当前位置: 仪器信息网 > 行业主题 > >

佐米曲坦异构体标准品

仪器信息网佐米曲坦异构体标准品专题为您提供2024年最新佐米曲坦异构体标准品价格报价、厂家品牌的相关信息, 包括佐米曲坦异构体标准品参数、型号等,不管是国产,还是进口品牌的佐米曲坦异构体标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合佐米曲坦异构体标准品相关的耗材配件、试剂标物,还有佐米曲坦异构体标准品相关的最新资讯、资料,以及佐米曲坦异构体标准品相关的解决方案。

佐米曲坦异构体标准品相关的资讯

  • 单克隆抗体标准物质电荷异构体研究
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。br//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 272px " src="https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title="图片1.png" alt="图片1.png" width="600" height="272" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办span style="color: rgb(255, 0, 0) "strong第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)”/strong/span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title="图片3.png" alt="图片3.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "strongspan style="text-indent: 0em "欢迎各位专家、同仁报名参会!/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right "供稿:崔新玲 胡志上span style="text-indent: 2em " /span/p
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。图1. 离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图。针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105 Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。成果优势利用高场离子云扫描分析技术,对四种二糖异构体 (海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。  针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。    图1.离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图  利用高场离子云扫描分析技术,对四种二糖异构体(海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。    图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 清华大学脂质同分异构体及小型质谱研究成果登Nature子刊
    p  最新一期的Nautre Methods杂志对清华大学瑕瑜课题组和欧阳证课题组在脂类同分异构体及小型质谱技术研究中取得的进展进行了报道。长期以来,质谱小型化技术被国外研究机构所垄断,欧阳证课题组的研究为我国在质谱仪的研发与产业化领域争取到了“原创话语权”。脂类同分异构体中C=C双键位置的确定在全世界一直是难点,瑕瑜课题组利用Paternò –Bü chi反应找到了定位C=C双键的方法,为脂质组学开辟了一个全新的研究维度。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/256c243d-6a9f-40d6-a0d8-13f84fb196f5.jpg"//pp style="text-align: center "span style="font-family: 楷体,楷体_GB2312, SimKai "Nautre Methods杂志是Nature子刊,影响因子25.06,主要提供生命科学领域的新方法和基础研究技术重大进展的相关报道/span/pp  span style="color: rgb(79, 129, 189) "strong根据C=C做脂质组学定性、定量分析/strong/span/pp style="text-align: center "img title="1.jpg" style="width: 230px height: 295px " src="http://img1.17img.cn/17img/images/201801/insimg/ac5de0cd-a2ab-4b34-a39f-a9f38337697c.jpg" height="295" hspace="0" border="0" vspace="0" width="230"//pp style="text-align: center "strong清华大学教授 瑕瑜/strong/pp  瑕瑜长期从事生物质谱为基础的气相化学自由基研究,一个偶然的机会,瑕瑜课题组的马潇潇博士(现为清华大学精密仪器系助理教授)在进行光化学自由基反应时发现受激发的丙酮与脂质C=C反应的结果并没有形成断裂加成峰,而是整个丙酮加到脂质分子上去。查阅资料之后,发现这是一个已知反应Paternò -Bü chi(PB反应)。根据PB反应的机理就能够清晰地解析离子碎裂谱图从而确定C=C位置。“这个发现对确定脂质同分异构体C=C位置,以及进行脂质定量分析非常有帮助。”瑕瑜说。/pp style="text-indent: 2em "从2014年发表第一篇文章起,他们将这一理论应用在了脂质组学研究中。 PB反应在鸟枪法策略中进行脂质同分异构体的定性与定量分析的研究已经取得了成功。目前,PB反应在液质联用策略中的脂质组学分析研究工作也已经完成。瑕瑜表示:“液质联用分析脂质组学能够得到更多的分子信息,应用面会更加广泛。将PB反应用在这个技术中,能够给脂质组学的发展提供更多机会。”/pp  strongspan style="color: rgb(79, 129, 189) "小型质谱技术简化脂质分析工作流程/span/strong/pp style="text-align: center "img title="2.jpg" style="width: 230px height: 295px " src="http://img1.17img.cn/17img/images/201801/insimg/e3ddfcc2-869d-4a4b-a052-469cdb80b27a.jpg" height="295" hspace="0" border="0" vspace="0" width="230"//pp style="text-align: center "strong清华大学教授 欧阳证/strong/pp  不同双键位置揭示的是不同的代谢通路,不同的发病机理,通过脂质同分异构体的定性与定量分析,可应用于临床诊断。现有的商业脂质解析数据库并不包括脂质C=C位置信息,并不能进行脂质同分异构体的定性与定量分析。目前,欧阳证与瑕瑜的研究团队正在进行基于小型质谱的包含C=C位置信息的脂质组学分析工作。“我们希望让更多做脂质组学研究的人知道这个技术,并通过建立数据库帮助到需要了解脂质C=C信息的研究。”欧阳证在谈到该数据库的建立时说,“事实上,我们将要建立的不止是一个数据库,而是包括前端液相方法、PB反应、质谱方法、数据库与软件分析在内的整体工作流程。”/pp style="text-indent: 2em "该工作已取得了一系列产业化成果,由欧阳证创立的清谱科技在10月份召开的BCEIA2017上推出了Mini β小型质谱仪、脂质组学双键定位系统Ω反应器以及MS Mate快速检测方案,结合了PB光化学反应的特异性、高效性以及质谱检测的特异性和灵敏度,可实现脂质中双键的快速定位、精准定量、全方位读取。此外,搭载的庞大的数据库可以实现数据检索、数据读取、报告生成一体化工作流程。/pp style="text-align: center "img title="3.jpg" style="width: 400px height: 290px " src="http://img1.17img.cn/17img/images/201801/insimg/9b657d8e-0702-4f7b-a363-4b1a7a569ed6.jpg" height="290" hspace="0" border="0" vspace="0" width="400"//pp style="text-align: center "strongMini β小型质谱仪/strong/pp  Mini β小型质谱仪与液质联用分析脂质组学的方法相比,突破了实验室环境的束缚,其简化的工作流程,大大降低了对操作人员专业性及检测环境的要求,可在现场检测,更利于质谱脂质分析走向临床、基层。/pp  更多详细内容:/pp style="text-align: left text-indent: 2em "a title="" href="http://www.instrument.com.cn/news/20170616/222209.shtml" target="_blank"span style="color: rgb(79, 129, 189) "C=C位置探索思路或将发现脂质生物标志物——访清华大学瑕瑜教授、欧阳证教授/span/a/pp style="text-align: left text-indent: 2em "a title="" href="http://www.instrument.com.cn/news/20171013/230960.shtml" target="_blank"span style="color: rgb(79, 129, 189) "十年一剑 欧阳证带领清谱科技推出Mini β小型质谱分析系统/span/a/p
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 岛津推出二十烷以及其同分异构体的超快速LC/MS/MS同时检测方案
    在疾病研究中二十烷担负着重要作用,本方案将二十烷以及其同分异构体及代谢物50种成分的MRM条件最优化,建立了由54个通道组成的同时检测法。使用LCMS-8040对多成分检测,定量限达到pg以下。 花生四烯酸串联是非常重要的代谢路径之一,作为其代谢产物的二十烷以及其同分异构体及代谢物的同时分析方法,在疾病研究中起到重要作用。LC/MS/MS的MRM测定具有高灵敏度与高选择性,广泛应用于二十烷的分析,但随着成分数的增多,从分离・ 离子化的观点来看,现在很难获得稳定的分析结果。本方案使用快速LC/MS/MS系统开发了全面地定量分析二十烷和其类似物的新方法。 本方案作为全面、快速、高灵敏度分析脂信号分子的方法行之有效。 了解详情,请点击&ldquo 基于超快速LC/MS/MS的二十烷以及其同分异构体的同时分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。  研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 瑕瑜团队新成果:基于质谱的脂质异构体分析有助于疾病诊断与靶点发现
    近期,清华大学化学系瑕瑜教授课题组与清华大学药学院尹航教授课题组以及北京清华长庚医院王韫芳研究员团队合作在Angew. Chem. Int. Ed杂志上发表了题为 “sn-1 Specificity of Lysophosphatidylcholine Acyltransferase-1 Revealed by a Mass Spectrometry-based Assay” 的文章。第一作者为清华大学化学系博士生赵雪与梁家琦,通讯作者为瑕瑜教授。该工作首次揭示磷脂酰胆碱酰基转移酶1(LPCAT1)在合成胆碱甘油磷脂 (PC)时对甘油骨架的sn-1位置具有选择性 该选择性与LPACT1在人肝细胞癌组织中的高表达直接导致了sn位置异构体PC 18:1/16: 0的显著升高。以上研究对于发展基于脂质异构体分析的新型疾病诊断与靶点发现具有启示意义。  LPCAT1是细胞内PC的合成通路中脂质重塑过程关键的酶。已有相关研究表明,LPCAT1在多种癌症组织中表达上调并且对饱和或单不饱和的酰基辅酶具有选择性。然而LPCAT1对甘油骨架sn位置的选择性还尚不明确,这主要是由于sn位置异构体难以区分与定量。2019年瑕瑜教授课题组利用PC碳酸氢根加合物([PC+HCO3]-)在串级质谱中碎裂产生的“sn-1 frag.”实现了sn位置异构体的定性与定量(Zhao X, Xia Y, et al. Chemical Science, 2019, 10:10740)。基于此,本工作建立了测定LPCAT的sn位置选择性的LC-MS流程。作者以sn-1 LPC和sn-2 LPC的混合物为底物,LPCAT1过表达的HEK 293T细胞膜碎片作为酶源,加入酰基辅酶,37℃下进行孵育。酶反应产物通过反相液相色谱(RPLC)中分离及质谱检测 其与内标的色谱峰面积比对总的合成产物(sn位置异构体之和)进行定量。继而对酶反应产物的碳酸氢根加合物进行串级质谱分析,通过“sn-1 fragment”的百分比对sn位置异构体进行定量(分析流程如图1)。继而通过建立sn-1 LPC和sn-2 LPC的酶反应动力学曲线,比较动力学常数来确定sn位置选择性。  图1. LC-MS/MS流程用于定量分析LPCAT催化所产生的PC sn位置异构体  鉴于不同分子量的PC分子可以在RPLC中分离,该流程可以同时测定LPCAT1对多种酰基辅酶(如,17:0-CoA, 18:1-CoA和20:4-CoA)的选择性。结果显示LPCAT1对三种酰基辅酶均表现出活性,20:4-CoA的活性最低。当LPCAT1将三种酰基辅酶连接到甘油骨架上时,均选择性的加在了sn-1位置,即只合成了PC 17:0/16:0,PC 18:1/16:0和PC 20:4/16:0。因此,基于图1的LC-MS/MS分析流程,该研究首次明确了LPCAT1对甘油骨架的sn-1位置具有选择性。  已有研究表明LPCAT1在肝细胞癌组织中表达上调。为了探究肝细胞癌中PCsn位置异构体的组成是否会受到LPCAT1对sn-1位置选择性的影响,该工作对人肝细胞癌组织和正常肝组织中PC的sn位置异构体进行LC-MS/MS分析。结果显示PC 18:1/16:0在肝细胞癌组织中显著上升。该工作进一步对常用的肝癌细胞系HepG2中的LPCAT1进行敲降,敲降后PC 18:1/16:0的含量显著下降。这表明肝细胞癌组织中PC 18:1/16:0的含量与LPCAT1对sn-1位置的选择性以及LPCAT1的表达上调直接相关。更重要的是,解吸电喷雾电离质谱(DESI)对PC 18:1/16:0的分布成像与人肝细胞癌组织连续切片的LPCAT1的免疫荧光成像以及H&E染色高度吻合(图2)。因此PC 18:1/16:0可能作为新型生物标志物,用于划分癌变区域和癌旁区域。  图2. 人肝细胞癌组织连续切片H&E染色(a)组织中LPCAT1的免疫荧光成像(b)以及DESI MS2 对PC 16:0_18:1的sn位置异构体分布的成像(c, d)  总的来说,该工作建立了用于测定LPCAT的sn位置选择性的快速、灵敏、高通量的LC-MS/MS分析流程。它深度剖析了组织中sn位置异构体的组成、分布与酶的功能、分布的关系 阐明了脂质异构体作为新型生物标志物用于疾病的诊断与治疗的巨大潜力。不过其他几种LPCAT在连接酰基辅酶时对sn位置选择性还有待进一步研究。
  • 8种PCB异构体混标 EPA525 促销
    产品编号:CDGG-132647-05-1ml名称:8种PCB异构体混标 EPA525规格:500 mg/L于丙酮,1mL组份信息英文名 中文名 CAS 浓度2-chlorobiphenyl (BZ# 1) 2-氯联苯 2051-60-7 500 +/- 25 mg/L2,3-dichlorobiphenyl (BZ# 5) 2,3-二氯联苯 16605-91-7 500 +/- 25 mg/L2,4,5-trichlorobiphenyl (BZ# 29) 2,4,5-三氯联苯 15862-07-4 500 +/- 25 mg/L2,2&rsquo ,4,4&rsquo -tetrachlorobiphenyl (BZ# 47) 2,2&rsquo ,4,4&rsquo -四氯联苯 2437-79-8 500 +/- 25 mg/L2,2&rsquo ,3&rsquo ,4,6-pentachlorobiphenyl (BZ# 98) 2,2&rsquo ,3&rsquo ,4,6-五氯联苯 60233-25-2 500 +/- 25 mg/L2,2&rsquo ,4,4' ,5,6&rsquo -hexachlorobiphenyl (BZ# 154) 2,2&rsquo ,4,4' ,5,6&rsquo -六氯联苯 60145-22-4 500 +/- 25 mg/L2,2' ,3,3' ,4,4' ,6-heptachlorobiphenyl (BZ# 171) 2,2' ,3,3' ,4,4' ,6-七氯联苯 52663-71-5 500 +/- 25 mg/L2,2' ,3,3' ,4,5' ,6,6' -octachlorobiphenyl (BZ# 201) 2,2' ,3,3' ,4,5' ,6,6' -八氯联苯 40186-71-8 500 +/- 25 mg/L现货供应应用:EPA525原价:2250.00元优惠价:1575.00元促销时间:2012-12-03至2012-12-31上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • N-聚糖唾液酸结合异构体鉴定——SialoCapper™ -ID试剂盒+MALDI-8020
    唾液酸(SA)是酸性单糖的家族名称,包括 N-乙酰神经氨酸 (NeuAc) 和 N-羟乙酰神经氨酸 (NeuGc),主要存在于聚糖的非还原末端。是一种天然存在的碳水化合物,最初由颌下腺粘蛋白分离出,因此而得名。唾液酸通常以低聚糖,糖脂,糖蛋白的形式存在。唾液酸可以以 α2,3- 或 α2,6- 键类型存在。这样的连接异构体在生物学上很重要,因为不同连锁类型可能与各种疾病有关,例如病毒感染和癌症。 近年来,质谱技术已被广泛应用于分析聚糖。然而,鉴定含有多个唾液酸残基的复杂聚糖的唾液酸键类型仍然具有挑战性。本研究工作通过使用“SialoCapper-ID 试剂盒”进行独特的衍生化,然后进行 MALDI-8020 MS分析,从而鉴定2-氨基吡啶(PA)标记的聚糖上的酸谱系类型。 SialoCapper-ID 试剂盒是一种用于聚糖预处理的新型试剂盒,可简化获得专利的唾液酸键特异性烷基酰胺化 (SALSA 方法)步骤。SALSA通过中和残留物来防止在聚糖预处理和 MS 分析过程中唾液酸残留物的损失。此外,它允许通过以特定键的方式衍生残基来基于 MS 区分唾液酸键异构体。 SALSA法的衍生方案 本实验中,N-连接聚糖通过肼解作用从51只大鼠102只耳蜗血管纹衍生的糖蛋白中释放出来的。N-聚糖的还原端用PA标记。然后根据唾液酸的数量通过 DEAE 阴离子交换 HPLC 对 PA 标记的聚糖进行分离,并在 ODS 柱上使用反相 (RP) HPLC 进一步分离。使用酰胺柱和 LC-MS 通过正相 (NP) HPLC 分析分级的 N-聚糖,并根据二维 (2-D) HPLC 分析 (RP/NP) 的结果确定 N-聚糖的结构 和 LC/MS 分析。最后,使用 SialoCapper-ID Kit 进行唾液酸键特异性衍生化,用于未确定唾液酸键类型的分离。 在用碳芯片对 14 份 PA 标记的聚糖进行脱盐后,使用 SialoCapper-ID 试剂盒在试管中以液相反应的形式进行唾液酸键特异性衍生化。除了通过 2-D HPLC 和 LC/MS 进行结构测定外,研究者另辟蹊径,使用MALDI-8020+ SialoCapper-ID 试剂盒根据唾液酸键特异性衍生化产生的质量变化来区分唾液酸键类型。相对于LC/MS,MALDI-MS有利于轻松快速鉴定唾液酸键类型,特别是在分析多个样品时。 A1-14 组分的质谱图和唾液酸键型鉴定结果A2-16 组分的质谱图和唾液酸键型鉴定结果 MALDI-8020+SialoCapper-ID 试剂盒唾液酸结合异构体鉴定优势1 无需与标准聚糖样品的分析结果进行比较,即可识别复杂聚糖的唾液酸键类型。2 SialoCapper-ID Kit可应用于标记糖链,无需改变常规分析流程即可进行唾液酸键联分析。3 无需 LC 分离, MALDI-MS 直接鉴定唾液酸键类型。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻:Sialic Acid Linkage Isomer Discrimination of N-glycansderived from Rat Cochlea using SialoCapper-ID KitM. Inuzuka, T. Nishikaze 本文内容非商业广告,仅供专业人士参考。
  • 【新品上新】SVHC清单物质更新至223项,坛墨打造全球屈指可数标准品!
    2022年4月随着经济全球化快速发展,reach法规的不断更新,企业面临的管控要求也越来越多。近日,欧盟化学品管理局(echa)将svhc候选清单正式更新为223项。新增4项物质信息如下:序号物质名称ec号cas号示例用途12,2' -亚甲基双-(4-甲基-6-叔丁基苯酚)204-327-1119-47-1橡胶润滑剂胶粘別油墨燃料2乙烯基-三(2-甲氧基乙氧基)硅烷213-934-01067-53-4橡胶塑料密封別3(±)-1,7,7-三甲基-3-[(4-甲基苯基)亚甲基]双环[2.2.1]庚-2-酮,包括任何单独的异构体和/或其组合(4-mbc)--化妆品4(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯401-850-92558s1-94-8润滑剂润滑酯紧跟国际法规,新品一睹为快坛墨紧跟国际法规,第一时间研发生产出配套标准品,为出口检测保驾护航!特别是最新添加进入svhc候选清单中的标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体),因其对研发工艺要求极高,该产品的生产商在全球屈指可数,坛墨作为中国标准品的领军企业,率先推出其标准品纯品、标准品溶液,帮助检测单位解决因产品稀缺带来的采购受阻这一难题。点击图片即可选购标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体)此次新增的4项svhc物质涉及领域较广,化妆品、橡胶、润滑剂、油墨及胶黏剂等工业用品、塑料均有应用。四种物质中的一种用于化妆品,并已被添加到候选清单中,它具有干扰人体激素的特性。其中两种用于橡胶、润滑剂和密封剂中,会对生育能力产生负面影响而被包括在内。第四种用于润滑剂和润滑脂中,因为它具有持久性、生物累积性和毒性,对环境也会产生危害。坛墨在此提醒广大中国企业需提高自己产品的风险意识,在物质列入svhc候选清单后六个月内,符合条件的企业需要完成物品中的svhc通报。建议企业及早对供应链展开调查,以从容应对法规变化。 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 食品中维生素D检测新标准来了,您准备好了吗?
    脂溶性维生素A、D、E是人体维持正常代谢和机能所必需的营养素。准确测定食品中维生素含量对于科学营养膳食并保证食品安全,具有重要意义。GB5009.82-2016是现行的关于食品中维生素A、D、E测定的标准方法,覆盖了婴幼儿食品、乳品等多种食品,实现了维生素A、D、E的含量测定。其中,维生素D在食品中含量低,样品基质复杂,检测相对困难,在国家现行标准法中采用液-质联用或半制备正相净化的方式对其进行检测。但液-质联用维护成本高,半制备正相处理过程非常繁琐,大大影响样品分离效率。《GB 5009.82-2016 食品安全国家标准 《食品中维生素A、D、E的测定》现有检测难点:01维生素A、D、E分开检测:▲多种方法来回切换,仪器稳定时间长▲使用质谱成本高02样品处理前处理繁琐:▲需要多次前处理,步骤多,时间长▲结果稳定性差,人员要求高03维生素E异构体的分离:▲在限定的条件下难以分离维生素E的四种异构体今年9月已新发布GB5009.296-2023,将于2024年3月6日正式实施,旧标准中关于维生素D的测定,只有第三法“液相色谱-串联质谱法”和第四法“高效液相色谱法”,新标准在以上2个方法的基础上,新增了“在线柱切换-反相液相色谱法”,适用于食品中维生素D₂ 和D₃ 的测定。新增的这一方法引入了在线柱切换-反相液相色谱仪,大大提高了维生素D的检测效率。GB 5009.296-2023 食品安全国家标准《食品中维生素 D 的测定》珂睿科技最新二维液相技术分析脂溶性维生素A、D、E检测方案,满足国标要求,轻松解决原有检测中的问题,实现维生素 A、D、E 的良好分离!效率更高同一个液相条件可同时检测维生素A、D、E,无需来回切换方法,提高检测效率速度更快一个样品只需要15min左右完成多种维生素的分析维生素A、D、E整体图更低的检测限同一个液相条件可同时检测维生素A、D、E,无需来回切换方法,提高检测效率LOD按照GB要求进样,浓度为0.5μg/L的维生素D和0.05μg/mL的维生素A、0.2μg/mL的维生素E-异构体溶液在该仪器条件下,检出限的信噪比均能达到3倍以上,满足检测需求LOQ按照GB要求进样,浓度为2μg/L的维生素D和0.15μg/mL的维生素A、0.6μg/mL的维生素E-异构体溶液在该仪器条件下,能稳定重现,检出限的信噪比均能达到10倍以上,满足检测需求有效分离维生素D₂ 、D₃ 有效分离维生素D₂ 与D₃ ,不受基质杂质干扰维生素D定量下限放大图稳定的重现性稳定的检测条件,出峰时间和峰面积重现性好,确保结果的准确性重现性在该仪器条件下,进样维生素A、D、E溶液,出峰时间和峰面积均可以稳定的重现,确保切阀转移的准确性,出峰时间RSD<0.3%,峰面积RSD<1%关于珂睿珂睿科技成立于2016年,是一家专注于色谱、质谱产品研发的国家级高新技术企业、四川省专精特新企业,公司立足于色谱、质谱及配套自动化产品的国产化自主研发。产品线涵盖超高效液相色谱仪、液相色谱-三重四级杆质谱联用仪、气相色谱单四级杆及三重串联四极杆质谱联用仪、配套色谱柱,以及自动化前处理平台,并有包括TDM血药浓度检测系统,双鱼Pisce-I污水毒/品含量液质检测系统,Orion猎户系列GPC凝胶渗透色谱系统等,为众多行业的特殊应用提供专业解决方案。珂睿科技依靠自身研发助力国产超高效液相色谱快速发展的步伐也不会停止,我们将继续秉持“专业,严谨,不走捷径,做难而正确的事情”的专业精神,再接再厉,为您提供完整而专业的应用分析。
  • GB 5009.271-2016 食品中邻苯二甲酸酯的测定标准解读
    本标准代替gb/t21911—2008《食品中邻苯二甲酸酯的测定》和sn/t3147—2012《出口食品中邻苯二甲酸酯的测定》。 本标准与gb/t21911—2008 相比,主要变化如下: ● 标准名称修改为“食品安全国家标准 食品中邻苯二甲酸酯的测定”; ● 增加了邻苯二甲酸二烯丙酯和邻苯二甲酸二异壬酯两种目标化合物; ● 增加了同位素内标法定量作为第一法。 新国标对应的标准品是17 种混标+1 种dinp 单标的形式: ●e.1 邻苯二甲酸二异壬酯(dinp)标准溶液(1.0μg/ml)的总离子流色谱图(外标法)见图e.1。图 e.1 邻苯二甲酸二异壬酯(dinp)标准溶液(1.0μg/ml)的总离子流色谱图(外标法) ●e.2 17种邻苯二甲酸酯标准溶液(0.12μg/ml)的总离子流色谱图(外标法)见图e.2。图 e.2 17种邻苯二甲酸酯标准溶液(0.12μg/ml)的总离子流色谱图(外标法) dnp 和dinp 的解读: ● cas 84-76-4 邻苯二甲酸二壬酯(dnp 单峰); ● cas 28553-12-0 是邻苯二甲酸二异壬酯(dinp)一类同分异构体的混合物,此物质适宜做标准品; ●cas 68515-48-0 是邻苯二甲酸酯的混合物,含有三类同分异构体: 邻苯二甲酸二异辛酯(diop), 邻苯二甲酸二异壬酯(dinp), 邻苯二甲酸二癸酯(didp),其中主要成分是dinp。 推荐标准品:
  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离Rui Chen 和John P. McCauley沃特世公司(美国马萨诸塞州米尔福德)应用效益■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。沃特世解决方案ACQUITY UPC2TM 系统Investigator SFC系统Empower&trade 3软件ChromScope&trade 软件ACQUITY UPC2BEH和BEH 2-EP色谱柱关键词铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2引言有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。实验仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。样品描述样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。结果与讨论图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。图5 一对Flrpic同分异构体的紫外光谱。理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。结论在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。参考文献1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47.2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87.3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91.4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48.5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77.6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18.7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • Vanquish Core带你探索生命之源
    Vanquish Core带你探索生命之源蛋白质作为生命的物质基础,可以说没有蛋白质就没有生命,而氨基酸作为蛋白质的基本单位,可以说是生命之源。氨基酸分子为手性分子,有左旋和右旋两种光学异构体,被称为L型(左)和D型(右)两种。照常理讲,氨基酸化学反应需要L型氨基酸和D型氨基酸等量搭配作用。但存在于地球上所有的生物体中,氨基酸都为左旋型。这种被戏称为“左撇子地球”的偏差一直是一个谜题。在古生物化石中,我们却能发现D型氨基酸的存在。这是由于生物死亡后埋在地下,有机体在自然条件下也被水解为氨基酸保存在化石中,但氨基酸的左旋体结构慢慢地会向右旋体结构转化,而各种左旋体结构的氨基酸都有自己的“半衰期”,考古学家就可以依据化石中氨基酸左旋体与右旋体的比例来确定化石的年代。目前测定氨基酸通常使用氨基酸专用分析仪或液相色谱仪,而液相色谱法的广泛适用性具有其优势性,但常规液相检测氨基酸的分析中,需要进行衍生化处理,由于氨基酸衍生产物衰减较快,而离线手动衍生操作至进样分析的时间和操作强度很难保证均一,常常导致结果不稳定。Vanquish Core赛默飞全新的Vanquish Core 液相色谱仪,无需繁琐的离线手动衍生化操作,只需2ul以内的样品,利用邻苯二甲醛/ N-异丁酰基-L-半胱氨酸 (OPA/IBLC)在线柱前衍生化,生成非对映异构体衍生物(如图1所示),无需成本较高的手性柱,即可完成L型和D型氨基酸异构体的分离和测定。图1 衍生化过程仪器配置:• 系统底座:Vanquish System Base (VC-S01-A)• 泵:Vanquish Binary Pump C(VC-P10-A-01)• 自动进样器:Vanquish Split Sampler CT(VC-A12-A-02)• 柱温箱:Vanquish Column Compartment C(VC-C10-A-03)• 检测器:Vanquish Fluorescence Detector(VC-D50-A-01)色谱条件:• 色谱柱:Accucore XL C18(150mm×4.6 mm,4 μm,P/N:74104-154630)• 流动相:A:50mM乙酸钠水溶液(pH=6.0);B:乙腈/甲醇/水=45:45:10,流速:1.0 mLmin-1,梯度洗脱见表1表1 梯度洗脱程序• 进样量混标:0.5ul ( 注:在线衍生试剂需0.25 ul)样品:2.0ul ( 注:在线衍生试剂需2.2 ul)• 柱 温:30℃• 检测器:激发波长:230nm,发射波长:450nm,灵敏度:5,灯模式:标准在线针内衍生程序和常规进样方式相比,在线针内衍生方法需要使用Vanquish Core液相的用户自定义进样程序功能(User Defined Program,UDP),氨基酸在线针内衍生程序见图2。图2 在线针内衍生程序Position R:A2, 硼酸缓冲液;Position R:A3, 衍生试剂; Position R:A4, 稀释液(点击查看大图)表2 衍生剂信息色谱图:滑动查看更多(点击查看大图)实验结果与讨论本方法使用OPA/IBLC作为手性拆分衍生化试剂,利用全自动衍生功能的自动进样器进行在线衍生,衍生后直接进样分析,完成了手性异构体氨基酸的分离测定,消除了离线衍生进样时间不同和手工操作造成的误差,不仅提高了结果的准确性,而且大大降低了成本和工作强度。不止于此Vanquish Core 液相色谱仪不仅可用于生命的探索,对于测定我们目前生活密切相关的食品、药品以及化妆品中的氨基酸,Vanquish Core 液相色谱仪也不在话下。其可完全满足《SN/T 5223— 2019 蜂蜜中18 种游离氨基酸的测定高效液相色谱- 荧光检测法》中在线自动衍生法测定氨基酸;而对于中草药中的氨基酸,胶原蛋白、肽类等化妆品中的氨基酸,Vanquish Core液相色谱仪也均可满足测定和研发的需求。另外,Vanquish Core液相色谱仪结合赛默飞du有的电雾式检测(CAD)无需衍生化处理,可直接完成氨基酸的测定,省时省力更经济。
  • 专家解读|2022版食品中农药最大残留限量国家标准制修订情况分析
    《食品安全国家标准 食品中农药最大残留限量》 (GB 2763) 是目前我国统一规定食品中农药最大残留限量 (MRLs) 的强制性国家标准。2022 年 11 月 11 日, 国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布《食品安全国家标准食品中 2, 4-滴丁酸钠盐等112 种农药最大残留限量》 (GB 2763. 1-2022) 标准 (以下简称增补版), 自 2023 年 5 月 11 日起正式实施。 GB 2763. 1-2022 是 GB 2763-2021 的增补版, 可以配套使用。 为进一步强化农药残留限量标准宣贯,促进食品质量安全监管、检测人员和食品生产者及时全面了解国家最新农药残留限量标准。仪器信息网邀请到了农业农村部农药检定所罗媛媛老师,对两个标准文本的异同及使用注意事项等情况进行了比对分析, 以便于标准使用者更好的理解和正确使用。一、增补版标准概况本次发布的增补版标准规定了2, 4-滴丁酸钠盐等112 种农药在 99 种 (类) 食品上的 290项最大残留限量标准, 并规定了 37 项配套检测方法标准。 GB 2763-2021 规定的同一农药和食品的限量值与增补版不同时, 以增补版为准。作为 GB 2763-2021 的增补版, GB 2763. 1-2022规定的相关检测方法可以与 GB 2763-2021 配套使用。 此外, GB 2763-2021 规定的食品类别及测定部位 (附录 A) 同样适用于增补版标准。增补版中农药残留限量标准基于我国登记的农药品种制定, 其中, 对于存在异构体的农药, 以实际登记的农药普通体名称或高效体名称表示, 包括氟氯氰菊酯、 精甲霜灵、 精喹禾灵、 氯氟氰菊酯、 氰戊菊酯、 异丙甲草胺等6种农药残留限量标准, 这些限量标准也适用于残留物定义相同的其他异构体, 待与 GB 2763-2021 整合时, 将与残留物定义相同的其他异构体相关限量予以合并。增补版标准均是基于我国农药登记相关残留试验数据确定农药最大残留水平, 结合农药毒理学数据和我国膳食消费数据, 进行膳食风险评估, 再依据评估结果推荐农药最大残留限量 (MRLs)。 之后, 在广泛征求社会意见、 有关部门意见并向世界贸易组织 (WTO) 成员通报的基础上, 先后经国家农药残留标准审评委员会、 食品安全国家标准审评委员会审查通过,再由国家卫生健康委员会、 农业农村部和国家市场监管总局联合发布。 标准制修订的程序规范、 数据充分、 方法严谨, 将为加强农产品质量安全监管、 保障消费者食用安全提供有力的技术支撑。二、增补版标准主要内容1、新增农药品种及其限量制定情况与 GB 2763-2021 相比, 增补版标准新增了 22 种农药品种, 相应增加限量标准 51 项 。2、 GB 2763-2021 中相关农药品种及其限量制修订情况与 GB 2763-2021 已有农药品种相比, 增补版标准制修订相关限量 239 项, 包括制定 205 项, 修订 34 项。 需要说明的是, 限量值修订涉及阿维菌素等 19 种农药在杏等 27种食品 (组) 上的 34 项限量标准 , 其中, 修订了阿维菌素、 苯醚甲环唑、 腐霉利等3 种农药的单个食品的限量, 另外修订的 31 项限量涉及倍硫磷、 苯醚甲环唑等 17 种农药在24 种食品 (组) 中的限量, 增补版标准规定的上述农药和食品的限量标准将替代GB 2763- 2021 规定的相关限量标准。 待与 GB 2763-2021 标准文本整合发布时, 限量修订涉及的相关食品组名称将修订为 “食品组 (某种食品除外) ”, 例如, 增补版修订了倍硫磷在菜用大豆上的限量, 将 GB 2763-2021 倍硫磷相关食品名称由 “豆类蔬菜” 修订为“豆类蔬菜 (菜用大豆除外)。三、增补版标准的主要特点1、完善了农药残留标准体系此次发布的增补版标准主要依据我国新增农药登记残留试验数据或残留验证试验数据制修订, 及时填补了新增农药登记作物的残留限量标准缺失, 进一步扩大了食品中农药残留监管的覆盖面, 为指导农药科学使用和加强农产品质量安全监管提供了技术支撑。 2、提高了标准的适用性增补版标准基于我国农药残留试验数据, 经膳食风险评估, 对 GB 2763- 2021 中部分转化国际食品法典委员会(CAC) 的食品组限量标准进行了修订, 提高了标准的适用性。 在使用此类标准时, GB 2763-2021 规定的同一农药和食品的限量值与增补版标准不同时, 以增补版标准为准。 2023 年 1 月 1 日新修订实施的 《中华人民共和国农产品质量安全法》 要求建立健全农产品质量安全标准体系, 确保严格实施。 农药最大残留限量标准是食品安全国家标准的重要组成部分, 是农产品质量安全监管的技术判定依据。 本次发布的 GB 2763. 1 - 2022 是对现行GB 2763-2021 的补充和完善。 截至目前, 我国已发布农药残留限量标准总数累计达到 10379项, 进一步扩大了农药残留标准覆盖范围, 切实提高了我国农产品质量安全保障能力。 有关部门应该针对农产品生产、 贸易、 监管等相关方面大力开展新标准的宣贯和培训解读工作,重点关注标准更新变化情况, 让标准使用者正确理解和使用 加强科学用药指导, 让农民根据用药实际, 科学选药、 合理用药, 从源头上提高农药使用水平 加强农产品质量抽检和监督执法工作, 加快解决禁用农药违法使用、 常规农药残留超标等问题, 切实保障人民群众“舌尖上的安全”。 作者简介:罗媛媛 农业农村部农药检定所残留审评处、国家农药残留标准审评委员会秘书处农艺师,主要从事农药登记管理、农药残留风险管理和农药合理使用准则制定等工作。主要负责组织农药最大残留限量标准及农药检测方法国家标准的立项、起草、征求意见、送审、报批等工作。先后参与起草2019版、2021版和2022版《食品安全国家标准 食品中农药最大残留限量》(GB 2763),参与起草《农作物中农药残留试验准则》《畜禽中农药残留试验准则》《畜禽中农药代谢残留试验准则》等多项残留试验准则。
  • 兽药残留检测那些事——专访Waters公司中国区食品与环境市场部高级经理黄春女士
    兽药残留检测那些事  &mdash &mdash 专访Waters公司中国区食品与环境市场部高级经理 黄春女士  包括《食品中污染物限量标准》、《食品农药最大残留限量》等食品安全国家通用标准已经出台了9项,食品中兽药残留的通用标准也将在2015年出台。兽药残留检测与农药残留检测相比,含量更低、毒性当量更大、代谢物更多,检测更加复杂。我国兽药残留监管如何?兽药残留检测有哪些难点?针对这些难点,Waters公司又是如何做的?带着这些问题,仪器信息网专访了Waters公司中国区食品与环境市场部高级经理黄春女士。Waters公司中国区食品与环境市场部高级经理黄春女士  Instrument:黄经理您好!请您简单的介绍一下,目前我国的兽药残留检测主要集中在什么领域?我国针对食品中兽药残留检测监管如何?还有哪些问题?  黄春:从我们接触的客户反馈以及对食品安全检测市场的把握来看:目前,兽药残留的检测主要集中在动物源食品的品控以及监管(包括:养殖、粗加工、加工以及上架整个流程的各个环节)、乳制品、水体水质监测等。  在政府监管上,我国现在强调:从源头抓起!所以,第一位就是农业部下属的兽药监察所、动物疾控中心、农科院、水产所等,然后就是出入境检验检疫局、检科院、各地疾控中心(食品风险监测)、食品安全风险中心、水利局,还有成立不久的食品药品监督管理局。  兽药残留的检测与我们熟知的农药残留的检测相比,含量更低、毒性当量更大、代谢物更多。所以,对检测的仪器、人员要求更高。一般来说各地的兽药监察所、进出口检验检疫局、疾控中心、乳制品企业对于兽药残留的检测开展的早,仪器、人员水平高经验足,尤其是对于遵从法规的定量检测,有着丰富的经验。大型肉制品生产企业,这两年,在目标兽药残留方面的检测能力,也不容小看。  但是,目前还有一些问题:  一是养殖企业中的兽药残留监管还不广泛 其次水质监测上还没有涉及兽药残留检测,这主要是由于药厂排污、养殖企业将病死禽畜抛入河流等带来的兽药污染 再有就是目前的兽药残留监管只是针对标准中规定的那几项,然而兽药的代谢化合物和转换物的监管还有待提高 最后非法兽药添加的及时发现与鉴定,未知监管范围内的兽药残留毒性当量研究还有待深入。  Instrument:兽药残留检测与农药残留检测相比,有哪些检测难点?兽药残留检测中&ldquo 假阴性&rdquo 和&ldquo 假阳性&rdquo 的现象是如何发生的?  黄春:如前面我所介绍:兽药残留的检测与我们熟知的农药残留检测相比,含量更低、毒性当量更大、代谢物更多。这些特点在兽药残留检测过程中,通常造成检测结果假阴性和假阳性的出现。  所谓&ldquo 假阴性&rdquo 是指明明样品中有某种兽药残留,但是我们的仪器就是检测不出来。或超标了,但由于定量不准,显示,不超标。这个主要的原因是方法检出限不够。可能是仪器本身性能的问题、或前处理的问题、还可能是分离方法、调谐的问题。还有一种&ldquo 假阴性&rdquo 是目标兽药发生了变化。例如:动物源食品的分割、运输、储存、烹饪过程中,残留的兽药可能分解、代谢、加合等,而这些分解、代谢物或转化物的毒性更强,我们再去按原化合物去检测,确又检测不出来了。  而所谓的&ldquo 假阳性&rdquo 是指,如果检测结果显示某项化合物超出国标或相关规定的标准值(不合格,阳性),但实际上,检测出来的化合物,并不是规定的那个目标物,或这种化合物在该样品中的含量是在规定标准值以下的(合格,阴性),那么我们称这种错误的检测结果为&ldquo 假阳性&rdquo 。  这主要是由于在兽药残留检测中,色谱/质谱的检测原理有其局限性。例如:液相色谱/四极杆质谱分析方法中,质谱检测器区分认定某种化合物的依据是该化合物的母离子、两个子离子的质量/电荷比以及出峰的时间。而兽药残留基质复杂、代谢物繁多,表观异构体很多,这类物质的母离子甚至子离子的质量/电荷比是一样的,这样就造成四级杆质谱区分不出来,造成&ldquo 假阳性&rdquo 的出现。还有一种&ldquo 假阳性&rdquo 的出现是在分析仪器中的流动相、管路、前处理试剂或器材中残留目标检测物或其同分异构体。  Instrument:Waters公司在兽药残留检测方面有那些措施,防止检测过程中出现&ldquo 假阴性&rdquo 和&ldquo 假阳性&rdquo ?  黄春:Waters公司一直持续不断地研发新的产品和方法来杜绝可能由于仪器本身的问题造成检出限不够而形成的&ldquo 假阴性&rdquo 问题。在这方面,Waters公司做了很多,例如:Waters新型的Xevo G2-XS QTof,增添的MRM(TOF的选择离子监测模式)功能,大大增强兽药残留筛查的灵敏度,净化谱图,至少将仪器的检测限提高了10倍。  针对兽药残留自然转化而发生的&ldquo 假阴性&rdquo 问题,Waters公司主要是在以下两方面展开工作。  一个是就是我们会研究目标兽药放生了变化?在代谢和合成的过程中,生成了哪些化合物,并开发针对这些化合物的检测方案 另外对于还不明确的生成化合物,还可以做相关化合物的挑选和鉴定。  在兽药残留检测&ldquo 假阳性&rdquo 方面,Waters公司同样做了很多。  杜绝&ldquo 假阳性&rdquo 的关键就是加强样品的分离。例如:我们新推出的超高效合相色谱,在同分异构体的分离上有独特的效果。色谱技术分为气相、液相和合相色谱。气相和液相色谱都是根据相似相容原理,对化合物进行分离。还有一种用超临界二氧化碳做流动相的超高效合相色谱,对同分异构体的分离更加有效,尤其是光旋异构体。更为先进的,去是嵌入飞行时间质谱中的离子淌度技术,可以将各种化合物的&ldquo 投影横截面积值&rdquo (ccs值)作为继色谱技术之后的再次分离技术。利用不同化合物长的形状不同而将前面色谱没有分离开的化合物分开。我们已经将常见化合物的CCS值,也编入我们的筛查库中,使得我们的离子淌度功能在实际兽药监测中,发挥独特的有效作用。最大限度地避免了假阳性的出现。  此外,Waters超高效液相超强的分离能力以及独特的超高效合相色谱分离手段,可大大减少&ldquo 假阳性率&rdquo Waters的四极杆质谱均带有识别&ldquo 假阳性&rdquo 功能。开启该功能,即可自动显示检测结果的可靠性。其原理,类似气质中的NIST谱库匹配。用四极杆质谱,也能做到:在没有标准品的情况下,对半目标兽药及其代谢物进行快速、准确地筛查、定量。  Instrument:就如您所说,在兽药残留的检测中,对于不明或未知化合物的检测,分离很关键。那么分离之后,如何去鉴定它们呢?  黄春:分离之后我们要对它进行挑选,将感兴趣的图谱挑出来。通过Waters强大的软件,通过三维谱图、组学或者二元比对可以轻松、快速、有效地把它挑选出来。  挑选出来后,在其后的鉴定上,各家厂商做的都差不多,对于半目标化合物的鉴定,可以通过数据库或者做标准品进行比对。在完全未知化合物鉴定上,是先挑出感兴趣的峰,确定母离子数,推断分子式,然后将分子式输入到公用网站上,得到可能的化合物,再用厂家的软件进行匹配。上述过程,在Waters强大软件中,可以自动链接、切换。自动挑选,匹配,省去人工匹配的麻烦。  Instrument:今后Waters公司在兽药残留检测方面还将开展哪些工作?  黄春:Waters公司与包括全球食品安全伙伴项目、各国的监管机构、研究机构广泛合作,推进兽药残留快速筛查标准化,实现样品前处理、分离、鉴定、出报告等整个过程的标准化。4月20日世界银行全球食品安全伙伴项目GFSP在Waters上海公司,还就此展开讨论。Waters将继续深入了解兽药残留检测状况,针对不同用户检测需求提供更好的检测方法和解决方案,比如说饲料行业、水质方面等领域的兽药检测等。我们希望凭借自身具备的专业知识及技能,促进食品安全发展和进步,最终让消费者受益。
  • 24种挥发性有机物标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 促销时间:11月29日至12月29日库存:现货同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 24种挥发性有机物 标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 库存:现货同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 浅谈药物质量标准中杂质的确定、限度制定、杂质测定
    一、对于杂质检查,需要有针对性的确定各原料药或辅料中需要测定的杂质,药品标准中的杂质检查项目,应包括以下几点:药物在研究中和稳定性考察中产生的;药物在生产中产生和降解的杂质。综上,药物在整个周期的杂质检查,应研究起始物料、生产工艺、药品稳定性这三个环节把控杂质检出,从而制定严格的内控质量标准,确保药品安全性。尤其是降解杂质和毒性杂质,通常为必检项目,除降解产物和毒性杂质外,在原料药中已控制的杂质,在制剂中一般不再控制。对于对映体药品,与之相关的异构体应作为杂质来检查。对于消旋体药品,质量标准中,除订入异构体标准外,还需定入旋光度。二、讲述杂质限度相关问题首先明确杂质限度中涉及到的以下术语:报告限度:超出此限度的杂质均应在检测报告中报告,并应报告具体的检测数据; 鉴定限度:超出此限度的杂质均应进行定性分析,确定其化学结构; 质控限度:质量标准中一般允许的杂质限度,如制定的限度高于此限度,则应有充分的依据; TDI:药品杂质的每日总摄入量。注:上表摘自2020版中国药典四部9102药品杂质分析指导原则创新药杂质制定:根据已进行的临床安全性数据获得。仿制药杂质制定:根据已有的标准,制定适应自研产品的杂质内控质量标准。研究杂质过程中,必要研究杂质的LOQ,LOQ浓度不得大于该杂质的报告限浓度(容易忽略项)。对于药品中的杂质检查,有薄层色谱法、高效液相色谱、气相色谱法,最常用的就是高效液相色谱方法和薄层色谱法,现介绍如下:对于采用高效液相色谱法测定杂质检出量,有以下几种办法:外标法(也称杂质对照品法)加校正因子的主成分自身对照法不加校正因子的主成分自身对照法面积归一化法下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看三、对于采用薄层色谱法测定杂质检出量,有以下几种办法:杂质对照品法;供试品溶液自身稀释对照法;杂质对照品法与供试品溶液自身稀释对照法;对照物法。下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看!
  • 电子烟竟含合成大麻素 质谱揭秘新型毒品
    说到合成大麻素,很多人会很陌生,不知道它是一种新精神活性的毒品,它是继传统毒品(如鸦片、海洛因、吗啡等)、合成毒品(如冰毒、摇头丸、麻古等)后流行全球的第三代毒品。新精神活性物质(NewPsychoactiveSubstance,以下简称NPS),又称“策划药”或“实验室毒品”,是不法分子为逃避打击而对管制毒品进行化学结构修饰得到的毒品类似物,具有与管制毒品相似或更强的兴奋、致幻、麻醉等效果。新精神活性物质逐步成为新的突出问题。新精神活性物质,通称模仿受管制毒品效果,但目前还不受监管的精神活性物质或产品。它是目前市场上出现的一种打着“合法快感”、“研究化学品”、“植物性食品”、“浴盐”等旗号的物质,有的原本并非是生产出来给人类使用的,或者是某些违禁化学药物被贩毒集团稍作结构改动,更有甚者是将几种精神活性物质混合在一起,其毒性、危害性并不亚于传统毒品,甚至有过之而无不及。精神活性物质作用于中枢神经系统,摄入人体后影响思维、情感、意志行为甚至意识状态的化学物质,容易导致精神依赖或药物滥用。  而我们大多数人遵纪守法又怎么会和毒品产生关系,合成大麻素离我们很遥远。那么,当说到电子烟,您还陌生吗?近年来,市场上出现的“戒烟神器”-电子烟,打着“安全无害,不含焦油和悬浮微粒等成分,使用方便,能够在公共场合吸烟,口味多样,新潮个性”而深受戒烟者或者年青人的喜爱。那么,当您知道所谓的“戒烟神器”的烟油中会被不法分子加入合成大麻素类毒品,让消费者越吸越上瘾,您还会觉得大麻素类毒品离我们很遥远吗?  在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”话题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈合成大麻素检测相关的技术及解决方案。  合成大麻素类物质比大麻毒品更容易上瘾、价格低廉、隐蔽性强、不易检测,常被吸毒者作为传统毒品的替代品吸食,在国内滥用案例急剧增加,危害日益凸显。为提前防范制贩合成大麻素类物质问题,国家禁毒委员会办公室于2021年5月将整类合成大麻素类物质列为毒品进行管制。随即2021年7月20日,公安部禁毒情报技术中心颁布并实施《毛发、血液和尿液中 2-甲基-1-戊基-3-(1-萘甲酰基)吲哚等 112 种合成大麻素类物质的测定》(JD/Y JY02.09-2021)的检验鉴定技术规范。  本文在SCIEX QTRAP®6500+ LC-MS/MS系统上,建立了毛发、血液和尿液中112种合成大麻素的快速筛查和定量方法,符合标准要求,为合成大麻素类毒品监测提供了快速有效的技术支持。  本方法具有以下特点:  1. 本方法涵盖112种合成大麻素,且所有化合物检测灵敏度均达到ng/g(毛发中)或ng/L(血尿中)级别  2. 本方法可实现同分异构体的完全分离,可准确定性定量  3. 本方法提供了112种合成大麻素化合物的质谱条件、液相条件,拿来即用,省时省力  实验结果  1. 112种化合物的典型色谱图  图1毛发中112种大麻素的典型色谱图  2. 该方法可实现大麻素同分异构体的完全分离(保留时间的分离度2%),可实现实际样品的准确定性和定量A)FUB-PB-22和MDMB-FUBICA完全分离前和分离后的色谱图  B)5F-FB-22、5F-MDMB-PICA和5F-EMB-PICA完全分离前和分离后的色谱图C)AMB-FUBICA和MEP-FUBICA完全分离前和分离后的色谱图 图2三对同分异构体的典型色谱图  本方法完全满足国家禁毒情报中心颁布的112种合成大麻素的检测标准要求(JD/Y JY02.09-2021),为毒品的缉查工作提供了快速的定性和定量方案。本文作者:  SCIEX公司应用技术专家孙小杰经理
  • 用离子阱做不一样的超高分辨离子淌度——访清华大学精密仪器系周晓煜副教授
    近期,一篇关于“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”的成果发表于《自然通讯》,该研究开发的离子淌度质谱分辨率超过1万,与现有商业化产品和国际先前报道过的技术相比, 分辨率提升了一个数量级以上。该成果公开发表后便引起业内质谱专家热议,相关评论包括“概念新颖”、“第一次见这么高的淌度分辨率”、“原理创新”等。据了解,离子淌度质谱领域成熟的商业化产品的分辨率皆在1千以下,清华的这项技术为何能“一骑绝尘”达到如此高分辨率?其创新在哪?能否成为离子淌度质谱发展的突破性技术?其距离商品化还有多远的路程?在此背景下,仪器信息网特别采访了清华大学精密仪器系周晓煜副教授,就该成果提出的高分辨离子淌度质谱技术以及未来的应用前景等进行了深入的交流。周晓煜副教授在实验室生物分子结构解析是现代生物科学中至关重要的环节,生物分子的结构包含着功能和性质的关键信息,科学家们可以通过对其结构的解析,揭示作用机制、探究与疾病的关系、寻找药物靶点等。因此,生物分子结构的准确解析对于药物研发和疾病治疗等领域具有重要意义。在生物分子结构解析领域,质谱技术的发展在过去几十年里经历了巨大的进展。其中,离子迁移质谱技术/离子淌度质谱(IM-MS)独特的分辨能力可以区分质谱技术无法区分的异构体或同重素,成为了生物分子结构解析重要的技术工具。而随着对生物分子结构与功能关系研究的深入,对高效、高灵敏的分析技术的需求越来越迫切。近年来,多种离子迁移质谱分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等通过引入高压气体簇冷却技术、多级离子迁移分离手段的方法并形成商业化产品,使得IM-MS分离分辨率得到了显著提高(分离分辨率在40-1000左右)。虽然IM-MS技术已经被广泛应用于生物分子结构解析的研究中,但由于分离分辨率的限制,目前无法完全解决生物分子异构体解析的问题。因此,如何提高IM-MS的分离分辨率,成为当前离子迁移质谱研究的热点和难点问题之一。搭建高分辨离子淌度——离子阱质谱新玩法仪器信息网:当前的技术手段在生物分子异构体研究中面临哪些瓶颈?您团队开发的超高场离子云扫描技术是否解决了这些瓶颈?周晓煜:生物分子结构解析常用的方法很多,比如核磁共振、X射线晶体学、电镜、质谱、离子淌度(IM)等等。过去十年,离子淌度质谱(IM-MS)正逐渐成为生物分子结构解析的主流手段以及质谱仪器发展的主要方向。这是因为质谱方法本身具有高灵敏度和高特异性的优点,串级质谱又可以看分子离子的结构,离子淌度功能的加入更是极大加强了质谱的结构解析能力,从另一个维度——分子形状对样品离子的结构进行区分。不过,目前的离子淌度质谱方法也存在“分辨率不够”的瓶颈,因此依然有很多具有生物学意义的异构体分子无法有效区分,包括很多蛋白质构象之间的差异无法检测到。那么,我们提出的离子云扫描技术,其分辨率可达10000,有潜力解决上述难题。仪器信息网:业内对新成果的评价,“概念新颖、原理创新”,其“新”主要体现在哪里? 您是如何想到、做到这个“新”呢?周晓煜:“新”主要体现在两点:一、离子阱是一种大家熟悉的质量分析器,这里却被我们拿来做离子淌度,实现的装置很简单,并且可以和其他质量分析器结合设计混合式质谱仪。二、主流的淌度分析都是用的低场,而我们用的是高场;同时在传统离子阱质谱分析的经典方法“共振抛出”方面作出了创新,利用胁迫振荡的原理获得了离子的结构信息,得到了很高的分辨率。过去,大多数提升离子淌度分辨率的方法主要是增加分析的路径或者时间。例如,西北太平洋国家实验室的SLIM采用多层堆叠结构,分析路径可达1094米。这是他们获得高分辨的原因,但也导致仪器的结构相对复杂。我们想走一条不一样的道路。我们团队长期从事离子阱原理和仪器研究,对离子阱有比较深刻的理解。考虑到离子阱具有无限长时间囚禁、分析离子的特性,从而可以无限增加离子淌度分析时间。同时,我们还利用强迫振荡的原理压缩离子云、抑制离子的扩散,让谱峰变的更窄。因此,在简单的离子阱结构里我们得到了很高的分辨率。 超高分辨淌度技术研发的实验装置。(左:实验室自搭分析器实验平台;右:从Mini β小仪器改装的实验平台)应用前景——为蛋白质异构体解析提供新深度仪器信息网:据了解,本研究是在一台经过改装的Mini β仪器上进行的,该仪器是一台双线性离子阱小型质谱。那么您团队开发的离子淌度+离子阱串联质谱的应用前景如何?周晓煜:我们认为这项技术有很好的应用前景。首先,我们已经在小仪器平台上证明这项技术可以达到很高的离子淌度分辨率,超出现有技术一个数量级以上,具备很强的技术优势。第二,离子阱是质谱仪器非常常用的分析器,无论学术还是产业界对它都很熟悉,奠定了广泛应用的基础。第三,离子阱,包括四极杆,很容易和其他高分辨质量分析器联用,例如和Orbitrap或TOF的联用。该技术的应用价值可以通过与经典的质谱联用型仪器范式得到证明。仪器信息网:该质谱仪器未来在哪些研究领域能够替代当前商业化的离子淌度质谱?或是否有非“我”不可的应用场景呢?周晓煜: 现在商业化仪器的离子淌度分辨率对异构体分析是不够的,甚至是远不够的。从蛋白质的构象解析可以清晰的看出来,大多数淌度技术只能把几个构象勉强分开;这样的困难对糖、脂质等异构体同样存在,而我们的方法可以实现基线分离。在这些传统技术很难做或无法做到的场景,我们的技术优势将得到充分体现。仪器信息网:您团队在该成果的基础上还有哪些规划?接下来您团队的研究重点还有哪些?本次开发的仪器技术是否有产业化发展的规划?您预计多久能成功产业化?周晓煜: 目前我们在小仪器平台证明了这项技术的可行性,未来,我们希望将离子阱和高分辨质量分析器联用,针对生物分子结构解析研究,开发相应的大仪器并解决相关的应用问题。除此之外,我们团队将持续聚焦便携式、小型化质谱仪器系统的开发,以及其在现场即时化学检验中的应用;一分钟出具报告,主要应用于临床、毒物/毒品、食品、安保等领域。另外,围绕脂质组学分析仪器方面,我们还将开展精细结构脂质组学的单细胞分析、疾病标记物筛查等相关研究。我们团队和清谱科技有很好的合作基础,双方合作开发了Mini β、Cell等多款小型化质谱仪,并还将继续合作。按技术就绪度而言,我们现在的就绪度在4以下,预期通过3-5年的时间可以达到6-8,即达到商业化仪器的水平。聚沙成塔——从1-10000的离子阱质谱开发之旅仪器信息网:请介绍下您本人质谱仪器创新研究的历程?周晓煜: 我最早接触质谱是在博士期间,当时中科院化学所的聂宗秀研究员刚回国组建研究团队,所以我在2009年3月启程来到北京,开始了质谱研究之旅。研究之初,聂老师拿了一些质谱理论的书还有他自己的研究心得给我看,特别是离子阱理论这部分,希望我能早点弄懂从而能尽早搭建颗粒质谱。因为具有物理学的背景,我看离子阱理论这部分特别有感觉,所以博士毕业后希望能够继续从事这方面的研究。当时,美国普渡大学的欧阳证老师经常回国交流,我也借机申请去他那里做博士后。欧阳老师当时的一个主要方向是离子阱小仪器,所以我就一边研究离子阱理论,一边考虑适用于小仪器的理论和应用方法开发。2015-2017年,我们普渡的质谱团队跟随欧阳老师一起回国并加入清华大学,那时我开始考虑如何利用自己的特点做一些有意思的研究。一开始,我也不知道答案。众所周知,离子阱作为质谱质量分析器已经几十年了,发展相当成熟,但我一直相信离子阱能做出一些不一样的东西。所以,自2009年以来,我做的所有工作都是围绕离子阱理论和仪器展开。直到2017年开始接触到了离子淌度技术,了解到该技术目前遇到的问题,我意识到离子阱的机会“真”的来了。一开始,我们只是把现有的低场离子淌度原理移植到我们的小仪器上,在2000年时可以实现40左右分辨率的离子淌度功能,已经接近商业大型仪器。之后又通过3年的技术研发,提出自己的高场淌度技术,我们把离子淌度的分辨率提到了10000。作为一名教师,我也希望充分利用自己的研究经历为国家、为质谱行业培养更多、更优秀的青年人才。合影(右:清华大学周晓煜副教授,左:仪器信息网万鑫)采访编辑:万鑫
  • 近期即将实施的标准及使用仪器设备汇总
    受疫情影响,有些时日没有整理即将实施的标准,今日特意抽出时间将化学检测仪器分析的标准汇总于下表,以及所涉及到使用的仪器设备汇总,供大家方便使用,免去查找的繁琐步骤。  说明:因发标准布不久或者是版权问题,免费版还未公开暂时无法提供下载,表格中标准号有超链接,点击即可跳转标准阅读页面,输入验证码即可阅读全文。序号标准号标准名称实施日期1GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施2GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施3GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施4GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施5GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施6GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施7GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-11-01实施8GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-10-01实施GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施  仪器和设备:  1.液相色谱-串联质谱仪:配有电喷雾离子源。  2.液相色谱仪:配有紫外(或二极管阵列)检测器.  3.超声波清洗仪。  4.分析天平:感量0.01mg和0.001g。  5.离心机:转速不低于4000r/min。  6.微量可调移液器:10ul-100ul,和0.1ml-1ml。  7.微孔滤膜:孔径0.22um。GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施  仪器和设备:  1. 超高效液相色谱仪:配有二元及以上梯度泵,带二极管阵列检测器或紫外检测器。  2. 紫外分光光度计。  3. 分析天平:感量为0.01 mg和0.01 g。  4. 组织捣碎机。  5. 涡旋振荡器。  6. 减压浓缩装置。  7. 固相萃取装置。  8. 离心机:转速不低于5000 r/min。GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配有蒸发光散射检测器。  2. 色谱柱:氨基柱(250 mm X4.6 mm,5 μm)。  3. 有机相微孔滤膜:0.45 μm。  4. 电子分析天平:感量为0.1 mg.0.01 g。  5. 电热恒温鼓风干燥箱。  6. 粉碎机。  7. 0.3mm标准检验筛。  8. 恒温磁力搅拌器。  9. 集热式磁力恒温搅拌器。  10. 旋转蒸发仪。GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配紫外检测器。  2. 分析天平:感量0.0001g。  3. 冷冻离心机。  4. 超声波清洗机。  5. 恒温水浴锅。  6. 玻璃匀浆器:20 mL.  GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施  设备和仪器:  1. 采样器:符合JJG 956的大气采样器。  2. 电子天平:精度0.1 mg。  3. 超声波发生器:设备参数应覆盖以下范围:频率25 kHz~100 kHz,功率100 W~300 W。  4. 浊度计:符合JJG 880的浊度计,量程下限不高于0.1 NTU.  5. 电热板:加热板面积不小于150 mmX 150 mm,温度不低于200℃。  6. 紫外-可见分光光度计:波长范围200 nm-600 nm,精度优于1nm。GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施  仪器设备  近红外光谱分析仪:  1. 推荐采用傅里叶变换色散原理的光谱仪,其他近红外光谱分析仪也可以采用。  2. 波长范围:4000 cm-1-10000 cm-1。  3. 分辨率:2 cm-1、4 cm-1 、8 cm-1均可,推荐4 cm。  4. 检测聚苯乙烯,取峰位4571.00 cm-1,准确度要求士0.5 cm-1。  5. 检测空气中的水分,取峰位7181.68 cm-1 ,准确度要求士0.1 cm-1。GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-04-15发布 2022-11-01实施  仪器设备:  1. 紫外分光光度计:  双光束,测定波长200 nm~400 nm,吸光度精度优于0.001。仪器工作波长划分为两段,分别是A段(190 nm~340 nm)、B段(340 nm~400 nm)。A段波长准确度为士0.5 nm,波长重复性为≤0.2 nm 透射比准确度为士0.5%,透射比重复性≤0.2%。B段波长准确度为士1.0nm,波长重复性为≤0.5nm 透射比准确度为士0.5% ,透射比重复性≤0.2%。在220 nm处杂散光不大于0.1%。  2. 石英吸收池:  光径为10mm士0.01mm的石英吸收池和光径20mm士0.01mm的石英吸收池。以空气为参比,10mm的参比池和样品池在待测的各个波长处的吸光度差值不超过0.002。以空气为参比,20 mm的吸收池与10 mm的参比池在待测的各个波长处吸光度差值不超过0.002。  3. 氮气吹脱装置:将无油减压阀固定在氮气钢瓶上或氮气管道,并通过适当材质的管线(如聚乙烯管)与流量控制阀及插人25 mL容量瓶或锥形瓶中的收口玻璃管(6.6)相连。各部件需清洁、无污染。试样应避免与含有增塑剂的塑料制品接触。  4. 试剂瓶:容量至少500mL,配备密封性较好的瓶盖。  5. 容量瓶或锥形瓶:容量25 mL。  6. 收口玻璃管:胶头滴管玻璃部分。GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-04-15发布 2022-10-01实施  仪器与设备  1. 波长色散X射线荧光光谱仪:应符合GB/T 16597规定。  2. 坩埚和铸型模:坩埚和铸型模(或坩埚兼作铸型模)由不浸润的铂合金(95%Pt+5%Au)制成。坩埚容积宜大于30mL,铸型模要求底部平整光滑(底部厚度应足以防止变形)。  3. 高温炉:温度可控并至少能加热到1 000 C士20 C。  4. 熔融炉:温度可控并至少能加热到1 050 C士20 C。  5. 天平:感量不大于0.1 mg。  6. 瓷坩埚:容积约50 ml。  7. 瓷坩埚:容积约100 ml.  作者:小泥人
  • 百灵威推荐GB3838-2002专用24种挥发性有机物标准品
    g家环保总局和g家质量监督检验检疫总局制定的地表水环境质量标准GB3838-2002 于2002 年4 月28 日通过,2002 年6月1 日正式实施。这y新标准是为了贯彻《中华人民共和g环境保护法》和《中华人民共和g水污染防治法》,防治水污染,保护地表水水质,保障人体健康,维护良好的生态系统。 根据g家环保总局的推荐,百灵威早在2008 年即针对标准中前38 项物质专门定制多种不同组份混标以满足客户的检测要求。近期百灵威向业内广大客户推荐特别定制的24种挥发性有机物标准溶液: 货号:S-17408A-R2 名称:24种挥发性有机物标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 成分: 序号 英文 中文 CAS 浓度 1 chloroform 三氯甲烷 67-66-3 100ug/ml 2 carbon tetrachloride 四氯化碳 56-23-5 100ug/ml 3 bromoform 溴仿 75-25-2 100ug/ml 4 methylene chloride 二氯甲烷 75-09-2 100ug/ml 5 1,2-dichloroethane 1,2- 二氯乙烷 107-06-2 100ug/ml 6 epichlorohydrin 环氧氯丙烷 106-89-8 500ug/ml 7 vinyl chloride 氯乙烯 75-01-4 100ug/ml 8 1,1-dichloroethylene 1,1- 二氯乙烯 75-35-4 100ug/ml 9 trans-1,2-dichloroethylene 反式-1,2-二氯乙烯 156-60-5 100ug/ml 10 cis-1,2-dichloroethylene 顺式-1,2-二氯乙烯 156-59-2 100ug/ml 11 trichloroethylene 三氯乙烯 79-01-6 100ug/ml 12 tetrachloroethylene 四氯乙烯 127-18-4 100ug/ml 13 chloroprene 2- 氯-1,3- 丁二烯 126-99-8 100ug/ml 14 hexachlorobutadiene 六氯丁二烯 87-68-3 100ug/ml 15 styrene 苯乙烯 100-42-5 100ug/ml 16 benzene 苯 71-43-2 100ug/ml 17 toluene 甲苯 108-88-3 100ug/ml 18 ethylbenzene 乙苯 100-41-4 100ug/ml 19 o-xylene 邻二甲苯 95-47-6 100ug/ml 20 m-xylene 间二甲苯 108-38-3 100ug/ml 21 p-xylene 对二甲苯 106-42-3 100ug/ml 22 isopropylbenzene 异丙苯 98-82-8 100ug/ml 23 chlorobenzene 氯苯 108-90-7 100ug/ml 24 1,2-dichlorobenzene 1,2- 二氯苯 95-50-1 100ug/ml 25 1,4-dichlorobenzene 1,4- 二氯苯 106-46-7 100ug/ml GB3838-2002中地表水检测更多标样欢迎致电百灵威400-666-7788垂询!
  • 南京农业大学兰维杰:高光谱成像技术是评价食品内部异构性的有效手段
    随着图像处理及分析相关的硬件和软件的不断进步,高光谱成像系统在各种研究项目中的使用越来越多,并被应用于各种领域。最新的研究报告显示,2023年全球高光谱成像系统市场估计为168亿美元,预计2028年有望达到343亿美元,预测期间复合年增长率为15.4%,市场极具活力!为了更好的展现高光谱技术和应用的创新成果,以及未来的发展趋势,仪器信息网特别策划《高光谱技术创新成果集》网络专题,集中展示高光谱领域的最新成果,包括但不限于仪器、部件、技术、方法、应用等。兰维杰 副教授南京农业大学食品科技学院在仪器信息网主办的“高光谱技术在农业领域的最新应用进展” 网络研讨会议中(相关精彩视频回放点击:https://www.instrument.com.cn/news/20230811/679327.shtml ),南京农业大学兰维杰副教授进行了《高光谱成像技术在苹果内部品质异构性的评价潜力研究》的报告分享。会后,我们再次邀请兰老师分享高光谱技术当前的研究进展及其团队研究成果。一、为什么要依靠高光谱技术来研究食品异构性高光谱成像技术是一种在不同波长范围内获取物体光谱信息的技术,其技术优势在于能够捕捉物体的细微光谱差异,并且集成了成像和光谱学,从而实现对物体内部构成和特性的定量或定性分析。目前,高光谱技术在食品质量检测领域应用广泛,如检测食源性污染物、鉴别真伪、果蔬成熟度及病害程度判断。其中,由于果蔬的内部物理性质(如大小、形状、颜色、位置和温度)和生物性质(如品种、季节、成熟度水平和地理来源)各不相同,造成组织具有较高异构性,影响了光学传播特性和与入射光的相互作用行为,从而降低了质量检测的精度。常规色谱、质谱化学分析方法探究单个水果组织水平上的内部异质性方面既昂贵又耗时,这些内部异质性已经被广泛证实,同时也显著影响了其加工后产品的质量安全与稳定性。目前,凭借空间和光谱信息的结合,高光谱成像技术拥有探究其内部品质异构性的潜力,这不仅为对食物内部异质性的科学研究提供了快速有效表征方法,同时也更为获得稳健、精准的食品品质指标预测模型提供关键指导。二、高光谱技术研究苹果异构性的部分进展本团队以苹果为研究对象,通过常规化学分析测定,证明了单个苹果内部在总糖、单糖、酸度、总酚含量等方面均存在显著空间异构性分布。目前,我们提供了一种基于近红外高光谱的简单高效方法来实现苹果内部化学指标异构分布的快速表型(图1)。首先,我们通过近红外高光谱成像系统获取了布瑞本(Braeburn)、嘎啦(Gala)、史密斯(Granny Smith)和高果树负载量(约200个/棵)与低果树负载量(约150个/棵)下的金冠(Golden Delicious)苹果的片状组织,获取了超1000个不同部位的待测样本;其次,对所有苹果切片的高光谱信息,采用主成分分析筛选出变异性较大的特征待测区域(共141个),基于每个部位的平均光谱进行PLS模型与机器学期预测模型构建,结果发现PLS模型能够较好实现特征测试样本的总糖(Total sugar)和干物质(DMC)的预测,模型R2与RPD值高于0.81和2.2;最后,通过该模型对全像素下的目标进行预测,成功实现了不同品种及不同位置的苹果内部的总糖及干物质分布的变异性可视化(图2、图3)。综述,该研究成果的优势在于依靠相对小样本测试数据,即可实现高通量的苹果内部品质指标可视化,这为田间及实验室内三维空间的品质表型提供简单可行方案参考。但是,本研究中高光谱技术也展现了评价单糖、总酚等内部品质指标空间分布的局限性。图1 基于近红外高光谱技术表征苹果内部品质异构性的方法图2基于近红外高光谱技术表征苹果内部干物质含量的可视化空间分布图图3 基于近红外高光谱技术表征苹果内部总糖含量的可视化空间分布图三、高光谱技术对水果硬度异构性与泛化预测模型的开发目前,本团队研究了不同“富士”苹果硬度空间异构性,发现其干物质和硬度也存在着较大变异性,并希望通过减少苹果果皮光学信号干扰,建立更加可靠的果肉硬度泛化检测模型。现有结果表明,在构建苹果果实硬度校正模型时,考虑到样品内部异构性( 10%)可有效提高模型精度和降低样本数量。由此,我们不仅减轻了样品测定的工作量并且保证了模型构建中样本的差异性。希望在后续的苹果硬度模型建立及矫正的过程中开展进一步验证性研究,为点状近红外对苹果硬度检测的泛化模型精度提升提供参考。四、高光谱成像技术探究食品异构性的几点展望目前,限制高光谱成像技术在评价果实内部品质异构性方面的应用依旧存在着以下三个方面:首先,高光谱数据量庞大,急需更有效的数据处理方法、人工智能和机器学习技术从数据中提取有用信息;其次,高精度、小型化的高光谱一起可以提高数据采集的质量和效率,实现食品加工产品在发酵、调配、包埋等过程中内部结构与化学变化的精准控制;最后,明确光在生物物体中传播路径模拟或与生物物体相互作用的机理也是提高模型精度必要的研究方向。这些方法的发展为高光谱成像技术在评价食品异构性的可能性提供了可行性。
  • “国内外药典质量标准探讨”网络主题研讨会举行
    p  药典是一个国家记载药品标准、规格的法典,是药品生产、供应、使用和行政、技术监督管理共同遵循的法定技术依据,对保证药品质量和保障人民用药安全有效,具有十分重要的作用。到20世纪90年代初,世界上至少已有38个国家编订了国家药典。另外,尚有区域性药典3种及世界卫生组织(WHO)编订的《国际药典》。/pp  2017年3月15日,仪器信息网组织举行了“国内外药典质量标准探讨”网络主题研讨会,会议邀请了北京市药品检验所周立春、中国科学院上海药物研究所研究员吴婉莹、安捷伦液相色谱应用工程师余彦海、PerkinElmer中国区食品药品市场经理姚亮、LGC医药标准品资深专员杨学林为制药行业的从业人员介绍了国内外药典中药品质量标准方面的关键问题,以及仪器技术在不同药典药品质量标准中的应用,并介绍不同药典中标准品的定义、分类及正确使用。/pp style="TEXT-ALIGN: center" img title="201721514822.jpg" style="HEIGHT: 280px WIDTH: 210px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/noimg/7b3e1608-afe9-4375-b7a5-48011c53874a.jpg" width="210" height="280"//pp style="TEXT-ALIGN: center"strong报告人:北京市药品检验所周立春/strong/pp style="TEXT-ALIGN: center"strong报告题目:美国药典(USP)的研读/strong/pp  周立春老师在药品检验一线工作32年,曾任北京市药品检验所抗生素室主任、生化实验室主任及所长助理。第九、十届药典委员会委员、国家局CDE仿制药立卷审查组成员,北京市上市后药品安全性监测与再评价专家库专家,国家食品药品监督管理局等多个机构审评专家库专家。会议中,周立春从美国药典的历史、美国药典的结构、美国药典的借鉴意义等方面对美国药典进行了详细介绍。/pp style="TEXT-ALIGN: center"img title="201722010241.jpg" style="HEIGHT: 300px WIDTH: 213px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/noimg/fb997bf1-e70b-4dd3-8473-8d5560b8421b.jpg" width="213" height="300"//pp style="TEXT-ALIGN: center"strong报告人:中国科学院上海药物研究所研究员吴婉莹/strong/pp style="TEXT-ALIGN: center"strong报告题目:中药国际质量标准体系的构建/strong/pp  中国科学院上海药物研究所研究员吴婉莹主要致力于中药质量控制研究及现代中药新药研发工作。所开发的丹七通脉片获得中药五类新药临床研究批件,目前正在进行临床II期研究 所制定28种中药及复方的质量标准中,10种中药27个标准获得国际认可,已经纳入美国或欧洲药典。报告中,吴婉莹介绍了《美国药典》、《欧洲药典》、《日本药局方》、《中国药典》等国内外药典中的中药材标准情况,并详细分析了目前中药材国际质量标准进展及相关实例。/pp style="TEXT-ALIGN: center"img title="201731391420.jpg" style="HEIGHT: 300px WIDTH: 243px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/noimg/04f38a7e-23e1-4a88-b56a-6ba62c9bb92e.jpg" width="243" height="300"//pp style="TEXT-ALIGN: center"strong报告人:安捷伦液相色谱应用工程师余彦海/strong/pp style="TEXT-ALIGN: center"strong报告题目:安捷伦液相色谱及相关技术针对中国药典2015版新动向的解决方案/strong/pp  安捷伦液相色谱应用工程师余彦海,主要负责液相色谱在药物、食品、环境等相关领域的应用支持工作。余彦海在会议中介绍了2015版中国药典新的变化及特点。针对这些变化和特点,安捷伦提供实现异构体高效分离、绿色环保的超临界流体色谱 高峰容量、复杂样品分离的二维液相色谱 加快样品处理与分析流程的在线固相萃取技术 以及新一代超高效液相色谱1290 Infinity II UHPLC。【a title="" style="TEXT-DECORATION: underline COLOR: #0070c0" href="http://www.instrument.com.cn/webinar/video/play/103555" target="_blank"strongspan style="COLOR: #0070c0"视频回放/span/strong/a】/pp style="TEXT-ALIGN: center"img title="201722095028.jpg" style="HEIGHT: 292px WIDTH: 210px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/noimg/3cfd13a0-45ef-4701-a0a6-20ef0f49b33a.jpg" width="210" height="292"/ /pp style="TEXT-ALIGN: center"strong报告人:PerkinElmer中国区食品药品市场经理姚亮/strong/pp style="TEXT-ALIGN: center"strong报告题目:PerkinElmer应对中美药典变化的检测方案-元素杂质/strong/pp  PerkinElmer中国区食品药品市场经理姚亮,研究生毕业于中国食品发酵工业研究院,从事食品安全标准和食品检测标准研究,目前在珀金埃尔默负责中国区食品药品领域的市场开发、分析应用解决方案的推广。姚亮主要介绍了中美药典关于元素检测的变化,以及美国药典USP232/233的主要变化,全面的为大家介绍PerkinElmer在进行药品杂质元素检测的解决方案。【a title="" style="TEXT-DECORATION: underline COLOR: #0070c0" href="http://www.instrument.com.cn/webinar/video/play/103556" target="_blank"span style="COLOR: #0070c0"strong视频回放/strong/span/a】/pp style="TEXT-ALIGN: center"img title="2017215152720.jpg" style="HEIGHT: 300px WIDTH: 228px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/noimg/0f69fbc1-7cbd-4ef1-8ed4-64af0e10fec5.jpg" width="228" height="300"//pp style="TEXT-ALIGN: center"strong报告人:LGC医药标准品资深专员杨学林/strong/pp style="TEXT-ALIGN: center"strong报告题目:医药标准物质定义、分类及其正确使用/strong/pp  LGC医药标准品资深专员杨学林主要负责医药标准品的市场推广及售前售后的技术支持工作,曾受邀2015版《中国药典》进行关于标准品知识方面的讲座。报告中,杨学林概括介绍了2015版药典中对标准品的定义及杂质标准品的新要求 深入解析标准品的定义、特性及生产体系 着重对医药产品生产及研发过程中使用的一级标准品、二级标准品、药典标准品及杂质标准品进行介绍 并介绍了仿制药一致性评价对标准品的要求,以及杂质标准品的应用范围及如何标定。【a title="" style="TEXT-DECORATION: underline COLOR: #0070c0" href="http://www.instrument.com.cn/webinar/video/play/103557" target="_blank"span style="COLOR: #0070c0"strong视频回放/strong/span/a】/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制