当前位置: 仪器信息网 > 行业主题 > >

氯化苯基汞分析标准品

仪器信息网氯化苯基汞分析标准品专题为您提供2024年最新氯化苯基汞分析标准品价格报价、厂家品牌的相关信息, 包括氯化苯基汞分析标准品参数、型号等,不管是国产,还是进口品牌的氯化苯基汞分析标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化苯基汞分析标准品相关的耗材配件、试剂标物,还有氯化苯基汞分析标准品相关的最新资讯、资料,以及氯化苯基汞分析标准品相关的解决方案。

氯化苯基汞分析标准品相关的资讯

  • 选择汞分析仪时应考虑的因素
    为什么选择适合的汞分析仪很重要?NIC认为汞分析不仅仅是为了满足合规性要求或研究的目的。它可以帮助人类和环境免受汞这种有毒元素的潜在危害。选择错误的汞分析仪可能导致不准确的测量结果或未能检测到汞的结果,从而使人类和环境面临未知的风险。使用正确的汞分析仪,可以帮助做出明智的决定和制定相应的政策,保护人类和环境的健康和安全。如果您不确定选择哪种汞分析技术,请继续阅读以了解在选择汞分析仪时应考虑的事项。1. 敏度和检测技术汞分析要求灵敏度- 分析仪检测低浓度汞的能力,以及检测要求-规定最低检测限的监管标准或研究目标。汞分析的最终目的是实现其特定目标 – 达到监管标准、满足客户要求,或进行相关研究。在实验室进行环境汞分析时,特定的监管方法规定了要使用的分析仪类型,最低检测限因所分析的环境介质而异。相反,出于研究目的,灵敏度和检测要求可能会因研究目标而异。研究人员可能需要更灵敏的检测方法,有时还会使用多种仪器组合来达到研究目的。选择适当的汞分析技术取决于分析的具体目标和目的。通过了解灵敏度和检测限方面的分析要求,您可以选择适当的汞分析仪以获取正确结果。汞分析中有两种常用的检测器:CVAAS和CVAFS。这两种方法都需要先将汞从样品溶液中气化出来,然后再将汞蒸气转移到由空心阴极灯照射的光学检测池。两种检测器的光学器件具有不同的几何构造,其中CVAAS在检测器和阴极灯之间为直接路径,测量吸收信号,而CVAFS的检测器和阴极灯垂直布局,测量发射光。CVAFS比CVAAS更灵敏,因此更适合低浓度汞的检测。与CVAAS不同,它的共振激发提供了更多的选择性激发,这使其不易受到其他化合物的干扰。然而,CVAAS仍然是一种普遍而可靠的方法,特别是因为它具有足够的灵敏度,可以满足大多数的法规遵从性,并且比CVAFS更便宜。CVAAS和CVAFS之间的选择取决于汞分析的具体要求,包括灵敏度、检测限和法规遵从性。例如,需要使用CVAAS来满足EPA 7470方法要求。2. 样品基质的类型在选择汞分析仪时,必须考虑到所分析样品基质的类型。样品基质是指将被引入汞分析仪进行测量的含有分析物(汞)的不同类型的材料或物质。所选分析仪必须在能够不受样品基质影响的情况下准确测量汞。汞分析涉及多种样品基质,从原油、凝析油和石脑油等石油产品到环境空气、农产品、海产品和水源等环境资源。除了样品的类型之外,其他需要考虑的因素包括样品中可能存在的干扰物、预期汞浓度、样品来源(例如,靠近金矿区域),以及将来需要分析的样品类型。基于这些考虑,将样品引入分析仪进行测量的最适当方式将由样品基质的类型决定。这一因素将在下一节中进一步讨论。3. 将样品引入分析仪的最佳方式是什么?(是否需要消解样品?)在选择汞分析仪时,必须考虑将样品引入分析仪的最合适技术。NIC收到的最常见问题之一是:是否需要在测量前对样品进行消解?有两种主要技术用来将样品引入汞分析仪:还原气化/化学还原法和直接热分解法。还原气化/化学还原法技术,如氢化物发生、氯化亚锡还原,通常用于将水样中的离子汞(Hg2+)还原并转化为元素汞蒸气,然后由检测器进行测量。只有在样品经过酸预消解/氧化、从样品中提取到了所有形式的汞时,才能通过该技术检测到样品中的总汞。然而,样品消解是一个耗时且容易出错的过程,还可能造成污染或导致样品中部分汞的损失。直接热分解是一种高效、高性价比的技术,只需最少的劳动力便可将样品中的所有汞引入分析仪。其原理是将样品加热到高温以分解并释放出汞蒸气,然后由检测器进行测量。然而,直接热分解技术并不适用于超痕量级汞的样品,如干净的海水、雨水或雪。例如,直接热分解技术对于超痕量级汞的样品(如干净的海水、雨水或雪)来说不是最佳的技术。在这种情况下,需要使用CVAFS检测器的还原气化技术,因为它允许更大的样品量,从而可以提高其灵敏度和检测限。是否需要对样品进行消解应基于各种因素考虑,例如样品类型、是否存在干扰,以及监管要求或研究目的的需求。阅读NIC网站MA 系列 – 汞分析的最佳伙伴,以上所介绍的两种样品分析方法可在一台仪器上完成。4. 汞分析仪制造商的专业知识选择可靠的汞分析仪制造商是选择正确的汞分析仪的关键之一。是什么使汞分析仪制造商成为可靠的制造商呢?关键因素之一是他们在该领域的经验和专业知识。可靠的制造商对汞分析技术、方法和应用具有广泛的知识。这种经验和技术使他们能够生产高效可靠的汞分析仪,并能够为全球客户提供各种类型的应用。另一个需要考虑的重要因素是他们在行业中的声誉。一家信誉良好的制造商在生产优质产品和为客户提供卓越支持和客户服务方面有着良好的记录。他们还需制定严格的质量控制标准,确保汞分析仪的一致性和可靠性。除了经验和声誉,可靠的制造商还应为代理商和用户提供充分的支持和培训。制造商应拥有一个庞大的正规代理商网络,并且有能力现场为客户提供支持和帮助。凭借40多年的经验,NIC已成为汞分析领域的领导者。NIC的前辈们在日本水俣病悲剧事件的影响和推动下,一直致力于准确、高效和简便的汞分析研究。浏览NIC网站的汞分析仪系列,按照应用和方法找到适合您需求的汞分析仪。
  • MA系列直接汞分析仪 – 食品中总汞测定的好帮手
    MA系列直接汞分析仪– 食品中总汞测定的好帮手 GB5009.17 的亮点之一是增加了食品的直接汞分析方法。直接汞分析是如何提高我们实验室的性能的? 让我们先了解一下传统方法存在的问题:l 长时间的样品制备和可能的分析物损失基于汞的特性,传统方法所涉及的冗长的样品前期准备步骤让大多数分析人员感到很麻烦。漫长的过程容易出错,而且汞的高挥发性很容易造成分析物的不可避免的损失或交叉污染,从而导致数据的不确定性。即便是有经验的分析人员也对汞的损失和交叉污染也无可奈何,只能重新进行分析。在操作过程中必须小心翼翼,以尽可能降低这种可能性。l 更高的运营成本由于汞是痕量污染物,分析所用试剂必须是高纯度的,以避免对样品的干扰或在分析过程中造成汞添加,导致“假阳性”结果。在传统方法中所使用的高纯度试剂通常价格昂贵,增加了实验室操作成本。l 更长的步骤意味着更高的错误机会从人为错误到玻璃器皿清洁度,每个步骤都有可能引入一定程度的污染物。用于汞分析的玻璃器皿或实验室器皿必须使用特定程序进行清洁,或由聚四氟乙烯等不同材料制成,以减低汞的记忆效应。因此,通过传统方法进行汞分析通常会导致较差的或不确定的质量控制 (QC)、加标回收率、准确度和精密度。 让NIC MA系列分析仪成为您的得力助手NIC 在直接热分解方面的知识、经验和技能的优势可追溯到 40 多年前。因为传统方法面临挑战,直接汞分析便成为被广泛接受的汞检测替代方案之一, MA 系列正是为此而设计。NIC的 MA 系列直接汞分析仪可以轻而易举地克服上述所有难题。MA 系列包括 2 种不同的型号:MA-3000 和 MA-3 Solo,分别适用于不同规模的实验室。 MA 系列仪器已被全球范围内的实验室所使用,因此 NIC 拥有大量的应用数据。所有应用数据均通过对实际样品和标准参考材料 (SRM) 的分析而获取。 欲了解更多解决方案与产品信息,请查阅:仪器信息网NIC展位: https://www.instrument.com.cn/netshow/SH104984/
  • 沃特世推出新品CORTECS C8和CORTECS苯基分析柱
    美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8 和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8 和CORTECS苯基填料有两种粒径可选(1.6和2.7μ m),可提供总共50种不同的色谱柱配置。  “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。”  CORTECS C8 色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。  基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。  CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7μ m两种粒径之间实现无缝的方法转换。  CORTECS UPLC 1.6 μ m色谱柱经过专门设计,与超低扩散性Waters ACQUITYUPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。  CORTECS 2.7 μ m颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。  这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。  关于沃特世实心颗粒技术  CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μ m颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。  更多信息:www.waters.com/cortecs  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。  Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 205项行业标准报批公示 46项仪器分析标准位列其中
    日前,根据工业和信息化部行业标准制修订计划,相关标准化技术组织等单位已完成《剥线钳》等204项行业标准及《家用和类似用途电器的溶出物限值和试验方法》1项轻工行业标准修改单的制修订工作,覆盖轻工、化工、石化、冶金、有色、稀土、黄金、航空等8大行业。  仪器信息网编辑整理发现,报批公示的名单中约有46项为仪器分析标准,涉及气相色谱、液相色谱、电感耦合等离子体原子发射光谱、电感耦合等离子体质谱等分析方法。  在以上204项行业标准及1项标准修改单批准发布之前,为进一步听取社会各界意见,工信部科技司将在2017年4月7日至2017年5月12日期间予以公示。以上标准及标准修改单报批稿请登录《标准网》“行业标准报批公示”栏目阅览,并反馈意见。204项行业标准中的仪器分析方法序号标准编号标准名称标准主要内容轻工行业1QB/T5163-2017食醋中乙酸的稳定碳同位素比值(13C/12C)测定方法气相色谱-燃烧-稳定同位素比值质谱法本标准规定了应用气相色谱-燃烧-稳定同位素比值质谱仪测定醋中乙酸稳定碳同位素比值(13C/12C)的方法。本标准适用于食醋和冰醋酸中乙酸稳定碳同位素比值(13C/12C)的测定。2QB/T5164-2017白酒中乙醇的稳定碳同位素比值(13C/12C)测定方法气相色谱-燃烧-稳定同位素比值质谱法本标准规定了应用气相色谱-燃烧-稳定同位素比值质谱仪测定乙醇稳定碳同位素比值(13C/12C)的方法。本标准适用于白酒和酒精中乙醇的稳定碳同位素比值(13C/12C)的测定。化工行业3HG/T5143-2017山嵛酸纯度的测定气相色谱法本标准规定了山嵛酸纯度的测定方法。本标准适用于山嵛酸纯度的测定。石化行业4SH/T1810-2017工业用二乙苯烃类组分的测定气相色谱法本标准规定了用气相色谱法测定工业用对二乙苯和混合二乙苯中烃类组分的含量。本标准适用于工业用对二乙苯和混合二乙苯组分含量的测定,单个组分的检测下限为0.005%(质量分数)。5SH/T1811-2017甲基叔丁基醚(MTBE)中硫化物含量的测定气相色谱法本标准规定了采用气相色谱-硫化学发光检测仪(GC-SCD)测定甲基叔丁基醚(MTBE)中硫化物含量的方法。本标准适用于单个硫化物含量(以硫计)在0.3mg/kg~200.0mg/kg范围的MTBE样品的测定。6SH/T1814-2017乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒的测定分光光度法本标准规定了用分光光度法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)(简称乙丙橡胶)中钒的方法。本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的乙丙橡胶,测定钒含量范围在0.5µ g/g~40µ g/g。7SH/T1727-2017丁二烯橡胶微观结构的测定红外光谱法本标准规定了用红外光谱仪涂膜法测定丁二烯橡胶(BR)微观结构的方法。本标准适用于丁二烯橡胶。8SH/T1815-2017合成橡胶胶乳中残留单体和其它有机成分的测定毛细管柱顶空气相色谱法本标准规定了采用毛细管柱顶空气相色谱法测定合成橡胶胶乳中残留单体和其它有机成分的方法。本标准适用于测定合成橡胶胶乳中苯乙烯、丙烯腈等含量大于10mg/kg的残余单体以及一些副产物,例如乙苯等。9SH/T1816-2017塑料聚乙烯中甲基(共聚单体)含量的测定红外光谱法本标准规定了用红外光谱法测定聚乙烯中甲基(即共聚单体)含量的通用方法。本标准适用于密度大于900kg/m3的乙烯与1-丁烯、1-己烯或1-辛烯的共聚物,不适用于高压低密度聚乙烯(PE-LD)及三元共聚物。10SH/T1817-2017塑料瓶用聚对苯二甲酸乙二醇酯(PET)树脂中残留乙醛含量的测定顶空气相色谱法本标准规定了用顶空气相色谱法测定瓶用聚对苯二甲酸乙二醇酯(PET)树脂中残留乙醛含量的方法。本标准适用于瓶用聚对苯二甲酸乙二醇酯(PET)树脂中残留乙醛含量的测定,乙醛的测定范围为0.1μg/g-4μg/g。冶金行业11YB/T4582.1-2017氮化硅铁钙含量的测定EDTA滴定法本部分规定了采用EDTA滴定法测定钙含量。本部分适用于氮化硅铁中钙含量的测定,测定范围(质量分数):0.10%~1.00%。12YB/T4582.3-2017氮化硅铁磷含量的测定铋磷钼蓝分光光度法本部分规定了采用铋磷钼蓝分光光度法测定磷含量。本部分适用于氮化硅铁中磷含量的测定,测定范围(质量分数):0.010%~0.100%。13YB/T4582.4-2017氮化硅铁硫含量的测定红外线吸收法本部分规定了采用红外线吸收法测定硫含量。本部分适用于氮化硅铁中硫含量测定,测定范围(质量分数):0.005%~0.050%。14YB/T4582.6-2017氮化硅铁锰含量的测定高碘酸钠分光光度法本部分规定了采用高碘酸钠分光光度法测定锰含量。本部分适用于氮化硅铁中锰含量的测定,测定范围(质量分数):0.010%~1.00%。15YB/T4582.7-2017氮化硅铁全氮含量的测定中和滴定法本部分规定了采用蒸馏后中和滴定法测定氮化硅铁中的全氮含量。本部分适用于氮化硅铁中全氮含量的测定,测定范围(质量分数):20.0%~40.0%。16YB/T4609-2017电镀铬钢板及钢带表面金属铬和氧化铬试验方法本标准规定了碱分离-二苯碳酰二肼分光光度法测定镀铬板表面氧化铬质量的方法及电解分离-二苯碳酰二肼分光光度法测定金属铬质量的方法。本标准适用于测定镀铬板表面镀层氧化铬质量和镀铬板表面镀层金属铬质量的测定,测定范围分别为:2mg/m2~50mg/m2和50mg/m2~160mg/m2。17YB/T4611-2017烧结烟气脱硫灰活性氧化钙含量的测定酸碱滴定法本标准规定了酸碱滴定法测定活性氧化钙的含量。本标准适用于烧结烟气脱硫灰中活性氧化钙含量的测定,测定范围(质量分数):10.0%~95.0%。18YB/T5147-2017炭素材料硼含量的测定姜黄素-草酸比色法本标准规定了姜黄素-草酸比色法测定石墨制品中硼含量的原理、试剂、仪器设备、试样制取、标准曲线、分析步骤、结果计算、精密度和试验报告等。本标准适用于石墨制品中硼含量的测定,其它炭素材料可参照使用。有色行业19YS/T1186-2017铝表面阳极氧化膜与有机聚合物膜耐磨性能测试用落砂试验仪本标准规定了铝表面阳极氧化膜与有机聚合物膜耐磨性能测试用落砂试验仪的工作原理、分类、技术要求、试验方法、检验规则、标志与包装以及随机文件。本标准适用于铝表面的阳极氧化膜、阳极氧化+电泳涂漆复合膜以及有机聚合物喷涂膜的耐磨性能测试用落砂试验仪。20YS/T1187-2017铝及铝合金薄壁管材超声检测方法本标准规定了铝及铝合金薄壁管材超声波检测方法概述及检测人员、检测环境、检测设备与材料、试样、检测技术与参数设定、验收标准、检测程序、结果评定、检测标识、检测记录和检测报告等要求。本标准适用于采用水浸法或接触法检测技术,以超声波脉冲横波反射法检测铝及铝合金薄壁管材(外径20mm~130mm、壁厚1mm~25mm、壁厚与外径之比不大于0.2)纵向、横向不连续性。21YS/T1188-2017变形铝合金铸锭超声检测方法本标准规定了变形铝合金铸锭超声波检测方法概述及检测人员、检测环境、检测设备与材料、试样、检测技术与参数设定、验收标准、检测程序、不连续性的评定、检测标识、检测记录、检测报告等要求和应用说明内容。本标准适用于超声波脉冲反射式水浸法或接触法检测变形铝合金铸锭产品内部不连续性,适用的铸锭尺寸规格如下:——厚度不大于620mm的铝合金扁铸锭;——直径不大于620mm的铝合金22YS/T645-2017金化合物化学分析方法金量的测定硫酸亚铁电位滴定法本标准规定了金化合物中金量的测定方法。本标准适用于氰化亚金钾(Kau(CN)2)、氰化金钾(Kau(CN)4)、氯金酸钾(KAuCl4)、氯金酸钠(NaAuCl4)、氯金酸(HAuCl4)、氯化金(AuCl3)、三苯基膦氯化金([(C6H5)3P]AuCl)中金量的测定。测定范围:30.00%~70.00%。23YS/T646.1-2017铂化合物化学分析方法第1部分:铂量的测定高锰酸钾电流滴定法本部分规定了铂化合物中铂量的测定方法。本部分适用于用于氯铂酸(H2PtCl6)、氯铂酸钾(K2PtCl6)、氯亚铂酸钾(K2PtCl4)、四氯化铂(PtCl4)、氯铂酸钠(Na2PtCl6)、硝酸铂(Pt(NO3)2)、羟铂酸(H2Pt(OH)6)、二亚硝基二氨铂(Pt(NH3)2(NO2)2)、二氯二氨合铂(Pt(NH3)2Cl2)、二氯四氨合铂(Pt(NH3)4Cl2)、氯铂酸铵((NH4)2PtCl6)中铂量的测定。测定范围:10%~70。24YS/T646.2-2017铂化合物化学分析方法第2部分:银、金、钯、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾的测定电感耦合等离子体原子发射光谱法本部分规定了铂化合物中银、金、钯、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾的测定方法。本部分适用于氯铂酸(H2PtCl6)、二亚硝基二氨铂(Pt(NH3)2(NO2)2)、羟铂酸(H2Pt(OH)4)、硝酸铂(Pt(NO3)2)中银、金、钯、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾的测定。25YS/T1197-2017钯化合物化学分析方法金、银、铂、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾、镉的测定电感耦合等离子体原子发射光谱法本标准规定了钯化合物中金、银、铂、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾、镉的测定方法。本标准适用于二氯化钯(PdCl2)、醋酸钯([Pd(CH3COO)2]3)、硝酸钯(Pd(NO3)2)溶液、硫酸钯(PdSO4)溶液中金、银、铂、铑、铱、钌、铅、镍、铜、铁、锡、铬、锌、镁、锰、铝、钙、钠、硅、铋、钾、镉的测定。26YS/T1198-2017银化学分析方法铜、铋、铁、铅、锑、钯、硒、碲、砷、钴、锰、镍、锡、锌、镉量的测定电感耦合等离子体质谱法本标准规定了银中铜、铋、铁、铅、锑、钯、硒、碲、砷、钴、锰、镍、锡、锌、镉量的测定方法。本标准适用于银中铜、铋、铁、铅、锑、钯、硒、碲、砷、钴、锰、镍、锡、锌、镉量的测定范围:0.0001%~0.01%。27YS/T1200.2-20171,1’-双二苯基膦二茂铁二氯化钯化学分析方法第2部分:铅、镍、铜、镉、铬、铂、金、铑、铱量的测定电感耦合等离子体原子发射光谱法本部分规定了1,1′-双二苯基膦二茂铁二氯化钯中铅、镍、铜、镉、铬、铂、金、铑、铱量的测定方法。本部分适用于1,1′-双二苯基膦二茂铁二氯化钯中铅、镍、铜、镉、铬、铂、金、铑、铱量的测定。测定范围0.001%~0.015%.。28YS/T1201.2-2017三氯化钌化学分析方法第2部分:铝、钙、镉、铜、铁、锰、镁、钠量的测定电感耦合等离子体原子发射光谱法本部分规定了三氯化钌中铝、钙、镉、铜、铁、锰、镁、钠量的测定方法。本部分适用于三氯化钌中铝、钙、镉、铜、铁、锰、镁、钠量的测定。29YS/T1208.1-2017双(乙腈)二氯化钯化学分析方法第1部分:钯量的测定丁二酮肟重量法本部分规定了双(乙腈)二氯化钯中钯含量的测定方法。本部分适用于双(乙腈)二氯化钯中钯含量的测定。测定范围:38.0%~42.0%。30YS/T1208.2-2017双(乙腈)二氯化钯化学分析方法第2部分:铅、镍、铜、镉、铬、铁、铂、金、铑量的测定电感耦合等离子体原子发射光谱法本部分规定了双(乙腈)二氯化钯中铅、镍、铜、镉、铬、铁、铂、金、铑量的测定方法。本部分适用于双(乙腈)二氯化钯中铅、镍、铜、镉、铬、铁、铂、金、铑量的测定。测定范围:0.001%~0.015%。稀土行业31XB/T622.3-2017稀土系贮氢合金化学分析方法第3部分:铁、镁、锌、铜量的测定电感耦合等离子体原子发射光谱法本标准规定了稀土系贮氢合金中铁、镁、锌、铜量的测定方法。本标准适用于稀土系贮氢合金中铁、镁、锌、铜量的测定。测定范围:铁、镁、铜:0.0050%~0.30%,锌:0.010%~0.10%。32XB/T622.4-2017稀土系贮氢合金化学分析方法第4部分:硅量的测定硅钼蓝分光光度法本标准规定了稀土系贮氢合金中硅量的测定方法。本标准适用于稀土系贮氢合金中硅量的测定。测定范围0.0050%~0.50%。33XB/T622.5-2017稀土系贮氢合金化学分析方法第5部分:碳量的测定高频燃烧红外吸收法本标准规定了稀土系贮氢合金中碳量的测定方法。本标准适用于稀土系贮氢合金中碳量的测定。测定范围:0.0050%~0.30%。34XB/T622.6-2017稀土系贮氢合金化学分析方法第6部分:氧量的测定脉冲加热红外吸收法本标准规定了稀土系贮氢合金中氧量的测定方法。本标准适用于稀土系贮氢合金中氧量的测定。测定范围:0.0050%~0.20%。35XB/T622.7-2017稀土系贮氢合金化学分析方法第7部分:铅、镉量的测定本标准规定了稀土系贮氢合金中铅、镉量的测定方法。本标准适用于稀土系贮氢合金中铅、镉量的测定。测定范围:方法1电感耦合等离子体原子发射光谱法铅:0.010%~0.040%;镉:0.0020%~0.040%;方法2电感耦合等离子体质谱法铅、镉:0.0001%~0.040%。黄金行业36YS/T3015.5-2017载金炭化学分析方法第5部分:铅、锌、铋、镉和铬量的测定电感耦合等离子体原子发射光谱法本标准规定了载金炭中铅、锌、铋、镉、铬含量的测定方法。本标准适用于载金炭中铅、锌、铋、镉、铬含量的测定。测定范围:0.001%~2.0%。37YS/T3015.6-2017载金炭化学分析方法第6部分:汞量的测定原子荧光光谱法和电感耦合等离子体原子发射光谱法本标准规定了载金炭中汞含量的测定方法。本标准适用于载金炭中汞含量的测定。测定范围:方法1:0.0005%~0.010%;方法2:0.005%~2.0%。38YS/T3015.7-2017载金炭化学分析方法第7部分:砷量的测定原子荧光光谱法和电感耦合等离子体原子发射光谱法本标准规定了载金炭中砷含量的测定方法。本标准适用于载金炭中砷含量的测定。测定范围:方法1:0.0005%~0.025%;方法2:0.005%~1.0%。
  • 新气相新气象——北分瑞利MAS-100型烷基汞分析仪新品在BCEIA重磅发布
    仪器信息网讯 9月27日上午,正值BCEIA展会,北京北分瑞利分析仪器(集团)有限责任公司(以下简称北分瑞利)在其展位(展位号:E2.2211-2220)召开MAS-100型烷基汞分析仪新品发布会,北分瑞利公司执行董事白雪莲总经理出席此次发布会并发表了致辞,介绍了北分瑞利公司的历史,主攻环境保护、食药安全、卫生健康、国防军工四大应用领域,重点发展光谱、色谱等实验室产品。本次北分瑞利参加BCEIA带来了烷基汞分析仪、荧光光谱仪、原子吸收光谱仪、红外光谱仪、液相色谱等各类产品,公司的研发团队、销售团队都在现场,将为大家带来详细的产品讲解以及各应用领域专题宣讲。北京北分瑞利分析仪器(集团)有限责任公司执行董事 白雪莲总经理MAS-100型烷基汞分析仪新品宣讲北分瑞利技术中心应用经理 刘宇翔北分瑞利技术中心应用经理刘宇翔介绍了本次发布会的新品:MAS-100型烷基汞分析仪(以下简称MAS-100)。刘宇翔先讲述了烷基汞对环境的危害性,对《水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》标准进行了解读,又详细讲述了烷基汞分析仪的基本原理、产品介绍以及应用方案。MAS-100型烷基汞分析仪MAS-100是采用吹扫捕集-气相色谱-冷原子荧光法测定烷基汞,仪器是由两部分组成,一部分是专为烷基汞检测开发的MAS-100F型吹扫捕集仪,另一部分是加装了小型冷原子荧光检测器的SP-3500系列气相色谱仪。MAS-100 几大创新:• 独创的可直接安装在气相色谱仪上的小型冷原子荧光测汞检测器(独家专利) • 主动尾气捕集系统• MAS-100F型吹扫捕集仪以500mL/min实现大容量吹扫• MAS-100F型吹扫捕集仪带有特殊的控制程序MAS-100 几大特点:• 超高的仪器灵敏度 可实现:甲基汞0.11pg、乙基汞0.16pg• 特制的进样口最大限度地降低进样死体积• 毛细色谱柱有更高的柱效可实现更快的分离速度MAS-100型烷基汞分析仪展板MAS-100型烷基汞分析仪是典型的“通用仪器专用化”,以全新设计的SP-3500系列气相色谱仪作为载体,搭载汞蒸气捕集系统。通用仪器专用化是当前仪器产品的发展方向之一。可以提高通用仪器的利用率,使用最少的设备检测更多种类的样品,比如北分瑞利研发的SP-3500系列气相色谱仪可以更换FID 氢火焰离子化检测器、FPD 火焰光度检测器、ECD 电子捕获检测器和TCD 热导检测器等,可以分别检测非甲烷总烃、挥发性有机物、有机磷、水中硫化物、有机氯、挥发性卤代烃、三氯甲烷、四氯化碳、永久性气体等多种种类样品。而专用仪更加注重分析效率的提升以及仪器实用性,更具针对性,也可以更好地满足用户的需求。新品宣讲会观众席技术人员讲解MAS-100型烷基汞分析仪北分瑞利展台
  • 宁夏化学分析测试协会批准发布《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》等3项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》等3项团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年5月8日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA 0211-2023高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法2023-05-082023-05-152T/NAIA 0212-2023枸杞中多元素的测定 电感耦合等离子体质谱法2023-05-082023-05-15 3T/NAIA 0213-2023富硒熟制羊肉2023-05-082023-05-15宁夏化学分析测试协会2023年5月8日
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 色质谱方法是主力∣新污染物生态环境监测标准体系分析方法标准共计182 项
    据了解,生态环境部在研究建立健全新污染物环境监测技术体系方面开展了一系列工作。2021 年—2023年,生态环境部先后在长江流域和河北、广东、广西等10个省份组织开展新污染物试点监测,并同步开展了监测技术方法研究。为规范新污染物生态环境监测工作,加强生态环境监测标准顶层设计,生态环境部组织制订《新污染物生态 环境监测标准体系表》(以下简称《体系表》),于2024年3月13日公开征求意见。《体系表》中新污染物生态环境监测标准项目,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以 下简称标准样品)共 3 类。体系表中共 219 项标准,其中技术规范 6 项、分析方法标准 182 项、标准样品 31 项。182项分析方法标准中,已发布48项,在研13项,拟制订121项,水质标准56项,土壤和沉积物标准52项,环境空气和废气38项,固体废物35项,其他1项。分析方法标准项目涉及的监测介质主要为水和废水、环境空气和废气、土壤和沉积物、固体废物等,对于挥发性较弱的新污染物,不考虑环境空气和废气监测介质。《体系表》中的监测指标以列入管控清单、履约、 优控名录和优评计划中的新污染物为主。监测指标覆盖微塑料、抗生素、三氯杀螨醇、多氯萘、六溴联苯、毒杀芬、有机磷酸酯类、麝香类、N,N'-二甲苯基-对苯二胺、甲醛和乙醛、邻甲苯胺、多环芳烃、烷基汞、硝基苯类、邻苯二甲酸酯类、紫外吸收剂、卡拉花醛、有机锡化合物、得克隆、多氯联苯、有机氯农药、二噁英类、多溴二苯醚、中链氯化石蜡、短链氯化石蜡、五氯苯酚、挥发性有机物、酚类化合物、六溴环十二烷和双酚A、全氟化合物类和氯苯类等。《体系表》涉及的仪器品类中,液相色谱-三重四极杆质谱法 49 项;气相色谱-质谱法56项;气相色谱-高分辨质谱法21项;气相色谱-三重四极杆质谱法14项,高效液相色谱法8项;气相色谱法12项等。详细内容如下:附:1、征求意见单位名单.pdf2、新污染物生态环境监测标准体系表(征求意见稿).pdf3、《新污染物生态环境监测标准体系表(征求意见稿)》编制说明.pdf仪器信息网将在5月7-9日举办“第五届土壤检测技术与应用”网络会议,其中”土壤新污染物检测“专场将为大家分享最新的分析技术进展与应用,点击免费报名:第五届土壤检测技术与应用网络会议_3i讲堂_仪器信息网 https://www.instrument.com.cn/webinar/meetings/soil240507/
  • POPs物质检测新标准实施-多氯化萘
    电子电气设备在丰富、方便我们生活的同时,也产生了一定的环境污染问题。随着各国环境法规的日益完善,电子电气产品中禁用限用的物质也越来越多。如欧盟RoHS指令、中国RoHS2.0、欧盟REACH、POPs法规等等,均对有毒有害物质做出限量要求。为了能更好地实现管控,方法标准需要同时跟进。本月《GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法》开始实施。 多氯化萘(PCNs)是一类基于萘环上的氢原子被氯原子所取代的化合物的总称,共有75种同类物,是持久性有机化合物。可用作电容器、变压器介质、绝缘剂、防腐剂等等。 原理本标准采用甲苯作为萃取剂进行索氏萃取,萃取液经过硅胶固相萃取小柱净化后,采用气相色谱-质谱法对多氯化萘进行检测,外标法定量。 检测物质多氯化萘包括75种同类物,标准选取1-氯化萘、1,5-二氯化萘、1,2,3-三氯化萘、1,2,3,4-四氯化萘、1,2,3,5,7-五氯化萘、1,2,3,4,6,7-六氯化萘、1,2,3,4,5,6,7-七氯化萘和八氯化萘,共八种物质进行定量分析,在一定程度上反映出氯化萘物质的添加情况。岛津应对GCMS-QP2020 NX抗污染型高灵敏度气相色谱质谱联用仪 ● 可旋转的预四极及超高效大容量真空系统有效降低主四极及离子源污染问题。● 创新ClickTek技术,实现徒手维护。● 仪器自动检漏、自动判断调谐结果,减少用户等待时间。● 提升信号强度,降低噪音,实现高灵敏度分析。 拓展岛津GCMS在应对欧盟RoHS限量邻苯类物质的筛查及准确定量应用中也有优异表现。热裂解与液体自动进样器安装在同一台GCMS上,两根色谱柱同时接入质谱。无需泄真空,更换色谱柱,即可实现快速筛查与准确定量无缝衔接,节省时间,提高效率。本文内容非商业广告,仅供专业人士参考。
  • 国标委发布292项标准 含多项仪器分析方法
    [导读] 国家标准委发布2016年第23号公告,批准《金属铬 铁、铝、硅和铜含量的测定 电感耦合等离子体原子发射光谱法》等292项国家标准,其中明确仪器分析方法21项,含光谱方法10项、色谱方法3项、质谱方法6项。  国家标准委发布2016年第23号公告,批准《金属铬 铁、铝、硅和铜含量的测定 电感耦合等离子体原子发射光谱法》等292项国家标准,其中明确仪器分析方法21项,含光谱方法10项、色谱方法3项、质谱方法6项。仪器信息网编辑整理了标准名称中明确仪器分析方法的标准21项,供参考。《金属铬 铁、铝、硅和铜含量的测定 电感耦合等离子体原子发射光谱法》等21项标准 29 GB/T 4333.5-2016 硅铁 硅、锰、铝、钙、铬和铁含量的测定 波长色散X-射线荧光光谱法(熔铸玻璃片法) 2017-09-01 32 GB/T 4702.6-2016 金属铬 铁、铝、硅和铜含量的测定 电感耦合等离子体原子发射光谱法 2017-09-01 33 GB/T 4702.15-2016 金属铬 铅、锡、铋、锑、砷含量的测定 等离子体质谱法 2017-09-01 34 GB/T 4702.17-2016 金属铬 氧、氮、氢含量的测定 惰性气体熔融红外吸收法和热导法 2017-09-01 37 GB/T 5195.12-2016 萤石 砷含量的测定 原子荧光光谱法 2017-09-01 38 GB/T 5195.7-2016 萤石 锌含量的测定 原子吸收光谱法 2017-09-01 45 GB/T 6730.12-2016 铁矿石 铝含量的测定 铬天青S分光光度法 GB/T 6730.12-1986 2017-09-01 46 GB/T 6730.19-2016 铁矿石 磷含量的测定 铋磷钼蓝分光光度法 GB/T 6730.19-1986 2017-09-01 47 GB/T 6730.22-2016 铁矿石 钛含量的测定 二安替吡啉甲烷分光光度法 GB/T 6730.22-1986 2017-11-01 154 GB/T 33236-2016 多晶硅 痕量元素化学分析 辉光放电质谱法 2017-11-01 240 GB/T 33307-2016 化妆品中镍、锑、碲含量的测定 电感耦合等离子体发射光谱法 2017-07-01 241 GB/T 33308-2016 化妆品中游离甲醇的测定 气相色谱法 2017-07-01 242 GB/T 33309-2016 化妆品中维生素B6(吡哆素、盐酸吡哆素、吡哆素脂肪酸酯及吡哆醛 5-磷酸酯)的测定 高效液相色谱法 2017-07-01 250 GB/T 33317-2016 塑料 酚醛树脂 六次甲基四胺含量的测定 凯氏定氮法、高氯酸法和盐酸法 2017-07-01 251 GB/T 33318-2016 气体分析 硫化物的测定 硫化学发光气相色谱法 2017-07-01 257 GB/T 33324-2016 胶乳制品中重金属含量的测定 电感耦合等离子体原子发射光谱法 2017-07-01 277 GB/T 33344-2016 电子电气产品中2,4-二硝基甲苯的测定 气相色谱-质谱法 2017-07-01 278 GB/T 33345-2016 电子电气产品中短链氯化石蜡的测定 气相色谱-质谱法 2017-07-01 284 GB/T 33351.1-2016 电子电气产品中砷、铍、锑的测定 第1部分:电感耦合等离子体质谱法 2017-07-01 285 GB/T 33352-2016 电子电气产品中限用物质筛选应用通则 X射线荧光光谱法 2017-07-01 286 GB/T 33353-2016 电子电气产品中的限用物质三丁基锡和三苯基锡的测定 气相色谱-质谱法 2017-07-01关于批准发布《新型智慧城市评价指标》等292项国家标准和23项国家标准外文版的公告  国家质量监督检验检疫总局、国家标准化管理委员会批准《新型智慧城市评价指标》等292项国家标准和23项国家标准外文版,现予以公布(见附件)。  国家质检总局 国家标准委
  • 标准委公布2015年拟立项国标 多项分析测试标准入围
    2月5日,国家标准委员发布《关于对2015年第一批拟立项国家标准项目征求意见的通知》,通知中对2015年拟立项的277项标准征求意见。在这277项标准中,涉及仪器及分析测试行业的相关标准约为20%左右。  请登录国家标准委网站的计划公示网页,查询项目信息和反馈意见建议。征求意见截止时间为2015年2月27日。  相关链接: http://ballot.sacinfo.org.cn:8080/stdpub/  仪器信息网摘录了部分与仪器及分析测试行业的标准:序号标准名称状态1移动实验室 地下水快速检测通用技术规范制定2表面化学分析 辉光放电原子发射光谱定量深度剖析的通用规程制定3金属材料 延性试验 多孔状和蜂窝状金属高速压缩试验方法制定4电工钢带(片)表面绝缘电阻、涂层附着性测试方法修订5金属材料 矩形拉伸试样减薄率的测定制定6不锈钢 锰、镍、铬含量的测定 手持式能量色散X-射线荧光光谱法(常规法)制定7呼出气体酒精含量检测仪修订8变性燃料乙醇和燃料乙醇中总无机氯的测定方法(离子色谱法)制定9直接法氧化锌白度(颜色)检验方法修订10铜钢复合金属化学分析方法 第1部分:铜含量的测定 碘量法制定11金属管材收缩应变比试验方法制定12锆及锆合金加工产品超声波检测方法制定13玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测定方法制定14锆及锆合金&beta 相转变温度测定方法制定15锆及锆合金管材涡流探伤方法制定16金属材料中碳、硫、氧、氮和氢分析方法通则修订17玻璃纤维涂覆制品 耐压痕折叠性能的测定制定18玻璃纤维涂覆制品拉-拉疲劳性能的测定制定19锆及锆合金化学分析方法 第1部分:锡量的测定 碘酸钾滴定法和苯基荧光酮-聚乙二醇辛基醚分光光度法修订20锆及锆合金化学分析方法 第15部分:硼量的测定 姜黄素分光光度法修订21锆及锆合金化学分析方法 第16部分:氯量的测定 氯化银浊度法和离子选择性电极法修订22锆及锆合金化学分析方法 第17部分:镉量的测定 极谱法修订23锆及锆合金化学分析方法 第19部分:钛量的测定 二安替比林甲烷分光光度法和电感耦合等离子体原子发射光谱法修订24表面污染物俄歇电子能谱分析方法指南制定25硬质合金化学分析方法 电位滴定法测定钴量修订26硬质合金化学分析方法 钛量的测定 过氧化氢分光光度法修订27烧结金属材料和硬质合金电阻率的测定修订28硬质合金制品检验规则与试验方法修订29硬质合金热扩散率的测定方法修订30纳米粉末粒度分布的测定-X射线小角度散射法修订31硬质合金超声探伤方法制定32硬质合金涂层金相检测方法制定33烧结金属多孔材料 气体过滤性能试验方法制定34铱粉化学分析方法 银、金、钯、铑、钌、铅、铂、镍、铜、铁、锡、锌、镁、锰、铝、硅的测定 电感耦合等离子体发射光谱法制定35区熔锗锭化学分析方法 第2部分 铝、铁、铜、镍、铅、钙、镁、钴、铟、锌含量的测定 电感耦合等离子体质谱法制定36液体材料微波频段使用开口同轴探头的电磁参数测量方法制定37绝缘微细颗粒中金属的测定 俄歇电子能谱法制定38表面化学分析 X射线光电子能谱仪 能量标尺的校准修订39表面化学分析 验证工作参考物质中离子植入产生的保留面剂量的建议规程制定40碳-碳复合材料压缩性能试验方法制定41超高温氧化环境下纤维复合材料拉伸强度试验方法制定42增强塑料巴柯尔硬度试验方法修订43碳纤维复丝拉伸性能试验方法修订44建筑木塑复合材料防霉性能测试方法制定45低温热源双循环余热回收利用装置性能测试方法制定46红外光学玻璃测试方法红外透过率制定47矿物棉及其制品试验方法修订48摩托车轮胎动平衡试验方法制定49聚合物基复合材料疲劳性能测试方法 第3部分:拉-拉疲劳性能测试方法制定50汽车轮胎静态接地压力分布试验方法修订51高效空气过滤器性能试验方法 效率和阻力修订52辐射防护仪器 用于放射性物质光子探测的高灵敏手持式仪器制定53辐射防护仪器 用于放射性物质中子探测的高灵敏手持式仪器制定54使用小型X射线管的便携式荧光分析仪制定
  • 374项国家标准发布 59项涉及仪器分析方法
    日前,国家市场监督管理总局、国家标准管理委员会发布了关于批准发布《钢铁及合金钙和镁含量的测定电感耦合等离子体原子发射光谱法》等374项国家标准和3项国家标准的修改单的公告。新发布的374项国家标准中有59项涉及仪器分析方法,包括分光光度法、电感耦合等离子体原子发射光谱法、火焰原子吸收光谱法、红外线吸收法、X射线荧光光谱法、气相色谱法、高效液相色谱法等。仪器信息网编辑特将本批共374项国家标准中,涉及仪器分析方法的59项标准汇总如下。批准的374项国家标准中与科学仪器有关的59项标准国家标准编号国家标准名称代替标准号实施日期GB/T223.88-2019钢铁及合金钙和镁含量的测定电感耦合等离子体原子发射光谱法——2020/5/1GB/T3058-2019煤中砷的测定方法GB/T3058-20082020/1/1GB/T3654.3-2019铌铁硅含量的测定重量法GB/T3654.3-19832020/5/1GB/T4333.6-2019硅铁铬含量的测定二苯基碳酰二肼分光光度法GB/T4333.6-19882020/5/1GB/T4333.7-2019硅铁硫含量的测定红外线吸收法和色层分离硫酸钡重量法GB/T4333.7-19842020/5/1GB/T4333.10-2019硅铁碳含量的测定红外线吸收法GB/T4333.10-19902020/5/1GB/T4698.17-2019海绵钛、钛及钛合金化学分析方法第17部分:镁量的测定火焰原子吸收光谱法GB/T4698.17-19962020/5/1GB/T4698.21-2019海绵钛、钛及钛合金化学分析方法第21部分:锰、铬、镍、铝、钼、锡、钒、钇、铜、锆量的测定原子发射光谱法GB/T4698.21-19962020/5/1GB/T7739.13-2019金精矿化学分析方法第13部分:铅、锌、铋、镉、铬、砷和汞量的测定电感耦合等离子体原子发射光谱法——2020/5/1GB/T11828.1-2019水位测量仪器第1部分:浮子式水位计GB/T11828.1-20022020/1/1GB/T12688.1-2019工业用苯乙烯试验方法第1部分:纯度及烃类杂质的测定气相色谱法GB/T12688.1-20112020/5/1GB/T13336-2019水文仪器系列型谱GB/T13336-20072020/1/1GB/T13747.5-2019锆及锆合金化学分析方法第5部分:铝量的测定铬天青S-氯化十四烷基吡啶分光光度法GB/T13747.5-19922020/5/1GB/T13747.6-2019锆及锆合金化学分析方法第6部分:铜量的测定2,9-二甲基-1,10-二氮杂菲分光光度法GB/T13747.6-19922020/1/1GB/T14318-2019辐射防护仪器中子周围剂量当量(率)仪GB/T14318-20082020/1/1GB/T14701-2019饲料中维生素B2的测定GB/T14701-20022020/1/1GB/T15076.3-2019钽铌化学分析方法第3部分:铜量的测定火焰原子吸收光谱法GB/T15076.3-19942020/1/1GB/T16597-2019冶金产品分析方法X射线荧光光谱法通则GB/T16597-19962020/5/1GB/T18497.1-2019工业加热用电红外发射器的特性第1部分:短波电红外发射器GB/T18497.1-20012020/1/1GB/T18497.2-2019工业加热用电红外发射器的特性第2部分:中长波电红外发射器——2020/1/1GB/T18869-2019饲料中大肠菌群的测定GB/T18869-20022020/1/1GB/T20975.28-2019铝及铝合金化学分析方法第28部分:钴含量的测定火焰原子吸收光谱法——2020/5/1GB/T20975.29-2019铝及铝合金化学分析方法第29部分:钼含量的测定硫氰酸盐分光光度法——2020/5/1GB/T20975.30-2019铝及铝合金化学分析方法第30部分:氢含量的测定加热提取热导法——2020/5/1GB/T20975.31-2019铝及铝合金化学分析方法第31部分:磷含量的测定钼蓝分光光度法——2020/5/1GB/T21114-2019耐火材料X射线荧光光谱化学分析熔铸玻璃片法GB/T21114-20072020/5/1GB/T23524-2019石油化工废铂催化剂化学分析方法铂含量的测定电感耦合等离子体原子发射光谱法GB/T23524-20092020/5/1GB/T24583.2-2019钒氮合金氮含量的测定惰性气体熔融热导法GB/T24583.2-20092020/5/1GB/T24583.4-2019钒氮合金碳含量的测定红外线吸收法GB/T24583.4-20092020/5/1GB/T24583.5-2019钒氮合金磷含量的测定铋磷钼蓝分光光度法GB/T24583.5-20092020/5/1GB/T24583.7-2019钒氮合金氧含量的测定红外线吸收法GB/T24583.7-20092020/5/1GB/T24583.8-2019钒氮合金硅、锰、磷、铝含量的测定电感耦合等离子体原子发射光谱法GB/T24583.8-20092020/5/1GB/T37396.2-2019激光器和激光相关设备标准光学元件第2部分:红外光谱范围内的元件——2020/1/1GB/T37487-2019岩土工程仪器测斜仪——2020/1/1GB/T37498-2019天然生胶技术分级橡胶(TSR)凝胶含量的测定——2020/5/1GB/T37500-2019肥料中植物生长调节剂的测定高效液相色谱法——2020/1/1GB/T37505-2019表面活性剂分散剂中喹啉含量的测定——2020/5/1GB/T37508-2019造型黏土中防腐剂的测定 高效液相色谱法——2019/10/1GB/T37544-2019化妆品中邻伞花烃-5-醇等6种酚类抗菌剂的测定高效液相色谱法——2020/1/1GB/T37545-2019化妆品中38种准用着色剂的测定高效液相色谱法——2020/1/1GB/T37560-2019阻燃化学品氰尿酸三聚氰胺盐中三聚氰胺和氰尿酸的测定——2020/5/1GB/T37566-2019圆钢超声检测方法——2020/5/1GB/T37588-2019炭素材料氮含量的测定杜马斯燃烧法——2020/1/1GB/T37617-2019纳滤膜表面Zeta电位测试方法流动电位法——2020/5/1GB/T37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定液相色谱-串联质谱法——2020/1/1GB/T37628-2019化妆品中黄芪甲苷、芍药苷、连翘苷和连翘酯苷A的测定高效液相色谱法——2020/1/1GB/T37633-2019纺织品1,2-二氯乙烷、氯乙醇和氯乙酸的测定——2020/1/1GB/T37638-2019塑料制品中多溴联苯和多溴二苯醚的测定高效液相色谱法——2020/1/1GB/T37639-2019塑料制品中多溴联苯和多溴二苯醚的测定气相色谱-质谱法——2020/1/1GB/T37640-2019化妆品中氯乙醛、2,4-二羟基-3-甲基苯甲醛、巴豆醛、苯乙酮、2-亚戊基环己酮、戊二醛含量的测定高效液相色谱法——2020/1/1GB/T37641-2019化妆品中2,3,5,4' -四羟基二苯乙烯-2-O-β-D-葡萄糖苷的测定高效液相色谱法——2020/1/1GB/T37644-2019化妆品中8-羟基喹啉和硝羟喹啉的测定高效液相色谱法——2020/1/1GB/T37649-2019化妆品中硫柳汞和苯基汞的测定高效液相色谱-电感耦合等离子体质谱法——2020/1/1GB/T37667-2019煤灰中铁、钙、镁、钾、钠、锰、磷、铝、钛、钡和锶的测定电感耦合等离子体原子发射光谱法——2020/1/1GB/T37673-2019煤灰中硅、铝、铁、钙、镁、钠、钾、磷、钛、锰、钡、锶的测定X射线荧光光谱法——2020/1/1GB/T37746-2019草鱼呼肠孤病毒三重RT-PCR检测方法——2020/1/1GB/T37757-2019电子电气产品用材料和零部件中挥发性有机物释放速率的测定释放测试舱-气相色谱质谱法——2020/1/1GB/T37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定超高效液相色谱串联质谱法——2020/1/1GB/T37765-2019电子电气产品中石棉的定性检测方法——2020/1/12019年第7号中国国家标准公告.docx
  • 普立泰科成功举办“汞分析应用研讨会”
    仪器信息网讯 2010年8月19日,由北京普立泰科仪器有限公司主办的“汞分析应用研讨会”在北京汇智大厦召开,来自科研院校的专家共40多人参加了研讨会。汞分析应用研讨会现场  研讨会主办单位普立泰科公司总经理田莉娟女士首先致辞,对这位专家学者的到来表示极大的欢迎,并简要介绍了普立泰科公司的发展情况。北京普立泰科仪器有限公司总经理田莉娟女士  普立泰科公司在选择代理仪器产品时,更倾向于国外的一些“小公司”,例如,ZOEX、Torion、Lumex等公司,其公司规模不大,但都有自己独特、优势的技术。  仪器代理事业进行的红红火火的时候,普立泰科公司却在三年前开展了仪器设备、技术的研发工作,田莉娟总经理坦言,研发工作初期确实交了很多“学费”,但同时也是一种不断锻炼、积累的过程。所有的努力都得到了汇报,目前普立泰科公司已经推出了多款仪器设备,例如,土壤样品风干箱、斜吹涡流氮吹仪、全自动酸消解系统等。俄罗斯Lumex公司大中华区首席代表Alexander Shadymou先生  Alexander Shadymou先生介绍了Lumex公司的基本情况。Lumex公司于1991年建立,研发和生产总部设在俄罗斯圣彼得堡,公司拥有450多名员工,其中60%以上接受高等教育。产品主要包括:傅里叶红外光谱仪、原子吸收光谱仪、毛细管电泳仪、气相色谱、液相色谱、微波消解等。  Lumex公司在俄罗斯本土是业内第一的一家仪器公司,而其在国外最主要的市场是美国。并且,Alexander Shadymou先生还谈到,今年Lumex公司将进行大范围的市场推广活动。俄罗斯Lumex公司Sergey Sholupov教授报告题目:应用RA-915+塞曼原子吸收光谱技术进行汞的直接检测  Sergey Sholupov教授是Lumex公司RA-915+多功能汞检测仪的发明者,其详细介绍了RA-915+的原理及应用。RA-915+多功能汞检测仪  RA-915+测汞仪可以搭配RP-91、RP-M324、PYRO-915+、RP-91C型配件,实现多功能性。其有着10米长的多光程检测池并采用了塞曼背景校正技术,这两者的结合消除了干扰并提供了极高的灵敏度,摒弃了传统的金汞齐富集方式,使数据测量能够连续进行,并且不受背景物的干扰,真正实现在线连续监测大气/天然气等低浓度样品,并且可以直接测量固体样品,无需前处理及额外试剂。中国地震局地震预测研究所杜建国研究员报告题目:汞分析在地震预测中的应用  报告中,杜建国研究员给大家介绍了一些数据,如,中国的疆土面积占全球的7%、人口占全球的22%,但是所发生的大地震却占全球的33%、灾害占全球的52%。中国是一个多地震国家,尤其近几年来,高级数的地震频发,给国家及人民都带来了极大的危害。  为了减轻灾害的威胁,人们一直在努力寻找地震的前兆,力求在地震发生之前给人类预警。但岩石受力士会排放出水、氡和汞等气体,造成其周围大气中的氡、汞等浓度的变化。经过多年的研究,已经捕捉到了一些地震前后汞浓度的变化信息,但这些信息与地震的发生、地震的级数等的关系还有很多的不确定性。中科院地球化学研究所冯新斌研究员报告题目:中国汞污染问题  冯新斌研究员主要从事汞等有害元素生物地球化学和环境化学研究。作为负责人承担了多项国家重大科研项目,在汞的生物地球化学领域做出了具有重要国际影响的学术成果。此次报告中介绍了汞矿产资源开发过程中汞在生态环境中迁移转化过程,发现水稻具有富集毒性最强的甲基汞的能力,证实食用汞富集的大米是汞矿区居民摄入甲基汞的主要途径,打破了长期以来认为鱼等水产品是人体甲基汞暴露的唯一途径的传统认识。  汞是一个全球性的污染物。它通过大气传播,流动性非常强,在沉降之后,进一步转化为甲基汞,从而对人类健康和环境造成危害。中国是一个汞的生产与消费大国,也是汞排放的大国之一。燃煤电厂、金属冶炼、水泥工业、氯碱工业以及汞矿等是中国最主要的汞污染源。中国汞污染的防治工作正处于起步阶段,在排放源的普查、污染物的治理技术、相关技术标准的制定和防治污染的法规等方面还有很多工作要做。   随着国际上限汞呼声越来越高,近年来我国科学家加强了对汞污染防治问题研究,国家自然科学基金重点项目、科技部“863”项目、中国科学院知识创新工程重要方向项目、国际合作项目和自然科学基金项目都给予过资助。
  • 23项在研/拟制订!新污染物生态环境监测分析方法标准大气篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与空气废气相关的分析方法标准38项,按编制状态分类,已发布15项、在研2项、拟制订21项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1三氯杀螨醇环境空气 三氯杀螨醇的测定 气相色谱-质谱法A拟制订2多氯萘环境空气和废气 多氯萘的测定 气相色谱-三重四极杆质谱法B在研3六溴联苯环境空气和废气 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订4毒杀芬环境空气 指示性毒杀芬的测定 气相色谱-质谱法(HJ 852-2017)B已发布5有机磷酸酯类环境空气和废气 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订6环境空气和废气 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订7麝香类环境空气 麝香类化合物的测定 气相色谱-质谱法C拟制订8N,N'-二甲苯基-对苯二胺环境空气和废气 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订9甲醛和乙醛苯胺类(邻甲苯胺)固定污染源排气中乙醛的测定 气相色谱法(HJ/T 35-1999)C已发布10环境空气 醛、酮类化合物的测定 高效液相色谱法(HJ 683-2014)C已发布11固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020)C已发布12苯胺类(邻甲苯胺)大气固定污染源 苯胺类的测定 气相色谱法(修订 HJ/T 68-2001)C拟制订增加邻甲苯胺指标和环境空气介质13多环芳烃环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法(HJ 647-2013)C已发布14环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法(HJ 646-2013)C已发布15烷基汞环境空气和废气 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订16硝基苯环境空气 硝基苯类化合物的测定 气相色谱法(HJ 738-2015)C已发布17环境空气和废气 硝基苯类化合物的测定 气相色谱-质谱法C拟制订18邻苯二甲酸酯类环境空气 酞酸酯类的测定 气相色谱-质谱法(HJ 867-2017)D已发布19环境空气和废气 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订20固定污染源废气 酞酸酯类的测定 气相色谱法(HJ 869-2017)D已发布21有机锡化合物(三丁基锡)环境空气 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订22得克隆环境空气和废气 得克隆的测定 气相色谱-质谱法A B拟制订23多氯联苯环境空气 多氯联苯的测定 气相色谱-质谱法(修订 HJ 902-2017)A B拟制订增加固定源废气介质24环境空气和废气 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订25有机氯农药环境空气 有机氯农药的测定 气相色谱-质谱法(HJ 900-2017)A B已发布26环境空气 有机氯农药的测定 气相色谱法(HJ 901-2017)A B已发布27环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法(HJ 1224-2021)A B已发布28二噁英类环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.2-2008)B C在研29多溴二苯醚环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(HJ 1270-2022)A B C已发布30固定源废气 26 种多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订31短链 氯化石蜡环境空气和废气 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订32环境空气和废气 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订33挥发性有机物环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023)A C D已发布34环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法(HJ 644-2013)A C D已发布35固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法(修订 HJ 734-2014)A C D拟制订36壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚环境空气 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订37六溴环十二烷双酚 A环境空气和废气 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订38氯苯类环境空气 氯苯类化合物的测定 气相色谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 全自动烷基汞分析仪在水质检测中的应用
    前言水为生命之源,对于社会及经济发展也具有举足轻重的作用,水质检测是保证水质安全的重要手段之一。水中的汞对人体健康伤害极大,会影响肾脏、中枢神经系统,汞在自然界中有多种形态,其中烷基汞毒性最大。随着时代发展和技术进度,一种更灵敏,更高效的检测方法可以有效地守护人类健康。 本文通过全自动烷基汞分析仪对水质样品中烷基汞进行分析。该法适用于地表水、地下水、生活污水、工业废水和海水中烷基汞(甲基汞、乙基汞)的测定,试验方法简单,快速,有效的缩短消解时间,节省人力。实验部分主要仪器MMA72全自动烷基汞分析仪(北京普立泰科仪器有限公司) 蒸馏仪装置(北京普立泰科仪器有限公司)试样制备量取45ml样品于60ml蒸馏瓶中,加180ul盐酸和360ul硫酸铜饱和溶液,盖紧摇匀,在接收瓶中加入4.5ml水和500µ l醋酸-醋酸钠缓冲溶液,摇匀,采用蒸馏仪130℃蒸馏样品。 标曲制备仪器状态确认正常后,可以按以下配制标准曲线。称量或移取40mL纯水,加入500mL缓冲试剂,分别加入对应体积的标液,依次迅速加入衍生,立刻拧紧,摇匀放置30min以上。7组以上1pg标液,取无异常值,连续7个数据进行精密度、检出限计算。实验结果标准物质仪器性能指标结果曲线:100pg标准物质色谱图:仪器检出限、精密度: 相同的操作步骤和仪器条件进行实验室纯水试样的测定回收率结果。 总结通过以上数据可以看出,该仪器适用标准方法完全能满足国标方法HJ977-2018各项要求,有些参数还优于标准。对水样测试也具有较好的回收率和重复性。同时采用北京普立泰科仪器有限公司的全自动烷基汞分析仪,自动化程度高,操作简单,大大的节省了实验时间,为水质中烷基汞分析提供了最佳的解决方案。全自动烷基汞分析仪 采用吹扫捕集/气相色谱-冷原子荧光检测原理,完全满足国标要求; 原位吹扫,避免交叉污染; 超高灵敏度,超低检出限; 填补国内仪器空白,性能参数和各项指标已达国际先进水平; 可用于水质、土壤和沉积物、生物样品中烷基汞的测定。END
  • 36项在研/拟制订!新污染物生态环境监测分析方法标准土壤和沉积物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与土壤和沉积物相关的分析方法标准52项,按编制状态分类,已发布16项、在研3项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素土壤和沉积物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2土壤和沉积物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3土壤和沉积物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4土壤和沉积物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5土壤和沉积物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6土壤和沉积物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7土壤和沉积物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8土壤和沉积物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇土壤和沉积物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料土壤和沉积物 微塑料的测定 傅里叶变换显微红外光谱法A拟制订11土壤和沉积物 聚乙烯等 5 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订12多氯萘土壤和沉积物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订13六溴联苯土壤和沉积物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订14毒杀芬土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(HJ 1290-2023)B已发布15有机磷酸酯类土壤和沉积物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订16土壤和沉积物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订17麝香类土壤和沉积物 麝香类化合物的测定 气相色谱-质谱法C拟制订18N,N'-二甲苯基-对苯二胺土壤和沉积物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订19甲醛和乙醛土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法(HJ 997-2018)C已发布20苯胺类(邻甲苯胺)土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1210-2021)C已发布21多环芳烃土壤和沉积物 多环芳烃的测定 高效液相色谱法(HJ 784-2016)C已发布22烷基汞土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 1269-2022)C已发布23硝基苯土壤和沉积物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订24邻苯二甲酸酯类土壤和沉积物 6 种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法(HJ 1184-2021)D已发布25土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)D已发布26紫外吸收剂土壤和沉积物 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订27土壤和沉积物 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订28卡拉花醛土壤和沉积物 卡拉花醛的测定 气相色谱-质谱法D拟制订29有机锡化合物(三丁基锡)土壤和沉积物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订30得克隆土壤和沉积物 得克隆的测定 气相色谱-质谱法A B拟制订31多氯联苯土壤和沉积物 多氯联苯的测定 气相色谱-质谱法(HJ 743-2015)A B已发布32土壤和沉积物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订33有机氯农药土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017)A B已发布34土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017)A B已发布35二噁英类土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.4-2008)B C在研36多溴二苯醚土壤和沉积物 多溴二苯醚的测定 气相色谱-质谱法(HJ 952-2018)A B C已发布37土壤和沉积物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订38短链 氯化石蜡土壤和沉积物 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订39土壤和沉积物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订40土壤和沉积物 短链氯化石蜡的测定 电子捕获负化学源低分辨质谱法A B C在研41五氯苯酚土壤和沉积物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订42土壤和沉积物 酚类化合物的测定 气相色谱法(HJ 703-2014)A B C已发布43土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)A B C已发布44挥发性有机物土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(HJ 605-2011)A C D已发布45土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法(HJ 741-2015)A C D已发布46壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚土壤和沉积物 19 种酚类化合物的测定 液相色谱-三重四极杆质谱法A C D拟制订47土壤和沉积物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订48六溴环十二烷双酚 A土壤和沉积物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D在研49全氟 化合物类土壤和沉积物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订50土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334-2023)A B C D已发布51土壤和沉积物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订52氯苯类土壤和沉积物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。仪器信息网将在5月7-9日举办“第五届土壤检测技术与应用”网络会议,其中”土壤新污染物检测“专场将为大家分享最新的分析技术进展与应用,点击免费报名:第五届土壤检测技术与应用网络会议_3i讲堂_仪器信息网 https://www.instrument.com.cn/webinar/meetings/soil240507/
  • 广西壮族自治区市场监督管理局公开征求烷基汞分析仪校准规范等项广西地方计量技术规范意见
    根据《广西壮族自治区市场监督管理局关于发布2022年度广西地方计量技术规范制修订计划的通告》(2021年第200期)、《广西壮族自治区市场监督管理局关于发布2023年度广西地方计量技术规范制修订计划的通告》(2023年第22期),广西壮族自治区计量检测研究院、柳州市计量技术测试研究所等单位已完成《烷基汞分析仪校准规范》《标准稠度与凝结时间测定仪校准规范》等2项广西计量技术规范起草工作。根据有关规定,现向社会公众公开征求意见,请于本通告发布之日起2个月内,通过电子邮件形式将意见表(详见各征求意见稿)反馈至起草单位。广西壮族自治区市场监督管理局2023年10月17日文件下载:《烷基汞分析仪校准规范》征求意见稿.zip《标准稠度与凝结时间测定仪校准规范》征求意见稿.zip
  • 将取消气相色谱法 测定染料产品中氯化甲苯
    在染料生产和纺织品生产过程中,氯化甲苯得到了广泛应用,但其对环境及人身健康安全有着较大的危险性,故而,各国及行业组织均对氯化甲苯化合物的残留做了严格的限量。我国早在2009年就制订发布了有关氯化甲苯测定的标准,即GB/T 24167-2009《染料产品中氯化甲苯的测定》,但其在实施应用中存在各式各样的问题,故而业内提出了修订该标准。近日,由沈阳化工研究院有限公司、国家染料质量监督检验中心主要起草的《染料产品中氯化甲苯的测定》已经修订完成,正面向社会征求意见。拟实施日期:发布后个月正式实施。与GB/T 24167-2009相比,更改了标准适用范围;删除了气相色谱测定方法;更改了方法原理;更改了标准溶液制备方法;更改了样品溶液制备方法;更改了色谱分析条件;更改了方法的检出限;更改了方法准确度判定要求;更改了氯化甲苯目标物种类。标准中规定了采用气相色谱-质谱法(GC/MS)测定染料产品中12种氯化甲苯残留量的方法,而该方法的原理是在超声波浴中,用二氯甲烷提取试样中的氯化甲苯,采用气相色谱-质谱联用仪(GC/MS)进行分离和测定,峰面积外标法定量即可。标准中也明确表明实验过程中需要用到的仪器设备包括具有EI源的气相色谱-质谱联用仪、色谱柱、分析天平、超声波发生器、提取器、离心机、氮吹浓缩仪等。目前《染料产品中氯化甲苯的测定》新标准处于意见征集阶段,相信2021年将会公示执行。随着对燃料染料产品把控的越来越严格,对于我们自身的健康安全就愈发有保障,并减少环境污染和资源浪费。
  • 41项在研/拟制订!新污染物生态环境监测分析方法标准水质篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与水质相关的分析方法标准56项,按编制状态分类,已发布15项、在研7项、拟制订34项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素水质 抗生素的测定 大体积进样/液相色谱-三重四极杆质谱法A在研2水质 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A在研3水质 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A在研4水质 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5水质 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6水质 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7水质 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8水质 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9水质 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订10三氯杀螨醇水质 三氯杀螨醇的测定 气相色谱-质谱法A拟制订11水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(HJ 699-2014)A已发布12微塑料水质 微塑料的测定 傅里叶变换显微红外光谱法A拟制订13水质 聚乙烯等5种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订14多氯萘水质 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订15六溴联苯水质 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订16毒杀芬水质 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订17有机磷酸酯类水质 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订18水质 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订19麝香类水质 麝香类化合物的测定 气相色谱-质谱法C拟制订20N,N'-二甲苯基-对苯二胺水质 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订21甲醛和乙醛水质 丙烯腈和丙烯醛的测定 吹扫捕集/气相色谱法(修订HJ 806-2016)C拟制订增加乙醛指标22水质 甲醛的测定 乙酰丙酮分光光度法(HJ 601-2011)C已发布23苯胺类(邻甲苯胺)水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1048-2019)C已发布24多环芳烃水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法(HJ 478-2009)C已发布25烷基汞水质 烷基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 977-2018)C已发布26硝基苯水质 硝基苯类化合物的测定 气相色谱法(HJ 592-2010)C已发布27水质 硝基苯类化合物的测定 气相色谱-质谱法(HJ 716-2014)C已发布28邻苯二甲酸酯类水质 6 种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法 (HJ 1242-2022)D已发布29水质 邻苯二甲酸二异丁酯、邻苯二甲酸二异壬酯和邻苯二甲酸二异癸酯的测定液相色谱-三重四极杆质谱法D拟制订30水质 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订31紫外吸收剂水质 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订32水质 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订33卡拉花醛水质 卡拉花醛的测定 气相色谱-质谱法D拟制订34有机锡化合物(三丁基锡)水质 三丁基锡等 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法(HJ 1074-2019)D已发布35得克隆水质 得克隆的测定 气相色谱-质谱法A B拟制订36多氯联苯水质 多氯联苯的测定 气相色谱-质谱法(HJ 715-2014)A B已发布37水质 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订38有机氯农药水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(修订 HJ 699-2014)A B拟制订39二噁英类水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订HJ 77.1-2008)B C在研40多溴二苯醚水质 多溴二苯醚的测定 气相色谱-质谱法(HJ 909-2017)A B C已发布41水质 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法A B C拟制订42中链氯化石蜡水质 中链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订43短链 氯化石蜡水质 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订44水质 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订45五氯苯酚水质 2,4-二氯酚、2,4,6-三氯酚、五氯酚和双酚 A 的测定高效液相色谱-三重四极杆质谱法A B C在研46水质 酚类化合物的测定 气相色谱-质谱法(HJ 744-2015)A B C已发布47水质 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订48挥发性有机物水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(修订 HJ 639-2012)A C D拟制订增加 1,3-丁二烯和 1-溴丙烷指标49壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚水质 9 种烷基酚类化合物和双酚 A 的测定 固相萃取/高效液相色谱法(HJ 1192-2021)A C D已发布50水质 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订51水质 烷基酚和双酚 A 的测定 气相色谱-质谱法A C D在研52六溴环十二烷双酚 A水质 六溴环十二烷和四溴双酚 A 的测定 液相色谱-质谱法A B C D在研53全氟化合物类水质 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定 液相色谱-三重四极杆质谱法A B C D拟制订54水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333-2023)A B C D已发布55水质 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订56氯苯类水质 氯苯类化合物的测定 气相色谱法(HJ 621-2011)A B C D已发布*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 沃特世隆重推出CORTECS C8以及苯基1.6和2.7 μm色谱柱
    这两款实心颗粒色谱柱产品系列的新成员将为突破分离效率和分析通量极限带来新的可能 美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8和CORTECS苯基填料有两种粒径可选(1.6和2.7 μm),可提供总共50种不同的色谱柱配置。 “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。” CORTECS C8色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。 基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。 CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7 μm两种粒径之间实现无缝的方法转换。 CORTECS UPLC 1.6 μm颗粒色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。 CORTECS 2.7 μm颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。 这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。 关于沃特世实心颗粒技术CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μm颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。 更多信息:www.waters.com/cortecs 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和
    安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和更好峰形 2012 年 2 月 6 日,安捷伦科技公司(纽约证交所:A)宣布了其用于反相液相色谱仪的孔径 300 Å 、亚 2 µ m 填料色谱柱系列迎来了新成员:超高压快速高分离度 ZORBAX 300SB-C3 和 300-二苯基 1.8 µ m 色谱柱。 这两种色谱柱的加入实现了超高效液相色谱(UHPLC)的反相生物分子分离。C3固定相能够为大分子蛋白质分离(包括抗体在内)提供更多选择性和更好的峰形,回收率也更高而 二苯基固定相通过一级结构中的芳香族氨基酸的pi-pi 相互作用带来更多选择性。 安捷伦产品经理 Linda Lloyd 说道:“安捷伦现有的亚 2 µ m 宽孔径生物色谱柱能够全面满足反相液相色谱系统的需求新型 1.8 µ m 色谱柱进一步扩展了 ZORBAX C18、C8 和 C3 固定相系列,这三种固定相已有 3.5 和 5 µ m 两种规格的填料。我们非常高兴能够为 UHPLC 用户带来更准确的鉴定和更快的分析速度。” 该款粒径 1.8 µ m,孔径 300Å 的色谱柱将 UHPLC 特有的效率、分离度和强大的定量功能在反相液相色谱蛋白质分离上发挥到极致。此外,该色谱柱在高达 1200 bar 的压力下同样稳定安捷伦的 C18、C8 和 C3 色谱柱采用成熟的 StableBond 技术,加上封端的联苯和 Pursuit 色谱柱的化学性质,当采用三氟乙酸或甲酸流动相改性剂时能够得到对称峰形,即使在低 pH 条件下亦是如此。丝毫无损色谱柱寿命。 目前,全套 ZORBAX 超高压快速高分离度色谱柱系列包括用于小分子应用的 13 种固定相(包括 HILIC)以及用于大分子分离的四种固定相。如此广的选择范围使得色谱分析人员能够选择最适合的色谱柱来优化 UHPLC 分离。此外,RRHD 高达 1200 bar 的稳定性也提供了更灵活的流速和流动相选择。 要了解更多信息,请访问:www.agilent.com/chem/biohplcproteins。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A) 是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者公司的 18,700 名员工为 100 多个国家的客户提供服务在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 《高盐食品中氯化钠的测定 电感耦合 等离子体发射光谱法》等2项团体标准征求意见
    相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》和《枸杞中多元素的测定 电感耦合等离子体质谱法》2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年4月20日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com宁夏化学分析测试协会2022年3月20日关于团标征求意见函 -2023.3.20.pdf团标表格7-专家意见表.doc枸杞中多元素的测定.pdf氯化钠测定ICP-征求意见稿.pdf
  • 新国标应对|强制性国家标准GB15892-2020《生活饮用水用聚氯化铝》于8月1日正式实施
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。伴随着GB 5749—2006《生活饮用水卫生标准》修订工作的开展,作为与水相关的化学品,必须同步修订。 聚合氯化铝主要作为生活饮用水,生活用水和工业污水(如含油污水、印染、造纸污水、钢厂污水等)处理的絮凝剂,以及高毒性重金属和含氟污水的处理等;此外,在精密铸造、制革等方面亦有广泛用途。国标聚合氯化铝的显著特点是净水效果明显,絮凝沉淀速度快,沉降快、活性好、不需加碱性助剂。适应PH范围宽;对管道设备腐蚀性低;能有效除去水中色质SS(悬浮固体)、COD(化学需氧量)、BOD(生化需氧量)及砷、汞等重金属离子。 聚氯化铝在处理自来水过程中,主要起到絮凝沉淀、改善水质的作用。为避免聚氯化铝对自来水造成的二次污染,聚氯化铝本身的杂质检测,特别是元素杂质检测非常重要。《生活饮用水用聚氯化铝》GB15892-2020强制性国家标准于8月1日起正式实施。标准解读标准应用范围本标准规定了生活饮用水用聚氯化铝的要求、试验方法、检验规则、标志、包装、运输和储存;本标准适用于生活饮用水用聚氯化铝,该产品主要用于生活饮用水的净化;本标准替代GB15982-2009 新标准检测的项目与旧标准GB15892-2009相比,新标准有如下差异:除了上表的差异外,另有将砷含量测定中的砷斑法改为原子荧光光谱法将汞含量测定中的分光光度法改为原子荧光光谱法铅、镉含量测定中增加了火焰原子吸收光谱法增加了铁含量的测定增加了铬含量的测定删除了六价铬含量的测定 东西分析应对方案 东西分析原子吸收分光光度计可以满足Pb、Cd、Cr含量的测定 AA-7090型原子吸收分光光度计特点横向加热、纵向交流塞曼,使仪器具有更高的灵敏度;塞曼、氘灯背景校正模式互为补充,选择更加灵活;原子化器切换速度快,可2s完成火焰/石墨炉的自动快速切换;具备石墨炉可视系统对火焰或石墨炉进行实时观测;自动化程度高,气路自动保护,软件自动点火;燃烧头自动升降,前后位置及旋转角度可调;自动氘灯,石墨炉电源自动开关,自动识别编码灯;配合自动进样器,达到真正无人值守。东西分析原子荧光可以满足As、Hg含量的测定AF-7550型双道氢化物-原子荧光光度计特点:双通道同时测定双元素;六通进样阀和可变定量管相结合;气液分离采用二次分离(专利号:200720104068.x),并用红外传感器控制液位,消除其对分析的影响;人性化、环保节气型气路设计;仪器自动识别元素灯,监控空芯阴极灯使用寿命;开机自检、实现系统自动诊断功能;三维立体可调远红外加热原子化器、短焦距透镜聚光,全封闭无色散光学系统;可配备160位大容量自动进样器.GBC紫外可满足Fe、As含量测定Cintra 紫外-可见分光光度计 Cintra系列由cintra1010,2020,3030和4040组成,光学性能好;双光束光学系统,具有长时间稳定性;巧妙的光学设计,即使对μL级的样品量,测试结果可靠而稳定;可满足多种性能规范要求;可以通过软件模块完成多种应用,如常规测试、定量分析、系统性能验证等。
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 地下水质分析方法系列标准更新,坛墨为您提供标准品解决方案!
    2021年2月22日,国家自然资源部发布了DZ/T 0064《地下水质分析方法》的系列标准,该标准替换了93年的老标准,对85个子标准全部进行了更新。该系列标准的适用领域是地下水的测定,在经过方法验证后也可适用于地表水和饮用水的测定。新标准已于2021年7月1日实施。坛墨质检一直以来紧跟检验检测行业标准规定,在环境、食品、职业卫生、化妆品、药品、地质等各个检测领域都提供产品方案,且提供定制服务。根据这次地下水质系列标准的要求,坛墨质检已准备好配套的产品方案,欢迎咨询!在系列标准中有机物检测标准主要有三个:DZ/T 0064.71-2021,DZ/T 0064.72-2021和DZ/T 0064.91-2021。①DZ/T 0064.71-2021《地下水质分析方法 第71部分:α-六六六、β-六六六、 γ-六六六、δ-六六六、六氯苯、p, p′-滴滴伊、p, p′-滴滴滴、o,p′-滴滴涕和p,p′-滴滴涕的测定 气相色谱法》有机氯农药是水体中的常见污染物,对人体健康和生态环境有着巨大的危害,该方法以正己烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机氯农药,提取的有机相经脱水、净化、浓缩后气相色谱毛细管柱分离,电子捕获检测器检测。新标准调整了检测范围,增加了精密度和准确度数据并且增加了质量保证和质量控制的要求,为方法的实施提供了大量实验数据的支撑。坛墨质检DZ/T 0064.71-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170005095.html正己烷中9种有机氯农药混标/DZ/T 0064.71-2021产品编码CAS号名称标准值单位81693b319-84-6α-六六六1000μg/mL319-85-7β-六六六1000μg/mL58-89-9γ-六六六1000μg/mL319-86-8δ-六六六1000μg/mL72-55-94,4’-滴滴伊1000μg/mL789-02-62,4' -滴滴涕1000μg/mL72-54-84,4’-滴滴滴1000μg/mL50-29-34,4' -滴滴涕1000μg/mL118-74-1六氯苯1000μg/mL(点击产品编码即可查询产品)②DZ/T 0064.72-2021《地下水质分析方法 第72部分:敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷的测定 气相色谱法》敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷均为水体中毒性较强的有机磷污染物,方法以丙酮、二氯甲烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机磷农药,提取有机相液经脱水、净化、浓缩后毛细管气相色谱柱分离,火焰光度检测器检测,其他类似的有机磷农药通过验证后也可适用于该方法。该方法操作简单,灵敏度高,检出限达到ng/L。坛墨质检DZ/T 0064.72-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170001628.html丙酮中7种有机磷农药混标/DZ/T 0064.72-2021产品编码CAS号名称标准值单位溶剂81601a62-73-7敌敌畏100μg/mL丙酮298-02-2甲拌磷100μg/mL丙酮60-51-5乐果100μg/mL丙酮298-00-0甲基对硫磷100μg/mL丙酮121-75-5马拉硫磷100μg/mL丙酮2921-88-2毒死蜱100μg/mL丙酮56-38-2对硫磷100μg/mL丙酮(点击产品编码即可查询产品)③DZ/T 0064.91-2021《地下水质分析方法 第91部分:二氯甲烷、氯乙烯、1,1-二氯乙烷等24种挥发性卤代烃类化合物的测定 吹扫捕集/气相色谱-质谱法》该方法借助于吹扫捕集装置,用高纯氦(或氮)气将地下水样品中低水溶性的挥发性卤代烃、内标、替代物吹出并被吸附剂吸附,吸附的挥发性有机物经升温脱附后,导入色谱分离,质谱检测。坛墨质检DZ/T 0064.91-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170401017.html甲醇中24种挥发性有机物VOC混标/DZ/T 0064.91-202124种卤代烃混标产品编码CAS号名称标准值单位溶剂81457b75-01-4氯乙烯1000μg/mL甲醇75-35-41,1-二氯乙烯1000μg/mL甲醇75-09-2二氯甲烷1000μg/mL甲醇156-60-5反-1,2-二氯乙烯1000μg/mL甲醇75-34-31,1-二氯乙烷1000μg/mL甲醇67-66-3三氯甲烷1000μg/mL甲醇71-55-61,1,1-三氯乙烷1000μg/mL甲醇56-23-5四氯化碳1000μg/mL甲醇107-06-21,2-二氯乙烷1000μg/mL甲醇79-01-6三氯乙烯1000μg/mL甲醇78-87-51,2-二氯丙烷1000μg/mL甲醇75-27-4一溴二氯甲烷1000μg/mL甲醇10061-01-5顺式-1,3-二氯丙烯1000μg/mL甲醇10061-02-6反式-1,3-二氯丙烯1000μg/mL甲醇79-00-51,1,2-三氯乙烷1000μg/mL甲醇127-18-4四氯乙烯1000μg/mL甲醇124-48-1二溴氯甲烷1000μg/mL甲醇108-90-7氯苯1000μg/mL甲醇75-25-2三溴甲烷1000μg/mL甲醇79-34-51,1,2,2-四氯乙烷1000μg/mL甲醇541-73-11,3-二氯苯1000μg/mL甲醇106-46-7对二氯苯1000μg/mL甲醇95-50-1邻二氯苯1000μg/mL甲醇120-82-11,2,4-三氯苯1000μg/mL甲醇内标物80171KA3855-82-11,4-二氯苯-D42000μg/mL甲醇3114-55-4氯苯-D52000μg/mL甲醇462-06-6氟化苯2000μg/mL甲醇替代物BW900725-1000-A460-00-44-溴氟苯1000μg/mL甲醇91495JA2037-26-5甲苯-D81000μg/mL甲醇90014JA17060-07-01,2-二氯乙烷-D41000μg/mL甲醇在该系列标准中重金属检测标准有32个,常规因子检测标准约40个,坛墨质检助力于新标准的发布,该系列标准中所使用的的标准物质坛墨质检均有销售,欢迎选购!
  • 土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手
    土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手 土壤安全是所有生物食品安全的基础。 土壤安全是食品安全的关键性决定因素之一。汞在人为排放之后,最终将沉降到土壤中,土壤在整个汞循环中起着至关重要作用。 由于土壤成分复杂,汞可以与其中的某些成分相互作用并形成不同种类的汞。这些不同种类的汞特性也各不相同。这些汞可以是无机的、有机的,或者是强结合的汞,在土壤中能够稳定而长期存在。水和土壤是所有农作物和生物的基础。为了采取补救措施,必须准确测量土壤中的汞。必须经过样品消解步骤的传统技术 湿法化学样品制备(酸消解)等常规方法可用于消解土壤样品。由于是土壤样品,有时需要使用强酸,如氢氟酸和王水来对样品进行消解。然后通过冷蒸气原子吸收法(CVAAS)对消解后的样品进一步分析。由于汞在酸性环境中的独特性质,它往往会产生记忆效应,从而引起交叉污染或残留。因此,对于许多分析人员来说,获得准确和精确的结果具有一定难度。 湿法化学样品制备繁琐、耗时,因为试剂的使用而导致成本增加。而测量结果往往达不到预期。NIC MA 系列测汞仪直接分析土壤样品样品无需前处理 – 快速准确的测量结果不需要对样品进行预消解,使用NIC直接汞分析仪可以直接分析所有类型的土壤样品。测量土壤样品的三个简单步骤:1. 确保土壤样品均匀性2. 加入适量的样品3. 在NIC MA3WIN 软件中选择合适的方法最小的处理错误 - 准确可靠的结果,自信的报告 样品提取过程或湿法化学样品制备过程可能会产生较大的误差幅度,对测量结果造成疑问和不确定性。 NIC MA 系列测汞仪,能够大限度地避免处理错误。更小的处理误差也意味着更少的维护停机时间和更快的测量周转时间。100位的自动进样器 – 可提高实验室的检测能力,提升工作效率 在全面的土壤普查中,需要分析采自不同地点的各种土壤样品,样品分析量很大。NIC MA-3000配置100位的自动进样器,可以提供高通量汞分析,大大提高实验室工作效率效率。NIC具有四十多年的直接汞分析的专业知识和经验 – 您可以信赖我们 1978 年开始生产直接汞分析仪,具有40多年的直接汞分析经验和专业知识。NIC测汞仪受到全球数千家实验室的信赖。MA系列测汞仪 – 您在实验室中高效且性能优越的助手 除了土壤样品分析外,MA系列还可以直接分析各种食物样品,如水稻,谷物,茶叶和海鲜等,这对进一步调查土壤汞污染造成的后果非常有用。应用说明免费下载: 使用 NIC MA-3 Solo测汞仪测量土壤样品中总汞含量的应用说明,可在以下网址免费下载:https://www.instrument.com.cn/netshow/SH104984/s937843.htm
  • 34项在研/拟制订!新污染物生态环境监测分析方法标准固体废物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与固体废物及其他相关的分析方法标准36项,按编制状态分类,已发布2项、在研1项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素固体废物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2固体废物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3固体废物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4固体废物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5固体废物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6固体废物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7固体废物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8固体废物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇固体废物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料生物体 聚乙烯等 4 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订11多氯萘固体废物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订12六溴联苯固体废物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订13毒杀芬固体废物 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订14有机磷酸酯类固体废物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订15固体废物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订16麝香类固体废物 麝香类化合物的测定 气相色谱-质谱法C拟制订17N,N'-二甲苯基-对苯二胺固体废物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订18甲醛和乙醛固体废物 醛、酮类化合物的测定 高效液相色谱法C拟制订19苯胺类(邻甲苯胺)固体废物 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法C拟制订20烷基汞固体废物 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订21硝基苯固体废物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订22邻苯二甲酸酯类固体废物 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订23有机锡化合物(三丁基锡)固体废物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订24得克隆固体废物 得克隆的测定 气相色谱-质谱法A B拟制订25多氯联苯固体废物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订26有机氯农药固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017)A B已发布27二噁英类固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.3-2008)B C在研28多溴二苯醚固体废物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订29短链 氯化石蜡固体废物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订30五氯苯酚固体废物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订31挥发性有机物固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法(HJ 643-2013)A C D已发布32壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚固体废物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订33六溴环十二烷双酚 A固体废物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订34全氟 化合物类固体废物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订35固体废物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订36氯苯类固体废物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 山东分析测试协会评定全自动烷基汞分析仪为“专家之选”仪器
    在第十三届山东国际科学仪器及实验室装备展览会期间,由山东省分析测试协会组织的评审专家团经过广泛的研讨交流、分组考察,在对普立泰科全自动烷基汞分析仪的技术研发、产品制造实力有了更全面的了解和认识之后,多位专家一致认定普立泰科全自动烷基汞分析仪入选“专家之选”仪器。北京普立泰科仪器有限公司全新推出的全自动烷基汞分析仪,检测方法依据U.S. EPA1630,超痕量检出限完全满足目前国内烷基汞的检测需求,适用于样品的批量分析。工作原理是采用吹扫捕集富集,气相色谱分离,高温热裂解及CVAFS(冷原子荧光检测器)检测的原理。自带自动进样器,分析过程全部自动化,避免操作者在实验中暴露伤害。样品前处理简单,一次检测只需要25~40ml样品(水样),解放人力。分析时间短,实验数据准确,可靠。为实验室提供安全、准确高效的形态汞分析解决方案。关于普立泰科:北京普立泰科仪器有限公司是一家集生产、研发、代理、销售及售后服务于一身的高新技术企业。公司总部设在北京,在上海、广州、安徽设有分支机构。早年取得美国J2Scientific公司样品前处理仪器中国地区总代理,将全自动前处理概念引入中国,并一直在样品前处理领域保持技术领先地位。此外,普立泰科自主研发的消解仪、全自动固相萃取、氮吹、二噁英处理系统、土壤干燥箱等产品,通过了ISO体系认证,目前有多条自主产品生产线。从2017年开始,普立泰科成为FLIR公司Griffin系列产品在中国市场的总代理商。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制