶血剂进口0.761家2血细胞分析用稀释液进口0.773血细胞分析用染色液进口2.194血细胞分析用溶血剂进口0.95501革兰氏阴性菌脂多糖检测试剂盒(显色法)国产422家2真菌(1-3)-Β-D葡聚糖定量检测试剂盒(显色法)国产393曲霉菌抗原检测试剂盒(酶联免疫法)进口或国产49.88511结核分枝杆菌RPOB基因和突变检测试剂盒进口254.61家521L型细菌培养基国产4.752家2哥伦比亚血琼脂培养基国产3.333即用MH琼脂培养基国产3.84淋球菌选择培养基国产5.75麦康凯琼脂培养基国产3.86巧克力色琼脂培养基国产3.87沙保罗氏琼脂培养基国产3.88嗜血杆菌巧克力琼脂培养基国产3.89厌氧血琼脂培养基国产6.1810细菌干粉培养基-SS琼脂)国产1.9211细菌干粉培养基-TCBS琼脂国产2.6112革兰氏染色液快速法国产1.42531酵母样真菌药敏试剂盒(微量稀释法)进口34.21家2肺炎链球菌药敏卡片(GP68)进口36.13革兰氏阳性细菌鉴定卡(GP)进口36.14革兰氏阴性细菌鉴定卡(GN)进口36.15酵母菌鉴定卡(YST)进口36.16奈瑟菌、嗜血杆菌鉴定卡(NH卡)进口36.17革兰氏阳性细菌药敏卡片(GP68)进口36.18革兰氏阴性细菌药敏卡片(GN13)进口37.059革兰染色液&品红溶液进口0.9510革兰染色液&结晶紫溶液进口0.9511革兰染色液&碘试剂进口0.95541分枝杆菌/真菌培养瓶进口40.281家2需氧微生物培养瓶(成人瓶)进口40.283需氧微生物培养瓶(儿童瓶)进口40.284厌氧微生物培养瓶进口40.28551阿米卡星药敏实验纸片扩散法进口0.622家2氨苄西林/舒巴坦药敏实验纸片扩散法进口0.623氨苄西林药敏实验纸片扩散法进口0.624氨曲南药敏实验纸片扩散法进口0.625苯唑西林药敏实验纸片扩散法进口0.626厄他培南药敏实验纸片扩散法进口0.627红霉素药敏实验纸片扩散法进口0.628环丙沙星药敏实验纸片扩散法进口0.629磺胺甲恶唑/甲氧苄啶药敏实验纸片扩散法进口0.6210克林霉素药敏实验纸片扩散法进口0.6211利奈唑胺药敏实验纸片扩散法进口0.6212磷霉素/氨丁三醇药敏实验纸片扩散法进口0.6213氯霉素药敏实验纸片扩散法进口0.6214美罗培能药敏实验纸片扩散法进口0.6215米诺环素药敏实验纸片扩散法进口0.6216哌拉西林/他唑巴坦药敏实验纸片扩散法进口0.6217哌拉西林药敏实验纸片扩散法进口0.6218青霉素药敏实验纸片扩散法进口0.6219庆大霉素药敏实验纸片扩散法进口0.6220四环素药敏实验纸片扩散法进口0.6221替加环素药敏实验纸片扩散法进口0.6222替考拉宁药敏实验纸片扩散法进口0.6223头孢吡肟药敏实验纸片扩散法进口0.6224头孢呋新钠药敏实验纸片扩散法进口0.6225头孢洛林药敏实验纸片扩散法进口0.6226头孢哌酮/舒巴坦药敏实验纸片扩散法进口0.6227头孢哌酮药敏实验纸片扩散法进口0.6228头孢曲松药敏实验纸片扩散法进口0.6229头孢噻肟药敏实验纸片扩散法进口0.6230头孢他啶药敏实验纸片(纸片扩散法)进口0.6231头孢西丁药敏实验纸片扩散法进口0.6232头孢唑林药敏实验纸片扩散法进口0.6233万古霉素药敏实验纸片扩散法进口0.6234亚胺培南药敏实验纸片扩散法进口0.6235左氧氟沙星药敏实验纸片扩散法进口0.6236利奈唑胺药敏检测试剂(E-Test法)国产8.5537美罗培南药敏检测试剂(E-Test法)国产8.5538青霉素药敏检测试剂(E-Test法)国产8.5539头孢曲松药敏检测试剂(E-Test法)国产8.5540万古霉素药敏检测试剂(E-Test法)国产8.5541替加环素药敏检测试剂(微量肉汤稀释法)国产8.5542多粘菌素B药敏检测试剂(微量肉汤稀释法)国产8.55561研磨器国产14.252家2单包装灭菌一次性使用吸管国产0.383一次性使用采样棒国产0.174一次性使用采样棒国产0.19合同履行期限:详见遴选文件本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月03日 至 2024年01月19日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:51招标网(输入“www.51eliao.com”→供应商“注册/登录”→“可参与项目”→找到对应项目→“购标”)方式:51招标网(输入“www.51eliao.com”→供应商“注册/登录”→“可参与项目”→找到对应项目→“购标”)。上传①法定代表人委托授权书(附被授权委托人身份证),②营业执照(具有统一信用代码),以上资料为加盖供应商原始公章的彩色扫描件。代理机构核对通过后方可下载遴选文件。缴费通过平台微信支付,售后一概不退。供应商确认所有要参与投标的包号,并一次性进行申请。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中南大学湘雅医院     地址:湖南省长沙市湘雅路87号        联系方式:陈先生、0731-89752080      2.采购代理机构信息名 称:湖南五一招标有限公司            地 址:湖南省长沙市芙蓉中路一段88号天健壹平方英里H栋25楼            联系方式:吴先生、李先生、0731-84785151            3.项目联系方式项目联系人:吴先生、李先生电 话:  0731-84785151
  • Webinar报名啦:3-MCPD,MOSH/MOAH,草甘膦、磷脂酰乙醇等自动化检测方案
    时间:2020年5月26日周二 下午14:30 - 15:30内容:本次网络研讨会将为大家带来最新针对食用油中3-MCPD及缩水甘油的检测食品中矿物油污染MOSH/MOAH检测食品中草甘膦的检测法医毒理学的酒精消耗标记物磷脂酰乙醇的检测等应用的自动化样品制备解决方案。讲解自动化的需求,流程和及哲斯泰解决方案的优势所在。使用哲斯泰MPS多功能全自动样品前处理平台,结合独有的样品前处理模块,并且在智能的Maestro软件的全程控制下,我们可以自动化实现样品的振荡,孵化,离心,溶剂蒸发,氮吹,液液萃取,及在线衍生等功能。对于样品萃取或是净化,我们有过滤,离心以及自动化固相萃取模块,满足GC/MS及LC/MS分析对样品前处理的需求。欢迎大家拨冗参加!长按二维码报名
  • 【新旧对照】GB 29921-2021《食品安全国家标准 预包装食品中致病菌限量》
    致病菌是常见的致病性微生物,能够引起人或动物疾病。食品中的致病菌主要有沙门氏菌、副溶血性弧菌、大肠杆菌、金黄色葡萄球菌等。据统计,我国每年由食品中致病菌引起的食源性疾病报告病例数约占全部报告的40%至50%。  《食品安全法》规定,食品安全标准应当包括食品、食品相关产品中的致病性微生物、农药残留、兽药残留、重金属、污染物质以及其他危害人体健康物质的限量规定。目前,我国涉及食品致病菌限量的现行食品标准共计500多项,标准中致病菌指标的设置存在重复、交叉、矛盾或缺失等问题。 为控制食品中致病菌污染,预防微生物性食源性疾病发生,同时整合分散在不同食品标准中的致病菌限量规定,国家卫生计生委委托国家食品安全风险评估中心牵头起草《食品中致病菌限量》(GB29921-2013,以下简称GB29921)。标准经食品安全国家标准审评委员会审查通过,于2013年12月26日发布,自2014年7月1日正式实施。  GB29921属于通用标准,适用于预包装食品。其他相关规定与本标准不一致的,应当按照本标准执行。其他食品标准中如有致病菌限量要求,应当引用本标准规定或者与本标准保持一致。该标准实施过程中遇到很多问题,在历年食品安全抽检实施过程中得到反馈的问题较多,因此相关部门于2017年1月正式启动修订,2019年12月公开征求意见,现GB 29921-2021于2021年9月7日发布,2021年11月21日实施。同期公布的《GB 31607-2021食品安全国家标准 散装即食食品中致病菌限量》也如约而至,这两个新标准 的正式实施将为食品人提供强有力的法规支持,话不所说,我们还是先重点看一下GB 29921-2021较GB 29921-2013有哪些变化吧。新版变化1.修改标准名称2021版标准由《食品安全国家标准 食品中致病菌限量》修改为 《食品安全国家标准 预包装食品中致病菌限量》2.修改适用范围3.应用原则4.指标要求(1)食品类别增加增加了乳及乳制品、特殊膳食用食品的致病菌限量要求,食品类别由11类增加到13类。(2)肉制品删除2013版肉制品类别下的熟肉制品和即食生肉制品删除 大肠埃希氏菌 O157:H7 要求增加致泻大肠埃希氏菌要求,并在备注中限定仅用于牛肉制品,即食生肉制品、发酵肉制品。金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(3)水产制品01删除2013版水产制品类别下熟制水产品、即食生制水产品、即食藻类制品02增加单核细胞增生李斯特氏菌要求03删除金黄色葡萄球菌要求(4)即食蛋制品无变化(5)粮食制品01删除粮食制品类别下熟制粮食制品(含焙烤类)、熟制带馅(料)面米制品、方便面米制品02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(6)即食豆制品01删除即食豆制品类别下发酵豆制品、非发酵豆制品02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。同时m和M单位由CFU/g改为CFU/g(ml)(7)巧克力类及可可制品无变化(8)即食果蔬制品01删除 大肠埃希氏菌 O157:H7 要求02增加致泻大肠埃希氏菌要求,并在备注中限定仅用于牛肉制品,即食生肉制品、发酵肉制品。03金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。04增加单核细胞增生李斯特氏菌要求05单核细胞增生李斯特氏菌和致泻大肠埃希氏菌要求仅适用于去皮或预切得水果、去皮或预切的蔬菜及上述类别混合食品。(9)饮料01删除饮料食品类别下(包装饮用水、碳酸饮料除外)02删除金黄色葡萄球菌要求(10)冷冻饮品01删除冷冻饮品类别下冰淇淋类、雪糕(泥)类、食用冰、冰棍类02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(11)即食调味品01删除即食调味品类别下酱油、酱及酱制品、水产调味品、复合调味料(沙拉酱等)02金黄色葡萄球菌检验方法由GB4789.10第二法改为GB4789.10,不再限定金黄色葡萄球菌检验方法为第二法。(12)坚果与籽类食品01食品类别由坚果籽实制品修改为坚果与籽类食品,同时删除坚果及籽类的泥(酱),腌制果仁类(13)备注01增加解释 表中“m=0/25g或25ml或100g”代表“不得检出每25g或每25ml或每100g”。02原“注1”调整为应用原则中2.403原“注2”调整为应用原则中2.3(14)增加附录A 食品类别(名称)说明详细的标准全文如下图:
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p  由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title="培训现场.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "培训现场/span/strong/pp  本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title="史晋海博士主持.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "史晋海博士主持/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title="余立老师2 .jpg"/br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "余立老师/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style="" title="周立春老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "周立春老师/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title="山广志老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "山广志老师/span/strong/pp  无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。br//pp  杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。/pp  微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。/pp  会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。/pp  生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。/pp /p
  • 中国检验检疫科学研究院融合食品组学和质谱技术,3秒钟实现冻融肉鉴别并发现肉类加工EPT标志物
    近日,中国检验检疫科学研究院张峰首席专家团队在肉类安全领域取得新进展,快速鉴别肉在运输、加工过程中产生的潜在风险物质。将食品组学与快速蒸发电离质谱(rapid evaporative ionization mass spectrometry, REIMS)相融合,在肉表面划一刀(lKnife技术)即可在3秒内实现冻融肉的鉴别;基于超高效液相色谱高分辨质谱(Q Exactive)结合化学计量学的方法能够识别不同温度下烤制猪肉之间的代谢物差异,发现了肉类加工温度标志物,实现熟肉制品的安全鉴别。我国肉类产量已经连续20多年稳居世界第一,是世界上最有影响力的肉类生产大国。肉类作为人们膳食结构的重要组成部分,其安全问题受到人们的广泛关注。由于冷链物流技术不完善,使得冷冻肉在运输过程中发生反复冻融现象,严重影响肉的品质。在该研究中,采用REIMS对新鲜和反复冻融牛肉的脂质成分进行分析,共检出18种脂肪酸离子和60种磷脂离子。建立的PCA-LDA模型成功区分了新鲜和不同冻融次数的牛肉,对于盲测样品的识别率超过92%。OPLS-DA模型用于脂肪酸和磷脂分子之间的差异分析,筛选出m/z 279.2317(FA18:2),m/z 681.4830(PAO-16:0/20:4)和m/z 697.4882(PA18:1/18:2)为牛肉在冻融过程中的差异标志物。所开发的技术仅需3秒钟,即可实现冻融肉和新鲜肉的鉴别。肉类EPT为加工过程中肉品所达到的最高温度,是确保熟肉制品安全的重要指标。为确保熟肉制品安全,研究团队基于超高效液相色谱-Q Exactive质谱和化学计量学建立一种非靶标代谢组学方法,研究不同温度下烤制猪肉之间的代谢物差异,并为指示EPT标志物的选择以及新型有毒热诱导化合物的发现提供帮助。结果表明:肌酸、肌酸酐、2-氨基-1-甲基-6-苯基咪唑并[4,5-b]吡啶(PhIP)、2-甲基-6-氨基-5-羟甲基嘧啶(TMP)和m/z 114.04316的化合物这5种物质可作为指示EPT的标志物。值得注意的是,TMP是首次在烤猪肉中发现。相关研究由在读研究生何启川和闫晓婷在导师张峰研究员的指导下完成,得到了杨敏莉研究员等老师的指导帮助,研究成果分别发表在SCI 1区期刊《Journal of Agricultural and Food Chemistry》和SCI 2区期刊《Journal of Chromatography A》上。该工作得到了国家重点研发计划项目,国家“万人计划”科技创新领军人才项目的支持。 融合食品组学和质谱技术,3秒钟实现冻融肉鉴别并发现肉类加工EPT标志物实验过程
  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。  本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。  本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。  第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:  GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)  GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)  GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)  GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)  GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)  GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)  GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)  GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)  GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)  GB 29924-2013 食品添加剂标识通则  GB 29925-2013 食品添加剂 醋酸酯淀粉  GB 29926-2013 食品添加剂 磷酸酯双淀粉  GB 29927-2013 食品添加剂 氧化淀粉  GB 29928-2013 食品添加剂 酸处理淀粉  GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯  GB 29930-2013 食品添加剂 羟丙基淀粉  GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯  GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯  GB 29933-2013 食品添加剂 氧化羟丙基淀粉  GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉  GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯  GB 29936-2013 食品添加剂 淀粉磷酸酯钠  GB 29937-2013 食品添加剂 羧甲基淀粉钠  GB 29938-2013 食品用香料通则  GB 29939-2013 食品添加剂 琥珀酸二钠  GB 29940-2013 食品添加剂 柠檬酸亚锡二钠  GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)  GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)  GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)  GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)  GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)  GB 29946-2013 食品添加剂 纤维素  GB 29947-2013 食品添加剂 萜烯树脂  GB 29948-2013 食品添加剂 聚丙烯酸钠  GB 29949-2013 食品添加剂 阿拉伯胶  GB 29950-2013 食品添加剂 甘油  GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯  GB 29952-2013 食品添加剂 &gamma -辛内酯  GB 29953-2013 食品添加剂 &delta -辛内酯  GB 29954-2013 食品添加剂 &delta -壬内酯  GB 29955-2013 食品添加剂 &delta -十一内酯  GB 29956-2013 食品添加剂 &delta -突厥酮  GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮  GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯  GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮  GB 29960-2013 食品添加剂 二烯丙基硫醚  GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)  GB 29962-2013 食品添加剂 2-巯基-3-丁醇  GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)  GB 29964-2013 食品添加剂 二甲基二硫醚  GB 29965-2013 食品添加剂 二丙基二硫醚  GB 29966-2013 食品添加剂 烯丙基二硫醚  GB 29967-2013 食品添加剂 柠檬酸三乙酯  GB 29968-2013 食品添加剂 肉桂酸苄酯  GB 29969-2013 食品添加剂 肉桂酸肉桂酯  GB 29970-2013 食品添加剂 2,5-二甲基吡嗪  GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛  GB 29972-2013 食品添加剂 乙醛二乙缩醛  GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑  GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)  GB 29975-2013 食品添加剂 二糠基二硫醚  GB 29976-2013 食品添加剂 1-辛烯-3-醇  GB 29977-2013 食品添加剂 2-乙酰基吡咯  GB 29978-2013 食品添加剂 2-己烯醛(叶醛)  GB 29979-2013 食品添加剂 氧化芳樟醇  GB 29980-2013 食品添加剂 异硫氰酸烯丙酯  GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺  GB 29982-2013 食品添加剂 &delta -己内酯  GB 29983-2013 食品添加剂 &delta -十四内酯  GB 29984-2013 食品添加剂 四氢芳樟醇  GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)  GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮  GB 29987-2013 食品添加剂 丁苯橡胶  GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)  GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定  GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单  特此公告。  附件:75项食品安全国家标准及BHT第1号修改单.zip  国家卫生计生委  2013年11月29日
  • 关于文冠果种仁等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对文冠果种仁等2种物质申请新食品原料、β-淀粉酶等3种物质申请食品添加剂新品种、玻璃纤维等3种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年7月24日一、新食品原料解读材料(一)文冠果种仁文冠果种仁是以无患子科文冠果属文冠果(Xanthoceras sorbifolium Bunge)的种籽为原料,经干燥、磁选、脱壳、筛选等工艺制成。文冠果种仁的主要营养成分包括脂肪、蛋白质、碳水化合物、膳食纤维、维生素等,且含有少量的皂苷和甾醇类等物质。文冠果在我国东北、西北、华北北部地区均有种植,且在内蒙古、甘肃、陕西、山东等地区具有食用历史。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对文冠果种仁的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于文冠果种仁在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。文冠果种仁含脂肪57.18%、蛋白质29.69%、淀粉9.04%,营养价值很高,是我国北方很有发展前途的木本油料植物;种仁榨油出油率30%左右,种子油中神经酸含量约占1.5%~3%,是重要的神经酸资源植物,属二级食用植物油;种子榨油后饼粕是蛋白食品和精饲料的原料。种仁可以直接当水果吃,成熟的文冠果味道跟新鲜核桃一样甘甜。同时,它还可以当蔬菜吃,清炒、凉拌、腌渍各有风味。文冠果油可作为普通食用油。在2020年,国家卫健委对文冠果油终止审查(受理编号:卫食新申字(2020)第0002号),鉴于该产品具有长期人群食用历史,且国家粮食和物资储备局已发布标准《LS/T3265-2019文冠果油》,建议终止审查,按普通食品管理。该原料的食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。(二)文冠果叶文冠果叶是以无患子科文冠果属文冠果(Xanthoceras sorbifolium Bunge)的嫩叶为原料,经杀青、揉捻、干燥等工艺制成。文冠果叶的主要营养成分包括碳水化合物、蛋白质、脂肪等,且含有少量的茶多酚、多糖、皂苷、黄酮类等物质。文冠果在我国东北、西北、华北北部地区均有种植,文冠果叶在我国河北、山西、内蒙古、山东等地区具有食用历史。本申报产品的食用方式为泡饮,推荐食用量为≤6克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对文冠果叶的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于文冠果叶在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。文冠果嫩芽、嫩叶、花蕾还可以炒制成茶,树叶加工成茶叶,叶片中蛋白质含量高于红茶,咖啡因含量与花茶相似,是市场的一种饮品。二、食品添加剂新品种解读材料(一)β-淀粉酶1.背景资料。弯曲芽孢杆菌(Bacillus flexus)来源的β-淀粉酶申请作为食品工业用酶制剂新品种。日本厚生劳动省、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(二)溶血磷脂酶1.背景资料。李氏木霉(Trichoderma reesei)来源的溶血磷脂酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化溶血磷脂的水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(三)硫酸1.背景资料。硫酸作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于啤酒、淀粉、乳制品等加工工艺。本次申请扩大使用范围用于油脂加工工艺。美国食品药品管理局、日本厚生劳动省等允许其用于食品。2.工艺必要性。该物质作为食品工业用加工助剂用于油脂加工工艺,中和油脂,去除加工副产物。其质量规格执行《食品安全国家标准 食品添加剂 硫酸》(GB 29205)。三、食品相关产品新品种解读材料(一)玻璃纤维;玻璃棉1.背景资料。该物质在常温下呈固态。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等多种塑料材料及制品。国家卫生健康委2021年第2号公告已批准该物质用于聚四氟乙烯(PTFE)塑料材料及制品中,最大使用量为25%,此次申请将其使用范围扩大至聚醚醚酮(PEEK)塑料材料及制品,最大使用量为30%。美国食品药品管理局、欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为一种填充剂,可以提高食品接触用PEEK塑料材料及制品的机械性能。(二)C.I.颜料黑28;铜铬黑1.背景资料。该物质在常温下为黑色粉末状细颗粒,不溶于水。GB 9685-2016已批准该物质作为添加剂用于PE、PP、PS等多种塑料材料及制品。此次申请将其使用范围扩大至食品接触用涂料及涂层。美国食品药品管理局和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质作为着色剂,具有较好的热稳定性和红外吸收以及红外辐射性能,多用于耐高温涂层中,可使涂层承受温度变化而不发生开裂和脱落、提高涂层的辐射换热效率。(三)N-(2-氨基乙基)-β-丙氨酸钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物1.背景资料。该物质在常温下为白色或淡黄色固体。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用黏合剂。2.工艺必要性。该物质作为生产水性黏合剂的主要原料,具有较好的粘结性能。
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。 图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119 参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activities in vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。 图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activities in vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制