当前位置: 仪器信息网 > 行业主题 > >

酮咯酸氨丁三醇峰鉴别

仪器信息网酮咯酸氨丁三醇峰鉴别专题为您提供2024年最新酮咯酸氨丁三醇峰鉴别价格报价、厂家品牌的相关信息, 包括酮咯酸氨丁三醇峰鉴别参数、型号等,不管是国产,还是进口品牌的酮咯酸氨丁三醇峰鉴别您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酮咯酸氨丁三醇峰鉴别相关的耗材配件、试剂标物,还有酮咯酸氨丁三醇峰鉴别相关的最新资讯、资料,以及酮咯酸氨丁三醇峰鉴别相关的解决方案。

酮咯酸氨丁三醇峰鉴别相关的资讯

  • 蜂蜜中糖类营养物质测定与掺假蜂蜜鉴别
    蜂蜜是一种常见的健康食品,口味香甜,营养丰富。蜂蜜主要成分是糖类,包括单糖、二糖、低聚糖和多糖等,此外还含有人体需要的大部分矿物质和各种维生素、有机酸、氨基酸、生长素等营养物质,所以其药用价值也非常广泛,可作为中成药辅料,也对神经衰弱等慢性疾病有良好的辅助疗效。由于蜂蜜广泛的营养价值,在市场上广受欢迎,但假冒伪劣产品随之而来,且名目繁多,对食品安全构成重大威胁。有关蜂蜜掺假检测方法较多,这里分两类进行简单汇总:现有标准和法规方法、近年来新技术新方法。蜂蜜掺假相关综述文章也比较多[1-3],感兴趣的读者可查阅相关文章。一、现有标准和法规方法国标GB14963-2011食品安全国家标准蜂蜜中定义,蜂蜜是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中明确规定果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。市场上蜂蜜掺假形式主要包括添加葡萄糖、果糖、蔗糖、C3 植物糖浆(甜菜糖浆、大米糖浆)、C4植物糖浆(玉米糖浆、甘蔗糖浆)、高果糖浆和果葡糖浆等等。针对添加C4植物糖浆掺假,依据国标GB/T 18932.1-2002 蜂蜜中碳-4植物糖含量测定方法-稳定碳同位素比率法可鉴定,但其不能鉴别添加C3植物糖浆的蜂蜜。国标GB/T 21533-2008 中,以淀粉糖浆中含有的五糖以上的低聚糖为标志物, 将低聚糖富集后采用阴离子交换色谱-脉冲安培检测器(HPAEC -PAD) 检测,可以实现对蜂蜜中淀粉糖浆掺假的检测。2020版药典也是按照五糖以上的低聚糖为标志物,检测方法为薄层色谱法。国标GB/T 18932.2-2002 蜂蜜中高果糖淀粉糖浆测定方法-薄层色谱法对蜂蜜中寡糖多糖进行定性测定,也可鉴别蜂蜜中是否含有淀粉糖浆。二、近年来新技术新方法现代分析技术的发展为蜂蜜的鉴别提供了越来越多的新方法,屈亮亮等[4]采用基质辅助激光解吸电离质谱(MALDI-MS)分析了蜂蜜及其掺假样品中的糖类以及小分子代谢物。在正离子模式下,通过比较蜂蜜样品和掺假样品的MALDI-MS谱图在多糖聚合度以及糖类分布趋势上的差异,可对掺假样品进行快速鉴别。在负离子模式下通过寡糖异构体组成上的差异,可对掺假样品进行高通量鉴别。刘彩云等[5]采用高效液相色谱-电化学联用技术对中蜂蜂蜜中所含的 12 种酚类化合物进行了鉴别和含量测定,构建了陕西不同地区中蜂蜂蜜的酚类色谱指纹图谱。并对共有峰进行匹配,提取特征峰信息,可对掺假蜂蜜进行鉴别。杨远帆等[6]通过测定蜂蜜和果葡糖浆中脯氨酸含量后发现,蜂蜜中氨基酸的量随果葡糖的掺入量的增加呈线性减小趋势,由此建立了一种基于测定脯氨酸含量鉴别蜂蜜掺假的有效方法。杨心浩等[7]通过研究,建立了采用红外光谱测定蜂王浆品质并基于 NIR 光谱结合水光谱组学建立了检测麦卢卡蜂蜜掺假糖浆的新方法。核磁共振技术结合化学计量学分析方法也成功运用于蜂蜜和其它食品的分析检测中。Bertelli 等[8]比较了一维(1D)和二维(2D)高分辨核磁共振(nuclear magnetic resonance,NMR) 对掺杂糖浆的蜂蜜的检测效果, 发现1D 核磁谱有较高的预测正确率(95.2%)。不同的蜂蜜来源组成不同产生的气味不同, 从而在电子鼻气体传感器中产生的指纹图谱也不同。裴高璞等[9]发现电子鼻对掺假蜂蜜比较敏感,LDA模式识别算法可以将纯蜂蜜样品与掺假蜂蜜样品很好的区分开,识别正确率可达94.7%。江瑶等[10]基于代谢组学技术,采用超高液相色谱串联四级杆轨道离子阱高分辨质谱(UHPLC-Q Exactive Obitrap LC-MS)对样本原始数据进行采集,获取的数据通过多元统计分析实现对比较样品组的区分,找到的可能的标志性代谢物进行二级质谱分析寻找碎片离子,初步完成标志性代谢物的定性工作。对真蜂蜜与已知劣质蜂蜜进行区分。由于蜂蜜成分的复杂性,单一的鉴别方法也可能无法达到鉴定目的,这时可以考虑将多种方法联合使用, 多组分多指标对蜂蜜进行检测。 根据2020版药典蜂蜜含量测定项[11]下方法采用聚合物氨基柱分析4种常见糖,使用电雾式检测器(CAD)替代示差检测器进行测定取得了较好的效果。CAD作为一款通用型检测器,被2020版药典所收载,其具有良好的动态范围、一致的响应和出众的灵敏度,适用于大部分非挥发性和半挥发性有机物的检测,该检测器用于糖的检测,较示差检测器灵敏度更高,而且适用于梯度洗脱条件。图1是CAD测定某蜂蜜样品中4种常见糖的谱图。图1 蜂蜜中4种糖含量测定1:果糖 2:葡萄糖 3:蔗糖 4:麦芽糖近年来常用的蜂蜜掺假手段中,利用果葡糖浆掺假[12,13]形式最为普遍。果葡糖浆是由植物淀粉水解制得,如玉米或红薯淀粉,加工简单,成本低廉。蜂蜜中不含五糖(DP = 5)以上的寡糖,但在果葡糖浆中却广泛存在。2020版药典据此在蜂蜜检查项下采用薄层色谱法对寡糖进行鉴别[11],该方法灵敏度差、误差较大,存在很大的局限性。 赛默飞采用液相色谱法,聚合物氨基柱分离、电雾式检测器(CAD)检测,可以测定不同聚合度的寡糖,并依据五糖(DP = 5)以上寡糖的存在作为蜂蜜中果葡糖浆的判定指标,方法灵敏度高,并且具有很好的普及性。混合对照品与样品测定谱图见图2和图3。图2 寡糖混合对照品1:麦芽糖和异麦芽糖 2:麦芽三糖 3:麦芽四糖 4:麦芽五糖 5:麦芽六糖 6:麦芽七糖图3 果葡糖浆和蜂蜜样品叠加(1-果葡糖浆,2-蜂蜜样品)1:麦芽五糖 2:麦芽六糖图3可以看出该样品中未检出聚合度5以上(DP 5)的寡糖。为了考察方法准确度,我们在空白蜂蜜样品中添加麦芽五糖、麦芽六糖和麦芽七糖进行了加标回收率实验,添加浓度水平分别为为0.10、0.25和0.50mg/g,加标回收率在95.2%-100.7%之间,证明方法准确度较高。另外本方法灵敏度较高,添加1%果葡糖浆即可明显检出。HPLC-CAD方法可以方便地测定蜂蜜中糖类营养物质含量,对掺假蜂蜜中的果葡糖浆具有高灵敏度的检出,方法操作简便,保障了蜂蜜的品质,为百姓餐桌食品安全保驾护航。参考文献:1. 岳锦萍, 徐雨欣, 范佳慧, 邢 璇, 任 虹. 食品安全质量检测学报, 2018, 9(19): 5138-5145.2. 郑优,王欣,毛锐. 食品与发酵科技, 2018,54(6):76-82.3. 杜宗绪.保鲜与加工, 2015, 15(5): 67-71.4. 屈亮亮. 基于MALDI的高通量蜂蜜糖浆掺假检测及植物源鉴别分析[D]. 南昌:南昌大学.5. 刘彩云. 中蜂蜂蜜酚类色谱指纹图谱构建及加工对蜂蜜中酚类物质影响[D]. 西安:西北大学.6. 杨远帆,倪辉,吴黎明.茚三酮法测定蜂蜜及果葡糖 浆中的氨基酸含量[ J].中国食品学报, 2013, 13 (2) : 171 -176.7. 杨心浩,基于红外光谱分析蜂王浆品质及鉴别麦卢卡蜂蜜掺假的方法研究[D].广州:暨南大学.8. BERTELLI D, LOLLI M, PAPOTTI G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance [J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8495-8501.9. 裴高璞, 史波林, 赵镭, 等.典型掺假蜂蜜的电子鼻信息变化特征及判别能力[J].农业工程学报, 2015, 31(1): 325-331.10. 江瑶, 基于代谢组学技术寻找蜂蜜标志性代谢物并探究其应用[D].济南: 山东师范大学. 11. 国家药典委员会 . 中华人民共和国药典 [ M ] . 一部. 北京: 中国医药科技出版社, 2020: 374-375. 12.任雪梅, 胡梅, 周传静, 王文特, 吴裕健. 山东农业科学, 2013, 45(2): 117-119.13.黄文诚, 蜜蜂杂志, 2010, 4: 18-19.赛默飞世尔科技(中国)有限公司刘兴国供稿附:食品安全事关人民群众的身体健康和生命安全,关系中华民族的未来。俭以养德、诚信为本是中华民族的传统美德,保障食品安全更需要尚俭崇信、德法并举。进入全面小康社会,人民群众对食品安全营养健康的需求不断提升,必须坚持“四个最严”,严格源头治理,严格过程监管,严厉打击食品安全违法犯罪。全国食品安全宣传周(China Food Safety Publicity Week),是国务院食品安全委员会办公室于2011年确定在每年六月举办的,通过搭建多种交流平台,以多种形式、多个角度、多条途径,面向贴近社会公众,有针对性地开展风险交流、普及科普知识活动。2021年全国食品安全宣传周活动已于6月8日正式启动,而本次活动的主题为“尚俭崇信 守护阳光下的盘中餐”。作为保障食品安全的不可或缺一环,科学仪器在“保护舌尖安全”的过程中发挥了非常重要的作用!为此仪器信息网在食品安全宣传周期间特推出专题“关注食品安全——仪器人在行动”,一起领略下仪器人守护食品安全的风采!
  • 五道检测关口看护原料 鉴别蜂胶真假
    发明专利鉴别蜂胶真假 五道检测关口看护原料  ――杭州蜂之语蜂业有限公司十年潜心钻研蜂产品检测防假技术抵御假冒  “到底现在有多少蜂产品的质量是安全可靠?”  “潜规则存在有10年了,到底有没有人能够鉴别出蜂产品的真伪?”  最近一段时间以来,蜂蜜和蜂胶等蜂产品造假的潜规则被媒体揭露,一时间引起了消费者的高度关注,他们为了自己的消费安全大声疾呼。  其实媒体曝光的这些假冒蜂产品还是有技术手段可以鉴别出来的。在接受记者采访时,不止一位业内专家表示,虽然目前法定的检测标准有些滞后,但是鉴别蜂产品的办法还是有的,只不过是这些办法目前还是属于科学研究的成果,还没有上升到国家标准,还不能成为执法检查的依据。  专家介绍说,浙江大学和一些有良心和责任感的企业在科研和生产实践中积极开展研究,已经形成了几种成熟的鉴别检测方法。杭州蜂之语蜂业有限公司就是这样一家企业,他们自1998年首次发现蜂产品原料存在掺假现象以来,就一直把防假技术研究作为公司的核心工作,并且成功地把这些技术方法应用到实际生产中。   图为质检中心实验室一角。  虽然亚洲养蜂业联合会主席SIRIWAT WONGSIRI教授第一次到这家公司就大声惊叹:“我非常震惊在中国蜂业界能看到如此好的加工企业,我要让全世界的蜂业同仁都来中国看一看。”  虽然这家公司10年来陆续在检测设备和检测技术的软硬件建设上投入了上千万元巨资,建立了国家认可的业内一流的检测实验室,研究出了获得国家专利的真假蜂胶原料鉴别技术,建立了有五道关口的蜂蜜原料检测程序,来保证产品纯正。  虽然最挑剔的日本人也对这家公司产品给予充分肯定,让公司的蜂皇浆产品占据日本市场三分之一的份额。  但是在国内失灵的市场中,它却没有办法从假冒伪劣的包围中脱颖而出,无法有效把自己安全优质的蜂产品送到尽可能多的消费者手中。  这家公司就是杭州蜂之语蜂业股份有限公司。  资料显示,蜂之语有累积10多年的品牌美誉度,有占地约6.7公顷的现代化厂房,数千名员工,还有遍布江浙沪的200多家专卖店和近10万名会员……在很多人看来,拥有这些资本的保健食品生产企业,销售应该至少在5亿元以上,而蜂之语现在的年销售只有1亿元。  公司负责人钱志明不无伤感地说,蜜蜂养殖和蜂产品加工,向来被人称为甜蜜的事业,但是面对横行的假货,他们的内心却是充满了苦涩。面对泛滥的假冒,他们选择了坚守,坚守良心和品质,苦练内功,等待市场规范的那一天。  为什么好产品没有人要。  那是因为假冒太强大,强大到了以假乱真,劣币驱良币的程度。  钱志明说,由于便宜的假货、劣质货太多,慢慢的,蜂之语的新客户少了,老的客户虽然买你的东西,但也怨声载道,以为企业有暴利,一边吃,一边抱怨。  每每听到这样的反馈,钱志明都感觉像是哑巴吃黄连,有苦说不出。  据介绍,从2004年~2007年,“蜂之语”每年的增长速度保持在30%左右,而近两年,这一数字下降到了10%,今年前10个月,销售居然刚刚和上年持平。  尽管日子越过越艰难,但是钱志明和他的“蜂之语”并没有气馁,在国内蜂产品假冒伪劣愈演愈烈的情形之下,依然坚守洁身自好、踏踏实实追求品质。  钱都花在“里子”上  建成国内一流实验室  对于保健品行业来说,“面子”工程最重要。一般企业都会把大把的钞票花在广告宣传上,但是“蜂之语”却反其道而行之,而是把大部分的资金都花在了如何提高产品质量上。而且钱志明和同事们有一个朴实的观点,一流的产品品质需要有一流的检测手段做保证。因而从1995年起,蜂之语就筹资投建检测中心。当业界几乎所有企业还在用人工品尝的方式来测定蜂王浆质量时,“蜂之语”已经开创行业先河,引进全国第一台高效液相色谱仪。  此后企业在检测装备上的投入就没有停止过,为了提高检测水平,先后投入了1000多万元资金购置检测设备。目前,检测中心现有试验面积1500平方米,配有LC/MS/MS液质联用仪、高效液相色谱仪、气相色谱仪、酶联免疫分析仪、紫外可见分光光度计、原子吸收分光光度计等检测设备。  2007年,浙江出入境检验检疫局领导来蜂之语检查指导工作时特别指出,蜂之语检测中心已具备了完善的检测能力,要积极推进国家实验室的认可。为此,蜂之语检测中心开展了包括完善管理制度、规范检测标准、补充各种操作规程、提高检测人员业务素质培训等工作。  2008年,浙江出入境检验检验局将蜂之语公司检测中心列入省级出口企业实验室认可的6家试点实验室之一,并于当年10月顺利通过了专家组的审核。  “完全没有想到在我国蜂产品企业中会有这样的实验室规模和管理水平。”2009年9月,国家认证认可委员会专家在考察了蜂之语的实验室后对蜂之语检测中心大加赞赏,认为蜂之语检测中心在蜂产品行业里是顶尖的。同年10月国家认可委安排专家对蜂之语检测中心进行初评。  2010年4月16日,国家实验室认证认可委员会寄来了认可证书,从此,杭州蜂之语蜂业股份有限公司检测中心,成为我国蜂行业企业中率先获国家实验室认可的企业实验室。  加强与科研院专家的技术合作,积极与质检主管部门的沟通,是“蜂之语”加强企业检测科研实力的另一个有力手段。“蜂之语”与浙江大学签订5年的合作协议,与浙江省中医药研究院,中国养蜂学会等单位形成了长期合作的机制。而与浙江出入境检验检疫局不定期的交流,特别是请浙江出入境检验检疫局的专家每年1~2次为全体职工进行产品质量安全方面的讲座培训,极大地提高了职工产品质量安全意识。同时,“蜂之语”每年定期与日本蜂产品实践家进行技术交流,使“蜂之语”对产品的检测水平和对产品质量要求的把握始终走在前面,保持了“蜂之语”在蜂产品行业中的领先水平。  钻研防假冒技术  率先建立了我国蜂胶指纹图谱库  “蜂之语一直从原料控制着手,与假冒伪劣作斗争,发现行业内有什么问题,马上就解决。”  在蜂之语采访,碰巧看到了一本大红证书,是由杭州市科技局颁发的,原来蜂之语研究的一种鉴别蜂胶真假的科研成果――《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》获得了杭州市科技进步奖三等奖。公司检测中心主任周萍告诉记者,这个鉴别方法是12年前开始研究的,已经在2009年获得了国家发明专利保护。也就是说,蜂之语与假蜂胶的斗争,已经持续了10多年了。  周萍说,蜂之语第一次发现蜂胶有假是在1998年。当时的假蜂胶可以用感官鉴别的方法来作明确判断,但如果制假手段越来越高明,以至于用感官方法不能鉴别真伪的时候,该怎么办?他们首先想到的是应该可以使用仪器检测的手段来解决,于是他们就从利用现有的仪器开始,研究蜂胶真伪鉴别的方法,2006年又去买国际上最先进的仪器,200万元一台,仪器买回来之后,又开始收集全国及世界各国的蜂胶原始样本,全部收集回来,总共是56个样本,然后利用HPLC指纹技术,一个样本一个样本地建立蜂胶的指纹图谱,通过比较液相指纹图谱中的选定共有峰的特征来判断蜂胶真伪,经过多年的摸索,方法不断成熟,最终建立起了我国蜂产品行业的种类最齐全的蜂胶指纹图谱库。  到现在为止,蜂之语是我国蜂产品行业率先拥有这样的蜂胶指纹图谱库的企业,有了这个蜂胶指纹图谱库,什么样的蜂胶产品,只要测出来一对照,是真是假就全都清楚了。  在研究中,蜂之语公司的技术人员先后撰写了《蜂胶在生产加工过程中的几个关键问题》、《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》、《蜂胶在不同载体中的抑菌试验研究》等多篇高水准的论文,发表在国家一级专业期刊《蜜蜂杂志》和《中国蜂业》上。  2009年,蜂之语的蜂胶真伪鉴别技术被国家知识产权局授予了发明专利,专利号是ZL200510060230.8。  从源头防假  五道关口筛查蜂蜜原料  和蜂胶一样,蜂蜜的造假多年来也十分严重,而且造假手段不断升级。  据了解,控制蜂蜜质量的现行蜂蜜国家标准GB18796-2005,是国家强制性标准,其中的真实性指标是用来判断蜂蜜的真伪的,是强制性质量指标,蜂蜜产品必须符合要求。这个蜂蜜的真实性指标就是碳4植物糖,检测标准是秦皇岛出入境检验检疫局发布的国家检测标准GB/T18932.1《蜂蜜中碳-4植物糖含量测定方法 稳定碳同位素比率法》。国家标准出台的当时,确实对蜂蜜的掺假行为起到了很好的抑制作用,蜂蜜市场得到了净化。然而,没有多久,市场上就出现了碳-3植物糖,即以大米、甜菜等为原料的糖浆,而国家标准检测的是碳-4植物糖(即以玉米、甘蔗为原料的糖浆)含量。所以,近来越来越多的碳-3植物糖浆开始用于蜂蜜的掺假,而这种掺假的蜂蜜完全能够通过碳-4植物糖检测,也就是说符合国家标准。因此,现行国家标准已经不适用现在蜂蜜市场的实际情况,大部分掺假蜂蜜按现行国家标准检验都符合要求,而新版蜂蜜国家标准正在修订之中。这也是不法厂家造假猖獗的一个原因。  为了保证自己不受假冒侵害,蜂之语潜心搜集国内外各种检测方法并结合自己的研究,制定了蜂蜜原料的五步检测法,即每一批蜂蜜原料在入库前都要经过五道检测关口。  第一关是蜂蜜感官鉴别。  第二关是国家标准要求的碳-4植物糖检测。  第三关是TLC试验:通过薄层层析的方法检测蜂蜜中的寡糖。  第四关是羟甲基糠醛(HMF)含量检测。  第五关是蛋白质含量分析。  在五次检测中只要有一项达不到要求,原料都被退回。  要保证蜂蜜的真实性,还必须从源头和原料抓起。蜂之语还建立了一套严密的蜂农管理制度,把握好蜂农源头关。蜂之语早于2002年建立了蜂业合作社,对加入合作社的蜂农进行信誉评定、登记,并报出入境检验检疫局备案,公司聘请专家、技术员对合作社蜂农进行养蜂指导和现场养蜂生产监督,确保产品的真实性。  在生产过程中,蜂之语蜂蜜还需要检测二次质量指标,一次是在浓缩后,检测蜂蜜的水分、色度和微生物 另一次是灌装前,检测同样项目,以监控生产过程中是否存在异常,确保生产的顺利进行。  蜂之语蜂蜜在包装完毕前要取样按照国家标准要求进行检测,另有留样备查。只有成品检测结果完全符合国家标准要求,才可以出具产品检验合格证。  整个生产进程中,蜂之语蜂蜜生产车间的洁净度为10万级,完全按照保健食品GMP的要求进行生产环境洁净度的设计要求,其生产过程的生产管理要求也是完全按照GB17405保健食品GMP的要求。同时,执行ISO9001国际质量管理体系标准、ISO22000(HACCP)国际食品安全管理体系标准、ISO14001国际环境管理体系要求,四大管理体系整合,对产品生产全过程进行控制与监督,确保产品质量。  相关链接  蜂之语蜂蜜原料  五道检测关口  第一关是蜂蜜感官鉴别:蜂蜜与高果糖浆有着不同的感官,蜂蜜有花香,味鲜而甜润略酸,滋味饱满,富于光泽,而糖浆就没有。掺入糖浆的蜂蜜,天然的花草香气弱小,味道也比较单一,口感不丰满,没有蜂蜜独有的鲜味,颜色比不掺假的蜂蜜要浅。  第二关是碳-4植物糖检测:这是目前蜂蜜国家标准真伪鉴别的一个指标,市场中仍有碳-4植物糖的假蜜在流通,因此很有必要检测。  第三关是TLC试验:即通过薄层层析的方法检测蜂蜜中的寡糖,因为高果糖浆在制备过程中,淀粉中的高分子糖类被残留在蜂蜜中,检测这些糖能够判定蜂蜜的真伪。出口日本的蜂蜜必需通过TLC试验,我国有一个国家检测标准:GB/T18932.2-2002蜂蜜中高果糖淀粉糖浆测定方法――薄层色谱法。现在已经有部分糖浆生产企业能够生产高纯度的产品,能够通过TLC的试验。  第四关是HMF的控制检测:蜂之语研究发现,新鲜的蜂蜜羟甲基糠醛(HMF)含量为零,随着贮存时间延长、或者蜂蜜加工时受热,其含量会慢慢升高 而高果糖浆是淀粉的水解物,淀粉水解、脱色精制后,最后需要加热浓缩,以达到蜂蜜相似的水分含量,才有利于产品的保存。经过检测,糖浆中的HMF在16mg/kg~163mg/kg之间,因此掺入糖浆的蜂蜜原料HMF必须被检测出来。国家《蜂蜜》标准中HMF的质量标准是小于40mg/kg,而蜂之语原料蜂蜜中HMF的质量标准是小于2mg/kg。  第五关是蛋白质含量分析:蜂蜜因为蜜蜂在采蜜时混入蜂花粉,因此蜂蜜中有一定的蛋白质,其含量一般为0.1~1%之间,如果原料中的蛋白质未被检出,或者小于0.05%,则怀疑掺假。  蜂胶、树胶和掺黄酮类化合物的指纹图谱     典型的蜂胶HPLC指纹图谱(1、2、3、5号峰信号强)     典型的杨树胶HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱)     典型的杨树胶中掺入芦丁、槲皮素的蜂胶制品HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱,芦丁、槲皮素峰信号异常高)
  • 可恨!氨基酸注射液居然造假!显微拉曼光谱能否鉴别药品真伪?
    中国法院网讯 食品、药品安全事关人民群众的生命健康和社会的安定稳定。2008年4月至2010年6月,被告人孙同宾在南阳市一租房内,使用购买的葡萄糖注射液,私自加工、制造标示为石家庄四药有限公司复方氨基酸注射液的假药,并销售给南阳市数家医药公司,销售金额共计208824元。法院审理后认为,被告人孙同宾将购买的葡萄糖注射液加工后,假冒复方氨基酸注射液对外销售,销售金额208824元,该行为足以严重危害人体健康,已构成生产、销售假药罪。氨基酸行业发展现状指出,氨基酸主要用于健康保健食品、功能强化食品、动物饲料、食品添加剂、化妆品等行业。如谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义;甘氨酸,可作为鸡饲料营养性添加剂,氮肥工业可用作无毒脱碳剂;丙氨酸,可预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。我国是氨基酸类原料药的供应国,同时也是氨基酸产品的重要需求国。各个终端随着部分新兴市场的活跃而活跃,可见氨基酸的真假检测就尤为重要。奥谱天成ATR8300-785显微拉曼光谱仪本着可实现微区拉曼光谱的精确定位测量,快速、准确、无损地分析成分和鉴别物质的优势,广泛用于农业及食品鉴定、纳米粒子新材料、生物科学、药品检测、环境检测等领域。本次使用ATR8300-785显微拉曼测试了来自客户的几种氨基酸的样品,如下图,我们可以看出氨基酸的拉曼光谱完美,特殊峰明显,可有效区别出不同的氨基酸种类。结果表明了奥谱天成ATR8300-785显微拉曼在生物医学领域上实实在在的运用。奥谱天成ATR8300显微拉曼光谱是将拉曼光谱仪与显微镜两者的优点结合,使得“所见即所测”成为可能。将入射激光通过显微镜聚焦到样品上,从而可以在不受周围物质干扰情况下,精确获得所照样品微区的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。ATR8300无光路切换运动部件,所有光学部件均固态装配,工作非常稳定,实现了仪器的完 美地解决了相机成像时光路的损失,实现了相机成像与拉曼信号收集的分离,从而得到最 佳的信号强度。同时,ATR8300使用专门为显微拉曼系统优化的高性能拉曼,无论是灵敏度,信噪比,稳定性等,都是行业领 先水平 ,为拉曼研究提供了强有力的保障。
  • 假冒蜂胶或致重金属中毒 专家支招如何鉴别
    蜂胶,无论是保健,还是治病, 已被公众所认同。但最近一些不良企业用树胶冒充蜂胶,或在胶囊中灌注酱油的造假行为被曝光之后,立刻引起人们的质疑和谴责。蜂胶为什么具有保健功能?它适 应于哪些人群?怎样才能买到质量好的蜂胶?假蜂胶对人体有何危害?下面,让我们听听专家的解答。  天然配比是保健关键  营养专家认为,蜂胶是一种纯天然的健康物质,对人体的循环系统、神经系统、代谢系统和免疫系统具有综合性作用。蜂胶的保健治疗作用,关键不在于 高含量的黄 酮,而在于它绝妙的天然配比,以及多种物质起到多病同治的目的。因此,我国批准蜂胶的保健功能是调节血脂、调节血糖、调节免疫。  蜂胶为 什么具有这样的作用?专家介绍,蜂胶是蜜蜂从植物芽孢或树干上采集的树脂,混入其上腭腺、蜡腺的分泌物加工而成的一种胶状物质,含有大量的黄酮类、萜烯类 等化合物以及人体必须的多种微量元素和多种维生素。因为蜂胶生产量少,收集困难,特别是具有特殊的保健功能,被人们誉为“紫色黄金”。  蜂胶含有300多种天然成分、30多种黄酮类化合物,可用于多种疾病的防治,如预防流感、消炎抗菌、治疗溃疡、健肠胃等。  医疗专家说,蜂胶的主要作用是清理血管、降血脂等,适应于高血脂、高血糖、免疫力低下人群使用。但它毕竟是一种保健品,保健品不等于药品,有病 还应看大 夫。他们提醒,保健品也不能当饭吃,也有一定的服用数量、疗程以及禁忌,消费者要根据自己的实际情况,在医生指导下合理服用。  多种多样的鉴别方法  专家指出,蜂胶的功效取决于其300多种天然有效成分,并非单一的黄酮,总黄酮含量并不是鉴别蜂胶好坏的标准。目前市场上大部分蜂胶只具备国家批准功能的一项或两项,少数蜂胶才能同时具备3项功能。  专家说,购买蜂胶时,我们应知晓其主要特性和鉴别方法。注意查看是否有正规的国食健字的批准文号,可先到国家食品药品监督管理局官方网站上查找 一下该产 品是否通过国家的GMP认证及进口蜂胶有没有《进口保健食品批准证书》 正宗蜂胶滴到玻璃杯中的水面上,可形成不易消散的油膜,而树胶滴入水中后,会迅速 扩散到杯壁上 蜂胶闻起来有芳香气味,而树胶则有一股恶臭味 正宗蜂胶摸起来黏度较大,树胶黏度明显不够。同时,还可用眼看来鉴定蜂胶的外观和颜色 用口 尝去鉴定蜂胶的味道 用95%的酒精溶解的方法去鉴定蜂胶的纯度。  专家对一些人喜爱用蜂胶软胶囊的做法持反对意见。这是因为软胶囊在经过高温定型时,大量珍贵成分流失,大幅降低了蜂胶特有功效。专家说,蜂胶是否易吸收在于蜂胶分子结构,并非取决于产品剂型,消费者认为软胶囊好吸收的观点是错误的。  假冒蜂胶有较大危害  近年研究报告表明,大约两万只蜜蜂只能生产20千克的蜂胶,而我国每年的蜂胶原料产量为200多吨,而市场上销售的产品竟然达到500吨之多。可见,有超过一半的蜂胶产品都是假冒或者真假参半的。  在利益的驱动下,一些违规厂家生产的假冒产品是数不胜数,造成蜂胶市场极度混乱。很多蜂胶产品包装上都标称“天然蜂胶”字样,实际上主要原料却 是杨树 芽。 这些杨树芽经浸泡、过滤、沉淀、提纯等多道工序,再加入少量蜂胶,即可被加工成类似蜂胶的黑色胶状固体。树胶要变成蜂胶,厂家还偷偷加了一些槲皮素 和芦丁,提高蜂胶中的黄酮含量,以应对检测。其实,这些人工黄酮对人体是有害的。  专家指出,蜂胶的保健功能是其天然配比形成的,人为添 加槲皮素和芦丁等物质来提高蜂胶中的黄酮含量,一是破坏了蜂胶成分的原有配比,二是起不到养生保健作用。假冒蜂胶因多项技术不过关,会给人体造成极大危 害。如将没有经过提纯过滤的毛胶加入到胶囊里面,毛胶里面的病菌和重金属严重超标,会造成人体重金属中毒。又如将灌注酱油胶囊冒充天然蜂胶,自然没有蜂胶 的保健功能。因此,专家提醒大家,买蜂胶千万不要图便宜,万一食用了劣质蜂胶或假胶,既损害了身体,又耽误了病情。
  • 地沟油鉴别又出新方法,靠谱度超80%
    地沟油是让人谈&ldquo 油&rdquo 色变的。由市疾控中心开展的&ldquo 地沟油鉴别检测特异性指标的筛选&rdquo 研究项目,荣获2014年度泰州市科技进步奖三等奖。专家们通过对上百份油样进行检测分析,研究市售食用油和地沟油在三个外源性指标之间的含量差异,从而获得了鉴别地沟油的可靠依据。  获奖项目:地沟油鉴别检测特异性指标的筛选  完成单位:泰州市疾病预防控制中心  项目带头人:刘波 男,1979年生,市疾控中心高级工程师,主要从事食品安全、水中异味物质检测等研究。  团队成员:刘波 杨建国 张雪梅 黄为红 黄久红  &ldquo 土法&rdquo 不靠谱 蒜瓣无法检测出地沟油  地沟油来源广泛,成分复杂,不慎食用后,对人体健康可能造成危害。  近年来,网上流传一则非常热门的地沟油鉴别方法:在炒菜时往油锅里扔一颗剥皮的蒜瓣,如果蒜瓣变成红色,则说明锅里的油就是地沟油。反之,如果是好油,那么蒜瓣会保持白色。  如此简便易行的鉴定方法真的靠谱吗?市疾控中心的专家明确表示,未必。  因为网传的&ldquo 大蒜鉴别法&rdquo ,主要是利用大蒜对黄曲霉素的敏感,可现实中,大蒜检测黄曲霉素不一定可靠。到底大蒜遇到多少含量的黄曲霉素会变色?我们又需要加热多久呢?都没有明确的说法。并且在地沟油的成分里,未必就是黄曲霉毒素超标。比如,经过反复煎炸的老油重新加工制作的地沟油,虽然会含有大量多环芳烃和反式脂肪酸等对人体有害的物质,但单就黄曲霉毒素这一项而言,完全有可能是合格的。  所以,生活中想避免吃到地沟油,除了尽量选购大型超市正规厂家生产的大品牌油,也应尽量避免&ldquo 下馆子&rdquo 和食用油炸、油煎、干煸类食物。  5年的研究 发现鉴别力超80%的指标  如何鉴别检测地沟油向来是个热点研究方向。  &ldquo 不仅是热点,更是难点&rdquo ,市疾控中心高级工程师刘波说。据介绍,地沟油鉴别检测特异性指标的筛选这一课题,刘波带领团队自2010年起便着手研究。该项课题属于预防医学与公共卫生学领域的卫生检验学,对初步筛选出的3个特异性指标,即钠离子、阴离子表面活性剂以及胆固醇进行检验方法的改进和完善。专家们通过对市售食用油样品和地沟油样品进行分析对照研究,比较出这三个特异性指标在市售食用油与地沟油中含量水平及分布特征,对鉴别地沟油具有重要意义,可以作为打击地沟油回流餐桌的执法依据。  经过研究和实验,市疾控中心的专家发现胆固醇和钠离子这两项鉴别指标对地沟油的鉴别能力分别达到百分之八十几和百分之五十几,而阴离子表面活性剂不能作为鉴别地沟油的特异性指标。这表明胆固醇和钠离子等相关检测指标可以作为鉴别地沟油的依据。  所以鉴别地沟油真的没那么简单,何况这一切还得在实验室里做呢。  链接:地沟油分类  什么是地沟油?当被问及这个问题的时候,相信不少人的脑海里会浮现出这样一幅画面:夜晚的后街背巷里,一辆满是污垢的三轮车停在下水道旁,车斗里放着几只同样脏兮兮的塑料桶。而三轮车的主人则掀开下水道井盖,认真地从里面捞出污浊的液体装进桶里。而这种从下水道捞出来的液体,经过提炼,就是地沟油了。  这种理解是否正确呢?泰州市疾控中心高级工程师刘波表示,从下水道打捞出来的可以称作&ldquo 地沟油&rdquo ,实际上是一种狭义的理解。地沟油是一个泛指概念,是对各类劣质油、废弃油的统称。像潲水油、煎炸废油、食品及相关企业产生的废弃油脂等,都属于地沟油。  刘波说,地沟油主要分为三类:一是狭义的地沟油,即将下水道中的油腻漂浮物(地沟油)或者将宾馆、酒楼的剩饭、剩菜(通称泔水)经过简单加工而提炼出的油(潲水油) 二是劣质猪肉、猪内脏、猪皮加工及提炼后产出的油 三是用于油炸食品的油使用次数超过规定要求后,再被重复利用或往其中添加一些新油后使用的油。
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途创新点:上市时间:2019年6月SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。 美国博纯SASS-3000独立除氨系统
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf关键词:三氟化硼甲醇 脂肪酸 甲酯化上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等创新点:SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • “检测直通车”之金银花的鉴别及质量评价——中广测
    我要测讯 金银花,忍冬科植物忍冬的干燥花蕾或带初开的花,主要成分为绿原酸和木樨草甘,是名贵药材之一。由于中药方剂中多用刀金银花,并且今年由药用转向食用和日用化工等因素,价格持续上涨,由此掺假现象也屡被发现。山银花与金银花外貌相似,其主要成分为绿原酸,多被不法商贩掺入金银花中,代替金银花。虽然山银花也为药材,但因其成分中不含木樨草甘,在药用价值和价格上还是有别于金银花。金银花金银花的检测方法(高效液相色谱法)  一、实验原理  试样经粉碎、过筛后,采用甲醇-水溶剂超声提取,后高效液相色谱法测定其中四种组分的含量值,再根据药典规定鉴别其真假判定其质量,主要区别金银花和山银花。  二、仪器和试剂  高效液相色谱仪带紫外检测器,AS3120超声波发生器 甲醇为色谱纯试剂,实验用水为超纯水。  三、试验方法  1. 提取  测定绿原酸、木犀草苷提取条件为:将样品充分粉碎,粉末(过四号筛)约0.5g,精密称定,置具塞锥形瓶中,精密加人50%甲醇50ml,称定重量,超声处理30分钟,放冷,再称定重量,用50 %甲醇补足减失的重量,摇匀,滤过,即得A, 上机测定得到绿原酸、木犀草苷的液相色谱图见图1A/B/C。  测定灰毡毛忍冬皂苷乙和川续断皂苷乙提取条件为:将样品充分粉碎,粉末(过四号筛)约2g,精密称定,置具塞锥形瓶中,精密加人50%甲醇50ml,称定重量,超声处理30分钟,放冷,再称定重量,用50 %甲醇补足减失的重量,摇匀,滤过,即得B, 上机测定得到灰毡毛忍冬皂苷乙和川续断皂苷乙的液相色谱图见图2。ABC图1 标准溶液绿原酸(A)、木犀草苷(B)和样品溶液的液相色谱图(C)AB图1 标准溶液灰毡毛忍冬皂苷乙和川续断皂苷乙(A)和样品溶液的液相色谱图( B)  2 仪器参数  2.1 测定绿原酸、木犀草苷液相色谱条件  色谱柱: Aglient TC- C18 (250×4.6mm,粒径5μm)   检测波长: 350nm   流动相:甲醇-水(含有2mmol/L硫酸)(梯度洗脱)   流速:1.0mL/min  进样量:20μL。  2.2 测定灰毡毛忍冬皂苷乙和川续断皂苷乙液相色谱条件  色谱柱: Aglient TC- C18 (250×4.6mm,粒径5μm)   检测波长: 203nm  流动相:甲醇-水(含有2mmol/L硫酸)(60:40)   流速:1.0mL/min  进样量:20μL。  3 结果计算和评价  采用外标法计算各种物质的含量,再根据下表作出评价。名称绿原酸木犀草苷灰毡毛忍冬皂苷乙灰毡毛忍冬皂苷乙+ 川续断皂苷乙金银花限量指标(%) ≥1.5≥0.05不得检出不得检出山银花限量指标(%)≥2.0不限 不限 ≥5.0  4 检出限  本方法仪器最低检测浓度绿原酸、木犀草苷为1 μg/mL,灰毡毛忍冬皂苷乙和川续断皂苷乙为10 μg/mL,按照上述样品前处理计算,本方法检出限绿原酸、木犀草苷为0.01%。灰毡毛忍冬皂苷乙和川续断皂苷乙为0.1%。  附图:  1、样品粉碎  2、检测仪器——高效液相色谱仪  3、测试谱图  附:中国广州分析测试中心  中国广州分析测试中心(简称中广测)——在广东省测试分析研究所基础上建立的国家级的分析测试中心,是以理化分析测试为重点的综合性研究和服务机构,已有50年历史。  中广测于1990年通过省级计量认证,1991年通过国家级计量认证,2001年通过中国实验室国家认可。经过多年的发展,中广测目前已成为通过国家级资质认定(CMA)和国家认可(CNAS)的第三方检测、校准实验室和A类检查机构,可向社会提供具有证明作用的测试数据和结果。中广测的管理体系符合ISO/IEC 17025和ISO/IEC 17020的要求,因而也是依据ISO 9001运作的。根据中国合格评定国家认可委员会与美国、欧盟、日本等国家和地区的认可机构达成的互认协议,中广测出具的数据和结果可获得广泛的国际互认。撰稿人:中广测 高级工程师 黄芳 我要测 杨改霞
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。预 处 理水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。仪 器 100ml具塞量筒或比色管。试 剂(1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。试 剂 水样稀释及试剂配制均用无氨水。(1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。(2) 1mol/L盐酸溶液。(3) 1mol/L氢氧化钠溶液。(4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。(5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。(6) 防沫剂,如石蜡碎片。(7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。步 骤(1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。(2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项(1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。(2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。(3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法 GB7479--87概 述1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。仪 器(1) 分光光度法。(2) pH计。试 剂 配制试剂用水应为无氨水。1. 纳氏试剂 可选择下列一种方法制备。(1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。步 骤1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。2. 水样的测定(1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。注意事项(1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。(2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法GB7481--87概 述1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。仪 器(1) 分光光度计。(2) 滴瓶(滴管流出液体,每毫升相当于20±1滴)试 剂 所有试剂配制均用无氨水。1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。步 骤1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。试 剂(1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。(2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。(3)0.05%甲基橙指示液。步 骤1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。计 算氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法概 述1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。仪 器(1) 离子活度计或带扩展毫伏的pH计。(2) 氨气敏电极。(3) 电磁搅拌器。试 剂 所有试剂均用无氨水配制。(1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。(2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。(3) 电极内充液:0.1mol氯化铵溶液。(4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。步 骤1. 仪器和电极的准备 按使用说明书进行,调试仪器。2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。注意事项(1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。(2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。(3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。(4) 水样不要加氯化汞保存。(5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。(6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 岛津应用:盐酸氨溴索片在4种溶出介质中的体外溶出研究
    盐酸氨溴索(Ambroxol Hydrochloride)于20世纪80年代在德国上市,后在法国、日本等国家陆续上市,是目前临床作用较强的祛痰药。其作用机理为增加呼吸道黏膜浆液腺的分泌,减少粘液腺分泌,促进肺表面活性物质分泌,增加支气管纤毛运动,使痰液易于咳出。盐酸氨溴索片为固体制剂,其体外溶出度的考察不仅是评价产品质量的一个重要指标,还是我国食品药品监督管理局规定的仿制药一致性评价中需要与原研药对比的一个重要指标。盐酸氨溴索的结构式 本研究根据国食药监注[2013]34号文《国家食品药品监督管理局关于开展仿制药质量一致性评价工作的通知》要求制定的仿制药质量一致性评价—盐酸氨溴索片一致性评价参比制剂/溶出曲线测定(草案)制定实验方案。使用岛津SNTR-8400溶出度仪和LC-30A超高效液相色谱系统开展盐酸氨溴索片体外溶出的研究。盐酸氨溴索片经溶出实验,用超高效液相色谱 LC-30A系统进行含量测定。在四种介质中分别对两组33μg/mL 浓度的盐酸氨溴索对照品连续测定3次作为对照,结果显示使用岛津SNTR-8400溶出度仪以及岛津LC-30A超高效液相色谱系统在测定盐酸氨溴索片体外溶出曲线时具有良好适应性和重复性,能够满足国家规定药物体外溶出曲线测定的相关要求。岛津SNTR-8400溶出度仪 了解详情,敬请点击《盐酸氨溴索片在4种溶出介质中的体外溶出研究》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 使用超高效合相色谱系统测定氨苯砜片(Dapsone)的色谱含量
    使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量目的使用沃特世(Waters)ACQUITY UPC2&trade 系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。背景目前,美国药典(USP)规定了含有氨苯砜(4,4&rsquo -二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µ m的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。解决方案使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。SFC方法的条件如下:色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µ m柱温: 45 ° C流动相: 85% CO2:15% MeOH流速: 3.0 mL/min,背压: 130 bar/1885 psi检测器: UV /PDA,254 nm药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为0.1%,1.1%。超高效合相色谱方法UltraPerformance Convergence Chromatography&trade (UPC2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。联系方式: 叶晓晨沃特世科技(上海)有限公司市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 氨基酸衍生法数据大PK:OPA or 茚三酮,原来选它
    氨基酸是构建生物机体的众多生物活性大分子之一,是构建细胞、修复组织的基础材料。它被人体用于制造抗体蛋白、血红蛋白、酶和激素以维持和调节新陈代谢,是一切生命之源。 由于氨基酸的重要性,合适可靠的检测方案将成为评估食品、饲料、药物及生理样品中氨基酸指标的重要选择。 HPLC—柱后衍生法,50多年来作为氨基酸领域的重要检测手段,因为其高效的测试准确性和重现性,深受广大用户的信赖。氨基酸检测在药物、食品、饲料中的主要应用有 ● 通过分析氨基酸组鉴定多肤和蛋白质;● 原料药和中间体中的杂质和有关物质的测定;● 药物中单个或总氨基酸的定量, 包括复杂基质中标记物的测定;● 重组蛋白生产过程的控制;● 确定氨基酸组成也是保证食品和饲料营养价值的必要条件;● 用于产品质量及过程监测。 衍生方法介绍Pickering Laboratories根据上述应用的检测对象的不同,将衍生方法分为OPA衍生法和茚三酮衍生法,两种方法都可以与任何氨基酸阳离子交换柱和洗脱液组合使用。其中我们称为Trione 的*茚三酮试剂,也广泛应用于氨基酸分析仪中。 OPA法与茚三酮法区别见下表:氨基酸衍生法 _Trione试剂(*)分析法OPA试剂分析法衍生试剂TlOO-预混试剂 ;自生产日期起计算, 4个月保质期(950 ml/瓶) TlOOC -预混试剂;自生产日期起计算, 4个月保质期(950 mL/瓶) T200 - 2部分试剂,混合后使用,从生产之日起12个月保质期;4组/箱(900mL/瓶)OD104-氨基酸分析用OPA稀释液; O120-OPA试剂(5g/瓶) 3700-2000 -疏基化合物。(10g/瓶) 这三种产品都是用于氨基酸OPA分析法适用样品一级和二级氨基酸一级氨基酸 在与OPA反应之前需要检测二级氨基酸氧化步骤。使用氧化步骤时,一级氨基酸的检测灵敏度会有所降低。检测器UV/VISFLD仪器灵敏度10 pmole (在色谱柱上)2 pmole (在色谱柱上)色谱柱&洗脱液适用于任何阳离子交换柱氨基酸分析法与任何用于氨基酸分析的阳离子交换柱配合使用配置单泵Ony×PCXI vector PCX+ 0.5 m L反应器单泵Ony×PCX/ vector PCX+ 0.15 ml反应器。 *需要带有0.5 mL和0.1 mL反应器的双泵OnyxPCX来检测二级氨基酸。 在此模式下, 初级氨基酸的灵敏度会降低。 色谱柱的选择 图1:钠柱氨基酸分析选择 图2:锂柱氨基酸分析选择 图3:氨基酸标品 图4:豆粕样品 图5:水解单克隆样品 Pickering产品 完整解决方案欧洲药典8.0对于氨基酸的柱后衍生茚三酮法做了详细的要求,药典对于包括化学、 动物、 人或草药来源的活性物质、赋形剂和制剂,顺势疗法制剂,抗生素,制剂和容器等都有所要求。 Pickering Laboratories 将欧洲药典作为测试依据,为客户提供完整的氨基酸分析解决方案。 Pickering 柱后衍生仪 解决方案包括Onyx PCX/Vector PCX 柱后衍生仪器、分析柱、保护柱、缓冲液和Trione 茚三酮试剂。并且对方法进行了优化, 在符合药典各项体系适宜性要求的同时,提高了分析的灵敏度及分析效率。 Pickering全套试剂包 图6:依据欧洲药典8.0法测试氨基酸 关于Pickering Laboratories 美国Pickering Laboratories公司是全球仅有的专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界知名的厂商所认可。
  • 解决方案 | 全二维气质联用仪鉴别白酒风味组分
    背景介绍白酒是我国历史悠久的传统蒸馏酒,目前主要有以酱香型、清香型、浓香型、米香型四种香型为主的十二大香型白酒。由于原料及生产工艺的差异,不同香型白酒有着不同的风味组分特征,构成了白酒丰富多彩的风味特色。因此,白酒中的特征风味化合物分析已成为当今研究者的关注重点。方案简介随着科技的发展,白酒风味物质的分析方法逐渐由传统化学方法引向高端仪器分析。为了更好地支持白酒风味物质分析,禾信仪器秉承“做中国人的质谱仪器”发展理念,与中国食品发酵工业研究院标准和数字化研究发展部合作开展基于全二维气质联用仪(GGT 0620)等国际领先的白酒分析技术,推出白酒风味组分分析检测解决方案。方案以全二维气质联用仪(GGT 0620)为核心设备,搭载全自动智能进样平台、全新半导体制冷固态热调制器和海量化合物数据分析软件,开展白酒中风味物质的高通量定性鉴定、定量分析,将现代高新技术融合进庞大复杂的白酒风味成分体系研究中,逐渐揭开不同香型白酒所含风味物质的神秘面纱,从而科学地引导中国白酒行业的快速发展。全二维气质联用仪(GGT 0620)产品图片应用案例 01某浓香型白酒风味成分分析仪器配置参数部分测试结果风味成分定性分析下图是该浓香型白酒样品的全二维色谱图,通过自动峰检测,共检测到1864种挥发性有机物成分,化合物组成非常丰富,且不同种类的化合物(酯类、醇类、有机酸类)在全二维色谱图呈现规律性分布。某浓香型白酒样品的全二维色谱图风味化合物组成分析通过海量化合物数据分析软件(MDT)可以实现一键自动分析,一键完成数据自动分类及统计,确定该浓香型白酒中烷烃、烯烃、芳烃、酯类、醛类等类别化合物占比和主要风味成分,具体数据见下表。某浓香型白酒样品的各类化合物数量及占比表不同年份酒差异性分析通过对该浓香型白酒的不同年份酒统计分析,较好地实现了对三个储存年限的年份酒的鉴别。下图中绿色Y3代表储存3年,蓝色Y6代表储存6年,红色Y9代表储存9年,通过图示可以看出,Y3与Y6、Y9不同年份酒能达到很好区分。不同年份某浓香型白酒样品的聚类分析图酒越陈越香,白酒储存年限越长,陈味越突出,入口感觉越细腻。通过GGT 0620可以对不同存储年限的酒风味物质进行鉴别,有助于各大白酒厂商筛选出口感较好的陈年老酒。实验结论使用 GGT 0620 结合海量化合物数据分析软件对某浓香型白酒样品进行非靶向分析,共测得1864多种挥发性有机物成分。与此同时,有效完成了对该白酒主要风味成分的类别和占比分析,并对不同年份酒开展了准确鉴别分析,为浓香型白酒风味物质的研究和不同年份酒的鉴定提供了一种准确有效的分析方法。 02某清香型白酒挥发性成分分析仪器配置参数部分测试结果风味成分定性分析下图是九类清香型白酒样品的全二维色谱图,每类样品检测出400-700种挥发性有机物,总计检出1600多种挥发性有机物成分,其中以 2-3#样品中检测到的化合物种类最多,达到 609 种,化合物组成非常丰富。9个某清香型白酒样品的全二维色谱图风味化合物组成分析通过MDT数据处理软件对检测到的化合物组成进行统计分析,结果如下图,九类白酒样品中含量最高的化合物种类均是以癸酸乙酯、辛酸乙酯、月桂酸乙酯、己酸乙酯酯等为主的酯类化合物,相对含量都在50%以上。酮类、醇类、烯烃类及酸类化合物含量略低一些。某清香型白酒样品的各类化合物数量及占比表主成分物质分析PCA是常用的无监督统计方法,用于降低大数据集的维数,以揭示样本间的差异,它对复杂数据集能提供直观解释,并从中揭示出数据集中观测数据的分组、趋势以及离群。采用PCA方法对九类清香型白酒样品采集数据进行差异化分析,并经MDT软件分析处理后得到832个变量,按类别区别划分为九组进行PCA分析,得分图如下图所示。9个某清香型白酒样品的全二维色谱图实验结论使用 GGT 0620 结合化学计量学方法对九个清香型白酒样品进行非靶向分析,共测得 1600 多种挥发性有机物成分。Canvas 软件、MDT 软件可以联合处理和挖掘全二维气质联用数据,找出差异/相似化合物,最后通过商业化多元数据分析软件得到样品间的聚类关系,为区分不同类别的清香型白酒提供了一种快速、可靠的分析思路。 03某白酒样品中的氨基甲酸乙酯(EC)测定分析仪器配置参数部分测试结果某白酒样品中的风味成分定性分析下图是某白酒样品的全二维色谱图,通过自动峰检测,成功分离了上千种挥发性化合物,在选择离子模式下有助于从这个庞大的数据中找到目标物EC,并且白酒基质对目标物没有任何的影响。△ EC 和 D5-EC在白酒基质中二维色谱图△ EC 和 D5-EC在选择离子模式(M/Z 62,64)二维色谱图某白酒样品中的EC定量曲线分析按照实验方法依次从低浓度到高浓度对标准白酒样品溶液进行分析,在10-500μg/L的范围内,线性相关系数达到0.998,可以满足国标方法GB 5009.223-2014的要求。EC测定的标准曲线实验结论禾信仪器GGT 0620是分析白酒中EC的有力工具,分析过程不需要繁琐的人工操作以及衍生试剂和有毒有害试剂的消耗,同时可保留丰富的样品挥发性物质信息,有效减小基质效应的影响。此外,该实验也为白兰地、威士忌等高酒精浓度饮料酒中EC的定量测定提供了新方法,为发酵食品的安全生产提供了新思路。 04白酒标准化数据库建立指导目前,我国白酒风味研究还存在专业风味数据库缺乏的问题。在没有合适的谱图库的情况下,为了提高风味剖析的准确性和科学性,相关高校、科研院所及龙头生产企业都会分别购买几百种甚至上千种风味标准物质,但是相关资源共享还存在一定难度。基于全二维气质联用仪(GGT 0620),可以开展不同香型、相同香型、不同地区白酒样品的风味物质分析,完善升级中国白酒风味物质大数据库组分数量和相关信息,建立白酒的风味物质标准化数据库,为白酒真实性鉴别提供科学技术依据。总结禾信仪器白酒风味组分分析检测解决方案,既可以快速准确地研究庞大复杂的白酒风味成分体系,还可以监测白酒的关键性安全指标,实现白酒风味物质检测和安全监测的双重目标。未来,禾信仪器将聚焦更多高端质谱仪器,提供更多更专业化的白酒分析检测质谱解决方案,希望能为广大的白酒行业分析工作人员提供支持和帮助。
  • 指纹图谱鉴别 假蜂胶轻松现形
    最近正是蜂产品的收购淡季,但是浙江蜂之语公司已经为即将到来的春节旺季紧张地准备开了。“蜂胶市场干净了很多,这在我们的检测数据上可以看出来。”蜂之语相关负责人说。  前不久,央视报道了一些不法厂家用树胶冒充天然蜂胶上市的新闻,引起了广泛的关注。假冒蜂胶在检测的时候能够蒙混过关、拿到检测合格报告的现象,也引起了监管部门和业界的重视。近日,央视新闻频道以浙江蜂之语蜂产品实验室为例,报道了国内一些先进的实验室辨别蜂胶造假的方法。  日前,从位于桐庐的浙江蜂之语公司总部了解到,用杨树胶冒充的蜂胶,在检测时能蒙混过关,主要是由于天然蜂胶是树胶和蜜蜂分泌物的混合物,也有树胶成分,因此很多人难辨真伪。多年从事真假蜂胶鉴别研究的周萍主任说,杨树胶之所以能检测合格,主要是由于国家标准中只要求检测蜂胶中的总黄酮含量,而总黄酮含量在造假者那里可以通过添加芦丁和槲皮素等黄酮类物质蒙混过关。  作为一家获得国家相关部门认可的企业实验室,浙江蜂之语蜂产品实验室是如何辨别蜂胶造假的呢?“通过指纹图谱鉴别法,假冒的杨树胶立即现形。” 周萍说,浙江蜂之语蜂产品实验室通过将原料蜂胶制成分析液,再通过气相和液相质谱仪分析后,可以发现一些蜂胶和树胶的不同特质。采用HPLC指纹技术将真蜂胶通过各项数值表现成一张图谱,如果与这张图谱不吻合,便是假冒蜂胶,原理类似于人类指纹。这项技术获得了国家专利,还获得了杭州市科技进步三等奖。  蜂之语目前是全国最大的蜂王浆加工、出口基地之一,全国蜂产品行业龙头企业。蜂之语检测中心试验面积达1500平方米,配有LC/MS/MS液质联用仪、高效液相色谱仪、气相色谱仪、酶联免疫分析仪、紫外可见分光光度计、原子吸收分光光度计等检测设备。这个检测中心先后投入了1000多万元资金。“1995年,我们建这个检测中心的时候,业界几乎所有企业都还在用人工品尝的方式来测定蜂王浆质量。” 周萍说。
  • 使用XRF鉴别黄金珠宝,安全开启“黄金”时代
    当你在珠宝市场发现了一些非常喜欢的珠宝首饰,你如何能确定这些珠宝是使用真金加工的?如果有人告诉你一副耳环是18k金的,你会选择相信吗?如果你拥有一台X射线荧光(XRF)设备,上述的问题都会迎刃而解,它能够帮你找到货真价实的宝贝!随着黄金价格的飙升,假冒黄金珠宝已经成为贵金属及珠宝行业中的一个不容忽视的问题。这些假货可能看起来、摸起来都像真货,如果不使用适当的工具进行检测,要识别假冒黄金不亚于一项艰巨的挑战。鉴别黄金珠宝的常用手段黄金珠宝可以用不同的方法进行分析和鉴别,但有些方法会损坏(甚至毁掉)它们。1、肉眼/放大镜有经验的珠宝商可以使用放大镜来鉴别一些珠宝品质和真伪,但是不能确保所有的鉴别都十分准确。2、重量/密度测量黄金是一种密度很高的金属。这个测试的原理是,把黄金珠宝放在水中,测量它能排出的液体量,然后就能确定它是否是纯金。然而,在一些合法珠宝中,黄金经常掺杂其他金属,因此这种测试不可靠。3、标记黄金珠宝有时会有识别标记,表明其纯度,如10K或14K,但这些标记可能是伪造的。4、硝酸把黄金珠宝在测试板上划痕,再把硝酸涂在标记上,看它是否会溶解。根据酸的浓度,可以测定金的纯度。然而,大多数人不希望损坏他们的珠宝或贵重物品。5、X射线荧光(XRF)一种完全无损的方法,X射线荧光分析使珠宝完好无损。便携式或台式分析仪将X射线发送到珠宝上,激发原子产生荧光,荧光被分析仪的检测器采集而确定珠宝材料的化学成分。为什么选择XRF来鉴别黄金珠宝?XRF可以无损地分析金、银和铂族金属,以及非贵金属合金金属、污染物和镀金。XRF甚至可以用来识别某些假宝石,如立方化锆、钛矿和含铅玻璃。核实珠宝的材料成分可以避免欺诈,鉴别可能有危险的物品。例如,一些材料,比如镍,会引起某些人的过敏反应。戴在身上或戴在体内(如耳环)的珠宝中如果含有某些有害物质也是极其危险的。这里小编为大家介绍两个使用奥林巴斯XRF来鉴别珠宝的实例。例1:手镯上的一些“金”叶子“金”叶子XRF检测结果元素种类%+/- 3σ金(Au)0.5630.052锌(Zn)35.650.14锇(Os)0.1930.056镍(Ni)0.1040.007铜(Cu)63.490.14结论:使用Vanta XRF分析仪分析这些“金”叶子,结果显示金(Au)含量很低,表明叶片实际上是镀金的。手镯实际上是一种镀有薄金的铜锌合金。例2:纯银耳环“纯银”耳环(宝石周围的金属)XRF检测结果元素种类%+/- 3σ锌(Zn)0.330.17铜(Cu)9.240.80镉(Cd)7.730.73银(Ag)82.71.0 “纯银”耳环柱XRF检测结果元素种类%+/- 3σ锌(Zn)4.000.52铁(Fe)1.140.53铜(Cu)0.220.16镉(Cd)20.11.1银(Ag)74.61.2结论:案例2是一个“纯银”耳环。它们被标记为925,意思是它们应该含有92.5%的银(Ag)。使用Vanta XRF分析仪来识别宝石周围的金属。结果发现:金属中只有82.7%的银,并且含有7%的镉。镉是一种剧毒物质,不应该出现在耳环中。当进一步分析佩戴在耳垂内的耳环柱时,结果显示镉含量竟然为20%!这是非常危险的,因为一些监管机构建议将镉含量限制在0.01%或更低!珠宝鉴别好帮手——XRF分析仪从上述案例中可以看出,XRF是珠宝鉴别的好帮手。奥林巴斯提供两种XRF分析设备帮助客户识别假冒珠宝--Vanta手持式XRF分析仪和便携式台式GoldXpert XRF分析仪。Vanta 手持式XRF分析仪正置于工作台上检测样品GoldXpert XRF分析仪XRF分析仪也可用于其他贵金属行业的应用,包括:现场分析金克拉百分比汽车催化剂回收金条分析XRF是贵金属纯度和细度的化学分析和测定方法,是一种广泛应用、被证明和接受的方法。XRF分析是一种多元素测试的替代方法,比火焰测试和化学测试更快、更便宜。奥林巴斯XRF分析仪同时具备易用性和便携性,可以在现场快速得到检测结果,提高客户的信心和确保经销商的可靠性。
  • 牙膏添加处方药“氨甲环酸”,为什么大家反应这么大?
    最近,某款牙膏被曝光,所谓的中草药止血,是因为在牙膏里掺了西药处方药“氨甲环酸”,引起了网络一系列讨论。为什么在牙膏里添加氨甲环酸被曝光后,会受到一众抵制呢?这就要从氨甲环酸,这一款处方药说起了。氨甲环酸(Tranexamic acid)又名凝血酸,化学名为反-4-氨甲基环已烷甲酸,白色结晶性粉末;无臭,味微苦。分子式:C8H15NO2氨甲环酸为氨甲苯酸的衍生物,是一种抗纤溶的止血药物。氨甲环酸化学结构与赖氨酸相似,能竞争性抑制纤溶酶原在纤维蛋白上吸附,防止其激活,保护纤维蛋白不被纤溶酶所降解和溶解,最终达到止血效果。但是!氨甲环酸是处方药!必须遵医嘱使用!我们来看看氨甲环酸的使用注意事项:1. 联合用药禁忌 药物名称临床症状及处置方法作用机制 危险因素凝血酶有可能有血栓形成的倾向有促进血栓形成的作用,如果联合用药有增加血栓形成的倾向2. 联合用药时的注意事项:药物名称临床症状及处置方法作用机制 危险因素蛇毒凝血酶大量合用时可引起血栓形成倾向本制剂具有的抗纤溶作用,有可能导致蛇毒血凝酶引起的我纤维蛋白块存留较长时间,从而使栓塞的症状延续巴曲酶有可能引起血栓或栓塞症由巴曲酶所生成的desA ,可阻碍纤维蛋白聚合体的分解。 凝血因子制剂依他凝血染等在口腔等纤溶系统活性比较强的部位,有可能使凝血系统进一步亢进。凝血因子制剂通过活化凝血系统出现止血作用,而本药物通过阻碍纤溶系统也出现止血作用以下患者应慎重给药(1)有血栓的患者(脑血栓、心肌梗塞、血栓静脉炎等)以及可能引起血栓症的患者。[有使血栓稳定化的倾向](2)有消耗性凝血障碍的患者。(与肝素等并用)[有使血栓稳定化的倾向](3)术后处于卧床状态的患者以及正在接受压迫止血的患者。[上述情况易发生静脉血栓,给予本药后有使血栓稳定化的倾向。有在下床运动及解除压迫后发生肺栓塞的报告。](4)有肾功能不全的患者[有时血药浓度升高](5)对本剂有既往过敏史的患者。可以看出,不合理用药,会增加血栓风险,因此氨甲环酸必须在医生指导下使用。而牙膏是我们日常生活必需品,老人小孩都会使用到它。虽然并不是直接服下,但是我们不能排除风险。另外,牙龈出血也不是随随便便把血止住就万事大吉了的。在排除了刷牙方式不当或牙刷刷毛过硬外,牙龈出血表示:1. 你患有牙龈炎,牙周炎了;2. 你牙结石过多了;3. 其他的一些全身性疾病。而所谓的止血牙膏,仅仅是把血止住了而已,对牙龈炎牙周炎等并无改善作用,类似于掩耳盗铃。久而久之,很多人就会错过口腔传递的求救信号,许多疾病就无法得到及时治疗,导致更严重的后果出现。最后,牙膏最主要的功能,就是清洁牙齿防止蛀牙,所以购买牙膏时,不必为了各种花哨的功能而左挑右选,除了含氟牙膏是经过证实能够预防龋齿之外,别的宣传基本上都是噱头。
  • 干货分享|水质检测人绕不过的坎:总氮小于氨氮
    首先,我们先了解一下什么总氮?什么是氨氮?以及总氮与氨氮的区别及联系。简单来说,氨氮是总氮的组成之一,同种废水中,总氮浓度要比氨氮浓度高。两者的关系还可以用下面这张图来表示。 理论上,在水质中氨氮的含量肯定是小于总氮的,但是实际检测中,往往会出现氨氮的检测结果大于总氮的现象,为什么会产生这种现象呢?●总氮小于氨氮的几种影响因素●1、 实验环境导致的误差在实验室周围环境有卫生间或存放氨水等等,实验室的空气中含有少量的氨气,这些氨气极易溶于水,使实验用水也不同程度地含有铵离子。在实验分析中,稀释水样所用的无氨水的制备和保存往往不被重视,导致外界氨氮溶解到水样中,增加了水样的氨氮浓度误差。2、样品引入的误差由于水中的氮化合物是在不断变化着的,采集后送回实验室等待实验分析的样品, 它们的存放时间、 存放地点,光照情况等, 甚至分析人员取样的先后次序等,都会给氨氮和总氮的实验分析带来不同的误差。3、试剂和水引入的误差实验时首先要进行过硫酸钾的提纯处理,没有经过提纯的过硫酸钾溶液的吸光度远大于经过提纯的过硫酸钾溶液,且经过提纯的过硫酸钾溶液标准偏差更小,对水样测定结果的偏差影响更小。总氮实验的成败与实验用水和试剂的优劣直接相关。首先是实验用水,普通的蒸馏水不能满足要求,必须进行二次蒸馏,使用自制无氨水时,在保存水期间,要避免与实验室空气中含有氨接触,而受其重新污染。其次是试剂的选择和配制,试剂的选择也极其重要,过硫酸钾的质量影响到整个实验的成败,,其纯度关系到空白值得高低和测定结果的准确度。通过实验发现默克的过硫酸钾可以满足实验要求。 4、实验方法引入的误差氨氮的分析通常采用较为经典的纳氏试剂光度法,虽然显色要求碱性环境,但前处理过程比较简单,直接显色测定后,就可以计算得出结果。相对来说总氮的分析的前处理过程要复杂一些,要经历在碱性条件下30min的加压处理,在前处理过程中如果密封不好,也会导致在高温高压下氨氮的释放,一般很少有化验室做到每次总氮的消解用生料带密封瓶塞的,因此转化不可能为100%的转化,这当中会导致总氮过程中的氨氮释放,从而引起误差存在。5、样品浊度引入的误差总氮分析前处理能消除的浊度影响在氨氮分析中消除不了, 加上比色时常用不同种比色皿, 这几种影响因素加起来, 对最后结果带来差异。由于两种测试方法都是用测量吸光度的,样品中的悬浮物造成的浊度是样品分析中最难消除的影响因素,在总氮和氨氮的实验分析测定中, 总氮分析前处理能消除的浊度影响在氨氮分析中就消除不了,可能会对水样检测中的氨氮造成较高的情况。6、不同分析方法和分析仪器引入的误差几乎所有的分析实验方法测定样品都有一定的方法误差, 总氮和氨氮的实验分析也不例外,分析氨氮的纳氏试剂光度法有误差,分析总氮的碱性过硫酸盐分解法同样也有误差, 两种分析方法误差给最后测定结果带来的误差,有很大的不确定性。在两个项目的整个分析过程中所使用的各种量器、比色管、比色皿等多种仪器,它们都可能引入程度不同的误差 比色时所使用的分光光度计的灵敏度、精密度和准确度都可能不是一样的,引入的误差大小也不一样。特别对总氮和氨氮的比色测定采用的是可见和紫外两种不同光区的光, 引入的误差差异更大。7、数据处理引入的误差在数据处理中, 有两方面可能引入误差:一是不同的校正曲线引入的误差,虽然这两个项目使用的两条曲线都经统计检验合格,但曲线与曲线有差别,这种差别带来误差 二是对有效数字的取舍引入误差。两方面的误差总和起来就形成了两分析项目间不小的误差。样品的浓度越小,这种误差越大,这就是有些情况下,经过稀释的水样反而会出现氨氮小于总氮的情况。8、还有就是不同人员的因素导致的各种误差实验手法,误差控制上都会有不同的差别:从上面的分析可以看到氨氮和总氮在化验过程中出现的误差的情况有客观和主观的多方面的因素影响,综合的误差会导致氨氮可能超过总氮的情况发生。●如何预防误差带来的错误数据●综上所述,在污水检测中,氨氮和总氮的化验中会经常出现的氨氮高于总氮的情况,是不可避免的,特别是在一些总氮中氨氮所占的比例较大的水样中,由于多种诱发误差的原因存在,出现这种情况的几率很高。检测人员应该对于总氮和氨氮的分析时间要保持一致,消除药品样品及实验条件的干扰。
  • 江门市质量检验协会发布《T/JMZJXH 018-2023 腈纶和改性腈纶鉴别试验方法 凯氏定氮法》等2项团体标准征求意见稿
    各单位:由广东省江门市质量计量监督检测所、广东职业技术学院、广东省云浮市质量计量监督检测所、江门市质量检验协会等共同组织、起草的《T/JMZJXH 018-2023纺织品 腈纶和改性腈纶鉴别试验方法 凯氏定氮法》、《T/JMZJXH 019-2023纺织品 定量化学分析 蚕丝与羊毛或其他动物毛纤维的混合物(铜氨溶液法)》团体标准已完成征求意见稿,现公开征求意见。请各有关单位及专家将修改意见或建议填写至《标准征求意见表》内,并于2023年11月30日前回复提交。团体标准的名称如下:T/JMZJXH 018-2023 纺织品 腈纶和改性腈纶鉴别试验方法 凯氏定氮法T/JMZJXH 019-2023 纺织品 定量化学分析 蚕丝与羊毛或其他动物毛纤维的混合物(铜氨溶液法)特此公告。 联系人:聂志乐电话:0750-3286058邮箱:404542885@qq.com江门市质量检验协会2023年10月31日 征求意见反馈表.docxT-JMZJXH 019-2023 纺织品 定量化学分析 蚕丝与羊毛或其他动物毛纤维的混合物(铜氨溶液法)_20231031100811.pdfT-JMZJXH 018-2023 纺织品 腈纶和改性腈纶鉴别试验方法 凯氏定氮法_20231031100816.pdf
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 滨海正红发布CH酸纯化器,高纯酸提纯器新品
    酸纯化器一、 产品简介:南京滨正红---酸纯化器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,可用于实验室酸如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,可用于痕量和超痕量分析的样品制备,纯化器带有液位计方便观察里面的溶液,一个出酸口,一个排废液口,操作维护方便,是超纯净实验室化学反应的必备产品。 实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。为了满足更多客户的需求,我厂研发了更大规格的酸纯化器(2000ml)二、工作原理:酸纯化器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,广泛应用于样品处理及分析中。目前市场上的超纯酸由于价格较贵,很难满足日常分析需求,因此提纯优化酸的质量,是最为经济可行的途径。是超纯净实验室提取高纯酸的得力助手。典型用户:中国地质大学、中国计量科学研究院、中国科学院地球化学研究所、中国工程物理研究院、中核建中核燃料元件有限公司、长沙核工业230研究所、广西壮族自治区海洋环境监测中心站、中国建材地勘中心陕西总队等。 三、 产品特点:1、可以满足ICP、ICP-MS极低的检测限需要及苛刻的分析应用中提供实验室级超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸。2、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数。四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称酸纯化器酸纯化器酸纯化器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶(冷却水管)电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯PFA、FEP、PTFE材质制造,空白值低无腐蚀3.技术先进,结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,极少量酸气逸出5.节约成本,方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求实验数据(仅供参考):仪器:CH-I 酸纯化器;试剂:优级纯HF 蒸馏后,经中国地质大学地质过程与矿产资源国家重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)Be0.01Ba0.01Mg0.02La0.01Sc0.01Ce0.01V0.01Pr0.01Cr0.03Nd0.01Mn0.01Eu0.01Co0.01Gd0.01Ni0.01Tb0.01Zn0.02Er0.01Ga0.01Tm0.01Rb0.01Yb0.01Sr0.02Lu0.01Zr0.01Hf0.01Cd0.01Pb0.01Sn0.01Th0.01Cs0.01U0.01 创新点:顶部驻酸,从源头上避免交叉污染底部硅胶片加热,PID温控数显,人性化结构设计,可置于通风橱中工作并实现无人看管所有部件均采用特氟龙塑料、彻底杜绝腐蚀和二次污染的问题可连续不间断地制备硝酸、盐酸、氢氟酸、碱溶剂及有机溶剂CH酸纯化器,高纯酸提纯器
  • GPC凝胶净化鉴别地沟油与植物油中胆固醇含量
    据近日报道,公安部指挥破获了浙鲁豫等地利用地沟油制售食用油特大案件。今年6月以来,北京市食品安全监控中心多次组织多家有关单位的专家,对地沟油鉴定技术开展评估。在将近3个月时间中,检测人员综合运用色谱分析、光谱分析、理化分析及基因鉴定技术等现代分析测试手段,对地沟油鉴定开展了技术攻关,先后对80余个技术指标进行了全方位的筛选,确定了多环芳烃、胆固醇、电导率、特定基因等四大类、20余项有重要鉴别意义的项目,初步建立了地沟油检测的指标体系。  其中,胆固醇是一项重要鉴别项目。食用植物油中一般不含胆固醇或含量极低。根据地沟油中可能含有动物源性成分,可以推断如果检出胆固醇并超过一定范围,可怀疑该油脂为地沟油。 通过我们的相关实验表明,作为油脂性样品净化的**技术之一,凝胶色谱净化(GPC净化)可以发挥非常好的作用,在鉴别地沟油这项艰巨任务中,有着很大的应用潜力。请看相关应用报告。点击下载:凝胶色谱净化-高效液相色谱法测定食用油中的胆固醇
  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:  1. 省令:  根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。  2. 告示:  (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。  (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。  该修订自发布之日起实施。
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图添加回收结果回收率88%~89%(添加水平:10、50、100 mg/kg)相对标准偏差(n=5) 2%线性范围0.25~100 mg/L定量下限5.0 mg/kg* 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息:货号名称规格样品前处理37177针头式过滤器 Nylon13 mm,0.22 μm 100/pk37180针头式过滤器 Nylon13 mm,0.45 μm 100/pk色谱柱及保护柱99503耐100%纯水流动相反相液相色谱柱Platisil ODS C18250 × 4.6 mm, 5 μm标准品46672顺丁烯二酸酐[108-31-6]1 g46671顺丁烯二酸[110-16-7]1 gHPLC溶剂 缓冲盐 离子对试剂50102甲醇 HPLC级4 L50108无水乙醇 HPLC级4 L50133磷酸 HPLC级50 mL通用色谱产品52401B瓶架/蓝色50 孔52401A瓶架/白色50孔5323样品瓶(棕色/螺纹2 mL, 100/pk5325样品瓶盖/含垫(已经组装)100/pkH80465HPLC 进样针25 μL
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 特色应用| 岛津气味分析系统助力小麦储藏年份鉴别方法研究
    岛津中国创新中心与国家粮食和物资储备局科学研究院杨永坛研究员团队在粮食储藏年份的鉴别方法研究中取得新进展。研究基于岛津固相微萃取-气相色谱三重四极杆质谱对小麦中挥发性风味物质的种类和含量进行分析,通过多元统计分析筛选不同储藏年份小麦中的特征差异化合物,并以此为基础建立小麦储藏年份的分类鉴别模型,为小麦的储藏年份鉴定提供技术支撑。研究成果以“基于挥发性风味物质分析的小麦储藏年份鉴别方法研究”为题,已发表在《食品安全质量检测学报》。背景介绍小麦是中国最重要的口粮之一,小麦产业发展与国家粮食安全和社会稳定密切相关。小麦具有较长的后熟期,在温湿度适宜的环境下可储藏3至5年。随着储藏时间的延长,小麦的化学成分、组织结构、生理特性等均不断发生变化。我国国情决定了庞大的小麦储备量,对于中央储备粮承储库,国家要求在粮食收储和轮换入库过程中必须收购当年新粮,确保品质优良的新鲜小麦入库。而小麦加工行业则需收购经过后熟期的小麦, 原因是新鲜小麦蛋白质、脂肪和矿物质等营养成分尚未完全转化,导致食用品质不佳而不适宜直接加工。因此,国家粮食储备库和加工企业收购小麦时,对于小麦储藏年份鉴别存在客观需求。传统的小麦储藏时间分析方法主要有感官鉴定法、愈创木酚反应法、脂肪酸值法和红外光谱法等。感官鉴定法通过色泽、气味和外观形态来判定小麦品质,需依赖评价人员的经验,易受其主观性的影响;愈创木酚反应法显色深浅差异不明显,对相邻年份小麦样品判断存在困难 脂肪酸值法基于小麦储藏过程中化学成分的变化,在一定程度上可以判断小麦的新陈, 但在粮堆发热时霉菌活跃可能导致脂肪酸作为营养物质被消耗, 还需要结合其他指标进行综合判定;红外光谱法样品制备过程繁琐, 应用于小麦籽粒样品时存在前处理较复杂的局限性。小麦储藏过程中伴随着挥发性物质的产生和变化,主要来源包括小麦自身脂质的氧化和水解、蛋白质和氨基酸的降解、糖类的代谢以及微生物活动产生的挥发性物质等,挥发性风味物质的变化是反映小麦储藏品质及营养价值改变的重要特征。固相微萃取技术能对含量较低的挥发性物质进行富集,具有快速、灵敏、无需溶剂的优点,基于固相微萃取-气相色谱三重四极杆质谱开发小麦中挥发性风味物质的检测方法有望为粮食储藏年份无损鉴别提供重要技术手段。研究内容本研究采用固相微萃取-气相色谱三重四极杆质谱(GCMS-TQ系列),结合专属型多反应监测(MRM)数据库,建立了小麦中挥发性风味物质的分析方法。实验从采集自2018、2019、2020、2021和2022年的小麦籽粒样品中检出了94种挥发性化合物,去除其中可能来源于包装材料或环境的化合物后,检出的挥发性风味物质有73种,包括醇类、醛类、酮类、杂环类、酸类等多种化合物类型(如图1a)。按检出化合物类型对风味物质的相对含量数据进行凝聚层次聚类分析,2018 年和2019年小麦样品与其他3个年份聚为两类,表明小麦中挥发性风味物质与储藏年限存在一定的相关性,其中酯类、酸类、醇类和烃类化合物在储藏年限大于3年时含量明显高于储藏3年内(如图1b)。图1. (a)2018年山东小麦样品中所含挥发性风味物质类型组成图;(b)2018年至2022年小麦挥发性风味物质的凝聚层次聚类分析结果。各年份小麦样品获得的挥发性风味物质偏最小二乘法判别分析(PLS-DA) 结果如图2a所示,5个年份的样品呈明显的聚类状态,表明不同年份间的小麦中的挥发性化合物存在明显差异。从检出的所有化合物中以变量投影重要性(VIP)大于1作为阈值,筛选出37种不同年份间小麦中的差异化合物,其中VIP 值在前15 位的化合物如图2b所示。交叉验证(图2c)及置换检验(图2d)的参数均说明,基于小麦中特征挥发性化合物建立的样本储藏年份判别模型可靠, 不存在过拟合现象。注:a为PLS-DA;b为VIP值;c为PLS-DA交叉验证,*表示目前所选交叉验证的最佳结果;d为PLS-DA模型置换检验结果。图2. 2018至2022年小麦风味物质的PLS-DA结果进一步探讨不同年份间小麦中挥发性风味物质的含量分布差异,可以看出有两类挥发性化合物出现规律性变化。4种内酯类化合物含量随储藏时间延长而增加 (图3a),3种醇类化合物含量同样随储藏时间延长而增加 (图3b)。图3. 不同储藏年份小麦特征差异物箱线图结论基于岛津固相微萃取-气相色谱三重四极杆质谱仪开发建立小麦中挥发性风味物质的分析方法,对2018至2022年收获的小麦样品中的挥发性风味物质种类和含量进行检测和分析,应用多元统计分析方法筛选不同年份的小麦间具有显著性差异的化合物,并基于特征差异化合物构建了小麦储藏年份的样本判别模型,有望解决小麦流通环节储藏年份鉴别的难题,为保障粮食品质和节粮减损提供有利分析工具。岛津多功能自动进样器-气相色谱三重四极杆质谱仪参考文献:[1] 张玉荣, 张晓, 田甜, 等. 加速陈化过程中小麦品质变化及陈化指标筛选[J]. 河南工业大学学报(自然科学版), 2020, 41(5): 91‒ 97. ZHANG YR, ZHANG X, TIAN T, et al. Changes of wheat quality during accelerated aging and screening of aging indicators [J]. J Henan Univ Technol (Nat Sci Ed) , 2020, 41(5): 91‒ 97.[2] 张欢欢, 吴小良, 祁鸣, 等. 小麦新陈度鉴定的现状分析和新方法探讨[J]. 粮食加工, 2016, 41(3): 17‒ 20. ZHANG HH, WU XL, QI M, et al. Present situation analysis and new method discussion of wheat freshness identification [J]. Grain Process, 2016, 41(3): 17‒ 20.[3] NIU YN, XIE GD, XIAO Y, et al. Spatiotemporal patterns and determinants of grain self-sufficiency in China [J]. Foods, 2021, 10(4): 747.[4]郭瑞,张晓莉,李盼盼等. 基于挥发性风味物质分析的小麦储藏年份鉴别方法研究[J].《食品安全质量检测学报》, 2023, 14 (24): 303-312.本文内容非商业广告,仅供专业人士参考。
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1 g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • 三部门联合印发《工业领域碳达峰实施方案》,加快工业绿色低碳技术变革
    近日,工业和信息化部、国家发展改革委、生态环境部联合印发《工业领域碳达峰实施方案》。该方案明确,“十四五”期间,建成一批绿色工厂和绿色工业园区,研发、示范、推广一批减排效果显著的低碳零碳负碳技术工艺装备产品,筑牢工业领域碳达峰基础。到2025年,规模以上工业单位增加值能耗较2020年下降13.5%,单位工业增加值二氧化碳排放下降幅度大于全社会下降幅度,重点行业二氧化碳排放强度明显下降。“十五五”期间,产业结构布局进一步优化,工业能耗强度、二氧化碳排放强度持续下降,努力达峰削峰,在实现工业领域碳达峰的基础上强化碳中和能力,基本建立以高效、绿色、循环、低碳为重要特征的现代工业体系。确保工业领域二氧化碳排放在2030年前达峰。该方案提出六大重点任务:深度调整产业结构;深入推进节能降碳;积极推进绿色制造;大力发展循环经济;加快工业绿色低碳技术变革;主动推进工业领域数字化转转型。两个重大行动:重点行业碳达峰行动;绿色低碳产品供给提升行动。《工业领域碳达峰实施方案》全文如下:工业领域碳达峰实施方案  为深入贯彻落实党中央、国务院关于碳达峰碳中和决策部署,加快推进工业绿色低碳转型,切实做好工业领域碳达峰工作,根据《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《2030年前碳达峰行动方案》,结合相关规划,制定本实施方案。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,深入贯彻习近平生态文明思想,按照党中央、国务院决策部署,坚持稳中求进工作总基调,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,坚定不移实施制造强国和网络强国战略,锚定碳达峰碳中和目标愿景,坚持系统观念,统筹处理好工业发展和减排、整体和局部、长远目标和短期目标、政府和市场的关系,以深化供给侧结构性改革为主线,以重点行业达峰为突破,着力构建绿色制造体系,提高资源能源利用效率,推动数字化智能化绿色化融合,扩大绿色低碳产品供给,加快制造业绿色低碳转型和高质量发展。(二)工作原则。统筹谋划,系统推进。坚持在保持制造业比重基本稳定、确保产业链供应链安全、满足合理消费需求的同时,将碳达峰碳中和目标愿景贯穿工业生产各方面和全过程,积极稳妥推进碳达峰各项任务,统筹推动各行业绿色低碳转型。效率优先,源头把控。坚持把节约能源资源放在首位,提升利用效率,优化用能和原料结构,推动企业循环式生产,加强产业间耦合链接,推进减污降碳协同增效,持续降低单位产出能源资源消耗,从源头减少二氧化碳排放。创新驱动,数字赋能。坚持把创新作为第一驱动力,强化技术创新和制度创新,推进重大低碳技术工艺装备攻关,强化新一代信息技术在绿色低碳领域的创新应用,以数字化智能化赋能绿色化。政策引领,市场主导。坚持双轮驱动,发挥市场在资源配置中的决定性作用,更好发挥政府作用,健全以碳减排为导向的激励约束机制,充分调动企业积极性,激发市场主体低碳转型发展的内生动力。(三)总体目标。“十四五”期间,产业结构与用能结构优化取得积极进展,能源资源利用效率大幅提升,建成一批绿色工厂和绿色工业园区,研发、示范、推广一批减排效果显著的低碳零碳负碳技术工艺装备产品,筑牢工业领域碳达峰基础。到2025年,规模以上工业单位增加值能耗较2020年下降13.5%,单位工业增加值二氧化碳排放下降幅度大于全社会下降幅度,重点行业二氧化碳排放强度明显下降。“十五五”期间,产业结构布局进一步优化,工业能耗强度、二氧化碳排放强度持续下降,努力达峰削峰,在实现工业领域碳达峰的基础上强化碳中和能力,基本建立以高效、绿色、循环、低碳为重要特征的现代工业体系。确保工业领域二氧化碳排放在2030年前达峰。二、重点任务(四)深度调整产业结构。推动产业结构优化升级,坚决遏制高耗能高排放低水平项目盲目发展,大力发展绿色低碳产业。1. 构建有利于碳减排的产业布局。贯彻落实产业发展与转移指导目录,推进京津冀、长江经济带、粤港澳大湾区、长三角地区、黄河流域等重点区域产业有序转移和承接。落实石化产业规划布局方案,科学确定东中西部产业定位,合理安排建设时序。引导有色金属等行业产能向可再生能源富集、资源环境可承载地区有序转移。鼓励钢铁、有色金属等行业原生与再生、冶炼与加工产业集群化发展。围绕新一代信息技术、生物技术、新能源、新材料、高端装备、新能源汽车、绿色环保以及航空航天、海洋装备等战略性新兴产业,打造低碳转型效果明显的先进制造业集群。(国家发展改革委、工业和信息化部、生态环境部、国务院国资委、国家能源局等按职责分工负责)2. 坚决遏制高耗能高排放低水平项目盲目发展。采取强有力措施,对高耗能高排放低水平项目实行清单管理、分类处置、动态监控。严把高耗能高排放低水平项目准入关,加强固定资产投资项目节能审查、环境影响评价,对项目用能和碳排放情况进行综合评价,严格项目审批、备案和核准。全面排查在建项目,对不符合要求的高耗能高排放低水平项目按有关规定停工整改。科学评估拟建项目,对产能已饱和的行业要按照“减量替代”原则压减产能,对产能尚未饱和的行业要按照国家布局和审批备案等要求对标国内领先、国际先进水平提高准入标准。(国家发展改革委、工业和信息化部、生态环境部等按职责分工负责)3. 优化重点行业产能规模。修订产业结构调整指导目录。严格落实钢铁、水泥、平板玻璃、电解铝等行业产能置换政策,加强重点行业产能过剩分析预警和窗口指导,加快化解过剩产能。完善以环保、能耗、质量、安全、技术为主的综合标准体系,严格常态化执法和强制性标准实施,持续依法依规淘汰落后产能。(国家发展改革委、工业和信息化部、生态环境部、市场监管总局、国家能源局等按职责分工负责)4. 推动产业低碳协同示范。强化能源、钢铁、石化化工、建材、有色金属、纺织、造纸等行业耦合发展,推动产业循环链接,实施钢化联产、炼化一体化、林浆纸一体化、林板一体化。加强产业链跨地区协同布局,减少中间产品物流量。鼓励龙头企业联合上下游企业、行业间企业开展协同降碳行动,构建企业首尾相连、互为供需、互联互通的产业链。建设一批“产业协同”、“以化固碳”示范项目。(国家发展改革委、工业和信息化部、国务院国资委、国家能源局、国家林草局等按职责分工负责)(五)深入推进节能降碳。把节能提效作为满足能源消费增长的最优先来源,大幅提升重点行业能源利用效率和重点产品能效水平,推进用能低碳化、智慧化、系统化。1. 调整优化用能结构。重点控制化石能源消费,有序推进钢铁、建材、石化化工、有色金属等行业煤炭减量替代,稳妥有序发展现代煤化工,促进煤炭分质分级高效清洁利用。有序引导天然气消费,合理引导工业用气和化工原料用气增长。推进氢能制储输运销用全链条发展。鼓励企业、园区就近利用清洁能源,支持具备条件的企业开展“光伏+储能”等自备电厂、自备电源建设。(国家发展改革委、工业和信息化部、生态环境部、国家能源局等按职责分工负责)2. 推动工业用能电气化。综合考虑电力供需形势,拓宽电能替代领域,在铸造、玻璃、陶瓷等重点行业推广电锅炉、电窑炉、电加热等技术,开展高温热泵、大功率电热储能锅炉等电能替代,扩大电气化终端用能设备使用比例。重点对工业生产过程1000℃以下中低温热源进行电气化改造。加强电力需求侧管理,开展工业领域电力需求侧管理示范企业和园区创建,示范推广应用相关技术产品,提升消纳绿色电力比例,优化电力资源配置。(国家发展改革委、工业和信息化部、生态环境部、国家能源局等按职责分工负责)3. 加快工业绿色微电网建设。增强源网荷储协调互动,引导企业、园区加快分布式光伏、分散式风电、多元储能、高效热泵、余热余压利用、智慧能源管控等一体化系统开发运行,推进多能高效互补利用,促进就近大规模高比例消纳可再生能源。加强能源系统优化和梯级利用,因地制宜推广园区集中供热、能源供应中枢等新业态。加快新型储能规模化应用。(国家发展改革委、工业和信息化部、国家能源局等按职责分工负责)4. 加快实施节能降碳改造升级。落实能源消费强度和总量双控制度,实施工业节能改造工程。聚焦钢铁、建材、石化化工、有色金属等重点行业,完善差别电价、阶梯电价等绿色电价政策,鼓励企业对标能耗限额标准先进值或国际先进水平,加快节能技术创新与推广应用。推动制造业主要产品工艺升级与节能技术改造,不断提升工业产品能效水平。在钢铁、石化化工等行业实施能效“领跑者”行动。(国家发展改革委、工业和信息化部、市场监管总局等按职责分工负责)5. 提升重点用能设备能效。实施变压器、电机等能效提升计划,推动工业窑炉、锅炉、压缩机、风机、泵等重点用能设备系统节能改造升级。重点推广稀土永磁无铁芯电机、特大功率高压变频变压器、三角形立体卷铁芯结构变压器、可控热管式节能热处理炉、变频无极变速风机、磁悬浮离心风机等新型节能设备。(国家发展改革委、工业和信息化部、市场监管总局等按职责分工负责)6. 强化节能监督管理。持续开展国家工业专项节能监察,制定节能监察工作计划,聚焦重点企业、重点用能设备,加强节能法律法规、强制性节能标准执行情况监督检查,依法依规查处违法用能行为,跟踪督促、整改落实。健全省、市、县三级节能监察体系,开展跨区域交叉执法、跨级联动执法。全面实施节能诊断和能源审计,鼓励企业采用合同能源管理、能源托管等模式实施改造。发挥重点领域中央企业、国有企业引领作用,带头开展节能自愿承诺。(国家发展改革委、工业和信息化部、国务院国资委、市场监管总局等按职责分工负责)(六)积极推行绿色制造。完善绿色制造体系,深入推进清洁生产,打造绿色低碳工厂、绿色低碳工业园区、绿色低碳供应链,通过典型示范带动生产模式绿色转型。1. 建设绿色低碳工厂。培育绿色工厂,开展绿色制造技术创新及集成应用。实施绿色工厂动态化管理,强化对第三方评价机构监督管理,完善绿色制造公共服务平台。鼓励绿色工厂编制绿色低碳年度发展报告。引导绿色工厂进一步提标改造,对标国际先进水平,建设一批“超级能效”和“零碳”工厂。(工业和信息化部、生态环境部、市场监管总局等按职责分工负责)2. 构建绿色低碳供应链。支持汽车、机械、电子、纺织、通信等行业龙头企业,在供应链整合、创新低碳管理等关键领域发挥引领作用,将绿色低碳理念贯穿于产品设计、原料采购、生产、运输、储存、使用、回收处理的全过程,加快推进构建统一的绿色产品认证与标识体系,推动供应链全链条绿色低碳发展。鼓励“一链一策”制定低碳发展方案,发布核心供应商碳减排成效报告。鼓励有条件的工业企业加快铁路专用线和管道基础设施建设,推动优化大宗货物运输方式和厂内物流运输结构。(国家发展改革委、工业和信息化部、生态环境部、交通运输部、商务部、国务院国资委、市场监管总局等按职责分工负责)3. 打造绿色低碳工业园区。通过“横向耦合、纵向延伸”,构建园区内绿色低碳产业链条,促进园区内企业采用能源资源综合利用生产模式,推进工业余压余热、废水废气废液资源化利用,实施园区“绿电倍增”工程。到2025年,通过已创建的绿色工业园区实践形成一批可复制、可推广的碳达峰优秀典型经验和案例。(国家发展改革委、工业和信息化部、生态环境部、国家能源局等按职责分工负责)4. 促进中小企业绿色低碳发展。优化中小企业资源配置和生产模式,探索开展绿色低碳发展评价,引导中小企业提升碳减排能力。实施中小企业绿色发展促进工程,开展中小企业节能诊断服务,在低碳产品开发、低碳技术创新等领域培育专精特新“小巨人”。创新低碳服务模式,面向中小企业打造普惠集成的低碳环保服务平台,助推企业增强绿色制造能力。(工业和信息化部、生态环境部等按职责分工负责)5. 全面提升清洁生产水平。深入开展清洁生产审核和评价认证,推动钢铁、建材、石化化工、有色金属、印染、造纸、化学原料药、电镀、农副食品加工、工业涂装、包装印刷等行业企业实施节能、节水、节材、减污、降碳等系统性清洁生产改造。清洁生产审核和评价认证结果作为差异化政策制定和实施的重要依据。(国家发展改革委、工业和信息化部、生态环境部等按职责分工负责)(七)大力发展循环经济。优化资源配置结构,充分发挥节约资源和降碳的协同作用,通过资源高效循环利用降低工业领域碳排放。1. 推动低碳原料替代。在保证水泥产品质量的前提下,推广高固废掺量的低碳水泥生产技术,引导水泥企业通过磷石膏、钛石膏、氟石膏、矿渣、电石渣、钢渣、镁渣、粉煤灰等非碳酸盐原料制水泥。推进水泥窑协同处置垃圾衍生可燃物。鼓励有条件的地区利用可再生能源制氢,优化煤化工、合成氨、甲醇等原料结构。支持发展生物质化工,推动石化原料多元化。鼓励依法依规进口再生原料。(国家发展改革委、工业和信息化部、生态环境部、商务部、市场监管总局、国家能源局等按职责分工负责)2. 加强再生资源循环利用。实施废钢铁、废有色金属、废纸、废塑料、废旧轮胎等再生资源回收利用行业规范管理,鼓励符合规范条件的企业公布碳足迹。延伸再生资源精深加工产业链条,促进钢铁、铜、铝、铅、锌、镍、钴、锂、钨等高效再生循环利用。研究退役光伏组件、废弃风电叶片等资源化利用的技术路线和实施路径。围绕电器电子、汽车等产品,推行生产者责任延伸制度。推动新能源汽车动力电池回收利用体系建设。(国家发展改革委、科技部、工业和信息化部、生态环境部、交通运输部、商务部、市场监管总局、国家能源局等按职责分工负责)3. 推进机电产品再制造。围绕航空发动机、盾构机、工业机器人、服务器等高值关键件再制造,打造再制造创新载体。加快增材制造、柔性成型、特种材料、无损检测等关键再制造技术创新与产业化应用。面向交通、钢铁、石化化工等行业机电设备维护升级需要,培育50家再制造解决方案供应商,实施智能升级改造。加强再制造产品认定,建立自愿认证和自我声明结合的产品合格评定制度。(国家发展改革委、工业和信息化部、市场监管总局等按职责分工负责)4. 强化工业固废综合利用。落实资源综合利用税收优惠政策,鼓励地方开展资源利用评价。支持尾矿、粉煤灰、煤矸石等工业固废规模化高值化利用,加快全固废胶凝材料、全固废绿色混凝土等技术研发推广。深入推动工业资源综合利用基地建设,探索形成基于区域产业特色和固废特点的工业固废综合利用产业发展路径。到2025年,大宗工业固废综合利用率达到57%,2030年进一步提升至62%。(国家发展改革委、科技部、工业和信息化部、财政部、生态环境部、税务总局、市场监管总局等按职责分工负责)(八)加快工业绿色低碳技术变革。推进重大低碳技术、工艺、装备创新突破和改造应用,以技术工艺革新、生产流程再造促进工业减碳去碳。1. 推动绿色低碳技术重大突破。部署工业低碳前沿技术研究,实施低碳零碳工业流程再造工程,研究实施氢冶金行动计划。布局“减碳去碳”基础零部件、基础工艺、关键基础材料、低碳颠覆性技术研究,突破推广一批高效储能、能源电子、氢能、碳捕集利用封存、温和条件二氧化碳资源化利用等关键核心技术。推动构建以企业为主体,产学研协作、上下游协同的低碳零碳负碳技术创新体系。(国家发展改革委、科技部、工业和信息化部、生态环境部、国家能源局等按职责分工负责)2. 加大绿色低碳技术推广力度。发布工业重大低碳技术目录,组织制定技术推广方案和供需对接指南,促进先进适用的工业绿色低碳新技术、新工艺、新设备、新材料推广应用。以水泥、钢铁、石化化工、电解铝等行业为重点,聚焦低碳原料替代、短流程制造等关键技术,推进生产制造工艺革新和设备改造,减少工业过程温室气体排放。鼓励各地区、各行业探索绿色低碳技术推广新机制。(国家发展改革委、科技部、工业和信息化部、生态环境部等按职责分工负责)3. 开展重点行业升级改造示范。围绕钢铁、建材、石化化工、有色金属、机械、轻工、纺织等行业,实施生产工艺深度脱碳、工业流程再造、电气化改造、二氧化碳回收循环利用等技术示范工程。鼓励中央企业、大型企业集团发挥引领作用,加大在绿色低碳技术创新应用上的投资力度,形成一批可复制可推广的技术经验和行业方案。以企业技术改造投资指南为依托,聚焦绿色低碳编制升级改造导向计划。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、国家能源局等按职责分工负责)(九)主动推进工业领域数字化转型。推动数字赋能工业绿色低碳转型,强化企业需求和信息服务供给对接,加快数字化低碳解决方案应用推广。1. 推动新一代信息技术与制造业深度融合。利用大数据、第五代移动通信(5G)、工业互联网、云计算、人工智能、数字孪生等对工艺流程和设备进行绿色低碳升级改造。深入实施智能制造,持续推动工艺革新、装备升级、管理优化和生产过程智能化。在钢铁、建材、石化化工、有色金属等行业加强全流程精细化管理,开展绿色用能监测评价,持续加大能源管控中心建设力度。在汽车、机械、电子、船舶、轨道交通、航空航天等行业打造数字化协同的绿色供应链。在家电、纺织、食品等行业发挥信息技术在个性化定制、柔性生产、产品溯源等方面优势,推行全生命周期管理。推进绿色低碳技术软件化封装。开展新一代信息技术与制造业融合发展试点示范。(国家发展改革委、科技部、工业和信息化部等按职责分工负责)2. 建立数字化碳管理体系。加强信息技术在能源消费与碳排放等领域的开发部署。推动重点用能设备上云上平台,形成感知、监测、预警、应急等能力,提升碳排放的数字化管理、网络化协同、智能化管控水平。促进企业构建碳排放数据计量、监测、分析体系。打造重点行业碳达峰碳中和公共服务平台,建立产品全生命周期碳排放基础数据库。加强对重点产品产能产量监测预警,提高产业链供应链安全保障能力。(国家发展改革委、工业和信息化部、生态环境部、市场监管总局、国家统计局等按职责分工负责)3. 推进“工业互联网+绿色低碳”。鼓励电信企业、信息服务企业和工业企业加强合作,利用工业互联网、大数据等技术,统筹共享低碳信息基础数据和工业大数据资源,为生产流程再造、跨行业耦合、跨区域协同、跨领域配给等提供数据支撑。聚焦能源管理、节能降碳等典型场景,培育推广标准化的“工业互联网+绿色低碳”解决方案和工业APP,助力行业和区域绿色化转型。(国家发展改革委、工业和信息化部、国务院国资委、国家能源局等按职责分工负责)三、重大行动(十)重点行业达峰行动。聚焦重点行业,制定钢铁、建材、石化化工、有色金属等行业碳达峰实施方案,研究消费品、装备制造、电子等行业低碳发展路线图,分业施策、持续推进,降低碳排放强度,控制碳排放量。1. 钢铁。严格落实产能置换和项目备案、环境影响评价、节能评估审查等相关规定,切实控制钢铁产能。强化产业协同,构建清洁能源与钢铁产业共同体。鼓励适度稳步提高钢铁先进电炉短流程发展。推进低碳炼铁技术示范推广。优化产品结构,提高高强高韧、耐蚀耐候、节材节能等低碳产品应用比例。到2025年,废钢铁加工准入企业年加工能力超过1.8亿吨,短流程炼钢占比达15%以上。到2030年,富氢碳循环高炉冶炼、氢基竖炉直接还原铁、碳捕集利用封存等技术取得突破应用,短流程炼钢占比达20%以上。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、市场监管总局、国家能源局等按职责分工负责)2. 建材。严格执行水泥、平板玻璃产能置换政策,依法依规淘汰落后产能。加快全氧、富氧、电熔等工业窑炉节能降耗技术应用,推广水泥高效篦冷机、高效节能粉磨、低阻旋风预热器、浮法玻璃一窑多线、陶瓷干法制粉等节能降碳装备。到2025年,水泥熟料单位产品综合能耗水平下降3%以上。到2030年,原燃料替代水平大幅提高,突破玻璃熔窑窑外预热、窑炉氢能煅烧等低碳技术,在水泥、玻璃、陶瓷等行业改造建设一批减污降碳协同增效的绿色低碳生产线,实现窑炉碳捕集利用封存技术产业化示范。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、市场监管总局等按职责分工负责)3. 石化化工。增强天然气、乙烷、丙烷等原料供应能力,提高低碳原料比重。合理控制煤制油气产能规模。推广应用原油直接裂解制乙烯、新一代离子膜电解槽等技术装备。开发可再生能源制取高值化学品技术。到2025年,“减油增化”取得积极进展,新建炼化一体化项目成品油产量占原油加工量比例降至40%以下,加快部署大规模碳捕集利用封存产业化示范项目。到2030年,合成气一步法制烯烃、乙醇等短流程合成技术实现规模化应用。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、市场监管总局、国家能源局等按职责分工负责)4. 有色金属。坚持电解铝产能总量约束,研究差异化电解铝减量置换政策,防范铜、铅、锌、氧化铝等冶炼产能盲目扩张,新建及改扩建冶炼项目须符合行业规范条件,且达到能耗限额标准先进值。实施铝用高质量阳极示范、铜锍连续吹炼、大直径竖罐双蓄热底出渣炼镁等技改工程。突破冶炼余热回收、氨法炼锌、海绵钛颠覆性制备等技术。依法依规管理电解铝出口,鼓励增加高品质再生金属原料进口。到2025年,铝水直接合金化比例提高到90%以上,再生铜、再生铝产量分别达到400万吨、1150万吨,再生金属供应占比达24%以上。到2030年,电解铝使用可再生能源比例提至30%以上。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、国家能源局等按职责分工负责)5. 消费品。造纸行业建立农林生物质剩余物回收储运体系,研发利用生物质替代化石能源技术,推广低能耗蒸煮、氧脱木素、宽压区压榨、污泥余热干燥等低碳技术装备。到2025年,产业集中度前30位企业达75%,采用热电联产占比达85%;到2030年,热电联产占比达90%以上。纺织行业发展化学纤维智能化高效柔性制备技术,推广低能耗印染装备,应用低温印染、小浴比染色、针织物连续印染等先进工艺。加快推动废旧纺织品循环利用。到2025年,差别化高品质绿色纤维产量和比重大幅提升,低温、短流程印染低能耗技术应用比例达50%,能源循环利用技术占比达70%。到2030年,印染低能耗技术占比达60%。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、国家能源局等按职责分工负责)6. 装备制造。围绕电力装备、石化通用装备、重型机械、汽车、船舶、航空等领域绿色低碳需求,聚焦重点工序,加强先进铸造、锻压、焊接与热处理等基础制造工艺与新技术融合发展,实施智能化、绿色化改造。加快推广抗疲劳制造、轻量化制造等节能节材工艺。研究制定电力装备及技术绿色低碳发展路线图。到2025年,一体化压铸成形、无模铸造、超高强钢热成形、精密冷锻、异质材料焊接、轻质高强合金轻量化、激光热处理等先进近净成形工艺技术实现产业化应用。到2030年,创新研发一批先进绿色制造技术,大幅降低生产能耗。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委等按职责分工负责)7. 电子。强化行业集聚和低碳发展,进一步降低非电能源的应用比例。以电子材料、元器件、典型电子整机产品为重点,大力推进单晶硅、电极箔、磁性材料、锂电材料、电子陶瓷、电子玻璃、光纤及光纤预制棒等生产工艺的改进。加快推广多晶硅闭环制造工艺、先进拉晶技术、节能光纤预制及拉丝技术、印制电路板清洁生产技术等研发和产业化应用。到2025年,连续拉晶技术应用范围95%以上,锂电材料、光纤行业非电能源占比分别在7%、2%以下。到2030年,电子材料、电子整机产品制造能耗显著下降。(国家发展改革委、科技部、工业和信息化部、生态环境部、国务院国资委、国家能源局等按职责分工负责)(十一)绿色低碳产品供给提升行动。发挥绿色低碳产品装备在碳达峰碳中和工作中的支撑作用,完善设计开发推广机制,为能源生产、交通运输、城乡建设等领域提供高质量产品装备,打造绿色低碳产品供给体系,助力全社会达峰。1. 构建绿色低碳产品开发推广机制。推行工业产品绿色设计,按照全生命周期管理要求,探索开展产品碳足迹核算。聚焦消费者关注度高的工业产品,以减污降碳协同增效为目标,鼓励企业采用自我声明或自愿性认证方式,发布绿色低碳产品名单。推行绿色产品认证与标识制度。到2025年,创建一批生态(绿色)设计示范企业,制修订300项左右绿色低碳产品评价相关标准,开发推广万种绿色低碳产品。(工业和信息化部、生态环境部、市场监管总局等按职责分工负责)2. 加大能源生产领域绿色低碳产品供给。加强能源电子产业高质量发展统筹规划,推动光伏、新型储能、重点终端应用、关键信息技术产品协同创新。实施智能光伏产业发展行动计划并开展试点示范,加快基础材料、关键设备升级。推进先进太阳能电池及部件智能制造,提高光伏产品全生命周期信息化管理水平。支持低成本、高效率光伏技术研发及产业化应用,优化实施光伏、锂电等行业规范条件、综合标准体系。持续推动陆上风电机组稳步发展,加快大功率固定式海上风电机组和漂浮式海上风电机组研制,开展高空风电机组预研。重点攻克变流器、主轴承、联轴器、电控系统及核心元器件,完善风电装备产业链。(国家发展改革委、工业和信息化部、国家能源局等按职责分工负责)3. 加大交通运输领域绿色低碳产品供给。大力推广节能与新能源汽车,强化整车集成技术创新,提高新能源汽车产业集中度。提高城市公交、出租汽车、邮政快递、环卫、城市物流配送等领域新能源汽车比例,提升新能源汽车个人消费比例。开展电动重卡、氢燃料汽车研发及示范应用。加快充电桩建设及换电模式创新,构建便利高效适度超前的充电网络体系。对标国际领先标准,制修订汽车节能减排标准。到2030年,当年新增新能源、清洁能源动力的交通工具比例达到40%左右,乘用车和商用车新车二氧化碳排放强度分别比2020年下降25%和20%以上。大力发展绿色智能船舶,加强船用混合动力、LNG动力、电池动力、氨燃料、氢燃料等低碳清洁能源装备研发,推动内河、沿海老旧船舶更新改造,加快新一代绿色智能船舶研制及示范应用。推动下一代国产民机绿色化发展,积极发展电动飞机等新能源航空器。(国家发展改革委、工业和信息化部、住房城乡建设部、交通运输部、市场监管总局、国家能源局、国家邮政局等按职责分工负责)4. 加大城乡建设领域绿色低碳产品供给。将水泥、玻璃、陶瓷、石灰、墙体材料等产品碳排放指标纳入绿色建材标准体系,加快推进绿色建材产品认证。开展绿色建材试点城市创建和绿色建材下乡行动,推广节能玻璃、高性能门窗、新型保温材料、建筑用热轧型钢和耐候钢、新型墙体材料,推动优先选用获得绿色建材认证标识的产品,促进绿色建材与绿色建筑协同发展。推广高效节能的空调、照明器具、电梯等用能设备,扩大太阳能热水器、分布式光伏、空气热泵等清洁能源设备在建筑领域应用。(国家发展改革委、工业和信息化部、生态环境部、住房城乡建设部、市场监管总局等按职责分工负责)四、政策保障(十二)健全法律法规。构建有利于绿色低碳发展的法律体系,统筹推动制修订节约能源法、可再生能源法、循环经济促进法、清洁生产促进法等法律法规。制定出台工业节能监察管理办法、机电产品再制造管理办法、新能源汽车动力电池回收利用管理办法等部门规章。完善工业领域碳达峰相关配套制度。(国家发展改革委、工业和信息化部、司法部、生态环境部、市场监管总局、国家能源局等按职责分工负责)(十三)构建标准计量体系。加快制修订能耗限额、产品设备能效强制性国家标准,提升重点产品能效能耗要求,扩大覆盖范围。建立健全工业领域碳达峰标准体系,重点制定基础通用、碳排放核算、低碳工艺技术等领域标准。强化标准实施,推进标准实施效果评价。鼓励各地区结合实际依法制定更严格地方标准。积极培育先进团体标准,完善标准采信机制。鼓励行业协会、企业、标准化机构等积极参与国际标准化活动,共同制定国际标准。开展工业领域关键计量测试和技术研究,逐步建立健全碳计量体系。(国家发展改革委、工业和信息化部、生态环境部、市场监管总局等按职责分工负责)(十四)完善经济政策。建立健全有利于绿色低碳发展的税收政策体系,落实节能节水、资源综合利用等税收优惠政策,更好发挥税收对市场主体绿色低碳发展的促进作用。落实可再生能源有关政策。统筹发挥现有资金渠道促进工业领域碳达峰碳中和。完善首台(套)重大技术装备、重点新材料首批次应用政策,支持符合条件的绿色低碳技术装备材料应用。优化关税结构。(国家发展改革委、工业和信息化部、财政部、生态环境部、商务部、税务总局等按职责分工负责)(十五)完善市场机制。健全全国碳排放权交易市场配套制度,逐步扩大行业覆盖范围,统筹推进碳排放权交易、用能权、电力交易等市场建设。研究重点行业排放基准,科学制定工业企业碳排放配额。开展绿色电力交易试点,推动绿色电力在交易组织、电网调度、市场价格机制等方面体现优先地位。打通绿电认购、交易、使用绿色通道。建立健全绿色产品认证与标识制度,强化绿色低碳产品、服务、管理体系认证。(国家发展改革委、工业和信息化部、生态环境部、市场监管总局、国家能源局等按职责分工负责)(十六)发展绿色金融。按照市场化法治化原则,构建金融有效支持工业绿色低碳发展机制,加快研究制定转型金融标准,将符合条件的绿色低碳项目纳入支持范围。发挥国家产融合作平台作用,支持金融资源精准对接企业融资需求。完善绿色金融激励机制,引导金融机构扩大绿色信贷投放。建立工业绿色发展指导目录和项目库。在依法合规、风险可控前提下,利用绿色信贷加快制造业绿色低碳改造,在钢铁、建材、石化化工、有色金属、轻工、纺织、机械、汽车、船舶、电子等行业支持一批低碳技改项目。审慎稳妥推动在绿色工业园区开展基础设施领域不动产投资信托基金试点。引导气候投融资试点地方加强对工业领域碳达峰的金融支持。(国家发展改革委、工业和信息化部、财政部、生态环境部、人民银行、银保监会、证监会等按职责分工负责)(十七)开展国际合作。秉持共商共建共享原则,深度参与全球工业绿色低碳发展,深化绿色技术、绿色装备、绿色贸易等方面交流合作。落实《对外投资合作绿色发展工作指引》。推动共建绿色“一带一路”,完善绿色金融和绿色投资支持政策,务实推进绿色低碳项目合作。利用现有双多边机制,加强工业绿色低碳发展政策交流,聚焦绿色制造、智能制造、高端装备等领域开展多层面对接,充分挖掘新合作契合点。鼓励绿色低碳相关企业服务和产品“走出去”,提供系统解决方案。(外交部、国家发展改革委、工业和信息化部、生态环境部、商务部等按职责分工负责)五、组织实施(十八)加强统筹协调。贯彻落实碳达峰碳中和工作领导小组对碳达峰相关工作的整体部署,统筹研究重要事项,制定重大政策。做好工业和信息化、发展改革、科技、财政、生态环境、住房和城乡建设、交通运输、商务、市场监管、金融、能源等部门间协同,形成政策合力。加强对地方指导,及时调度各地区工业领域碳达峰工作进展。(碳达峰碳中和工作领导小组办公室成员单位按职责分工负责)(十九)强化责任落实。各地区相关部门要充分认识工业领域碳达峰工作的重要性、紧迫性和复杂性,结合本地区工业发展实际,按照本方案编制本地区相关方案,提出符合实际、切实可行的碳达峰时间表、路线图、施工图,明确工作目标、重点任务、达峰路径,加大对工业绿色低碳转型支持力度,切实做好本地区工业碳达峰工作,有关落实情况纳入中央生态环境保护督察。国有企业要结合自身实际制定实施企业碳达峰方案,落实任务举措,开展重大技术示范,发挥引领作用。中小企业要提高环境意识,加强碳减排信息公开,积极采用先进适用技术工艺,加快绿色低碳转型。(各地区相关部门、各有关部门按职责分工负责)(二十)深化宣传交流。充分发挥行业协会、科研院所、标准化组织、各类媒体、产业联盟等机构的作用,利用全国节能宣传周、全国低碳日、六五环境日,开展多形式宣传教育。加大高校、科研院所、企业低碳相关技术人才培养力度,建立完善多层次人才培养体系。引导企业履行社会责任,鼓励企业组织碳减排相关公众开放日活动,引导建立绿色生产消费模式,为工业绿色低碳发展营造良好环境。(国家发展改革委、教育部、工业和信息化部、生态环境部、国务院国资委、市场监管总局等按职责分工负责)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制