当前位置: 仪器信息网 > 行业主题 > >

精铝光谱分析标准物质

仪器信息网精铝光谱分析标准物质专题为您提供2024年最新精铝光谱分析标准物质价格报价、厂家品牌的相关信息, 包括精铝光谱分析标准物质参数、型号等,不管是国产,还是进口品牌的精铝光谱分析标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精铝光谱分析标准物质相关的耗材配件、试剂标物,还有精铝光谱分析标准物质相关的最新资讯、资料,以及精铝光谱分析标准物质相关的解决方案。

精铝光谱分析标准物质相关的资讯

  • 海岸鸿蒙标准物质|溶液标准物质的选择指南:确保分析准确性的关键
    在化学分析领域,容量分析是一种重要的定量分析方法。它以溶液标准物质为基础,通过精确测量溶液体积来实现对物质含量的测定。溶液标准物质在容量分析中扮演着举足轻重的角色,堪称基石。今天,让我们一起来了解一下溶液标准物质应该如何正确购买。溶液标准物质,顾名思义,是一种已知浓度、具有特定化学性质的溶液。它作为一种参照物,为分析测试提供可靠的比较基准。溶液标准物质的主要特点如下:高准确性:溶液标准物质的浓度值经过精确测定,具有很高的准确性和可靠性。重复性好:溶液标准物质在制备过程中严格控制条件,确保每次制备的溶液具有良好的一致性。稳定性强:溶液标准物质在储存和使用过程中,浓度值不易发生变化,保证了分析结果的稳定性。适用范围广:溶液标准物质涵盖了各类化学物质,可满足不同领域、不同分析方法的实际需求。以下是一份详细的挑选指南,帮助您做出明智的选择。一、明确分析目的首先,我们需要明确分析的目的。无论是环境监测、药品质量控制,还是材料成分分析,不同的应用场景对标准物质的要求各不相同。例如,环境分析可能需要检测多种重金属,而药品分析则更关注药物成分的准确浓度。二、匹配待测物质接下来,根据待测物质的种类选择相应的标准物质。如果你正在检测水中的铅含量,那么你就需要购买含有铅的标准溶液。确保标准物质与你的分析目标一致,是保证结果准确的前提。三、考虑浓度要求标准物质的浓度应该与你的分析方法和仪器的灵敏度相匹配。过高或过低的浓度都可能导致测量不准确。选择时,要确保标准物质的浓度覆盖你的样品预期浓度范围。四、关注准确度和精度准确度和精度是衡量标准物质质量的关键指标。选择有证标准物质(CRM)可以确保其经过严格的质量控制,并提供详细的不确定度信息,这是提高分析可靠性的重要保障。五、认证和溯源性挑选经过权威机构认证的标准物质,确保其具有可追溯性。这意味着标准物质的生产、检验和分发过程都受到严格监管,从而保证了其质量和可靠性。六、稳定性和保质期检查标准物质的稳定性和保质期,确保它们在储存和使用期间不会发生变化。这对于保持分析结果的稳定性至关重要。七、包装和保存条件最后,不要忽视标准物质的包装和保存条件。正确的储存可以防止标准物质变质,确保其在整个使用周期内保持有效。挑选流程一览&bull 确定需求:根据实验或测试的具体要求,确定所需标准物质的种类、浓度、体积等。&bull 查找供应商:选择信誉良好的供应商,审查其提供的产品信息。&bull 审查证书:仔细审查标准物质的证书,确认其关键参数。&bull 比较选项:综合考虑价格、质量和服务,做出最佳选择。&bull 购买样本:如有条件,先购买小样本进行测试验证。&bull 质量控制和验证:通过标准曲线等质量控制程序验证标准物质性能。&bull 记录和存档:记录所有相关信息,并妥善存档,以便追溯。通过以上步骤,我们可以确保挑选到最合适的溶液标准物质,为我们的科学研究和技术检测提供坚实的基础。记住,正确的选择是获得可靠分析结果的第一步。海岸鸿蒙自主研发的溶液标准物质涵盖单元素、容量分析、临床分析、保健品成分分析、食品添加剂及限量物质、农药残留、油液污染、环境检测等系列,共6000余种产品。其中,700多种产品被国家市场监督管理总局批准为国家标准物质。
  • 新书速递 | 《2020年版〈中国药典〉中药标准物质分析图谱》
    《中国药典》《中国药典》标准物质分析图谱集一直以来,已经成为广大分析工作者喜爱的重要参考书。继 2005 版、2010 版、和 2015 版《中国药典》一部二部检测图谱集出版后,中国食品药品检定研究院组织上海诗丹德标准技术服务有限公司和安捷伦科技(中国)有限公司,共同编写了《2020 年版〈中国药典〉中药标准物质分析图谱》,并由中国医药科技出版社于 2024 年 2 月正式出版。《中华人民共和国药典》(以下简称《中国药典》)作为国家药品质量控制、确保人民用药安全有效而依法制定的药品法典,自 1953 年版(第一版)编印发行以来,至 2020 年版已经出版到第十一版。收载的中药相关品种(包括药材与饮片、植物油脂和提取物、成方制剂和单味制剂)从 1953 年版的 78 种,至 2020 年版收载 2711 种,其中相较 2015 年版新增 117 种、修订 452 种;不仅大幅增加了中药饮片的数量和标准,还同时新增了大量的中药化学对照物质。较大地解决了困扰中药产业发展的国家标准较少、地方规范不统一等问题。对有效进行中药质量控制、促进中药现代化的发展起到了重要的推动作用。2020 年 12 月 30 日,2020 年版《中国药典》正式实施,编者团队立刻着手编写针对 2020 年版《中国药典》一部的检测分析图谱集,基本覆盖了所有 2020 年版《中国药典》一部中有含量测定项的品种。本书里,在新增和修订的中药相关液相图谱中,不仅收载了使用经典的 5μm 液相色谱填料进行分析的图谱,如 Zorbax SB-C18、PLus-C18,XBD-C18 等,而且还收录了使用表面多孔层填料色谱柱(Agilent Poroshell 120)分析的结果。Poroshell 4μm 粒径色谱柱的使用,在保持尺寸、相同 HPLC 条件下,获得更好的柱效和分离度,如鹅不食草、淫羊藿、京大戟等。随着新的色谱柱技术的应用,Poroshell 系列将为分析工作者在常规液相色谱体系中,更好地提高中药成分的分离能力,从而更准确地控制药品质量。本书将会为广大色谱分析工作者,提供中药分析色谱柱选择的参考和指导。在编写历版图谱集时,编者团队牢记职责:确保所建立的图谱集与《中国药典》中的标准一致,以保障检测结果及图谱的准确性和可靠性;持续并不断地收集各种中药化学对照品和对照药材或提取物,以丰富图谱集的内容;不断更新和完善图谱集,以适应中药产业的发展和变化。为了回馈广大安捷伦用户,扫码注册,前 50 位用户可领取《2020 年版〈中国药典〉中药标准物质分析图谱》实体书一本。图谱集案例淫羊藿:色谱柱:InfinityLab Poroshell SB-C18 4.6*250mm 4μm测试结果小 结:Poroshell SB-C18 4μm 粒径色谱柱是相同尺寸全多孔 5μm 填料柱效的两倍。在保持药典方法不变的条件下,Poroshell 4μm 色谱柱测试结果,淫羊藿苷理论塔板数远大于系统适应性要求的 8000,与前峰分离度良好。且朝藿定 A、朝藿定 B、朝藿定 C 三个组分相对保留时间符合规定。
  • 岛津发布河水标准物质及自来水中镉的无火焰原子吸收分析法
    根据日本「关于部分修改水质标准相关省令等的省令」(厚生劳动省令第十八号)(2010年2月17日),自来水中镉的标准从0.01 mg/L以下修改为0.003 mg/L以下。新标准已从2010年4月1日开始实施。在新标准中,从过去的4种分析方法中删除了火焰原子吸收法,采用的3种分析方法,1. 无火焰原子吸收法,2. ICP发射光谱分析法,3. ICP质谱分析法。本文介绍对于由日本分析化学会提供的作为认证标准物质的JAC0302河水标准物质(添加),以及在自来水中添加浓度相当于标准值1/10的镉所制成的样品,以无火焰原子吸收法进行分析的实例,并介绍简便的自动稀释再次测定功能。 ■装置和测定条件 装置主机 AA-7000原子化部 GFA-7000自动进样器 ASC-7000 ASK-7000分析波长228.8 nm狭缝宽0.7 nm电流值8 mA亮灯方式BGC-D2石墨管类型热解石墨管进样量2~20 μL(合计进样量为25μL)温度程序干燥 120 ℃灰化 500 ℃原子化 1800 ℃净化 2400 ℃标准液浓度上限浓度0.0012 mg/L(1.2μg/L)干扰抑制剂硝酸钯水溶液5 μL (含钯100 ppm) ■测定结果 制作工作曲线时使用了自动进样器的自动稀释、添加功能,因此,只需在自动进样器中放入稀释液、标准液原液(2 ppb)、干扰抑制剂(硝酸钯水溶液)就可制作工作曲线。根据测定结果。河水标准物质获得了与认证值一致的结果。自来水中添加浓度相对于标准值的1/10的样品,无论真度还是精度都获得了良好的结果。 AA-7000的自动进样器(ASC-7000+ASK-7000)配备了自动稀释再次测定功能。如果使用此功能,则在未知样品浓度超过设置上限时,可以自动地减小采样量重新进行测定。输入未知样品上限浓度,选择自动稀释再次测定,则在测定超过设置上限浓度的样品时,自动减小采样量进行再次测定。自动稀释再次测定的稀释倍率自动地输入自动稀释栏中,显示在实际浓度栏中。通过使用此自动稀释再次测定功能可减轻分析者进行再次测定时的负担。 欲知详情请点击基于无火焰原子吸收法的河水标准物质及自来水中镉的分析。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • 数十项光谱分析相关标准即将实施 ICP-OES方法成“主力军”
    标准先行,规范引领。对科学仪器及分析测试行业而言,相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的价值和意义。  根据中华人民共和国中央人民政府“国家标准信息查询”信息,以“光谱”为关键词搜索(不完全统计),2021年伊始,有数十项光谱分析方法相关的新国标及行标实施或者即将实施。其中,国家标准26项、行业标准25项。特别值得注意的是,51项标准中,ICP-OES 方法31项,占比超过60%!  随着分光及检测器等关键元件的快速发展,电感耦合等离子体发射光谱技术也不断完善,已在地质、环保、化工、生物、医药、食品、冶金、农业等领域发挥着至关重要的作用。ICP-OES具有检出限低、准确度高、线性范围宽、多种元素同时测定等优点,其分析能力和技术的进步为元素分析带来了巨大的便利。业内人士分析道,相较于AAS和ICP-MS,ICP-OES有其非常适合的领域。比如,在环境领域,ICP-OES比ICP-MS更适合分析废水及固废样品,因为其基体耐受性更好。另外其进样系统以及光路是两个独立的系统,意味着其更“耐脏”,系统残留会更少;在食品检测中,ICP-OES比ICP-MS更适合营养元素的分析,因为其中营养元素浓度往往是ppm级,在ICP-MS里面很容易造成饱和,过高的浓度也会大大降低检测器的寿命,而在ICP-OES就不存在这些问题。而与AAS相比,ICP-OES多元素分析的效率还是比较高,而且其线性范围也是远好于AAS。如进行RoHS或者EN71-3等,鉴于应用上的优势,近年来ICP-OES的应用领域有了明显的扩展,大多数元素检测领域都有ICP-OES的身影,特别是在一些新兴领域的分析检测,同时市场采购量的逐年增加也证明了该类仪器有着更为广阔的应用前景。而相关标准方法的推出势头在一定程度上也显示出,ICP-OES已成为了原子光谱仪器的“主力军”!相信伴随着一些标准法规的实施,ICP-OES将在元素分析领域体现出更大的价值。除了ICP-OES方法之外,51项标准中,还有8项标准涉及了原子吸收光谱法,4项标准涉及了原子荧光光谱法,4项标准涉及X射线荧光光谱法,2项标准涉及近红外光谱法, 1项标准涉及拉曼光谱法,1项标准涉及直流电弧原子发射光谱法等。  仪器信息网统计部分如下:国家标准序号标准编号标准名称发布日期实施日期1GB/T 14352.19-2021钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法2021/3/92021/10/12GB/T 14352.21-2021钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/13GB/T 14352.22-2021钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/14GB/T 39560.301-2020电子电气产品中某些物质的测定 第3-1部分:X射线荧光光谱法筛选铅、汞、镉、总铬和总溴2020/12/142021/7/15GB/T 39538-2020煤中砷、硒、汞的测定 氢化物发生-原子荧光光谱法2020/11/192021/6/16GB/T 20975.33-2020铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法2020/11/192021/10/17GB/T 20975.34-2020铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法2020/11/192021/10/18GB/T 39306-2020再生水水质 总砷的测定 原子荧光光谱法2020/11/192021/10/19GB/T 39356-2020肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 电感耦合等离子体发射光谱法2020/11/192021/6/110GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020/11/192021/6/111GB/T 39114-2020纳米技术 单壁碳纳米管的紫外/可见/近红外吸收光谱表征方法2020/10/112021/5/112GB/T 39138.3-2020金镍铬铁硅硼合金化学分析方法 第3部分:铬、铁、硅、硼含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/113GB/T 39143-2020金砷合金化学分析方法 砷含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/114GB/T 8151.22-2020锌精矿化学分析方法 第22部分:锌、铜、铅、铁、铝、钙和镁含量的测定 波长色散X射线荧光光谱法2020/9/292021/8/115GB/T 34609.2-2020铑化合物化学分析方法 第2部分:银、金、铂、钯、铱、钌、铅、镍、铜、铁、锡、锌、镁、锰、铝、钙、钠、钾、铬、硅含量的测定 电感耦合等离子体原子发射光谱法2020/9/292021/8/116GB/T 20975.9-2020铝及铝合金化学分析方法 第9部分:锂含量的测定 火焰原子吸收光谱法2020/6/22021/4/117GB/T 20975.25-2020铝及铝合金化学分析方法 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/6/22021/4/118GB/T 20975.36-2020铝及铝合金化学分析方法 第36部分:银含量的测定 火焰原子吸收光谱法2020/6/22021/4/119GB/T 38744-2020机动车尾气净化器中助剂元素化学分析方法 铈、镧、镨、钕、钡、锆含量的测定 电感耦合等离子体原子发射光谱法2020/4/282021/3/120GB/T 15076.6-2020钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/121GB/T 15076.11-2020钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法2020/3/62021/2/122GB/T 13747.3-2020锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/123GB/T 13747.4-2020锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/124GB/T 4698.10-2020海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)2020/3/62021/2/125GB/T 38513-2020铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/126GB/T 15076.7-2020钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/1行业标准序号标准编号标准名称批准日期实施日期1SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法2020/12/192021/4/12YB/T 4850-2020直接还原铁 全铁、磷、硫、二氧化硅、三氧化二铝、氧化钙和氧化镁含量的测定 波长色散X射线荧光光谱法2020/12/92021/4/13YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/14YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/15YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/16YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/17YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/18YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/19HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/110HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/111YS/T 1363-2020二氧化碲化学分析方法 铜、银、镁、镍、锌、钙、铁、铋、硒、铅、钠、锑和砷含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/112YS/T 739.3-2020铝电解质化学分析方法 第3部分:钠、钙、镁、钾、锂元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/113YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/114YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/115YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/116YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/117YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/118YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/119HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/120HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/121SN/T 5233-2020进出口纺织原料 原棉回潮率测定 近红外光谱法2020/8/272021/3/122SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/123SN/T 5251-2020进出口石油焦中钠、铝、硅、钙、钛、钒、锰、铁、镍、硫含量的测定 波长色散X射线荧光光谱法2020/8/272021/3/124SN/T 5249-2020沉淀水合二氧化硅中铁、锰、铜、铝、钛、铅、铬、钙、镁、锌、钾、钠含量的测定 电感耦合等离子体原子发射光谱法2020/8/272021/3/125SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/1
  • BCEIA 2023,海岸鸿蒙颗粒标准物质强势吸睛
    九月金秋,桂子飘香,两年之约,如期而至。2023年9月6-8日,第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)于北京中国国际展览中心(顺义馆)圆满落幕。此次会议秉承“分析科学创造未来”的愿景,围绕“生命 生活 健康——面向绿色未来”的主题组织了学术报告会、专题论坛及仪器展览会,共吸引了700余家厂商参展,万余名专业观众现场观摩。自正式入场开始,活动现场人潮汹涌,海岸鸿蒙明亮大气的展台人声鼎沸,各式不同的产品整齐有序地陈列在展台上,观众近距离了解各种标准物质的特点及应用。值得一提的是,海岸鸿蒙凭借在颗粒标准物质领域内的独家技术,引来现场众多关注,工作人员为参观者耐心讲解了颗粒标准物质从研发、生产、质量控制等生产程序,以及在环境监测、医疗制药、计量校准等领域发挥的功能作用。来自国内外的参展观众对颗粒标准物质的应用、特点及在各个领域中的重要性有了极大了解,无不认可海岸鸿蒙的研发实力。海岸鸿蒙自1996年成立,便着手颗粒标准物质的研发,27载深耕令海岸鸿蒙颗粒标准物质的研发已达到国内领先、国际前沿水平。其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、不锈钢、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。可以应用在激光粒度仪、流式细胞仪、微粒分析仪、尘埃粒子计数器、液体颗粒计数器、全自动灯检机等仪器的检定校准、分析测试中,也可用于质量控制及科研工作或输液器的滤除滤检测、药典可见异物检测等。颗粒产品可见异物标准物质中国药典用标准物质据工作人员统计,近半数来到海岸鸿蒙的观众表示颗粒标准物质与他们的研究或工作中有着关联性,并希望能够在未来的工作中使用上国产颗粒标准物质,他们深知使用国产颗粒标准物质对保证工作质量、提高设备准确性和优化性价比的重要之处,面对热情的参观者,海岸鸿蒙展台俨然成为了一个交流和学习的平台。展会期间,神州细胞、天津一方等企业,以及计量行业的专家代表前来交流,交谈中,专家代表们为海岸鸿蒙颗粒标准物质的产品竖起大拇指!相关企业先后在现场预约颗粒标物的培训课程,希望通过培训交流可以更好地了解颗粒标准物质的应用和重要性,提高他们的检测水平和质量保障能力。在我国制定的《计量发展规划(2021-2035年)》中,标准物质研发、推广及应用已经上升为“国家战略”。为满足国内相关企业对颗粒标准物质的应用需求,普及颗粒标准物质的专业知识,实现测量结果的有效溯源和量值统一,助力我国颗粒标准物质行业发展,海岸鸿蒙特开展“颗粒标准物质全国巡回培训班”,帮助更多的企事业及科研单位充分掌握颗粒标准物质的专业知识及具体应用。2023年9月1日-2024年8月31日间,有意者可联系海岸鸿蒙进行课程预约,海岸鸿蒙将进行1对1的精讲培训。此外,仪器信息网、仪器学习网等业界媒体先后来到海岸鸿蒙,围绕着行业未来发展趋势、市场模式变化、产品研发技术、商务合作等话题展开了热烈交谈。经过三天的盛会,BCEIA 2023圆满落幕。本次展会为行业提供了一个国际化的交流与合作平台,推动了领域内的互动与合作,为标准物质行业的未来发展注入了新的活力。此次海岸鸿蒙不仅向业界展示了在标准物质领域技术研发上的雄厚实力,更提高了大众对标准物质行业的认知度。展望未来,海岸鸿蒙将继续深耕标物研发与创新,为各领域提供高质量的标准物质,为行业发展做出更大贡献,助力中国标物崛起。
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 国家地质实验测试中心就石墨矿光、质谱分析标准方法进行招标
    p  日前,中国政府采购网发布国家地质实验测试中心石墨矿光、质谱分析标准方法竞争性磋商招标,预算30万元,具体要求如下:/pp  开展石墨矿化学成分光、质谱分析标准方法研究,解决石墨样品中化学成分分析使用电感耦合等离子体发射光谱仪和电感耦合等离子体质谱仪标准化问题,建立适用于不同的复杂基体石墨矿主、次量元素及微量元素系统标准分析方法,利用现代大型仪器分析与经典化学法分析结合,互为验证的石墨矿化学成分系统分析标准化测试体系。在石墨矿化学成分分析研究基础上,开展石墨矿化学成分光、质谱分析标准方法研究,通过协作实验室的验证,形成石墨矿化学成分分析光、质谱分析标准方法。为国土资源勘查和管理工作提供实验分析方法技术支撑。/pp  本次投标属于地质实验测试标准物质与标准方法研制项目2017年度的工作内容,主要任务是完成石墨样品中化学成分分析使用电感耦合等离子体发射光谱仪和电感耦合等离子体质谱仪标准化问题,建立适用于不同的复杂基体石墨矿主、次量元素及微量元素系统标准分析方法。/pp  strong项目名称/strong:石墨矿光、质谱分析标准方法/pp  strong项目编号/strong:0733-176213319001/pp  strong项目联系方式:/strong/pp  项目联系人:裴啸/pp  项目联系电话:010-84865055-202/pp  strong采购单位联系方式:/strong/pp  strong采购单位:/strong国家地质实验测试中心/pp  采购单位地址:北京市西城区百万庄大街26号/pp  采购单位联系方式:吴晓军,010-68999770/pp  strong预算金额/strong:30.0 万元(人民币)/pp  strong获取磋商文件时间/strong:2017年06月13日 09:00 至 2017年06月19日 16:00(双休日及法定节假日除外)/pp  strong获取磋商文件地点/strong:北京市朝阳区新源南路6号京城大厦A座602室/pp/p
  • iPhone变身光谱仪 可对物质进行显微镜级别分析
    这款价值200美元的保护套,能完成总造价超过5万美元的实验  5月27日上午消息,近日来自伊利诺伊大学伊利诺大学香槟分校(Urbana-Champaign)的研究人员将iPhone变成了一个强大的光谱仪。  他们研发了一套检测装置,外形像个保护套。当iPhone被放入这个楔状的保护套里面之后,安装在保护套背面的镜头就会与iPhone相机进行对接,通过一个定制应用就能自动对当前物质进行显微镜级别分析,最终检测毒素、 蛋白质、 细菌、 病毒和其他分子。  这个检测套装包含了各种各样的镜头和过滤器,以及一个配套应用。该装置的核心是将iPhone变为高分辨率光谱仪的光学晶体。据说,这款价值200美元的保护套,能够完成只有在实验室才能完成总造价超过5万美元的实验。不过它的研发费用花了几十万美元,目前这支研发团队也正着手于安卓系统的研发。  该设备还可以用于跟踪地下水污染、 医疗诊断测试、 映射的病原体、 传播或检查食品加工设施的污染。  实际上这并不是iPhone第一次用于这个领域,在年初,曾有一个叫“Uchek”的项目,可将iPhone变成一台尿液检验装置。
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 禾信、毅新博创、东西分析、融智生物及英盛等联合起草微生物质谱鉴定平台国家标准
    近日,国家标准全文公开系统正式发布了国家标准GB/T 42580-2023《智能实验室 微生物质谱鉴定平台》,该项标准将于2023年12月1日起正式实施。国家标准《智能实验室 微生物质谱鉴定平台》 由TC526(全国实验室仪器及设备标准化技术委员会)归口 ,主管部门为中国机械工业联合会。微生物质谱具有高通量、高分辨率、高灵敏度、低成本的优势,在国内临床诊断的应用越来越广泛,如何利用好微生物质谱技术,为临床提供快速,准确的诊断结果,是微生物检测从业人员一直在努力的方向。将微生物鉴定质谱平台与智能实验室设备或终端相连接,实现信息交互,能有效提升实验室效率及诊断准确性。  该项标准的主要起草单位有:北京鑫汇普瑞科技发展有限公司 、机械工业仪器仪表综合技术经济研究所 、秦皇岛海关技术中心 、广州莱伯世开科技有限公司 、北京鑫汇迈科生物科技有限公司 、北京毅新博创生物科技有限公司 、浙江泰林生命科学有限公司 、北京理工大学 、广州禾信仪器股份有限公司 、之江实验室 、北京奥特美克科技股份有限公司 、北京东西分析仪器有限公司 、厦门金诺花生物技术有限公司 、融智生物科技(青岛)有限公司 、山东英盛生物技术有限公司 。  主要起草人 朱家强 、刘利勤 、张桂玲 、卢铁林 、曹蕊 、钱云开 、唐郡 、何颖 、马庆伟 、沈志林 、徐伟 、孔令琴 、程阳 、李磊 、李振廷 、吴玉晓 、高利艳 、刘洪涛 、李运涛 、郭启雷 。
  • 第十五届全国青年分析测试学术报告会 化学计量与标准物质报告集锦
    p  strong仪器信息网讯/strong 2018年7月26-27日,由中国分析测试协会青年学术委员会主办的“第十五届全国青年分析测试学术报告会”在安徽合肥成功召开。会议开设生命科学、环境与食品安全、化学计量与标准物质三个专题的分会报告。以下是化学计量与标准物质专题报告集锦。/pp style="text-align: center "span style="text-align: center "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/cbdda643-ef84-48ff-817a-2a7596e09e31.jpg" title="李晓敏.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李晓敏主持26日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/34410dce-148a-49b6-8707-66c8584ca95c.jpg" title="黄挺.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 黄挺/strong/pp style="text-align: center "strong报告题目:定量核磁共振新方法在有机物纯度定值中的应用/strong/pp  对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。课题组近年来建立了扣减杂质的直接qNMR法等五种新的方法来解决这个问题。方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403f4915-1093-42dd-a1a9-3796d3d34a47.jpg" title="周剑.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 周剑/strong/pp style="text-align: center "strong报告题目:桔皮素纯度标准物质研究/strong/pp  报告介绍桔皮素纯度标准物质的研究,如:采用反相硅胶纯化后旋蒸,采用烘箱及冷冻干燥法干燥,进行标准物质原料纯化。采用液相色谱面积归一化法、定量核磁法和差示扫描量热法进行标准物质定值。采用液相色谱面积归一化法、定量核磁法实现标准物质的不确定度评定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/8513fb74-8dac-4a14-8509-9433815ea134.jpg" title="李明.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李明/strong/pp style="text-align: center "strong报告题目:基于元素分析法的肽纯度定值技术/strong/pp  课题组建立了基于元素分析的肽纯度定值技术。采用元素分析仪测量肽中氮、硫等元素,扣减相关结构杂质中氮、硫等元素含量,根据氮、硫等元素在肽分子中的分子个数及肽分子量等信息,可完成肽的纯度测量 并根据样品准备和仪器分析过程中产生的A类不确定度和B类不确定度进行评价,最终建立元素分析法对肽纯度定值的计量学方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2eeb44ff-a79b-46c4-9e02-7ecee5223374.jpg" title="李海斌.jpg"//pp style="text-align: center "strong中国疾病预防控制中心职业卫生与中毒控制研究所 李海斌/strong/pp style="text-align: center "strong报告题目:疾控领域标准物质研究介绍/strong/pp  报告介绍了课题组开展的疾控领域标准物质研究工作,包括食品和水4种放射性标准物质研制及相关规范、食品和水4种放射性标准物质研制及相关规范、环境卫生领域10种标准物质与应用技术规范研究、公共营养监测中4种标准物质的研制。并从标准物质制备、取样、均匀性检验、稳定性检验、标准物质定值方面介绍冻干牛血中铬成分分析标准物质研究路线。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/aa7924f4-1298-43dd-824f-c261eb1272da.jpg" title="孙鹏.jpg"//pp style="text-align: center "strong北京海光仪器有限公司 孙鹏/strong/pp style="text-align: center "strongHGA100固体测汞仪在土壤及沉积物中的应用/strong/pp  海光公司于2017年推出自主研发的HGA-100直接进样测汞仪,仪器配置自动进样器,具有电子天平数据接口,减轻实验员劳动强度,减少人为误差 实现了直接进样测量功能,简化前处理过程,提高了检测效率和分析准确度,适用于环境、食品等目标物的分析检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3c082797-4f8b-48d9-bfa4-760c2e4e98c6.jpg" title="汪斌.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 汪斌/strong/pp style="text-align: center "strong报告题目:质量控制图在标准物质稳定性评估中的应用探索/strong/pp  报告以化妆品中的铅的含量稳定性监测数据为例,利用平均值-极差质量控制图对数据进行分析,并与数据正态分布检验、可疑值分析、线性趋势分析进行综合比较。通过分析可以发现,质量控制图是观察数据异常的一个非常直观的技术手段,可以与趋势分析方法相结合作为稳定性监测数据分析的补充。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b499cf53-948a-41bc-9a2c-dd3812d50e8e.jpg" title="李明2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李明主持26日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/fb0ce8fe-5238-49c8-8aaa-2ace99827b70.jpg" title="周鑫.jpg"//pp style="text-align: center "strong style="text-align: center "中国测试技术研究院化学研究所 周鑫/strong/pp style="text-align: center "strong报告题目:环境空气监测用VOCs气体标准物质的研制和分析/strong/pp  VOCs是环境监测行业最受关注的污染物之一,而VOCs混标更是从业人员急需的,中国测试技术研究院研发出来多种VOCs标准物质,包括满足美国TO-14A和我国HJ644-2013规定的42组分VOCs标准气体、满足HJ759-2015规定的67组分VOCs标准气体和56组分臭氧前体物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/74a08535-33d8-4259-afb6-a83867442bf9.jpg" title="李晓敏2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李晓敏/strong/pp style="text-align: center "strong报告题目:食品基体中污染物残留多组分准确定值方法研究/strong/pp  报告从分析物、前处理、定量、质量控制等角度介绍食品基体中污染物残留多组分准确定值方法研究。分析物应该关注多组分性质差异、定性确认及有效分离,前处理关注基质特点、化合物极性和机构,定量可采用同位素内标法,质量控制应留意溯源性、过程空白等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/45b469f4-f3e7-4afd-bca8-b7ee5eaafe0d.jpg" title="戴红军.jpg"//pp style="text-align: center "strong广州德标智能化工程有限公司 戴红军/strong/pp style="text-align: center "strong报告题目:用安全呵护生命,实验室气体安全隐患与规范操作处理/strong/pp  广州德标智能化工程有限公司成立于2004年,是德国哈锐斯设备(中国)有限公司的控股公司,致力于实验室安全改造及建设。报告回顾几个典型的气体泄漏事故案例,强调实验室气体安全隐患与规范操作处理。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/9583d270-326a-48bc-88cd-1c5bb5ff7859.jpg" title="杨梦瑞.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 杨梦瑞/strong/pp style="text-align: center "strong报告题目:全蛋液中恩诺沙星残留分析基体标准物质研究/strong/pp  实验采用分散固相萃取(QuEChERS)法作为样品前处理方法,并系统优化并提取剂与净化剂等条件 采用液相色谱-同位素稀释质谱法,8家实验室联合定值,采用已有的纯度标准物质实现量值溯源,得到全蛋液中恩诺沙星基体标准物质定值结果。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/a8e1bec5-afb5-4ff3-a95b-91476b9e57e2.jpg" title="李先江.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 李先江/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法(GC-MS)测定鸡蛋中氟虫腈及三种代谢物残留/strong/pp  课题组首次建立了基于蛋白沉淀、液相萃取、液液反萃取、固相萃取的前处理方法,和气相色谱三重四级杆质谱的检测方法,实现了对鸡蛋集体中氟虫腈和代谢物的有效检测。实际鸡蛋样品分析结果表明,氟虫腈砜含量最高,证明了氧化为氟虫腈在鸡蛋中的主要代谢通路。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1783000a-c463-4090-97fe-888e7269a46d.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所冯流星主持27日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3e55056a-69bf-4d3b-8b1f-039fef9dee8c.jpg" title="张见营.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 张见营/strong/pp style="text-align: center "strong报告题目:脉冲-辉光放电质谱定量分析稀土元素/strong/pp  -辉光放电质谱(GDMS)可以同时分析元素周期表中74种元素,具有固体直接分析 同时完成常量、微量、痕量、超痕量元素分析 检出限低(定量检出限 1ppd)等优势。脉冲模式的优点则有样品消耗少,可溅射时间长 稳定性更好,测量重复性更好 更适用于半导体测量的优点。报告重点介绍了将脉冲-辉光放电质谱定量分析技术用于稀土元素检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2fa3b574-6cee-48b6-8a4d-31312bfdba99.jpg" title="叶金.jpg"//pp style="text-align: center "strong国家粮食局科学研究院 叶金/strong/pp style="text-align: center "strong报告题目:粮油中真菌毒素高通量自动化分析方法的研究/strong/pp  实验将样品提取液中的真菌毒素被特异性的吸附在磁珠表面,通过自动化仪器内置磁棒吸磁、转移、洗涤,最后使目标毒素释放在洗脱液中,即完成了样品前处理过程,直接上机进行检测,全部处理时间小于30分钟。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1e8a82ef-32f7-4b5e-a4f9-098372777ae3.jpg" title="赵亚娴.jpg"//pp style="text-align: center "strong环境保护部标准样品研究所 赵亚娴/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法测定土壤中六溴联苯和多溴二苯醚不确定度研究/strong/pp  研究采用ASE、多层酸碱硅胶层析柱净化的前处理方法,通过优化离子源温度、电压等质谱条件,以13C标记PBDEs同位素作为定量内标,建立同时测定土壤样品中的PBBs和PBDEs的GC-EI/LRMS和GC-NCI/LRMS方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/f7828755-1615-4892-8cf9-028dd5bfbd11.jpg" title="宋善军.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 宋善军/strong/pp style="text-align: center "strong报告题目:多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用/strong/pp  多溴二苯醚不易降解,具有疏水性、生物积累性和生物毒性,可直接或通过食物链的传递富集到人体内,会对甲状腺、肝组织、神经系统和免疫系统造成影响,并具有致癌作用。报告介绍多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用,包括HPLC-UVD、GC-NCI-MS、GC-ICPMS、HPLC-ICPMS、GC-EI-MS等方法。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403d1943-b093-47bc-af1f-25a882c43684.jpg" title="宋善军2.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所宋善军主持27日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/c2ebb063-e5e0-4e51-a166-e973873d0100.jpg" title="肖鹏.jpg"//pp style="text-align: center "strongspan style="text-align: center "中国计量科学研究员化学所 肖鹏/span/strong/pp style="text-align: center "strong报告题目:B型利钠肽在临床检验中的意义及其标准物质的研制/strong/pp  研究发现,BNP 1-32 native MS分析的最大优势是无需引入还原试剂,不产生衍生杂质,但CIO碎裂效果不理想 课题组后期会继续开展二硫键的在线碎裂工作,并同时结合其他类型质谱检测手段和离子碎裂模式。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/ec208cc6-f1d6-4304-85f4-f44c0174e01b.jpg" title="张鹏辉.jpg"//pp style="text-align: center "strong中国测试技术研究院化学所 张鹏辉/strong/pp style="text-align: center "strong报告题目:乙腈中16组分多环芳烃溶液标物制备技术研究/strong/pp  多环芳烃是分子中含有两个以上苯环的碳氢化合物,包含萘、蒽、菲、芘等150余种化合物。有些多环芳烃还含有氮、硫和环戊烷。唱的具有致癌作用的多环芳烃多为四到六环的稠环化合物。报告介绍了乙腈中16组分多环芳烃溶液标物制备技术研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b6379f3f-eb70-48be-bc10-78c48acf154a.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 冯流星/strong/pp style="text-align: center "strong报告题目:稀土溶液标准物质的研制/strong/pp  实验选择Dy、Ho、Er、Tm、Sc五种稀土溶液标准物质为研制对象,采用高纯稀土氧化物为原料,经LA-ICP-MS及XRD对纯度进行分析后,分别制备成浓度为1000μg/mL的稀土溶液标准物质。采用准确、可靠并能溯源的EDTA络合滴定法进行量值核对、均匀性及稳定性检验。对标准物质的不确定度进行了全面的评定。/p
  • 这些光谱分析相关国家标准即将实施
    p  作为应用最为广泛的一大类分析仪器,光谱分析方法已经应用到了各大行业和领域,仅就每年国家标准委等发布的标准制修订计划而言,光谱分析方法的重要性就不言而喻。/pp  根据全国标准信息公共服务平台以“光谱”搜索(国家标准)数据分析,目前现行的国家标准576条,废止的227条,即将实施的25条,涉及火焰原子吸收光谱法、火花放电原子发射光谱分析法、傅里叶变换红外光谱法、电感耦合等离子体原子发射光谱法、直流电弧原子发射光谱法等。另外,还有一系列光谱相关的国家标准计划正在起草、征求意见、审查,或者正在批准中。/pp  仪器信息网部分摘录如下:/ptable width="600" border="1" cellpadding="0" cellspacing="0" align="center"colgroupcol width="72"/col width="108"/col width="184"/col width="73"/col width="76"/col width="72"//colgrouptbodytr class="firstRow"td width="72" /tdtd width="108"标准号/tdtd width="184"标准中文名称/tdtd width="73"发布日期/tdtd width="76"实施日期/tdtd width="72"标准状态/td/trtrtd1/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE8572E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.9-2020/a/tdtd铝及铝合金化学分析方法 第9部分:锂含量的测定 火焰原子吸收光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd2/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FEA472E3E05397BE0A0A6CEB" target="_blank"GB/T 38939-2020/a/tdtd镍基合金 多元素含量的测定 火花放电原子发射光谱分析法(常规法)/tdtd2020/6/2/tdtd2020/12/1/tdtd即将实施/td/trtrtd3/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE0E0F87E05397BE0A0A747C" target="_blank"GB/T 38386-2019/a/tdtd气体分析 气体中氮氧化物的测定 光腔衰荡光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd4/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CED790F87E05397BE0A0A747C" target="_blank"GB/T 7739.2-2019/a/tdtd金精矿化学分析方法 第2部分:银量的测定 火焰原子吸收光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd5/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=996A838ABF868372E05397BE0A0AD949" target="_blank"GB/T 20899.2-2019/a/tdtd金矿石化学分析方法 第2部分:银量的测定 火焰原子吸收光谱法/tdtd2019/12/10/tdtd2020/11/1/tdtd即将实施/td/trtrtd6/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=95A47695C58F4F2CE05397BE0A0AB3E0" target="_blank"GB/T 38056-2019/a/tdtd液体硫磺中硫化氢和多硫化氢的测定 傅里叶变换红外光谱法/tdtd2019/10/18/tdtd2020/9/1/tdtd即将实施/td/trtrtd7/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE0972E3E05397BE0A0A6CEB" target="_blank"GB/T 5687.12-2020/a/tdtd铬铁 磷、铝、钛、铜、锰、钙含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/9/1/tdtd即将实施/td/trtrtd8/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE6572E3E05397BE0A0A6CEB" target="_blank"GB/T 8704.10-2020/a/tdtd钒铁 硅、锰、磷、铝、铜、铬、镍、钛含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/9/1/tdtd即将实施/td/trtrtd9/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FECB72E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.25-2020/a/tdtd铝及铝合金化学分析方法 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd10/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FED872E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.36-2020/a/tdtd铝及铝合金化学分析方法 第36部分:银含量的测定 火焰原子吸收光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd11/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A47A713B765914ABE05397BE0A0ABB25" target="_blank"GB/T 38791-2020/a/tdtd口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/4/28/tdtd2020/11/1/tdtd即将实施/td/trtrtd12/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294932EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.6-2020/a/tdtd钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd13/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A0280129496EEBB4E05397BE0A0AB6FE" target="_blank"GB/T 13747.4-2020/a/tdtd锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd14/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294973EBB4E05397BE0A0AB6FE" target="_blank"GB/T 13747.3-2020/a/tdtd锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd15/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294974EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.11-2020/a/tdtd钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd16/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294978EBB4E05397BE0A0AB6FE" target="_blank"GB/T 38513-2020/a/tdtd铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd17/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEDB90F87E05397BE0A0A747C" target="_blank"GB/T 13747.2-2019/a/tdtd锆及锆合金化学分析方法 第2部分:铁量的测定 1,10-二氮杂菲分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd18/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE0D0F87E05397BE0A0A747C" target="_blank"GB/T 13747.7-2019/a/tdtd锆及锆合金化学分析方法 第7部分:锰量的测定 高碘酸钾分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd19/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE120F87E05397BE0A0A747C" target="_blank"GB/T 15076.2-2019/a/tdtd钽铌化学分析方法 第2部分:钽中铌量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd20/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE1372E3E05397BE0A0A6CEB" target="_blank"GB/T 38812.3-2020/a/tdtd直接还原铁 硅、锰、磷、钒、钛、铜、铝、砷、镁、钙、钾、钠含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/12/1/tdtd即将实施/td/trtrtd21/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A47A713B760914ABE05397BE0A0ABB25" target="_blank"GB/T 38744-2020/a/tdtd机动车尾气净化器中助剂元素化学分析方法 铈、镧、镨、钕、钡、锆含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/4/28/tdtd2021/3/1/tdtd即将实施/td/trtrtd22/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A0280129492DEBB4E05397BE0A0AB6FE" target="_blank"GB/T 4698.10-2020/a/tdtd海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd23/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294970EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.7-2020/a/tdtd钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd24/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE080F87E05397BE0A0A747C" target="_blank"GB/T 15076.10-2019/a/tdtd钽铌化学分析方法 第10部分:铌中铁、镍、铬、钛、锆、铝和锰量的测定 直流电弧原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd25/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=95A47695C58D4F2CE05397BE0A0AB3E0" target="_blank"GB/T 4698.6-2019/a/tdtd海绵钛、钛及钛合金化学分析方法 第6部分:硼量的测定 次甲基蓝分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/10/18/tdtd2020/9/1/tdtd即将实施/td/tr/tbody/tablepbr//ppbr//p
  • 又一大波仪器分析方法标准即将制定 涉及光谱、色谱、质谱等
    p  7月26日,国际标准委发布关于对《蒸压加气混凝土板》等266项拟立项国家标准项目征求意见的通知, 征求意见截止时间为2017年8月9日。/pp  在拟立项的这266条国家标准中,数十项涉及仪器分析及化学分析方法,包括液相色谱质谱法、紫外荧光法、 电感耦合等离子体发射光谱(ICP-OES)法、傅里叶变换红外光谱法、高效液相色谱法、拉曼光谱法、离子色谱法等。仪器信息网特别摘录部分如下: table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="535"p style="TEXT-ALIGN: center"strong标准名称 /strong/p/tdtd width="85"p style="TEXT-ALIGN: center"strong性质 /strong/p/tdtd width="71"p style="TEXT-ALIGN: center"strong状态 /strong/p/tdtd width="159"p style="TEXT-ALIGN: center"strong公示截止日期 /strong/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"生物检材中11种生物碱的检测 液相色谱质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"有机化工产品试验方法 第10部分 有机液体化工产品微量硫的测定 紫外荧光法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"液体硫磺中硫化氢和多硫化氢的测定 傅里叶变换红外光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"直接还原铁 硅、锰、磷、钒、钛、铜、铝、砷、镁、钙、钾、钠含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品色谱分析方法验证通则/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中11种唑类抗真菌药物的测定 液相色谱-串联质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-质谱/质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中碱金属硫化物和碱土金属硫化物的检测 亚甲基蓝分光光度法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中甲巯咪唑的测定 高效液相色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中氨含量的测定 滴定法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中4,4' -亚甲基双(2-氯苯胺)的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"人体外周血中循环游离DNA浓度检测基于Alu序列实时荧光PCR法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"工业微生物菌株质量评价 拉曼光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"气体分析 微量水分的测定 第4部分:石英晶体振荡法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 铬的测定 伏安极谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 汞的测定 测汞仪法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 硫化物和氰化物的测定 离子色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"染料产品中分散黄23和分散橙149染料的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"荧光增白剂产品中磷含量测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"电子烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"活性炭脱汞催化剂化学成分分析方法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第1部分:重量法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第2部分:沸点法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第2部分:沸点法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"直接还原铁 金属铁含量的测定 三氯化铁分解重铬酸钾滴定法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中4,4' -亚甲基双(2-氯苯胺)的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中短链氯化石蜡的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/tr/tbody/table/pp /pp /p
  • 空气产品公司研制的艾必利® 环境气体标准物质取得国家标准物质定级证书,助力更精准的环保分析
    一氧化氮、二氧化氮、二氧化硫是大气中的主要污染物和雾霾前驱物,这些污染物的存在不仅对人体和动植物有直接危害,还是调控臭氧,形成酸雨和光化学烟雾的重要因子,因此,这些污染物是我国空气质量监测的关键参数。随着环保力度的加强,我国环境监测部门对微量环境气体标准物质,尤其是国家有证气体标准物质的需求量急剧增加。为应对我国环境监测用气体标准物质的市场需求,空气产品公司旗下的北京氦普北分气体工业有限公司于2018年立项开展“低含量环境气体标准物质关键技术研究”项目。该项目由技术专家赵俊秀、项目负责人唐亮带领技术团队历时近1年半进行关键技术攻关研究,攻克了气瓶内壁处理、原料气中微痕量关键杂质定值等关键技术,采用称量法成功研制了低含量氮中一氧化氮、氮中二氧化硫、氮中二氧化氮系列气体标准物质,并考察了组分在气瓶中的长期稳定性。通过与国内最高水平的国家实验室开展比对,验证了认定值的准确性,取得了很好的比对等效度,并于2020年正式推出拥有自主知识产权的3种环境监测用低含量气体标准物质系列新产品——艾必利环境气体标准物质。这三种艾必利环境气体标准物质经全国标准物质管理委员会组织专家评审,符合国家二级标准物质定级鉴定技术条件和相关技术规定要求,于近期顺利通过了国家标准物质定级审查,并取得了国家标准物质定级证书。 艾必利环境气体标准物质定值数据表名称国家标准物质编号量分数(×10-6)不确定度(%)氮中一氧化氮气体标准物质GBW(E)0840031.00~10.0210.0~50.01氮中二氧化硫气体标准物质GBW(E)0840041.00~10.0210.0~50.01氮中二氧化氮气体标准物质GBW(E)08400510.0~1002100~1.00×1031.5 艾必利环境气体标准物质能够顺利获得国家标准物质定级证书,是空气产品公司在微痕量环境监测用气体标准物质研究领域的一项重要突破。该成果将广泛应用于我国各省、市和重点地区的环境空气监测、汽车污染物排放限值监测、汽车排气分析仪等分析仪器计量性能评价等,为进一步构建和完善我国气体成分量值溯源体系以及相关国家标准的有效实施起到有力的基础支撑和保障作用。标准物质作为量值传递与溯源的载体,广泛应用于能源、环境、化工等领域各类产品研发、技术评价、校准与质量控制活动中,对各领域的有效分析测量起到十分重要的作用,是确保测量结果可靠与国际互认的核心与关键。作为全球领先的工业气体供应商,空气产品公司长期致力于向客户提供高品质艾必利特种气体产品。包括本次获得国家标准物质定级证书的新产品在内的所有艾必利特种气体产品均采用了严格品控的原料气体,精确控制和检测杂质含量,同时配合先进的充装系统,确保产品的高准确性、长期稳定性以及可追溯性。同时,我们的技术专家不断探索和研发前沿技术,以帮助客户应对环保合规方面的挑战。 如需进一步了解空气产品公司艾必利特种气体产品,可登录我们的展台进行了解。
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 广西分析测试协会立项《化学分析实验室标准物质和标准溶液管理指南》团体标准
    各相关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《广西分析测试协会团体标准制修订工作程序》的有关规定,广西分析测试协会于2024年2月组织专家对《化学分析实验室标准物质和标准溶液管理指南》团体标准进行了立项评审,经审查,上述申报的团体标准符合立项条件,现予立项。如有异议,请在公告之日起10个工作日(3月15日—3月28日)内实名以书面方式向我会秘书处反映,并请提供必要的证据材料和联系方式。联系地址:广西南宁市东葛路20-1号东葛大厦1102室电子邮箱:gxfxcsxh@163.com联 系 人:商榆 18677118331 广西分析测试协会2024年3月14日广西分析测试协会关于《化学分析实验室标准物质和标准溶液管理指南》团体标准的立项通知.pdf
  • 工信部征集数百项标准制修订计划意见,多项标准使用到色、质、光谱分析方法
    近日,工业和信息化部公开征集对《再生锌原料化学分析方法第13部分:铊含量的测定电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法》等377项行业标准和52项国家标准计划项目的意见,并将其予以公示。  涉及高效液相色谱法、电感耦合等离子体质谱法、火焰原子吸收光谱法等分析方法的标准计划项目共计23项,其中有色行业18项、轻工行业5项 与色谱法相关的标准计划6项,质谱法相关5项,光谱法相关11项,同时用到光谱法和质谱法的标准计划1项。  摘录本次公开征集的标准制修订计划项目中涉及谱学分析仪器的部分内容如下:表12018涉及色、质、光谱分析方法标准项目计划表序号申报号项目名称性质制修订代替标准完成年限部内主管司局技术委员会或技术归口单位主要起草单位备注有色行业143YSCPXT1996-2018高纯镓化学分析方法痕量元素的测定电感耦合等离子体质谱法推荐修订YS/T474-20052020原材料工业司全国有色金属标准化技术委员会中铝矿业有限公司基础146YSCPZT1999-2018铝土矿石化学分析方法第28部分:氧化锂含量的测定火焰原子吸收光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会中国铝业郑州有色金属研究院有限公司基础157YSCPZT2010-2018高铋铅化学分析方法第7部分:铜、锌、铁、镍、镉、砷、锑、铋和锡含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会北矿检测技术有限公司基础158YSCPZT2011-2018铋化学分析方法第14部分:铜、铅、锌、铁、银、砷、碲、锑含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会云南驰宏锌锗股份有限公司、昆明冶金研究院、湖南柿竹园有色金属有限责任公司基础159YSCPZT2012-2018混合铅锌精矿化学分析方法第11部分:砷、铋、镉、钴、铜、镍、锑含量的测定电感耦合等离子原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会北矿检测技术有限公司、白银有色集团股份公司、株洲冶炼集团股份有限公司、河南豫光金铅股份有限公司、山东恒邦冶炼股份有限公司基础162YSCPZT2015-2018锆英砂化学分析方法钡含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会国家钨与稀土产品质量监督检验中心、江西省晶安高科技股份有限公司、江西金源有色地质测试有限公司基础166YSCPZT2019-2018富锂锰基正极材料化学分析方法第4部分:锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会国合通用测试评价认证股份公司、国标(北京)检验认证有限公司基础168YSCPZT2021-2018富锂锰基正极材料化学分析方法第6部分:硫酸根含量的测定离子色谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会国合通用测试评价认证股份公司、国标(北京)检验认证有限公司基础169YSCPZT2022-2018高纯钼化学分析方法痕量杂质元素的测定辉光放电质谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会国合通用测试评价认证股份公司、国标(北京)检验认证有限公司基础180YSCPXT2033-2018锑铍芯块化学分析方法第5部分:硅含量的测定电感耦合等离子体原子发射光谱法推荐修订YS/T426.5-20002020原材料工业司全国有色金属标准化技术委员会西北稀有金属材料研究院宁夏有限公司基础181YSCPXT2034-2018锑铍芯块化学分析方法第6部分:氧化铍含量的测定溴甲醇-电感耦合等离子体原子发射光谱法推荐修订YS/T426.6-20002020原材料工业司全国有色金属标准化技术委员会西北稀有金属材料研究院宁夏有限公司基础196YSCPZT2049-2018钴铬钨系合金粉末化学分析方法第6部分:铁、锰含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会广东省工业分析检测中心基础199YSCPZT2052-2018高纯铱化学分析方法杂质元素含量的测定辉光放电质谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、贵研检测科技(云南)有限公司基础200YSCPZT2053-2018高纯钯化学分析方法杂质元素含量的测定辉光放电质谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、贵研检测科技(云南)有限公司基础201YSCPZT2054-2018高纯钌化学分析方法杂质元素含量的测定辉光放电质谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会贵研铂业股份有限公司、国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、金川集团股份有限公司、贵研检测科技(云南)有限公司基础208YSCPZT2061-2018硅碳复合负极材料化学分析方法第3部分:铁、镍、锆、钙、铅、铝、铪含量的测定电感耦合等离子体原子发射光谱法推荐制定2020原材料工业司全国有色金属标准化技术委员会国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、广东省工业分析检测中心、北矿检测技术有限公司基础212YSJNZT2065-2018再生锌原料化学分析方法第12部分:铟含量的测定火焰原子吸收光谱法推荐制定2020节能与综合利用司全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司、韶关市质量计量监督检测所基础213YSJNZT2066-2018再生锌原料化学分析方法第13部分:铊含量的测定电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法推荐制定2020节能与综合利用司全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司、韶关市质量计量监督检测所基础轻工行业264QBCPZT2117-2018口腔清洁护理用品牙膏中三氯蔗糖的测定高效液相色谱法推荐制定2020消费品工业司全国口腔护理用品标准化技术委员会牙膏分技术委员会广州薇美姿实业有限公司基础265QBCPZT2118-2018口腔清洁护理用品牙膏中甜菊糖苷的测定高效液相色谱法推荐制定2020消费品工业司全国口腔护理用品标准化技术委员会牙膏分技术委员会广州薇美姿实业有限公司基础266QBCPZT2119-2018口腔清洁护理用品牙膏中叶绿素铜钠盐含量的测定高效液相色谱法推荐制定2020消费品工业司全国口腔护理用品标准化技术委员会牙膏分技术委员会广州质量监督检测研究院基础267QBCPZT2120-2018口腔清洁护理用品水溶性焦磷酸盐和三聚磷酸盐的检测方法离子色谱法推荐制定2020消费品工业司全国口腔护理用品标准化技术委员会牙膏分技术委员会好来化工(中山)有限公司基础268QBCPZT2121-2018口腔清洁护理用品牙膏中表没食子儿茶素没食子酸酯的测定高效液相色谱法推荐制定2020消费品工业司全国口腔护理用品标准化技术委员会牙膏分技术委员会广州薇美姿实业有限公司、好来化工(中山)有限公司基础  对拟立项标准项目有不同意见,可在公示期填写《标准立项反馈意见表》并反馈至工信部科技司,邮箱地址:KJBZ@miit.gov.cn或cuiwh@miit.gov.cn(邮件主题注明:标准立项公示反馈)。  此外,工信部还批准公布了《蜂胶牙膏中白杨素含量的测定高效液相色谱法》等183项行业标准,其中涉及到高效液相色谱法的行业标准有1项,标准条目摘录见下表:表2涉及高效液相色谱法行业标准编号、名称、主要内容等一览序号标准编号标准名称标准主要内容实施日期轻工行业175QB/T5289-2018蜂胶牙膏中白杨素含量的测定高效液相色谱法本标准规定了蜂胶牙膏中白杨素含量的测定方法。本标准适用于蜂胶牙膏中的白杨素含量的测定。2019-01-01附件:工业和信息化部2018年第三季度行业标准制修订计划(征求意见稿)6326516.docx
  • 80项行业标准公布!有色分析迎光谱“洗牌”潮
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px text-align: justify text-indent: 28px "近日,工信部公布了新一批共/spanspan style="font-size: 16px text-align: justify text-indent: 28px "80/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项行业标准,在/spanspan style="font-size: 16px text-align: justify text-indent: 28px "26/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项有色新行标中,有/spanspan style="font-size: 16px text-align: justify text-indent: 28px "17/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项涉及光谱法的检测新标准。涉及到的光谱检测方法包括/spanspan style="font-size: 16px text-align: justify text-indent: 28px "X/spanspan style="font-size: 16px text-align: justify text-indent: 28px "射线荧光光谱法、电感耦合等离子体原子发射光谱法、火焰原子吸收光谱法、冷原子吸收光谱法等。这些新的光谱法检测行标覆盖了铝及铝合金、掺锡氧化铟粉、高铋铅、高镍锍、镍精矿、铜砷滤饼、铜磁铁矿、铼酸铵、铅冶炼分银渣等有色金属及矿材的化学成分分析。目前这批标准已进入公开向社会征求意见阶段,截止日期2020年1月3日。br//span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "相关标准详情汇总如下:/span/pp style="text-align:center text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 宋体 "工信部最新一批公布的有色行业标准/span/strong/span/ptable border="1" cellspacing="0" cellpadding="0" style="border: none"tbodytr style=" height:1px" class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 806-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铝及铝合金化学分析方法 元素含量的测定 X射线荧光光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铝及铝合金中硅、铁、铜、镁、锰、锌、镍、镓、钛、铬、钒、铅、锡、锶、钙、镧、铈、镨、钕、钐含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铝及铝合金中硅、铁、铜、镁、锰、锌、镍、镓、钛、铬、钒、铅、锡、锶、钙、镧、铈、镨、钕、钐含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1057.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "四氧化三钴化学分析方法 第2部分:氯离子含量的测定 离子选择性电极法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了四氧化三钴中水溶性氯离子含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于四氧化三钴中水溶性氯离子含量的测定。测定范围:0.010%~1.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第6部分:铅、锌和砷含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中铅、锌和砷含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中铅、锌和砷含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.7-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第7部分:银含量的测定 火焰原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中银含量的测定。测定范围:20 g/t~300 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.8-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第8部分:金、铂和钯含量的测定 火试金富集-电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中金、铂和钯含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中金、铂和钯含量的测定。测定范围:金1.00 g/t~100.00 g/t;铂1.00 g/t~200.0 0 g/t;钯1.00 g/t~100.00 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第1部分:铁、铝、铅、镍、铜、镉、铬和铊含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中铁、铝、铅、镍、铜、镉、铬和铊含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中铁、铝、铅、镍、铜、镉、铬和铊含量的测定。测定范围:0.000 5 %~0.010 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第2部分:硅含量的测定 钼蓝光度法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中硅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中硅含量的测定。测定范围:0.000 5 %~0.010 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第3部分:物相分析 X射线衍射分析法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中物相的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中物相的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第1部分:铅含量的测定 Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铅含量的测定。测定范围:50.00%~95.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第2部分:铋含量的测定 Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铋含量的测定。测定范围:10.00%~50.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第3部分:金和银含量的测定 火试金重量法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中金和银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中金和银含量的测定。测定范围:金1.00g /t~50.00 g/t,银1000 g/t~25000 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.4-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第4部分:锑含量的测定 火焰原子吸收光谱法和硫酸铈滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中锑含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅矿中锑含量的测定。方法1测定范围:0. 10 %~4.00 %;方法2测定范围:4.00 %~8.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第5部分:铜含量的测定 火焰原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铜含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铜含量的测定。测定范围:0.10 %~5.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第6部分:锡含量的测定 碘酸钾滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中锡含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中锡含量的测定。测定范围:0.50%~2.00%/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 341.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "镍精矿化学分析方法 第5部分: 铜、铅、锌、镁、镉和砷含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了镍精矿中铜、铅、锌、镁、镉和砷含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于镍精矿中铜、铅、锌、镁、镉和砷含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1346-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜砷滤饼化学分析方法 铼含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铜砷滤饼中铼含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铜砷滤饼中铼含量的测定。测定范围为0.0050%~3.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1047.12-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜磁铁矿化学分析方法 第12部分:硫含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铜磁铁矿中硫含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铜磁铁矿中硫含量的测定。测定范围:0.50%~7.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1047.13-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜磁铁矿化学分析方法 第13部分:汞含量的测定 固体进样直接测定法和冷原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铜磁铁矿中汞含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 仿宋_GB2312 " 本部分适用于铜磁铁矿中汞含量的测定。方法1测定范围:0.010 μg /g~10.0 μg /g;方法2测定范围:>10.0 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/g~500.0 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/g。/span/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 833-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铼酸铵化学分析方法 铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铼酸铵中铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铼酸铵中铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1347-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高纯铪化学分析方法 痕量杂质元素含量的测定 辉光放电质谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了高纯铪中痕量杂质元素含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 仿宋_GB2312 " 本标准适用于高纯铪中痕量杂质元素含量的测定。元素测定范围为:10 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/kg~5000 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/kg。/span/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第1部分:金和银含量的测定 火试金法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中金和银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中金和银含量的测定。测定范围:金0.50 g/t~40.00 g/t,银800 g/t~80000 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第2部分:铅含量的测定 火焰原子吸收光谱法和Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中铅含量的测定。测定范围:0.30 % ~ 5.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第3部分:铜含量的测定 火焰原子吸收光谱法和碘量法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铜含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中铜含量的测定。测定范围:0.10%~5.00%。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法2适用于铅冶炼分银渣中铜含量的测定。测定范围:5.00 %~65.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.4-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第4部分:锑含量的测定 火焰原子吸收光谱法和硫酸铈滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中锑含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中锑含量的测定。测定范围:0. 10%~7.00%。方法2适用于铅冶炼分银渣中锑含量的测定。测定范围:7.00%~45.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第5部分:铋含量的测定 火焰原子吸收光谱法和Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中铋含量的测定。测定范围:0.10 %~5.00 %。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法2适用于铅冶炼分银渣中铋含量的测定。测定范围:5.00 %~50.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第6部分:铅、铜、锑和铋含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铅、铜、锑和铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中铅、铜、锑和铋含量的测定。/span/p/td/tr/tbody/tablep style="text-indent: 28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "而在/span80span style="font-size: 16px font-family: 宋体 "项行业标准公布的同期,工信部还公布了/span2span style="font-size: 16px font-family: 宋体 "项有色行业/spanspan style="font-size: 16px font-family: 仿宋_GB2312 "光谱单点标准样品目录:/span/span/pp style="text-indent: 0em text-align: center "span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 仿宋_GB2312 "工信部最新一批公布的有色行业标准样品/span/strong/span/ptable border="1" cellspacing="0" cellpadding="0" width="NaN" style="border: none " align="center"tbodytr class="firstRow"td style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "序号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "标准样品编号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "标准样品名称/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "有效期/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "研 制 单 位/span/p/td/trtr style=" page-break-inside:avoid"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="margin-left:8px line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: " times="" new=""span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span1span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span/spanspan style="font-size: 16px font-family: 仿宋_GB2312 " /span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "YSS102-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "铝合金6061铸态光谱单点标准样品/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "15年/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="margin-bottom:auto line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "东北轻合金有限责任公司/span/p/td/trtr style=" page-break-inside:avoid"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="margin-left:8px line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: " times="" new=""span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span2span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span/spanspan style="font-size: 16px font-family: 仿宋_GB2312 " /span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "YSS103-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "铝合金6082铸态光谱单点标准样品/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "15年/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="margin-bottom:auto line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "东北轻合金有限责任公司/span/p/td/tr/tbody/tablep style="text-indent: 28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "从中我们可以看出,关于有色行业的检测与分析或将迎来新一轮光谱“洗牌”潮。不过不仅仅是光谱法,从上面的表格中我们也能够看到,新一批标准对有色行业检测的/spanXspan style="font-size: 16px font-family: 宋体 "射线衍射分析法、辉光放电质谱法和滴定法等也有新的规定和要求。/span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "另外,值得一提的是,除了/span26span style="font-size: 16px font-family: 宋体 "项有色标准外,工信部本次公布的新一批行业标准中还包含/span35span style="font-size: 16px font-family: 宋体 "项化工行业标准、/span12span style="font-size: 16px font-family: 宋体 "项冶金行业标准、/span7span style="font-size: 16px font-family: 宋体 "项建材行业标准。其中冶金行业的新标准《锰铁、锰硅合金和金属锰/span span style="font-size: 16px font-family: 宋体 "铅、砷、钛、铜、镍、钙、镁、铝含量的测定/span span style="font-size: 16px font-family: 宋体 "电感耦合等离子体原子发射光谱法/spanYB/T 4801-2020span style="font-size: 16px font-family: 宋体 "》和建材行业的新标准《乙烯/span-span style="font-size: 16px font-family: 宋体 "乙酸乙烯酯共聚物改性防水板中乙酸乙烯酯含量的测定方法/spanJC/T 2556-2020span style="font-size: 16px font-family: 宋体 "》也都明确规定了光谱法检测要求。/span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 宋体 color: rgb(0, 176, 240) "延伸阅读:/span/strong/span/pp style="text-indent: 28px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201912/attachment/3dd85560-642a-4cc3-b2cb-3f5af8006c11.doc" title="工信部新公布80项行业标准名称及主要内容全录.doc" style="color: rgb(0, 102, 204) text-decoration: underline font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体, SimSun "工信部新公布80项行业标准名称及主要内容全录.doc/span/a/p
  • Supelco® 元素分析标准物质大量上新
    任何良好的测定都有赖于校准系统所用的标准物质。按照实验室管理相关法规,仪器的确认、方法的验证等需选用认证参考标准物质(CRM)。今年默克已新增100+种元素分析标准液(CRM)。选择CRM,选择默克Supelco。 ICP和AAS标准液我们TraceCERT 和Certipur 商标ICP和AAS单元素和多元素认证参考物质(CRM)标准液均由纯度的原材料制成,同时满足ISO/IEC 17025和ISO 17034指南的要求,并可溯源至NIST。全面的分析证书(符合ISO指南31准则要求)中列明不确定度。 离子色谱标准液(IC )离子色谱(IC)是根据物质与离子交换树脂的亲和力分离带电荷的分子,分为阳离子交换和阴离子交换两类。离子色谱测定水性溶液中浓度低至万万分之一(ppt)的离子,它是定量分析ppt级浓度离子的理想方法之一。现代仪器和色谱柱的发展使得离子色谱成为一种快速、简单、可靠的分析工具。 我们有一系列离子色谱用认证参考物质(CRM),包括单标和混标,适用于环境、食品和饮料、制药等行业。 部分元素分析标准液新品,部分列举如下:点击此处或随时联系我们,了解标准物质的不同质量级别 货号中文描述质量级别离子色谱(IC)标准液06740-100ML氯离子标准液TraceCERT CRM18895-100ML硅酸根标准液TraceCERT CRM76462-100ML高氯酸根标准液TraceCERT CRM78476-100ML溴酸根标准液TraceCERT CRM79735-100ML硫酸根标准液TraceCERT CRMICP和AAS标准液43843-100ML23种多元素ICP混标6TraceCERT CRM19041-100ML ICH Q3D口服药元素杂质混标1TraceCERT CRM73108-100ML ICH Q3D口服药元素杂质混标2TraceCERT CRM69729-100ML ICH Q3D口服药元素杂质混标3TraceCERT CRM89118-100MLICH Q3D注射用元素杂质混标1TraceCERT CRM关于默克Supelco标准物质自2015 年,默克收购西格玛奥德里奇(Sigma-Aldrich) 后,原Sigma-Aldrich、Merck、Cerilliant 等标准品,均已并入默克Supelco分析品牌旗下。标准物质种类超过20,000 种,涵盖分析标准品、标准物质、CRM 等不同级别的标准物质。随着产业升级、法规更新、研究领域拓宽,我们每年新增标准物质超1,000种,应用于制药、食品、环境、诊断、公安法检等领域。
  • 这30项行业标准和光谱、色谱、质谱等分析方法紧密相关
    p  2020年8月11日,工业和信息化部科技司发布通知,对申请立项的489项行业标准、1项国家标准和4项行业标准外文版计划项目予以公示,截止日期为2020年9月10日。/pp  489项行业标准中,多项涉及光谱、色谱、质谱分析方法,包括辉光放电质谱法、气相色谱法、离子色谱法、红外光谱法、电感耦合等离子体原子发射光谱法、波长色散X射线荧光光谱法等。/pp  摘录30项如下:/ptable border="1" cellspacing="0" cellpadding="0" width="605" align="center"tbodytr class="firstRow"td width="13%"p style="text-align:center "strong申报号 /strong/p/tdtd width="22%"p style="text-align:center "strong项目名称 /strong/p/tdtd width="5%"p style="text-align:center "strong性质 /strong/p/tdtd width="5%"p style="text-align:center "strong制修br/ 订 /strong/p/tdtd width="5%"p style="text-align:center "strong完成br/ 年限 /strong/p/tdtd width="11%"p style="text-align:center "strong部内主管司局 /strong/p/tdtd width="17%"p style="text-align:center "strong技术委员会或br/ 技术归口单位 /strong/p/tdtd width="19%"p style="text-align:center "strong主要起草单位 /strong/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=XBCPZT20662020"XBCPZT2066-2020/a/p/tdtd width="22%"p style="text-align:center "稀土氧化物中杂质元素化学分析方法 strong辉光放电质谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国稀土标准化技术委员会/p/tdtd width="19%"p style="text-align:center "包头稀土研究院、国标(北京)检验认证有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=SHCPZT22082020"SHCPZT2208-2020/a/p/tdtd width="22%"p style="text-align:center "工业用乙烯、丙烯中痕量氢气、一氧化碳、二氧化碳的测定 strong气相色谱-氦离子化检测法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国化学标准化技术委员会石油化学分技术委员会/p/tdtd width="19%"p style="text-align:center "中国石油化工股份有限公司上海石油化工研究院、中安联合煤化有限责任公司 上海赛科石油化工有限责任公司 安捷伦科技(上海)有限公司 上海华爱色谱分析技术有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=SHCPXT22092020"SHCPXT2209-2020/a/p/tdtd width="22%"p style="text-align:center "工业用乙烯、丙烯 痕量硫化物的测定 strong气相色谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "修订/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国化学标准化技术委员会石油化学分技术委员会/p/tdtd width="19%"p style="text-align:center "中国石油化工股份有限公司上海石油化工研究院、中国石化扬子石油化工有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=SHCPZT22142020"SHCPZT2214-2020/a/p/tdtd width="22%"p style="text-align:center "塑料 聚丙烯三氯苯可溶物含量的测定 strong红外光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国塑料标准化技术委员会石化塑料树脂产品分技术委员会/p/tdtd width="19%"p style="text-align:center "中国石油天然气股份有限公司石油化工研究院、北京燕山石化高科技术有限责任公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT22322020"YBCPZT2232-2020/a/p/tdtd width="22%"p style="text-align:center "金属铬 痕量杂质元素含量的测定 strong辉光放电质谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国生铁及铁合金标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、峨眉半导体材料有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT22412020"YSCPZT2241-2020/a/p/tdtd width="22%"p style="text-align:center "铝合金时效析出相的检验 strong透射电镜法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国标(北京)检验认证有限公司、国合通用测试评价认证股份公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23012020"YBCPZT2301-2020/a/p/tdtd width="22%"p style="text-align:center "焦化废水 硫氰酸盐含量的测定 strong离子色谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2023/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国钢标准化技术委员会炭素材料分技术委员会/p/tdtd width="19%"p style="text-align:center "唐山首钢京唐西山焦化有限公司、冶金工业信息标准研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23132020"YBCPZT2313-2020/a/p/tdtd width="22%"p style="text-align:center "连铸保护渣 二氧化钛含量的测定 二安替吡啉甲烷strong分光光度法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国钢标准化技术委员会冶金非金属矿产品分技术委员会/p/tdtd width="19%"p style="text-align:center "鞍钢股份有限公司、山西太钢不锈钢股份有限公司、内蒙古包钢钢联股份有限公司、冶金工业信息标准研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23142020"YBCPZT2314-2020/a/p/tdtd width="22%"p style="text-align:center "连铸保护渣 二氧化硅、氧化钙、氧化镁、三氧化二铝、五氧化二磷、全铁、氧化锰的测定 strong电感耦合等离子体原子发射光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2023/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国钢标准化技术委员会冶金非金属矿产品分技术委员会/p/tdtd width="19%"p style="text-align:center "山东钢铁股份有限公司莱芜分公司、山西太钢不锈钢股份有限公司、鞍钢股份有限公司、冶金工业信息标准研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23152020"YBCPZT2315-2020/a/p/tdtd width="22%"p style="text-align:center "冶金用膨润土 多元素含量检测 strong波长色散X射线荧光光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国钢标准化技术委员会冶金非金属矿产品分技术委员会/p/tdtd width="19%"p style="text-align:center "首钢京唐钢铁联合有限责任公司、首钢集团有限公司、山西太钢不锈钢股份有限公司、武汉钢铁有限公司、冶金工业信息标准研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23182020"YBCPZT2318-2020/a/p/tdtd width="22%"p style="text-align:center "钛精矿(岩矿) 二氧化钛含量的测定 二安替吡啉甲烷strong分光光度法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "鞍钢股份有限公司、冶金工业信息标准研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23192020"YBCPZT2319-2020/a/p/tdtd width="22%"p style="text-align:center "铁矿石 strong物相显微分析方法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "北京欧波同光学技术有限公司、冶金工业信息标准研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23202020"YBCPZT2320-2020/a/p/tdtd width="22%"p style="text-align:center "铁矿石 金属铁含量的测定 strong火焰原子吸收光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "长沙矿冶研究院有限责任公司、冶金工业信息标准研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23212020"YBCPZT2321-2020/a/p/tdtd width="22%"p style="text-align:center "铁精矿 全铁含量的测定 strong便携式能量色散X射线荧光光谱法(半定量法)/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "朗多科技(北京)有限公司、冶金工业信息标准研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23222020"YBCPZT2322-2020/a/p/tdtd width="22%"p style="text-align:center "铁矿石 strong高能脉冲激光全元素在线分析方法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2023/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "力鸿智信(北京)科技有限公司、贝恩讯谱(北京)科技有限公司、冶金标准信息研究院等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23232020"YBCPZT2323-2020/a/p/tdtd width="22%"p style="text-align:center "铁矿石 铅含量的测定 strong原子荧光光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "宁波检验检疫科学研究院、中国检验认证集团宁波有限公司、冶金工业信息标准化研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23242020"YBCPZT2324-2020/a/p/tdtd width="22%"p style="text-align:center "高铬型钒钛磁铁矿 钒、钛、铬、钙、镁、铝、硅、锰和磷含量的测定 strong波长色散X射线荧光光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "攀钢集团攀枝花钢钒有限公司、冶金工业信息标准研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23252020"YBCPZT2325-2020/a/p/tdtd width="22%"p style="text-align:center "铁矿石的鉴别 strong激光诱导击穿光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2021/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国铁矿石与直接还原铁标准化技术委员会/p/tdtd width="19%"p style="text-align:center "上海海关工业品与原材料检测技术中心、上海交通大学、冶金工业信息标准研究院/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23302020"YSCPXT2330-2020/a/p/tdtd width="22%"p style="text-align:center "高纯铝化学分析方法 痕量杂质元素含量的测定 strong辉光放电质谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "修订/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国标(北京)检验认证有限公司、新疆众和股份有限公司、昆明冶金研究院、金川集团股份有限公司、包头铝业有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23322020"YSCPXT2332-2020/a/p/tdtd width="22%"p style="text-align:center "镓化学分析方法 汞、砷含量的测定 strong原子荧光光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "修订/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "中铝矿业有限公司、中铝郑州有色金属研究院有限公司、平果铝业有限公司、国标(北京)检验认证有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23332020"YSCPZT2333-2020/a/p/tdtd width="22%"p style="text-align:center "铝土矿石化学分析方法 第27部分:元素含量的测定 strong电感耦合等离子体原子发射光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "中铝郑州有色金属研究院有限公司、中铝矿业有限公司等/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23442020"YSCPZT2344-2020/a/p/tdtd width="22%"p style="text-align:center "粗氢氧化镍钴化学分析方法 第8部分:铜、铝、锂、锌、镉、铅、砷含量的测定 strong电感耦合等离子体原子发射光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "广东邦普循环科技有限公司、湖南邦普循环科技有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23502020"YSCPZT2350-2020/a/p/tdtd width="22%"p style="text-align:center "锡及锡合金分析方法 strong光电直读光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "云南锡业股份有限公司、昆明冶金研究院、北京康普锡威科技有限公司、云南锡业锡材有限公司、个旧市自立矿冶有限公司、个旧市凯盟工贸有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23512020"YSCPXT2351-2020/a/p/tdtd width="22%"p style="text-align:center "硫化钴精矿化学分析方法 第2部分:铜含量的测定 strong碘量法和火焰原子吸收光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "修订/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "浙江华友钴业股份有限公司、金川集团股份有限公司、衢州华友钴新材料有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23542020"YSCPZT2354-2020/a/p/tdtd width="22%"p style="text-align:center "铜阳极泥化学分析方法 第10部分:铱和铑含量的测定 strong火试金富集-电感耦合等离子体质谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "紫金铜业有限公司、紫金矿业集团股份有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23552020"YSCPZT2355-2020/a/p/tdtd width="22%"p style="text-align:center "铜阳极泥化学分析方法 第11部分:铟含量的测定 strong火焰原子吸收光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "紫金铜业有限公司、紫金矿业集团股份有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23572020"YSCPZT2357-2020/a/p/tdtd width="22%"p style="text-align:center "锂硅合金化学分析方法 第2部分:铁、镍、铬含量的测定 strong电感耦合等离子体原子发射光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国标(北京)检验认证有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23582020"YSCPZT2358-2020/a/p/tdtd width="22%"p style="text-align:center "锆及锆合金中织构的测定 strong电子背散射衍射法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国核锆铪理化检测有限公司、国核宝钛锆业股份公司、宝钛集团有限公司、国家钛材产品质量监督检验中心、西安汉唐分析检测有限公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23652020"YSCPZT2365-2020/a/p/tdtd width="22%"p style="text-align:center "铍精矿、绿柱石化学分析方法 第8部分:氧化铍、三氧化二铁、氧化钙、磷含量的测定 strong电感耦合等离子体原子发射光谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "新疆有色金属研究所、西北稀有金属材料研究院宁夏有限公司、湖南省五矿铍业公司/p/td/trtrtd width="13%"p style="text-align:center "a href="http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23732020"YSCPZT2373-2020/a/p/tdtd width="22%"p style="text-align:center "高纯锇化学分析方法 痕量杂质元素的测定 strong辉光放电质谱法/strong/p/tdtd width="5%"p style="text-align:center "推荐/p/tdtd width="5%"p style="text-align:center "制定/p/tdtd width="5%"p style="text-align:center "2022/p/tdtd width="11%"p style="text-align:center "原材料工业司/p/tdtd width="17%"p style="text-align:center "全国有色金属标准化技术委员会/p/tdtd width="19%"p style="text-align:center "国标(北京)检验认证有限公司、有研工程技术研究院有限公司/p/td/tr/tbody/tablepbr//ppbr//ppbr//p
  • CIS标准《近红外光谱分析技术术语》拟立项
    2023年9月18日,中国仪器仪表学会标准化工作委员会发布关于拟立项(近红外光谱分析技术术语)CIS标准的公示通告,拟制定标准是天津大学申报的《近红外光谱分析技术术语》近红外光谱分析技术具有快速、原位、非破坏性等诸多优点,广泛应用于实验室分析、在线质量检测,可实现多组分多通道同时测定各类样品的成分及含量,包括气体、液体、固态、粘稠体、涂层、粉末等。各种基于新原理、新器件的近红外光谱仪器层出不穷,在农牧、食品、化工、制药、烟草等领域发挥了越来越重要的作用。然而,市场规模及应用需求强势增长的势头之下,我国近红外光谱技术及仪器产业化与推广应用还面临不少问题:近红外分析仪器种类众多,并且基于不同分光及检测原理,相关技术与仪器及应用标准欠缺,典型行业/领域的应用示范不充分,甚至同一技术与仪器的术语及其定义都不同,造成了仪器参数虚标及与应用效果不符等问题;此外,应用客户在仪器选择方面面临标准不统一,验证成本高等问题,不同仪器分析结果差异较大,这些问题都在影响近红外光谱分析技术的推广应用,进而制约我国国产近红外仪器产业的发展。2013发布实施的GB/T 13966-2013《分析仪器术语》规定了分析仪器常用的基本术语、各类分析仪器有关方法、原理、仪器名称、零部件名称及性能特性量方面的术语和定义。但是,缺少与近红外光谱相关的术语及定义规范,无法涵盖各种新型近红外光谱分析技术应用领域。2022年发布实施的T/CIS 17006-2022《傅立叶变换近红外光谱仪技术通则》规定了傅立叶变换近红外光谱仪正常工作条件、功能、技术指标、安全等的要求和试验方法,但是无法覆盖不同原理近红外光谱仪器,术语定义不够全面。为了规范近红外光谱仪器生产及应用,为近红外光谱技术的健康发展提供帮助,需要制定统一的术语定义标准。附件(近红外光谱分析技术术语)CIS标准公示表.docx
  • 质检总局/标准委发布300项国标 多项光谱分析标准明年实施
    p  2017年9月7日,国家质量监督检验检疫总局、国家标准化管理委员会批准300项国家标准和1项国家标准修改单,其中包含多项仪器及分析测试方法,其中以光谱分析方法居多,包括火焰原子吸收光谱法、波长色散X射线荧光光谱法、电感耦合等离子体原子发射光谱法、分光光度法、X射线光谱测试方法、辉光放电原子发射光谱法等。 /pp  仪器信息网编辑摘录部分如下: /ptable width="600" align="center" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="209"p style="text-align: center "标准号/p/tdtd width="373"p style="text-align: center "标准名称/p/tdtd width="140"p style="text-align: center "代替标准号/p/tdtd width="131"p style="text-align: center "实施日期/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%205195.14-2017' " GB/T 5195.14-2017/a/p/tdtd width="373"p style="text-align: center "萤石 镁含量的测定 火焰原子吸收光谱法/p/tdtd width="140"br//tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%205195.15-2017' " GB/T 5195.15-2017/a/p/tdtd width="373"p style="text-align: center "萤石 钙、铝、硅、磷、硫、钾、铁、钡、铅含量的测定 波长色散X射线荧光光谱法/p/tdtd width="140"br//tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%205195.16-2017' " GB/T 5195.16-2017/a/p/tdtd width="373"p style="text-align: center "萤石 硅、铝、铁、钾、镁和钛含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="140"br//tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.30-2017' " GB/T 6730.30-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 铬含量的测定 二苯基碳酰二肼分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.30-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.31-2017' " GB/T 6730.31-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 钒含量的测定 N-苯甲酰苯胲萃取分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.31-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.34-2017' " GB/T 6730.34-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 锡含量的测定 邻苯二酚紫-溴化十六烷基三甲胺分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.34-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.37-2017' " GB/T 6730.37-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 钴含量的测定 4-[(5-氯-2-吡啶)偶氮]-1,3-二氨基苯分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.37-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.38-2017' " GB/T 6730.38-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 钴含量的测定 亚硝基-R盐分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.38-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.39-2017' " GB/T 6730.39-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 镍含量的测定 丁二酮肟分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.39-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.42-2017' " GB/T 6730.42-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 铅含量的测定 双硫腙分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.42-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.44-2017' " GB/T 6730.44-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 锌含量的测定 1-(2-吡啶偶氮)-2-萘酚分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.44-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.47-2017' " GB/T 6730.47-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 铌含量的测定 氯代磺酚S分光光度法/p/tdtd width="140"p style="text-align: center "GB/T 6730.47-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.58-2017' " GB/T 6730.58-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 钒含量的测定 火焰原子吸收光谱法/p/tdtd width="140"p style="text-align: center "GB/T 6730.58-2004/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.59-2017' " GB/T 6730.59-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 锰含量的测定 火焰原子吸收光谱法/p/tdtd width="140"p style="text-align: center "GB/T 6730.59-2005/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%206730.74-2017' " GB/T 6730.74-2017/a/p/tdtd width="373"p style="text-align: center "铁矿石 镁含量的测定 火焰原子吸收光谱法/p/tdtd width="140"p style="text-align: center "部分代替: GB/T 6730.14-1986/p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034176-2017' " GB/T 34176-2017/a/p/tdtd width="373"p style="text-align: center "邻二氮杂菲分光光度法测定耐火材料中的二价和三价铁离子化学分析方法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-08-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034190-2017' " GB/T 34190-2017/a/p/tdtd width="373"p style="text-align: center "电工钢表面涂层的重量(厚度) X射线光谱测试方法/p/tdtd width="140"br//tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034208-2017' " GB/T 34208-2017/a/p/tdtd width="373"p style="text-align: center "钢铁 锑、锡含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034209-2017' " GB/T 34209-2017/a/p/tdtd width="373"p style="text-align: center "不锈钢 多元素含量的测定 辉光放电原子发射光谱法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-06-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034286-2017' " GB/T 34286-2017/a/p/tdtd width="373"p style="text-align: center "温室气体 二氧化碳测量 离轴积分腔输出光谱法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-04-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034287-2017' " GB/T 34287-2017/a/p/tdtd width="373"p style="text-align: center "温室气体 甲烷测量 离轴积分腔输出光谱法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-04-01/p/td/trtrtd width="209"p style="text-align: center "a href="http://www.sac.gov.cn/was5/web/search?channelid=97779&templet=gjcxjg_detail.jsp&searchword=STANDARD_CODE=' GB/T%2034323-2017' " GB/T 34323-2017/a/p/tdtd width="373"p style="text-align: center "炭黑 水分散体透光率的测定 分光光度计法/p/tdtd width="140"p style="text-align: center " /p/tdtd width="131"p style="text-align: center "2018-04-01/p/td/tr/tbody/table
  • 水泥、钢铁等行业的X荧光分析标准物质首选——德国Fluxana公司为您提供
    德国Fluxana公司作为X荧光前处理分析领域的全球领先的提供商,为X荧光分析客户提供包括熔样炉、压片机、固体标准物质等。Fluxana公司凭借其专业的精神为水泥工业、玻璃工业、钢铁工业及原材料等领域提供全套解决方案。· 样品制备设备:熔样炉、压片机和液体分析技术· 标准参考物质:有包括金属、铝制品、石化产品、RoHs在内的多种标准参考物质。 为了方便各个行业的应用方便,Fluxana根据水泥、原材料等行业的行业特点,推出针对这些行业的标准参考物质。做为全球建材行业的领导者的法国拉法基集团,也是Fluxana公司产品的忠实客户之一,我们为其中国子公司提供的水泥行业的标准物质,如下: 拉法基所订购标准物质.pdf 我们针对其他行业的也有相应的标准参考物质校验包,Fluxana愿作您行业分析的首选,详情请致电凯来公司市场部:021-58955731,58955762/63。
  • 这些光谱分析相关标准2022年实施 涉及AAS、IR、XRF等
    作为应用最为广泛的一大类分析仪器,光谱分析方法已经应用到了各大行业和领域。在这个过程中,相关标准的制修订和推行对光谱仪器技术及分析方法的市场推广起到了非常重要的意义,特别是对于一些新技术或者新领域的拓展,以标准“撬”市场成为行之有效的方法。根据全国标准信息公共服务平台信息,以“光谱”为关键词搜索(不完全统计),2022年伊始,有近30项光谱分析方法相关的新国标及行标实施或者即将实施,包含7项原子吸收光谱方法,5项红外光谱分析方法,5项X射线荧光光谱法,4项电感耦合等离子体发射光谱法等。作为一项已经广泛使用的分析技术,原子吸收光谱法在冶金、地质、采矿、石油、轻工业、农业、医药、卫生、食品以及环境监测等领域发挥了重要的作用。据不完全统计,目前现行的原子吸收光谱法相关国标有299项,行业标准417项。此外,还有7项国家标准将于2022年实施,包括《冶金产品化学分析 火焰原子吸收光谱法通则》、《锰矿石 镍含量的测定 火焰原子吸收光谱法》、《工业循环冷却水及水垢中钙、镁的测定 原子吸收光谱法》、《锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法》等。标准号标准中文名称发布日期实施日期GB/T 40374-2021 硬质合金化学分析方法 铅量和镉量的测定 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2021-08-202022-03-01GB/T 7728-2021 冶金产品化学分析 火焰原子吸收光谱法通则2021-08-202022-03-01GB/T 14949.2-2021 锰矿石 镍含量的测定 火焰原子吸收光谱法2021-08-202022-03-01GB/T 14636-2021 工业循环冷却水及水垢中钙、镁的测定 原子吸收光谱法2021-08-202022-03-01GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法2021-10-112022-05-01GB/T 14637-2021 工业循环冷却水及水垢中铜、铁、锌的测定 原子吸收光谱法2021-08-202022-03-01GB/T 5195.11-2021 萤石 锰含量的测定 高碘酸盐分光光度法和火焰原子吸收光谱法2021-08-202022-03-01虽然红外光谱仪已经相对比较成熟,但是其发展,特别是应用方面的拓展却从未停滞,相关的标准也在不断的出台中。目前查询的信息显示,2022年有5项红外光谱法相关的标准即将实施,包括 《中间馏分油中脂肪酸甲酯含量的测定红外光谱法》、《苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法》等。标准号标准中文名称发布日期实施日期GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法2021-10-112022-05-01GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法2021-10-112022-05-01HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红 外光谱法 2021-12-302022-06-01GA/T 1942-2021法庭科学 硝化纤维素检验 红外光谱法 2021-10-142022-05-01GA/T 1919-2021法庭科学 琥珀胆碱和琥珀单胆碱检验 液相色谱-质谱和红外光谱法 2021-10-142022-05-01X射线荧光光谱(XRF)技术,因其非破坏性小、快速、操作简便等特点,广泛应用于RoHS、有害元素检查、工业现场成分分析、贵金属检测、废旧金属回收、地质勘探、环境监测、考古研究、镀层层厚分析、食品安全监测以及生物、化学、药物等众多领域中,是野外现场分析和过程控制分析等方面首选仪器之一。2022年,有4项相关的国标、1条行标即将实施,包括《钒渣 多元素的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)》、《X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K2O、Na2O、CaO、MgO含量》等。标准号标准中文名称发布日期实施日期GB/T 40311-2021 钒渣 多元素的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2021-08-202022-03-01GB/T 40312-2021 磷铁 磷、硅、锰和钛含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2021-08-202022-03-01GB/T 5687.13-2021 铬铁 铬、硅、锰、钛、钒和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2021-08-202022-03-01GB/T 40915-2021 X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K2O、Na2O、CaO、MgO含量2021-11-262022-06-01HJ 1211—2021固体废物 无机元素的测定 波长色散 X 射线荧光光谱法 2021-11-182022-03-01随着分光及检测器等关键元件的快速发展,电感耦合等离子体发射光谱技术也不断完善,其分析能力和技术的进步为元素分析带来了巨大的便利,已在地质、环保、化工、生物、医药、食品、冶金、农业等领域发挥着至关重要的作用。据不完全统计,目前现行的电感耦合等离子体发射光谱法相关国标有115项,另有2项2022年实施,包括《钢铁及合金 硅含量的测定 电感耦合等离子体原子发射光谱法》等。标准号标准中文名称发布日期实施日期GB/T 40374-2021 硬质合金化学分析方法 铅量和镉量的测定 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2021-08-202022-03-01GB/T 223.90-2021 钢铁及合金 硅含量的测定 电感耦合等离子体原子发射光谱法2021-08-202022-03-01SN/T 5347.2-2021铬矿石中铅、锌、磷、钛和镍含量的测定 电感耦合等离子体发射光谱法 2021-11-222022-06-01SN/T 5304-2021煤中全硫、磷的测定 电感耦合等离子体原子发射光谱法 2021-06-182022-01-01此外,即将实施的标准中还涉及了拉曼光谱法、原子荧光光谱法、紫外-可见吸收光谱法等,并且还有一系列光谱相关标准在征求意见或者起草中。标准号标准中文名称发布日期实施日期GB/T 41211-2021 月球与行星原位光谱探测仪器通用规范2021-12-312022-07-01GB/T 41086-2021 基于拉曼光谱技术的危险化学品安全检查设备通用技术要求2021-12-312022-07-01GB/T 24370-2021 纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法2021-12-312022-07-01SN/T 5350.2-2021硫磺 砷含量的测定 原子荧光光谱法 2021-11-222022-06-01GA/T 1943-2021法庭科学 硝酸铵等16种炸药检验 拉曼光谱法 2021-10-142022-05-01NY/T 3870-2021硒蛋白中硒代氨基酸的测定 液相色谱-原子荧光光谱法2021-10-142022-05-01
  • 《近红外光谱分析技术术语》团体标准工作组成立暨标准内容讨论会召开
    仪器信息网讯 2024年1月13日,《近红外光谱分析技术术语》团体标准工作组成立暨标准内容讨论会在常州召开,此次出席会议的共有20余位来自各个工作组成员单位的代表。会议现场近红外分析仪器种类众多,在多种行业或领域有程度不同的应用。当前近红外相关技术、仪器及应用名词术语标准欠缺,极大影响近红外光谱分析技术的推广应用,进而制约我国国产近红外仪器产业的发展。为了规范近红外光谱仪器制造及应用,为近红外光谱技术的健康发展提供帮助,中国仪器仪表学会标准化工作委员会经过评审,决定立项制定《近红外光谱分析技术术语》团体标准,成立标准制定起草工作组。目前,根据中国仪器仪表学会标准化工作委员会工作规范和项目准备,CIS团体标准《近红外光谱分析技术术语》已经进入编制阶段。为保证标准编制工作的有序进行,此次会议主要讨论标准大纲及内容,确定分工与编制安排,并就标准制定相关问题进行讨论交流。此次会议由天津大学副教授李晨曦主持。江苏大学陈斌教授对参会人员进行了介绍,对各单位大力支持近红外标准制定事业表达了感谢。常州工学院校长张兵向大家介绍了常州工学院发展概况及学院建设情况,希望可以与行业内各位专家积极开展项目合作,并向学院推荐相关人才等。天津大学副教授 李晨曦江苏大学教授 陈斌常州工学院校长 张兵接下来,中国仪器仪表学会标准化工作委员会秘书长郭晓维、中石化石油化工科学研究院教授级高工褚小立、云南中烟工业公司技术中心正高级工程师王家俊及四川启睿克科技有限公司高级工程师闫晓剑分别进行了报告分享。中国仪器仪表学会标准化工作委员会秘书长 郭晓维报告题目:《团体标准及国际化》郭晓维认为标准编制工作应向国际化发展,视野放在全球,方向性和战略性的正确十分重要。在报告中,他首先强调了团体标准制定的重要性,通过数据显示,全国有35~36万个社团,截至2023年12月31日,有8445家社团注册制定团体标准,发布了74240项团体标准。当前团体标准工作机遇和挑战并存,中国仪器仪表学会要做什么样的标准化工作?他认为要从战略的层面作出规划和实施。其次,郭晓维向大家介绍了中国仪器仪表学会标准工作组在国际标准组织推进的项目,截至2023年7月,学会制定发布的标准有21项23版,已经国际化或正在国家推进的学会标准占学会已经发布标准总数的28%。最后,对于本次项目工作,郭晓维分享了会议的主要任务、目的、项目的经费原则等,以及感谢会员及非会员对学会标准化工作的支持。中石化石油化工科学研究院教授级高工 褚小立报告题目:《近红外光谱分析技术术语一些建议和想法》褚小立针对近红外光谱分析技术术语提出了一些建议和想法。在会议中,他向大家积极推荐相关的专著、文献、标准和药典等,希望对标准制定有所启发。他建议术语内容要新旧结合、广度和深度结合,更加立体和系统化,使一线用户、科研人员、研究生等都能有所应用。他希望通过本次术语的标准制定工作,可以对之后的辞典/术语条目、光谱史的编撰、近红外光谱分析方法标准制定等有所帮助。云南中烟工业公司技术中心正高级工程师 王家俊报告题目:《近红外光谱分析技术术语》编写意见王家俊在会议中提出此次标准的制定要便于将来标准的升级和国际化,把不同学科专家提出的定义概念统一起来,向国际上有名的标准靠拢以及术语标准制定要结合实际应用的场景,编写出新名词、新定义、新术语,要结合近红外技术特点形成行业规范等一系列建议。四川启睿克科技有限公司高级工程师 闫晓剑报告题目:《近红外光谱分析方法标准努力的方向》闫晓剑对近红外相关产品进行了介绍,他分析了当前行业痛点与市场发展趋势,从MEMS技术、传感器芯片到光谱仪系列产品,进行了不同产品性能的比对,同时,他对长虹便携近红外检测、大型光谱仪检测、传统检测进行了优势比较,向大家分享了其公司产品在酿酒、粮食、烟草等行业的应用案例。会议讨论报告分享之后,李晨曦向术语标准工作组介绍了标准编制大纲及内容,工作组成员对初稿展开讨论。大家对关键的术语进行了补充完善,对部分技术指标的设定进行了纠正和取舍。为了确保标准的专业性和权威性,考虑到标准的普适性,大家对术语的概念内容进行了多方探讨。此外,各位专家对术语的结构、框架和范围,术语的应用场景,相关材料的引用等问题也进行了详细的讨论。为保证标准制定后续工作的有序进行,标准初稿讨论之后,术语标准工作组也对后续工作计划进行了详细的部署。按照计划,术语标准工作组分为3个小组,分别为近红外光谱原理术语编制小组、近红外仪器术语编制小组和近红外分析方法术语编制小组,经过讨论确定、内部汇总、审阅、评审等系列工作后,预计2025年8月底前标准发布。参会人员合影留念附:标准工作组名单如下:
  • 精准改变世界,计量增进互信 BCEIA 2023化学计量与标准物质分会报告会在京召开
    2023 年9月6-8日,第二十届北京分析测试学术报告会暨展览会(简称BCEIA2023)在北京中国国际展览中心(顺义馆)召开。作为BCEIA的重要组成部分,学术报告会邀请了来自海内外众多著名科学家,为大家带来了精彩的学术报告。除大会报告之外,BCEIA 2023还设立了生命科学中的分析技术、化学计量与标准物质、光谱学等11个分会报告会。7日上午,化学计量与标准物质分会报告会正式开讲,围绕标准物质新技术、绿色制造、营养与健康新技术新方法等几个专题方向,邀请到22位国内检验医学领域资深科学家及青年才俊,针对前沿研究热点和计量创新应用展开了丰富的探讨和交融。分会现场BCEIA 2023化学计量与标准物质分会邀请到中国计量科学研究院首席研究员李红梅、国际计量局化学部主任Robert Wielgosz、中国科学院过程工程研究所研究员杜昱光、国家粮食和物资储备局科学研究院研究员王松雪、北京金域医学实验室主任检验师陈宝荣、中国计量科学研究院研究员冯流星、哈尔滨医科大学教授马建、清华大学助理研究员吴增楠、上海市临床检验中心主任技师居漪、中国医学科学院阜外医院研究员周洲、中国计量科学研究院副研究员李明、北京化工大学教授袁其朋、华东理工大学教授庄英萍、瑞典乌普萨拉大学教授李晋萍、清华大学化学工程系教授于慧敏、江南大学国家发酵工程中心教授白仲虎、浙江工业大学教授薛亚平、中国农业科学院农业质量标准与检测技术研究所研究员李亮、上海市计量测试技术研究院教授级高级工程师刘刚、中国计量科学研究院研究员黄挺、北京市计量检测科学研究院工程师潘素素、中国计量科学研究院研究员全灿共22位专家带来精彩报告。化学计量与标准物质分会以“精准改变世界,计量增进互信”为主题,充分展现了近年来我国在化学计量领域取得的重要研究成果以及最新应用进展,如肌钙蛋白检测进展,生物反应器与智能生物制造,绿色生物制造等技术新应用,为推动化学计量与标准物质的计量技术进一步发展贡献一份力量。
  • 浅谈元素形态分析技术现状及发展前景——访中国计量科学研究院国家标准物质研究中心韦超先生、赛默飞世尔科技高级应用化学师Julian David Wills先生
    元素的不同形态具有不同的物理化学性质和生物活性,如无机砷的毒性比较大,有机砷的毒性较小或者基本没有毒性。因此,元素总量的分析已经不能对其毒性、生物效应以及对环境的影响做出科学的评价,“元素形态分析”作为一个崭新的应用研究领域应运而生,对于公共食品安全有着重要意义。经过近三十多年的发展,目前元素形态分析已经成为分析科学领域的一个重要分支。  在中国元素形态分析的研究领域中,中国的倪哲明、江桂斌、张新荣、严秀平、牟世芬、韩恒斌、王秋泉、韦超等科研人员进行了大量高水平的前沿研究,吉天、海光、瑞利等仪器公司也相继推出了基于原子荧光的形态分析仪器。  2012年初,赛默飞世尔科技(以下简称赛默飞)采用离子色谱系统与等离子体质谱仪联用技术,建立了离子色谱-电感耦合等离子体质谱(IC-ICP-MS) 法检测苹果汁中的不同形态的微量砷元素,再一次引起大家的关注。那么,目前用于元素形态分析的方法有哪些?中国元素分析技术的标准现状及未来发展前景如何?基于此,仪器信息网编辑采访了中国计量科学研究院化学所/国家标准物质研究中心韦超老师和赛默飞世尔科技高级应用化学师Julian David Wills先生。中国计量科学研究院国家标准物质研究中心韦超老师  Instrument:韦超老师,您好,首先请介绍一下目前用于元素形态分析的方法及各自的优缺点?  韦超老师:目前元素形态分析多用仪器联机分析方法,传统化学法用的比较少。联机分析法中主要是液相色谱(LC)、气相色谱(GC)、毛细管电泳(CE)、离子色谱(IC)等分离设备和电感耦合等离子体质谱(ICP-MS)、原子荧光(AFS)和原子吸收(AAS)等元素检测仪器联用,随着有机质谱的发展,GC-MS和LC-MS/MS也越来越多地应用于元素形态分析。  传统化学法由于其检出限和抗干扰性的问题,目前应用受到一些限制,原有的一些国标方法(如银斑法测无机砷)也面临着替换问题。联机分析法,结合了LC、GC、CE、IC的高效在线分离功能和ICP-MS、AFS和AAS(注:AFS和AAS一般还需要附加氢化物发生或冷阱等装置)等低检出限、高抗干扰性的元素检测能力,是当前形态分析的主流方法 相关文献很多,目前元素形态分析方法国家标准也集中在这个方面。  有机质谱应用于形态分析是一个新的发展方向,其具备复杂基体中化合物结构鉴定的能力,在当前化学分析仪器中发展最快、受到的关注最多,利用其方法在高水平的学术期刊上也最容易发表文章。  Instrument:赛默飞日前宣布创建了IC-ICP-MS方法并用于苹果汁中砷元素形态的分析,Julian David Wills先生,请您介绍一下这种方法的技术难点和优势有哪些?IC和ICP-MS联接是否属业界首次?  Julian David Wills先生:赛默飞创建的IC-ICP-MS方法不是IC和ICP-MS的首次联接,但是是戴安的IC和赛默飞的ICP-MS的第一次联接。该方法通过IC将不同形态的砷元素分离,利用ICP-MS检测IC中分开的各种形态的元素,其优势体现在高的检测灵敏度和低的检出限,该方法可用于分析不同种类的果汁类饮品,主要元素形态的分析都可以达到ppb级,而且稳定性和重复性都很好。  相比传统的检测方法,IC和ICP-MS联用为砷元素的分离以及不同形态砷元素的检测提供了强有力的分析和检测手段,具有很大的竞争力,在国内或国际也有越来越多的研究人员通过这种方法做出了研究成果并发表。  IC-ICP-MS方法中,IC 采用戴安的IC-5000系统,柱子是Dionex IonPac™ AS7 (2 mm i.d. 250 mm length),该阴离子交换柱不仅能有效分离6种不同形态的砷,还可以将每一种洗脱组分集中到一个很窄的峰,提高了灵敏度。另外比较慢的流速(0.3mL/min)还可以减少样品和流动相的消耗。  IC与ICP-MS可以直接相连,操作非常简单。而且,ICS-5000不是唯一一款可以与ICP-MS联接的仪器,其它型号的IC,比如ICS-1100,ICS-1600,ICS-2100等也可以与赛默飞的ICP-MS联用。除此之外,还有很多可以与ICP-MS相联接的仪器,比如GC、LC、CE等,而且,LC-ICP-MS的接口与IC-ICP-MS的接口类似。  Instrument:韦超老师,您如何评价赛默飞推出的IC-ICP-MS形态分析方法?  韦超老师:赛默飞推出的IC-ICP-MS联用方法,用于果汁中砷元素的形态分析,其优势主要是利用Dionex的阴离子交换柱的高效分离能力,使用单一流动相可以将6种不同形态的砷化合物或离子团进行基线分离,且淋洗时间控制在10分钟内。目前国内也有部分仪器厂商针对砷、汞、硒等元素生产元素分析联用仪,主要使用液相色谱-氢化物发生-原子荧光/原子吸收,虽然其分离度、检出限等性能指标略逊于LC/IC/GC-ICPMS联用,但其价格更亲民一些,适用于国内基层实验室应用推广。  Instrument:韦超老师,您作为中国形态分析方面的专家,请介绍一下您及您的团队在元素形态分析方面的工作?  韦超老师:目前我单位有四名同事,包括我、巢静波、吴冰和崔彦杰,从事关于元素形态分析的计量研究,具体的说,包含标准物质研究、高准确度方法研究和相关国际比对等方面。  在量值溯源性和准确性方面,形态分析对相关标准物质的需求是非常必要和迫切的。近年来,我们在标准物质的研究方面作了很多工作,具体成果包括:水中三甲基铅成分分析标准物质(2种) 砷元素形态分析溶液标准物质(系列)包括亚砷酸根、砷酸根、一甲基砷、二甲基砷、砷甜菜碱和砷胆碱 甲基汞溶液标准物质 鱼肉中总汞与甲基汞成分标准物质 乙基汞溶液标准物质 冻干人尿中砷形态成分标准物质 硒元素形态分析溶液标准物质(系列)包括亚硒酸根、硒酸根和硒代蛋氨酸 三丁基锡溶液标准物质等。  高准确度方法又称权威方法或者绝对测量法,我们在这方面的工作也取得了不少成果:汞元素形态(甲基汞、无机汞)分析同位素稀释-液相/气相色谱-电感耦合等离子体质谱联用方法研究 硒元素形态(无机硒、硒代蛋氨酸)分析同位素稀释-液相色谱-电感耦合等离子体质谱联用方法研究 锡元素形态(无机锡、三丁基锡)分析同位素稀释-液相色谱-电感耦合等离子体质谱联用方法研究 砷元素形态(亚砷酸根)库仑法研究 铬元素形态(三价铬离子、重铬酸根)库仑法研究等。以上方法均可通过同位素比值测量或物理量测量直接溯源至SI基本单位,是国际计量界认可的高准确度测量方法。除此之外我们还以相对测量方法(如LC-ICPMS法、LC-HG-AFS法和GC-ICPMS法)研究了铅、溴等其它元素或砷、汞、硒、锡的其它形态。  另外,国际计量委员会非常关注元素形态分析方面的计量学研究,相继开展了十余次该领域的国际比对,以验证各个国家的元素形态测量校准能力,特别是其溯源性和国际的等效一致程度。自2005年以来,中国计量科学研究院化学所(国家标准物质研究中心)获得良好的成绩,确保了我国元素形态分析的量值溯源和国际等效一致。  Instrument:请您介绍一下中国目前有关形态分析的方法标准建立情况?  韦超老师:目前中国有关形态分析的方法标准主要有:GB/T5009.17 -2003 食品中总汞及有机汞的测定 GB/T5009.11 -2003食品中总砷及无机砷的测定 GB/T 20188-2006小麦粉中溴酸盐的测定 离子色谱法 GB/T 22932-2008皮革和毛皮 化学试验 有机锡化合物的测定 行业性标准主要有:SNT 2316-2009 动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留联的检测方法 液相色谱-电感耦合等离子体质谱法。以上形态分析的检测方法标准的推出,填补了相关领域的国内空白,在国际上也属于先进水平。  Instrument:形态分析联用技术的市场需求及发展前景如何?  韦超老师:经过十几年的发展,形态分析联用技术的学术研究已经获得了丰厚的成果,但是相关的市场需求还没有完全激发出来。第一个原因是相关的国家限量标准较少,目前仅对部分产品的甲基汞、无机砷等有强制限量标准,从法规上对产品厂商的约束较少,开展相关检测项目的实验室也不多 第二个原因是形态分析联用技术的成本较高,如ICP-MS仪器单价就要一百万人民币以上(国产形态联用分析仪器也在二十万元以上),同时技术难度较大,分析人员需要具备较高的专业素养。以上两个原因导致形态分析联用技术的市场还处于培育阶段。  但考虑到我国经济贸易的蓬勃发展和人民群众对食品安全环境保护的日益关注,形态分析联用技术市场的发展前景还是十分乐观的,一旦相关技术法规、限量标准得以确立完善,联用仪器开发生产形成规模化,将会带来爆发性增长。  Julian David Wills先生:面对当前食品安全频发的现状,亟待建立一种简单、高效并且准确的快速检测方法。而IC-ICP-MS具有高的灵敏度、低的检出限,未来将会有很多的用户。不过,IC-ICP-MS方法还不是美国或者欧盟用于砷元素形态分析的标准方法。  备注:据悉,用于食品当中砷元素形态分析的标准已经通过审核,并将于近期颁布,其中AFS与色谱联用是第一方法,ICP-MS是第二方法。业内有关专家预测,一旦相关标准颁布实施,将有力推进该系列仪器的推广,对相关仪器生产厂商来说是一个利好的消息。  采访编辑:叶建  附录:表一:中国计量科学研究院(国家标准物质中心)研制的元素形态分析标准物质时间标准物质编号标准物质名称2006GBW(E)080971GBW(E)080972水中三甲基铅成分分析标准物质 (2种) 2007GBW08666~ GBW08671砷元素形态分析溶液标准物质(系列)包括亚砷酸根、砷酸根、一甲基砷、二甲基砷、砷甜菜碱和砷胆碱2008GBW08675甲基汞溶液标准物质 2008GBW10029鱼肉中总汞与甲基汞成分标准物质2008GBW(E)081524乙基汞溶液标准物质 2009GBW09115冻干人尿中砷形态成分标准物质2009GBW10032~GBW10034硒元素形态分析溶液标准物质(系列)包括亚硒酸根、硒酸根和硒代蛋氨酸2009GBW08710三丁基锡溶液标准物质 表二:国际物质量咨询委员会(CCQM)组织的元素形态分析相关国际比对TimeCodeAnalyteMatrixPilot laboratoryThe number of participants2001CCQM P18Organo-tinSedimentNRCC & LGC112003CCQM P43Organo-tinSedimentNRCC & LGC132003CCQM K28Organo-tinSedimentNRCC & LGC72004CCQM P39MethylmercuryTunafishIRMM142005CCQM P39.1MethylmercurySalmonfishIRMM82005CCQM K43MethylmercurySalmonfishIRMM52006CCQM P86SelenomethionineYeastLGC & NRCC102007CCQM K43.1MethylmercurySwordfishNMIJ102007CCQM P96ArsnobetaineSwordfishNMIJ & NIM82008CCQM K60SelenomethionineSe-rich wheat flourLGC & NRCC142009CCQM P114PBDE & PBBPlasticIRMM72010CCQM P96.1ArsnobetaineSolution & CodfishNMIJ & NIM82012CCQM K97&P133ArsnobetaineSolution & tunafishNIM & NMIJ8
  • 《质谱分析方法通则》国家标准正式发布
    p  近日,国家标准化管理委员会在2020年第4号中国国家标准公告中发布了《质谱分析方法通则》(GB/T 6041—2020)。该标准将代替GBT 6041—1985、GBT6041—2002。新标准将在2021年2月1日实施。/pp  该标准由中国石油和化学工业联合会提出。归口全国化学标准化技术委员会。起草单位有:中国石油化工股份有限公司北京化工研究院、上海市计量测试技术研究院、广州中科检测技术服务有限公司、复旦大学以及衢州氟硅技术研究院。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 360px height: 252px " src="https://img1.17img.cn/17img/images/202004/uepic/8607a3c4-a493-48c5-8440-c90cf4e8fa17.jpg" title="GBT 6041-2020.jpg" alt="GBT 6041-2020.jpg" width="360" vspace="0" height="252" border="0"//pp  strong新版本中的变化主要有:/strong/pp  span style="text-decoration: none "(1)span style="text-decoration: none color: rgb(255, 0, 0) "关于定性分析/span:增加相关描述和术语解释,如“质荷比”“质量准确性” 增加了定性分析的“样品分析”“数据分析”和“结果报告”等项目。/span/ppspan style="text-decoration: none "  (2)span style="text-decoration: none color: rgb(255, 0, 0) "关于定量分析/span:增加了术语解释,如“质量范围”“提取离子色谱图” 增加了定量分析的“结果报告”项目。/span/ppspan style="text-decoration: none "  (3)span style="text-decoration: none color: rgb(255, 0, 0) "增加了新设备的标准/span:扩散进样系统等进样器,ESI、APCI、MALDI、ICP、STI等离子源,离子透镜以及TOF、3D/linear ion trap、Orbitrap等质量分析器。/span/pp  质谱(Mass Spectrometry, MS)是一种测量未知化合物质量的方法,是纯物质鉴定的有力工具。与色谱联用,可以检测不同组分的物质 与光谱、NMR联用,可以推测出化合物的具体结构。广泛应用于科学研究,化工产业,医学检验以及药物分析等领域。/pp  详细文件请点击a href="https://www.instrument.com.cn/download/shtml/948710.shtml" target="_self"【此处链接】/a/ppbr//p
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制