当前位置: 仪器信息网 > 行业主题 > >

维吉尼亚已终止标准品

仪器信息网维吉尼亚已终止标准品专题为您提供2024年最新维吉尼亚已终止标准品价格报价、厂家品牌的相关信息, 包括维吉尼亚已终止标准品参数、型号等,不管是国产,还是进口品牌的维吉尼亚已终止标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合维吉尼亚已终止标准品相关的耗材配件、试剂标物,还有维吉尼亚已终止标准品相关的最新资讯、资料,以及维吉尼亚已终止标准品相关的解决方案。

维吉尼亚已终止标准品相关的资讯

  • 肯尼亚发布修订版化妆品标准
    近日,肯尼亚向世界贸易组织(WTO)技术性贸易壁垒委员会提交了修订版的化妆品标准,对护肤霜、洗涤剂和发胶等化妆品的要求和测试方法作出了新规定。  修订版的标准给出了对苯二酚的限值,从而可以区分产品中存在的对苯二酚是属于污染物还是有意添加。此外,新标准也对微生物限值、产品的标签和包装要求等作出了说明。  据了解,对苯二酚是有毒有机化合物,成人误服1克即可出现头痛、头晕、耳鸣、面色苍白等症状。这种物质遇明火、高热可燃,与强氧化剂接触可发生化学反应 受高热分解后,可放出有毒气体。目前,对苯二酚主要用于制取黑白显影剂、蒽醌染料、偶氮染料、橡胶防老剂、稳定剂和抗氧剂。  对此,检验检疫部门提醒相关出口企业:一是深入了解肯尼亚新修订化妆品标准的具体内容,加强学习和研究,严格按照标准要求生产化妆品及产品标签的标注 二是从源头控制产品的品质,加强化妆品中对苯二酚及微生物的检测监控,必要时可向检验检疫部门或大型检测机构寻求技术支持,避免因产品化合物及微生物的超标造成退运或销毁 三要与国外进口商加强沟通,及时获取最新的法规信息,避免因信息不对称导致出口风险。
  • 中国与亚美尼亚计量合作研讨会顺利召开
    5月18日,中国计量科学研究院(以下简称“中国计量院”)与亚美尼亚国家标准化与计量院(“National Body for Standardization and Metrology” CJSC,以下简称“亚方”)以视频方式召开计量合作研讨会。中国计量院党委书记兼副院长段宇宁、亚方院长阿尔伯特巴巴杨出席会议并致辞,双方院领导、技术专家、相关部门人员共18人参加会议。   段宇宁介绍了中国计量院整体情况和重点科研、业务及国际合作工作。亚方也介绍了其基本情况并重点说明在质量、温湿度、电离辐射和电能等专业领域的发展现状和合作需求。双方技术专家就各自领域未来可能的合作进行初步讨论并交换了意见。   段宇宁表示,此次会议是中国与亚美尼亚双边计量合作的起点。他提出会后双方可以成立联络小组、交换各技术领域联系人信息,对口专家和技术人员就共同感兴趣的合作持续开展深入交流、形成优选合作项目意向,同时寻求双方政府支持联合申报相关合作项目、签署双边合作谅解备忘录等建议,得到了亚方的高度认可。阿尔伯特巴巴杨赞扬中方在计量领域的发展成就,感谢中方热情诚恳的合作态度及务实的建议。   最后双方共同祝愿未来合作顺利并期待条件成熟时开展线下互访,共叙友谊、共商合作。   据悉,亚美尼亚国家标准化与计量院隶属于亚美尼亚共和国经济部,是负责亚美尼亚标准化和计量领域工作的国家级机构。中方与亚方同为欧亚计量合作组织(COOMET)成员,此次会议为双方未来开展双边合作奠定了基础,同时也是中国计量院开拓与周边一带一路沿线国家计量合作的新进展。
  • 金埃谱科技与美国佛吉尼亚理工大学签订高温高压气体吸附仪采购合同
    金埃谱科技与美国佛吉尼亚理工大学签订高温高压气体吸附仪采购合同 专业高温高压气体吸附仪研发及生产厂家--北京金埃谱科技有限公司与美国佛吉尼亚理工大学在近日签订了H-Sorb 2600高温高压气体吸附仪采购合同。 在前期,金埃谱科技给予佛吉尼亚理工大学免费的样品测试服务。此外,从客户那得知,金埃谱科技的竞争对手们(美国本土企业)也给佛吉尼亚理工大学提供了测试服务,但是相比3家的最终测试结果,金埃谱科技的测试数据(如下图)更加准确可信,从而赢得了客户的高度赞许与一致认可! 金埃谱科技的高温高压气体吸附仪H-Sorb 2600采用静态容量法,在高温高压的条件下,对纳米材料进行吸附及脱附等温线的测定。目前,标准型号支持常温到500度,常压至200 Bar范围的吸附及脱附测试;可同时进行两个样品的分析及处理,且分析与处理系统相互独立;采用进口VCR接口高压气动阀,保证良好的密封性的同时极大的提高了使用寿命(500万次多);完全自动化的操作系统,无需人工值守,可进行夜间工作;进口316L不锈钢厚壁管路,微焊接工艺的主管路密封连接能有效降低死体积空间等一系列专利技术使得H-Sorb 2600高温高压气体吸附仪得到广大知名院校,科研机构及生产企业的肯定! 弗吉尼亚理工大学(Virginia Tech),全称为弗吉尼亚理工学院暨州立大学(Virginia Polytechnic Institute and State University),是一所位于美国东岸弗吉尼亚州(Virginia)的著名公立大学。弗州理工成立于1872年,现已发展成弗吉尼亚州内规模最大、提供学位最多的创新研究性综合高等院校。根据卡内基教育基金会于2005年公布的大学分类,弗吉尼亚理工被归类为特高研究型大学(very high research activity)。是全美最强四大理工之一。到2009年5月为止,弗州理工师生正在共同研究的项目多达6,697个,研究范围跨度很大,从生物技术到材料工程,从环境能源到食品健康,从土木建设到计算机信息,研究成果都令人刮目相看。 除了高温高压气体吸附仪外,金埃谱科技的仪器还有比表面积及孔径测试仪(动态法与静态法),全自动真密度测定仪,样品处理机等系列。详情请致电010-88099138、88099139或登录www.jinaipu.com 或www.app-one.com.cn。
  • 安捷伦与加利福尼亚大学圣地亚哥分校联合成立细胞智能卓越中心
    2024年4月8日,安捷伦宣布与世界顶级公共研究型大学加利福尼亚大学圣地亚哥分校 合作成立“安捷伦细胞智能卓越中心( Agilent Center of Excellence in Cellular Intelligence ) ”,联合推动科学创新研究。该座安捷伦卓越中心(Center of Excellence,简称CoE)位于加利福尼亚大学圣地亚哥分校医学院,将推动安捷伦与加州大学圣地亚哥分校以及其他机构和行业合作伙伴之间的协作与创新。卓越中心将成为该地区学术界和制药/生物制药研究人员的交流中心,为各项研究提供重要的分析仪器,以及教育、培训和应用开发机会。安捷伦总裁兼首席执行官Mike McMullen表示:“这一重要举措有助于我们更好地从细胞层面理解疾病机制,并推动更好的方法学开发用以编辑和工程化细胞,来治疗疾病、增强免疫力,并最终创造出新型生物产品。”这座卓越中心将利用安捷伦仪器,包括细胞分析和质谱解决方案,为一项宏伟的跨学科计划提供支持。该研究项目名为“破译真核细胞智能(Decode Eukaryotic Cellular Intelligence)”,旨在揭示真核细胞对复杂且不确定环境的感知、决策和应对方式,从而了解其对健康和疾病的影响。加州大学圣地亚哥分校医学和细胞与分子医学教授,同时身兼上述研究项目的创始人Pradipta Ghosh博士表示:“我们很高兴能与安捷伦合作,在圣地亚哥分校成立安捷伦细胞智能卓越中心。这将推动我们对生命基本原理和生物复杂性起源的理解。”该项目的理论基础是一项假说 ,即真核细胞作为深度强化学习(Reinforcement Learning,简称RL)实体,利用生物智能的互连开关回路来适应环境并得以生存。该项目结合了实验、计算和理论方法,旨在解码这些开关回路的分子和细胞机制,并探索其对健康和疾病产生的影响。加利福尼亚大学圣地亚哥分校自创校伊始,就孕育了一种敢于冒险、勇于追求合作和创新的文化。该校成立于 1960 年,在一代又一代敢于打破常规、挑战世俗并重塑传统观念的杰出学者的带领下,以创造更美好的世界为使命。创始人在创校时只提出了一个标准,那就是始终追求与众不同,因此自该校成立之初,创新就已成为常态。加利福尼亚大学圣地亚哥分校是全球顶尖的公共研究机构,也是全美学生申请人数最多的机构之一。
  • 盛瀚色谱肯尼亚、格鲁吉亚两国发货仪式圆满成功!
    8月12日,盛瀚色谱举行肯尼亚、格鲁吉亚两国发货仪式。众多盛瀚人共同见证盛瀚离子色谱仪发往肯尼亚和格鲁吉亚。12日下午,在盛瀚智造部大厅,IC+事业部副总监兼海外部经理蒲大龙向大家介绍了肯尼亚和格鲁吉亚两国的风土人情,加深了大家对这两个国家的认识。近几年,“一带一路”正影响世界格局,为全球发展带来新希望。肯尼亚和格鲁吉亚是“一带一路”的重要成员国,与我国建立良好的合作关系。在离子色谱领域,盛瀚色谱在国际市场上占有重要地位,正因如此,两国的经销商优先选择盛瀚色谱,想要达成长期合作关系。目前,盛瀚离子色谱仪已经出口65个国家。盛瀚色谱凭借自身强大的科研实力,“智”造中国好仪器,让国产仪器走出国门,获得国际认可。
  • 专家就20项兽药残留国家标准征求意见
    各相关单位:根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》,我办组织起草了《牛可食性组织中吡利霉素残留量的测定液相色谱-串联质谱法》等20项兽药残留国家标准。现公开征求意见,如有修改意见,请于2021年10月30日前反馈至全国兽药残留与耐药性控制专家委员会办公室。联系人:张玉洁联系电话:010-62103930E-mail:地址:北京中关村南大街8号科技楼206邮编:100081 1.牛可食性组织中吡利霉素残留量的测定 液相色谱-串联质谱法(征求意见稿)2.鸡可食性组织中抗球虫药物残留量的测定 液相色谱-串联质谱法(征求意见稿)3.猪和家禽的可食性组织中维吉尼亚霉素M1残留量的测定液相色谱-串联质谱法(征求意见稿)4.禽蛋、奶和奶粉中多西环素残留量的测定 液相色谱-串联质谱法(征求意见稿)5.奶和奶粉中头孢类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)6.奶及奶粉中阿维菌素类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)7.牛奶中利福昔明残留量的测定 液相色谱-串联质谱法(征求意见稿)8.牛奶中氯前列醇残留量的测定 液相色谱-串联质谱法(征求意见稿)9.水产品中27种性激素残留量的测定液相色谱-串联质谱法(征求意见稿)10.水产品中甲苯咪唑及其代谢物残留量的测定 液相色谱-串联质谱法(征求意见稿)11.水产品中氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺残留量的测定 气相色谱法(征求意见稿)12.水产品中二硫氰基甲烷残留量的测定 气相色谱法(征求意见稿)13.蜂产品中头孢类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)14.动物性食品中三氮脒残留量的测定 高效液相色谱法(征求意见稿)15.动物性食品中阿托品、东莨菪碱、山莨菪碱、利多卡因、普鲁卡因残留量的测定 液相色谱-串联质谱法(征求意见稿)16.动物性食品中酰胺醇类药物及其代谢物残留量的测定 液相色谱-串联质谱法(征求意见稿)17.动物性食品中左旋咪唑残留量的测定 液相色谱-串联质谱法(征求意见稿)18.动物性食品中β-受体激动剂残留检测液相色谱-串联质谱法(征求意见稿)19.动物性食品中硝基咪唑类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)20.动物性食品中赛杜霉素残留量的测定 液相色谱-串联质谱法(征求意见稿)21 .兽药残留国家标准征求意见表全国兽药残留专家委员会办公室2021年9月28日
  • 罗马尼亚实验室获授权 反兴奋剂“版图”再扩大
    新华网渥太华7月21日电 总部设在加拿大蒙特利尔的世界反兴奋剂机构(WADA)21日发表声明宣布,罗马尼亚的一家实验室获得WADA授权,正式成为检测违禁药物的专业实验室。  WADA主席法赫伊在声明中表示,这家位于罗马尼亚首都布加勒斯特的实验室是WADA在全球范围内授权的第35家专业实验室,这35家实验室分布于全球的32个国家和地区。  法赫伊说:“这家实验室将在未来的反兴奋剂工作中扮演重要的角色,能够很好地满足这一地区反兴奋剂的检测需要,而在这之前我们(WADA)无法对这一地区提供服务。”  罗马尼亚的这家实验室经过了18个月的建设才得到WADA的授权,能够对运动员进行尿样和血样的检测分析。  WADA表示,全球的第36家授权实验室将于今年的晚些时候落户哈萨克斯坦阿拉木图。此外阿根廷的布宜诺斯艾利斯、卡塔尔的多哈以及墨西哥首都墨西哥城也都有望进入专业反兴奋剂实验室的“版图”。
  • 【时讯】爱沙尼亚LDI公司销售总监Mr. Davide Pino到访奕枫仪器
    2023年5月中旬,受奕枫仪器邀请,爱沙尼亚LDI公司全球销售总监Mr. Davide Pino到访上海奕枫仪器设备有限公司,双方就LDI公司ROW系列非接触式荧光法溢油监测仪产品的市场和技术等问题进行了深入的交流。Davide Pino对奕枫仪器在中国市场为ROW系列产品所做的推广工作表达了高度的赞扬和感谢,并表达了更进一步合作的意向。Davide Pino介绍了LDI公司的未来规划和最新的产品开发情况,随着新产品的研发和投放,将会更好的服务于更多客户。Davide Pino还参观了奕枫公司测试实验室,对奕枫仪器拥有的技术服务能力表达高度满意,这将有助于进一步改善LDI产品的售后服务,提高客户满意度。会后,Davide Pino与奕枫仪器产品经理一起拜访了长沙和重庆的客户并参观项目现场,为潜在的重大项目提供现场指导并优化了解决方案。关于LDILDI是一家成熟的研发公司,一直致力于开发和制造实时分析物质的传感器。将光学与先进的软件分析算法相结合,擅长使用非接触技术检测特定分子。LDI创立于1991年,最初是通过制造复杂的飞机和船舶机载激光雷达(LiDAR)系统起家,该系统可以探测到数英里外的地下石油泄漏。由于市场对更简单、更灵活、可以实时捕获早期的地表泄漏的设备的需求,促使LDI开发了ROW系列非接触式荧光法溢油监测仪,现在ROW已安装在世界各地的工业和公共供水设施中。LDI拥有9项核心技术专利,并不断创新产品。其目标是确保工业过程保持安全并将对环境的风险降到最低。创新的非接触式技术使LDI产品一直处于易于使用的水监测仪器的最前沿。奕枫仪器自2013年以来一直是LDI公司在中国签约代理商和合作伙伴。相关产品ROW荧光法溢油监测仪是一种自动非接触式传感器(远程光学观察器),可实时监测水中油品或化工品污染,准确度高且易于维护,它可以及时发现并提醒漏油或化工品污染以便在污染扩散失控之前做出反应。它使用石油/化工品的天然荧光检测任何从船用柴油到植物油到喷气燃料,发现污染立即进行现场声光报警,并将数据远程传输到监控中心。无论是在污水排放口还是在进水口,它都可以提供7*24h全天候工业和环境水监测。ROW 荧光法溢油监测仪多种型号可选,可适配不同应用场景及轻油,中油,重油不同油类。如防爆型ROW整个系统通过了DNV的ATEX/IECEx认证,设计用于安装在易燃气体、可燃浓度高的蒸汽或雾气经常存在的危险区域。工作原理为了能够从水面以上最高10m的位置检测厚度为1μm的浮油,ROW采用365nm的紫外脉冲光束照射水面,激发目标区域的油分子产生荧光,并能够从其他物质中鉴别油分子的信号。LDI有20年相关经验,确保测量结果可靠。产品特征&bull 7*24h 长期监测无论白天还是夜晚,无论北极严寒还是酷暑地区,ROW帮助您查明污染,采取行动,并避免持久的损害。&bull 寿命长,低维护坚固的IP68认证的密封设计,LED寿命5年。&bull 内置压力保护用惰性氮气加压,ROW测量不受外界干扰&bull 行业领先的灵敏度—1 μm先进的软件算法,校准,检测油厚度最低到1 μm,最大限度地减少误报。
  • 南京地理所与坦桑尼亚渔业研究所完成“坦桑尼亚大湖流域水环境保护能力提升与技术合作”仪器交接
    4月12日,中国科学院南京地理与湖泊研究所与坦桑尼亚渔业研究所完成“坦桑尼亚大湖流域水环境保护能力提升与技术合作”仪器设备交接仪式。  基于科学技术部对发展中国家常规性科技援助项目支持,南京地理所向坦桑尼亚渔业研究所移交了水环境、水生态监测相关仪器设备40台(套),试剂耗材等共计1086件,价值五十余万元。   仪式上,南京地理所所长张甘霖和坦桑尼亚渔业研究所所长Ismael A. Kimirei共同签署仪器移交协议。这些仪器和耗材将用于坦桑尼亚渔业研究所姆万扎、基戈马、姆贝亚野外站基础建设,进一步提升坦噶尼喀湖、维多利亚湖以及马拉维湖生态环境监测能力,促进东非大湖流域可持续发展。   坦桑尼亚渔业部研究部主任Mohammed Ali Sheikh表示,未来双方将不断拓展研究领域,面向坦方国家科技需求,继续开展深入合作与交流。坦桑尼亚渔业部常务秘书长Riziki Shemdoe、张甘霖和中国驻坦桑尼亚大使馆公使衔参赞索鹏充分肯定了双方合作成果,并表示将一如既往支持双方进行深入交流和科技合作。
  • 罗马尼亚研究人员首次拍摄下原子运动的照片
    罗马尼亚Ohio大学和Kansan大学的一组研究人员,包括罗马尼亚博士后研究员Cosmin Blaga先生,拍摄到了两张原子在分子内运动的照片。该实验刊登在近期的自然杂志上,题为使用分子自身电子能源作为&ldquo 闪光灯泡&rdquo 来照亮分子运动。研究人员使用了超速激光脉冲敲开了天然的分子框的一个电子,以及氮和氧的分子。 据专家介绍,抓拍照片的关键是抓住电子从分子中被敲出来与再次敲击之间的一瞬间,这时原子开始在分子中运动。用这种LIED方法可以抓拍到这一运动,&ldquo 与拍摄量子世界电影类似&rdquo 。最终,我们要真正搞清楚这些化学反应是如何产生的,因为这些技术会应用于材料科学,甚至应用于化学制造。上海和呈仪器制造有限公司Shanghai Hasuc Instrument Manufacture Co.,Ltd主营:电炉、电阻炉、马弗炉、恒温摇床、净化台、洁净工作台、高温炉、生物安全柜、恒温振荡器、箱式电阻炉、恒温培养摇床。http://www.hasuc.cnhttp://www.hasuc.cchttp://www.shlab17.comhttp://www.4008806667.comhttp://www.shhasuc.comhttp://www.dryexpo.comhttp://www.5911718.comhttp://www.dry17.comhttp://www.5921718.com办公地址:上海市奉贤区南桥镇翡翠国际广场1号楼1020工厂地址:上海浦卫公路6955号总机电话:021-51688813直线电话:021-67186861/57188687 /60457408 /60457409总机传真:021-51686613直线传真:021-57188687-806自动传真:021-51686613人工传真:021-57188687-806企业QQ:400-880-6667
  • 坦桑尼亚矿业委员会已投资24台日立手持式X-MET8000光谱仪,以优化贵金属和稀土元素金属的出口流程
    英国,2021年1月11日 — 日立通过其位于南非的非洲区独家经销商United Scientific(Pty)Ltd,向位于多多马的坦桑尼亚矿业委员会提供24台手持式X射线荧光(XRF)X-MET8000 Geo Expert光谱仪,以帮助当地官员确保在矿物出口前对矿物进行正确分析,从而确定其价值。坦桑尼亚矿业委员会已制定关于出口矿物的新措施,在矿物被出口至国外前,需对矿物价值进行管控和核实。采矿业是坦桑尼亚的主要行业之一,随着对金、银、铜和镍等贵金属的需求增长,此类矿物的出口每年均在增加。坦桑尼亚矿业委员会所购买的24台X-MET8000 Geo Expert光谱仪将被实验室以及位于该国各地的矿物和宝石公司的工作人员用于在当地矿石出口前核实其浓度。上述仪器还将有助于在矿物抵达各个边境站出境前,核实报关文件所示价值是否正确。 坦桑尼亚矿业委员会之所以选择日立推出的仪器,是因为X-MET8000 Expert Geo耐用、可靠,具有云存储能力和灵活的备选包,并可在当地经销商获取服务。其成套方案包括稀土元素和贵金属检查方法,以确保元素完全可见。X-MET8000 Expert Geo可分析稀土元素,包括钇、钪、镧、铈、镨和钕,以及从矿物和土壤中发现的其他常见元素。南非United Scientific Pty Ltd总经理Jacques Le Roux表示:“很高兴能与坦桑尼亚矿业委员会和当地检验人员合作。我们期待双方能建立牢固的合作伙伴关系,并开展密切合作。在过去三年里,United Scientific和日立向非洲市场提供的手持式仪器数量超过历史记录,使我们成为该地区领*先的手持式分析仪供应商。”日立分析仪器欧洲、中东和非洲地区销售和服务副总裁Paul Bunting表示:“X-MET8000 Expert Geo精度高,速度快且检出限低,符合IP54防护等级和MIL-STD-810G军用级标准,既坚固耐用又经济实惠。作为首*选供应商,我们向坦桑尼亚矿业委员会交付24台X-MET8000手持式XRF光谱仪,是日立帮助企业增强分析能力并努力增加社会价值的又一个示例。”
  • 上海天美进军非洲毛里塔尼亚
    上海天美进军非洲毛里塔尼亚! 上海天美市场部2012年08月02日
  • 赞,联合科仪一带一路肯尼亚实验室援建项目圆满结束(多图)
    赞,联合科仪一带一路肯尼亚实验室援建项目圆满结束近日,联合科仪(锐志汉兴)公司参与的一带一路援建肯尼亚教育部职校实验室建设项目圆满结束,外派工程师结束长达15个月的驻外安调工作,顺利回到国内。此次非洲肯尼亚教育部职业大、中专升级改造项目,是我国援建一带一路项目中,针对于教育领域开展的,旨在帮助一带一路的非洲国家提高专业技能的装备项目。该项目所涉及的实验室产品种类繁多,包括食品检测类的常规仪器、耗材上百种,设备目的地分散在肯尼亚全国的12个学校,且需要上门安调。由于我公司经销的产品线长,有丰富的实验室仪器和耗材的销售经验,并且可以提供外派人员的上门安调,满足项目承接单位(中电公司)对于供应商的各项要求,于是在2018年,公司有幸参与到中航集团总包的该一带一路援建项目中。作为公司的首个一带一路项目,公司领导高度重视,组建了项目团队,争取将该项目做成援外的样板工程项目。在此项目执行期间,国内团队经过了数轮的选型、长达数月的备货,并且派出了优秀的工程师常驻肯尼亚。肯尼亚基础建设和生活条件,相比国内落差较大,且12所学校所在地条件艰苦,我们的工程师克服重重困难,在中电公司驻外团队的配合下,经过长达15个月的努力,顺利完成安装调试工作。 此次项目的圆满完成,是公司整体竞争力的体现,充分验证了公司具有承接国内外大型综合项目的能力,为公司拓展国外市场积累了丰富的经验。专注于实验室供应链,这将是我们一直的战略方向,希望在国家的一带一路建设项目中,继续展现我们的在实验室装备领域的实力,继续为一带一路周边沿线国家的科研创新、技术推广提供有力的科学技术基础支撑。 图片分享备货中........安装调试.......中电前方全部安调团队及协作单位........分散在肯尼亚的12所职业学校,工程师工作了15个月的地方分享肯尼亚当地的风土人情...注:以上部分照片由中电公司许飞先生拍摄,在此表示感谢。
  • 2020年兽药残留标准制修订全面启动!
    近日,全国兽药残留专家委员会办公室发布了关于组织申报2020年兽药残留标准制定的通知。该通知中指出,按照农业农村部农业行业(国家)标准制修订工作部署,2020年兽药残留标准制修订工作已全面启动。本次制修订标准共71项,其中制定标准68项,修订标准3项。具体如下:2020年兽药残留标准制修订任务序号推荐司局任务名称类别立项理由实施年度1畜牧兽医局制定《动物性食品中异丙嗪残留量的测定LC-MS-MS》制定立项理由:屠宰环节非法用药,缺少检测方法技术指标:1.适用范围:猪、牛可食组织2.定量限:10ppb以下或尽可能低20202畜牧兽医局制定《禽蛋中维吉尼亚霉素残留量的测定LC-MS-MS》制定立项理由:维吉尼亚霉素作为药物饲料添加剂已退出使用,缺少禽蛋中残留检测方法技术指标:1.适用范围:鸡、鸭、鹅等常见家禽蛋2.定量限:10ppb以下或尽可能低20203畜牧兽医局制定《动物性食品中沃尼妙林、泰妙菌素及8-α-羟基泰妙菌素残留量的测定LC-MS-MS》制定立项理由:缺少泰妙菌素限量配套检测方法,沃尼妙林为同类药物一并列入检测技术指标:1.适用范围:猪、兔、鸡、火鸡可食组织2.定量限:依据GB31650-2019制定20204畜牧兽医局制定《禽蛋中斑蝥黄和β-阿朴-8’-胡萝卜素酸乙酯残留量的测定》制定立项理由:在养殖环节大量添加,缺少检测方法标准技术指标:1.适用范围:鸡、鸭、鹅等禽蛋2.定量限:根据最大残留限量制定20205畜牧兽医局制定《动物性食品中青霉素类药物残留量的测定LC-MS-MS》制定立项理由:参考已有的GB/T21315-2007、GB/T22952-2008、GB/T20755-2006、GB/T29682-2013、GB/T22975-2008、GB/T22952-2008和农业部公告781-11-2006、958-7-2007、1163-5-2009等标准制定技术指标:1.适用于猪、牛、羊、鸡、牛奶和鸡蛋、鱼、虾等可食组织中苄星青霉素、普鲁卡因青霉素等青霉素类药物的检测2.定量限:依据GB31650-2019制定20206畜牧兽医局制定《动物性食品中双甲脒及其代谢物残留量测定LC-MS-MS》制定立项理由:参考农业部1163号公告-3-2009制定技术指标:1.增加靶动物范围牛、羊、猪、水产2.改善优化前处理条件3.定量限:依据GB31650-2019制定20207畜牧兽医局制定《动物性食品中环丙氨嗪及代谢物三聚氰胺残留量的测定LC-MS-MS》制定立项理由:参考GB29704-2013制定,原标准仅有鸡肌肉和肝脏、鸡蛋,限量品种覆盖不全技术指标:1.适用范围:增加羊组织及羊奶的检测2.定量限:依据GB31650-2019制定20208畜牧兽医局制定《动物性食品中糖皮质激素类药物残留量的测定LC-MS-MS》制定立项理由:参考农业部公告1031-2-2008、958-6-2007及GB/T22957-2008、GB/T22978-2008、GB/T20741-2006制定技术指标:1.动物性食品包含猪、牛、羊组织及奶2.依据GB31650-2019制定20209畜牧兽医局制定《动物性食品中氨基糖苷类药物残留量的测定LC-MS-MS》制定立项理由:参考已有的GB/T21323-2007、GB/T22954-2008、22969-2008和农业部公告1163-7-2009、1025-1-2008制定技术指标:1.动物性食品包含该类药物限量标准项下所有靶动物及组织2.定量限:依据GB31650-2019制定202010畜牧兽医局制定《动物性食品中氯苯胍、地克珠利、常山酮等20种抗球虫药物残留筛查LC-MS-MS》制定立项理由:缺少该类药物的多残留筛查方法技术指标:1.药物种类:包含氨丙啉、氯羟吡啶、癸氧喹酯、地克珠利、二硝托胺、乙氧酰胺苯甲酯、常山酮、拉沙洛西、马度米星铵、莫能菌素、甲基盐霉素、尼卡巴嗪、氯苯胍、盐霉素、赛杜霉素、托曲珠利2.定量限:依据GB31650-2019制定202011畜牧兽医局制定《动物性食品中氯羟吡啶残留量测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:动物性食品包括牛、羊、猪、鸡、火鸡及牛奶;2.定量限:依据GB31650-2019制定202012畜牧兽医局制定《动物性食品中苯甲酸雌二醇残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:1ppb或尽可能低202013畜牧兽医局制定《动物性食品中潮霉素B残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:1ppb或尽可能低202014畜牧兽医局制定《动物性食品中卡拉洛尔残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202015畜牧兽医局制定《牛羊奶中氯霉素残留量的测定LC-MS-MS》制定立项理由:参考GB29688-2013,提高前处理回收率,扩大标准适用范围至羊奶等技术指标:1.适用范围:牛奶和羊奶2.定量限:不得过0.3ppb202016畜牧兽医局制定《猪可食组织中烯丙孕素残留量的测定LC-MS-MS》制定立项理由:缺少检测方法标准技术指标:1.适用范围:猪可食性组织2.定量限:不得过1ppb202017畜牧兽医局制定《猪、牛可食性中氟尼辛残留量的测定LC-MS-MS》制定立项理由:缺少限量配套方法技术指标:1.适用范围:猪牛可食组织及牛奶2.定量限:依据GB31650-2019制定202018畜牧兽医局制定《牛、鸡可食组织及牛奶中莫能菌素残留量的测定液相色谱-串联质谱法》制定立项理由:缺少限量配套方法技术指标:1.适用范围:牛、鸡可食组织及牛奶2.定量限:依据GB31650-2019制定202019畜牧兽医局制定《禽蛋中阿维拉霉素残留量的测定》制定立项理由:产蛋期禁用技术指标:1.适用范围:鸡、鸭、鹅蛋等2.定量限:10ppb以下或尽可能低202020畜牧兽医局制定《动物性食品中呋喃苯烯酸钠残留量的测定液相色谱-串联质谱法》制定立项理由:参考GB29703-2013,原标准采用正离子检测模式无法检测到待测物,应采用负离子模式制定技术指标:1.适用范围:畜禽产品、水产品、蛋、奶2.定量限:1ppb以下或尽可能低202021畜牧兽医局制定《动物性食品中玉米赤霉醇、玉米赤霉烯酮、己烯雌酚、己烷雌酚和己二烯雌酚残留量的测定LC-MS-MS》制定立项理由:参考GB/T20766-2006、GB/T20767-2006、GB/T21982-2008、GB/T22963-2008、GB/T22992-2008、GB/T23218-2008和农业部公告1025-19-2008、1077-6-2008制定技术指标:1.药物品种增加己烷雌酚和己二烯雌酚2.定量限:1ppb以下或尽可能低202022畜牧兽医局制定《水产品中间氨基苯甲酸乙酯甲磺酸(MS-222)残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:1ppb以下或尽可能低202023畜牧兽医局制定《牛羊奶和奶粉中氟苯尼考和氟苯尼考胺残留量的测定》制定立项理由:乳畜泌乳期禁用,缺少奶中检测方法技术指标:1.适用范围:牛、羊奶2.定量限:10ppb以下或尽可能低202024畜牧兽医局制定《动物性食品中万古霉素和去甲万古霉素残留量的测定》制定立项理由:万古霉素为禁用品种,缺少检测方法技术指标:1.适用范围:猪、牛、羊、家禽和水产2.定量限:1ppb以下或尽可能低202025畜牧兽医局制定《猪可食性组织氮哌酮及其代谢物氮哌醇残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:猪可食性组织2.定量限:依据GB31650-2019制定202026畜牧兽医局制定《动物性食品中克拉维酸残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.标准适用范围:猪、牛、家禽2.定量限:依据GB31650-2019制定202027畜牧兽医局制定《羊可食组织中地昔尼尔残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.标准适用范围:羊可食性组织2.定量限:依据GB31650-2019制定202028畜牧兽医局制定《牛羊可食性组织及奶中拟除虫菊酯类药物残留量的测定GC-MS》制定立项理由:缺少限量配套检测方法技术指标:1.药物品种:至少包括氰戊菊酯、氟氯苯氰菊酯、氟胺氰聚酯、氟氯氰菊酯、三氟氯氰菊酯、氯氰菊酯、溴氰菊酯2.定量限:依据GB31650-2019制定202029畜牧兽医局制定《牛可食性组织中氟佐隆残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202030畜牧兽医局制定《牛可食性组织及牛奶中咪多卡残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202031畜牧兽医局制定《牛羊可食性组织及牛奶中氯氰碘柳胺残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202032畜牧兽医局制定《牛羊可食性组织中碘醚柳胺残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202033畜牧兽医局制定《牛羊可食性组织及奶中中硝碘酚腈残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202034畜牧兽医局制定《水产品中拟除虫菊酯类药物残留的测定》制定立项理由:缺少限量配套检测方法技术指标:1.所检药物:至少包括氰戊菊酯、氟氯苯氰菊酯、氟胺氰聚酯、氟氯氰菊酯、三氟氯氰菊酯、氯氰菊酯、溴氰菊酯2.定量限:依据GB31650-2019制定202035畜牧兽医局制定《鸡、猪可食组织中越霉素A残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202036畜牧兽医局制定《动物性食品中有机磷类药物残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.所检药物:敌敌畏、倍硫磷、马拉硫磷、辛硫磷、巴胺磷、敌百虫、二嗪农2.适用范围:牛、羊、猪、家禽及奶3.定量限:依据GB31650-2019制定202037畜牧兽医局制定《猪鸡可食性组织及鸡蛋中哌嗪残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202038畜牧兽医局制定《动物性食品中甲氧苄啶、二甲氧苄啶残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:牛、猪、家禽、鱼可食组织及牛奶、鸡蛋2.定量限:依据GB31650-2019制定202039畜牧兽医局制定《水产品中硝基咪唑类药物残留量的测定》制定立项理由:参考GB/T21318-2007,改善前处理条件技术指标:1.待检药物:应包括甲硝唑、地美硝唑、替硝唑和洛硝达唑,靶动物应包含常见水产品2.定量限:小于1ppb或尽可能低202040畜牧兽医局制定《水产品中硫醚沙星残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:小于1ppb或尽可能低202041畜牧兽医局制定《水产品种沃尼妙林、泰妙菌素及其代谢物残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:小于1ppb或尽可能低202042畜牧兽医局制定《水产品中180种药物残留筛查液相色谱-高分辨质谱》制定立项理由:缺少同时检测水产品中多数药物残留的筛查方法,不仅易漏检、且检测时间长耗时耗力技术指标:1.有最大残留限量的药物或禁用药物2.定量限:依据GB31650-2019及禁用规定制定202043畜牧兽医局制定《氯苯胍在鱼组织的最大残留限量》制定立项理由:有其他靶动物限量规定,批准用于鱼但缺少鱼的最大残留限量技术指标:1.查阅并提供ADI;2.暴露评估研究;3.鱼体内残留消除研究;4.限量制定2020-202244畜牧兽医局制定《鸡蛋中地克珠利最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202045畜牧兽医局制定《鸡蛋中氯苯胍最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202046畜牧兽医局制定《鸡蛋中二硝托胺最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202047畜牧兽医局制定《氨苄西林在鸡蛋中的限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202048畜牧兽医局制定《氟苯尼考在鸡蛋中的限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202049畜牧兽医局制定《新建立的动物性食品中抗菌类等药物残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202050畜牧兽医局制定《新建立的动物性食品中驱虫类等药物残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202051畜牧兽医局制定《新建立的水产品中禁用药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202052畜牧兽医局制定《新建立的蜂产品中禁用药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202053畜牧兽医局制定《新建类的动物性食品中禁用药残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202054畜牧兽医局制定《新建立的水产品中抗菌类药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202055畜牧兽医局制定《奶及奶粉中呋喃西林残留量的测定》制定立项理由:奶和奶粉中呋喃西林主要以药物原型残留,已有方法主要是组织中的残留代谢物氨基脲,不适用于奶及奶粉。技术指标:1.适用范围:奶、奶粉中呋喃西林的残留2.定量限:1ppb或尽可能低202056畜牧兽医局制定《动物性食品中酒石酸锑钾残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202057畜牧兽医局制定《动物性食品中汞制剂残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.化合物品种:应包括氯化亚汞、醋酸汞、硝酸亚汞和吡啶基醋酸汞3.定量限:1ppb或尽可能低202058畜牧兽医局制定《动物性食品中毒杀芬残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202059畜牧兽医局制定《动物性食品中杀虫脒残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202060畜牧兽医局制定《动物性食品中硝呋烯腙残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202061畜牧兽医局制定《动物性食品中硝基酚钠残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202062畜牧兽医局制定《动物性食品中锥虫胂胺残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202063畜牧兽医局制定《鱼可食性组织中水杨酸残留量的测定LC-MS-MS》制定立项理由:该品种禁止用于鱼,无残留检测方法。技术指标:定量限:1ppb或尽可能低202064畜牧兽医局制定《动物源性食品中10种利尿药残留量的测定LC-MS-MS》制定立项理由:2022年冬奥会将检测动物产品中该类药物的残留,目前无检测方法。技术指标:1、检测药物应包括:氯噻嗪、氢氯噻嗪、苄氟噻嗪、坎利酮、乙酰唑胺、4-氨基-6-氯-1,3苯基二硫酰胺、氯噻酮、呋塞米、螺内酯、氨苯蝶啶等;2、动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定。202065畜牧兽医局制定《动物源性食品中肾上腺素及其2种代谢物和多巴胺残留量的测定LC-MS-MS》制定立项原因:注水注药肉检测该类药物残留。技术指标:1、检测药物:肾上腺素及其代谢物(4-羟基-3-甲氧基扁桃酸、3,4-二羟基扁桃酸)、多巴胺;2、动物组织:猪、牛、羊、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定。202066畜牧兽医局修订《GB29709-2013食品安全国家标准动物性食品中氮哌酮及其代谢物残留量的测定高效液相色谱法》修订立项原因:GB29709-2013标准采用紫外检测,外标法定量存在灵敏度不高,干扰大,基质效应强等问题。技术指标:1、检测药物应包括:氮哌酮、氮哌醇;2、动物组织:猪可食组织;3、定量限:根据MRL定202067畜牧兽医局制定《动物性食品中美替诺龙、羟甲烯龙残留量的测定LC-MS-MS》修订立项原因:2019年武汉军运会动物性食品中要求检测美替诺龙与甲烯龙的残留量。技术指标:1.动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;2、定量限:1.0ppb或尽可能低202068畜牧兽医局制定《畜禽可食组织中海南霉素残留量的测定LC-MS-MS》修订立项原因:无此药物的残留检测方法。技术指标:1、检测药物:海南霉素2、动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定202069畜牧兽医局制定《牛肉中玉米赤霉醇、群勃龙醋酸酯和醋酸美仑孕酮最大残留限量》制定立项理由:落实中美贸易协定202070畜牧兽医局制定《动物性食品中氧氟沙星、诺氟沙星、培氟沙星和洛美沙星最大残留限量》制定立项理由:氧氟沙星、诺氟沙星、培氟沙星和洛美沙星已停止用于食品动物,缺少动物性食品中检出的执法依据。202071畜牧兽医局制定《蛋鸡产蛋期禁止使用药物最大残留限量》制定立项理由:在蛋鸡产蛋期禁止使用药物,缺少鸡蛋中检出的执法依据。2020
  • 美国拟定复合木制品甲醛排放标准
    日前,美国环境保护署(EPA)根据复合木制品甲醛标准法案和有毒物质管理法案(TSCA)标题VI提出新要求。  此举是为了执行在美国销售、供应、定购或生产(包括进口)的硬木胶合板、中密度纤维板及刨花板法定甲醛排放标准。根据法律指令,提案包括的规定涉及层压产品、未添加甲醛树脂或超低排放甲醛树脂产品、测试要求、产品标签、保管链文件和其他记录保存要求等。TSCA标题VI包含的复合木制品甲醛排放标准与现行加利福尼亚州适用排放标准相同。本法律提案执行3个排放标准,确保符合TSCA标题VI甲醛排放标准,同时尽可能与加州法律要求保持一致。  据了解,从2010年7月1日开始,家具零售商和制造商将被要求、保证其产品中所用到的复合木制品甲醛排放量符合CARB标准(美国加利福尼亚州空气资源委员会制定的复合木制品甲醛排放量标准)并通过第三方认证。而相关产品销售方也必须执有证明其产品来源并可追溯到其原料木板生产商的文件。产品供应链中的每一个环节,包括木板的供应商、制造商及零售商,都应保证其产品的甲醛排放量符合CARB标准,否则将被处以罚金或被起诉。  为此,检验检疫部门提醒相关企业:应深入了解美国拟定复合木制品甲醛排放标准详细内容,严格控制产品的甲醛排放量 积极推进生产工序的升级和优化,尽量减少产品甲醛排放,确保符合美国排放标准。
  • 无液氦低温磁光克尔测试系统落户加利福尼亚大学
    NanoMOKE3是新一代超高灵敏度磁强计和克尔显微镜,灵敏度高达10-12emu,是研究磁性薄膜以及磁性微结构理想的测量工具,在自旋/磁电子学、磁性纳米技术、磁性随机存储器、GMR/TMR、记录磁头、磁传感器等研究领域有着广泛的应用。磁光克尔测试属于光学测试,对样品的振动有着一定的要求。传统的低温磁光克尔测试通常使用低振动的液氦恒温器来进行,这种恒温器往往不能兼容纵向和向磁光克尔测试,且使用者需要多次采购和传输使用液氦,实验过程比较繁琐,也给实验室增加了大量液氦成本。2018年6月,Quantum Design在美国加利福尼亚大学圣迭戈分校Ivan Schuller教授实验室成功安装了一套集成NanoMOKE3与5nm别超低振动的Montana无液氦低温恒温器的磁光克尔测试系统,实现了4.5K~325K下的纵向0.47T/向0.35T的磁光克尔测试,为低温下的磁光克尔测试带来了新的方向。 图1 :磁光克尔测试系统NanoMOKE3+Montana无液氦低温恒温器设备集成外观Schuller教授团队的研究方向之一是制备和研究新型微纳米结构,如量子点、磁性异质结构、二维铁磁线和一维铁磁链等。“新的低温磁光克尔测试系统可灵活安装配置样品,允许我们进行原位磁光和磁输运测试”,Nicolas Vargas研究员说:“我们小组目前正在研究混合异质结构(V-Oxide/FM)在结构相变(SPT)-温度依赖性期间的磁性和反射率行为,这套系统的安装,将对我们的实验提供非常大的帮助。”设备安装成功后,工程师先对垂直磁各项异性薄膜Ta(4 nm)/Pt(10 nm)/CoFeB(0.6 nm)/Pt(2 nm)进行了4.5K下的向克尔测试(如图2所示),结果显示该样品在单次循环无平均下的噪声仅为5%。随后又对该薄膜进行了4.5K下的克尔成像测试(如图3所示),左上角显示为饱和磁化时的成像,顺时针方向为磁场逐渐减小至反向饱和时的成像,可以明显的观察到磁畴的变化。 图2:CoFeB薄膜4.5K下向克尔测试左:60秒平均测试结果 右:单次循环1秒(总测试时间)无平均测试结果 图3:CoFeB 薄膜4.5K下的磁畴成像观测除了向克尔测试,工程师还对坡莫合金微带线(25-um 宽, 24-nm 厚)进行了5.5K下的纵向磁光克尔测试(如图4所示),结果显示该样品单次循环即可得到强的克尔测试信号,噪声仅为3%。 图4:坡莫合金微带线5.5K下的纵向磁光克尔测试左:微带线结构 中:60秒测试平均结果 右:单次循环1秒无平均结果 这套系统除了集成为低温磁光克尔测试系统外,也可以分成室温磁光克尔和低温恒温器等两套系统单使用。已经购买了Montana C2恒温器或者NanoMOKE3磁光克尔系统的用户,也可以在此基础上升为无液氦低温磁光克尔测试系统!
  • 瞬渺科技(香港)有限公司与美国加利福尼亚州公司Terasense, Inc. 达成经销代理协议
    2014年12月瞬渺科技(香港)有限公司(Rayscience Optoelectronic Innovation Co., Ltd)与Terasense, Inc. 达成经销代理协议,正式成为其代理公司。自协议签订日起,Terasense公司的太赫兹类产品将全权由上海瞬渺光电技术有限公司代理销售。通过这次合作,瞬渺光电将进一步提高公司在亚太赫兹领域的技术和产品支持能力。Terasense 位于美国加利福尼亚州,致力于研发并制造一系列价格实惠、便携式太赫兹成像相机、太赫兹产生器和超快探测器等THz光学器件,覆盖亚太赫兹至太赫兹波段。其科研团队由20名科学家与行业内技术娴熟的工程师组成,研究成果发表在国际重要期刊多达300余篇。公司主要研发的THz产品性能优越,可以在室温环境下操作,结构紧凑,便携并且使用简单。Terasense主要产品:1,亚太赫兹波段成像相机产品特点: 频率范围:50GHz-1.0THz 高响应度:50KV/W NEP:1nW/Hz1/2 视频模式(50fps) 自带Terasense ViewerR软件2,雪崩二极管亚太赫兹产生器 80-120GHz频率范围 典型输出功率 10mW 结构紧凑性价比高3,超快亚太赫兹探测器 响应时间:150 ps 频率范围:50 GHz-1.0 THz 典型响应度:1V/W 噪声等效功率:1nW/Hz1/2 敏感区域:3mm×3.5mm 不需要电源供给 尺寸:23mm×29mm×6.5mm4,除THz产生和探测设备外,Terasense还提供以下太赫兹相关的光学元件 太赫兹窗片 太赫兹透镜 太赫兹棱镜 太赫兹衰减片 太赫兹偏振片 太赫兹分束器瞬渺科技(香港)有限公司Rayscience Optoelectronic Innovation Co., Ltd 地址:上海市闵行区都会路2338号总部一号21号楼5楼电话:021-34635258 ,400-008-1064传真:021-34635260E-mail: saleschina@rayscience.com Web: www.rayscience.com
  • 2023年食品国家标准大盘点!
    习近平总书记提出,用“四个最严”要求来确保广大人民群众“舌尖上的安全”,分别是:“最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责”;其中,第一个就是“最严谨的标准”,食品安全标准的重要性不言而喻。食品安全标准是以保障公众身体健康为宗旨,是政府管理部门为保证食品安全、防止疾病的发生、对食品生产经营过程中影响食品安全的各种要素以及各关键环节所规定的统一的技术要求。它既是食品生产经营者必须遵守的最低要求,也是食品监管人员行政执法的依据,更重要的是保证居民健康的标尺。《中华人民共和国食品安全法》第26条规定:食品安全标准主要包括以下8个方面内容:1.食品、食品添加剂、食品相关产品中的致病性微生物,农药残留、兽药残留、生物毒素、重金属等污染物质以及其他危害人体健康物质的限量规定;2.食品添加剂的品种、使用范围、用量;3.专供婴幼儿和其他特定人群的主辅食品的营养成分要求;4.对与卫生、营养等食品安全要求有关的标签、标志、说明书的要求;5.食品生产经营过程的卫生要求;6.与食品安全有关的质量要求;7.与食品安全有关的食品检验方法与规程;8.其他需要制定为食品安全标准的内容。截至2023年9月,我国共发布食品安全国家标准1563项,包含2万多项食品安全指标,覆盖了我国居民日常消费的340余种食品类别、覆盖了影响我国居民健康的主要危害因素、覆盖了从生产到消费全链条、覆盖了从一般到特殊全人群。2023年我国共实施食品安全标准48项,包含食品添加剂、食品安全检测、食品营养强化剂、食品接触材料等。本文特将上述标准加以整理,供相关从业者查阅参考。序号标准1GB 14930.1-2022| 国家标准| 食品安全国家标准 洗涤剂2GB 4806.8-2022| 国家标准| 食品安全国家标准 食品接触用纸和纸板材料及制品3GB 10765-2021| 国家标准| 食品安全国家标准 婴儿配方食品4GB 10767-2021| 国家标准| 食品安全国家标准 幼儿配方食品5GB 2762-2022| 国家标准| 食品安全国家标准 食品中污染物限量6GB/T 31047-2023| 国家标准| 品牌价值评价 食品加工及食品制造业7GB 10766-2021| 国家标准| 食品安全国家标准 较大婴儿配方食品8GB/T 41900-2022| 国家标准| 罐头食品代号9GB 31650.1-2022| 国家标准| 食品安全国家标准 食品中41种兽药最大残留限量10GB/T 10786-2022| 国家标准| 罐头食品的检验方法11GB/T 41897-2022| 国家标准| 食品用干燥剂质量要求12GB/T 41896-2022| 国家标准| 食品用脱氧剂质量要求13GB/T 42966-2023| 国家标准| 餐饮业反食品浪费管理通则14GB/T 22165-2022| 国家标准| 坚果与籽类食品质量通则15GB/T 42967-2023| 国家标准| 机关食堂反食品浪费工作指南16GB/T 41645-2022| 国家标准| 超高压食品质量控制通用技术规范17GB 23350-2021| 国家标准| 限制商品过度包装要求 食品和化妆品18GB 31658.18-2022| 国家标准| 食品安全国家标准 动物性食品中三氮脒残留量的测定 高效液相色谱法19GB 2763.1-2022| 国家标准| 食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量20GB 31658.22-2022| 国家标准| 食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法21GB 31658.24-2022| 国家标准| 食品安全国家标准 动物性食品中赛杜霉素残留量的测定液相色谱-串联质谱法22GB 31658.21-2022| 国家标准| 食品安全国家标准 动物性食品中左旋咪唑残留量的测定液相色谱-串联质谱法23GB 31658.25-2022| 国家标准| 食品安全国家标准 动物性食品中10 种利尿药残留量的测定液相色谱-串联质谱法24GB 31658.23-2022| 国家标准| 食品安全国家标准 动物性食品中硝基咪唑类药物残留量的测定 液相色谱-串联质谱法25GB 31658.20-2022| 国家标准| 食品安全国家标准 动物性食品中酰胺醇类药物及其代谢物残留量的测定 液相色谱-串联质谱法26GB/T 41636-2022| 国家标准| 易腐加工食品运输储藏品质特征识别与控制技术规范27GB 29753-2023| 国家标准| 道路运输 易腐食品与生物制品 冷藏车安全要求及试验方法28GB/T 41682-2022| 国家标准| 食品塑料包装容器中顶空气体含量的测定 传感器法29GB 31658.19-2022| 国家标准| 食品安全国家标准 动物性食品中阿托品、东莨菪碱、山莨菪碱、利多卡因、普鲁卡因残留量的测定 液相色谱-串联质谱法30GB/T 41899-2022| 国家标准| 食品容器用涂覆镀锡或镀铬薄钢板质量通则31GB/T 41898-2022| 国家标准| 食品金属容器内壁涂覆层耐蚀力和致密性的测定 电化学法32GB/T 41711-2022| 国家标准| 食品金属容器内壁涂覆层抗酸性、抗硫性、抗盐性的测定33GB 31656.17-2022| 国家标准| 食品安全国家标准 水产品中二硫氰基甲烷残留量的测定气相色谱法34GB 31659.6-2022| 国家标准| 食品安全国家标准 牛奶中氯前列醇残留量的测定 液相色谱-串联质谱法35GB 31656.14-2022| 国家标准| 食品安全国家标准 水产品中 27 种性激素残留量的测定 液相色谱-串联质谱法36GB 31659.5-2022| 国家标准| 食品安全国家标准 牛奶中利福昔明残留量的测定 液相色谱-串联质谱法37GB 31657.3-2022| 国家标准| 食品安全国家标准 蜂产品中头孢类药物残留量的测定 液相色谱-串联质谱法38GB 31656.15-2022| 国家标准| 食品安全国家标准 水产品中甲苯咪唑及其代谢物残留量的测定 液相色谱-串联质谱法39GB 31659.3-2022| 国家标准| 食品安全国家标准 奶和奶粉中头孢类药物残留量的测定液相色谱-串联质谱法40GB 31613.5-2022| 国家标准| 食品安全国家标准 鸡可食性组织中抗球虫药物残留量的测定 液相色谱-串联质谱法41GB 31613.4-2022| 国家标准| 食品安全国家标准 牛可食性组织中吡利霉素残留量的测定液相色谱-串联质谱法42GB 31659.2-2022| 国家标准| 食品安全国家标准 禽蛋、奶和奶粉中多西环素残留量的测定液相色谱-串联质谱法43GB 31659.4-2022| 国家标准| 食品安全国家标准 奶及奶粉中阿维菌素类药物残留量的测定 液相色谱-串联质谱法44GB 31656.16-2022| 国家标准| 食品安全国家标准 水产品中氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺残留量的测定 气相色谱法45GB 31613.6-2022| 国家标准| 食品安全国家标准 猪和家禽可食性组织中维吉尼亚霉素 M1 残留量的测定 液相色谱-串联质谱法2023年,多项食品安全标准的实施和公布引发大家讨论,小编此次也将“热点”标准进行汇总!婴配粉“史上最严”新国标正式实施2月22日,堪称“史上最严”的奶粉新国标正式实施。新国标经历了两年的过渡期。2021年3月18日,国家卫生健康委网站发布50项食品安全国家标准,其中的《食品安全国家标准婴儿配方食品》(GB 10765-2021)、《食品国家安全标准较大婴儿配方食品》(GB 10766-2021)和《食品安全国家标准幼儿配方食品》(GB 10767-2021)三大标准,被称为“史上最严”的奶粉新国标。GB 5749-2022《生活饮用水卫生标准》4月份正式实施GB 5749-2022《生活饮用水卫生标准》4月份正式实施,配套的GB/T 5750-2023《生活饮用水标准检验方法》系列标准于10月起正式实施。GB/T 5750-2023标准历时5年,经过了3轮意见征求,有280+单位参与研制与验证,有超过500名行业专家参与的GB/T 5750修订工作,最终大功告成。本次修订主要特点:大幅增加了高通量的分析方法;大幅扩展了质谱技术的应用范畴;重点加强了自动化程度高检测方法;进一步强化了以人为本的制标理念;充分体现了方法标准的配套性和前瞻性。食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量最新发布的《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)在广泛征求社会意见、有关部门意见和向世界贸易组织(WTO)成员通报的基础上,经国家农药残留标准审评委员会、食品安全国家标准审评委员会技术总师会议及秘书长会议审查通过,由国家卫生健康委、农业农村部和市场监管总局于2022年11月11日发布,于2023年5月11日起实施。本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021食品安全国家标准 食品中农药最大残留限量》配套使用。2023年6月21日,国家卫生健康委员会发布了2023年食品安全国家标准立项计划立项制修订39项食品安全国家标准。其中主要包括:(1)3项污染物标准《肉类干制品中重金属限量》《干制水产品中重金属限量》和《液态特医食品中污染物、真菌毒素限量》的修订;(2)1项食品产品标准《植物油》的修订;(3)2项特殊膳食食品标准《胃肠道吸收障碍、胰腺炎全营养配方食品》《麸质不耐受人群特殊膳食食品》的制定;(4)1项食品相关产品标准《食品接触材料及制品用添加剂使用标准》的修订;(5)11项理化检验方法与规程标准和5项微生物检验方法与规程标准的制修订等。全国兽药残留专家委员会对《水产品中喹诺酮类药物残留量的测定 液相色谱-串联质谱法》等16项食品安全国家标准征求意见全国兽药残留专家委员会办公室于2023年9月11日发布了关于公开征求《水产品中喹诺酮类药物残留量的测定液相色谱-串联质谱法》等16项食品安全国家标准意见的函,面向各相关单位,公开征求意见,于2023年10月6日前反馈。其中《食品安全国家标准 水产品中喹诺酮类药物残留量的测定》(征求意见稿)将代替GB 31656.3-2021《水产品中诺氟沙星、环丙沙星、恩诺沙星、氧氟沙星、噁喹酸、氟甲喹残留量的测定高效液相色谱法》,与GB 31656.3-2021相比,除结构调整和编辑性改动外,主要增加了方法二液相色谱-串联质谱法,适用性范围扩大至19种喹诺酮,新增方法适用于鱼、虾、蟹、贝、蛙、鳖、海参可食组织中噁喹酸、氟甲喹、诺氟沙星、依诺沙星、环丙沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、氧氟沙星、沙拉沙星、司帕沙星、二氟沙星、西诺沙星、萘啶酸、奥比沙星、马波沙星、氟罗沙星、吡哌酸残留量的检测。85项食品安全国家标准将在2024年实施根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2023年第6号公告,发布85项新食品安全国家标准和3项修改单。主要包括:《茶叶》等3项食品产品标准、《婴幼儿配方食品良好生产规范》等5项生产经营规范标准、《食品接触用塑料材料及制品》等6项食品相关产品标准、《化学分析方法验证通则》等46项理化检验方法标准和1项修改单、《微生物检验方法验证通则》等3项微生物检验方法标准、《动物性水产品及其制品中颚口线虫的检验》等6项寄生虫检验方法标准,以及《食品添加剂β-胡萝卜素》等16项食品添加剂、食品营养强化剂质量规格标准和2项修改单。《食品安全国家标准 食品添加剂 黄原胶》等21项食品安全国家标准征求意见稿发布!根据《食品安全法》及其实施条例规定,食品安全国家标准审评委员会起草了《食品安全国家标准 食品添加剂 黄原胶》等21项食品安全国家标准(征求意见稿),2024年2月10日前提交反馈意见。随着人民群众生活水平的不断提高,人们不仅追求吃得饱,更关注如何吃得安全、吃得健康。食品安全标准在整个食品安全工作中发挥着非常重要的作用,通过食品安全标准的严格认真执行,不断提升食品企业的安全管理水平,保障群众“舌尖上的安全”,营造幸福安康的生活氛围。
  • 加利福尼亚大学Peipei Ping教授获US HUPO 2021组织颁发的蛋白质组学杰出贡献奖
    仪器信息网讯 2021年3月8日-11日,第17届美国人类蛋白质组学会议(US HUPO 2021)于线上盛大召开。自2005年以来,美国HUPO每年举行一次年度会议,除US HUPO外,该组织还联合多方举办过3届HUPO国际会议。本年度的US HUPO会议期间公布了该组织的多个奖项结果,其中加利福尼亚大学的PeiPei Ping获2021年的蛋白质组学杰出贡献奖。  US HUPO颁发的蛋白质组学杰出贡献奖全称为“Donald F. Hunt蛋白质组学杰出贡献奖”,该奖项由《蛋白质组学研究杂志》(JPR)支持,旨在表彰Donald F. Hunt教授在蛋白组学领域取得的杰出成就,Hunt教授为该奖项的第一位获奖者,现在该奖项以他的名字命名。获奖者均为美国HUPO会员。  第四届获奖者(2021年) 加利福利亚大学 Peipei Ping  Ping教授任职于加州大学洛杉矶分校大卫格芬医学院主教生理学、医学和生物医学信息学。她在心血管疾病的线粒体生物学和蛋白质组重构、数据科学在分子表型和疾病中的应用以及心血管疾病的计算分析平台方面的专业知识得到了国际认可。Ping教授目前是加州大学洛杉矶分校心血管医学综合数据科学培训NHLBI T32项目主任,也担任加州大学洛杉矶分校Samueli工程学院计算机科学系可扩展分析研究所(ScAI)副主任。从2014年到2019年,Ping博士担任美国加州大学洛杉矶分校NIH BD2K卓越中心(HeartBD2K)的项目主任。  往届获奖者一览:  第一届获奖者(2018年) 弗吉尼亚大学 Donald F.Hunt  Donald F.Hunt是弗吉尼亚大学化学和病理学教授,美国艺术与科学学院院士。他以在质谱领域的研究而闻名,开发了电子捕获负电子质谱(ETD),在FT-MS方面做出许多贡献。在将近半个世纪的职业生涯中,Donald F. Hunt一直是质谱领域的先驱。Hunt 发表了3000多篇文章,培养了100多名研究生和博士后进入学术领域,并在质谱领域处于领先地位,此外还教授了4,000 多名医学预科学生。  Hunt教授的杰出贡献是:开发质谱仪器和方法来分析蛋白质,对蛋白质组学和质谱学领域产生了巨大影响。Hunt教授于1968年加入到弗吉尼亚大学,成为开发利用质谱研究生物有机分子技术的先驱。质谱学起源于物理化学,但Hunt教授和其他一些先驱者表明,这些工具也可以应用于生物,并最终用于生物医学用途。Hunt教授更是超过 25 项专利和专利申请的共同发明者,曾共同撰写了超过 300多篇学术出版物,并跻身全球 130 位引用最高的化学家之列。  第二届获奖者(2019年) 雪松西奈医疗中心 Jennifer Van Eyk  第三届获奖者(2020年) 哈佛大学医学院 Steven Gygi
  • AB 40台质谱仪助中国推行食品安全新标准
    Applied Biosystems与中国建立合作伙伴关系,将有助于推行食品安全新标准  美国商业资讯美国加利福尼亚州Carlsbad消息——  Life Technologies公司(纳斯达克股票代码:LIFE)下属的美国应用生物系统公司(Applied Biosystems)今日宣布,将协助中国政府在中国推行食品安全的新标准。为了加强对国内食品供应和对外出口的监控能力,中国国家质量监督检验检疫总局(AQSIQ)采用了40台AB SCIEX质谱仪以确保污染物的准确鉴别,这将有助于中国稳固其全球食品供应商的地位。  目前,中国科学家们采用这种质谱技术对各种食品进行比较深入的分析,如大米、玉米、小麦、大豆、水果、蔬菜和肉类等。这种分析对新标准有着至关重要的意义,可以通过Applied Biosystems/MDS Analytical Technologies合资企业生产的质谱仪的高灵敏探测功能来实现。  这些系统能够增强实验室对数量极其微小的污染物的扫描、鉴别与测量能力,使政府与行业人士能够迅速做出反应,防止污染物的传播,而且对控制结果更有信心。因此,中国将有能力确保更严格的食品条例得到执行,能够更好地保护消费者,同时避免费用高昂的食品产品召回行动。  应用生物系统公司的质谱系统业务总裁Laura Lauman  “应用生物系统公司致力于与中国合作,共同改善食品安全状况,从而实现我们的质谱技术的一次最大规模的应用。此举使有关机构能够准确鉴别有害化学物质、防止污染物进入食品供应链,是确保中国食品产品安全的一个关键步骤。  关于应用生物系统公司产品  Life Technologies的应用生物系统品牌是一个全球领先的产品提供商,其产品包括创新、优化的仪器系统,以及有助于加快学术和临床研究、新药研究和开发、病原检测和法医学DNA分析的工作流程。凭借应用生物系统(Applied Biosystems)和英杰(Invitrogen)品牌的试剂、成套设备和台式设备,Life Technologies为市场提供全面的分子和细胞生物解决方案。应用生物系统和英杰产品在全球几乎所有的重要实验室中都得到应用。如欲了解更多信息,请浏览:www.appliedbiosystems.com 和www.invitrogen.com。  关于Life Technologies公司  Life Technologies公司(纳斯达克股票代码:LIFE)是一家全球性的生物技术仪器设备公司,致力于提高人们的生存环境。我们的系统、耗材和服务能帮助研究者加快科学探索的进度,让那些使生活更美好的发现和发展更早到来。Life Technologies公司的客户从事生物技术方面的各类工作,致力于推动定制化医疗、再生科学、分子诊断学、农业与环境研究以及新世纪法医学的发展。该公司2008年销售额逾30亿美元,员工9500人,业务遍及100多个国家,拥有3600多项专利和独家许可证,且知识产权规模正在迅速扩大。Life Technologies公司由英杰公司(Invitrogen Corporation)与应用生物系统公司(Applied Biosystems Inc.)合并而成。如需了解更多,请访问:www.lifetechnologies.com。
  • Rigaku将在西班牙加泰罗尼亚化学研究所安装XtaLAB Synergy-ED电子衍射仪
    我们Rigaku公司将在加泰罗尼亚化学研究所(ICIQ)安装欧洲首台XtaLAB Synergy-ED电子衍射仪。这将是在日本境外安装专用电子衍射仪的第一单。这台仪器将在ICIQ的研究中发挥关键作用:它将帮助ICIQ在其参与的大多数研究分支中解析小体积有机分子、有机金属复合物、金属有机框架(MOF)、共价有机框架(COF)、肽和大体积超分子实体的晶体结构。Rigaku XtaLAB Synergy-ED是世界上首台全包式电子衍射仪。这台由Rigaku和日本电子株式会社(JEOL)共同开发的仪器允许晶体学家突破单晶XRD甚至同步加速器的极限,使其在某些情况下能够解释小于50纳米的晶体结构。ICIQ成立于2000年,是世界化学领域排名前十的研究机构。在ICIQ的分析技术组合中加入电子衍射将是一项重要的改进,这将有助于该机构通过其多个研究小组做出更多科学贡献。在研究工作流程和工业项目中,生长足够大小的晶体属于技术难题,电子衍射能够缓解此类瓶颈,从而加速实现研究成果,并提供以前无法实现的结果。在被问及ICIQ团队为何选择Rigaku XtaLAB Synergy-ED时,ICIQ表征技术部经理Eduardo C. Escudero-Adán博士表示:“我们已经对仪器进行了现场测试。我们的感受是,面前这台制作精良的设备能够满足我们在技术方面的预期。最明显的一点是软件与设备的良好集成,这使得用户可以轻松地操作设备。它还强调了一个事实,即实践证明,低温测量系统对于测量敏感样品至关重要。”Rigaku单晶业务全球销售与营销总经理Mark Benson博士评论道:“ICIQ已经拥有Rigaku的单晶XRD系统,因此过渡到电子衍射应该是轻而易举的,因为这两套系统都使用相同的用户启发式CrystAlisPro软件进行仪器控制和结构测定。我们期待进一步支持ICIQ的研究工作,并在不久的将来看到利用这种相对新颖的技术所带来的相关成果的发表。”如需了解关于XtaLAB Synergy-ED电子衍射仪或Rigaku其他单晶解决方案的更多信息,请访问https://www.rigaku.com/products/crystallography。
  • 1447项标准制修订计划终止 含色谱、质谱等多项仪器分析方法标准
    近日,国标委发布通知,终止《卫星定位车辆信息服务系统信息安全规范》等1447项推荐性国家标准制修订计划,其中包括制定标准1166项,修订标准281项。  整理发现,本次终止的制修订标准中涉及仪器分析方法或仪器本身的标准共100项,涉及包装材料、食品、固体废弃物、粮油、水产品等领域,并且被终止的仪器分析方法中色谱仪器方法居多。仪器信息网对终止的相关仪器标准进行了汇总,如表1。  除仪器分析方法标准外,本次终止的标准中还涉及大量分析化学方法标准,如《包装材料用油墨中重金属检测方法》、《化妆品中二乙醇胺的测定方法》等,详细名单见附件。  表1终止制修订仪器分析方法/仪器标准列表计划号中文名称制修订主管部门归口单位20071061-T-469包装材料用油墨中有机挥发物的测定气相色谱法制定国家标准委全国包装标准化技术委员会20071064-T-469包装阻隔薄膜的扩散性、溶解性和透气性的试验方法火焰离子法制定国家标准委全国包装标准化技术委员会20071067-T-469乙烯聚合物和乙烯-醋酸乙烯酯(EVA)食品包装材料中丁基-羟基甲苯(BHT)的检测方法气相色谱法制定国家标准委全国包装标准化技术委员会20120296-T-469固定污染源废气中铅、镉、铬、砷、镍、钡、铜、锰、锌的测定电感耦合等离子体发射光谱法(ICP-OES)制定国家标准委全国产品回收利用基础与管理标准化技术委员会20083236-T-469柴油机燃料中生物柴油(脂肪酸甲酯)含量测定(红外光谱法)制定国家标准委全国石油产品和润滑剂标准化技术委员会20062346-T-469白酒中乙酸乙酯的试验方法气相色谱法修订国家标准委全国食品工业标准化技术委员会20065999-T-469整合《咖啡咖啡因含量的测定高效液相色谱法》《浓缩果汁中乙醇的测定方法》《果蔬汁饮料中氨基态氮的测定方法甲醛值法》《软饮料中可溶性固形物的测定方法折光法》《果汁中乳酸含量的测定》《山楂汁及其饮料中果汁含量的测定》《橙、柑、桔汁及其饮料中果汁含量的测定》等12项标准和6项计划修订国家标准委全国食品工业标准化技术委员会20068169-T-469动物尿样中的四种β2--兴奋剂同时测定--气相色谱/质谱法制定国家标准委全国饲料工业标准化技术委员会20091344-T-469饲料中角黄素和阿朴胡萝卜素酸乙酯的测定液相色谱-串联质谱法制定国家标准委全国饲料工业标准化技术委员会20091352-T-469多肽分子量分布测定--高效凝胶排阻色谱法制定国家标准委全国特殊膳食标准化技术委员会20071060-T-469扫描电子显微镜的检测方法制定国家标准委全国微束分析标准化技术委员会20110116-T-469LED用稀土硅酸盐荧光粉试验方法第2部分:光谱性能的测定制定国家标准委全国稀土标准化技术委员会20079814-T-326丹参及其制品红外光谱检验方法制定国家标准委中国标准化研究院20071590-T-449粮食油料稻谷中直链淀粉含量的测定-近红外方法制定国家粮食局全国粮油标准化技术委员会20071660-T-449粮油检验小麦及其制品中转基因成分普通PCR和实时荧光PCR定性检验方法制定国家粮食局全国粮油标准化技术委员会20062755-T-449小麦粉吸水量和面团揉和性能测定法粉质仪法修订国家粮食局全国粮油标准化技术委员会20079658-T-449油料含油量测定索氏抽提法修订国家粮食局全国粮油标准化技术委员会20064184-T-449植物油脂检验折光指数测定法修订国家粮食局全国粮油标准化技术委员会20070236-T-432人造板及其制品中甲醛的微波辅助快速检测方法制定林业局全国人造板标准化技术委员会20110929-T-326水产品中铜、铁、锰、锌、镁、钾、钠、钙、磷、铝、铬、锶、钡、钴的测定电感耦合等离子发射光谱法制定农业部全国水产标准化技术委员会20079873-T-361化妆品中对羟基苯甲酸酯等20种防腐剂测定-高效液相色谱法制定卫生计生委卫生计生委20079874-T-361化妆品中甲醛的气相色谱法检验方法制定卫生计生委卫生计生委20060153-T-361整合《生活饮用水标准检验方法》《水源水中乙醛、丙烯醛卫生检验标准方法气相色谱法》《水源水中氯丁二烯卫生检验标准方法气相色谱法》《水源水中丙烯酰胺卫生检验标准方法气相色谱法》《水源水中苯系物卫生检验标准方法气相色谱法》《水源水中氯苯系化合物卫生检验标准方法气相色谱法》《水源水中二硝基苯类和硝基氯苯类卫生检验标准方法气相色谱法》《水源水中巴豆醛卫生检验标准方法气相色谱法》《水源水中硫化物卫生检验标准方法》《生活饮用水标准检验法》修订卫生计生委卫生计生委20060256-T-361整合《居住区大气中三氯甲烷、四氯化碳卫生检验标准方法气相色谱法》《居住区大气中二硫化碳卫生检验标准方法气相色谱法》《居住区大气中硝基苯卫生检验标准方法气相色谱法》《居住区大气中汞卫生标准检验方法金汞齐富集-原子吸收法》《居住区大气中酚类化合物卫生检验标准方法4-氨基安替比林分光光度法》《居住区大气中正己烷卫生检验标准方法气相色谱法》《居住区大气中苯胺卫生检验标准方法气相色谱法》等25项标准修订卫生计生委卫生计生委20060528-T-361整合《室内空气中对二氯苯卫生标准》《居室空气中甲醛的卫生标准》《室内空气中细菌总数卫生标准》《室内空气中二氧化碳卫生标准》《室内空气中可吸入颗粒物卫生标准》《室内空气中氮氧化物卫生标准》《室内空气中二氧化硫卫生标准》《室内空气中臭氧卫生标准》《室内空气中溶血性链球菌卫生标准》修订卫生计生委卫生计生委20073826-T-424蔬菜和水果中甲型肝炎病毒检测方法普通RT-PCR和实时荧光RT-PCR方法制定质检总局国家认监委20060955-T-424整合《棉纤维长度试验方法自动光电长度仪法》《棉纤维长度试验方法光电长度仪法》修订质检总局中国纤维检验局20061302-T-424原毛冼净率试验方法烘箱法修订质检总局中国纤维检验局20061622-T-424原棉回潮率试验方法烘箱法修订质检总局中国纤维检验局20082027-T-608木棉和棉纤维混纺产品定量分析方法显微投影仪法制定中国纺织工业联合会全国纺织品标准化技术委员会20060248-T-604整合《分析仪器环境试验方法》等18项标准和16项计划制定中国机械工业联合会全国工业过程测量控制和自动化标准化技术委员会20077644-T-604激光在线气体检测分析仪制定中国机械工业联合会全国工业过程测量控制和自动化标准化技术委员会20077680-T-604微量水分测定仪(库仑法)制定中国机械工业联合会全国工业过程测量控制和自动化标准化技术委员会20132543-T-604拉曼光谱仪制定中国机械工业联合会全国工业过程测量控制和自动化标准化技术委员会20142424-T-604汽油辛烷值测定用辛烷值试验机制定中国机械工业联合会全国工业过程测量控制和自动化标准化技术委员会20077389-T-604微光观察镜通用技术规范制定中国机械工业联合会全国光学和光子学标准化技术委员会20078254-T-604实验室仪器词汇动力测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078255-T-604实验室仪器词汇农作物测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078256-T-604实验室仪器词汇热学测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078257-T-604实验室仪器词汇实验室高压釜制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078258-T-604实验室仪器词汇实验室离心机制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078259-T-604实验室仪器词汇试验箱及气候环境试验设备制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078260-T-604实验室仪器词汇天平仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078261-T-604实验室仪器词汇土工仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078262-T-604实验室仪器词汇土壤测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078263-T-604实验室仪器词汇应变测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078264-T-604实验室仪器词汇噪声测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078265-T-604实验室仪器词汇真空镀膜设备制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078266-T-604实验室仪器词汇真空检测仪表制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078267-T-604实验室仪器词汇振动测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078268-T-604实验室仪器词汇铸造测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078291-T-604实验室仪器及设备包装通用技术条件动力测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078292-T-604实验室仪器及设备包装通用技术条件农作物测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078293-T-604实验室仪器及设备包装通用技术条件热学测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078294-T-604实验室仪器及设备包装通用技术条件实验室高压釜制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078295-T-604实验室仪器及设备包装通用技术条件实验室离心机制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078296-T-604实验室仪器及设备包装通用技术条件试验箱及气候环境试验设备制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078297-T-604实验室仪器及设备包装通用技术条件天平仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078298-T-604实验室仪器及设备包装通用技术条件土工仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078299-T-604实验室仪器及设备包装通用技术条件土壤测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078300-T-604实验室仪器及设备包装通用技术条件应变测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078301-T-604实验室仪器及设备包装通用技术条件噪声测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078302-T-604实验室仪器及设备包装通用技术条件真空镀膜设备制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078303-T-604实验室仪器及设备包装通用技术条件真空检测仪表制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078304-T-604实验室仪器及设备包装通用技术条件振动测量仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078305-T-604实验室仪器及设备包装通用技术条件铸造测试仪器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078306-T-604实验室仪器及设备包装通用技术条件总则制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078311-Q-604实验室仪器及设备环境意识设计第3部分:低温恒温槽制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078312-Q-604实验室仪器及设备环境意识设计第2部分:低温恒温循环装置制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078315-Q-604实验室仪器及设备环境意识设计第9部分:干燥箱制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078316-Q-604实验室仪器及设备环境意识设计第4部分:高温恒温循环装置制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078318-Q-604实验室仪器及设备环境意识设计第10部分:工业分析仪制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078319-Q-604实验室仪器及设备环境意识设计第5部分:高温恒温槽制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078320-Q-604实验室仪器及设备环境意识设计第11部分:实验室离心机制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078321-Q-604实验室仪器及设备环境意识设计第7部分:气候环境试验箱制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078322-Q-604实验室仪器及设备环境意识设计第8部分:生化培养箱制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078323-Q-604实验室仪器及设备环境意识设计第6部分:生物人工气候箱制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078324-Q-604实验室仪器及设备环境意识设计第15部分:天平制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078325-Q-604实验室仪器及设备环境意识设计第12部分:盐槽制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078326-Q-604实验室仪器及设备环境意识设计第14部分:氧弹式热量计制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20078328-Q-604实验室仪器及设备环境意识设计第13部分:振荡器制定中国机械工业联合会全国实验室仪器及设备标准化技术委员会20070349-T-604液压振动台制定中国机械工业联合会全国试验机标准化技术委员会20070347-T-604单轴试验机检验用标准测力仪的校准修订中国机械工业联合会全国试验机标准化技术委员会20070712-T-604热风式饲草干燥设备制定中国机械工业联合会全国饲料机械标准化技术委员会20142523-T-603煤层气井钻杆地层试井方法制定中国煤炭工业协会全国煤炭标准化技术委员会20078758-T-607电子天平制定中国轻工业联合会全国衡器标准化技术委员会20110285-T-607牙膏中两面针碱的测定高效液相色谱法制定中国轻工业联合会全国口腔护理用品标准化技术委员会20110286-T-607牙膏中绿原酸和木犀草苷的测定高效液相色谱法制定中国轻工业联合会全国口腔护理用品标准化技术委员会20110287-T-607牙膏中三七皂甙R1和人参皂苷Rg1、Rb1、Re的测定高效液相色谱法制定中国轻工业联合会全国口腔护理用品标准化技术委员会20075712-T-469包装材料中偶氮染料检测方法高效液相色谱法制定中国轻工业联合会全国食品直接接触材料及制品标准化技术委员会20075713-T-469包装材料中偶氮染料检测方法气相色谱/质谱法制定中国轻工业联合会全国食品直接接触材料及制品标准化技术委员会20102024-T-607铂合金首饰铂含量的测定第2部分:采用所有微量元素与铂强度比值ICP光谱法修订中国轻工业联合会全国首饰标准化技术委员会20091822-T-607玩具中总铅含量的测定-能量色散X射线荧光光谱定量筛选法制定中国轻工业联合会全国玩具标准化技术委员会20142574-T-607化妆品中铬、锑、镉、砷、铅的测定电感耦合等离子体-质谱法制定中国轻工业联合会全国香料香精化妆品标准化技术委员会20081850-T-606草除灵水分散剂有效含量的测定方法-气相色谱法制定中国石油和化学工业联合会全国农药标准化技术委员会20081853-T-606氯吡磷乳油有效含量的测定方法-液相色谱法制定中国石油和化学工业联合会全国农药标准化技术委员会20081857-T-606烟嘧磺隆悬浮剂有效含量的测定方法-液相色谱法制定中国石油和化学工业联合会全国农药标准化技术委员会20112123-T-606塑料-酚醛树脂-用差示扫描量热计法测定反应热和反应温度制定中国石油和化学工业联合会全国塑料标准化技术委员会20112155-T-442辣椒及其油树脂总辣椒碱含量测定第1部分分光光度法制定中华全国供销合作总社全国辛香料标准化技术委员会20073522-T-442茶叶中茶多酚的高效液相色谱检测方法制定中华全国供销合作总社中华全国供销合作总社  附件:1447项予以终止推荐性国家标准计划项目汇总表.xlsx
  • 卡塔尼亚大学《Int. J. Adv. Manuf. Tech.》:面投影微立体光刻技术和模塑法制备微流控光学器件的对比研究
    微流控芯片是把生物、化学等领域中所涉及的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,以此取代常规生物化学实验室中的各种操作。微流控芯片因具有高度集成化、分析效率高、制造成本低、试剂消耗量少等优点被广泛应用于各种科学研究。聚二甲基硅氧烷(PDMS)是目前应用最广泛的微流控芯片制备材料之一,它具有良好的透气性、透光性、生物兼容性以及化学惰性,易于通过模具浇注成型。基于光刻和PDMS倒模技术的模塑法是目前应用最普遍的微流控芯片加工方法。然而,这种方法加工时间长、加工成本高、加工工艺繁琐,并且模具的制造需要在洁净室中完成。随着3D打印技术的出现,微流控芯片可以通过3D打印技术直接制备而成,或者结合PDMS翻模工艺与3D打印技术多步加工制备而成。这些方法不仅有效弥补了传统微加工方式的不足,而且还可以制备具有复杂三维结构的微流控芯片。另外,微流控芯片制备材料的选择也更加广泛。近日,卡塔尼亚大学Lorena Saitta课题组采用面投影微立体光刻(PμSL)技术和基于3D打印的PDMS翻模技术制备了用于段塞流检测的微流控光学器件,通过对比研究评估了两种加工技术及其制备材料的利弊。研究人员基于PμSL (microArch S140,摩方精密) 3D打印技术采用HTL光敏树脂一步成型了微流控光学器件,该技术具有超高的打印分辨率;作为对比,研究人员还采用基于聚合物喷射3D打印的PDMS翻模技术多步工艺制备了微流控光学器件。两种加工方法制备的器件进口和出口定位不同,HTL器件的进口和出口与微通道同轴对齐,而PDMS器件受限于加工方法,其进口和出口正交于微通道。另外,HTL器件是一体成型的,气密性比较好,可以避免液体泄露问题。 图1. 所设计的微流控光学器件的工作原理图2. PDMS微流控光学器件(Device 1)和HTL微流控光学器件(Device 2)的几何结构俯视图的比较(单位:mm)图3. PDMS微流控光学器件的制备流程图4. 基于PμSL技术制备HTL微流控光学器件的流程图5. PDMS微流控光学器件(Device 1)和HTL微流控光学器件(Device 2)的完整气水段塞流平均周期趋势的比较 PDMS器件和HTL器件微通道的相对粗糙度分别为0.0001 %和0.0002 %,因此,两种加工技术均能保证微通道内流体流动的稳定性。将两种器件用于段塞流的检测,PDMS器件柔性比较大,居中对准两根光纤比较困难,观测数据的变化比较大;HTL器件的刚性比较好,观测数据的分散性远小于PDMS器件。然而,HTL树脂的透光性不如PDMS,检测性能相对较低。因此,基于PμSL 3D打印技术,结合透光性良好的3D打印树脂材料的开发,可以推进微流控芯片的研究。该研究成果为微流控芯片的制造提供了新思路,以“Projection micro-stereolithography versus master-slave approach to manufacture a micro-optofluidic device for slug flow detection”为题发表在The International Journal of Advanced Manufacturing Technology上。原文链接:https://doi.org/10.1007/s00170-022-08889-8官网:https://www.bmftec.cn/links/10
  • 美国消费品安全委员会拟修改全地形车安全标准
    美国消费品安全委员会(CPSC)近日提议,对全地形车(all-terrain vehicles,ATV)的强制性安全标准进行修订,修订依据为2010年版的美国国家标准学会(ANSI)/美国特种车辆学会(SVIA)的标准。  CPSC标准最初于2008年发布,其中包含了SVIA制定的2007年版的《美国四轮全地形车设备配置和性能要求国家标准》。  根据CPSC的消息,对2008年版标准的实质性修订包括:(1)从规定范围的章节中,删除要求在2011年7月28日终止对Y-12+类(供12岁以上少年使用的少年型全地形车)的定义和要求的规定 (2)变更在青少年型全地形车刹车测试中的速度测试办法 (3)对乘客扶手测试中施用的力度进行变更 (4)增加青少年型全地形车不能有装有动力输出装置的规定 (5)增加青少年型全地形车脚踏板区不能有可折叠、可移动或可伸缩的结构的规定 (6)增加关于刹车控制系统操作位置和方法的规定 (7)通过在测试中要求变速器处于空档位而非在空档位或停车位间选择,提高对停车刹车性能的要求 (8)要求胎压信息须在标签上显示,而之前的要求可允许该信息显示在标签、用户手册或轮胎上。  利益相关方可在2011年9月10日之前提交意见。
  • 有机葡萄酒标准应与国际接轨
    记者了解到,国际市场对有机葡萄酒产品的认证有严格的要求。在美国,有机葡萄的认证前提是必须满足USDA颁布的国家有机项目标准。在加利福尼亚,CCOF设立了更为严格的标准,包括:不得使用生物工程技术、不得含有碘辐射,鼓励使用堆肥、覆盖种植和培育有益昆虫等等。在意大利,有机生长的葡萄酒要标上指定名称“Viticoltura Biologica” 在西班牙,则是标上“Agricultura Ecologica.”。在俄勒冈州,有机葡萄酒要带上“Oregon Tilth”的印章 在华盛顿,印章的内容则是“WSDA Certified Organic”。在新西兰,主要的有机认证组织是Bio-Gro 澳大利亚的是Australian Certified Organic.。  一位熟悉葡萄酒有机认证的专家告诉记者,葡萄酒企业要获得有机认证,必须有自己的葡萄基地、严格按照有机葡萄的种植方法操作,在此基础上原料的加工也要符合国家GB/T 19630《有机产品》的要求。不过他也表示,目前任何一个单独的有机食品品类都没有自身单独的有机认证标准和检测标准。在认证过程中要求企业提供操作规程、生产纪录、追踪体系等众多资料。  对此, 郭松泉在接受记者采访时表示,绿色食品曾经走过一段“乱象”时期,有机食品应该吸取教训,整个认证过程要让消费者信服 有机葡萄酒和普通葡萄酒的区别应该公布于众,应该有一套业内人士公认的标准。“就我目前了解到的,国家葡萄酒标准中并没有对有机葡萄酒进行规定限制。”他强调,国内有机葡萄酒必须与国际要求接轨。  据了解,去年12月底,来自欧盟27个成员国的专家正式对欧盟有机葡萄酒立法草案进行了正式审议,并于今年1月提交欧盟委员会。该标准涉及添加剂的使用、二氧化硫最大使用量等多个方面,还对杀虫剂的使用进行了限制。这一举措将结束多年来欧盟成员国各自实施的生产标准。
  • 国产纯水器走进异国知名学府——访宾夕法尼亚大学医学院Pathology & laboratory medicine实验室
    p strong仪器信息网讯/strong 当地时间2019年3月21日,美国匹兹堡分析化学和光谱应用会议暨展览会(Pittcon 2019)召开同期,仪器信息网海外小分队在乐枫北美分公司总裁Peter Lucas的陪同下来到了同样位于费城的著名的八所常青藤盟校之一,美国宾夕法尼亚大学医学院,并有幸参观了John Morgan大楼内的Pathology & laboratory medicine实验室。该实验室工作人员凯丽博士接受了仪器信息网的采访。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c3f8d02f-9abb-474c-a50b-c3b73f8ad007.jpg" title="WechatIMG243.jpeg" alt="WechatIMG243.jpeg" width="500" height="375" border="0" vspace="0" style="width: 500px height: 375px "//pp style="text-align: center "John Morgan大楼内景/pp 据凯丽博士介绍,该实验室属于免疫学实验室,主要专注于B细胞生物学研究。实验室里的每个人在他们的研究方向中都有不同的侧重点,但总体来说都以浆细胞(plasma cell)为研究重点。“我们不是一个直接临床应用研究方面的实验室,相对来说更偏重于基础科学研究。换句话说,我们正在进行研究的系统并不是针对某一个特定的疾病类型。虽然我们目前做的工作是发现探索,但从长远来看,我们对这些细胞及其功能的研究将对癌症或自身免疫等疾病的治疗带来帮助。”凯丽博士说到。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/513a7cce-703f-4c4e-8ebd-b5ff635b9932.jpg" title="WechatIMG244.jpeg" alt="WechatIMG244.jpeg" width="500" height="375" border="0" vspace="0" style="width: 500px height: 375px "//pp style="text-align: center "实验室一隅/pp 令笔者惊奇的是,该实验室内部虽然设计合理,布局规范,但空间非常紧凑且拘束,走道、台下、桌面几乎布满了仪器设备或试剂盒,与大楼恢弘的外观形成鲜明对比。 其中,一款颜色清新的挂壁式纯水系统在“层层叠叠”的实验室里显得十分醒目,引起笔者的注意。其主机悬挂于墙上,横穿实验柜两侧水槽分别放置着一个可移动的取水柄,触摸屏单独置于桌面,屏上各种监测数据清晰可见。据介绍,该款仪器是上海乐枫生物科技有限公司研发生产的Genie G智能型超纯水系统,采用IonPure的EDI模块和乐枫独创配方填料的超纯化柱,可为实验室提供超纯水与EDI二级纯水,其主控屏、水机系统与取水手柄之间可通过无线连接,按需放置。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/d774115a-f35b-4592-a462-44d5e64d4ff3.jpg" title="WechatIMG245.jpeg" alt="WechatIMG245.jpeg" width="375" height="500" border="0" vspace="0" style="width: 375px height: 500px "//pp style="text-align: center "乐枫Genie G智能型超纯水系统/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8ccd391b-0ec7-430d-ba71-1ac45d8faa44.jpg" title="WechatIMG246.jpeg" alt="WechatIMG246.jpeg" width="375" height="500" border="0" vspace="0" style="width: 375px height: 500px "//pp style="text-align: center "乐枫Genie G智能型超纯水系统 另一侧取水臂/pp 关于为何选择乐枫Genie 纯水系统,凯丽博士如此说到:“在原来使用的的供水系统退休后,我们也在市场上做了大概的选择。通过美国乐枫合作伙伴的介绍,我们了解了该系统并最后决定购买,当时乐枫的Peter先生也参与了安装过程,且十分细心周到。乐枫Genie纯水系统设计简洁,整体质量不错;与传统的纯水系统相比,做了很多的改进,有一些新功能,如在线TOC监测、远程诊断等;他们在北美也有很好的售后资源,让我们可以放心使用。”此外,Peter也向我们介绍了Genie纯水系统的一些其他优势 - Genie触摸屏控制简单,手柄使用方便;触摸屏可以戴手套,带水操作,免除了用户在实验中频繁穿脱手套的烦恼,大大节省了他们的时间和精力;耗材的安装也非常方便。在美国,实验室空间有限,高效利用空间是个不小的挑战, Genie可以挂墙,可以置于实验台面下,占地面积少,配置多个取水臂后,使用自由度非常高,这也是客户选择Genie的一个重要原因。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/5845062e-8df4-4927-a542-f8bee8580b73.jpg" title="图片 1.png" alt="图片 1.png" width="500" height="375" border="0" vspace="0" style="width: 500px height: 375px "//pp style="text-align: center " 乐枫北美总裁Peter Lucas 在Pittcon与来宾交谈/pp 凯丽博士补充到,目前在她的研究中主要使用纯水来配制溶液、缓冲液以及清洗实验室相关用品,未来还可能做一些肿瘤细胞检测(分子生物学和细胞学领域)的相关实验,这些实验中都会用到纯水,具体实验包括细胞培养、PCR检测等。这套乐枫Genie供水系统应用方便,使用效果非常不错,对实际工作有了不少的改进,很好地满足了他们当前的研究需求,可以说是该部门目前最好、最实惠的选择。/pp 在参观实验室的过程中,笔者观察到,虽然实验室空间十分有限,但是各种仪器设备、试剂药品的排列放置依然是井然有序、错落有致的,而且十分重视实验室安全管理,例如随处可见的安全标语、使用规范,以及走道上装配的各种安全、消防设备,如洗眼设备、报警装置、安全手套等,值得国内实验室参考和借鉴。/pp 宾夕法尼亚大学医学院是美国第一所医学院,也是美国当前最著名的三所医学院之一,在这样一座历史悠久、享有盛誉的美国高等学府实验室里,乐枫的Genie纯水系统如“惊鸿一瞥”般出现,且得到了实验室人员的高度认可,是身为国产仪器人的骄傲,也是国产科学仪器品牌走出国门迈向国际的重要一步。国产仪器制造业,相比国外大的品牌,先天不足,如何树立品牌的知名度,在国际舞台上,真枪实弹地去拼杀,并闯出自己的一片天地,乐枫的这一份努力和艰辛我们不得而知。我们一直倡导中国仪器品牌要创新,要走出去,在这方面,乐枫走过的历程和经验可供借鉴。笔者真心希望在不久的未来,能够看到更多的国产仪器身影出现在各个国际知名的实验室里。/ppbr//p
  • 抗生素“阻击战”勤邦显身手(一)
    一、背景介绍 抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类物质。现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。抗生素残留是指给动物使用抗生素药物后积蓄或贮存在动物细胞、组织或器官中的药物原形、代谢产物和药物杂质。抗生素残留危害巨大,已经引起了世界各国政府的高度重视。 1929年英国细菌学家弗莱明发现青霉素,并在临床应用中取得惊人的效果,这标志着抗生素时代的到来,由此人类的平均寿命得以延长。可是由于抗生素的使用会导致耐药细菌的出现,短短几十年后,到20世纪末,过分依赖和滥用抗生素就使人类陷于将“无药可救”的噩梦。为此,许多国家都对抗生素使用实施严格限制措施。动物使用抗生素主要是在养殖业中将抗生素作为饲料添加剂,这不仅可以使动物生长速度更快,喂食量降低,动物抗病能力也会非常高,养殖户获利增加。但是,动物广泛使用抗菌素会导致“耐药菌株”的出现,使得原有的抗生素失去作用,导致动物细菌疾病难以控制。而且这些“耐药菌”极可能通过食物或动物与人的接触传播给人,进而使人产生耐药性。 1957年日本最早报道了病原菌耐药性问题,当年一些病原菌有一种抗生素以上的耐药性,到了1964年,40%的流行病株有四重或更多的耐药性。1972年墨西哥的抗氯霉素伤寒杆菌造成了1400多人死亡。据美国《新闻周刊》报道,仅1992年美国就有13300名患者死于抗生素耐药性细菌感染。1999年2月,路透社报道了美国科学家在肉鸡饲料中发现超级细菌,这种肠球菌对目前所有的抗生素具有耐药性。《发现》杂志称抗生素这种神奇的药物已走向穷途末路。 2002年初,欧盟从中国进口的虾、对虾中发现强力抗生素的药物残留,认为对人体健康构成潜在威胁,导致欧洲部分地区陷入食品恐慌。 2010年,据法新社和英国《卫报》8月11日综合报道,英国和印度研究人员发表报告称,一些赴印度接受手术等治疗的患者感染了一种新型超级细菌。这种几乎对所有抗生素具有抗药性的细菌正在从南亚传向英国,可能在全世界蔓延。 2011年,世界卫生组织将“控制抗菌素耐药性”作为2011年世界卫生日的主题,并提出“抵御耐药性:今天不采取行动,明天就无药可用”。二、 抗生素残留产生的原因 1. 抗生素饲料添加剂的使用 抗生素饲料添加剂的长期使用;一些添加抗生素的饲料不在标签上标识,或标识与实际不符而造成养殖企业重复用药;以治疗量当作预防量添加等因素都会造成抗生素的残留。 2. 不遵守休药期、停药期的规定 一些养殖企业不遵守休药期、停药期的规定,从而使药物残留量超过国家标准。如 《乳与乳制品卫生管理办法》第4条规定:应用抗生素期间和停药期内的乳汁不得供食用。 3. 未正确使用抗生素 给动物使用抗生素时,在给药剂量、给药途径、用药时间和用药部位等方面不符合用药规定, 造成抗生素残留在体内并使残留时间延长。如对泌乳牛用药不当或不注意安全时间给药是牛乳中抗生素残留的重要因素,尤其是使用乳房灌注法治疗乳腺炎时,更易造成牛乳中抗生素残留。 4. 作为保鲜剂使用 一些不法交奶户在夏季高温季节为防止牛奶的酸败,往往向牛奶中添加抗生素作为保鲜剂使用,造成牛奶中抗生素的残留。 5. 使用违禁药物或 国家标准规定不许使用的药物 一些养殖企业不遵守国家规定,在饲料或饮水中直接添加违禁药物或淘汰药物,导致畜产品中抗生素残留。 三、抗生素残留的危害 1. 产生毒性作用 人们长期食用含有抗生素残留的动物性食品,抗生素可在体内蓄积,危害人体健康。如四环素类(土霉素、金霉素、四环素)经口服可直接刺激机体引起人体不舒服,出现恶心、呕吐、腹部不适、食欲减退等症状,四环素类还能影响骨和牙齿的生长,抑制婴儿的骨髓生长。 2. 产生细菌耐药性 抗生素对不同病原微生物的抗菌效力并不一致,这主要是由于微生物在药物敏感性方面存在差异。根据这种差异,将不同菌种对同一抗生素的敏感性分为高度敏感、中度敏感、轻度敏感和耐药等4种情况。细菌是通过药物靶酶的改变、代谢途径的改变、通透性屏障和产生灭活酶或修饰酶等机制产生耐药性的。 3. 使菌群失调 正常条件下,人体肠道寄生着对人体有益的微生物菌群,它们与人体相互适应,维持着微生物菌群的平衡,某些菌群还能合成维生素供机体使用。长期食用有抗生素残留的动物性食品,会造成一些非致病菌的死亡,使菌群失调,同时使肠道内产生B族维生素和维生素K 的细菌受到抑制,从而引起维生素缺乏。由于抗生素抑制了有益菌的生长,为一些耐药的致病菌提供了生存空间,甚至造成“二重感染”,危害人体健康 。 4. 发生过敏反应 经常食用含有青霉素、四环素、磺胺类药物以及某些氨基糖昔类抗生素等残留的动物性食品,能引起易感个体出现过敏反应,严重者可引起皮疹、呼吸困难、休克等症状,甚至危及生命。 5. 产生致畸、致癌、致突变作用 某些抗生素具有致畸、致癌、致突变的作用,人通过摄食肉、奶等动物性食品而引起病变,如氯霉素可引起各种可逆性血细胞减少,极少数可引起不可逆的再生障碍性贫血,容易引起早产儿及新生儿的循环障碍,称为“灰婴综合症”。四、世界各国禁止抗生素的制度 面对耐药性这一全球性的难题,世界卫生组织向科学家们发出倡议,寻求对策。1981年,WHO专门成立了慎用抗生素联盟,成员国包括90多个国家,各成员国都承诺采取严厉措施限制抗生素使用。1986年,瑞典全面禁止在畜禽饲料中使用抗生素。1996年由美国FDA、疾病控制和预防中心、农业部协作成立了国家抗生素抗药性检控体系。一旦发现耐药菌产生,便启动相应法律,包括收回药物使用许可证。2010年6月28日,FDA公布一份抗生素限令草案,旨在降低“动物滥用抗生素对人类健康构成的明显风险”。2012年1月4日,美国FDA针对使用广泛的头孢类抗生素发布部门规定:从2012年4月5日开始,禁止给牛、猪、火鸡使用头孢类抗生素。1997年,在柏林召开的世界卫生组织会议倡议在动物饲料中谨慎使用抗生素,以减少病原菌抗药性的扩散。同年三月,国际粮农组织在巴黎召开会议,会议确定通过“风险分析、风险处理、慎用抗生素和抗药性检测”来控制饲料中使用抗生素对公众健康的威胁。1998年12月于哥本哈根召开的抗生素和生长促进剂的工作会议上,与会者的意见表明,在未来的10年里将逐渐淘汰抗生素添加剂。1998年底,欧盟委员会颁布了杆菌肽锌、螺旋霉素、维吉尼亚霉素和泰乐菌素4种抗生素在畜禽饲料中作为生长促进剂使用的禁令,禁令自1999年7月1日起生效。1998年2月,丹麦牛肉与鸡肉行业宣布,自愿停止使用一切抗生素饲料;4月,猪肉行业宣布35公斤以上生猪,自愿停止使用一切抗生素饲料;同年,丹麦政府开始对使用抗生素的猪肉收税(每头猪2美元)。2000年,丹麦政府下令,所有动物,不论大小,一律禁用一切抗生素饲料。2006年1月1日,欧盟就已全面禁止在饲料中使用生长素、抗生素作为饲料生长添加剂。韩国从1991年起对肉类产品进行抗生素残留检测,从2005年起就开始逐渐减少允许使用的抗生素药物数量与种类。2011年的7月1日起,韩国全面禁止动物饲料中添加抗生素。 早在2000年,我国国家质量监督检验检疫局就颁布了8项无公害农产品国家标准,出台了49项绿色食品标准,73项无公害食品行业标准等,其中部分标准对少数几种抗生素的残留做出了规定。1994年农业部还专门发布了《动物性食品中兽药最高残留限量》标准,此后又相继修订,但至今滥用抗生素造成残留超标事件仍时有发生。面对抗生素存在滥用风险的局面,中国农业部出台了一系列公告,农业部第168号公告——《饲料药物添加剂使用规范》 ,规定了部分兽用原料药可在制成预混剂后使用,包括土霉素钙预混剂、金霉素预混剂等抗生素预混剂在内的33种兽药预混剂名列其中;农业部第193号公告规定“氯霉素、及其盐、酯(包括琥珀氯霉素)及制剂,禁做所有用途,所有食品动物禁用”,“硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂,禁做促生长用,所有食品动物禁用”;农业部第560号公告也明确规定万古霉素及其盐、酯及制剂为禁用兽药。
  • 日本拟批准嘧菌酯和亚氯酸水用作食品添加剂
    2012年8月29日,日本厚生劳动省发布G/SPS/N/JPN/302号通报,拟授权嘧菌酯(Azoxystrobin)和亚氯酸水(Chlorous Acid Water)用作食品添加剂,并建立了这两种物质的使用标准和规格标准。  1.嘧菌酯  只能用于柑橘类水果,残留量不得超过0.010g/kg。  2.亚氯酸水  可用于精白米,豆类,蔬菜(不包括蘑菇),水果,海藻,新鲜的鱼类和贝类(包括鲜鲸鱼肉),新鲜肉类(牲畜和家禽,包括野生动物),加工肉类,加工鲸鱼肉以及其通过适当的处理方法,如盐腌或干燥,而得到的可保存的产品。在用于浸渍或喷涂的水中,最大使用量为0.40 g/kg。在最终食品前,所使用的亚氯酸水应被分解或去除。
  • 国内外即食食品微生物限量标准解析
    根据国际食品法典委员会的规定,即食食品是指食品以售出的形态存在,无需进一步杀菌处理即可食。即食食品种类繁多,主要包括熟肉制品、甜品、糕点、现榨果蔬汁、新鲜蔬菜、米饭、生鲜水产品、面米制品等。目前,我国缺乏即食食品微生物限量方面的标准,造成了政府食品安全监管部门对此类食品产品无具体监管依据的尴尬局面。本文简要介绍CAC、欧盟,以及澳大利亚和新西兰、英国、加拿大、美国、韩国、中国香港和澳门地区的即食食品微生物限量标准,为我国制定即食食品微生物限量标准提供技术依据。 1 即食食品微生物指标意义1.1 菌落总数  菌落总数是指在特定温度下在特定培养基上生长的所有菌落个数。菌落总数不是食品安全的直接指标,它不能直接用于即食食品的安全性评估。食品中菌落总数升高,说明食品在加工过程中卫生状况欠佳或者储存不当。1.2 指示微生物  大肠埃希氏菌是人类和温血动物肠道正常寄生菌,属于肠杆菌家族中的一类。一般而言,食品中含有大肠埃希氏菌,表示食品直接或间接受到粪便污染。如果食物含有大量大肠埃希氏菌,则显示在处理食物时普遍忽视清洁卫生,而且没有把食物妥为贮存。  肠杆菌科是一大类在生物化学和遗传上彼此相关的细菌,通常用以评估食物的一般卫生状况。如果有关细菌存在于经加热处理的食物中,即表示食物烹煮不足或在处理后受到污染。1.3 食源性致病菌  致病菌是指可能会引起食物中毒的细菌,包括可在食物内释放毒素的细菌,或使肠道受感染而令人发病的细菌。致病菌通常包括沙门氏菌、金黄色葡萄球菌、大肠埃希氏菌O157、副溶血性弧菌、霍乱弧菌、单核细胞增生李斯特氏菌、蜡样芽孢杆菌、产气荚膜梭菌、空肠弯曲菌等。食物中毒的病症由恶心和呕吐(例如由金黄色葡萄球菌肠毒素引致)、腹泻和脱水(例如由沙门氏菌属和弯曲菌属引致),以至败血病、脑膜炎、瘫痪和死亡等严重情况不等(例如由入侵性单核细胞增生李斯特氏菌引起以及在罕见的由肉毒杆菌毒素引起的中毒个案)。不同食源性致病菌的感染剂量,由不足10个至超过1亿个不等。  2 国内外标准对即食食品微生物限量要求  微生物标准是定义产品中微生物的可接受水平,此可接受水平是基于单位质量、体积、面积或批次产品中的微生物和它们的毒素及代谢物的数量。食品安全标准是对适合在市场上流通的一种食品或一批食品的可接受水平。由于在食品生产、包装、运输和其他操作中会不可避免地染上微生物,而通过良好的卫生操作,可以将微生物的污染降到最低程度。因此,微生物标准作为风险管理的工具,可以用来支持良好卫生规范(GHP)以及危害分析和关键控制点系统(HACCP),有效促进食品安全。由于消费者购买即食食品后不再进行灭菌处理,因此不同的国家与地区规定了即食食品中指示菌和致病菌限量,以确保即食食品的安全。  CAC、欧盟,以及澳大利亚和新西兰、美国、韩国、英国、中国香港和澳门地区的即食食品相关标准不区分预包装和散装食品,主要以加工工艺、食品类别和用途来规定微生物限量要求。2.1 CAC 对即食食品微生物限量要求  对于即食食品中的菌落总数、大肠杆菌、肠杆菌科等微生物指示菌,CAC强调过程控制,仅对即食食品中单核细胞增生李斯特菌规定了限量(见表1)。表1 食品法典委员会(CAC)即食食品微生物限量要求即食食品种类微生物指标采样方案及限量标准ncm适合单核细胞增生李斯特氏菌生长的即食食品单核细胞增生李斯特氏菌5025g中不得检出不适合单核细胞增生李斯特氏菌生长的即食食品单核细胞增生李斯特氏菌50100CFU/g  注:n为同一批次产品应采集的样品件数;c为最大可允许超出m值的样品数;m为微生物可接受水平的限量值。2.2 欧盟对即食食品微生物限量要求  欧盟对食品安全的监控不仅仅体现在产品检验,更主要的是通过预防措施来确保食品安全,例如实施良好操作规范和应用基于HACCP原理的体系。可以用微生物标准来确认和验证HACCP程序和其他卫生控制措施。食品企业应对食品生产、加工和分销(包括零售)的每一个阶段采取措施以确保原材料和加工过程满足卫生标准,产品在货架期内能够满足适当的食品安全标准。  欧盟规定了婴幼儿即食食品和特殊医学用途食品及适合单核细胞增生李斯特菌生长的即食食品(不包括婴幼儿即食食品和特殊医学用途食品)两类食品中单核细胞增生李斯特菌限量标准;还规定了发芽的种子(即食)、预切水果和蔬菜(即食)和未经巴氏杀菌的果汁和蔬菜汁(即食)3类食品中沙门氏菌限量标准(见表2)。表2 欧盟即食食品微生物限量要求即食食品种类微生物指标采样方案及限量标准ncm婴幼儿即食食品和特殊医学用途食品单核细胞增生李斯特氏菌5025g中不得检出适合单核细胞增生李斯特氏菌生长的即食食品 (不包括婴幼儿即食食品和特殊医学用途食品)单核细胞增生李斯特氏菌50100CFU/g不适合单核细胞增生李斯特氏菌生长的即食食品 (不包括婴幼儿即食食品和特殊医学用途食品)单核细胞增生李斯特氏菌50100CFU/g发了芽的种子(即食)沙门氏菌5025g中不得检出预切水果和蔬菜(即食)沙门氏菌5025g中不得检出未经巴氏杀菌的果汁和蔬菜汁(即食)沙门氏菌5025g中不得检出  注:n为同一批次产品应采集的样品件数;c为最大可允许超出m值的样品数;m为微生物可接受水平的限量值。2.3 澳大利亚和新西兰对即食食品微生物限量要求  澳大利亚和新西兰即食食品微生物限量标准将检测结果分为满意、可接受、不满意和有潜在危害4种水平(表3):满意是指检测结果在此类产品微生物限量下限范围内,无食品安全危害;可接受是指检测结果在此类产品微生物限量上限范围内,无食品安全危害;不满意是指检测结果在此类产品微生物限量范围内,无食品安全危害,但显示食品加工处理过程中存在一些问题,需重新抽样进行检测,若结果满意则无需采取措施,若结果不满意应检查厂家的生产加工过程和卫生状况;潜在危害是指检测结果超出此类产品微生物限量范围,存在食品安全危害, 应检查厂家生产加工过程和卫生状况,必要时应对问题产品进行召回。表3 澳大利亚和新西兰即食食品微生物限量要求微生物指标微生物数量/(CFU/g)满意可接受不满意有潜在危害菌落总数A类食品<104<105≥105不适用B类食品<106<107≥107不适用C类食品不适用不适用不适用不适用指示菌肠杆菌科<102<102-104≥104不适用大肠杆菌<33-100≥100不适用致病菌葡萄球菌(血浆 凝固酶阳性)<102102-103103-104≥104产气荚膜梭菌<102102-103103-104≥104蜡样芽孢杆菌和 其他致病性芽孢 杆菌<102102-103103-104≥104副溶血性弧菌<3<3-102102-104≥104空肠弯曲菌25g不得检出检出沙门氏菌25g不得检出检出单核细胞增生李斯特氏菌第一类食品25g不得检出≥102第二类食品25g不得检出检出,但<102≥102第三类食品25g不得检出检出,但<102≥102  注:第一类食品:适合单核细胞增生李斯特氏菌生长、保存时间超过一天的即食食品(例如预包装三明治);第二类食品:不适合单核细胞增生李斯特氏菌生长、保存时间超过一天的即食食品(例如沙律);第三类食品:制作后立即出售或食用、保存时间不超过一天的即食食品(例如新鲜制作的寿司)。  在菌落总数的限量规定上,根据即食食品成分在食品生产过程中是否经过热处理工艺将即食食品分为3类:A类食品指即食食品的所有成分在生产过程中均经过加热处理,即食食品中菌落总数较低;B类食品指即食食品的部分成分在生产过程中经过加热处理;C类食品不适宜检测菌落总数,如新鲜的果蔬制品(包括蔬菜沙拉)、发酵食品和含发酵食品成分的食品(如三明治或面包卷),这些食品本身含有较高的正常菌群。2.4 英国对即食食品微生物限量要求  英国对即食食品微生物限量的规定较为严格,针对13种即食食品种类制定了相应的菌落总数限量,同时对所有即食食品制定了肠杆菌科、大肠杆菌和致病菌限量要求。根据微生物计数结果将即食食品微生物分为满意、可接受和不满意3个水平(见表4):满意是指检测结果在微生物限量范围内,无需采取措施;可接受是指食品存在潜在风险,必要时应重新抽样检测,并对食品原料检查,食品加工温度和时间控制,加工环境进行检查。表4 英国即食食品微生物限量要求微生物指标微生物数量/(CFU/g)满意可接受不满意菌落总数1.从罐头、瓶装、盒装和袋装食物中取出的食物a<10不适用不适用2.制作后立即出售或食用的熟食<103103-<105≥1053.在出售或食用之前还需少量操作处理的冷藏熟食;巴氏灭菌后需冷藏的罐装食物<104104-<107≥1074.不含奶油的糕点和糖果,粉末状食物<104104-<106≥1065.在出售或食用之前还经过一些操作处理的冷藏熟食b<105105-<107≥1076.非发酵乳制品和乳制甜点,蛋黄酱以及以蛋黄酱为基料的调味品,熟制的调味汁<105105-<107≥1077.含调味料、蘸酱和面糊的食物<106106-<107≥1078.需冷藏以延长保存的食物b<106105-<108≥1089.用于生食的生肉、生鱼、冷烟熏鱼c<106105-<108不适用10.采用保藏工艺制作的食品:腌制食品、酱卤食品和盐渍食品c不适用不适用不适用11.干燥食品c不适用不适用不适用12.新鲜果蔬、含有生鲜蔬菜的即食食物c不适用不适用不适用13.发酵的熏干肉、发酵蔬菜、成熟奶酪c不适用不适用不适用指示菌肠杆菌科<102102-≤104>104大肠杆菌<2020-≤102>102李斯特菌属(非单核细胞增生李斯特氏菌)<1010-≤102>102致病菌弯曲杆菌25g不得检出检出大肠杆菌O157(和其他产志贺毒素的大肠杆菌)25g不得检出检出沙门氏菌25g不得检出检出志贺氏菌25g不得检出检出霍乱弧菌(O1和O139)25g不得检出检出蜡样芽孢杆菌<103103-≤105>105其他致病性芽孢杆菌<103103-≤105>105产气荚膜梭菌<1010 -≤104>104单核细胞增生李斯特氏菌<1010 -≤102>102金黄色葡萄球菌和其他凝固酶阳性的球菌<2020 -≤104>104副溶血性弧菌<2020 -≤103>103  注:a大多数这种包装类型的产品采样时都是商业无菌的,如果还需经过进一步加工后才食用的,则按照类别5来评估它们。如果该类食品含芽孢厌氧菌,则结果为不满意。b此类食品如果检出>106 CFU/g的酵母,或>107 CFU/g的革兰氏阴性杆菌或芽胞杆菌属,或>108 CFU/g的乳酸菌,则结果为不满意。c此类食品因其本身所含菌落总数较高,不适合检测菌落总数。2.5 美国对即食食品微生物限量要求  美国FDA和EPA鱼和渔业产品安全控制标准对即食水产品的微生物水平进行了规定,检测结果不应超出规定水平,微生物指标包括产肠毒素大肠埃希氏菌、单核细胞增生李斯特氏菌、霍乱弧菌、副溶血性弧菌和创伤弧菌(见表5)。表5 美国即食食品微生物限量要求鱼和渔业产品微生物指标水平即食水产品(消费者仅需稍微烹煮)产肠毒素大肠埃希氏菌(ETEC)1×103CFU/g,热不稳定毒素(LT)或热稳定毒素(ST)阳性单核细胞增生李斯特氏菌检出霍乱弧菌检出产毒素的O1群或非O1群副溶血性弧菌≥104 CFU /g(神奈川试验阳性或阴性)创伤弧菌检出2.6 加拿大对即食食品微生物限量要求  加拿大对即食食品的微生物指标单核细胞增生李斯特氏菌进行了限量规定,并对取样计划、应用要求及法定状态分别进行了规定(见表6)。其中,法定状态是指根据检测结果对即食食品进行风险评估,采取相应的分级处理措施,处理措施包括允许销售、停止销售和召回。表6 加拿大即食食品微生物限量要求食品微生物限量指标/ (CFU/g)取样计划应用要求法定状态备注即食食品单核细胞 增生李斯 特氏菌未检出/25 gn = 5生产级Ⅱ及召回至零售级支持单核细胞增生李斯特氏菌生长且在冷藏条件下货架期低于12 天的即食食品,以及在GWP田间下生产的不支持单核细胞增生李斯特氏菌生长的所有即食食品<100n = 5生产级允许销售>100n = 5生产级召回或停止销售2.7 韩国对即食食品微生物限量要求  韩国对即食食品的微生物指标进行了规定,检验项目包括大肠杆菌、菌落总数、金黄色葡萄球菌、沙门氏菌、副溶血性弧菌和蜡样芽孢杆菌,其中菌落总数和蜡样芽孢杆菌为定量检测,其他项目为定性检测(表7)。表7 韩国即食食品微生物限量要求食品类别微生物指标标准备注即食食品大肠杆菌阴性限用于即食食品和新鲜的即食食品菌落总数≤105CFU/g限用于待烹调食品金黄色葡萄球菌阴性沙门氏菌阴性副溶血性弧菌阴性蜡样芽孢杆菌≤103CFU/g限用于即食食品和新鲜的即食食品2.8 香港地区对即食食品微生物限量要求  2014年香港食环署食物安全中心对《即食食品微生物含量指引》(2007版)进行了修订,最新版于2014年8月14日正式生效。新版标准名称修改为《食品微生物含量指引》,适用于一般即食食品及指定食品的微生物含量指引。一般即食食品的微生物含量准则将食品分为14个类别,分别对其需氧菌落计数进行了限量规定,同时规定了卫生指示微生物和指定食源性致病菌限量。“指引”将即食食品的微生物检测结果分为满意、可接受和不满意3个等级(见表8):满意水平无需采取任何措施;可接受水平应调查原因并重新抽样检验;若须氧菌落计数和指示微生物结果不满意应调查原因并重新抽样检验,若致病菌结果不满意,应停止销售有问题食品,立即调查原因,采取改善措施和执法行动,同时抽取食物样本作调查之用。表8 香港即食食品微生物限量要求准则检测结果(每克食物样本的菌落形成单位)满意可接受不满意各类即食食品所含需氧菌落计数(30℃/48h)食物类别a1.紧接从容器中去除,在室温下可保质的罐装、瓶装、盒装和袋装食物b<10不适用注c2.在紧接出售或进食前烹煮的食物<103103-<105≥1053.经烹煮并冷冻,在出售或进食前最少处理程序的食物;经巴士德消毒须冷藏的罐装食物<104104-<107≥1074.不含乳制忌廉的烘培食品和甜点、粉状食物<104104-<106≥1065.经烹煮并冷冻,在出售或进食前经若干处理程序的食物<105105-<107≥1076.非发酵乳制品及乳制甜品、蛋黄酱及蛋黄酱为主的调料酱、经烹煮的酱汁<105105-<107≥1077.加入调料酱的食物、蘸料、抹酱<106106-<107≥1078.须冷藏且保质期长的食品<106106-<108≥108 d9.生的即食肉类和鱼类、冷烟熏鱼类<106106-<107≥10710.醋渍、腌渍或盐渍的腌制食品不适用不适用不适用11.干制食物不适用不适用不适用12.新鲜水果和蔬菜、含有生的蔬菜的食品不适用不适用不适用13.发酵、腌制和干制的肉类、发酵蔬菜、成熟芝士不适用不适用不适用14.可在一段有限时间内在室温陈列以供出售的经烹煮肉类制品,例如烧味和卤味<105<105-<<106≥<106卫生指示微生物(适用于一般即食食品)肠杆菌科细菌e<102102-≤104>104大肠杆菌f<2020-≤102>102致病菌(适用于一般即食食品)弯曲菌属(耐热)在25克样本中没有检出不适用在25克样本中检出O157 型大肠杆菌(以及其他产志贺毒素大肠杆菌)在25克样本中没有检出不适用在25克样本中检出沙门氏菌属在25克样本中没有检出不适用在25克样本中检出霍乱弧菌(O1群和O139群霍乱弧菌)在25克样本中没有检出不适用在25克样本中检出志贺氏菌属g在25克样本中没有检出不适用在25克样本中检出李斯特菌冷藏食品h(冷凝食品除外)或婴儿食品在25克样本中没有检出i不适用在25克样本中检出i其他即食食品<10j10-≤100j>100 j副溶血性弧菌<2020-≤103>103金黄葡萄球菌及其他凝固酶阳性葡萄球菌<2020-≤104>104产气荚膜梭状芽胞杆菌<1010-≤104>104蜡样芽胞杆菌<103103-≤105>105  注:a.就食物类别未有涵盖的食品,在诠释其需氧菌落计数水平时,应考虑所使用的原材料,以及售前加工程序的性质和程度。b.大部分食品从容器取出时一般都是无菌的。不过,如果有关食品其后再经配制才使用,则应按实物类别5来评估。c.食品如验出含有能产生孢子的厌氧菌(但须经特别检测才能确定是否含有能产生孢子的厌氧菌,以及其含量),即属“不满意”。食物如在原装容器内加以烹煮,一般亦不会含有能产生孢子的厌氧菌,不过罐装鱼类制品可能含有微量能产生孢子的厌氧菌。d.检查有否腐败迹象。乳酸菌在冷藏温度下的生长情况理想,在有氧环境下的生长情况则较差。随着乳酸的产生,腐败情况最终会在乳酸菌含量约为每克样本109个菌落形成单位的水平时出现。如主要的微生物属革兰氏阴性菌,明显的腐败情况(例如假单胞菌产生的斑点、变色及黏质物,其他革兰氏阴性菌产生的黏质物),可能会在含菌量达每克样本107~108个菌落形成单位的水平时出现。e.肠杆菌科细菌的准则适用于经加热处理的食物、鱼类和芝士(以蜂窝哈夫尼亚菌或普通变形杆菌这两种培养菌使其成熟的芝士除外)。这个准则不适用于新鲜水果和蔬菜为配料的食物(如含沙律的三文治),因为肠杆菌科细菌是这类食物常见的菌群,其含量可以很高。f.这个准则不适用于以生乳制成的芝士。g.志贺氏菌属检测会在涉及该菌的食物中毒个案调查或处理食物投诉时进行,但不建议在日常食品监察中检测。h.除非有科学证据证明李斯特菌不易于冷藏环境下在有关食物中生长,这个准则则适用于所有冷藏食品(冷凝食品除外)。可参考食品法典委员会《应用食品卫生的一般原则控制食品中单核细胞增生李斯特菌的准则》(CAC/GL 61-2007)。i.根据ISO 11290-1:1996/Amd 1:2004方法进行。也可采用经过适当验证具有同等敏感度、重现性和可靠性的其他方法。j.根据ISO 11290-2:1998/Amd 1:2004方法进行。也可采用经过适当验证具有同等敏感度、重现性和可靠性的其他方法。2.9 澳门地区对即食食品微生物限量要求  中国澳门《即食食物的微生物含量判定指引》将即食食品微生物检出结果分为满意、接受、不满意和潜在危害4种水平(见表9)。由于需氧菌落计数含量会根据实物类别及生产流程而有不同,故根据其影响因素将即食食品分为3个级别:第一级别应用于所有食物材料在最终加工制作时已烹熟的即食食物;第二级别应用于只有部分食物材料在加工制作时已烹熟,以及最终仍需进一步处理(储存、切片或混合)或不需烹熟的即食食物;第三级别是指需氧菌落计数并不适用的即食食物,例如新鲜的生果、蔬菜(包括沙律)及发酵食物等即食食物,其需氧菌落计数值高是由于正常菌落所致。表9 澳门即食食品微生物限量要求检测微生物质量(每克食物样本的菌落形成单位)满意可接受不满意需氧菌落计数第一级别<105<105≥105不适用第二级别<106<107≥107不适用第三级别不适用不适用不适用不适用指示微生物埃希氏大肠杆菌<2020-100>100不适用致病菌(适用于所有食物类别)金黄色葡萄球菌<2020-<100100-<104≥104产气荚膜梭状芽胞杆菌<2020-<100100-<104≥104副溶血性弧菌<2020-<100100-<103≥103蜡样芽胞杆菌<103103-<104104-<105≥105弯曲菌类在25g食物样本内没有发现不适用不适用在25g食物样本内发现沙门氏菌类在25g食物样本内没有发现不适用不适用在25g食物样本内发现霍乱弧菌在25g食物样本内没有发现不适用不适用在25g食物样本内发现单核细胞增生李斯特氏菌在25g食物样本内没有发现不适用不适用在25g食物样本内发现大肠杆菌O157在25g食物样本内没有发现不适用不适用在25食物样本内发现2.10 我国大陆地区对即食食品微生物限量要求  2013年卫生部组织起草了《食品安全基础标准清理工作方案》,并委托中国疾病预防控制中心营养与食品安全研究所牵头制定食品中致病菌限量标准。工作组对我国现行562项各类标准中的致病菌指标、限量和采样方案进行了梳理,结合国家食品安全风险监测的监测结果和2005-2011年食物中毒的高危食品和致病菌组合的危害特征,参考分析了CAC、欧盟,以及澳新、日本、美国、中国香港、台湾地区等即食食品中的致病菌限量标准及其规定,在考虑食品中致病菌或其代谢产物对健康造成实际或潜在危害的证据的基础上,对致病菌指标进行了删减、增加或修改。同时,参考ICMSF(1996)中各种致病菌的生物学特征描述,分析致病菌对各类食品可能产生的风险,提出采用二级或三级采样方案。《GB 29921—2013食品安全国家标准食品中致病菌限量》于2013年12月26日正式发布,2014年7月1日开始实施,该标准规定了食品中致病菌指标、限量要求和检验方法;该标准针对11类食品的5个致病菌指标作出了限量要求,分别包括沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、大肠埃希氏菌O157:H7和副溶血性弧菌;该标准适用于预包装食品,不适用于罐头类食品。  我国大陆地区目前没有非预包装即食食品微生物限量的通用标准,由于相关标准的缺失,食品监管部门在日常监测工作中只能参照有关产品卫生标准和要求,部分无产品标准的只能以实测值检测,无法进行合格评定,给食品安全监管和执法工作带来一定障碍。3 讨论  随着生活水平的提高及生活节奏加快,餐饮业在人们生活中扮演着越来越重要的角色。餐饮行业经营品种多、数量大、烹调方式多样、食品加工原料供货渠道复杂,且加工过程又多以传统手工操作为主、随意性大,这些都增加了餐饮食品在加工过程中生物危害发生的可能性。餐饮业已成为导致食物中毒发生的高风险行业,已成为食品安全监管中不容忽视的问题。即食食品是餐饮业中的主要食品类别,也是食物中毒高发的对象,如果在食用前不加热,在销售过程中不注意卫生操作,易受微生物污染,引起食物中毒,使消费者身体健康受到影响。  CAC、欧盟,以及英国、澳大利亚和新西兰、美国、加拿大、韩国、香港、澳门等国家和地区针对即食食品微生物限量都制定了相关标准,微生物指标主要包括菌落总数、指示微生物和致病菌三大类,因地域特征和食品类型的差异,每项指标的限量值不尽相同。有的国家将食品划分为多个类别,针对每类即食食品的加工方式和原料组成不同分别对其菌落总数进行规定,例如英国将即食食品分为13个类别对其菌落总数分别进行规定,香港则将即食食品分为14个类别对其菌落总数进行规定;有的地区仅针对某类风险性较高的即食食品规定某一个致病菌指标,例如CAC和加拿大仅对即食食品的单核细胞增生李斯特氏菌项目进行限量规定,欧盟则对单核细胞增生李斯特氏菌和沙门氏菌进行限量规定。  通过分析比较,可以总结以下几点:1)CAC 和欧盟对食品安全的控制更加注重生产加工过程中对微生物的控制,而不仅仅是成品检测;2)中国香港标准制定参照了英国标准的模式,包括食品分类、致病菌项目设置和限量要求基本一致;中国澳门参照了澳新的标准,其内容也是基本一致;3)CAC和欧盟的标准采用多级采样方案(二级或三级),英国、中国香港、澳新和中国澳门的标准只针对单一样本微生物限量进行评估,如需对批次样本评估,则需制定抽样方案。  大肠埃希菌是人类和温血动物肠道正常寄生菌,属于肠杆菌家族中的一类。一般而言,食品中含有大肠埃希氏菌,表示食品直接或间接受到粪便污染。如果食物含有大量大肠埃希氏菌,即代表在处理食物时普遍忽视清洁卫生,而且没有把食物妥为贮存。澳大利亚和新西兰、美国、韩国、英国、中国香港和澳门的即食食品标准均对大肠埃希氏菌进行了限量规定。  沙门氏菌、空肠弯曲菌、大肠埃希氏菌O157、霍乱弧菌等食源性致病菌具有潜在食品安全风险,被污染食品需立即召回。澳大利亚和新西兰、英国、中国香港和澳门的即食食品标准均对这些项目的限量要求为“不得检出”。金黄色葡萄球菌、副溶血性弧菌、产气荚膜梭菌、蜡样芽孢杆菌、单核细胞增生李斯特氏菌等致病菌虽允许少量检出,但随着数量的增加食品安全风险也相应提高,受污染的即食食品可能引起食物中毒,危害人体健康。金黄色葡萄球菌引起的食物中毒与其在食物中形成的肠毒素有关。在货架期内金黄色葡萄球菌的检出数量如果超过105 CFU/g,产生的肠毒素就可导致食物中毒。所以,英国、澳大利亚和新西兰、中国香港和澳门规定不同即食食品金黄色葡萄球菌限量不大于104CFU/g。蜡样芽胞杆菌广泛分布于土壤、尘埃、植物和空气中,易污染食品,需要注意的是该菌污染产毒的食品一般无腐败变质现象,感官性状正常,不易被发觉,只有当它在食物中大量繁殖产生肠毒素才会引起食物中毒,其肠毒素分为腹泻型肠毒素和致呕吐型肠毒素。因此,英国和中国香港标准规定蜡样芽孢杆菌的可接受水平为103~105CFU/g,澳新标准可接受水平为102~103CFU/g,中国澳门标准可接受水平为103~104CFU/g。产气荚膜梭菌引起的食物中毒也是由肠毒素所致,对即食食品中的产气荚膜梭菌,英国和中国香港标准规定的可接受水平为10~104CFU/g,澳新标准可接受水平为102~103CFU/g,中国澳门标准可接受水平为20~102CFU/g。副溶血性弧菌广泛存在于鱼贝虾蟹等海产品以及腌制食品中,溶血素是副溶血性弧菌致病的主要因素,人们食用被副溶血性弧菌污染的食物后极可能会引起食物中毒,副溶血性弧菌食物中毒的发生与摄入量有关。对即食食品中的副溶血性弧菌,英国和中国香港标准规定的可接受水平为20~103CFU/g,澳新标准可接受水平为3~102CFU/g,中国澳门标准可接受水平为20~102CFU/g。在可接受的限量水平内,食用这些即食食品不会带来健康损害,超出可接受水平的食品则会引起食物中毒。4 结语  我国目前没有即食食品微生物限量的通用标准,尤其是在即食食品占重要地位的餐饮业。即食食品监管的主要问题是缺少必要的微生物限量标准,不能有效地对生产过程进行监控,而有害微生物污染是导致餐饮业食物中毒的重要原因。考虑到我国餐饮业的进入门槛较低,食品制作过程中的生熟交叉污染非常严重,食品卫生是一大问题,因此有必要制定餐饮业即食食品微生物限量标准。在制定标准的技术路线上,可参考中国香港和澳门、英国、澳大利亚和新西兰对即食食品中微生物限量的规定,提出适合我国餐饮业即食食品微生物限量的通用标准。
  • 韩国拟修订33种食品添加剂标准规格
    2010年9月3日,韩国食品药物管理局发布第2010-189号预告通知:食品添加剂标准和规范拟定修改案。  该拟定法规修订“食品添加剂一般标准”及33种食品添加剂使用标准。  (1)、婴幼儿配方及配方辅助食品使用食品添加剂的重新分类名单。  (2)、修订以下33种食品添加剂使用标准:亚硒酸钠Sodium selenite 钼酸铵ammonium molybdate 氯化铬chromic chloride 葡萄糖酸锌zinc gluconate 葡萄糖酸铜copper gluconate 腺苷-5'-单磷酸5'-adenylic acid 5-胞苷酸5'-cytidylic acid 5'-胞苷酸二钠disodium 5'-cytidylate disodium 5'-uridylate 硫酸铜cupric sulfate 硫酸锌zinc sulfate 萄糖酸亚铁ferrous gluconate 叶绿醌phylloquinone 葡萄糖酸锰manganese gluconate L-抗坏血酸硬脂酸L-ascorbyl stearate 甜菊甙steviol glycoside 酶改性甜菊糖enzymatically modified stevia 柠檬黄(其铝湖色) tartrazine (其铝湖色) 日落黄FCF (其铝湖色) 蓝光酸性红(其铝湖色) 赤藓红erythrosine 胭脂红 ponceau 4R 艳红(其铝湖色) 固绿。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制